Anticipatory Anxiety and Wishful Thinking

Jan Engelmann¹ Mael Lebreton² Nahuel Salem-Garcia³ Peter Schwardmann⁴ Joël van der Weele¹

¹University of Amsterdam

²Paris School of Economics

³University of Geneva

⁴Carnegie Mellon University

EEA

August 29, 2023

Figure 1: Worldwide Google searches for "prayer" during the first three months of 2020

Notes: Google searches on prayer relative to the total number of Google searches on the particular day, set to 1 on Feb 1st 2020. The searches include topics related to prayer, including alternative spellings and languages. The average for the world is calculated across appr. 150 countries. Data source: Google.trends.

Source: Bentzen (2020), JEBO.

Theory: beliefs have consumption value or yield "anticipatory utility"

Theory: beliefs have consumption value or yield "anticipatory utility"

The greatest force of feeling and motive arises from the anticipation of a long-continued future (Jevons 1871)

Theory: beliefs have consumption value or yield "anticipatory utility"

- The greatest force of feeling and motive arises from the anticipation of a long-continued future (Jevons 1871)
- Optimistic beliefs result from some optimization process (Brunnermeier and Parker 2005, Bénabou and Tirole 2002, 2011)

Literature: Mixed and puzzling evidence

Scant evidence from experimental econ (Mayraz 2011-✓, Huseynov et al. 2023-✗!, Coutts 2018-✓✗✗, Barron 2020-✗, Mijovic-Prelec and Prelec 2010-✓)

 Inconclusive evidence from psychology on desirability bias (Krizan and Windschitl 2007-XXX)

► Field evidence on info avoidance and motivated beliefs in health domain (Oster et al. 2013, Ganguly and Tasoff 2016, Orhum et al. 2021, Islam 2021 ✓) **Main research question:** Do people self-deceive to reduce anxiety about bad future outcomes?

Secondary questions:

> Ambiguity: Does ambiguity of evidence facilitate wishful thinking?

Trade-offs: Do incentives for accuracy constrain wishful thinking?

Heterogeneity: Is wishful thinking a stable personal attribute?

Experiment 1

Inducing anxiety

Inducing anxiety

- Shocks cause anxiety: Berns et al. (2006); Schmitz and Grillon (2012); Engelmann et al. (2015, 2017, 2019)
- Precisely timed negative consumption events.

Pattern recognition

Electric shock

Treatment varies whether shocks occur for left or right-tilted patterns

Pattern recognition

Electric shock

Treatment varies whether shocks occur for left or right-tilted patterns

 $\rightarrow A$ wishful thinker is more likely to believe that they saw a no-shock pattern

Pattern recognition

Electric shock

Treatment varies whether shocks occur for left or right-tilted patterns

 $\rightarrow A$ wishful thinker is more likely to believe that they saw a no-shock pattern

Measure of wishful thinking: Accuracy no-shock patterns – accuracy shock patterns

Further treatments:

- Ambiguity of evidence: High, medium, and low
- Accuracy incentives: Either 1 euro or 20 euro prize in Becker-DeGroot Marschak of one randomly selected trial

Further treatments:

- Ambiguity of evidence: High, medium, and low
- Accuracy incentives: Either 1 euro or 20 euro prize in Becker-DeGroot Marschak of one randomly selected trial

Details:

- ▶ 60 subjects (31 female, av. age =21), individual sessions in Amsterdam
- within-subject treatments across many trials
- Preregistered at Aspredicted.org

Results

Wishful thinking of about 4 percentage points (p-value < 0.01)</p>

Experiment 2: Monetary losses

Does wishful thinking respond to the size of losses?

- Low stakes: Endowment 50 penny, 10 penny loss possibility each trial
- High stakes: Endowment 25 pounds, 5 pound loss possibility each trial

Does wishful thinking respond to accuracy incentives?

- Low bonus: 10 penny (one trial randomly paid)
- High Bonus: 8 pounds (one trial randomly paid)

Did higher stakes lead to higher self-reported anxiety?

Results

Two channels for incentives to reduce wishful thinking (see models in paper):

1. **Ex-post signal distortion**: trade-off between material and psychological incentives shapes intensity of self-deception ("optimal expectations")

Two channels for incentives to reduce wishful thinking (see models in paper):

- 1. **Ex-post signal distortion**: trade-off between material and psychological incentives shapes intensity of self-deception ("optimal expectations")
- 2. **Ex-ante investment in signal precision**: improves accuracy and makes wishful thinking harder

Two channels for incentives to reduce wishful thinking (see models in paper):

- 1. **Ex-post signal distortion**: trade-off between material and psychological incentives shapes intensity of self-deception ("optimal expectations")
- 2. **Ex-ante investment in signal precision**: improves accuracy and makes wishful thinking harder

So far:

- \blacktriangleright bonus did not affect accuracy \rightarrow rules out second channel
- ► lack of incentive effect despite evidence for mental effort and presence of wishful thinking → suggests first channel is not so important

Experiments 4: Task characteristics and accuracy incentives

Experimen 4 (N>400, Prolific)

Open up effort-accuracy channel

- New tasks more susceptible to effort
- Accuracy incentives maximally salient (stake size fixed)
- Demanding attention
- Test robustness of wishful thinking in tasks drawing on different cognitive processes

Increase power

Task in experiment 4

- Array of 100 dots: Are there more red or blue dots?
- ► Just enough time for participants to count dots if they choose to → more explicit effort choice

Results of experiment 4

Results Experiment 4: Dot counters

Only participants who reported sometimes (38%) or always (9%) counting dots exerted more effort and became more accurate under higher incentives

Results Experiment 4: Dot counters

Only participants who reported sometimes (38%) or always (9%) counting dots exerted more effort and became more accurate under higher incentives

Heterogeneity

▶ Stability: Average half-split correlation of wishful thinking is ≥0.5

Individual-level wishful thinking and self-reported anxiety are correlated

Experiment 5: Are losses special?

Experiment features 32 trials of single Gabor patches

Treatment varies the framing

- Loss frame: Endowment 16 pounds, -50 penny after "loss pattern"
- ► Gain frame: +50 penny after "gain pattern"

Hypothesis: Higher wishful thinking under loss frame.

Conclusion

Five experiments show that wishful thinking is

- highly robust across sources of anxiety and cognitive tasks (4 replications)
- increasing in the ambiguity of evidence
- not very responsive to monetary stakes
- responsive to accuracy incentives, but only through signal precision
- heterogeneous across, but stable within individuals
- not present in the gain domain, and plausibly driven by emotions of anxiety and fear

Thank you!

j.j.vanderweele@uva.nl

Suppose a participant

- 1. is told right-tilted patterns yield shocks, i.e. $r_z = 1$,
- 2. observes the pattern with $r_t = \{0, 1\}$ and associated signal strength *s*,
- 3. forms an unbiased belief $p(r_t, s)$ about the pattern being right-tilted,
- 4. and then chooses her distorted beliefs \hat{p} to maximize

$$U = \frac{1}{2} \left(1 + 2p\hat{p} - \hat{p}^2 \right) M - pZ - \sigma_z \hat{p}Z - \lambda(s)(p - \hat{p})^2$$

Her optimal belief for right-tilted shocks is given by

$$\hat{p}^*(r_z=1) = p(s,r_t) - \frac{\sigma_z Z}{M + 2\lambda(s)}$$

Her optimal belief for right-tilted shocks is given by

$$\hat{p}^*(r_z=1) = p(s,r_t) - \frac{\sigma_z Z}{M + 2\lambda(s)}$$

For left-tilted shocks it is

$$\hat{p}^*(r_z=0)=p(s,r_t)+\frac{\sigma_z Z}{M+2\lambda(s)}$$

Her optimal belief for right-tilted shocks is given by

$$\hat{p}^*(r_z=1) = p(s,r_t) - \frac{\sigma_z Z}{M+2\lambda(s)}$$

For left-tilted shocks it is

$$\hat{p}^*(r_z=0)=p(s,r_t)+\frac{\sigma_z Z}{M+2\lambda(s)}$$

Now suppose that $r_t = 0$, then wishful thinking is given by

$$WT = \hat{p}^*(r_z = 0) - \hat{p}^*(r_z = 1) = \frac{2\sigma_z Z}{M + 2\lambda(s)}$$

Competing explanations for apparent wishful thinking

- Magical thinking: Perhaps participants believe that their guess affects the true state
 - Pre-task instructions explicitly ask to confirm understanding
 - Excluding participants who voice post-task confusion does not change results
- Noise-based explanation: Shock pattern associated with more noise as anxious subjects "forget" the signal
 - 'No stakes' condition in experiment 2 to rule this out: non-aligned patterns lead to higher accuracy than no-stakes patterns

Heterogeneity

Correlates of wishful thinking

Dep. variable:	(1)	(2)	(3)	(4)
	Wishful	Wishful	Wishful	Wishful
Concentration	-0.0275***	-0.0314**	-0.0376***	-0.0454***
	(0.00963)	(0.0123)	(0.0109)	(0.0136)
Defensive pessimism	-0.00781*	-0.0137**	-0.0106**	-0.0179**
	(0.00413)	(0.00625)	(0.00440)	(0.00693)
Anxiety		0.0133 (0.00832)		0.0171* (0.00900)
Controls	Yes	Yes	Yes	Yes
Excl. strugglers	No	No	Yes	Yes
Constant	0.349***	0.364***	0.399***	0.425***
	(0.0512)	(0.0679)	(0.0570)	(0.0766)
Observations R^2	1049	624	743	421
	0.068	0.060	0.089	0.086

Table: Omitted controls: age, gender and experiment dummies. Standard errors in parentheses. * p< 0.1, ** p< 0.05, *** p< 0.01.

Correlates of wishful thinking

	(1)	(2)	(3)	(4)	(5)	(6)
	Risk	After-	Climate	Risk	After-	Climate
	seeking	life	worry	seeking	life	worry
Wishful Thinking	0.338	0.201	-0.0437	0.708**	0.969**	0.0238
	(0.243)	(0.344)	(0.262)	(0.312)	(0.443)	(0.341)
Controls	Yes	Yes	Yes	Yes	Yes	Yes
Excl. strugglers	No	No	No	Yes	Yes	Yes
Constant	4.097***	3.019***	5.242***	3.966***	2.711***	5.009***
	(0.158)	(0.350)	(0.268)	(0.200)	(0.433)	(0.339)
Observations	1049	1027	1007	743	733	724
R^2	0.038	0.028	0.062	0.036	0.030	0.073

Table: Omitted controls: age, gender and experiment dummies. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.