On the Relation Between Damage and Deception

Joel Sobel

August 29, 2023

Three Tasks

- 1. "Pedagogic": Provide coherent definition(s) of deception.
- 2. "Applied": Relate the definition to examples faced by regulators.
- 3. "Technical": Propositions that relate binary relationships on beliefs to preferences of decision makers.

Framework

- One Decision Maker.
- ▶ Beliefs $\mu \in \Delta(\Theta)$.
- Decision maker takes action y.
- Utility function: $U^{R}(\theta, y)$.
- For convenience: Θ finite.

Two players: Sender and Receiver.

Sender observes $\theta \in \Theta$.

Sender sends message $m \in M$. (*M* can depend on θ .) *R* observes *m*.

Receiver takes action $y \in Y$.

Preferences $U^{i}(\theta, y, m)$; $U^{R}(\cdot)$ independent of m.

Prior $P(\theta)$ (positive on Θ).

Explanation

Standard interpretation

- 1. ... introduces game theory.
- 2. ... explains where beliefs come from.
- 3. ... relevant for applications.

Deception: Informal

Deception is "inducing bad beliefs."

I need some notion of beliefs. I need some notion of "bad."

How to do this?

Let $D(\mu)$ is the set of beliefs that are less accurate/more deceptive than μ .

So beliefs are bad compared to other possible beliefs.

Easy Case: Two states. Beliefs totally ordered (by probability placed on true state).

Conceptual Approach: Deception

- Deception is partial order on beliefs. Loosely "more deceptive" means "further from truth."
 (μ more deceptive than μ'...)
- There will be lots of definitions because there are lots of distances from truth.
- To evaluate the relevance of a particular definition, I relate it to when "bad" beliefs lead to "bad" utility.

Conceptual Approach: Damage

- Damage is a(nother) partial order on beliefs. Loosely "more damaging" means "leads to lower utility."
- There will be lots of definitions because there are lots different kinds of agent/utility function.
- Goal: "Damage-Deception Result" associating a definition of deception with a class of preferences.

Strong (S) Deception

Definition (Strong deception)

The belief μ' is more **strongly deceptive** than μ given θ^* if $\mu' \neq \mu$ and there exists $p \in [0, 1)$ such that

$$\mu(\cdot) = p\mu'(\cdot) + (1-p)I(\cdot \mid \theta^*). \tag{1}$$

 μ on segment connecting point mass on θ^* to $\mu'.$

 $[I(\cdot \mid \theta^*) \text{ is point mass on } \theta^*.]$

S-Deception Illustrated

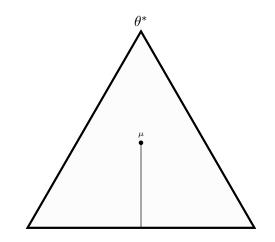


Figure: Beliefs on the line segment are more strongly deceptive than μ .

S-Deception Illustrated Again

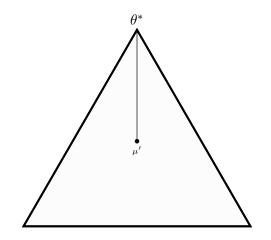


Figure: The belief μ' is more strongly deceptive than μ if only if μ is on line segment.

Deception: Property of Beliefs Damage: Consequences. Property of Preferences. Assume *R* best replies to beliefs. $BR(\mu)$ is *R*'s best response correspondence:

$$BR(\mu) = \arg \max_{y \in Y} \sum_{\theta \in \Theta} U^{R}(\theta, y) \mu(\theta).$$

Damage: Definition Let $\bar{u}(\theta, \mu) = U^{R}(\theta, BR(\mu)).$

Definition (Damaging Behavior)

The belief μ' is more $\mbox{damaging}$ than μ given θ^* if

 $\bar{u}(\theta^*,\mu') < \bar{u}(\theta^*,\mu).$

Technicality:

- If BR(μ) is not single valued, then ū(θ*, μ') may not be single valued.
- ► So $\bar{u}(\theta^*, \mu') < \bar{u}(\theta^*, \mu)$ needs a definition.
- I need to make some assumption (otherwise ugly statements of propositions).
- In what follows, can rank sets using strong set order, maximum, minimum,

Let \mathcal{U} be a set of payoff functions for R (real valued functions of (θ, y)).

Definition (Damaging Relative to a Set)

The belief μ' is more **damaging relative to** \mathcal{U} than μ given θ^* if

- 1. $\bar{u}(\theta^*, \mu') \leq \bar{u}(\theta^*, \mu)$ for all $u \in \mathcal{U}$
- 2. $\bar{u}(\theta^*, \mu') < \bar{u}(\theta^*, \mu)$ for some $u \in \mathcal{U}$.

The same technicality about "<" applies.

Where am I going?

- 1. \mathcal{U} generates partial order on beliefs.
- 2. I want to compare these partial orders to definitions of deception.

Aside: FTC

The Federal Trade Commission identifies three necessary conditions for deception.

- 1. Deception requires doing something that misleads the consumer.
- 2. FTC evaluates the impact from the perspective of a consumer who acts reasonably.
- 3. For a practice to be deceptive it must have a material impact on a consumer.

- My notion of deception concentrates on "misleading" information.
- My formal results connect "material impact" (damage) to misleading information.

Generic Proposition Statement

Proposition

The belief μ' is more X deceptive than μ given θ^* if and only if it is more damaging than μ relative to the F(X) family of preferences given θ .

The talk provides specific (X, F(X)) pairs.

Teaser:

When X = strong deception, F(X) = all preferences.

Haven't I seen this before?

- 1. μ FOSD μ' if and only if all decision makers with increasing utility functions prefer μ .
- 2. μ SOSD μ' if and only if all decision makers with concave utility functions prefer μ .

Contrast

My approach is interim, not ex ante. My approach involves a decision.

Persuasion Framework

R's decision is whether to accept or reject a proposal.

•
$$Y = \{0, 1\}$$
. $y = 0$ reject; $y = 1$ accept.

- $A^* = \{\theta : U^R(\theta, 1) \ge U^R(\theta, 0)\}$. Acceptable states for *R*.
- Persuasion preferences (with respect to A*):

Definition (Persuasion Preferences)

R has persuasion preferences if $U^{R}(\theta, 0) = 0$ and

$$U^{R}(heta,1) = egin{cases} W & ext{if } heta \in A^{*} \ -L & ext{if } heta
otin A^{*} \end{cases}$$

for W, L > 0.

Persuasion Result

Definition (Binary-Action Deception)

The belief μ' is more **binary-action** (*BA*)-deceptive than μ given θ^* if

$$\text{if } \theta^* \in A^*, \text{ then } \mu'(A^*) < \mu(A^*) \\ \text{and if } \theta^* \notin A^*, \text{ then } \mu'(A^*) > \mu(A^*). \\ \end{cases}$$

Proposition

The belief μ' is more binary-action-deceptive than μ given θ^* if and only if it is more damaging than μ given θ^* relative to the family of persuasion preferences.

When X = binary-action deception, F(X) = persuasion preferences.

Proposition

The belief μ' is more strongly deceptive given θ^* than μ if and only if it is more damaging than μ given θ^* relative to the set of all preferences.

X = strong deception F(X) = all preferences

Proportional (P) Deception

Definition (Proportional Deception)

The belief μ' is more **proportional** (*P*)-deceptive than μ given θ^* if $\mu(\theta^* \mid n) > 0$, and there exists a number $p \in [0, 1)$, and a distribution ρ satisfying $\rho(\theta^*) = 0$ such that

$$\mu'(\cdot) = p\mu(\cdot) + (1-p)\rho.$$
(2)

Equivalent to

$$rac{\mu(heta^*)}{\mu(heta)} \geq rac{\mu'(heta^*)}{\mu'(heta)}$$

(θ^* relatively more likely under *n*.)

P-Deception Illustrated

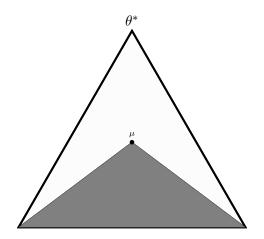


Figure: Beliefs in shaded region are more proportionally deceptive than μ given $\theta^*.$

Again ...

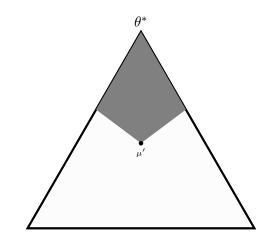


Figure: The belief μ' is more proportionally deceptive than μ if and only if μ is in shaded region.

P-Deception Result

Definition (State Specific)

The Receiver's preferences are **state specific** if there is a bijection $\phi : \Theta \to Y$ and positive numbers $\alpha(\theta)$ for $\theta \in \Theta$ such that

$$U^{R}(\theta, y) = \begin{cases} \alpha(\theta) & \text{if } y = \phi(\theta) \\ 0 & \text{if } y \neq \phi(\theta) \end{cases}$$

Corresponds to situation in which there is a correct action for each state.

Proposition

The belief μ' is more proportionally deceptive than μ given θ^* if and only if it is more damaging than μ given θ^* relative to the family of state-specific preferences.

Variations

- 1. Constrained
- 2. (Kullback–Leibler)

Ordered states: Monotone

Nesting Illustrated

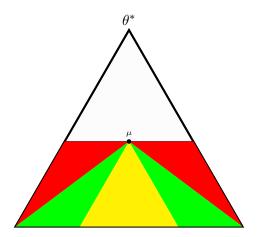


Figure: Relative to μ and given θ , beliefs in red region are *KL*-deceptive but not *P*-deceptive. Beliefs in green region are *P*-deceptive but not *C*-deceptive. Beliefs in green region are *C*-deceptive but not *S*-deceptive.

Strategic Considerations

- 1. Imagine S sends messages, messages determine beliefs.
- 2. Look for equilibria of persuasion game.
- 3. Define partial order on messages based on beliefs/actions induced.

m' is more deceptive than m if and only if $\mu(\cdot \mid m')$ is more deceptive than $\mu(\cdot \mid m)$.

m' is deceptive if there exists m such that m' is more deceptive than m.

4. Must specify S preferences.

Comments

Cases

- 1. *R* can avoid being deceived. [No deception/damage if *R*'s beliefs and actions don't depend on *S*'s message.]
- 2. R may prefer (ex ante) an eq in which he is deceived.
- 3. If S always wants to persuade, talk is cheap, prior is favorable, and some message induces y = 0, then damage and deception.
- 4. If S sometimes does not want to persuade, then some message will induce y = 0.

Definition of deception depends on context:

- 1. Persuasion Preferences: R decides whether to buy.
- 2. State Specific Preferences: R decides which product to buy.
- 3. Monotone Preference: *R* decides how much to buy.
- 4. Strong Deception: Conservative.

Comments on Welfare

- 1. Large penalties for deception benefit *R* because *R* can "force" fully revealing outcome.
- 2. This property depends on equilibrium selection.
- 3. Large penalties for deception may benefit R and S.
- 4. ... but not if one selects babbling when an ex ante superior equilibrium exists.
- 5. Restrictions on deception may harm both if it is costly to disclose (by driving firms out of business).

Theoretical Properties

- 1. For which binary relations is there a damage-deception result?
- 2. Minimal relation?
- 3. Maximal relation?

Back to the Three Tasks

- 1. "Pedagogic": Mission accomplished (well, too many definitions)
- 2. "Applied": Only suggested in this talk.

Messages:

- Proper definition of deception depends on the context (what is known about *R*'s preferences).
- Deception is possible in equilibrium.
- An R who can be deceived may also be an R who may benefit from communication.
- "Technical": Dam-Dec results. Deception relation more complete corresponds to smaller families of associated preferences.

Harming R is a consequence of deception rather than part of the definition.

Tribute

gpt

Supplementary Material

Follows

General Properties

- ► There exist (non-trivial) deception correspondences.
- ► The deception relations are transitive.

More Properties

Deception Correspondences

Deception relations are not symmetric:

Proposition

If D is a deception correspondence with respect to \mathcal{U} given θ^* , then $\mu' \in D(\mu'')$ implies $\mu'' \notin D(\mu')$.

 Deception correspondences are not convex valued in general, but

Proposition

If D is a deception correspondence with respect to \mathcal{U} given θ^* , $\mu \in D(\mu^*)$, and $\mu = p\mu' + (1-p)I(\cdot \mid \theta^*)$ for $p \in (0,1]$ then $\mu' \in D$.

Constrained (C) Deception

Constrained

Definition (Constrained deception)

The belief μ' is more **constrained** (*C*)-deceptive than μ given θ^* if $\mu(\theta^*) > 0$ and either

$$\mu'(\theta^*) = 0$$

or there exists a number $p\in[0,1),$ a distribution ρ satisfying $\rho(\theta^*)=0$ such that

$$\mu'(\cdot) = p\mu(\cdot) + (1-p)\rho$$

and

$$\rho(\theta) \ge \mu(\theta) \quad \text{for all } \theta \neq \theta^*.$$

 μ^\prime lowers probability of true state and raises it on others.

C-Deception Illustrated

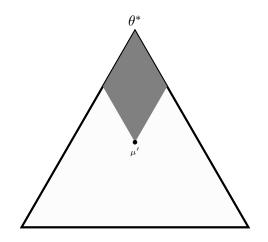


Figure: The belief μ' is more constrained deceptive than μ if and only if μ is in the shaded region.

C-Deception Again

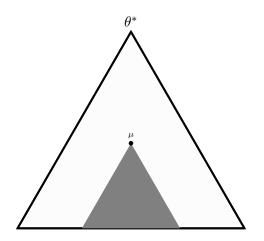


Figure: Beliefs in shaded region are more constrained deceptive than μ given $\theta^*.$

C-Deception Result

Definition (Linear Family with outsider option)

If *R* has preferences in the family of linear preferences with an outside option u_0 , then *R* selects an action $y \in \Delta(\Theta \cup [0, 1])$ to maximize

$$\sum_{\theta} \mu(\theta) \frac{y(\theta)}{\beta(\theta)} + y_0 u_0.$$

Proposition

The belief μ' is more constrained deceptive than μ given θ^* if and only if it is more damaging than μ relative to the family of linear preferences with an outside option given θ^* .

Kullback-Leibler (KL) Deception

Kullback–Leibler divergence between distributions μ and μ' :

$$\mathcal{D}_{\mathcal{KL}}(\mu' \mid\mid \mu) = \sum \mu'(heta) \log rac{\mu'(heta)}{\mu(heta)}.$$

[Assume that $\mu(\theta) = 0$ implies $\mu'(\theta) = 0$ and follow the convention that $x \log x = 0$ when x = 0.]

Definition (KL-Deception)

The belief μ' is more Kullback-Leibler (KL)-deceptive than μ given θ^* if $\mu(\theta^* > 0$ and

$$D_{\mathsf{KL}}(I(\cdot \mid \theta^*) \mid\mid \mu'(\cdot) < D_{\mathsf{KL}}(I(\cdot \mid \theta^*) \mid\mid \mu'(\cdot).$$

Simpler

A message is KL-deceptive if and only if there is another message that induces beliefs placing higher probability on the true state.

KL-Deception Illustrated

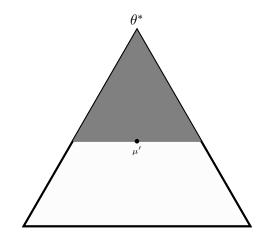


Figure: The belief μ' is more *KL*-deceptive than μ given θ^* if and only if μ is in shaded region.

Again

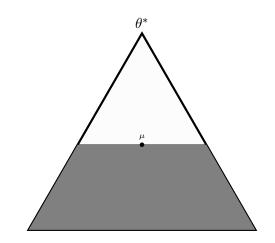


Figure: Beliefs in shaded region are more KL-deceptive than μ given θ^* .

Definition (Exponential Family)

The family of preferences is logarithmic if $g(y) = \log y$.

Proposition

The belief μ' is more Kullback-Leibler deceptive than μ given θ^* if and only if it is more damaging than μ relative to the family of logarithmic preferences given θ^* .

Nesting

Preliminary

- 1. Y and Θ linearly ordered.
- 2. Elements of Θ denoted by $\theta_1, \ldots, \theta_N$ where $\theta_i < \theta_j$ if and only if i < j.

Definition (Increasing Differences)

Assume that Θ and Y are completely ordered. The function $u: \Theta \times Y \to \mathbb{R}$ satisfies **increasing differences** if $u(\theta_j, y) - u(\theta_i, y)$ is increasing in y whenever j > i. Given a distribution μ , denote by $C(j; \mu)$ the cumulative probability determined by μ . That is, $C(j; \mu) = \sum_{i < j} \mu(\theta_i)$.

Definition (First-Order Stochastic Dominance)

 μ dominates the probability distribution μ' if $\mu \neq \mu'$ and $C(j; \mu') - C(j; \mu) \ge 0$ for all j.

Definition (Monotone Deception)

The belief μ' is more **monotonically (***M***)-deceptive** than μ given θ^* if one of the following conditions hold:

- 1. μ' is more strongly deceptive than μ given θ^* ;
- 2. μ dominates μ' and $\mu(\theta) = \mu'(\theta) = 0$ for $\theta > \theta^*$;
- 3. μ' dominates μ and $\mu(\theta) = \mu'(\theta) = 0$ for $\theta < \theta^*$.

- 1. The first condition holds and $\mu(\theta)$) = $\mu'(\theta) = 0$ for $\theta > \theta^*$, then the second condition holds.
- 2. Likewise for the third condition.
- 3. Similarly, if the first condition holds and $\mu(\theta) = \mu(\theta) = 0$ for $\theta < \theta^*$, then the third condition holds.
- 4. So: μ' is more *M*-deceptive than μ if:
 - 4.1 θ^* is neither the highest nor the lowest state in the support of μ' and μ and μ' is more strongly deceptive;
 - 4.2 θ^* is the lowest state given positive probability by μ and μ' is stochastically greater.
 - 4.3 θ^* is the highest state given positive probability by μ and μ' is stochastically lower.

M deception illustrated

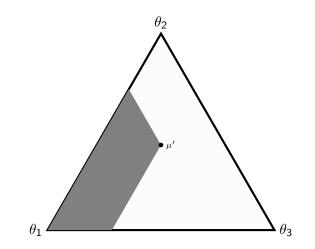


Figure: Belief μ' is more *M*-deceptive than μ given θ_1 if and only if μ is in shaded region.

M deception illustrated again

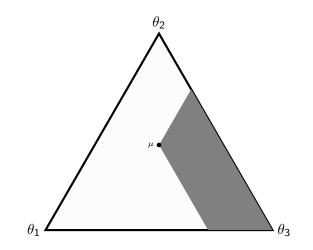


Figure: The shaded area is the set of beliefs that are more *M*-deceptive than μ given θ_1 .

M Deception Result

Proposition

The belief μ' is more monotone deceptive than μ given θ^* if and only if it is more damaging relative to the class of ID preferences. [ID preferences are concave, increasing, and satisfy increasing differences.]

Remarks

- 1. *M* deception restrictive (because strong deception is).
- 2. But: $\theta^* = \theta_1$ case is of particular interest.
 - *R* would not purchase the item knowing given θ_1 .
 - S would like to convince *R* to buy.
 - Result associates damage with convincing R to buy more than he wants.
 - *m* is deceptive if it "exaggerates" the true state and there is a more moderate exaggeration available.
- 3. Different classes of preferences:
 - 3.1 Tail states don't changes optimal action.
 - 3.2 Quadratic loss.

Nesting

Definition (Zenith (Z) Deception)

The belief μ' is more **zenith deceptive** than μ given θ^* and μ if $\mu'(\theta^*) < \max_{\theta} \mu'(\theta)$ and $\mu(\theta) = \max_{\theta} \mu(\theta)$.

There is an μ makes θ^* most likely (and μ' don't make θ^* most likely).

Z-Deception Illustrated

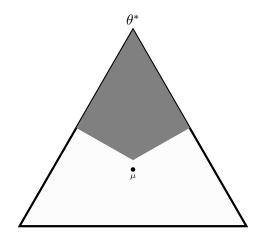


Figure: The belief μ' is more zenith deceptive than μ given θ^* if and only if μ is in the shaded region. ($\mu(\theta^*) = \max_{\theta} \mu(\theta)$, and $\mu'(\theta^*) < \max_{\theta} \mu'(\theta)$.)

More ...

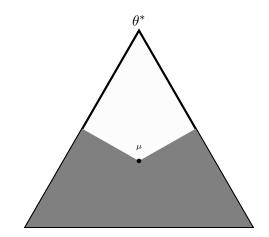


Figure: Beliefs in shaded region are more zenith deceptive than μ given θ^* . ($\mu(\theta^*) = \max_{\theta} \mu(\theta)$.)

Definition (Uniformly Linear Family)

The family (g,β) of preferences is uniformly linear if $g(\cdot)$ is linear c > 0 such that $\beta(\theta) = c$ for all θ .

Proposition

The belief μ' is more zenith deceptive than μ given θ^* if and only if it is more damaging than μ relative to the family of uniform linear preferences given θ^* .

Nesting

Volkswagen

- Volkswagen advertised that they produced diesel cars that were not dangerous to the environment.
- Vehicles were equipped with illegal emission defeat devices during government tests. (Not disclosed.)
- Message: announcements about safety.
- Alternative message: truth, saying nothing.
- Decision: whether to buy.
- Deception: thinking the car was environmentally friendly.
- Damage: buying wrong car in response to the message.

Machinima

- Machinima paid people who created videos posted on youtube to include Xbox footage in their reviews.
- Machinima asked the youtubers not to reveal payments.
- FTC argued that it was misleading to represent paid endorsers as independent reviewers.
- No evidence that the reviews were false, but FTC claimed withholding information about payments may influence the interpretation of the videos.
- Message: ads
- Alternative: disclosing payments (or not making them)
- Decision: What system to buy
- Deception: Unjustified confidence in quality of system
- Damage: Purchase of wrong system

POM Wonderful

- The ads claimed that the POM (pomegranate juice) could prevent or reduce the risk of heart disease, prostate cancer, and erectile dysfunction.
- POM provided supporting evidence.
- FTC asserted evidence was inadequate (lacking proper controls; statistically insignificant results).
- Message: ads
- Alternative message: comments on other characteristics; complete description of evidence.
- Decision: whether to buy (or how much to buy).
- Deception: inaccurate impression about health benefits.
- Damage: buying too much.

Kellogg's Mini-wheats

- Ads claimed that children who ate Frosted Mini-Wheats were 20% more attentive than those who skipped breakfast.
- Kellogg referred to a study to back up the claims.
- FTC argued that claims, while not literally false, were misleading. (Half of subjects showed no increase; only 10% significant gains.)
- Message: ads
- Alternative message: comments on other characteristics; complete description of evidence
- Decision: whether to buy (or how much to buy)
- Deception: inaccurate impression about benefits.
- Damage: buying too much.

Red Bull

- Red Bull energy drink does not give you wings (literally).
- Law suit (and settlement) based on lack of evidence that it gives you (figurative) wings.

Chat GPT

- 1. Digital Economics and Platform Markets
- 2. Behavioral Economics and Nudging
- 3. Environmental and Resource Economics
- 4. Health Economics and Healthcare Markets
- 5. Innovation and Intellectual Property
- 6. Data Economics and Privacy
- 7. Development Economics
- 8. Economics of Information and Learning

Tribute