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Abstract

This paper studies decision-making authority in an asymmetric two-divisional

organization. The divisions differ in their payoff weights in the headquarters’

payoff function and have access to different pieces of information. Informa-

tion is either of common or of private interest and the respective signals can

vary in precision. Signals can be communicated via cheap talk. While central-

ized decision making is often optimal for balanced payoff weights, delegating

the decision rights to the more payoff-relevant division can dominate. Having

access to better and more information can be more important than having

a larger payoff weight, in that the better informed but less payoff-relevant

division obtains decision authority.
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1 Introduction

Decision-relevant pieces of information with varied importance are often dispersed

within modern-day organizations. Optimal decision making requires that these pieces

are aggregated – thus, they have to be communicated. Given that interests within

an organization typically diverge at least to some extent, communication can be

expected to be strategic (Crawford and Sobel; 1982). Taking this into account, one

of the key questions standing in front of the headquarters is who the decision maker

should be.

To fix ideas, consider a firm with production and sales divisions. The divisions

jointly generate profit for the firm but their respective contributions can have different

weights. The headquarters has to decide what quantity to produce. While the

production division is endowed with information about manufacturing costs, the

sales division not only has information about sales costs but also about market

demand. All three pieces of information matter for the optimal decision of how much

to produce, and they have to be communicated to whoever makes that decision. Now,

should the decision rights be retained in the hands of the headquarters, because they

are equipped with formal authority and can better communicate with the production

and sales divisions? Or, should the rights be delegated to the manager of the division

with the highest impact on generating the firm profits? Or, should the rights be

delegated to the division manager with access to the most important information?

To address these questions, I construct a model which has the following features.

A headquarters steers decision making in a two-divisional organization. There is

one decision to be made. The state of nature is three-dimensional and all dimensions

matter for the decision from the headquarters’ point of view. One of the dimensions is

relevant for both divisions (common interest state, in the example, market demand),

the other two are relevant only for one division respectively (private interest states,

in the example, individual costs). In particular, the divisions’ payoffs are quadratic

loss functions that depend on how well the decision matches the sum of the common

interest state and the relevant private interest state. The headquarters’ payoff is the

weighted sum of the two divisional payoffs.

While division A1 can only observe a signal about the own private interest state,
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division A2 can observe two signals, one about the own private interest state and in

addition a signal about the common interest state. The observed information can

be shared with the headquarters and with the other division via strategic commu-

nication. The headquarters can choose between three different protocols of decision

making: they can rely on communicating with the two divisions and make the de-

cision themselves (centralization); or they can delegate the decision to one of the

divisions, which then communicates with the other division before making the deci-

sion (delegation to A1, delegation to A2).

Intuitively, the payoff weights matter for the choice of the optimal protocol: the

headquarters tends to assign decision authority to the division that contributes more

to the joint payoff. Access to information, however, is a powerful source that – as is

turns out – often overrules the advantage of a higher payoff weight. If division A2 is

very well informed (which depends on the quality of the signals), then the headquar-

ters optimally delegates decision making to A2 because a more informed decision is

better even if it is biased. If information and payoff weights are more balanced, a loss

in information transmission is unavoidable: any communication is biased because the

informed divisions are self-interested. In this case, the headquarters prefers to make

the decision themselves. This generates moderate losses in information transmission

from both divisions, but no bias in the decision. Delegation, by contrast, generates

higher losses in information transmission from one division and a bias in the decision

created by the other division that makes the decision.

This intuition can more formally be described as follows. Recall that the head-

quarters’ payoff is the weighted sum of the divisions’ payoffs, where a weight of zero

corresponds to H only caring about A1 and a weight of one to H only caring about

A2; and all payoff weights in between are allowed. Proposition 1 shows that there

exist two weight thresholds (which can attain zero or one) such that delegation to

A1 is optimal below the lower threshold, λ1, when A1 has a high payoff weight; del-

egation to A2 is optimal above the higher threshold, λ2, when A2 has a high payoff

weight; and centralization is optimal between the two thresholds. In other words,

decision authority is linked to payoff relevance in a natural way.

Subsequent results then address how these thresholds and thus the allocation

of decision authority changes as the information changes. The comparative statics
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results (Proposition 5) show that the forces are intuitive: An increase in A2’s private

interest information and in common interest information imply more decision power

for A2, since the threshold λ2 decreases. An increase in A1’s private component

implies more decision power for A1, since the threshold λ1 increases.

When comparing the two possible asymmetries in payoff weights and in access

to information, Propositions 2 and 3 show that the access to better information is

more important than a larger payoff weight. Delegation to A2 who observes two

signals can be optimal for payoff weights that favor division A1; this never holds for

delegation to A1 who only observes the own private interest signal. In the extreme

case, in which the headquarters’ payoff coincides with A1’s, delegation to A2 is still

optimal as long as A1’s private value information is not too important. Considering

joint surplus maximization, Proposition 4 confirms the power of information: division

A1 never gets to decide; the tradeoff between centralization and delegation to A2,

however, depends on the value of A1’s information which is communicated to H

under centralization, but disregarded by A2 under delegation to A2.

Section 5 adds the precision of information as a new instrument to the analysis.

In particular, the headquarters can choose the amount of noise in the three signals.1

By the nature of the payoff structure, optimal signals are either fully revealing of the

state component or pure noise. Lemma 4 shows that optimally A1’s private signal

and the common interest signal are perfectly precise. Interestingly, the headquarters

can improve the transmission of the common interest component by turning A2’s

private interest signal into pure noise. The reason is that the common interest

signal alone – by its nature – can be communicated without impediments. It is A2’s

private interest information that creates a bias in communication, which reduces the

information that is transmitted. Proposition 6 shows that controlling the precision

of the information effectively reduces the chances that A2 makes the decision: When

comparing the two delegation protocols, A1 decides more often. When comparing

it to centralization, H decides more often under endogenous signal precision than

under exogenous.

1In Blume, Board and Kawamura (2007) exogenous noise can improve information transmission

in cheap talk. In Deimen and Szalay (2019) the sender optimally chooses to be only partially

informed to improve communication.
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From a technical perspective, the paper offers a very tractable toolbox for study-

ing information aggregation in large organizations or communication networks. The

tractability stems from the distributional assumptions that the states are uncorre-

lated and follow a multivariate Laplace distribution. The separation into uncorre-

lated common and private interest components is to the best of my knowledge new

to the communication literature. The Laplace distribution has convenient closure

and linearity features, which has implications for the updating rule (Lemma 1). In

particular, it allows updating from multiple different sources of information – here,

noisy signals and cheap talk messages. As a consequence, the analysis can straight-

forwardly be extended to information aggregation of any finite number of signals and

messages.

Related Literature. Dessein (2002) is the first study of the allocation of de-

cision authority in Crawford and Sobel (1982)’s model of strategic communication

with one sender and one receiver. He shows that whenever influential communica-

tion is possible, the receiver prefers to delegate decision-making to the sender. Even

though delegation entails a loss of control, the informational loss under strategic

communication is more severe. Harris and Raviv (2005) extend the analysis of Des-

sein (2002) to an organization in which both players have private information that

they can communicate strategically to each other. They study the impact of pri-

vate information and differences in preferences on the allocation of authority. While

more information is favorable for delegation, the impact of the bias is ambiguous. In

contrast to these two-player setups, this paper considers a larger organization and

the effects of informational versus payoff-weight asymmetries on the allocation of

decision authority.

Aghion and Tirole (1997) distinguish ‘formal’ from ‘real’ authority. Formal au-

thority is the right to make the decision. Real authority is the effective control over

the decision and determined by the available information. Both principal and agent

can acquire information about different actions, one of them decides. In this paper,

the divisions are the only ones with access to information, and (in the main model)

there is no strategic decision of how much information to obtain. The information

is then communicated strategically to the one who has the formal authority. The
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headquarters can choose between keeping formal authority or delegating the decision

rights to one of the divisions. The headquarters optimally turns real authority into

formal authority, in the sense that delegation to a division that is very well informed

is optimal.

The paper relates to Deimen and Szalay (2019), which analyzes a two-player cheap

talk game in a similar distributional environment. In particular, that paper compares

delegation to communication in a setup in which information choice is endogenous.2

Conflicts are endogenous as they depend on the information that the sender chooses

to learn. Under this endogenous information protocol, communication can dominate

delegation. In a similar setup with exogenous information, Deimen and Szalay (2023)

compares delegation to communication with a focus on variation of the distributional

environment. That paper uses different stochastic orders to rank distributions with

respect to their payoff gains under communication. The focus here is on decision

making in a larger organization, in which multiple sources of information feed into a

single decision.

Alonso, Dessein and Matouschek (2008) and Rantakari (2008) analyze the allo-

cation of decision-authority in a multi-divisional organization in which each division

needs to take an action. In addition to the need to adapt to the respective state of the

world, each division needs to coordinate their action with the other division.3 The

present paper abstains from coordination motives; instead, the multi-dimensional

information needs to be merged into a one-dimensional decision.

The remainder of the paper is organized as follows. Section 2 presents the model.

Section 3 analyzes strategic communication. Section 4 derives cutoffs for the optimal

decision protocol and then compares these cutoffs in different scenarios. Section 5

extends the analysis to endogenous signal precision. Section 6 concludes.

2Costly information acquisition is also endogenous in Argenziano, Severinov and Squintani

(2016). Threatened by the decision maker’s punishment (overt acquisition) or equilibrium beliefs

(covert acquisition), the sender overinvests in information acquisition. As a consequence, commu-

nication performs better than delegation or information acquisition by the decision maker.
3Liu and Migrow (2022) analyzes uncertainty about relative division profits in that framework.

The paper, however, focuses on verifiable information.
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2 Model

There are two agents A1 and A2, that could represent divisional managers, and a

principal/headquarters H. The players’ payoffs depend on one common action to

be taken and on the state of nature. Let a ∈ R be the action. The state of nature

(xC , x1, x2) is the realization of a random variable (XC , X1, X2) that decomposes into

a common interest component XC and two private interest components X1 and X2

of A1 and A2, respectively. The players’ payoffs are given by

π1 (a, xC , x1) = π∗
1 − (a− (xC + x1))

2

and

π2 (a, xC , x2) = π∗
2 − (a− (xC + x2))

2 ,

where π∗
1 and π∗

2 correspond to the maximum profits that can realize. Without loss

of generality, assume π∗
1 = π∗

2 = 0. The headquarters takes the perspective of a social

planner who cares about weighted joint surplus

πH (a, xC , x1, x2) = (1− λ) π1 (a, xC , x1) + λπ2 (a, xC , x2) ,

with λ ∈ [0, 1]. The extreme cases of λ = 1 (λ = 0) correspond to a two player setup,

as the interests of H and A2 (A1) coincide.

While the headquarters is assumed to be uninformed, A1 and A2 receive pri-

vate information about the state of nature. In particular, A1 privately observes

one noisy signal s1 = x1 + ε1 about A1’s private interest component, and A2 pri-

vately observes two noisy signals (sC , s2) = (xC + εC , x2 + ε2) about the common

interest component and A2’s private interest component. The vector (εC , ε1, ε2) de-

scribes the realization of the noise variables. The state of the world is the ran-

dom vector Z = (XC , X1, X2, EC , E1, E2) that follows a multivariate symmetric

Laplace distribution L(µ,Σ), with mean vector µ and covariance matrix Σ.4 The

mean vector µ is normalized to zero, and the covariance matrix takes the form

Σ = diag
(
σ2
C , σ

2
1, σ

2
2, σ

2
εC
, σ2

ε1
, σ2

ε2

)
∈ R6

+ as all state components are uncorrelated.

The setup and the informational environment are common knowledge. Only the

signal realizations are private information.

4Details about the Laplace distribution are given in the first paragraph in the appendix.
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Before describing the structure of the game, some comments on the modeling

choices are in order. There are two built-in asymmetries between A1 and A2. The

divisions differ not only in their payoff relevance λ but also in the sources of informa-

tion they have. Understanding the interaction of these asymmetries is a key part of

the analysis that follows. The Laplace distribution not only features very tractable

updating rules but also admits a closed-form expression of the equilibrium payoffs

in a communication game (Deimen and Szalay; 2019). This allows for a transparent

comparison of decision-making protocols and the tradeoffs at hand. The quadratic

losses combined with the standardization to a zero mean capture the idea that re-

alizations of the state represent ‘shocks’ that the organization needs to respond to.

The signals indicate the deviations from the expectation, and the optimal action then

is an adaptation to the state realization away from the ‘status quo action’ which is

set to zero.

In the beginning of the game, the headquarters chooses between three protocols of

decision-making: centralization, delegation to A1, or delegation to A2. The attention

is restricted to these protocols as they seem natural for the question at hand and are

standard in the literature.

Centralization. A1 privately observes the signal realization s1 = x1 + ε1, and

A2 privately observes (sC , s2) = (xC + εC , x2 + ε2). Then, A1 and A2 choose which

messages to send to H. There is no commitment and no cost of sending messages

– i.e., communication is modeled as cheap talk in the sense of Crawford and Sobel

(1982). Formally, A1’s message strategy is a function M1 : R → ∆M and A2’s

message strategy is a functionM2 : R×R → ∆M . The message spaceM is assumed

to be sufficiently large. After observing the messages, H takes an action; H’s action

strategy is a function AH :M ×M → R.
Delegation to A1. Given the privately observed signal realizations (sC , s2),

A2 chooses which message to send to A1. Formally, A2’s strategy is a function

M ′
2 : R × R → ∆M . A1’s strategy is to choose an action as a function the own

signal realization and A2’s message, A1 : R × M → R. As under centralization,

communication is modeled as cheap talk.

Delegation to A2. Given the privately observed signal realization s1, A1 chooses

which message to send to A2. Formally, A1’s strategy is a function M ′
1 : R → ∆M .
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A2’s strategy is to choose an action as a function the own signal realizations and A1’s

message, A2 : R×R×M → R. As under centralization, communication is modeled

as cheap talk.

The solution concept is Bayes Nash equilibrium.

3 Strategic communication

Understanding the flow of information and the gain from strategic communication

in this setup involves multiple steps. Divisions first update their information about

the optimal action given the signals their receive. A2 combines the two-dimensional

information into only one dimension because the action is one-dimensional. Under

centralization, A1 and A2 communicate with H; under delegation, one division com-

municates with the other. Since the players prefer different actions, communication is

shaped by disagreement. Naturally, the common interest component aligns interests

whereas the private interest components increase the disagreement. As is standard

in cheap talk, equilibria take a partitional form; instead of revealing their exact

posterior means, A1 and A2 only communicate partition intervals that include their

posterior means. The gain from communication – i.e., the reduction in uncertainty

through equilibrium communication – finally, determines the payoffs.

The following lemma acts as the chore tool of the paper. It shows how to aggregate

information provided from multiple sources. The impact of these information sources

on the optimal action has a linear structure which keeps the analysis tractable.

Lemma 1 Let Y = (Y1, Y2, . . . , Yd) follow a multivariate symmetric Laplace distri-

bution with dimension d, then

(i) any linear combination
∑d

i=1 αiYi is one-dimensional symmetric Laplace,

(ii) conditional expectations can be calculated for any i, j, k ∈ {1, . . . , d} as

E
[
Yi|Yj = yj, Yk ∈ (y

k
, yk)

]
=
cov(Yi, Yj)

var(Yj)
· yj +

cov(Yi, Yk)

var(Yk)
· E
[
Yk|Yk ∈ (y

k
, yk)

]
.

Part (ii) of the lemma states that the updating rules for the multivariate symmet-

ric Laplace distribution are linear. Importantly, the conditional expectation is not
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constrained to conditioning on exact signals but (by the law of iterated expectations)

also applies to conditioning on intervals which is common in cheap talk games. By

part (i), the conditional expectation is again Laplace. As a consequence, these rules

can directly be applied to any larger network structure in which multiple sources of

information need to be aggregated into one action.

3.1 Merging signals into recommendations

When the divisions receive their signals, they update their beliefs about the optimal

action from their perspective. Given the quadratic loss functions, the updated opti-

mal actions are the posterior means given the signals. By Lemma 1, A1’s and A2’s

posterior means are given by

θ1 := E [XC +X1|S1 = s1] = 0 +
cov(X1, S1)

var(S1)
s1 =

σ2
1

σ2
1 + σ2

ε1

s1,

θ2 := E [XC +X2| (SC , S2) = (sC , s2)] =
σ2
C

σ2
C + σ2

εC

sC +
σ2
2

σ2
2 + σ2

ε2

s2.

Denote the associated random variables by Θ1 and Θ2. The posterior means are

linear functions of the signals which are multiplied by the ratio of covariance over

variance. The covariance measures the informativeness of the signal relative to the

state variable of interest; the variance measures the overall (un)informativeness of

the signal.

As only the posterior means θ1, θ2 matter for the optimal action choice, the sig-

nals s1, s2 can without loss be disregarded in the future analysis. Note that θ1, θ2

are the only sufficient statistic of the posterior distribution that interacts with the

action a. More precisely, note that A1’s (A2’s) interim expected utility satisfies the

single-crossing condition in the action a and θ1 (θ2).
5 Hence, all equilibria of the com-

munication games are in terms of communication about θ1, respectively θ2, only.
6

Therefore, θ1, θ2 are sometimes called a sender’s type.

5The interim expected utility of A1 is, E[− (a− (XC +X1))
2 |S1 = s1] = −a2 + 2aθ1 −

E
[
X2

C +X2
1 |S1 = s1

]
. Likewise, for A2, E[− (a− (XC +X2))

2 | (SC , S2) = (sC , s2)] = −a2+2aθ2−
E[X2

C +X2
2 | (SC , S2) = (sC , s2)].

6Note that merging the two signals sC and s2 is optimal and without loss only from A2’s

perspective. The other players would prefer to learn separately about the common and A2’s private
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The following notation will be convenient,

vl := var(E[Xl|Sl = sl]) =
σ2
l

σ2
l + σ2

εl

σ2
l , l = C, 1, 2,

such that vC represents the amount of common interest information and v1 and v2 the

amounts of private interest information of A1 and A2, respectively. It is immediate,

that the respective level of noise determines the value of each piece of information:

for zero noise the value is maximal, for infinite noise it decreases to zero.

With this simplification, the variances of the random variables Θ1 and Θ2 can be

written as var(Θ1) = v1 and var(Θ2) = vC + v2. The covariances can be calculated

using zero correlation, cov (XC ,Θ2) = vC , and cov (Xj,Θj) = vj for j = 1, 2.7

3.2 Conflicting interests

Since communication is about θ1 and θ2, the players form conditional expectations

about the optimal actions given what can be inferred in equilibrium from the mes-

sages about θ1 and θ2 they receive. As standard in the cheap talk literature (by the

single crossing property), equilibrium messages will reveal the partition element in

which the state has realized.

Lemma 2 The optimal actions under delegation to A2, to A1, and under centraliza-

tion are

a2 = θ2,

a1 = θ1 + β12 · E
[
Θ2|Θ2 ∈ [θ2, θ2)

]
,

aH = βH1 · E
[
Θ1|Θ1 ∈ [θ1, θ1)

]
+ βH2 · E

[
Θ2|Θ2 ∈ [θ2, θ2)

]
,

where

βH1 = (1− λ) , βH2 =
vC + λv2
vC + v2

, β12 =
vC

vC + v2
.

component. This cannot be enforced as there is no commitment. A formal proof is given, e.g., in

Deimen and Szalay (2019).
7For example, the covariance of H’s optimal action and A2’s posterior Θ2 is given by

cov (XC + (1− λ)X1 + λX2,Θ2) = vC + λv2, it measures the informational content of Θ2 for H.
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Under delegation to A2, A2 will take the optimal action based on the own infor-

mation and will ignore A1’s message as it is uncorrelated to A2’s interests. Under

delegation to A1, A1 updates on θ1 based on the own private information and learns

about the common interest component from A2’s message revealing that θ2 ∈ [θ2, θ2).

Under centralization, A1 and A2 communicate to H by revealing that θ1 ∈ [θ1, θ1)

and that θ2 ∈ [θ2, θ2), respectively.

Note that β ∈ [0, 1] for β = βH1, βH2, β12. When receiving a message, not only the

interval partition in which the state has realized is updated, but in addition the action

is discounted by β towards the prior mean 0. In the terminology of the literature,

senders have a state-dependent bias (1 − β) · θ. Note that the bias is uncertain

as it depends on the realization of the state.8 The linearity of the bias captures

the idea that deviations from some ‘status quo’ (the mean) are more preferred by

the sender than by the receiver: the sender wants to match the realization of the

state, the receiver wants to take a lower action (either because of λ, or because

common and private information are merged); the slope is determined by the ratio

of covariance over variance which measures the relative relevance of the information

from the receiver’s perspective (covariance) to the sender’s perspective (variance).

Note that βH2, β12 are functions of the underlying noise. Both are decreasing

in the noise in the common interest signal, σ2
εC
, and increasing in the noise in A2’s

private interest signal, σ2
ε2
. Intuitively, with more noise in the common interest signal

interests become less aligned, while with more noise in A2’s private interest signal

interests become more aligned. The idea of optimally choosing the amount of noise

in the signals is analyzed in Section 5.

3.3 Equilibria and the gain from communication

As mentioned before, cheap talk equilibria take the standard partitional form:9 due

to single crossing, all equilibria are interval partitions of the respective sender type

8Li and Madarász (2008) and Li (2010) consider cheap talk with uncertain sender’s bias.
9Since Θ1 and Θ2 are uncorrelated, the three communication games can be analyzed indepen-

dently, each of them being one-dimensional. For a characterization and existence results of the

one-dimensional game, see for example Deimen and Szalay (2019). For convenience, the results are

summarized in this section.
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spaces, Θj-spaces for j = 1, 2. Equilibria exist, are symmetric, and are essentially

unique for any number n ∈ N of partition elements. Moreover, there exists a limit

equilibrium with an accumulation point at zero and an infinite number of partition

elements.

To be more precise, partitional equilibria are characterized by a sequence of crit-

ical sender types, tnj =
(
tnj,i
)
, with tnj,i−1 < tnj,i, j = 1, 2, and n relating to the number

of actions that are induced in equilibrium. Sender types strictly within a partition

interval, θj ∈
(
tnj,i−1, t

n
j,i

)
, pool by sending a message that indicates this interval.

Upon receiving such a message, the conditional expectation is given by

µn
j,i := E

[
Θj|Θj ∈

(
tnj,i−1, t

n
j,i

)]
, for i = 2, . . . , n, j = 1, 2. (1)

The optimal receiver response to such message is β · µn
j,i for the respective β ∈

{βH1, βH2, β12}. For the lowest and highest message the expressions are alike, µn
j,1 :=

E
[
Θj|Θj < tnj,1

]
and µn

j,n+1 := E
[
Θj|Θj > tnj,n

]
, j = 1, 2. Quadratic loss functions

imply that critical types, tnj,i, are indifferent between inducing the action in the

interval below or above:

tnj,i − β · µn
j,i = β · µn

j,i+1 − tnj,i, for i = 1, . . . , n, j = 1, 2. (2)

There is a vast multiplicity of equilibria in cheap talk games: As the meaning of

a message is only determined in equilibrium, messages can be arbitrarily exchanged.

Moreover, equilibria with different numbers n of partition elements exist. Keeping

the type of equilibrium under communication fixed is crucial for a fair comparison be-

tween different forms of decision-making. One approach to this, which is often taken

in the literature, is to focus on the equilibrium with the highest number of partition

elements. The motivation is that all players unanimously prefer this equilibrium

over any other equilibrium from an ex ante perspective.10 Hence, limit equilibria

with infinitely many partition elements are selected by this criterion. The remainder

of the paper will focus on communication in a limit equilibrium.

To measure the gain from equilibrium communication, it is helpful to define the

discrete random variables of the conditional expectations µ1 and µ2. These are

10See also Antić and Persico (2023) who provide a refinement that uniquely selects this ex-ante

Pareto dominant equilibrium.
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derived from the marginal distributions of Θ1 and Θ2 and have supports
{
µ∞
θ1,i

}∞
i=1

and
{
µ∞
θ2,i

}∞
i=1

determined by the respective equilibrium characterization t∞j , j =

1, 2. By the law of total variance, the variance can be decomposed in explained

variation plus expected residual variance, var (Θj) = var (E[Θj|θj ∈ (tj,i−1, tj,i)]) +

E[var(Θj|θj ∈ (tj,i−1, tj,i))]. The typical focus is on the residual variance which

entails the loss from communication. The focus here is on the counterpart, the

explained variation var (E[Θj|θj ∈ (tj,i−1, tj,i)]) = var (µj), which measures the gain

from communication. In limit equilibria, the gain from communication is given by11

var (µj) =
1

2− β
var (Θj) , (3)

where β ∈ {βH1, βH2, β12}, j = 1, 2. The fraction 1
2−β

measures how much infor-

mation can be strategically communicated: The fraction is increasing in β, and the

maximal gain from communication is naturally reached for β = 1, when interests are

perfectly aligned.

4 The optimal protocol for decision making

The objective is to maximize H’s payoff, πH , from an ex ante perspective. In other

words, H maximizes the expected payoff gain, π̃H , minus the prior uncertainty, σ2
C +

(1− λ)σ2
1 + λσ2

2. As the prior variances are constant across all decision protocols,

it is sufficient for the comparison of the protocols to focus on the expected payoff

gains.

In the first-best benchmarkH can directly observe the signal realizations (sC , s1, s2).

In response, H takes the optimal first-best action afbH =
σ2
C

σ2
C+σ2

εC

sC+(1− λ)
σ2
1

σ2
1+σ2

ε1

s1+

λ
σ2
2

σ2
2+σ2

ε2

s2. H’s expected payoff gain in this first-best scenario can thus be calculated

as

π̃fb
H = vC + (1− λ)2v1 + λ2v2.

By comparison, when information is decentralized, the optimal actions are given

by aH = βH1µ̂1+βH2µ̂2 under centralization, a1 = θ1+β12µ̂2 under delegation to A1,

11The expression is derived in Deimen and Szalay (2019), with notation c = β.
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and a2 = θ2 under delegation to A2, where µ̂j is some realization of the conditional

expectation µj for j = 1, 2. The expected payoff gains for H under the different

decision protocol are as follows.

Lemma 3 H’s expected payoff gains under delegation to A2, to A1, and under cen-

tralization are

π̃del2
H =vC + (2λ− 1)v2,

π̃del1
H =

(
2λβ12 + (1− 2λ) β2

12

) 1

2− β12
(vC + v2) + (1− 2λ) v1,

π̃cen
H =β2

H2

1

2− βH2

(vC + v2) + β2
H1

1

2− βH1

v1.

To get an intuition for these expressions, consider first the payoff gain from del-

egation to A2. The private interest information v2 is directly observed by A2 and

is a gain to A2 which counts with weight λ, but a loss from A1’s perspective which

counts with weight 1−λ, adding up to 2λ− 1. The common interest information vC

is also directly observed by A2 and weighted by λ+ (1− λ), thus π̃del2
H increases one

to one with vC .

Second, consider the value of delegating to A1. The private interest information

v1 is directly observed and the payoffs weights are −λ+(1−λ). The common interest

information has to be communicated from A2 to A1, which results in the fraction
1

2−β12
(see equation (3)). The factors together combine to (1−λ)β2

12 −λ(β2
12 − 2β12).

Third, the gain from centralization follows from H communicating with A1 and

A2. Again, strategic communication reduces the values to the fractions 1
2−βH2

and
1

2−βH1
, and the factors are β2

H2 and β2
H1.

Suppose that there is only a common but no private interest components, v1 =

v2 = 0. In this case, β12 = βH2 = 1 and one can directly see from Lemma 3 that

the payoffs from all three decision protocols coincide with the first-best payoff. If

everyone agrees on the optimal action, information can be communicated without

any impediments and it does not matter who makes the decision. For the remainder

of the paper, thus assume

Assumption 1 One private interest component is strictly positive, v1 > 0 or v2 > 0.
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The comparison of the three decision protocols yields the following characteriza-

tion.

Proposition 1 Given vC , v1, v2, there exist λ1, λ2 with 0 ≤ λ1 ≤ λ2 ≤ 1 such that

i) Delegation to A1 is optimal if and only if λ ∈ [0, λ1] and λ2 > 0.

ii) Centralization is optimal if and only if λ ∈ [λ1, λ2]∪{1} or (λ = 0 and λ2 > 0).

iii) Delegation to A2 is optimal if and only if λ ∈ [λ2, 1].

The proof first makes a pairwise comparison of the decision protocols, then de-

termines the upper envelope as a function of λ. The key properties are that π̃del2
H

and π̃del2
H are linear and π̃cen

H is convex in λ. Moreover, centralization coincides with

delegation to A1 in λ = 0 and with delegation to A2 in λ = 1. The optimal deci-

sion protocol is characterized by the two intersections λ1 and λ2. These intersection

points define intervals in which delegation to A1, delegation to A2, and centraliza-

tion are optimal. For an illustration of the payoffs with equal values of information,

v1 = v2 = vC = 1, see Figure 1.

λ2λ1

0.2 0.4 0.6 0.8 1.0
λ

-2.0

-1.5

-1.0

-0.5

H's payoffs

Delegation to A2

Delegation to A1

Centralization

First-best

(vC,v1,v2)=(1,1,1)

Del A1 Centralization Del A2

Figure 1: H’s payoffs for equal information values, vC = v1 = v2 = 1.

The setup captures two types of asymmetries between A1 and A2: with regard

to H’s payoffs, weight λ measures the relevance of A2 relative to A1; with regard to

information, A1 and A2 are equipped with different amounts and pieces of informa-

tion. It is not only the case that v1 and v2 can differ, but also that A2 observes the
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common information vC . To understand the impact of these different channels on

authority, i.e., who makes the decision in the organization, it is convenient to look

at these channels from different perspectives.

4.1 Comparing the two delegation alternatives

As a first comparison, suppose H has to delegate to either A1 or A2. Obviously, A2

has the advantage of observing the common interest information in addition to the

private interest information. This informational advantage can be translated into a

critical weight λdel, at which H is indifferent between delegation to A1 and to A2.

Proposition 2 The solution to π̃del1
H (λ) = π̃del2

H (λ) is given by

λdel =
1

2
− 1

2

v2vC
v1(2v2 + vC) + 2v22

≤ 1

2
,

which is decreasing in vC, increasing in v1, and decreasing in v2 if v1 ≤ 2
v22
vC
.

Since λdel ≤ 1
2
, A2 has weakly more decision power than A1. Naturally, as soon

as A2 also observes only one piece of information, i.e., v2 = 0 or vC = 0, the divisions

are symmetric and λdel = 1
2
. The signs of the derivatives of λdel show how the

quality of information impacts the comparison. In particular, more common interest

information implies that A2 gets more often to decide, λdel is decreasing in common

interest information vC . If A1 has more private interest information then A1 gets

more often to decide, λdel is increasing in private interest information v1. The impact

of A2’s private interest information v2 depends on the other available information.

As long as v2 is sufficiently large, λdel is decreasing in v2 and thus A2’s decision power

is increasing in A2’s information. When v1 and vC are large relative to v2 then λdel

is increasing in v2 and thus A1’s decision power is increasing in v2. Intuitively, since

v2 is relatively small it does not disturb the common interest information that is

communicated from A2 to A1, and H prefers more information.

To summarize, having more information implies having more decision authority.

Information is so powerful that it can overrule payoff asymmetries, the division with

smaller payoff weight but more information can get to decide.
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4.2 Only two players

Consider the two extreme payoff structures, for which H’s interests either coincide

with A1 (λ = 0) or with A2 (λ = 1). Note that by Proposition 1, it is never the

case that A1 decides for λ = 1, as v1 does not matter for the optimal decision. By

contrast, in a neighborhood around λ = 1 delegation to A2 is optimal and even

dominates centralization. This finding is reminiscent of the main result in Dessein

(2002), who shows in a two player setup that for small conflicts of interests delegation

is preferred over communication.

A more novel question is whether possessing relevant information can overrule

the natural assignment of decision authority. In other words, when is it possible that

A2 decides, even though H shares A1’s interests.

Proposition 3 If λ = 0, delegation to A2 is optimal if and only if v1 ≤ v2(vC−2v2)
2v2+vC

.

The common component vC and A2’s private component v2 need to be sufficiently

important relative to A1’s private component v1, for H to give up decision rights and

delegate to A2. Note that the condition is not generically satisfied. For example, for

v1 = v2 it is never satisfied. However, for v1 = 0 and vC > 2v2 it is always satisfied.

To summarize, it is indeed the case that the right amount of information can be

more important in terms of decision rights than sharing identical preferences.

4.3 Joint surplus maximization

Under joint surplus maximization, both divisions are equally relevant from a pay-

off perspective, λ = 1
2
. In this case, it is only the informational advantage that

determines who makes the decision.

Proposition 4 If λ = 1
2
, then delegation to A1 is always dominated; centralization

is preferred to delegation to A2 if and only if v1 ≥ 3v2
(2vC−v2)
(3v2+2vC)

.

Being equally important in terms of payoff weights does not help A1 to gain

decision rights. In fact, A1 never decides. The reason is that the gains and losses

from private interest information exactly cancel out, so that access to vC is the
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driving force. Since A2 can better communicate with H than with A1, either A2

directly decides or centralization is the optimal protocol.

For the latter decision, the relative size of v1 versus v2 and vC matters. Intuitively,

whenever v1 is sufficiently large, H cannot rely on A2 to make a balanced decision

because A2 disregards v1, and thus centralization is better. Similarly, when v2 is

very large, in particular very large relative to vC , centralization is better because

H’s payoff under centralization is increasing in v2 while H’s payoff under delegation

to A2 is independent of v2, it equals vC . The reason is that any gain from private

information to A2 is a loss to A1 of the same size. Figure 2 illustrates the boundary

between delegation to A2 and centralization for vC = 1.

Centralization
Delegation A2

0.0 0.2 0.4 0.6 0.8 1.0
v1

0.5

1.0

1.5

2.0
v2

Figure 2: Comparison of centralization and delegation to A2 for vC = 1.

Note that communication under centralization is influential almost surely, i.e.,

H adjusts the optimal action given the messages from A1 and A2. Thus H can

internalize both sources of information into the optimal decision. Moreover, when H

decides, the decision is not biased. As a consequence, centralization beats delegation

when private interest information is sufficiently large. Intuitively, in this case H

rather controls the decision, as the interests are diverging and the bias in decision

making becomes large.

4.4 The power of having common interest information

One key difference between A1 and A2 is that A2 has direct access to the common

interest information. To better understand the resulting decision power of observing
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this information, let vC range from zero to infinity and see how the boundary λ2

between centralization and delegation to A2 changes.12

Proposition 5 There is more delegation to A2 in the infinite common interest en-

vironment than in the pure private interest environment, λC=∞
2 ≤ λC=0

2 . The values

λC=0
2 , λC=∞

2 are increasing in v1 and decreasing in v2, in their respective ranges.

Without common interest information, A2’s decision power is limited by the lower

bound 2
3
. Delegation to A2 is thus very limited. By contrast, for infinite common

interest information there is no lower bound but delegation to A2 can be optimal for

any value of λ. Access to common interest information can thus overrule any payoff

asymmetry in favor of A1.

The value of λ2 for infinite common interest information, λC=∞
2 , strongly depends

on the relative sizes of private interest information v2 versus v1. Naturally, for large

v1, the cutoff λC=∞
2 approaches one and the range of delegation to A2 vanishes. For

large v2, the cutoff λC=∞
2 approaches zero and A2 always decides. For equal private

interest information v1 = v2, the cutoff can be anywhere in [0, 1].

Figure 3 illustrates the cutoffs λC=1000
1 , λC=1000

2 for very large common interest

information vC = 1000 and variation in the relative sizes of private interest informa-

tion. While A1’s private interest information is fixed at v1 = 1, A2’s private interest

information takes values v2 = 0.25, 1, 1.5. For v2 = 0.25, (left picture) all three de-

cision protocols can be optimal and λ1 and λ2 are relatively equally spread out; for

v2 = 1, (central picture) both cutoffs meet exactly at zero and for v2 = 1.5, (right

picture) the only optimal decision protocol is delegation to A2 for any composition

λ of the organization.

To summarize, the access to common interest information is a powerful tool.

However, if common interest information is abundant the relative amounts of private

interest information determine the thresholds for delegation and as long as v2 < v1

all three decision protocols can be optimal.

12The range of possible values for λ1 is the same for vC equal to zero and equal to infinity. The

threshold is derived in the proof of Proposition 5 and given by λ1 ∈ [0, 1
3 ].
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Figure 3: H’s payoffs under delegation to A1 (black, dashed), delegation to A2 (blue,

dash-dotted), and centralization (red, solid) for vC = 1000, v1 = 1, and v2 = 0.25

(left panel), v2 = 1 (central panel), and v2 = 1.5 (right panel).

5 Endogenous quality of information

So far, the quality of the information available to A1 and A2 was assumed to be

exogenously given. In particular, the amounts of noise σ2
ε1
, σ2

ε2
, and σ2

εC
in the signals

s1, s2, and sC determined the amount of information v1, v2, and vC available to A1

and A2, respectively. A natural extension of the previous analysis is to endogenize

the precision of information by making σ2
ε1
, σ2

ε2
, σ2

εC
∈ R+ ∪ {∞} choice variables.

To keep the analysis comparable, the assumption is that there is no direct cost

of information acquisition but only strategic costs. Moreover, to keep the analysis

interesting, these choices are publicly observable. In other words, the players can

commit to acquiring imperfectly precise signals.13 Finally, as H has authority in the

organization, H can choose how much information A1 and A2 observe. Of course H

can delegate this choice to A1 and A2 respectively, so that they are allowed to choose

the precision of their signals themselves.14

Note, first, that if information acquisition is delegated to A1 and A2 they acquire

13With no cost of information acquisition, A1 and A2 are at least weakly better of with perfectly

precise signals. Under covert information acquisition, everyone would thus rightly assume A1 and

A2 to be perfectly informed in their respective domains.
14In the communication subgames, there are possible threats to deviate to a babbling equilibrium

if the acquired information is not ideal from a player’s perspective. These threats to not use available

information seem difficult to enforce within an organization. Therefore, the focus is on equilibria

with the most informative communication on and off path.
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perfectly precise information.15 Second, note that H can replicate any choice of

precision that A1 and A2 make. Therefore, H is at least weakly better off keeping

authority over information acquisition. As it turns out, it can be optimal from

H’s perspective to leave noise in the private interest signals to reduce conflicts and

improve information transmission. Thus, H can strictly gain from choosing the

quality of information in the organization.

The optimal choice of the noise variances depends on the institution. A signal sl

for l = 1, 2, C is called noise free if σ2
εl
= 0 and pure noise if σ2

εl
= ∞.

Lemma 4 (i) For all institutions, optimally, the common interest signal is noise

free.

(ii) Optimally, A1’s private interest signal is noise free for centralization; for

delegation to A1 it is noise free if λ < 1
2
and pure noise if λ > 1

2
; it is irrelevant for

delegation to A2.

(iii) Optimally, A2’s private interest signal is pure noise if λ < λ̂ and noise free

if λ > λ̂, where λ̂del1 = 1, λ̂del2 = 1
2
, and λ̂cen =

2v2+3vC−
√

(2v2)2+4v2vC+(3vC)2

2v2
.

In all cases, the optimal choices of the quality of the signals are either perfectly

informative or totally uninformative. Regardless of which institution is chosen, com-

mon interest information is observed perfectly. Intuitively, there is no conflict with

respect to common interest information and common interest information even re-

duces the conflict in communication with A2. The precision of the private interest

signals needs to be analyzed for each institution separately. Under any delegation

protocol, private interest information is fully revealed whenever the payoff weight is

in favor of the deciding party, and fully suppressed otherwise. Intuitively, revealing

information that is not aligned with the main interest of H involves a tradeoff. While

it is a gain for one division, it is a cost for the other division. The quadratic loss

functions then imply a bang bang solution, with either full or no information.

Another interesting tradeoff arises with respect to A2’s private interest informa-

tion. Better information seems more valuable, but whenever A2 observes private

15This is obvious under a covert choice of signal precision. For an overt choice of signal precision

an argument is given, for example, in Deimen and Szalay (2019).
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interest information, A2 not only garbles that information with the common interest

information but also the conflict in communication increases. There exists a cutoff λ̂

such that a noisy free signal s2 is optimal above the cutoff and pure noise is optimal

below. The cutoff differs for the three institutions. While it is maximal for dele-

gation to A1, it takes lower values for centralization and delegation to A2. This is

intuitive, since A2’s private interest information is pure noise from A1’s perspective

but valuable information from H’s perspective.

What is the additional decision power that arises from being able to manipu-

late the information? First, just compare the two delegation alternatives, under an

optimal choice of information quality.

Lemma 5 Under optimal endogenous signal precision, delegation to A1 is preferred

over delegation to A2 if and only if λ ≤ 1
2
.

The additional tool of choosing the precision of the signals results in substantially

more decision power for A1. The original informational advantage of A2 is mitigated

by the optimal informational choice. The key force is that whenever A1 decides, A2’s

private information is suppressed such that the common interest information can be

communicated without impediments.

The picture changes, when taking centralization into account. The comparison of

the two delegation protocols indicates thatA2 looses decision power when information

is controlled by H. To give A2 the best chances and thus to derive an upper bound

on A2’s decision power, consider the case of infinite common interest information.

Proposition 6 Under optimal endogenous signal precision, and for infinite common

interest information, vC = ∞, there exist λendo1 , λendo2 with 0 ≤ λendo1 ≤ λendo2 ≤ 1

such that delegation to A1 is optimal for λ ≤ λendo1 , centralization is optimal for λ ∈
[λendo1 , λendo2 ], and delegation to A2 is optimal for λ ≥ λendo2 . Moreover, λendo1 = λC=∞

1

and λendo2 ≥ λC=∞
2 .

The comparison between delegation to A1 and centralization is simple since under

both institutions it is optimal to suppress A2’s private interest information and to

give noise free information to A1. As a consequence, the optimal cutoff λendo1 = 1
3
is
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equal to the upper bound of the exogenous cutoff λC=∞
1 . Hence, the tradeoff between

delegation to A1 and centralization is unchanged. In other words, H cannot gain

relative to A1 by choosing the signal precision.

For the comparison between delegation to A2 and centralization, by Lemma 4,

two scenarios have to be considered. For sufficiently high levels of λ, λ ≥ λ̂cen, the

comparison reduces to the comparison for exogenous signal precision. For interme-

diate values of λ, 1
2
≤ λ < λ̂cen, the underlying information under delegation to

A2 differs from that under centralization. Hence a new threshold λ̌endo2 has to be

calculated, which turns out to lie above the threshold for exogenous signal precision.

In other words, there is more centralization in comparison to delegation to A2 under

endogenous signal precision than under exogenous signal precision. Choosing the

quality of the information that A2 observes gives H additional decision power in the

sense of a larger range of payoff weights for which centralization is optimal.

6 Conclusions

This paper studies communication and the allocation of decision authority in a two-

divisional organization. Multiple pieces of information are dispersed in the organi-

zation. They are either of common or of private interest to the different players and

have to be aggregated into a one-dimensional decision. This creates a correlation of

interests that makes communication strategic.

The paper shows that having access to information plays an important role for

the allocation of decision authority: it is often the better informed player who decides

than the one who contributes a larger share to the joint payoff (in case that these

two differ). If payoff weights and access to information are relatively balanced,

centralization is the optimal protocol.

The paper provides a tractable framework for analyzing strategic communication

in multi-divisional organizations. The environment is flexible enough to be extended

to larger organizational structures or communication networks. This is left for future

research.
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A Appendix

Laplace distribution. (See, e.g., Kotz, Kozubowski and Podgórski; 2001)

For the one dimensional Laplace distribution with mean zero and variance σ2,

the density is f(t) = 1√
2σ

exp(−
√
2 |t|
σ

), and the characteristic function is of the form

ψ(t) = 1
1+ 1

2
σ2t2

, for t ∈ R. For the multivariate symmetric Laplace distribution, the

characteristic function is of the form Ψ(t) = 1
1+ 1

2
t′Σt

, for t ∈ Rd. The distribution

is thus elliptically contoured. For an illustration of the one-dimensional density, see

Figure A.1.

f (θ)

θ−1 1

1

Figure A.1: Density of the Laplace distribution.

Lemma A.1 Let Z follow an elliptically contoured symmetric distribution, Z ∼
ECd(µ,Σ, ϕ), where d is the dimension of Z, µ is the mean vector, Σ is the co-

variance matrix with rank(Σ) = k, and ϕ is the characteristic generator. Further

let

Z = (Z1,Z2) , µ = (µ1,µ2) , Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where the dimensions of Z1, µ1, and Σ11 are m×1, m×1, and m×m for 0 < m < d,

respectively.

i) The variable (Z1|Z2 = z2) follows an elliptically contoured symmetric distri-

bution with mean16

µ1 +Σ12Σ
−1
22 (z2 − µ2)

16The generalized inverse of a matrix is defined the standard way.
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and covariance matrix

Σ11 −Σ12Σ
−1
22Σ21.

ii) Let A be an d× l matrix and b be an l × 1 vector. Then

b+A′Z ∼ ECl (b+A′Z,A′ZA, ϕ) .

Proof of Lemma A.1. i) Fang, Kotz and Ng (1990) Theorem 2.18.

ii) Fang, Kotz and Ng (1990) Theorem 2.16. □

Proof of Lemma 1. (i) Kotz, Kozubowski and Podgórski (2001) Prop. 5.1.1.

(ii) Lemma A.1. □

Proof of Lemma 2. Under delegation to A2, A2 will ignore A1’s message as it is

uncorrelated to A2’s optimal action which is a2 = θ2.

Under delegation to A1, A2 sends a message revealing that θ2 ∈ [θ2, θ2) and A1’s

optimal action is

a1 = E
[
XC +X1|Θ1 = θ1,Θ2 ∈ [θ2, θ2)

]
= θ1 +

cov(XC +X1,Θ2)

var(Θ2)
· E
[
Θ2|Θ2 ∈ [θ2, θ2)

]
= θ1 + β12 · E

[
Θ2|Θ2 ∈ [θ2, θ2)

]
,

with factor β12 =
cov(XC+X1,Θ2)

var(Θ2)
= vC

vC+v2
.

Under centralization, A1 and A2 communicate to H by revealing that θ1 ∈ [θ1, θ1)

and θ2 ∈ [θ2, θ2), respectively. By Lemma 1, this induces H to take the action

aH = E
[
XC + (1− λ)X1 + λX2|Θ1 ∈ [θ1, θ1),Θ2 ∈ [θ2, θ2)

]
=
cov(XC + (1− λ)X1 + λX2,Θ1)

var(Θ1)
· E
[
Θ1|Θ1 ∈ [θ1, θ1)

]
+
cov(XC + (1− λ)X1 + λX2,Θ2)

var(Θ2)
· E
[
Θ2|Θ2 ∈ [θ2, θ2)

]
=βH1 · E

[
Θ1|Θ1 ∈ [θ1, θ1)

]
+ βH2 · E

[
Θ2|Θ2 ∈ [θ2, θ2)

]
,
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with βH1 = cov(XC+(1−λ)X1+λX2,Θ1)
var(Θ1)

= (1− λ) and βH2 = cov(XC+(1−λ)X1+λX2,Θ2)
var(Θ2)

=
vC+λv2
vC+v2

. □

Proof of Lemma 3.

Delegation to A2. A2’s optimal action is a2 = θ2 =
σ2
C

σ2
C+σ2

εC

sC +
σ2
2

σ2
2+σ2

ε2

s2. Since

the variables are uncorrelated, A1’s expected payoff is

−E
[
(a2 − (XC +X1))

2] = vC − v2 − σ2
C − σ2

1.

A2’s expected payoff is

−E
[
(a2 − (XC +X2))

2] = vC + v2 − σ2
C − σ2

2.

Thus, H’s expected payoff can be written as

− λE
[
(a2 − (XC +X2))

2]− (1− λ)E
[
(a2 − (XC +X1))

2]
=vC + (2λ− 1)v2 − σ2

C − λσ2
2 − (1− λ)σ2

1.

Delegation to A1. A1’s optimal action is a1 = β12 · µ̂2 +
σ2
1

σ2
1+σ2

ε1

· s1, with

β12 =
vC

vC+v2
and some realization µ̂2 of the conditional expectation µ2.

Since the variables are uncorrelated, E [µ2X1] = 0, E [µ2 (XC +X2)] = E [µ2
2] =

var(µ2), and by the law of iterated expectations

E [µ2XC ] = E [E [µ2XC ] |Θ2 ∈ [θ2,i−1, θ2,i]] = E [µ2E [XC |Θ2 ∈ [θ2,i−1, θ2,i]]]

= E
[
µ2
Cov (XC ,Θ2)

V ar (Θ2)
µ2

]
=

vC
vC + v2

E
[
µ2
2

]
= β12 var(µ2).

A1’s expected payoff is

−E
[
(a1 − (XC +X1))

2] = (β12)
2 var(µ2) + v1 − σ2

C − σ2
1.

A2’s expected payoff is

−E
[
(a1 − (XC +X2))

2] = β12 (2− β12) var(µ2)− v1 − σ2
C − σ2

2.
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Using equation (3) and rearranging, H’s expected payoff can be written as

− λE
[
(a1 − (XC +X2))

2]− (1− λ)E
[
(a1 − (XC +X1))

2]
=
(
2λβ12 + (1− 2λ) β2

12

) 1

2− β12
(vC + v2) + (1− 2λ) v1 − σ2

C − λσ2
2 − (1− λ)σ2

1.

Centralization.

H’s optimal action is aH = βH2 · µ̂2+βH1 · µ̂1, with βH2 =
vC+λv2
vC+v2

and βH1 = 1−λ
and some realizations µ̂2 and µ̂1 of the conditional expectations µ2 and µ1.

Note that E [µ1 (XC +X2)] = 0 and E [µ1X1] = E [µ2
1] = var(µ1), and recall that

E [µ2XC ] =
vC

vC+v2
var(µ2).

A1’s expected payoff is

− E
[
(aH − (XC +X1))

2]
=− (βH2)

2 E
[
µ2
2

]
− (βH1)

2 E
[
µ2
1

]
− σ2

C − σ2
1 − 2βH2βH1E [µ2µ1]

+ 2βH2E [µ2XC ] + 2βH1E [µ1X1]

=βH2

(
2

vC
vC + v2

− βH2

)
var(µ2) + βH1 (2− βH1) var(µ1)− σ2

C − σ2
1.

A2’s expected payoff is

− E
[
(aH − (XC +X2))

2]
=− (βH2)

2 E
[
µ2
2

]
− (βH1)

2 E
[
µ2
1

]
− σ2

C − σ2
2 − 2βH1βH2E [µ1µ2]

+ 2βH1E [µ1 (XC +X2)] + 2βH2E [µ2 (XC +X2)]

=βH2 (2− βH2) var(µ2)− (βH1)
2 var(µ1)− σ2

C − σ2
2.

Using equation (3) and rearranging, H’s expected payoff can be written as

− λE
[
(aH − (XC +X2))

2]− (1− λ)E
[
(aH − (XC +X1))

2]
=

[
(1− λ)βH2

(
2

vC
vC + v2

− βH2

)
+ λ(βH2 (2− βH2))

]
var(µ2)

+
[
(1− λ) βH1 (2− βH1)− λ (βH1)

2] var(µ1)− σ2
C − λσ2

2 − (1− λ)σ2
1

=
1

2− βH2

β2
H2(vC + v2) + (1− λ)2

1

2− (1− λ)
v1

− σ2
C − λσ2

2 − (1− λ)σ2
1.
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□

Lemma A.2 There exist three unique cutoffs λ′, λ′′, λ′′′ ∈ [0, 1) satisfying

(i) H weakly prefers centralization over delegating to A1 if and only if λ ≥ λ′,

(ii) H weakly prefers delegating to A2 over centralization if and only if λ ≥ λ′′,

(iii) H weakly prefers delegating to A2 over delegating to A1 if and only if λ ≥ λ′′′.

Proof of Lemma A.2. H’s payoff gains under the three protocols of decision

making are given in Lemma 3. Note that the payoff gains under delegation to A1,

π̃del1
H (λ), and to A2, π̃

del2
H (λ), are linear in λ, since β12 is independent of λ. The

payoff gain under centralization, π̃cen
H (λ), is strictly convex in λ, since 2 ≥ β, and

any expression z2

k−z
is convex iff k > z.

(i) At λ = 0, π̃cen
H (0) = π̃del1

H (0), while at λ = 1, π̃cen
H (1) > π̃del1

H (1). Linearity of

π̃del1
H (λ) and strict convexity of π̃cen

H (λ) imply that there exists at most one λ ∈ (0, 1)

such that π̃cen
H (λ) = π̃del1

H (λ). If such λ exists define it as λ′, otherwise set λ′ = 0.

(ii) At λ = 1, π̃cen
H (1) = π̃del2

H (1) and moreover, one can show that the derivatives

satisfy ∂
∂λ

(
π̃cen
H (λ)− π̃del2

H (λ)
)∣∣

λ=1
= v2 ≥ 0. Linearity of π̃del2

H (λ) and strict con-

vexity of π̃cen
H (λ) imply that there exists at most one λ ∈ [0, 1) such that π̃cen

H (λ) =

π̃del2
H (λ). If such λ exists define it as λ′′. Otherwise, if v2 > 0 set λ′′ = 0 and if v2 = 0

set λ′′ = 1.

(iii) For all λ ∈ [0, 1], ∂
∂λ

(
π̃del2
H (λ)− π̃del1

H (λ)
)
=

4v1v2+4v22+2v1vC
2v2+vC

> 0. Solving

π̃del1
H (λ) = π̃del2

H (λ) yields λ = v2(2v2−vC)+v1(2v2+vC)

4v1v2+4v22+2v1vC
which can with simple algebra be

simplified to λ = 1
2
− 1

2
v2vC

v1(2v2+vC)+2v22
≤ 1

2
. Thus, if such λ exists with λ > 0, define it

as λ′′′, otherwise set λ′′′ = 0. □

Proof of Proposition 1. By Lemma 3: At λ = 0, π̃cen
H (0) = π̃del1

H (0). At λ = 1,

π̃cen
H (1) = π̃del2

H (1) and ∂
∂λ

(
π̃cen
H (λ)− π̃del2

H (λ)
)∣∣

λ=1
≥ 0. The payoff gains under

delegation to A1, π̃
del1
H (λ), and to A2, π̃

del2
H (λ), are linear in λ and the payoff gain

under centralization, π̃cen
H (λ), is convex in λ. By Lemma A.2, the winners of the

pairwise comparisons of the three protocols of decision-making are characterized by

λ′, λ′′, λ′′′.
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Combining these insights yields that: Delegation to A1 is optimal for λ ≤
min {λ′, λ′′′}. Delegation to A2 is optimal for λ ≥ max {λ′′, λ′′′}. Centralization is

optimal for λ = 1, for λ ∈ [min {λ′, λ′′′} ,max {λ′′, λ′′′}] if the interval is non-empty,

and for λ = 0 if λ′′ > 0 (if λ′′ = 0 delegation to A2 is optimal for λ = 0).

The upper envelope is thus characterized by two intersections λ1 := min {λ′, λ′′′}
and λ2 := max {λ′′, λ′′′}, which can be equal to 0 and 1. Hence, delegation to A1 is

optimal if and only if λ ∈ [0, λ1] and λ2 > 0, centralization is optimal if and only if

λ ∈ [λ1, λ2] ∪ {1} or (λ = 0 and λ2 > 0), and delegation to A2 is optimal if and only

if λ ∈ [λ2, 1]. □

Proof of Proposition 2. By Lemma 3, the payoff comparison between delegation

to A1 and delegation to A2 is equivalent to

(1− 2λ)v1 =
v2(vC − 2v2(1− 2λ))

2v2 + vC
.

The solution to this indifference is given by λdel = 1
2
− 1

2
v2vC

v1(2v2+vC)+2v22
. Taking

derivatives yields
∂λdel

∂vC
= − v22(v1 + v2)

(2v1v2 + 2v22 + v1vC)2
≤ 0,

∂λdel

∂v1
=

v2vC(2v2 + vC)

2(2v1v2 + 2v22 + v1vC)2
≥ 0,

∂λdel

∂v2
=

vC(2v
2
2 − v1vC)

2(2v1v2 + 2v22 + v1vC)2
≤ 0 for v1 ≤ 2

v22
vC
.

□

Proof of Proposition 3. For λ = 0, the coefficients are βH2 = β12 = vC
vC+v2

and

βH1 = 1, and the payoffs given in Lemma 3 simplify to

π̃del2
H =vC − v2,

π̃del1
H =v1 + β2

12

1

2− β12
(vC + v2) = v1 +

v22
2v2 + vC

,

π̃cen
H =β2

H2

1

2− βH2

(vC + v2) +
1

2− βH1

v1 = π̃del1
H .
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Comparison of the payoffs shows that centralization is preferred to delegation to A2

if and only if

v1 +
v22

2v2 + vC
≥ vC − v2.

Simplification yields the expression in the statement. □

Proof of Proposition 4. For λ = 1
2
, the coefficients are βH2 =

vC+
v2
2

vC+v2
, β12 =

vC
vC+v2

,

and βH1 =
1
2
, and the payoffs given in Lemma 3 simplify to

π̃del2
H =vC ,

π̃del1
H =

1

2− β12
β12(vC + v2) =

vC(vC + v2)

2v2 + vC
,

π̃cen
H =β2

H2

1

2− βH2

(vC + v2) +
1

4

1

2− βH1

v1 =
v1
6

+

(
vC + v2

2

)2
vC + v2

3
2

.

Comparing the payoffs of delegation to A1 and delegation to A2, it is immediate

that delegation to A2 is always preferred.

The payoff of centralization is higher than the payoff of delegation to A2 if and

only if

v1
6

+

(
vC + v2

2

)2
vC + v2

3
2

≥ vC(vC + v2)

2v2 + vC

which is equivalent to the expression in the statement. □

Proof of Proposition 5. Case vC = 0.

Consider the payoff difference between centralization and delegating to A2. The

difference can be written as(
π̃cen
H − π̃del2

H

)∣∣
vC=0

=
(1− λ)2

1 + λ
v1 +

λ2

2− λ
v2 + (1− 2λ)v2

= (1− λ)

(
(1− λ)

1 + λ
v1 +

2− 3λ

2− λ
v2

)
.
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At λ = 0, the difference is v1+v2. At λ = 1, the difference is zero. For v1 = 0, the

difference simplifies to 2−3λ
2−λ

(1− λ)v2 and thus λ2 =
2
3
. Taking the limit for v1 → ∞

yields λ2 = 1. For v2 = 0, the difference simplifies to (1−λ)2

1+λ
v1 and thus λ2 = 1.

Taking the limit for v2 → ∞ yields λ2 =
2
3
.

Apply the implicit function theorem to the term in brackets, to see that λ2 is

monotonic. Note that the derivatives of the term are: with respect to v1 equal to
(1−λ)
1+λ

> 0; with respect to v2 equal to
2−3λ
2−λ

< 0 iff λ > 2
3
; and with respect to λ equal

to 2
(

1
(1+λ)2

v1 +
2

(2−λ)2
v2

)
> 0. Thus λ2 is increasing in v1 and λ2 is decreasing in v2

for λ > 2
3
. Monotonicity implies that λ2 ∈ [2

3
, 1].

Case vC = ∞.

Since π̃cen
H (0) = π̃del1

H (0), it holds that λ2 > 0 if and only if π̃cen
H (0) > π̃del2

H (0).

In the limit,

lim
vC→∞

(π̃cen
H (λ)− π̃del2

H (λ)) = (1− λ)
(v1(1− λ)− v2(1 + λ))

(1 + λ)
.

For λ = 0, this reduces to v1 − v2. Thus, λ2 > 0 for v1 > v2.

The solution to limvC→∞(π̃cen
H (λ)−π̃del2

H (λ)) = 0 is λC=∞
2 = v1−v2

v2+v1
. The derivatives

of λC=∞
2 with respect to v1 and v2 are 2v2

(v2+v1)2
≥ 0 and − 2v1

(v2+v1)2
≤ 0, respectively.

Comparison of λC=0
2 and λC=∞

2 .

The payoff difference between centralization minus delegation to A2 simplifies for

vC = 0 to

(1− λ)

(
(1− λ)

1 + λ
v1 +

2− 3λ

2− λ
v2

)
and for vC = ∞ to

(1− λ)
v1(1− λ)− v2(1 + λ)

(1 + λ)
.

The difference between these expressions is always positive: 2−3λ
2−λ

v2 − (−v2) ≥ 0.

For completeness, consider now λ1.

Case vC = 0. Consider the payoff difference between centralization and del-

egating to A1. Note that β12 = 0 and βH2 = λ. The difference can be written
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as (
π̃cen
H − π̃del1

H

)∣∣
vC=0

=
(1− λ)2

1 + λ
v1 +

λ2

2− λ
v2 − (1− 2λ)v1

= λ

(
−1− 3λ

1 + λ
v1 +

λ

2− λ
v2

)
.

At λ = 0, the difference is zero. At λ = 1, the difference simplifies to v1 + v2. For

v1 = 0, the difference simplifies to λ2

2−λ
v2 and thus λ1 = 0. The limit for v1 → ∞

yields λ1 =
1
3
. For v2 = 0, the difference simplifies to −1−3λ

1+λ
v1 and thus λ1 =

1
3
. The

limit for v2 → ∞ yields λ1 = 0.

Apply the implicit function theorem to the term in brackets to see that λ1 is

monotonic. Note that the derivatives of the term are: with respect to v1 equal to

−1−3λ
1+λ

< 0 iff λ < 1
3
; with respect to v2 equal to λ

2−λ
> 0; and with respect to λ

equal to 2
(

2
(1+λ)2

v1 +
1

(2−λ)2
v2

)
> 0. Thus λ1 is increasing in v1 for λ < 1

3
and λ1 is

decreasing in v2. Monotonicity implies that λ1 ∈ [0, 1
3
].

Case vC = ∞. It holds that λ1 > 0 if and only if ∂
∂λ

(
π̃cen
H (λ)− π̃del1

H (λ)
)∣∣

λ=0
< 0.

In the limit,

lim
vC→∞

(π̃cen
H (λ)− π̃del1

H (λ)) = λ
v2(1 + λ)− v1(1− 3λ)

(1 + λ)
.

The derivative with respect to λ equals v2+
v1(−1+3λ(2+λ))

(1+λ)2
, and at λ = 0 simplifies to

v2 − v1. Thus, λ1 > 0 for v1 > v2. □

Proof of Lemma 4. The headquarters’ payoffs for the three institutions are given

in Lemma 3.

(i) The headquarters’ payoffs under all institutions are strictly increasing in vC .

(ii) Under centralization, H’s payoff is strictly increasing in A1’s private interest

information. The optimal choice of precision is thus σ2
ε1

= 0, implying v∗1 = σ2
1 for

all λ.

The gain from delegating to A1 is strictly increasing in v1 for λ < 1
2
and strictly

decreasing in v1 for λ >
1
2
. The optimal choice of precision is thus for λ < 1

2
, σ2

ε1
= 0

implying v∗1 = σ2
1, and for λ > 1

2
, σ2

ε1
= ∞ implying v∗1 = 0.

33



The gain from delegating to A2 is independent of v1.

(iii) The gain from delegating to A2 is strictly decreasing in v2 for λ < 1
2
and

strictly increasing in v2 for λ > 1
2
. The optimal choice of precision is thus for λ < 1

2
,

σ2
ε2
= ∞ implying v∗2 = 0, and for λ > 1

2
, σ2

ε2
= 0 implying v∗2 = σ2

2.

The gain from delegating to A1 is strictly decreasing in v2 for λ < 1. The optimal

choice of precision is thus σ2
ε2
= ∞, implying v∗2 = 0 for all λ.

The derivative of H’s payoff under centralization with respect to A2’s private

interest information is given by
∂π̃cen

H

∂v2
= (vC+v2λ)(v2(2−λ)−vC(2−3λ))

(vC+v2(2−λ))2
. The threshold λ̂ is

the solution to
∂π̃cen

H

∂v2
= 0, or equivalently λ̂ =

2v2+3vC−
√

(2v2)2+4v2vC+(3vC)2

2v2
. For pure

private interest information, vC = 0, this yields λ̂ = 0. For infinite common interest

information, vC → ∞, this yields λ̂ = 2
3
. The optimal precision is σ2

ε2
= 0 if λ > λ̂

and σ2
ε2
= ∞ if λ < λ̂. □

Proof of Lemma 5. For λ ≤ 1
2
, by Lemma 4, A1 learns signal s1 noise free and

A2 learns sC noise free and s2 is pure noise. Then, by Lemma 3, delegation to A1 is

preferred over delegation to A2 for λ ≤ 1
2
, which is satisfied by assumption.

For 1
2
≤ λ ≤ λ̂del1, by Lemma 4, A1’s signal is pure noise, A2 learns sC noise free

and s2 is pure noise. Then by Lemma 3, delegation to A2 is preferred over delegation

to A1 for λ ≥ 1
2
, which is satisfied by assumption.

For λ̂del1 ≤ λ, by Lemma 4, A1’s signal is pure noise and A2 learns sC as well as

s2 noise free. Then by Lemma 3, delegation to A2 is preferred over delegation to A1

for λ ≥ 1
2
− vC

4v2
, which is satisfied as λ ≥ λ̂del1 > 1

2
− vC

4v2
. □

Proof of Proposition 6. Consider first the threshold λ1 between centralization

and delegation to A1. By Lemma 5, only the range λ ∈ [0, 1/2] needs to be considered

for λ1. For infinite common interest information vC = ∞, by Lemma 4, under

delegation to A1, A1 observes a noise free signal and A2 observes pure noise; likewise

under centralization, A1 observes a noise free signal and A2 observes pure noise. The

comparison is thus identical to the case of exogenous signal precision and λendo1 =
1
3
= λC=∞

1 .
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Consider now the threshold λ2 between centralization and delegation to A2. By

Lemma 5, only the range [1/2, 1] needs to be considered. For infinite common interest

information vC = ∞, by Lemma 4, under delegation to A2, A2 observes a noise free

signal; under centralization, A1 observes noise free signal, A2 either observes a noise

free signal or pure noise, depending on the size of λ relative to λ̂cen. By Lemma 3,

for these parameter values with λ ≥ λ̂cen, the comparison reduces to the comparison

for exogenous signal precision. Thus the payoff of centralization minus the payoff of

delegation to A2 is equal to v1
(1−λ)2

1+λ
− v2(1− λ), thus λ̂endo2 = λC=∞

2 .

By Lemma 3, for these parameter values with 1
2

≤ λ ≤ λ̂cen, the payoff of

centralization minus the payoff of delegation to A2 equals v1
(1−λ)2

1+λ
− v2(2λ − 1).

Calculating the zero yields λ̌endo2 =
−v2−2v1+

√
v2

√
9v2+8v1

4v2−2v1
.

Comparing the conditions from which the thresholds λ̂endo2 and λ̌endo2 are derived,

one can see that v1
(1−λ)2

1+λ
−v2(1−λ) is equal to v1 (1−λ)2

1+λ
−v2(2λ−1) if (1−λ) = (2λ−1).

Hence the expressions are equal for λ̂cen = 2
3
. For 1

2
≤ λ ≤ λ̂cen, it holds that

(1 − λ) ≤ (2λ − 1), implying that λ̂endo2 ≤ λ̌endo2 . Thus there is more centralization

with endogenous signal precision compared to the case of exogenous signal precision.

□
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