Household Portfolios, Monetary Policy and Asset Prices

Matteo Leombroni¹ Ciaran Rogers²

¹Boston College

²HEC Paris

- In 2014/2015 the ECB introduced a number of policies aimed at reducing medium and long-term yields
- This prompts a discussion on the effects of these policies on:
 - Asset prices
 - Risk Premia
 - Heterogeneous effects on wealth and consumption

Framework

Introduce heterogeneous life-cycle model with incomplete markets asset-pricing:

- Multiple assets and aggregate risk
- Match aggregates of household portfolios in the Euro area

Framework

Introduce heterogeneous life-cycle model with incomplete markets asset-pricing:

- Multiple assets and aggregate risk
- Match aggregates of household portfolios in the Euro area

Preview of Results

Following a reduction in the interest rate, households rebalance towards riskier assets, inducing:

- Increase in equilibrium asset prices
- Increase in risk premia
- Positive, heterogeneous effect on wealth and consumption (decreasing in age)

Data

Source Household Finance and Consumption Survey

- Available for 20 EU member states (harmonised); use 2014 wave
- Household-level data on income, wealth and portfolios

Variables: Collect at household level

- Equity (including listed shares, personal business...)
- Housing (main residence and other real estate)
- Net Bond Holdings (Bonds+Deposits-Debt)
- Investment in Mutual Funds and Pension Funds

Look-Through: We use EEA to estimate portfolio allocation of Mutual Funds and Pension Funds (intermediaries)

• We apportion the indirect investment through intermediaries (look-through)

Portfolio shares: Average

Subcohorts

Model

Household Sector

- Each cohort solves a life cycle problem with portfolio choice
- Each period is 4 years
- Exogenous beliefs over asset return distribution

Household Sector

- Each cohort solves a life cycle problem with portfolio choice
- Each period is 4 years
- Exogenous beliefs over asset return distribution

Rest of Economy

• Each period, exogenously supply assets to household sector

Household Sector

- Each cohort solves a life cycle problem with portfolio choice
- Each period is 4 years
- Exogenous beliefs over asset return distribution

Rest of Economy

• Each period, exogenously supply assets to household sector

Central Bank

• Controls the nominal interest rate i_t and the supply of bonds B^{CB}

Household Sector

- Each cohort solves a life cycle problem with portfolio choice
- Each period is 4 years
- Exogenous beliefs over asset return distribution

Rest of Economy

• Each period, exogenously supply assets to household sector

Central Bank

• Controls the nominal interest rate i_t and the supply of bonds B^{CB}

Equilibrium

- Asset prices endogenously adjust to clear current asset markets in equilibrium (temporary equilibrium)
 - For now, fix prices at some level, consider equilibrium at monetary policy exercise

Financial Assets and Income

Bonds pay a real return:

$$\mathsf{R}^{\mathsf{B}}_{t+1} = \frac{1+i_t}{\pi_{t+1}}$$

where i_t is the nominal return and π_{t+1} is the inflation rate. Households can short bonds (borrow) by paying a spread ρ_{sp} .

Financial Assets and Income

Bonds pay a real return:

$$R_{t+1}^B = \frac{1+i_t}{\pi_{t+1}}$$

where i_t is the nominal return and π_{t+1} is the inflation rate. Households can short bonds (borrow) by paying a spread ρ_{sp} .

- Equity and Housing are trees with aggregate payoff $(\prod_{t+1}^{E}, \prod_{t+1}^{H})$ and prices (p_t^{E}, p_t^{H}) .
 - Each individual household purchases shares (θ_i^E, θ_i^H) of each tree

Financial Assets and Income

Bonds pay a real return:

$$R_{t+1}^B = \frac{1+i_t}{\pi_{t+1}}$$

where i_t is the nominal return and π_{t+1} is the inflation rate. Households can short bonds (borrow) by paying a spread ρ_{sp} .

- Equity and Housing are trees with aggregate payoff $(\prod_{t+1}^{E}, \prod_{t+1}^{H})$ and prices (p_t^{E}, p_t^{H}) .
 - Each individual household purchases shares (θ_i^E, θ_i^H) of each tree
- Labor Income: deterministic age profile, with permanent and transitory shocks:

$$Y_{i,t} = \underbrace{P_{i,t}}_{\text{Permanent Transitory}} \underbrace{U_{i,t}}_{\text{Shocks}}$$
$$P_{i,t} = \underbrace{\exp(f(a))}_{\text{Age profile}} P_{i,t-1} \underbrace{N_{i,t}}_{\text{Permanent Shocks}}$$

• Epstein-Zin preferences:

$$\max_{\{\theta_{i,t}^{E}, \theta_{i,t}^{H}, B_{i,t}^{+}, B_{i,t}^{-}, C_{i,t}\}_{t=0}^{T_{-a}}} E_0 \left[V_{a,0} (W_0, P_0) \right]$$

Epstein-Zin preferences:

$$\max_{\{\theta_{i,t}^{E}, \theta_{i,t}^{H}, B_{i,t}^{+}, B_{i,t}^{-}, C_{i,t}\}_{t=0}^{T-a}} E_0 \left[V_{a,0}(W_0, P_0) \right]$$

Budget constraint

Epstein-Zin preferences:

$$\max_{\{\theta_{i,t}^{E}, \theta_{i,t}^{H}, B_{i,t}^{+}, B_{i,t}^{-}, C_{i,t}\}_{t=0}^{T-a}} E_0 \left[V_{a,0}(W_0, P_0) \right]$$

Budget constraint

Collateral constraint

 $B_{i,t}^{-} \leq \phi p_t^H \theta_{i,t}^H$

Epstein-Zin preferences:

$$\max_{\{\theta_{i,t}^{E}, \theta_{i,t}^{H}, B_{i,t}^{+}, B_{i,t}^{-}, C_{i,t}\}_{t=0}^{T-a}} E_0\left[V_{a,0}(W_0, P_0)\right]$$

Budget constraint

Collateral constraint

$$B_{i,t}^{-} \leq \phi p_t^H \theta_{i,t}^H$$

Wealth Evolution

$$W_{i,t+1} = \underbrace{\theta_{i,t}^{E}}_{\substack{\text{Equity} \\ \text{Shares}}} \Pi_{t+1}^{E} + \underbrace{\theta_{i,t}^{H}}_{\text{Housing}} \Pi_{i,t+1}^{H} + \underbrace{B_{i,t}^{H}}_{\text{Bond}} R_{t+1}^{B} - \underbrace{B_{i,t}^{-}}_{\text{Debt}} \left(R_{t+1}^{B} + \rho_{sp}\right) + \underbrace{Y_{i,t+1}}_{\text{Income}}$$

Beliefs

Household expectations about future payoffs assumed to be:

$$\begin{split} \Pi_{t+1}^{E} &= p_{t}^{E} e^{\epsilon_{t+1}^{E}}, \quad \epsilon_{t+1}^{E} \sim \mathcal{N}(\mu_{t}^{E}, f^{E} \sigma_{E}^{2}) \\ \Pi_{t+1}^{H} &= p_{t}^{H} e^{\epsilon_{t+1}^{H}} \quad \epsilon_{t+1}^{H} \sim \mathcal{N}(\mu_{t}^{H}, f^{H} \sigma_{H}^{2}) \\ \pi_{t+1} &= e^{\epsilon_{t+1}^{\pi}}, \quad \epsilon_{t+1}^{\Pi} \sim \mathcal{N}(\mu_{t}^{H}, \sigma_{\pi}^{2}) \end{split}$$

where:

- $(\mu_t^E, \mu_t^H, \mu_t^{\pi}, \sigma_E, \sigma_H, \sigma_{\pi})$ are based on historical moments
- (*f^E*, *f^H*) scale the variance to take into account idiosyncratic risk (calibrated parameters)

Calibration

Calibration to 2014

Initial wealth

• From the HFCS we measure initial wealth of household *i* as:

$$W_{i,2014} = \underbrace{H_{i,2014}}_{\text{Housing}} + \underbrace{E_{i,2014}}_{\text{Equity}} + \underbrace{B_{i,2014}}_{\text{Net Bonds}} + \underbrace{C_{i,2014}}_{\text{Consumption}}$$

- We then endow households *i* with *W*_{*i*,2014}.
- Three types of households: Bottom 40, Mid 40 and Top 20.

Calibration to 2014

Initial wealth

• From the HFCS we measure initial wealth of household *i* as:

$$W_{i,2014} = \underbrace{H_{i,2014}}_{\text{Housing}} + \underbrace{E_{i,2014}}_{\text{Equity}} + \underbrace{B_{i,2014}}_{\text{Net Bonds}} + \underbrace{C_{i,2014}}_{\text{Consumption}}$$

- We then endow households *i* with *W*_{*i*,2014}.
- Three types of households: Bottom 40, Mid 40 and Top 20.

Asset Returns

- We estimate the mean and variance of asset returns based on historical data
- Initial prices (p_{2014}^E, p_{2014}^H) set equal to household demand in 2014

Calibration to 2014

Initial wealth

• From the HFCS we measure initial wealth of household *i* as:

$$W_{i,2014} = \underbrace{H_{i,2014}}_{\text{Housing}} + \underbrace{E_{i,2014}}_{\text{Equity}} + \underbrace{B_{i,2014}}_{\text{Net Bonds}} + \underbrace{C_{i,2014}}_{\text{Consumption}}$$

- We then endow households *i* with *W*_{*i*,2014}.
- Three types of households: Bottom 40, Mid 40 and Top 20.

Asset Returns

- We estimate the mean and variance of asset returns based on historical data
- Initial prices (p_{2014}^E, p_{2014}^H) set equal to household demand in 2014

Calibrated Parameters

- Utility function parameters: (σ, γ, ϕ_B)
- Idiosyncratic asset return variances (f^H, f^E)
- Borrowing spread ρ_{sp}

to target aggregate portfolio shares, net lending and borrowing.

Asset pricing

We introduce an equilibrium asset pricing framework to measure the impact of the change in the interest rate.

Temporary Equilibrium: prices adjust to clear current markets ONLY

We introduce an equilibrium asset pricing framework to measure the impact of the change in the interest rate.

Temporary Equilibrium: prices adjust to clear current markets ONLY

- Household expectations about future payoffs, future prices, and income are exogenous and fixed
- Higher current prices lower demand by reducing expected returns for given payoff expectations

•
$$R_{2018}^{E,NEW} = \frac{\Pi_{2018}^{E}}{\frac{F,NEW}{p_{2014}^{E,NEW}}}$$
; $R_{2018}^{H} = \frac{\Pi_{2018}^{H}}{\frac{H,NEW}{p_{2014}^{H,NEW}}}$

We introduce an equilibrium asset pricing framework to measure the impact of the change in the interest rate.

Temporary Equilibrium: prices adjust to clear current markets ONLY

- Household expectations about future payoffs, future prices, and income are exogenous and fixed
- Higher current prices lower demand by reducing expected returns for given payoff expectations
 - $R_{2018}^{E,NEW} = \frac{\Pi_{2018}^{E}}{\frac{P_{2018}^{E}}{P_{2014}^{E}}}$; $R_{2018}^{H} = \frac{\Pi_{2018}^{H}}{\frac{P_{1018}^{H}}{P_{2014}^{H,NEW}}}$
- In baseline calibration, (p_{2014}^E, p_{2014}^H) clear current asset markets
 - Supply, (p_{2014}^E, p_{2014}^H) , set equal to household demand in data
 - Model calibrated such that demand equals the data
- BUT when shocks occur, prices deviate from baseline

Equilibrium

Housing, Equity Market Clearing

$$\sum_{i} E_{i,0}(a_0, W_{i,0}, P_{i,0}, i_0, p_0^E, p_0^H) = p_0^E$$

$$\sum_{i} H_{i,0}(a_0, W_{i,0}, P_{i,0}, i_0, p_0^E, p_0^H) = p_0^H$$

where

Monetary Policy Shocks

At time t = 0:

- Households are endowed with initial wealth W_0
- They choose their portfolio allocation and plan consumption
- Markets clear

At time t = 0:

- Households are endowed with initial wealth W_0
- They choose their portfolio allocation and plan consumption
- Markets clear

At time $t = 0^+$:

- The central bank unexpectedly changes the interest rate
- Households rebalance their portfolios
- Markets clear at new equilibrium prices

At time t = 0:

- Households are endowed with initial wealth W_0
- They choose their portfolio allocation and plan consumption
- Markets clear

At time $t = 0^+$:

- The central bank unexpectedly changes the interest rate
- Households rebalance their portfolios
- Markets clear at new equilibrium prices

At time t = 1:

- Payoffs are received
- Portfolio allocation

Monetary Policy Shock

Monetary Policy Shock: CB changes the nominal rate:

$$ar{i}_{0^+} = ar{i}_0 + \underbrace{ar{v}_{0^+}}_{ ext{MP Shock}}$$

The policy is implemented by reducing the supply of bonds available to households **Shock Size**: $\bar{v}_{0^+} = -21bps$

Monetary Policy Shock

Monetary Policy Shock: CB changes the nominal rate:

$$ar{i}_{0^+} = ar{i}_0 + \underbrace{ar{v}_{0^+}}_{ ext{MP Shock}}$$

The policy is implemented by reducing the supply of bonds available to households **Shock Size**: $\bar{v}_{0^+} = -21 bps$

Assumptions

- Expectations of future labor income unchanged
- Expectations of future payoffs $\{\Pi_{t+1}^{E}, \Pi_{t+1}^{H}\}_{t=0}^{\infty}$, nominal interest rates and inflation: $\{i_{t+1}, \pi_{t+1}\}_{t=0}^{\infty}$ unchanged
- The RoE does not change the supply of assets

Monetary Policy Shock

Monetary Policy Shock: CB changes the nominal rate:

$$ar{i}_{0^+} = ar{i}_0 + \underbrace{ar{v}_{0^+}}_{ ext{MP Shock}}$$

The policy is implemented by reducing the supply of bonds available to households **Shock Size**: $\bar{v}_{0^+} = -21 bps$

Assumptions

- Expectations of future labor income unchanged
- Expectations of future payoffs $\{\Pi_{t+1}^{E}, \Pi_{t+1}^{H}\}_{t=0}^{\infty}$, nominal interest rates and inflation: $\{i_{t+1}, \pi_{t+1}\}_{t=0}^{\infty}$ unchanged
- The RoE does not change the supply of assets

Market clearing

• Asset prices $(p_{0^+}^E, p_{0^+}^H)$ adjust to clear the asset markets post shocks.

Results

\triangle Portfolio Shares, Consumption: Constant Wealth

$$\sum_{i} E_{i,0}(a_0, W_{i,0}, P_{i,0}, i_0, p_0^E, p_0^H) = p_0^E$$

 $\sum_{i} E_{i,0}(a_0, W_{i,0}, P_{i,0}, \overline{i_{0+}}, p_0^E, p_0^H) > p_0^E$

 $\sum_{i} E_{i,0}(a_0, W_{i,0}, P_{i,0}, \overline{i_{0+}}, p_{0+}^{E}, p_{0}^{H}) = p_{0+}^{E}$

$$\sum_{i} E_{i,0}(a_0, W_{i,0}, P_{i,0}, i_{0+}, p_{0+}^{E}, p_0^{H}) = p_{0+}^{E}$$

Effects on Asset Risk Premia

- Risk premium on housing increases by 7.5bps
- Risk premium on equity increases by 5bps

Two counteracting forces:

- Risk Compensation: households have to be compensated to hold more risky assets in equilibrium
- Risk Tolerance: change in wealth prompts an increased willingness to save and hold risk

Overall, risk-premia increase as 'risk compensation' effect dominates

Paper Extension: Conditions for risk premium to fall (Δ Labor income \bigcirc)

\triangle Portfolio Shares, Consumption: New Equilibrium

Summary of Results

Risk premia

Two counteracting forces:

- Risk Compensation: households have to be compensated to hold more risky assets in equilibrium
- Risk Tolerance: change in wealth prompts an increased willingness to save and hold risk

Overall, risk-premia increase as 'risk compensation' effect dominates

Wealth and Consumption

- Households benefit from the increase in risky asset prices
- And increase their consumption
- Young households tend to react more

Work-in-Progress

- Incorporate mortgage-to-income constraints
- Investigate portfolio share changes in later waves

Appendix

Portfolio shares: Top 20

Portfolio shares: Middle 40

Portfolio shares: Bottom 40

Calibration

Parameters

Calibrated Parameters		Financial Assets		Other	
γ	11	μ^{B}	-0.04%	σ_u^2	2%
σ	0.7	μ^{H}	1.23%	σ_n^2	1%
f ^E	1.8	μ^E	4.89%	ϕ	0.9
f ^H	5.8	σ^B	0.89%	β	exp(-0.01*4)
ρ_{sp}	3.25%	σ^H	1.80%		
ϕ_B	1	σ^E	21.39%		

Model Vs Data Main

	Wealth/GDP	Housing/GDP	Equity/GDP	Lending/GDP	Borrowing/GDP
data	1.76	1.11	0.19	0.02	-0.13
model	1.76	1.12	0.19	0.03	-0.14

VAR Results

Main

Wealth Effect $\Delta \bar{W}_{i,0^+} = (\underbrace{\bar{p}_{0^+}^E}_{\text{New E Price}} - p_0^E)\theta_0^E + (\underbrace{\bar{p}_{0^+}^H}_{\text{New H Price}} - p_0^H)\theta_0^H$

Results