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ABSTRACT 

We contribute to research on mixed-frequency regressions by introducing an innovative Bayesian 

approach. We impose a Normal-inverse Wishart prior by adding a set of auxiliary dummies in estimating 

a Mixed-Frequency VAR. We identify a high frequency shock in a Monte Carlo experiment and in an 

illustrative example with uncertainty shock for the U.S. economy. As the main findings, we document a 

“temporal aggregation bias” when we adopt a common low-frequency model instead of estimating a 

mixed-frequency framework. The bias is amplified in case of a large mismatching between the high-

frequency shock and low-frequency business cycle variables. 

Keywords: Bayesian mixed-frequency VAR, MIDAS, Monte Carlo, uncertainty shocks, macro-financial 

linkages. 

JEL Classification: C32, E44, E52 



1 Introduction

The co-movements between macroeconomic and financial time series have been predomi-

nantly studied using vector autoregressive (VAR) models (Sims 1980). VARs are usually

estimated by relying on a common low-sampling frequency. For instance, the business

cycle fluctuations are investigated considering quarterly or monthly data. As argued

by Ghysels (2016), forecasting and structural shock identification could be potentially

misspecified because we ignore the fact that some data, for example, financial series, are

available at a higher frequency. For this reason, mixed-frequency vector autoregressive

(hereafter MF-VAR) models have become popular in recent years. These tools can pro-

duce more accurate and reliable forecasting and structural analysis, thus avoiding the

issues associated with temporal aggregation (see Marcellino 1999, Foroni, Ghysels and

Marcellino 2013, Foroni and Marcellino 2016, among others). We can consider a simple

example: a financial uncertainty measure, e.g. VIX, observed at a daily frequency and US

business cycle variables (such as inflation and industrial production) published monthly.

How can we identify the VIX shock on macroeconomic variables without ignoring the

different sampling frequencies? Or generalizing, how can we identify the impact of a

high-frequency shock on low-frequency variables?

We contribute to the methodology of MF-VAR estimation introducing a new high-frequency

identification strategy using Bayesian tools. Our approach is inspired by Götz, Hecq and

Smeekes (2016) and Ghysels (2016) that discuss how Bayesian techniques could improve

the estimation of models in case of different data sampling. In detail, we estimate a

MF-VAR using a prior of a Normal-inverse Wishart form that is implemented by adding a

set of auxiliary dummies to the system as discussed by Götz et al. (2016). Unlike Götz et

al. (2016), that focus on Granger causality testing, we use Bayesian shrinkage techniques

to identify high-frequency shocks. A Monte Carlo experiment shows how the proposed

approach is able to recover the impulse responses to a high-frequency shock implied by

the true mixed-frequency Data Generating Process (DGP). We apply this high-frequency

identification framework by estimating a stacked MF-VAR in the spirit of Ghysels (2016),

to illustrate the impact of a high-frequency variable, the financial uncertainty shock proxied

by the VIX, on low-frequency variables that represent the U.S. business cycle. We provide a

shred of new evidence when we identify a high-frequency shock using a novel identification

strategy. In particular, we document a “temporal aggregation bias” induced by relying on

a common low-frequency Bayesian VAR (hereafter CF-VAR).

In both the Monte Carlo experiment and in the illustration, our main findings suggest how

aggregating the high-frequency VIX to the low-frequency could lead to biased responses.
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In particular, in the empirical example, these reactions show more serious recessionary

effects on the business cycle when different sampling frequencies are ignored identifying the

high-frequency (VIX) shock. Our results are robust with regard to different specifications.

While the estimation sample is for data from 1990-2019, we also study the “temporal

aggregation bias”, including the current economic crisis due to the COVID-19 pandemic.

In this case, our findings show fewer recessionary effects when we rely on a mixed-frequency

analysis.

Our methodology can be compared to the recent contribution to adopting Bayesian

techniques in VARs. There are two approaches: state-space representation and stacked

MF-VAR. Among the studies of the state-space representation, Eraker, Chiu, Foerster,

Kim and Seoane (2014) introduce a Gibbs sampler in the Bayesian estimation of a MF-

VAR, assuming that the high-frequency realizations of the low-frequency data are missing.

Meanwhile, Schorfheide and Song (2015) and Schorfheide and Song (2021) employ Bayesian

techniques to estimate a state-space representation introducing a numerical approximation

of the marginal data density of a linear Gaussian MF-VAR.

Among the studies of stacked MF-VAR, Berger, Morley and Wong (2020) and McCracken,

Owyang and Sekhposyan (2021) propose mixed-frequency models for forecasting analysis.

Cimadomo, Giannone, Lenza, Monti and Sokol (2021) provide evidence of using mixed-

frequency BVARs to nowcast and study the propagation of the U.S. economic shocks.

They use three strategies (state-space, blocking, and cube-root BVARs) for identifying a

low-frequency shock (the GDP shock) and a high-frequency shock (the Economic Policy

Uncertainty shock) on both low- and high-frequency variables. In addition, Clements

and Galvão (2021) estimate a stacked MF-VAR using Bayesian techniques to identify a

quarterly series of expectations shocks. Our methodology contributes to the literature of

the shrinkage prior in stacked MF-VAR. As far as we know, our contribution is the first

study that identifies high-frequency shocks by explicitly taking into account the different

nature of the data when setting the prior.

However, MIDAS models are mainly employed to provide forecasting and in particular now-

casting analyses (Kuzin, Marcellino and Schumacher 2011, Foroni and Marcellino 2014, Hu-

ber, Koop, Onorante, Pfarrhofer and Schreiner 2020, Mogliani and Simoni 2021, among

others). Few articles document the use of a mixed-frequency model only to identify an

economic shock. Ferrara and Guérin (2018), Casarin, Foroni, Marcellino and Ravazzolo

(2018), and Bacchiocchi, Bastianin, Missale and Rossi (2020) provide interesting evidence

by adopting a mixed-frequency strategy for the identification of the uncertainty shock.

Ferrara and Guérin (2018) and Bacchiocchi et al. (2020) rely on a frequentist VAR esti-
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mation, while Casarin et al. (2018) propose a Bayesian multi-country Markov-Switching

model.

Our approach is different from the above-mentioned studies in both the methodological

framework and the shock identification strategy. Technically, we impose a Natural conju-

gate prior that is tailored to take into account the mixed-frequency nature of the data (in

the spirit of Ghysels 2016). Then, the use of Bayesian shrinkage allows the researchers to

identify the impact of high-frequency (e.g. daily/weekly) shocks on common low-frequency

variables, thus avoiding the “curse of the dimensionality”. In particular, this approach is

useful and more appropriate to study shock identification in case of a large mismatching

between high and low frequency (for example, between daily and monthly) and when more

endogenous variables are included. Moreover, as the “temporal aggregation bias” concerns,

our findings document positive evidence differently from Ferrara and Guérin (2018). They

argue how the responses of macroeconomic variables to uncertainty shocks are relatively

similar across common-frequency and mixed-frequency frameworks, suggesting how the

“temporal aggregation bias” is not relevant when uncertainty shock is identified. However,

our results and their empirical evidence cannot be compared since in our setting we rely

on Bayesian techniques and the illustrative example considers different data and sample.

In addition, our paper is going in the same direction as Chudik and Georgiadis (2021).

They estimate impulse response functions by proposing a restricted and unrestricted

mixed-frequency distributed-lag (MFDL) estimator when the response variable is observed

at a lower frequency than the shock. Differently from Chudik and Georgiadis (2021),

which use OLS estimation, we rely on a Bayesian approach that is suitable to deal with

a potential parameter proliferation in stacked MF-VAR. This “curse of dimensionality”

is particularly important in case of a large mismatch between low- and high-frequency

variables.

Last but not least, our empirical findings corroborate the macro-finance literature that

discusses how an increase of uncertainty is followed by a contraction in real activity

(Bloom 2009, Caggiano, Castelnuovo and Groshenny 2014, Leduc and Liu 2016, Basu and

Bundick 2017, Alessandri and Mumtaz 2019, among others). In particular, Alessandri,

Gazzani and Vicondoa (2021) identify a high-frequency financial uncertainty shock propos-

ing an alternative approach to MIDAS that relies on a proxy-SVAR model.

Moreover, our evidence, including the observations in 2020, is connected with the current

research about the macroeconomic effects of COVID-19-induced financial uncertainty (see

Baker, Bloom, Davis, Kost, Sammon and Viratyosin 2020, Caggiano, Castelnuovo and

Kima 2020, Leduc and Liu 2020, among others). However, while the aforementioned
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studies rely only on a common frequency estimation, we document empirical evidence

concerning the recent pandemic crisis using a MIDAS model.

The rest of the paper is organized as follows. Section 2 introduces the Bayesian Mixed-

Frequency VAR approach. Section 3 describes a Monte Carlo experiment. Section 4

illustrates an empirical example: data and identification strategy. Section 5 shows the

empirical evidence with robustness checks. Section 6 presents concluding remarks.

2 Bayesian Mixed Frequency VAR Approach

We estimate a stacked Mixed-frequency Vector Autoregressive model (MF-VAR) à la

Ghysels (2016). Let us consider Kh = 1 high-frequency variable (y
(m)
t−i/m) (e.g. observed

daily or weekly) and a vector of Kl variables sampled at a lower frequency (e.g. monthly),

i.e. Xt =
(
x1,t, . . . , xKl,t

)′
, which are observed every m fixed periods. The reduced-form

representation of the MF-VAR can be written as follows:

Zt =

p∑
ℓ=1

AℓZt−ℓ + c+ ut (1)

where Zt = (y
(m)′

t−(m−1)/m, . . . , y
(m)′

t−1/m, y
(m)′

t , X ′
t)

′ is the K-dimensional vector of endogenous

variables, with K = Kl + (Kh×m), which follows a stacked skip-sampled process, c is

a K × 1 vector of intercepts and ut ∼ N (0,Σ) is a K × 1 vector of error terms, with a

variance-covariance matrix (Σ) that is not assumed to be diagonal.1

The model in equation (1) can be estimated via OLS at the cost of obtaining imprecise

estimates of the MF-VAR coefficients in case of a large number of parameters and a

relatively small sample size.2 To deal with a potential parameter proliferation, we estimate

the MF-VAR in equation (1) by adopting Bayesian estimation techniques. In particular, we

build on the work of Götz et al. (2016) that performs Granger causality testing in MF-VAR

using a Bayesian approach. This methodology, which in turn adapts the approach of Sims

and Zha (1998) and Bańbura, Giannone and Reichlin (2010) to data sampled at different

frequencies, consists of imposing a Natural Conjugate prior on the MF-VAR coefficients

1The order of appearance of high- and low-frequency variables in the stacked vector Zt depends on the
empirical strategy (see Ghysels 2016). In our baseline model specification, the high-frequency variable (i.e.
the VIX) is placed before the block of low-frequency variables (e.g. the macroeconomic aggregates) (see
Section 4.2).

2As shown by the study of Foroni, Marcellino and Schumacher (2015), unrestricted lag polynomials in
MIDAS regressions can be estimated via OLS. The authors find that unrestricted regressions perform
better than standard MIDAS models (which are generally estimated through a non-linear least squares
approach, see i.e. Ghysels, Sinko and Valkanov 2007) for small differences in sampling frequencies.
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by augmenting the system in equation (1) with a set of ad-hoc artificial observations.

Following Ghysels (2016) and Götz et al. (2016), the prior distributions of the MF-VAR

coefficients in Aℓ (i.e. a
ℓ
ij, for ℓ = 1, . . . , p), are centered around a restricted MF-VAR(1).

In particular, AR(1) priors tailored for the mixed-frequency nature of the data are imposed

as follows: 

y
(m)
t−(m−1)/m

...

y
(m)
t−1/m

y
(m)
t

Xt


=



0 . . . ρH 0
...

. . .
...

...

0 . . . ρm−1
H 0

0 . . . ρmH 0

0 . . . 0 diag(ρmL )





y
(m)
t−1−(m−1)/m

...

y
(m)
t−1−1/m

y
(m)
t−1

Xt−1


+ vt (2)

where ρ = (ρH , ρL) denotes the prior mean respectively for the high- and low- frequency

variables, with ρL = ρx1 , . . . , ρxKl
. Equivalently, the AR(1) prior for the MF-VAR coeffi-

cients can be set as follows:

E(aℓij) =


ρm+i−j
H if i ≤ m & j = m & ℓ = 1

ρmL if i = j & i > m & ℓ = 1

0 otherwise

(3)

In line with Götz et al. (2016), we specify the uncertainty around the prior means similarly

to the CF-VAR:

V AR(aℓij) =



ϕ
λ2σ2

H

ℓ2σ2
L

if i ≤ m & j > m

ϕ
λ2σ2

L

ℓ2σ2
H

if i > m & j ≤ m

ϕ
λ2σ2

i,L

ℓ2σ2
j,L

if i > m & j > m & i ̸= j

λ2

ℓ2
otherwise

(4)

where λ controls the tightness of the prior distributions around the specifications in

equations (2) and (3), the ratio σi/σj , for i, j = (H,L), accounts for the different scales of

the high- and low-frequency variables and ϕ controls, for each VAR equation, the standard

deviation of the prior on lags associated to the variables different from the dependent

one (e.g. in case of MF-VAR, it controls the influence of low-frequency variables on

the high-frequency ones and vice versa) (see Götz et al. 2016).3 As in CF-VAR models,

3Note that the specifications of the prior means and variances in equations (2)-(4) are tailored to the
case of Kl low-frequency variables and Kh = 1 high-frequency variable. However, these specifications can
be easily modified to handle more than one high-frequency variable.
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augmenting the system in equation (1) with a set of dummy observations is equivalent to

imposing a Natural conjugate prior for the MF-VAR coefficients.4 Before describing the

construction of the artificial observations for the mixed-frequency case, let us write the

model in equation (1) in compact matrix notation:

Z = ZB + U (5)

where Z = (Z1, . . . , ZT )
′, Z = (Z1, . . . ,ZT )

′, with Zt = (Z′
t−1, . . . ,Z

′
t−ℓ, 1

′), U = (u1, . . . , ut)
′

and B = (A1, . . . , Ap, c)
′. In line with Bańbura et al. (2010), the Natural conjugate prior

can be imposed by augmenting the model in equation (5) with a set of artificial observations,

Yd and Xd, that is Z
∗ = Z∗B + U∗, where Z∗ = (Z ′, Y ′

d)
′ and Z∗ = (Z′, X ′

d)
′. While the

set of dummy observations for the lagged endogenous variables (Xd) are constructed as

in Bańbura et al. (2010), to match the moments in equations (2)-(4), we specify Yd as

follows:

Yd
[(Kp+1)+K]×K

=



0[(m−1)×Kh]×K

ρHσH

λ
. . .

ρm−1
H σH

λ

ρmHσH

λ
01×Kl

0Kl×1 . . . 0Kl×1 0Kl×1 diag
(

ρmL σL

λ

)
Kl×Kl

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0K(p−1)×K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

diag(σ1,H , . . . , σm,H , σ1,L, . . . , σKl,L)K×K

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

01×K



(6)

where the artificial data in the first block (i.e. those for the first lag) are formed such

that they reflect the prior belief on the restricted MF-VAR, while the other blocks are

constructed in line with Bańbura et al. (2010).

It is important to note how the order of the high-frequency variable is relevant in this

framework. The researcher can easily adapt this approach just modifying consistently the

position of the dummy observations according to the order of the high-frequency variable.

In the empirical application, we follow the suggestions of Ghysels (2016) and we set the

4The Natural conjugate prior is related to the Minnesota prior with ϕ = 1, that is, for each VAR
equation, there is no distinction between the lags associated to the dependent variable and those related
to the independent ones (see Sims and Zha 1998, Bańbura et al. 2010).
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prior mean of the high-frequency variable equal to zero, that is ρH = 0.5 The coefficients

associated with the first lag of the low-frequency variables are centered around the OLS

estimates of the coefficients obtained from an AR(1) fitted to each endogenous variable

over a training sample. The hyperparameter that controls for the overall tightness around

the prior (λ) is selected by maximizing the marginal likelihood of the model.6 We set

the scaling factors σi, σj , for i, j = (H,L), using the standard deviation of the residuals

from AR(m) and AR(1) regressions estimated for ymt and xt, respectively (see Götz et

al. 2016). Finally, we impose a diffuse prior on the intercept (c). To make inference,

we then proceed as in the common frequency VARs with Natural conjugate prior. In

particular, the conditional posterior distributions for the MF-VAR coefficients (B and Σ)

can be written as follows:

B|Σ, Y ∼ N
(
B∗, Σ⊗ (Z∗′Z∗)−1

)
(7)

Σ|B, Y ∼ IW
(
S∗, v∗

)

where B∗ = (Z∗′Z∗)−1Z∗′Z∗ is the OLS estimate of the augmented regression, while

S∗ = (Z∗ − Z∗B̃)′(Z∗ − Z∗B̃) and v∗ are, respectively, the scale parameter and the degrees

of freedom of the inverse Wishart distribution, with B̃ being a draw of the MF-VAR

coefficients and v∗ set equal to the number of observations in the augmented regression. In

the empirical illustration, we focus on the structural analysis, hence we rely on the Gibbs

sampler to simulate the posterior distribution of the MF-VAR coefficients.7 In particular,

we set the number of draws equal to 15, 000 and we discard the first 10, 000 as burn-in

draws.

5This choice is also in line with the empirical analysis described in Cimadomo et al. (2021), where the
prior mean of the high-frequency proxy of uncertainty (i.e. the Economic Policy Uncertainty Index of
Baker, Bloom and Davis 2016) is centered around zero. However, as a robustness check, we estimate the
MF-VAR using different prior means (see Section 5.1).

6In our study, the selection of the optimal overall tightness of the prior (λ) is based on Carriero,
Kapetanios and Marcellino (2012), which suggest selecting λ over a grid of values. In particular, we use the
following grid: λ ∈ {0.01, 0.05, 0.1, 0.2, 0.5, 1, 1.5, 2, 3} (see also Del Negro and Schorfheide 2004, Del Negro
and Schorfheide 2011).

7The codes used in this paper are an adaptation of Haroon Mumtaz’s codes for the estimation of a
Bayesian CF-VAR, which are available on his website.
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3 Monte Carlo simulation

We conduct a Monte Carlo experiment to evaluate whether the impulse responses estimated

by imposing the MF-VAR prior are similar to those obtained from the true data generating

process (DGP). In this Monte Carlo exercise:

1. The data are generated from a restricted MF-VAR(1) following Ghysels (2016):

Zt = A1Zt−1 + c+ ut (8)

where Zt follows a stacked skip-sampled process.

2. The DGP includes Kh = 1 monthly variable (y
(m)
t−i/m), for i = 0, . . . , 2, and Kl = 1

quarterly variable (xt) (observed every m = 3 months) and it is described as follows8:


yt−2/3

yt−1/3

yt

xt

 =


0 0 0.49 0.02

0 0 0.24 0.02

0 0 0.12 0.04

−0.13 0.12 0.07 0.29



yt−1−2/3

yt−1−1/3

yt−1

xt−1

+ ut (9)

and:

E(utu
′
t) = Σu =


1 0.50 0.25 0.20

0.50 1.25 0.62 0.30

0.25 0.62 1.31 0.15

0.20 0.30 0.15 6.40

 (10)

3. We generate N = 500 datasets of length T = 300 quarters.

4. We discard the first 100 observations to remove the influence of initial conditions.

In this exercise, we focus on the response of the low-frequency variable to shocks occurring

in month 1, month 2 and month 3. The exogenous shocks are identified by computing

the Cholesky decomposition of the reduced-form residual covariance matrix (Σu). This

identification strategy is chosen given that typically the high-frequency variable is released

before the low-frequency one.

8For the sake of simplicity, the vector of intercepts is not reported.
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Figure 1 shows the true impulse responses to the high frequency shocks (black dashed

line) and the average across the 500 replications of the median impulse responses obtained

by estimating the Bayesian MF-VAR (red solid line) and the Bayesian CF-VAR (blue

solid line). The size of the shocks is defined as one-standard deviation increase in the

high-frequency variables, both in each of the three months (true DGP and MF-VAR) and

in the aggregated high-frequency variable (CF-VAR).9 The difference between the average

response from the MF-VAR and the CF-VAR is also reported (green dashed line).

As can be seen from Figure 1, the Monte Carlo experiment reveals interesting findings.

First, the estimated impulse responses using the MF-VAR with Bayesian shrinkage (red

solid line) are similar to those implied by the true DGP (black dashed line). Second,

we find that the responses of the low-frequency variable differ across the months, with

a decreasing magnitude when moving from the first month to the last one. This finding

is in line with Ghysels (2016), which states that this dynamics might be driven by an

accumulation effect (i.e., a shock in the first month affects the second and the third month)

that does not play a role in the last month. Finally, the responses obtained from a CF-VAR

are different from the true IRFs both in terms of magnitude and sign of the response.

As alternative, we repeat the Monte Carlo experiment by computing the impulse responses

to unitary shocks. In particular, the impulse responses are normalized to a 1-point increase

in the high-frequency variable in each of the three months (true DGP and MF-VAR) and

in the aggregated high-frequency variable (CF-VAR). As can be seen from Figure 2, the

results discussed in the case of one-standard deviation shocks are confirmed also when the

shocks are normalized across months and models (MF-VAR and CF-VAR).

4 Illustrative Example

4.1 Data

We assess the effects of high-frequency financial uncertainty shocks on a set of US business

cycle variables over the sample period 1990M1-2019M12.10 The macroeconomic variables

9As for the common-frequency case, the responses are obtained by estimating a VAR where the
high-frequency variable is aggregated by computing the mean over three consecutive months. We also
compute impulse responses from a CF-VAR where the high-frequency variable is aggregated by computing
the sum over the three months. The results are qualitatively similar and they are available upon request.

10In the baseline specification, we exclude the COVID-19 era from the sample, and we estimate the
MF-VAR using data up to December 2019. During recent months, a number of authors have developed VAR-
based strategies to deal with the extreme observations reported by several U.S. macroeconomic variables
after March 2020, for both nowcasting and structural analysis (see Lenza and Primiceri 2020, Schorfheide
and Song 2021, among others). For example, Lenza and Primiceri (2020) introduce breaks in shock
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are sampled at a monthly frequency. In detail, we use the industrial production index

(IP) and the consumer price index (CPI) as proxies of real economic activity and prices,

respectively. The set of endogenous variables includes the real personal consumption

expenditures (PCE).11 The short-term interest rate is proxied by the effective federal

funds rate (FFR).12 The high-frequency financial uncertainty shock is proxied by the daily

VIX data (see Figure 3). We conduct two empirical exercises. First, we estimate the

MF-VAR in equation (1) fitted to weekly series of VIX and the above mentioned monthly

macroeconomic variables. In line with Ferrara and Guérin (2018), the weekly observations

on VIX are constructed such that each month contains four weeks (see Figure 4).13 In

a second empirical exercise, we replace the weekly series of VIX with daily observations

by following the approach proposed by Götz et al. (2016). In particular, the series is

constructed by assuming that each month contains 20 daily observations.14 Since we seek

to investigate potential bias arising from the aggregation of high-frequency variables (i.e.

VIX) into lower-frequency series, we also estimate a common-frequency (CF) VAR where

all the endogenous variables (including the VIX) are observed monthly. In particular, we

aggregate the daily VIX series (see Figure 3) to a monthly frequency by averaging out the

variances and down-weigh the impact of the pandemic observations on the parameters estimates. With
regard to structural analysis, they find that the impulse responses of the estimated VAR with breaks in
shock variances over a sample including also COVID-19 period (e.g. up to May 2020) are similar to those
of a homoschedastic VAR with the sample excluding the pandemic period. However, as a robustness check,
we also estimate the MF-VAR over the 1990M1-2020M11 time span, the results of which are discussed in
Section 5.2.

11The real personal consumption expenditure is computed by applying the personal consumption
expenditures (price) on the nominal series.

12In the baseline specification, we select the endogenous variables according to Caggiano, Castelnuovo
and Pellegrino (2017) which estimate the impact of uncertainty shock (proxied by an unexpected increase
in the VIX) on GDP deflator, real GDP, real investment, real consumption, and federal funds rate through
the estimation of a non-linear (common-frequency) quarterly VAR. Unlike Caggiano et al. (2017), since
in our empirical application the MF-VAR includes monthly series of business cycle variables, we rely on
industrial production (instead of the real GDP) as a proxy of real economic activity and we exclude the
investment, whose observations are only available at a quarterly frequency. The motivation of this choice
is due to our focus on the mismatch between weekly (daily) and monthly series.

13Following Ferrara and Guérin (2018), the daily observations on VIX are rearranged at a weekly
frequency as follows. Given a number of traded days within each month (Dt), we compute the four weekly
observations by considering the days Dt − 15, Dt − 10, Dt − 5 and Dt as observations for week 1, week 2,
week 3 and week 4, respectively. We thank Laurent Ferrara and Pierre Guérin for sending us detailed
information on the construction of the weekly series of VIX used in Ferrara and Guérin (2018).

14In their empirical application, Götz et al. (2016) construct a daily series of bipower variation of
the S&P500 stock index by considering that each month has 20 observations. In case of more than 20
observations within a certain month, the authors suggest disregarding the corresponding number of days
at the beginning of the month. For example, March 2019 has 21 traded days. Hence, to obtain the daily
series of VIX, we discard the first observation, e.g. that of 1 March 2019.
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observations over each month.15 We conduct several robustness checks on the specification

of the MF-VAR (see Section 5.2). First, we augment the baseline specification by the

unemployment rate (UNEMP.RATE) and by the 10-year treasury constant maturity rate

(10YR-TB) (as a measure of the long-term interest rate).16 In a second robustness check,

we replace the federal funds rate and the 10-year treasury rate with the shadow short rate

proposed by Wu and Xia (2016).17

For both mixed-frequency and common-frequency VARs, the variables are adequately

transformed to induce stationarity. In particular, we take the first difference of the log

transformation of prices (CPI), industrial production (IP), and real consumption (PCE),

while the proxy of financial uncertainty (VIX) and the federal funds rate (FFR) enter the

model in levels.18 Furthermore, the unemployment rate (UNEMP.RATE), the 10-year

treasury constant maturity rate (10YR-TB), and the shadow short rate proposed by Wu

and Xia (2016) (SHADOW RATE) are taken in levels (see Section 5.2). The lag length is

set as equal to three.19 Following Ferrara and Guérin (2018), to ensure comparison across

the models, the common-frequency (monthly) VAR is estimated using the same lag length

of the mixed-frequency VAR.20

The data are seasonally adjusted and downloaded from the Federal Reserve Bank of St.

Louis (FRED) Database unless indicated otherwise.

15As a robustness check, in the two empirical exercises, the aggregation of the VIX to a monthly
frequency is also carried out by averaging, respectively, the four weekly observations (i.e. those constructed
as in Ferrara and Guérin 2018) and the 20 daily observations (i.e. those constructed as in Götz et
al. 2016) over each month. The results obtained using these two aggregation schemes are qualitatively
and quantitatively similar to those described in the rest of the paper and they are available upon request.

16It is worth mentioning that both the federal funds rate and the 10-year treasury constant maturity rate
are available at a daily frequency. However, since the focus of the empirical analysis is on the identification
of uncertainty shocks through the use of real-time proxies of financial uncertainty, we use the monthly
series for both the federal funds rate and the 10-year treasury constant maturity rate.

17The Wu-Xia shadow rates series is available at https://sites.google.com/view/jingcynthiawu/
shadow-rates.

18The results are qualitatively similar when estimating the models with variables entering in log-levels
(i.e. CPI, IP, PCE) and levels (i.e. VIX, FFR). Results are available upon request.

19The Akaike Information Criteria (AIC) for the MF-VAR with weekly VIX and monthly macroeconomic
variables indicates an optimal lag length equal to two-three. However, we impose a one-quarter lag on the
MF-VAR processes. As a further robustness check, we estimate both the MF-VAR and the CF-VAR with,
respectively, six and twelve lags (see Section 5.2). The MF-VAR with daily VIX also includes three lags.
The results with different lag structures (available upon request) are qualitatively similar.

20This choice is also confirmed by the AIC, which suggests an optimal lag length equal to three-four for
the monthly CF-VAR specifications.
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4.2 Identification Strategy

The relationship between the reduced-form residuals (obtained by estimating the model in

equation (1)) and the structural disturbances can be written as follows:

ut = A0εt (11)

where A0 contains the contemporaneous effects of the structural shocks (εt) on the

endogenous variables, with εt ∼ N (0, IK). To identify the high-frequency uncertainty

shocks, we compute the Cholesky decomposition of the reduced-form residual covariance

matrix, Σ = A0A
′
0, imposing a recursive ordering of the elements in A0. For the sake of

simplicity, in the rest of this section, we describe only the first empirical exercise (i.e. that

using weekly VIX).21 Following Caggiano et al. (2017) and Ferrara and Guérin (2018), we

order the endogenous variables in the baseline specification as follows:

Zt =
[
V IX ′

t−3/4, V IX ′
t−2/4, V IX ′

t−1/4, V IX ′
t, X

′
t

]′
(12)

where V IXt−i/4 =
[
V IX ′

t−3/4, . . . , V IX ′
t

]
, for i = 0, . . . , 3, is the vector containing the

series of VIX, respectively, for the first, second, third, and fourth week, while Xt =[
CPI ′t, IP

′
t , PCE ′

t, FFR′
t

]
is the block of monthly business cycle variables. Note that,

according to the specification in equation (12), where the weekly observations of VIX are

aligned to the lowest sampling frequency, the stacked vector of endogenous variables evolves

according to a standard monthly VAR. The ordering of the variables in the macro-block

(Xt) is standard in the VAR literature. The slow-moving variables (CPI, IP, and PCE) are

placed before the fast-moving ones (FFR). This implies that monetary policies depend on

the real activities. Moreover, in line with Ferrara and Guérin (2018), the weekly series of

VIX are placed before the macro-block, with an ordering of the intra-month observations

that are consistent with the timing of data release (i.e. publication lags).22 This has two

implications. First, we allow for a contemporaneous effect of uncertainty shocks on real

economic activities and monetary policies. This ordering is also consistent with Leduc and

Liu (2016), Basu and Bundick (2017) and, more recently, Caggiano et al. (2020), among

21The MF-VAR fitted to the daily series of VIX and to the monthly business cycle variables is estimated
using the same empirical strategy as that used in case of weekly VIX (i.e. same specification, priors, and
identification strategy).

22As a robustness check, we repeat the empirical exercise by ordering the VIX last in the vector of
endogenous variables (Zt) (see Section 5.2). As discussed by Ghysels (2016), the Cholesky decomposition
seems a natural identification scheme for MF-VAR. However, we rely on a Bayesian approach that makes
our methodology flexible to be used in alternative identification patterns. For example, the researchers can
adopt it to identify more shocks at the same time, as well as combining different identification schemes.
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others. Furthermore, this ordering implies that a shock occurring in a certain week has

an impact on the corresponding weekly series of VIX and the following weeks. As stated

by Ferrara and Guérin (2018), this is a plausible assumption given that for example the

observation of the VIX related to the second week is released always after the observation

of the first week. Hence, a financial uncertainty shock occurring at week 2 affects only

the VIX observed during that week and the weeks after. We calibrate the size of the

uncertainty shock considering different impact scales to investigate how the magnitude of

the uncertainty is important. In particular, we identify a 5σ of the VIX shock estimated

over the sample period 1990M1-2019M12. Our decision is motivated by the recent work

of Caggiano et al. (2020), which estimates the effects of global uncertainty (proxied by

an exogenous increase in the VIX) on global financial conditions and world industrial

production.23 As in Caggiano et al. (2020), the size of the shock is set by comparing the

values of the VIX observed during its peak (that is on 16 March 2020) with the value

reported in the previous month (18 February 2020) (see Figure 5).24 However, we report

in the Appendix results with different scale values (see Appendix A, Figure A.1). As can

be seen from the charts, the results are qualitatively similar.

5 Empirical Evidence

5.1 Results

Figures 6-11 show the high-frequency shock (VIX) identification on monthly macroeconomic

variables (CPI, IP, PCE, and FFR) providing results from the baseline specification.

The estimated model is the MF-VAR(3) over the 1990M1-2019M12 time span.25 The

orthogonalized impulse responses, computed over a 36-month forecast horizon, are equal

to 5σ VIX shocks (see Section 4.2).26 For the variables entering the models in first-order

difference of log transformation (IP, CPI, and PCE), the impulse responses are computed

as the cumulative sum of those obtained for the log changes. Unless otherwise specified, all

the figures show the posterior median response (red line) with the 68% (red shading) and

90% (grey shading) credibility intervals obtained from the estimation of the MF-VARs. In

23See Caggiano et al. (2020) for a discussion on the use of the VIX as a proxy of global uncertainty.
24As stated by Caggiano et al. (2020), only 90% of the increase in the VIX observed between mid-

February and mid-March 2020 can be attributed to the coronavirus outbreak. Hence, given that the value
reported on March, 16 is 5.6 times larger than the value observed in the previous month, the size of the
COVID-19-induced financial uncertainty shock is set as follows: 5.6× 0.9 = 5.04 ≈ 5 (see Caggiano et
al. 2020, for further details).

25Information on the convergence of the Gibbs sampler algorithm are reported in Appendix B.
26For impulse responses to unitary shocks, see Appendix C.
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the first exercise, see Figure 6, we estimate the baseline mixed-frequency VAR to identify

the impact of VIX shocks at a weekly frequency on the consumer price index, industrial

production index, real personal consumption expenditures, and effective federal funds rate.

In particular, Figure 6 shows the responses of the business cycle variables to uncertainty

shocks occurring in each of the four weeks.27 At a first glance, we can observe how an

unexpected increase in high-frequency financial uncertainty is followed by a negative effect

on the real economic activity, prices, real consumption, and federal funds rate. These

results corroborate the findings in both theoretical and empirical literature. For example,

Leduc and Liu (2016) and Basu and Bundick (2017) discuss how the uncertainty shock

resembles a negative demand shock relying on DSGE and VAR models. Furthermore, in

line with the empirical evidence reported in Ferrara and Guérin (2018) for the US, we find a

different response for the low-frequency variables in the short-run, depending on the timing

of the shocks within the month. In addition to them, we also document a difference in the

long-run. In particular, Figure 6 reveals a different magnitude of the response diminishing

from week 1 to week 4.28 As discussed by Ferrara and Guérin (2018), these results can be

explained by the high degree of persistence and by the typical hump-shaped response of

macroeconomic variables to uncertainty shocks (see also Baker et al. 2016).29 Furthermore,

we compare the weekly impulse responses from the estimation of the MF-VAR model with

those obtained from a CF-VAR.30 In particular, we aggregate the high-frequency impulse

responses of the macroeconomic variables by computing their mean (see Figure 7).31 As

shown in Figure 7, we find evidence of difference in the responses of the low-frequency

variables to uncertainty shocks. In particular, for all the macroeconomic variables, the

magnitude of the responses is smaller in MF-VAR (almost half) than that obtained from

the estimation of a common low-frequency VAR. What is striking in Figure 7 is that the

difference in the magnitude of the responses obtained from both mixed-frequency and

27Note that, as already mentioned, the impulse responses are scaled such that the size of the shocks occur-
ring in each of the four weeks is equal to 5σ VIX shocks estimated over the sample period 1990M1–2019M12.

28Similar results are also reported by the study of Bacchiocchi et al. (2020), which finds that the
response of the Federal Funds Target rate to uncertainty shocks is stronger in the first month than late in
the quarter (although the responses are not statistically significant).

29Moreover, Ferrara and Guérin (2018) argue that if economic agents take decisions at a high-frequency,
it is plausible to expect that shocks occurring late in the month might have different short-term impacts
with respect to shocks taking place early in the month.

30As already stated, the standard VAR is estimated using the same lag structure as that used for the
estimation of the MF-VAR (i.e. 3 lags) (see Section 4).

31Foroni and Marcellino (2016) and, more recently, Bacchiocchi et al. (2020) provide a discussion on
the comparison between mixed-frequency and common-frequency VAR, respectively, in the case of the
parameter-driven model (i.e. state-space representation) and stacked MF-VAR. However, the mean is one
of the possible ways to aggregate high-frequency responses.
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common-frequency VAR is relevant not only over a short horizon, but also in a longer run.

Moreover, we find less uncertainty around the posterior median estimates, with credibility

intervals for MF-VAR much tighter than those reported in case of common-frequency

VAR. This finding is also supported by the evidence of Foroni and Marcellino (2016) for

a reduction in the uncertainty when relying on a mixed-frequency approach.32 To check

whether these results are driven by the prior mean of the high-frequency variable (i.e.

ρH = 0), we calculate the impulse responses by estimating the baseline MF-VAR and

CF-VAR using different values for the prior mean of the VIX. Figure 8 shows how the

aggregated weekly impulse responses of the business cycle variables from the MF-VAR and

CF-VAR are different in both the magnitude and the uncertainty around the estimates.

This difference does not depend on the size of the prior mean.

We document how the impulse responses are showing a “temporal aggregation bias”

providing a visual inspection of Figures 6-8. First, as also shown by Ghysels (2016) in

case of high-frequency shock, the first week response is more relevant than the one in the

last week, which seems to die out quickly (see Figure 6). Second, we note also how the

CF-VAR responses are different from those of the MF-VAR, even in longer horizons (see

Figures 7-8). This suggests how the “temporal aggregation bias” is an important aspect

to take into account when deciding to rely on a common or mixed-frequency model.

In the second high-frequency identification exercise, we consider the VIX at a daily

frequency. This variable is available in days and the aforementioned aggregation to a

weekly frequency is likely to lead to an additional “temporal aggregation bias” in our

analysis. The daily series of VIX is constructed such that each month contains 20 daily

observations (see Section 4.1). As in case of weekly frequency, the size of the shocks

occurring in each of the 20 days is equal to 5σ VIX shocks estimated over the period

1990M1-2019M12. In particular, in Figure 9 we report the posterior median estimates of

the daily impulse responses to VIX shocks obtained from the estimation of a MF-VAR(3)

fitted to the daily series of VIX and to the monthly macroeconomic variables.33 Figure 9

documents an interesting pattern that describes the evolution over time for each variable.

Similar to the results obtained by estimating the model using weekly observations on VIX,

32The authors study the identification of monetary policy shocks in US by estimating a MF-VAR fitted
to monthly and quarterly data. In particular, comparing results from a mixed-frequency model and a
common-frequency VAR, Foroni and Marcellino (2016) find a reduction in the uncertainty around the
estimates when using a mixed-frequency data sampling approach. Moreover, they find differences in the
magnitude of the responses, particularly striking for interest rates.

33Note that Figure 9 shows only the median responses of the macroeconomic variables to daily uncertainty
shocks. The set of daily impulse responses with the 68% and 90% credibility intervals are available upon
request.
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we find that the magnitude of responses of CPI, PCE, FFR and, to a lesser extent, IP is

larger in the first days of the month than that reported later in the month. In Figure 10, we

compare the aggregated daily impulse responses of the U.S. business cycle variables with

those computed by estimating a CF-VAR.34 In general, we still find less severe responses

to the uncertainty shock for the macroeconomic variables in case of MF-VAR (less than

half) than in case of common low-frequency VAR. The results are statistically significant

in almost all macroeconomic variables. The “temporal aggregation bias” remains valid

also when both the MF-VAR and the CF-VAR are estimated using different prior means

for the VIX, as shown in Figure 11. These results reveal a stronger evidence of “temporal

aggregation bias” than that found in case of weekly frequency, both in terms of magnitude

in the response (with differences also at longer horizons) and of uncertainty around the

estimates.

5.2 Robustness

This section describes a number of empirical exercises implemented to assess the robustness

of the results and the “temporal aggregation bias” produced by the baseline model.35 The

results are shown in Figures 12-18. Unless otherwise specified, in each figure, we report the

posterior median of the aggregated high-frequency impulse responses (from the MF-VAR)

(red line) with the 68% (red shading) and 90% (gray shading) credibility intervals, together

with the responses obtained from the estimation of a CF-VAR (blue lines).

Number of Lags. Figure 12 documents the aggregated impulse responses estimated

at a weekly frequency using either 6 (Panel a) or 12 lags (Panel b).36 The evidence of

“temporal aggregation bias” is also confirmed when increasing the lag length. In particular,

we find that while the responses of the MF-VAR are statistically significant over the whole

forecast horizon, the uncertainty around the estimates tends to become larger in the case

of CF-VAR.

Endogenous Variables. In Figure 13, we report the aggregated weekly impulse responses

obtained from a MF-VAR when the unemployment rate and the 10-year treasury constant

maturity rate are included in the set of endogenous variables. As can be seen from the

charts, we still find evidence of a “temporal aggregation bias” when including additional

macroeconomic variables. In particular, both the unemployment rate and the long-term

34The aggregated impulse responses are obtained by averaging out the daily responses.
35We show robustness checks for the baseline specification including weekly VIX. Only when we include

the COVID-19 period, we provide evidence with both weekly and daily frequencies.
36The use of lags equal to (or greater than) 12 is a common choice in a VAR fitted to monthly variables.
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interest rate also report a lower magnitude (almost half) in the impulse responses of the

MF-VAR (see Figure 13). Moreover, by introducing these two variables, we note how

the response of industrial production converges more quickly to zero than in the baseline

specification. Figure 14 shows the aggregated weekly responses when replacing FFR with

the shadow short rate à la Wu and Xia (2016). The empirical findings are still robust.

The response of the shadow short rate shows a “temporal aggregation bias” similar to the

one reported with FFR and 10-year treasury bill.

VIX ordered last. Figure 15 shows the aggregated weekly impulse responses of the U.S.

macroeconomic variables (included in the baseline specification) obtained by computing

the Cholesky decomposition of the reduced-form residuals covariance matrix with the VIX

ordered last in the vector of the endogenous variables. As shown by Figure 15, the results

are qualitatively and quantitatively similar to those described in Section 5.1 (i.e. with the

VIX ordered first).37

Including the COVID-19 period. We extend the sample including the period subse-

quent to the COVID-19 outbreak, repeating the estimation of the baseline model over

the sample 1990M1-2020M11. We identify the shock by relying on both weekly and daily

frequencies. As in the previous empirical exercises, the size of the shocks occurring in

each of the four weeks (or in each of the 20 days) is equal to 5σ VIX shocks estimated

over the period 1990M1-2020M11. Figure 16 reports the aggregated weekly responses. We

document the aggregation bias shown in the baseline model. It is interesting to note how

the response both of industrial production and of consumption shows a quick decrease

followed by an increase around period 5 and, after that, another less severe decrease.

Figures 17-18 provide evidence of the daily responses. In particular, we find interesting

results in case of higher frequency. For almost all macroeconomic variables, we document

how the responses reach their peak at the mid of month (around 10 days) (see Figure 17).

The aggregated daily responses (obtained from MF-VAR) still show the aggregation bias

as in the case of the baseline specification (see Figure 18). However, we need to consider

the criticisms about the inclusion of the period after March 2020 as a significant caveat

when reading these results. Lenza and Primiceri (2020) suggest modelling the change in

shock volatility in order to account for the exceptionally large macroeconomic variation

during the pandemic crisis. They propose to re-scale the standard deviation of the March

37The purpose of the empirical illustration is to allow researchers to understand the potentiality of a
novel high-frequency identification approach in an MF-VAR. A discussion about the identification strategy
and the position of the shock variable is beyond the aim of this paper. Here, in the robustness, we show
how the position of the shock variable does not change the potentiality of the new identification approach.
However, readers should refer to Carriero, Clark and Marcellino (2021) if they are interested to identify a
financial uncertainty shock, such as the VIX, to provide accurate empirical evidence for policy suggestions.
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shocks by an unknown parameter in April and May, too, with other unknown parameters,

as done in Giannone, Lenza and Primiceri (2015). We leave in our future research agenda

to explore this further issue. We also estimate the MF-VAR and the CF-VAR on different

samples documenting the same temporal aggregation bias.38

6 Concluding Remarks

We contribute to the literature on mixed-frequency regressions by introducing an innovative

Bayesian approach to identify high-frequency shocks. This methodology is inspired by

Götz et al. (2016) and Ghysels (2016) that suggest Bayesian techniques to improve the

estimation of models with different data sampling. A Normal-inverse Wishart prior is

imposed in estimating a MF-VAR by adding a set of auxiliary dummies, tailored to

take into account the mixed-frequency nature of the data. We show how the proposed

approach is able to recover the impulse responses to a high-frequency shock implied by

the true mixed-frequency DGP through a Monte Carlo experiment. We illustrate this new

methodology by identifying a financial uncertainty shock (VIX) on the U.S. business cycle.

When we estimate a CF-VAR instead of a MF-VAR, with weekly and daily frequencies, we

find a “temporal aggregation bias”. This finding is more pronounced in case the shock is

identified at a daily frequency. The mixed-frequency and common low-frequency responses

differ consistently across horizons. We extend our empirical investigation by including the

recent pandemic crisis induced by COVID-19. These results show an amplified “temporal

aggregation bias” providing an interesting policy interpretation. The mixed-frequency

approach suggests less severe recessionary effects on the macroeconomic variables, and we

can also accurately disentangle the responses along weeks and days.

38The two models are estimated on a sample excluding the observations from the recent Global Financial
Crisis onward. The “temporal aggregation bias” is still important and the responses are significantly
different between the MF-VAR and CF-VAR. Results are available upon request.
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Appendices

Appendix A. Multi-σ Shocks

In this appendix, we report the impulse responses of the U.S. business cycle variables

obtained from the estimation of the baseline MF-VAR(3) (whose results are reported

in Section 5.1) using different sizes of the VIX shock. Figure A.1 shows the posterior

median responses, respectively, to 1σ, 5σ, and 10σ VIX shocks estimated over the period

1999M1-2019M12.39

For all the macroeconomic variables, the red line (i.e. response to 5σ shock) is the same

as that reported in Figure 7. Since the impulse responses are simply re-scaled, the use of

different sizes of the VIX shock leads to a similar shape in the (negative) response profiles

of the U.S business cycle variables.

Appendix B. Convergence Diagnostics

In this appendix, we assess the convergence of the Gibbs sampler algorithm performed in

the estimation of the baseline MF-VAR(3) using both the weekly and the daily series of VIX

(see Section 5.1). In particular, following Primiceri (2005), we compute the autocorrelation

function of the retained draws (i.e. 5, 000 replications) for the MF-VAR coefficients (slope

coefficients and the intercepts) in B and for the elements entering the residual covariance

matrix Σ (see equations (1) and (5)). As reported in Primiceri (2005), low autocorrelation

of the draws increases the efficiency of the algorithm.

Figure B.1 shows the 20th order sample autocorrelation computed for the 200 MF-VAR

parameters (slope coefficients and intercepts) (upper panel) and for the 64 parameters

in the residual covariance matrix (lower panel), obtained from the estimation of the

MF-VAR(3) fitted to weekly VIX and monthly macroeconomic variables. As can be seen

from the charts, the autocorrelations remain below 0.1 (in absolute value) for both the

VAR parameters and the residual covariance matrix, suggesting that the retained draws

are almost independent.

Similar results are obtained when computing the autocorrelation functions for the parame-

ters obtained from the estimation of the MF-VAR(3) using the daily series of VIX (see

Figure B.2).

39It is important to note that, while 5σ is the size of the shock used in the empirical application (see
also Section 4.2), the choice of the other two magnitudes (i.e. 1σ and 10σ) is arbitrary.
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Thus, there is evidence of convergence of the Gibbs sampler algorithm in both the empirical

exercises (i.e. using either weekly or daily series of VIX).

Appendix C. Unitary shocks

In this section, we investigate whether the results discussed in Section 5.1 are driven by

differences in the size of the structural shocks between MF-VAR and CF-VAR.40 For this

reason, we repeat the empirical exercises using both weekly and daily VIX observations

(along with the monthly macro variables), and we rescale the impulse responses such that

the shocks hitting the MF-VAR and the CF-VAR have the same impact on the VIX. In

detail, the shock is normalized to a 3.5-point increase in the VIX (i.e. a one-standard

deviation VIX shock estimated using the CF-VAR). This increase happens in each of

the four weeks (or in each of the twenty days) in the case of MF-VAR and in the first

month in the case of CF-VAR. We focus on the aggregated responses obtained through

the estimation of the baseline weekly and daily MF-VAR(3).41 The impulse responses

obtained by estimating the MF-VAR with weekly observations of VIX are reported in

Figure C.1, while the responses in the case of daily VIX are shown in Figure C.2. As

can be seen from Figure C.1, the impulse responses to normalized shocks estimated with

the weekly MF-VAR and with the CF-VAR are qualitatively similar to those reported in

Figure 7 (5σ VIX shock). This finding suggests that the differences in the magnitude and

the uncertainty around the estimates between MF-VAR and CF-VAR are not driven by the

difference in the size of the shocks hitting the two models. Figure C.2 shows the impulse

responses to VIX shocks in the case of daily MF-VAR, where the shocks are normalized to

a 3.5-point increase in the VIX in all the twenty daily responses. As can be seen from the

charts, while there are differences in the magnitude of the responses between MF-VAR

and CF-VAR, these are less marked than those shown in Figure 10.

40It is important to note that in the baseline exercise, the size of the shock is equal to 5σ VIX shocks
identified over the full estimation sample.

41Additional results are available upon request.
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Figure 1: Impulse responses of the low-frequency variable to one standard deviation
high-frequency shock using simulated data.
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Notes. Monthly impulse responses of the low-frequency variable to 1σ high-frequency shocks, computed
over a 12-quarter forecast horizon. Each chart shows the impulse responses implied by the true Data
Generating Process (DGP) (black dashed line), the average across the 500 replications of the median
impulse responses obtained by estimating respectively a MF-VAR (red solid line) and a CF-VAR (blue
solid line). The differences between the impulse responses obtained from a MF-VAR and those from a
CF-VAR are also reported (green dashed line).
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Figure 2: Impulse responses of the low-frequency variable to a one unit high-frequency
shock using simulated data.
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Notes. Monthly impulse responses of the low-frequency variable to unitary high-frequency shocks,
computed over a 12-quarter forecast horizon. The size of the shocks occurring in each of three months is
normalized to a 1-point increase in the high-frequency variable. Each chart shows the impulse responses
implied by the true Data Generating Process (DGP) (black dashed line), the average across the 500
replications of the median impulse responses obtained by estimating respectively a MF-VAR (red solid
line) and a CF-VAR (blue solid line). The differences between the impulse responses obtained from a
MF-VAR and those from a CF-VAR are also reported (green dashed line). For comparison with the
MF-VAR results, the size of the shock is normalized to a 1-point increase in the aggregated high-frequency
variable.
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Figure 3: VIX (daily frequency). 1990M1-2020M11.
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Notes. The chart shows the VIX at a daily frequency over the period 1990M1-2020M11.

Figure 4: VIX (weekly frequency). 1990M1-2020M11.
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Notes. The chart shows the VIX at a weekly frequency over the period 1990M1-2020M11. The weekly
series of VIX is constructed by following the suggestions of Ferrara and Guérin (2018). In particular, the
daily observations on VIX are rearranged at a weekly frequency as follows. Given a number of traded
days within each month (Dt), the four weekly observations are computed by considering the days Dt − 15,
Dt − 10, Dt − 5, and Dt as observations for week 1, week 2, week 3, and week 4, respectively.
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Figure 5: Calibration of the size of the financial uncertainty shock.
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Notes. The chart shows the VIX at a daily frequency over the period 2019M10-2020M11. The vertical
red dashed lines correspond to the peak of the VIX observed on 16 March 2020 (the VIX is equal to 82.69)
and to the value of the VIX registered one month before, that is on 18 February 2020 (with a value equal
to 14.83). Information on the calibration of the size of the uncertainty shock is reported in Section 4.2.
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Figure 6: Weekly responses of the U.S. macroeconomic variables from the baseline MF-
VAR(3) estimated over 1990M1-2019M12.
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Notes. Impulse responses of the level of U.S. consumer price index (CPI), industrial production index
(IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in percentage
points, computed over a 36-month forecast horizon. Each row displays the response of the variable of
interest to shocks occurring in week 1, week 2, week 3, and week 4. The size of the shocks occurring in
each of the four weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. Each chart
shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals
obtained from the estimation of the MF-VAR(3) (with variables ordered as specified in equation (12)).
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Figure 7: Aggregated responses of U.S. business cycle variables to weekly financial
uncertainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in each of
the 4 weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart, the
impulse responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart
shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals
obtained from the estimation of the MF-VAR(3) (see equation (12)). The median impulse response from
a common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue
dashed line) are also reported.
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Figure 9: Responses of U.S. business cycle variables to daily financial uncertainty shocks
from the baseline MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Median responses (in levels) of consumer price index (CPI), industrial production index (IP),
real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in percentage
points, computed over a 36-month forecast horizon. The impulse responses are obtained by estimating the
baseline MF-VAR(3) using daily series (i.e. 20 observations in each month) of VIX. The size of the shocks
occurring in each of the 20 days is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12.
Each chart displays the daily responses (x-axis), the 36-month forecast horizon (y-axis), and the magnitude
of the responses (z-axis).
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Figure 10: Aggregated responses of U.S. business cycle variables to daily financial uncer-
tainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial production
index (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in each
of the 20 days is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the daily responses. Each
chart shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility
intervals obtained from the estimation of the baseline MF-VAR(3). The median impulse response from a
common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue
dashed lines) are also reported.
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Figure 12: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from the baseline MF-VAR estimated over 1990M1-2019M12. Different lags.
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(a) Panel a. Mixed-Frequency VAR and Common-Frequency VAR with 6 lags.
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(b) Panel b. Mixed-Frequency VAR and Common-Frequency VAR with 12 lags.

Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds rate
(FFR) in percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring
in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the weekly responses. Each
chart shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility
intervals obtained from the estimation of MF-VAR(6) (panel a) and MF-VAR(12) (panel b) (see equation
(12)). The median impulse response from a common-frequency VAR (blue line with asterisk) and the
corresponding 90% credibility intervals (blue dashed line) are also reported.
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Figure 13: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2019M12. Extended set of variables.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using a Cholesky
decomposition of the reduced-form residual covariance matrix (see Section 4.2) with variables ordered
as follows: weekly VIX, consumer price index (CPI), industrial production index (IP), real personal
consumption expenditures (PCE), unemployment rate (UNEMP.RATE), effective federal funds rate (FFR),
and 10-year treasury constant maturity rate (10YR-TB). The size of the shocks occurring in each of the 4
weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart, the impulse
responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart shows the
median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained
from the estimation of a MF-VAR(3). The median impulse response from a common-frequency VAR (blue
line with asterisk) and the corresponding 90% credibility intervals (blue dashed lines) are also reported.
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Figure 14: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2019M12. Shadow short rate.

CPI

5 10 15 20 25 30 35
-1.5

-1

-0.5

0

%
 p

oi
nt

s

IP

5 10 15 20 25 30 35

-3

-2

-1

0

%
 p

oi
nt

s

PCE

5 10 15 20 25 30 35
-1.5

-1

-0.5

0

%
 p

oi
nt

s

UNEMP.RATE

5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8
%

 p
oi

nt
s

SHADOW RATE

5 10 15 20 25 30 35

-1

-0.75

-0.5

-0.25

0

%
 p

oi
nt

s

Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using a Cholesky
decomposition of the reduced-form residual covariance matrix (see Section 4.2) with variables ordered
as follows: weekly VIX, consumer price index (CPI), industrial production index (IP), real personal
consumption expenditures (PCE), unemployment rate (UNEMP.RATE), and shadow short rate (SHADOW
RATE). The size of the shocks occurring in each of the 4 weeks is equal to 5σ VIX shocks estimated over
the period 1990M1-2019M12. In each chart, the impulse responses from the MF-VAR are aggregated
by averaging out the weekly responses. Each chart shows the median response (red line) with 68% (red
shading) and 90% (grey shading) credibility intervals obtained from the estimation of a MF-VAR(3). The
median impulse response from a common-frequency VAR (blue line with asterisk) and the corresponding
90% credibility intervals (blue dashed lines) are also reported.
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Figure 15: Responses of U.S. business cycle variables to weekly financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2019M12. VIX ordered last.
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Notes. Aggregated weekly impulse responses (in levels) of the selected macroeconomic variables in
percentage points, computed over a 36-month forecast horizon. The shocks are identified using a Cholesky
decomposition of the reduced-form residual covariance matrix with variables ordered as follows: consumer
price index (CPI), industrial production index (IP), real personal consumption expenditures (PCE),
effective federal funds rate (FFR), and weekly VIX. The size of the shocks occurring in each of the 4
weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2019M12. In each chart, the impulse
responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart shows the
median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained
from the estimation of a MF-VAR(3). The median impulse response from a common-frequency VAR (blue
line with asterisk) and the corresponding 90% credibility intervals (blue dashed lines) are also reported.
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Figure 16: Aggregated responses of U.S. business cycle variables to weekly financial
uncertainty shocks from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production index (IP), real personal consumption expenditures (PCE), and effective federal funds rate
(FFR) in percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring
in each of the 4 weeks is equal to 5σ VIX shocks estimated over the period 1990M1-2020M11. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the weekly responses. Each chart
shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals
obtained from the estimation of the MF-VAR(3) (see equation (12)). The median impulse response from
a common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue
dashed lines) are also reported.
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Figure 17: Responses of U.S. business cycle variables to daily financial uncertainty shocks
from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Median responses (in levels) of consumer price index (CPI), industrial production index (IP),
real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in percentage
points, computed over a 36-month forecast horizon. The impulse responses are obtained by estimating the
baseline MF-VAR(3) using daily series (i.e. 20 observations in each month) of VIX. The size of the shocks
occurring in each of the 20 days is equal to 5σ VIX shocks estimated over the period 1990M1-2020M11.
Each chart displays the daily responses (x-axis), the 36-month forecast horizon (y-axis), and the magnitude
of the responses (z-axis).
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Figure 18: Aggregated responses of U.S. business cycle variables to daily financial uncer-
tainty shocks from a MF-VAR(3) estimated over 1990M1-2020M11.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial production
index (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in each
of the 20 days is equal to 5σ VIX shocks estimated over the period 1990M1-2020M11. In each chart,
the impulse responses from the MF-VAR are aggregated by averaging out the daily responses. Each
chart shows the median response (red line) with 68% (red shading) and 90% (grey shading) credibility
intervals obtained from the estimation of the baseline MF-VAR(3). The median impulse response from a
common-frequency VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue
dashed lines) are also reported.
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Figure A.1: Aggregated median responses of U.S. business cycle variables to weekly
financial uncertainty shocks from a MF-VAR(3) estimated over 1990M1-2019M12. Multi-σ
shocks.
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Notes. Posterior median of the aggregated weekly impulse responses (in levels) of consumer price index
(CPI), industrial production index (IP), real personal consumption expenditures (PCE), and effective
federal funds rate (FFR) in percentage points, computed over a 36-month forecast horizon. The sizes of
the shocks occurring in each of the 4 weeks are calibrated to be 1σ (blue line), 5σ (red line), and 10σ
(black line) VIX shocks estimated over the period 1990M1-2019M12. In each chart, the impulse responses
from the MF-VAR are aggregated by averaging out the weekly responses.
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Figure B.1: 20th order sample autocorrelation for VAR coefficients and residual covariance
matrix from a MF-VAR(3) using weekly VIX.

20 40 60 80 100 120 140 160 180 200
Parameters

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

20
-t

h 
or

de
r 

sa
m

pl
e 

au
to

co
rr

el
at

io
n

VAR parameters (intercepts and coefficients lagged variables)

10 20 30 40 50 60
Parameters

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

20
-t

h 
or

de
r 

sa
m

pl
e 

au
to

co
rr

el
at

io
n

VAR covariance

Notes. 20th order sample autocorrelation of the retained draws (i.e. 5, 000). The autocorrelation functions
are computed for the 200 MF-VAR parameters (slope coefficients and intercepts) (upper panel) and for
the 64 parameters in the residual covariance matrix (lower panel), obtained from the estimation of the
MF-VAR(3) fitted to weekly VIX and monthly macroeconomic variables (see equations (1) and (5)).
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Figure B.2: 20th order sample autocorrelation for VAR coefficients and residual covariance
matrix from a MF-VAR(3) using daily VIX.
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Notes. 20th order sample autocorrelation of the retained draws (i.e. 5, 000). The autocorrelation functions
are computed for the 1752 MF-VAR parameters (slope coefficients and intercepts) (upper panel) and for
the 576 parameters in the residual covariance matrix (lower panel), obtained from the estimation of the
MF-VAR(3) fitted to daily VIX and monthly macroeconomic variables (see equations (1) and (5)).
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Figure C.1: Aggregated responses of U.S. business cycle variables to weekly financial uncer-
tainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12. Normalized
shocks.
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Notes. Aggregated weekly impulse responses (in levels) of consumer price index (CPI), industrial
production (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR)
in percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in
each of the 4 weeks is normalized to a 3.5-point increase in the VIX. In each chart, the impulse responses
from the MF-VAR are aggregated by averaging out the weekly responses. Each chart shows the median
response (red line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained from the
estimation of the MF-VAR(3) (see equation (12)). The median impulse response from a common-frequency
VAR (blue line with asterisk) and the corresponding 90% credibility intervals (blue dashed line) are also
reported. For comparison with the MF-VAR results, the size of the shock is normalized to a 3.5-point
increase in the aggregated VIX.
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Figure C.2: Aggregated responses of U.S. business cycle variables to daily financial uncer-
tainty shocks from the baseline MF-VAR(3) estimated over 1990M1-2019M12. Normalized
shocks.
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Notes. Aggregated daily impulse responses (in levels) of consumer price index (CPI), industrial production
index (IP), real personal consumption expenditures (PCE), and effective federal funds rate (FFR) in
percentage points, computed over a 36-month forecast horizon. The size of the shocks occurring in each of
the 20 days is normalized to a 3.5-point increase in the VIX. In each chart, the impulse responses from the
MF-VAR are aggregated by averaging out the daily responses. Each chart shows the median response (red
line) with 68% (red shading) and 90% (grey shading) credibility intervals obtained from the estimation
of the baseline MF-VAR(3). The median impulse response from a common-frequency VAR (blue line
with asterisk) and the corresponding 90% credibility intervals (blue dashed lines) are also reported. For
comparison with the MF-VAR results, the size of the shock is normalized to a 3.5-point increase in the
aggregated VIX.
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