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Abstract

In this work we introduce a unit averaging procedure to efficiently recover
unit-specific parameters in a heterogeneous panel model. The procedure consists
in estimating the parameter of a given unit using a weighted average of all the
unit-specific parameter estimators in the panel. The weights of the average are
determined by minimizing an MSE criterion. We analyze the properties of the
minimum MSE unit averaging estimator in a local heterogeneity framework inspired
by the literature on frequentist model averaging. The analysis of the estimator covers
both the cases in which the cross-sectional dimension of the panel is fixed and large.
In both cases we obtain the local asymptotic distribution of the minimum MSE unit
averaging estimators and of the associated weights. A GDP nowcasting application
for a panel of European countries showcases the benefits of the procedure.
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1 Introduction

Estimation of unit-specific parameters in panel data models with heterogeneous parameters

is a topic of active research in econometrics (Maddala, Trost, Li, and Joutz, 1997; Pesaran,
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Shin, and Smith, 1999; Wang, Zhang, and Paap, 2019; Liu, Moon, and Schorfheide,

2020). Estimation of unit-specific parameters is relevant, for instance, when interest lies

in constructing forecasts for the individual units in the panel (Baltagi, 2013; Zhang, Zou,

and Liang, 2014; Wang et al., 2019; Liu et al., 2020), which typically arises in the analysis

of international panels of macroeconomic time series (Marcellino, Stock, and Watson,

2003). Other unit-specific parameters of interest include individual slopes (Maddala et al.,

1997; Maddala, Li, and Srivastava, 2001; Wang et al., 2019) and long-run effects of a

change in a covariate (Pesaran and Smith, 1995; Pesaran et al., 1999).

There are three natural strategies for estimating unit-specific parameters (Baltagi,

Bresson, and Pirotte, 2008). The simplest approach consists in estimating each unit-

specific parameter from its individual time series. While this strategy typically leads to

approximately unbiased estimation, the resulting estimators suffer from large estimation

variability when the time dimension is small. In the second approach, an assumption of

parameter homogeneity is imposed and a common panel-wide estimator is used for all

unit-specific parameters. This strategy leads to small variability; however, it suffers from

large bias in the presence of heterogeneity. The third strategy is a compromise between

the first two. It combines pooled and individual approaches in the attempt to obtain an

estimator with favorable risk properties (Maddala et al., 2001; Wang et al., 2019; Liu et al.,

2020). This is appealing when the time dimension is moderate and there is a nontrivial

bias-variance trade-off between individual-specific and panel-wide estimation.

In this paper we propose a novel unit-specific compromise estimator that we call the

unit averaging estimator. The estimator is fairly general and is designed for possibly

nonlinear panel models estimated by M-estimation. We are concerned with the estimation

of a unit-specific “focus” parameter. Focus parameters considered include the examples

mentioned above as well as other smooth transformations of the unit-specific parameter

vector. The unit averaging estimator for the unit-specific focus parameter is then defined

as a weighted average of all the unit-specific focus parameter estimators in the panel. The
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weights of the average are chosen by minimizing a unit-specific MSE criterion. Specifically,

we introduce two MSE criteria that differ in whether the cross-sectional dimension of the

panel is treated as fixed (fixed-𝑁) or large (large-𝑁). The minimum MSE weights solve a

quadratic optimization problem that is straightforward to compute in both approaches.

We analyze the theoretical properties of the proposed unit averaging methodology.

The analysis is carried out using a local heterogeneity assumption, in which we assume

that individual coefficients are local in the time dimension to a common mean. This is

inspired by and builds upon the notion of local misspecification used in the frequentist

model averaging literature (Hjort and Claeskens, 2003; Claeskens and Hjort, 2008; Hansen,

2008). Local heterogeneity may be interpreted as a theoretical device to emulate panels

where the time dimension is moderate. In such a setting each unit carries information

about the other units in the panel and thus may improve estimation accuracy. Using the

local heterogeneity framework we derive the local asymptotic MSE of the unit averaging

estimator as well as estimators for this quantity. The minimum MSE weights minimize the

local asymptotic MSE estimators. As we show, these minimum MSE weights minimize an

appropriately defined notion of the asymptotic MSE contaminated by a noise component

that we characterize explicitly. Finally, we obtain the limiting distribution of the minimum

MSE unit averaging estimator similarly to Liu (2015).

In a simulation study, we assess the finite sample properties of the proposed methodol-

ogy. We compare our unit averaging estimator against the unit-specific estimator, the

mean group estimator as well as alternative unit averaging estimators based on AIC

weights, BIC weights and Mallows weights (Buckland, Burnham, and Augustin, 1997;

Hansen, 2007; Wan, Zhang, and Zou, 2010). The simulation study shows that the proposed

methodology performs favorably relative to these benchmarks. The improvement in MSE

is strongest for those units whose individual parameter is sufficiently distant from both

the mean of the distribution and the endpoints of the support.

An application to GDP nowcasting for a panel of European countries showcases the
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methodology (Marcellino and Schumacher, 2010; Schumacher, 2016). GDP prediction is a

natural application of the unit averaging methodology since the literature documents both

evidence of heterogeneity between countries and the benefits of pooling data (Garcia-Ferrer,

Highfield, Palm, and Zellner, 1987; Hoogstrate, Palm, and Pfann, 2000; Marcellino et al.,

2003). We find that unit averaging using minimum MSE weights improves prediction

accuracy and that the magnitude of the improvement is larger for shorter panels.

This paper is related to different strands of the literature. First, it is related to the

literature on frequentist model averaging. Important contributions in this area include

Hjort and Claeskens (2003), Hansen (2007), Hansen (2008), Wan et al. (2010), Hansen and

Racine (2012), Liu (2015), and Gao, Zhang, Wang, and Zou (2016), among others. Gao

et al. (2016); Yin, Liu, and Lin (2021) deal with model averaging estimators specifically

tailored for panel models. The main difference with respect to these contributions is

that we focus on averaging different units with the same model whereas these papers

average different models. Second, this paper is related to the literature on unit-specific

estimation using compromise estimators. Important contributions in this area include

Zhang et al. (2014), Wang et al. (2019), Issler and Lima (2009) and Liu et al. (2020). The

main difference with respect to these contributions is that we focus on a setting where

the time dimension is moderate (as opposed to either large or small) and that we do not

require strict exogeneity. Moreover, the existing literature largely focuses on linear models

(Baltagi et al., 2008; Wang et al., 2019) whereas our framework allows for a large class of

nonlinear models.

The rest of the paper is structured as follows. Section 2 introduces the unit averaging

methodology. Section 3 studies the theoretical properties of the procedure. Section 4

contains the simulation study. Section 5 contains the empirical application. Concluding

remarks follow in section 6. All proofs are collected in the proof appendix. Additional

results are collected in the online appendix, available from the authors’ websites.

4



2 Methodology

We introduce our unit averaging methodology within the framework of a fairly general

class of panel data models with heterogeneous parameters. Let {𝑧𝑖 𝑡} with 𝑖 = 1, . . . , 𝑁

and 𝑡 = 1, . . . , 𝑇 denote a panel where 𝑧𝑖 𝑡 denotes a random vector of observations taking

values in 𝒵 ⊂ R𝑑. For each unit in the panel, we define the unit-specific parameter

𝜃𝑖 ∈ Θ ⊂ R𝑝 as

𝜃𝑖 = argmax
𝜃∈Θ

E

(︃
1

𝑇

𝑇∑︁
𝑡=1

𝑚(𝜃, 𝑧𝑖 𝑡)

)︃
,

where 𝑚 : Θ×𝒵 → R denotes a smooth criterion function.

Our interest lies in estimating the unit-specific “focus” parameter 𝜇(𝜃𝑖) for a fixed

unit 𝑖 with minimal MSE, where 𝜇 : Θ → R denotes a smooth function (similarly to the

setup in Hjort and Claeskens (2003)). For example, 𝜇(𝜃𝑖) may denote a component of 𝜃𝑖,

the conditional mean of a response variable given the covariates, or the long-run effect of a

covariate. To simplify exposition and without loss of generality, we focus on the problem

of estimating the focus parameter 𝜇(𝜃1) for unit 1. In this paper we consider the case

in which the focus function 𝜇 takes values in R. It is straightforward to generalize the

framework to a focus function taking values in R𝑞 for some 𝑞 > 1.

To estimate 𝜇(𝜃1) we consider the class of unit averaging estimators given by

𝜇̂(𝑤) =
𝑁∑︁
𝑖=1

𝑤𝑖𝜇(𝜃𝑖) , (1)

where 𝑤 = (𝑤𝑖) is a 𝑁 -vector such that 𝑤𝑖 ≥ 0 for all 𝑖 and
∑︀𝑁

𝑖=1𝑤𝑖 = 1, and 𝜃𝑖 for

𝑖 = 1, . . . ,𝑁 is the unit-specific estimator given by

𝜃𝑖 = argmax
𝜃∈Θ

1

𝑇

𝑇∑︁
𝑡=1

𝑚(𝜃, 𝑧𝑖 𝑡) . (2)

The class of estimators in (1) is fairly broad and contains a number of important special

cases. It includes the individual estimator of unit 1 𝜇̂1 = 𝜇(𝜃1) and the mean group
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estimator 𝜇̂𝑀𝐺 = 𝑁−1
∑︀𝑁

𝑖=1 𝜇(𝜃𝑖).
1 Other important special cases include estimators

based on smooth AIC/BIC weights (Buckland et al., 1997) and Mallows weights (Hansen,

2007; Wan et al., 2010), as well as a Stein-type estimator (Maddala et al., 1997) given by

𝜇Stein = 𝜆𝜇(𝜃1) + (1− 𝜆)𝑁−1
∑︀𝑁

𝑖=1 𝜇(𝜃𝑖) where 𝜆 ∈ [0,1].

The class of estimators in (1) may be motivated by the following representation for

the individual parameters 𝜃𝑖. Assume that 𝜃𝑖 = 𝜃0 +𝜂𝑖 holds for each 𝑖 = 1, . . . ,𝑁 , where

𝜃0 is a common mean component and 𝜂𝑖 is a zero-mean random idiosyncratic component.

In such a setup all units in the panel carry information on 𝜃0, and so all units may be

useful for estimating 𝜃1 = 𝜃0 + 𝜂1. The vector of weights 𝑤 controls the balance between

bias and variance of estimator (1). Assigning a large weight to unit 1 leads to low bias

but may also lead to excessive variability. Alternatively, assigning large weights to units

other than unit 1 induces bias but may substantially reduce variability. Such a trade-off is

particularly relevant in a moderate-𝑇 setting, defined as the range of values of 𝑇 for which

the variability of the individual estimators 𝜃𝑖 is of the same order of magnitude as 𝜂𝑖.

In this work we introduce a weighting scheme called minimum-MSE unit averaging

weights. These weights seek to strike a balance between the bias and variance of the unit

averaging estimator. We introduce two unit averaging schemes which differ in whether

the cross-sectional dimension 𝑁 is treated as fixed or large. In both regimes the weights

are chosen by minimizing an estimator of the local asymptotic approximation to the MSE

(LA-MSE) of the unit averaging estimator. The LA-MSE provides an approximation to

the moderate-𝑇 MSE of the unit averaging estimator and is justified in detail in the next

section.

In the fixed-𝑁 regime we average over a fixed finite collection of 𝑁̄ units. In this

regime we allow all units to have a non-negligible weight. Let 𝑤𝑁̄ = (𝑤𝑁̄
𝑖 ) be a 𝑁̄ -vector

such that 𝑤𝑁̄
𝑖 ≥ 0 for all 𝑖 and

∑︀𝑁̄
𝑖=1𝑤

𝑁̄
𝑖 = 1. The fixed-𝑁 LA-MSE estimator associated

1An alternative mean group estimation approach consists in setting 𝜃𝑀𝐺 = 𝑁−1
∑︀𝑁

𝑖=1 𝜃𝑖 and defining

𝜇̂𝑀𝐺 = 𝜇(𝜃𝑀𝐺). As follows from lemma 1 and theorem 2, the two approaches have identical asymptotic
properties in our setup. The two definitions are also numerically identical if 𝜇 is affine.
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with 𝑤𝑁̄ is given by

̂𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤
𝑁̄) =

𝑁̄∑︁
𝑖=1

𝑁̄∑︁
𝑗=1

𝑤𝑁̄
𝑖 [Ψ̂𝑁̄ ]𝑖 𝑗𝑤

𝑁̄
𝑗 , (3)

where Ψ̂𝑁̄ ∈ R𝑁̄×𝑁̄ with entries [Ψ̂𝑁̄ ]𝑖 𝑖 = ∇𝜇(𝜃1)
′(𝑇 (𝜃𝑖 − 𝜃1)(𝜃𝑖 − 𝜃1)

′ + 𝑉𝑖)∇𝜇(𝜃1) and

[Ψ̂𝑁 ]𝑖 𝑗 = ∇𝜇(𝜃1)
′𝑇 (𝜃𝑖 − 𝜃1)(𝜃𝑗 − 𝜃1)

′∇𝜇(𝜃1) when 𝑖 ̸= 𝑗, and 𝑉𝑖 is an estimator of

the asymptotic variance of 𝜃𝑖. We remark that ∇𝜇(𝜃1)
′𝑇 (𝜃𝑖 − 𝜃1)(𝜃𝑖 − 𝜃1)

′∇𝜇(𝜃1) and

∇𝜇(𝜃1)
′𝑉𝑖∇𝜇(𝜃1) are estimators of, respectively, the squared bias and variance of 𝜇(𝜃𝑖)

as estimators of 𝜇(𝜃1). The fixed-𝑁 minimum MSE weights are

𝑤̂𝑁̄ = argmin
𝑤∈Δ𝑁̄

̂𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤) , (4)

where Δ𝑁̄ = {𝑤 ∈ R𝑁̄ :
∑︀𝑁̄

𝑖=1𝑤𝑖 = 1, 𝑤𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁̄}.

In the large-𝑁 regime we average an arbitrarily large collection of units, and we model

𝑁 as diverging to infinity. When 𝑁 is large, some units are mechanically constrained to

have a small weight since weights are non-negative and sum to unity. Accordingly, in

our framework we partition units into two sets, a set of 𝑁̄ ≥ 0 unrestricted units that

are allowed to have a non-negligible weight, and a set of remaining 𝑁 − 𝑁̄ units that

are restricted to have a negligible weight in the limit. In the large-𝑁 regime we show

that the LA-MSE is determined by the weights assigned to the 𝑁̄ unrestricted units.

Let 𝑤𝑁,∞ = (𝑤𝑁,∞
𝑖 ) be an 𝑁 -vector and assume, without loss of generality, that the

weights of the unrestricted units are placed in the first 𝑁̄ positions. The vector of weights

𝑤𝑁,∞ is such that 𝑤𝑁,∞
𝑖 ≥ 0 for all 𝑖,

∑︀𝑁
𝑖=1 𝑤

𝑁,∞
𝑖 = 1, and the weights of the restricted

units (𝑖 > 𝑁̄) are given by 𝑤𝑁,∞
𝑖 = (1 −

∑︀𝑁̄
𝑗=1𝑤

𝑁,∞
𝑖 )/(𝑁 − 𝑁̄). We remark that other

weighting schemes are allowed for the restricted units. However the negligibility restriction

implies that any admissible sequence of weights leads to the same LA-MSE and thus, for

simplicity, we opt for equal weights here. Let 𝑤𝑁̄,∞ = (𝑤𝑁̄,∞
𝑖 ) be a 𝑁̄ -vector such that
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𝑤𝑁̄,∞
𝑖 = 𝑤𝑁,∞

𝑖 for 𝑖 = 1, . . . ,𝑁̄ . The large-𝑁 LA-MSE estimator associated with 𝑤𝑁,∞ is

controlled by 𝑤𝑁̄,∞ and given by

̂𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞) (5)

=
𝑁̄∑︁
𝑖=1

𝑁̄∑︁
𝑗=1

𝑤𝑁̄,∞
𝑖 [Ψ̂𝑁̄ ]𝑖 𝑗𝑤

𝑁̄,∞
𝑗 +

[︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃(︃
√
𝑇∇𝜇(𝜃1)

′

(︃
𝜃1 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

)︃)︃

−2
𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖 ∇𝜇(𝜃1)

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁]︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃(︃
√
𝑇∇𝜇(𝜃1)

′

(︃
𝜃1 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

)︃)︃
.

Notice that the restricted units may have an impact on the bias but not the variance

of the unit averaging estimator. The large-𝑁 minimum MSE weights 𝑤̂𝑁,∞ = (𝑤̂𝑁,∞
𝑖 ) are

given by

𝑤̂𝑁,∞
𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑤̂𝑁̄,∞

𝑖 𝑖 ≤ 𝑁̄(︁
1−

∑︀𝑁̄
𝑗=1 𝑤

𝑁̄,∞
𝑗

)︁
(𝑁 − 𝑁̄)−1 𝑖 > 𝑁̄

(6)

where

𝑤̂𝑁̄,∞ = argmin
𝑤∈Δ̃𝑁̄

̂𝐿𝐴-𝑀𝑆𝐸∞(𝑤)

with Δ̃𝑁̄ = {𝑤 ∈ R𝑁̄ : 𝑤𝑖 ≥ 0,
∑︀𝑁

𝑖=1 𝑤𝑖 ≤ 1}. It is important to emphasize that the

optimization problem defining 𝑤̂𝑁̄,∞ is 𝑁̄ -dimensional and can be solved by standard

quadratic programming methods.

Two remarks are in order before we proceed. First, the fixed- and large-𝑁 regimes

cover the cases of practical importance.2 If each unit is potentially important and we do

not wish to restrict any weight, then we can apply the fixed-𝑁 approximation. The fixed-𝑁

regime is agnostic in this sense. Alternatively, if some units can only make an individually

negligible contribution to the average, we can apply the large-𝑁 regime. Using the large-𝑁

approximation requires choosing 𝑁̄ . In principle, 𝑁̄ can be chosen arbitrarily, though

choosing 𝑁̄ > 𝑁 effectively results in a fixed-𝑁 approximation. An appropriate choice

2We also derive LA-MSE in case 𝑁 is arbitrarily large and an infinite number of units have a non-zero
weight in the limit. However, this case appears to be of limited interest in practice, and we do not study
properties of the data-dependent weights in this case.
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of 𝑁̄ might be implied by economic logic. For example, in a macroeconomic application

using country-level data, we might order the countries so that immediate neighbors of the

country of interest, its important trading partners, and the large economies of the world

are placed in the first 𝑁̄ positions. The other countries are judged to contribute relatively

little individually, and are placed in positions beyond 𝑁̄ .

Second, the fixed- and large-𝑁 LA-MSE estimators have the appealing property

of being applicable both when the amount of time series information in the panel is

moderate or large. When the amount of time series information is moderate, the LA-

MSE approximates the infeasible population problem of minimizing the MSE, along with

uncertainty about individual parameters (see the discussion following theorem 3). When

the amount of time series information is large, the bias term in the MSE dominates,

and the unit averaging estimator based on the minimum MSE weights converges to the

individual estimator 𝜇(𝜃1).

3 Theory

3.1 Assumptions

Our focus is on a moderate-𝑇 setting. To emulate it and the trade-off between unit-specific

and panel-wide information, we introduce what we call the local heterogeneity assumption.

This is inspired and is analogous to the local misspecification assumption used in the

frequentist model averaging literature (Hjort and Claeskens, 2003; Hansen, 2016).

A.1 (Local Heterogeneity). The sequence of unit-specific parameters {𝜃𝑖} is such that

𝜃𝑖 = 𝜃0 +
𝜂𝑖√
𝑇

,

where {𝜂𝑖} is a sequence of i.i.d. random vectors such that E𝜂(𝜂𝑖) = 0 and E𝜂 ‖𝜂𝑖‖12 < ∞.3

3Here and below ‖·‖ means the 2-norm, unless specifically labeled otherwise.
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All analysis is done conditional on 𝜎(𝜂1,𝜂2, . . . ) and all distributional statements below

are conditional on 𝜎(𝜂1,𝜂2, . . . ) unless specifically stated otherwise.

A number of remarks on this assumption are in order. First, the scaling by
√
𝑇

allows us to approximate a moderate-𝑇 setting using asymptotic theory techniques by

creating a nontrivial asymptotic bias-variance trade-off. Intuitively, as 𝑇 becomes larger,

the signal strength becomes proportionally weaker so that the amount of information in

each time series remains constant. This is a standard technique to approximate finite-

sample properties of model selection and averaging estimators (see, for example, Hjort and

Claeskens (2003); Liu (2015); Yin et al. (2021)). Second, since the focus of the analysis

lies in recovering individual effects, all probability statements are implicitly conditional

on 𝜎(𝜂1,𝜂2, . . . ). Such a conditioning is natural, given our focus on estimating 𝜇(𝜃1) and

typical when individual parameters are of interest (Vaida and Blanchard, 2005; Donohue,

Overholser, Xu, and Vaida, 2011; Zhang et al., 2014). Importantly, all the results we

establish are shown to hold with 𝜂-probability 1, that is, for almost any realization of

{𝜂𝑖}.

In this paper we assume that the cross-sectional units are independent.

A.2 (Independence). For each 𝑖, 𝑗1, . . . , 𝑗𝑘, 𝑘 such that 𝑖 ̸= 𝑗1, . . . , 𝑗𝑘 {{𝑧𝑖 𝑡}∞𝑡=0,𝜂𝑖} and

{{{𝑧𝑗1 𝑡}∞𝑡=0,𝜂𝑗1}, . . . , {{𝑧𝑗𝑘 𝑡}∞𝑡=0,𝜂𝑗𝑘}} are independent.

The unit-specific estimators are assumed to satisfy a number of regularity conditions.

A.3 (Individual Objective Function).

(i) The parameter space Θ is convex.

(ii) The function 𝑚(𝜃, 𝑧) : Θ×𝒵 → R is twice continuously differentiable in 𝜃 for each

value of 𝑧. 𝑚(𝜃, 𝑧) is measurable as a function of 𝑧 for every value of 𝜃.

(iii) There exists a positive finite constant 𝑇0 (which does not depend on 𝑖) such that for

all 𝑖 and 𝑇 > 𝑇0 it holds that the unit-specific estimator satisfies 𝜃𝑖 ∈ int(Θ) a.s..
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(iv) The gradient of the unit-specific objective function satisfies

1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡) ⇒ 𝑁(0,Σ𝑖) ,

where Σ𝑖 = lim𝑇→∞ 𝑇−1
∑︀𝑇

𝑡=1 E
[︂(︁∑︀𝑇

𝑡=1∇𝑚(𝜃𝑖,𝑧𝑖 𝑡)
)︁(︁∑︀𝑇

𝑡=1∇𝑚(𝜃𝑖,𝑧𝑖 𝑡)
)︁′]︂

.

(v) There exist a positive finite constant 𝐶∇𝑚 (which does not depend on 𝑖 or 𝑇 ) such

that, for all 𝑖 and all 𝑇 > 𝑇0 and for some 𝛿 ∈ (0,1), it holds that

E

⃦⃦⃦⃦
⃦ 1√

𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2(1+𝛿)

≤ 𝐶∇𝑚 .

(vi) The Hessian of the unit-specific objective function satisfies

sup
𝜃∈[𝜃𝑖,𝜃𝑖]

⃦⃦⃦⃦
⃦ 1𝑇

𝑇∑︁
𝑡=1

∇2𝑚(𝜃, 𝑧𝑖 𝑡)−𝐻𝑖

⃦⃦⃦⃦
⃦ 𝑝−→ 0 ,

where 𝐻𝑖 = lim𝑇→∞ E(𝑇−1
∑︀𝑇

𝑡=1∇2𝑚(𝜃𝑖, 𝑧𝑖 𝑡)).

(vii) Let 𝐷𝑖 𝑇 = sup𝜃∈[𝜃𝑖,𝜃𝑖]

⃦⃦⃦(︁
𝑇−1

∑︀𝑇
𝑡=1 ∇2𝑚(𝜃, 𝑧𝑖 𝑡)

)︁
𝐻−1

𝑖 − 𝐼
⃦⃦⃦
∞
. 𝐷𝑖 𝑇 < 1 a.s. for all 𝑖

and all 𝑇 > 𝑇0. There exists a positive constant 𝐶∇2𝑚 such that, for all 𝑖 and all

𝑇 > 𝑇0 and for 𝛿 as in (v), it holds that

E

[︃(︂
𝐷𝑖 𝑇

1−𝐷𝑖 𝑇

)︂ 2(2+𝛿)(1+𝛿)
𝛿

]︃
≤ 𝐶∇2𝑚.

(viii) The matrices Σ𝑖 and 𝐻𝑖 satisfy 𝜆Σ ≤ 𝜆min(Σ𝑖) ≤ 𝜆max(Σ𝑖) ≤ 𝜆Σ and 𝜆𝐻 ≤

𝜆min(𝐻𝑖) ≤ 𝜆max(𝐻𝑖) ≤ 𝜆𝐻 where 𝜆Σ, 𝜆Σ, 𝜆𝐻 and 𝜆𝐻 are positive constants that

do not depend on 𝑖.

(ix) Let 𝑉𝑖 = 𝐻−1
𝑖 Σ𝑖𝐻

−1
𝑖 . Then, there is a sequence of estimators {𝑉𝑖} such that, for

all 𝑖, 𝑉𝑖 is consistent for 𝑉𝑖, and, for all 𝑇 > 𝑇0, 𝜆min(𝑉𝑖) > 0 holds almost surely.

Assumption A.3 requires the unit-specific estimators to be consistent, asymptotically

normal and to satisfy a number of regularity conditions. We remark that this assumption

11



allows for a fair amount of dependence and heterogeneity in the unit-specific observations.4

Assumption A.3(𝑖𝑖𝑖) states that the unit-specific estimator lies in the interior of the

parameter space almost surely. If the problem is linear or defined by a convex smooth

objective function and continuous covariates, the parameter space can be taken to be

R𝑝, and the condition holds automatically. Assumption A.3(𝑖𝑣) is standard in the M-

estimation literature, it requires the gradient of the objective function evaluated at 𝜃𝑖 to

satisfy a CLT. Assumption A.3(𝑣) is a moment condition on the gradient of the objective

function. In an i.i.d. setting such an assumption translates into a moment condition on

the individual gradients. More generally, this would be implied by appropriate moment

and dependence assumption on the individual gradients. Assumption A.3(𝑣𝑖) is also

standard in the M-estimation literature; it requires the Hessian to satisfy a uniform law

of large numbers. Assumption A.3(𝑣𝑖𝑖) effectively requires that the sample Hessian is

nonsingular in a small enough neighborhood of 𝜃𝑖. In a scalar problem, (𝑣𝑖𝑖) restricts the

possible range of the second derivative as 𝜃 ranges over a shrinking interval around 𝜃𝑖. In

addition, (𝑣𝑖𝑖) places an assumption on the moments of deviation from the population

limit Hessian. In case of linear regression, the sample and population Hessians do not

depend on the slope parameters and (𝑣𝑖𝑖) is an assumption on moments of covariates.

Assumption A.3(𝑣𝑖𝑖𝑖) restricts the spectrum of the matrices Σ𝑖 and 𝐻𝑖. In particular, it

implies a uniform restriction on the asymptotic variance 𝑉𝑖 of the individual estimators.

Assumption A.3(𝑖𝑥) states that there exists a sequence of nonsingular estimators {𝑉𝑖}

for the asymptotic variance-covariance matrix of the individual estimator. We remark

that Assumptions A.3(𝑖𝑖𝑖) and (𝑣𝑖𝑖) state that the sequence of unit-specific estimation

problems satisfies approprite uniformity conditions. Such conditions allow us to distill

the key arguments relevant to our averaging theory and, in a sense, should be intrepreted

as a simplifying approximation. In general, (𝑖𝑖𝑖) and (𝑣𝑖𝑖) would hold with probability

approaching one for each unit. In this case all our results would still hold, though under

4A classic reference on M-estimation for dependent and heterogeneous data is the book by Pötscher
and Prucha (1997).
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appropriate rate conditions on (𝑁, 𝑇 ) and trimming to ensure certain well-behavedness

of individual estimators. We further note that assumptions (𝑖𝑖𝑖) and (𝑣𝑖𝑖) might hold

in practice in certain special cases regardless (such as linear or nonlinear models with a

convex and smooth objective function and continuous covariates).

A.4 (Unit-specific Bias). There exists a constant 𝐶𝐵𝑖𝑎𝑠, which does not depend on 𝑖, such

that
⃦⃦⃦
E(𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
1
≤ 𝐶𝐵𝑖𝑎𝑠/𝑇 for all 𝑇 > 𝑇0.

Assumption A.4 requires that the bias of individual estimators for their own parameters

is bounded uniformly in 𝑖. The order of the bias is consistent with the results obtained

by Rilstone, Srivastava, and Ullah (1996) and Bao and Ullah (2007). The higher order

terms can be subsumed into the 𝑇−1 term for a sufficiently large 𝐶𝐵𝑖𝑎𝑠.
5 Assumption A.4

is satisfied for linear models under assumption A.3. For nonlinear models it is sufficient

that for all 𝑠 and 𝑖 it holds that 𝑇 E(‖∇𝑠𝑚(𝜃𝑖, 𝑧𝑖 𝑡)‖2) ≤ 𝐶𝑠 < ∞ (Rilstone et al., 1996;

Bao and Ullah, 2007; Yang, 2015).

A.5 (Focus Parameter). The focus function 𝜇 : Θ → R is twice-differentiable. There

exists a constant 𝐶∇𝜇 such that for all 𝜃 ∈ Θ it holds that ‖∇𝜇(𝜃)‖ < 𝐶∇𝜇. There exists a

constant 𝐶∇2𝜇 such that for all 𝜃 ∈ Θ the largest and smallest eigenvalues of the Hessian

∇2𝜇(𝜃) are bounded in absolute value by 𝐶∇2𝜇. Let 𝑑0 = ∇𝜇(𝜃0) be the gradient of 𝜇 at

𝜃0. Then 𝑑0 ̸= 0.

Assumption A.5 lays out mild smoothness assumptions on 𝜇. For simplicity we assume

that 𝜇 is a scalar focus parameter. However, all our results can be extended to the case in

which 𝜇 is a vector focus parameter.

5Explicitly including terms of order −3/2 and higher does not change the analysis, as long as all the
constants do not depend on 𝑖
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3.2 Asymptotic Properties of the Minimum MSE Unit Averag-

ing Estimator

We begin with an auxiliary lemma that establishes the distribution of the unit-specific

estimators in the local asymptotic framework of assumption A.1.

Lemma 1. Assume that assumptions A.1–A.5 are satisfied. Let the unit-specific estimators

𝜃𝑖 for 𝑖 = 1,2, . . . be defined as in eq. (2). Then

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
⇒ 𝑁(𝜂𝑖 − 𝜂1,𝑉𝑖) =: 𝑍𝑖 ,

√
𝑇
(︁
𝜇(𝜃𝑖)− 𝜇(𝜃1)

)︁
⇒ 𝑁(𝑑′

0 (𝜂𝑖 − 𝜂1) ,𝑑
′
0𝑉𝑖𝑑0) =: Λ𝑖

holds as 𝑇 → ∞ for 𝑖 = 1,2, . . .. Convergence is joint (that is, with respect to the product

topology), and all 𝑍𝑖 and Λ𝑖 are independent across 𝑖.

Lemma 1 characterizes the local asymptotic distribution of 𝜇(𝜃𝑖). In particular, the

mean and the variance of the limit distribution provide a local asymptotic approximation

to the exact moderate-𝑇 bias and variance of 𝜇(𝜃𝑖) as an estimator of 𝜇(𝜃1). By adding

together the square mean and the variance of the limit distribution, we obtain a local

asymptotic approximation to the MSE (LA-MSE) of each 𝜇(𝜃𝑖).

We now introduce a local asymptotic approximation to the MSE (LA-MSE) of the

unit averaging estimator (1). Let {𝑤𝑁} = {𝑤1,𝑤2, . . .} be a (non-random) sequence

where 𝑤𝑘 is a 𝑘-vector of weights. Suppose that 𝑤𝑁 converges to some 𝑤 ∈ R∞ in the

sense defined below. Consider the unit averaging estimator 𝜇̂(𝑤𝑁 ) associated with such a

sequence. The following theorem derives lim𝑁,𝑇→∞ 𝑇 ×𝑀𝑆𝐸 (𝜇̂(𝑤𝑁)) where 𝑁, 𝑇 → ∞

jointly. This is a standard notion of risk in a local asymptotic framework (see e.g. Hansen

(2016)). A remark on notation is in order before we proceed. In what follows we treat

𝑤𝑁 = (𝑤𝑖𝑁) as an element both in R𝑁 and in R∞ (with coordinates 𝑖 > 𝑁 restricted to

zero). This duality will not cause any confusion.
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Theorem 1. Let assumptions A.1–A.5 be satisfied. Let {𝑤𝑁} be such that (𝑖) for

each 𝑁 , 𝑤𝑁 is measurable with respect to 𝜎(𝜂1, . . . ,𝜂𝑁), (𝑖𝑖) for each 𝑁 , 𝑤𝑖𝑁 ≥ 0

for all 𝑖,
∑︀𝑁

𝑖=1𝑤𝑖𝑁 = 1, 𝑤𝑗 𝑁 = 0 for 𝑗 > 𝑁 , (𝑖𝑖𝑖) sup𝑖|𝑤𝑖𝑁 − 𝑤𝑖| = 𝑜(𝑁−1/2) where

𝑤 = (𝑤𝑖) ∈ R∞ is a vector such that 𝑤𝑖 ≥ 0 and
∑︀∞

𝑖=1𝑤𝑖 ≤ 1. Let 𝑇0 be as in assumption

A.3.

Then (𝑖)
∑︀∞

𝑖=1𝑤𝑖𝑑
′
0𝜂𝑖 and

∑︀∞
𝑖=1 𝑤

2
𝑖𝑑

′
0𝑉𝑖𝑑0 exist; (𝑖𝑖) for any 𝑁 and 𝑇 > 𝑇0 the MSE

of the averaging estimator is finite; and (𝑖𝑖𝑖) as 𝑁, 𝑇 → ∞ jointly it holds that

𝑇 ×𝑀𝑆𝐸 (𝜇̂(𝑤𝑁)) →

(︃
∞∑︁
𝑖=1

𝑤𝑖𝑑
′
0𝜂𝑖 − 𝑑′

0𝜂1

)︃2

+
∞∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0.

Two remarks on theorem 1 are in order before we proceed. First, the theorem provides

a local asymptotic approximation to the MSE of the averaging estimator (LA-MSE). It

highlights the bias-variance trade-off associated with the choice of the weights. The two

extremes of the trade-off correspond to the individual estimator of unit 1 𝜇(𝜃1) and the

mean group estimator 𝜇̂𝑀𝐺. The individual estimator of unit 1 is obtained by setting

𝑤1𝑁 = 1 for all 𝑁 . It is straightforward to see that 𝜇(𝜃1) is asymptotically unbiased

and that its LA-MSE is equal to 𝑑′
0𝑉𝑖𝑑0, which is its asymptotic variance. The mean

group estimator is obtained by setting 𝑤𝑖𝑁 = (𝑁)−1 I𝑖≤𝑁 for 𝑖 = 1, . . . ,𝑁 for all 𝑁 . 𝜇̂𝑀𝐺

has zero asymptotic variance and its LA-MSE is equal to (𝑑′
0𝜂1)

2.6 Second, the theorem

requires that the sequence {𝑤𝑁} of weight vectors converge uniformly to some limit 𝑤.7

In addition, convergence must occur at a rate faster than 𝑁−1/2. Notice that this condition

is trivially satisfied by the mean group estimator. We also emphasize that the sum of the

limit 𝑤 can be less than one.

In order to study the properties of the two averaging regimes introduced in section

2, we provide a refined version of theorem 1. It imposes a stronger uniform convergence

6This corresponds to the estimator of Issler and Lima (2009). In a genuine large-𝑇 setting it is feasible
to estimate a bias of such of type and correct for it. However, in a moderate-𝑇 setting this quantity
cannot be consistently estimated.

7The assumption is needed to ensure convergence of the bias and the variance series and to prevent a
“sliding hump” given by weighting structures like 𝑤𝑖𝑁 = I𝑖=𝑁 .
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condition on the weights that reflects the assumptions of the large-𝑁 regime.

Theorem 2. Assume that assumptions A.1–A.5 are satisfied. Let {𝑤𝑁} be such that (𝑖)

for each 𝑁 , 𝑤𝑁 is measurable w.r.t. 𝜎(𝜂1, . . . ,𝜂𝑁), (𝑖𝑖) for each 𝑁 , 𝑤𝑖𝑁 ≥ 0 for all 𝑖,∑︀𝑁
𝑖=1 𝑤𝑖𝑁 = 1, 𝑤𝑗 𝑁 = 0 for 𝑗 > 𝑁 , (𝑖𝑖𝑖) for some 𝑁̄ ≥ 0 it holds that sup𝑖>𝑁̄ 𝑤𝑖𝑁 =

𝑜(𝑁−1/2), and (𝑖𝑣) {𝑤𝑖𝑁}𝑁̄𝑖=1 → {𝑤𝑖}𝑁̄𝑖=1.

Then as 𝑁, 𝑇 → ∞ jointly it holds that

√
𝑇 (𝜇̂(𝑤𝑁)− 𝜇(𝜃1)) ⇒ 𝑁

(︃
𝑁̄∑︁
𝑖=1

𝑤𝑖𝑑
′
0𝜂𝑖 − 𝑑′

0𝜂1,

𝑁̄∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0

)︃
.

Theorem 2 shows that the unit averaging estimator is asymptotically normal. The

mean and variance are given by the weighted sums of biases and variances, respectively.

The theorem can be applied in both the fixed-𝑁 and large-𝑁 regimes introduced in

Section 2. In the fixed-𝑁 regime, suppose only the first 𝑁̄ < ∞ units are being averaged

(some of them potentially with zero weights). Then we set 𝑤𝑖𝑁 = 0 for all 𝑁 and

𝑖 > 𝑁̄ , and condition (𝑖𝑖𝑖) holds automatically. The condition that 𝑁 → ∞ becomes

superfluous. Conditions (𝑖𝑖)-(𝑖𝑣) reduce to the requirement that 𝑤𝑁 converge (pointwise)

to a vector of weights 𝑤, where for 𝑖 > 𝑁̄ the weights satisfy 𝑤𝑖𝑁 = 𝑤𝑖 = 0 and∑︀𝑁̄
𝑖=1 𝑤𝑖𝑁 =

∑︀𝑁̄
𝑖=1 𝑤𝑖 = 1. The limit distribution is normal with mean

∑︀𝑁̄
𝑖=1 𝑤𝑖𝑑

′
1(𝜂𝑖 − 𝜂1)

and variance
∑︀𝑁̄

𝑖=1 𝑤
2
𝑖𝑑

′
1𝑉𝑖𝑑1. In the large-𝑁 regime, order the units with potentially

large weights to be the first 𝑁̄ units where 𝑁̄ is chosen in advance. Theorem 2 shows

that when 𝑁 is large, the units beyond 𝑁̄ contribute no variance and approximate bias

−
(︁
1−

∑︀𝑁̄
𝑖=1𝑤𝑖

)︁
𝑑′
0𝜂1.

Importantly, the limit distribution of the averaging estimator does not depend on

the actual shape of the weight vector beyond 𝑁̄ . The limit distribution is controlled by

finitely many weights, 𝑁̄ , and the total weight mass placed beyond 𝑁̄ . The weights in

𝑤𝑁 beyond 𝑁̄ can display strong variations in orders of magnitude, with some weights

decaying like 𝑁−1/2−𝜀, and some at a faster rate. The total weight mass placed beyond
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𝑁̄ in the limit is also not restricted, and may approach 1, like in the case of the mean

group estimator. As an application of this observation, if condition (iii) holds with 𝑁̄ = 0

√
𝑇 (𝜇̂(𝑤𝑁)− 𝜇(𝜃1))

𝑝−→ −𝑑′
0𝜂1 for any weight vector sequence satisfying this condition.

Using theorem 2, we can obtain expressions for the population LA-MSE of the unit

averaging estimator (1) in the fixed-𝑁 and large-𝑁 regimes. Consider the fixed-𝑁 case in

which we average 𝑁̄ units. Let 𝑤𝑁̄ be a 𝑁̄ -vector, the limit vector of theorem 2. In the

fixed-𝑁 regime the population LA-MSE is

𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤
𝑁̄) =

𝑁̄∑︁
𝑖=1

𝑁̄∑︁
𝑗=1

𝑤𝑁̄
𝑖 [Ψ𝑁̄ ]𝑖 𝑗𝑤

𝑁̄
𝑗 ,

where Ψ𝑁̄ is an 𝑁̄ × 𝑁̄ matrix with elements [Ψ𝑁̄ ]𝑖 𝑖 = 𝑑′
0

(︀
(𝜂𝑖 − 𝜂1) (𝜂𝑖 − 𝜂1)

′ + 𝑉𝑖

)︀
𝑑0

and [Ψ𝑁̄ ]𝑖 𝑗 = 𝑑′
0(𝜂𝑖 − 𝜂1) (𝜂𝑗 − 𝜂1)

′ 𝑑0 when 𝑖 ̸= 𝑗. Now consider the large-𝑁 regime.

As theorems 1 and 2 show, the LA-MSE is controlled by a 𝑁̄ -vector 𝑤𝑁̄,∞ such that

𝑤𝑁̄,∞
𝑖 ≥ 0 for all 𝑖 and

∑︀𝑁̄
𝑖=1𝑤

𝑁̄,∞
𝑖 ≤ 1. In the large-𝑁 regime, the population LA-MSE is

𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞) =
𝑁̄∑︁
𝑖=1

𝑁̄∑︁
𝑗=1

𝑤𝑁̄,∞
𝑖 [Ψ𝑁̄ ]𝑖 𝑗𝑤

𝑁̄,∞
𝑗

+

(︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃
𝑑′
0𝜂1 − 2

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖 𝑑′

0(𝜂𝑖 − 𝜂1)

)︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃
𝑑′
0𝜂1 .

The quantities ̂𝐿𝐴-𝑀𝑆𝐸𝑁̄ and ̂𝐿𝐴-𝑀𝑆𝐸∞ used to define the minimum MSE weights

introduced in Section 2 are estimators of the population LA-MSE given above. In the

rest of the section we focus on the properties of these estimators as well as the optimal

weights (4) and (6) associated with them.

We begin by noting that in our framework the population LA-MSE cannot be con-

sistently estimated. Under local heterogeneity the idiosyncratic components 𝜂𝑖 cannot

be consistently estimated (Hjort and Claeskens, 2003). Instead, following Hjort and

Claeskens (2003), we form ̂𝐿𝐴-𝑀𝑆𝐸𝑁̄ and ̂𝐿𝐴-𝑀𝑆𝐸∞ by plugging in asymptotically

unbiased estimators for 𝜂𝑖 − 𝜂1 and 𝜂1. Such estimators are provided by
√
𝑇 (𝜃𝑖 − 𝜃) and
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√
𝑇 (𝜃1 −𝑁−1

∑︀𝑁
𝑖=1 𝜃𝑖), respectively, as the following lemma establishes.

Lemma 2. Let assumptions A.1-A.5 hold. Then as 𝑁, 𝑇 → ∞ jointly, it holds that

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
⇒ 𝑁 (𝜂𝑖 − 𝜂1,𝑉𝑖 + 𝑉1) = 𝑍𝑖 −𝑍1,

√
𝑇

(︃
𝜃1 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

)︃
⇒ 𝑁(𝜂1,𝑉1) = 𝑍1 + 𝜂1.

Convergence is joint for all 𝑖.

We remark that the matrix Ψ̂𝑁̄ of equations (3) and (5) is a biased estimator

of Ψ𝑁̄ . Such a bias ensures that ̂𝐿𝐴-𝑀𝑆𝐸 is nonnegative for all admissible weight

vectors. An asymptotically unbiased estimator instead would have diagonal elements

Ψ̃𝑖 𝑖 = 𝑑′
1

(︂
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁(︁
𝜃𝑖 − 𝜃1

)︁′
−
(︁
𝑉𝑖 + 𝑉1

)︁)︂
𝑑1 and off-diagonal elements Ψ̃𝑖 𝑗 =

𝑑′
1

(︂
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁(︁
𝜃𝑗 − 𝜃1

)︁′
− 𝑉1

)︂
𝑑1 where 𝑑1 = ∇𝜇

(︁
𝜃1

)︁
. However, this can easily fail

to be positive definite, as it involves a difference of positive definite matrices. This would

lead to the undesirable possibility of obtaining negative estimates of the LA-MSE.8

The following two theorems establish the properties of our LA-MSE estimators and

the associated minimum MSE weights (4) and (6). The theorem also characterizes the

asymptotic distribution of the minimum MSE unit averaging estimator 𝜇̂(𝑤̂𝑁̄) in this

regime. First, we state a result for the fixed-𝑁 regime. Recall that Δ𝑁̄ = {𝑤 ∈ R𝑁̄ :∑︀𝑁̄
𝑖=1 𝑤𝑖 = 1, 𝑤𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁̄}.

Theorem 3 (Fixed-𝑁 Minimum MSE Unit Averaging). Let assumptions A.1-A.5 hold.

(i) For any 𝑤𝑁̄ ∈ Δ𝑁̄ it holds that ̂𝐿𝐴-𝑀𝑆𝐸𝑁̄ (𝑤
𝑁̄ ) ⇒ 𝐿𝐴-𝑀𝑆𝐸𝑁̄ (𝑤

𝑁̄ ) := 𝑤𝑁̄ ′
Ψ𝑁̄𝑤

𝑁̄

as 𝑇 → ∞, where Ψ𝑁̄ is an 𝑁̄×𝑁̄ matrix with elements [Ψ𝑁̄ ]𝑖 𝑗 = 𝑑′
0((𝑍𝑖−𝑍1)(𝑍𝑖−

𝑍1)
′ + 𝑉𝑖)𝑑0 when 𝑖 = 𝑗 and 𝑑′

0((𝑍𝑖 −𝑍1)(𝑍𝑗 −𝑍1)
′)𝑑0 when 𝑖 ≠ 𝑗; and 𝑍𝑖 is as

in Lemma 1.

8An additional argument in favor of focusing on Ψ̂𝑁̄ is given by Liu (2015) who examines the behavior

of both Ψ̂𝑁̄ and Ψ̃𝑁̄ in the context of model averaging. Liu (2015) finds that Ψ̂𝑁̄ leads to superior
performance of resulting weights.
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(ii) As 𝑇 → ∞, the minimum MSE weights satisfy

𝑤̂𝑁̄ = argmin
𝑤𝑁̄∈Δ𝑁̄

̂𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤
𝑁̄) ⇒ 𝑤𝑁̄ = argmin

𝑤𝑁̄∈Δ𝑁̄

𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤
𝑁̄).

(iii) As 𝑇 → ∞, for Λ𝑖 of lemma 1, the minimum MSE unit averaging estimator satisfies

√
𝑇
(︁
𝜇̂(𝑤̂𝑁̄)− 𝜇(𝜃1)

)︁
⇒

𝑁̄∑︁
𝑖=1

𝑤𝑁̄
𝑖 Λ𝑖.

A number of remarks on theorem 3 are in order. First, 𝐿𝐴-𝑀𝑆𝐸𝑁̄ plays the same

role to ̂𝐿𝐴-𝑀𝑆𝐸𝑁̄ as 𝑍𝑖 does to
√
𝑇 (𝜃𝑖 − 𝜃1) in lemma 1. 𝐿𝐴-𝑀𝑆𝐸𝑁̄ uses a local

approximation to express ̂𝐿𝐴-𝑀𝑆𝐸𝑁̄ in terms of the components of the MSE and the

approximate distribution of the individual estimators. We can see that 𝐿𝐴-𝑀𝑆𝐸𝑁̄ is

composed of the population LA-MSE, a bias term, and a noise component. In fact, entries

of the matrix Ψ𝑁̄ may be expressed as

[Ψ𝑁̄ ]𝑖 𝑖 = [Ψ𝑁̄ ]𝑖 𝑖 + 𝑑′
0(𝑉1 + 𝑉𝑖)𝑑0 + 𝑑′

0𝑒𝑖 𝑖𝑑0 ,

[Ψ𝑁̄ ]𝑖 𝑗 = [Ψ𝑁̄ ]𝑖 𝑗 + 𝑑′
0𝑉1𝑑0 + 𝑑′

0𝑒𝑖 𝑗𝑑0, 𝑖 ̸= 𝑗 ,

where 𝑒𝑖 𝑗 = (𝑍𝑖 − 𝑍1)(𝑍𝑗 − 𝑍1)
′ − E ((𝑍𝑖 −𝑍1)(𝑍𝑗 −𝑍1)

′). The noise terms 𝑒𝑖 𝑗 may

be interpreted as the result of the fact that in a moderate-𝑇 setting there is limited

information about the idiosyncratic components 𝜂𝑖. These terms are mean zero and

independent conditional on unit 1. The bias terms guarantee that Ψ𝑁̄ is positive definite

and arise as a consequence of using the biased positive definite estimator Ψ̂𝑁̄ . The bias

can be split into two components. The 𝑑′
0𝑉1𝑑0 is common for all elements of Ψ𝑁̄ and does

not affect the solution of the MSE minimization problem. The second component 𝑑′
0𝑉𝑖𝑑0

only affects the diagonal of Ψ𝑁̄ by inflating the variance associated to each unit by the

variance of the corresponding individual estimator. This component does not modify the

ordering of the estimators in terms of their variances. If all the estimators were unbiased,
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optimal weights would be inversely proportional to individual variances, and this resulting

ordering of the weights would be preserved.

Second, the fixed-𝑁 minimum MSE unit averaging estimator has a nonstandard

asymptotic distribution in the local heterogeneity framework. Assertion 3 of theorem

3 shows that the limit distribution is a randomly weighted sum of independent normal

random variables. In the online appendix, we show how to construct confidence intervals

based on this result.

Third, minimizing ̂𝐿𝐴-𝑀𝑆𝐸𝑁 is natural even in a non-local setting where we drop

assumption A.1 and allow the amount of information in each time series to grow as 𝑇 → ∞.

For all 𝑖 such that 𝜃𝑖 ̸= 𝜃1, the bias estimators
√
𝑇 (𝜃𝑖−𝜃1) will diverge, while all variance

terms remain bounded. Then the procedure will place zero weight asymptotically on all

such units 𝑖 and on the tail term. The minimum MSE weights will only use those units that

share the same 𝜃1. In particular, if the distribution of 𝜂 is continuous, asymptotically the

procedure will use only information from unit 1, and the difference between the averaging

estimator with minimum MSE weights and the individual estimator will converge to zero

in probability. In this case the averaging estimator is asymptotically normal with mean

zero and variance 𝑑′
0𝑉1𝑑0. Such a result has a parallel in fixed parameter asymptotics for

model averaging. As Fang, Yuan, and Tian (2022) show in a recent paper, the weight

assigned to the true (or least wrong) model tends to one as sample size increases.

The following result establishes an analogous result for the minimum MSE weights (6)

in the large-𝑁 regime. Recall that Δ̃𝑁̄ = {𝑤 ∈ R𝑁̄ : 𝑤𝑖 ≥ 0,
∑︀𝑁

𝑖=1𝑤𝑖 ≤ 1}.

Theorem 4 (Large-𝑁 Minimum MSE Unit Averaging). Let assumptions A.1-A.5 hold.

(i) For any 𝑤𝑁̄,∞ ∈ Δ̃𝑁̄ it holds that ̂𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞) ⇒ 𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞) as

𝑁, 𝑇 → ∞ jointly where

𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞) = 𝑤𝑁̄,∞′
Ψ𝑁̄𝑤

𝑁̄,∞ +

[︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃
𝑑′
0 (𝜂1 +𝑍1)
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− 2
𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖 𝑑′

0 (𝑍𝑖 −𝑍1)

]︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃
𝑑′
0 (𝜂1 +𝑍1) .

(ii) As 𝑁, 𝑇 → ∞, the minimum MSE weights satisfy

𝑤̂𝑁̄,∞ = argmin
𝑤∈Δ̃𝑁̄

̂𝐿𝐴-𝑀𝑆𝐸∞(𝑤) ⇒ 𝑤𝑁̄,∞ = argmin
𝑤∈Δ̃𝑁̄

𝐿𝐴-𝑀𝑆𝐸∞(𝑤).

(iii) Let 𝑣𝑁−𝑁̄ = (𝑣𝑁̄ 𝑁 , . . . , 𝑣𝑁 𝑁 ) be a (𝑁 − 𝑁̄)-vector such that sup𝑖 𝑣𝑖𝑁−𝑁̄ = 𝑜(𝑁−1/2),

𝑣𝑖𝑁−𝑁̄ ≥ 0, for each 𝑁 it holds that
∑︀𝑁

𝑖=𝑁−𝑁̄ 𝑣𝑖𝑁−𝑁̄ = 1. Then as 𝑁, 𝑇 → ∞ jointly

√
𝑇

⎛⎝ 𝑁̄∑︁
𝑖=1

𝑤̂𝑁̄,∞
𝑖 𝜇

(︁
𝜃𝑖

)︁
+

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤̂𝑁̄,∞
𝑖

)︃
𝑁∑︁

𝑗=𝑁−𝑁̄

𝑣𝑗 𝑁−𝑁̄𝜇(𝜃𝑗)− 𝜇(𝜃1)

⎞⎠
⇒

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖 Λ𝑖 −

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃
𝑑′
0𝜂1. (7)

Observe that the estimator in equation (7) is a valid averaging estimator, as the weights

sum to unity by construction. The exact way 𝑣𝑁 is picked does not matter, as long as the

decay condition holds. All admissible choices lead to the same limit. In particular, we

may pick equal weights 𝑣𝑖𝑁 = 1/(𝑁 − 𝑁̄), as we do in eq. (6).

4 Simulation Study

We study the finite sample performance of our minimum MSE unit averaging methodology

via a simulation exercise. We consider a model similar to the one we use in our empirical

application – a linear dynamic heterogeneous panel model defined as

𝑦𝑖 𝑡 = 𝛽𝑖𝑥𝑖 𝑡 + 𝜆𝑖𝑦𝑖 𝑡−1 + 𝑢𝑖 𝑡 , 𝜀𝑖 𝑡
𝑖.𝑖.𝑑.∼ 𝑁(0, 𝜎2

𝑖 ) ,
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where we assume E(𝜀𝑖 𝑡|𝑦𝑖 𝑡−1, 𝑥𝑖 𝑡) = 0. The prediction error 𝜀𝑖 𝑡 is cross-sectionally

heteroskedastic, with variance 𝜎2
𝑖 drawn independently from a standard exponential

distribution. The exogenous variable 𝑥𝑖 𝑡 is independently drawn from from a standard

normal distribution. The initial conditions for 𝑦𝑖 0 are independently drawn from a normal

distribution with mean zero and variance (1+𝜎2
𝑖 )/(1−𝜆2

𝑖 ) to ensure that {𝑦𝑖𝑡}𝑡 is covariance

stationary. The heterogeneous parameter 𝜃𝑖 = (𝛽𝑖,𝜆𝑖)
′ is specified as 𝛽𝑖 = 1 + 𝜂𝑖 𝛽/

√
𝑇

and 𝜆𝑖 = 𝜂𝑖 𝜆/
√
𝑇 . The sequences of idiosyncratic components {𝜂𝑖, 𝛽} and {𝜂𝑖 𝜆} are

independently drawn from, respectively, a standard normal distribution and a uniform

distribution with support [−4,4]. We simulate panels with a cross-sectional dimension 𝑁

of 10, 25, and 50 units and a time dimension 𝑇 of 60 periods. We remark that 𝑇 = 60

matches the time dimension of the estimation sample in the empirical application. As

𝑇 = 60, the support of 𝜆𝑖 is approximately [−0.5, 0.5].

We consider two focus parameters of interest: 𝜆1 and the forecast of 𝑦1𝑇+1 given by

the conditional mean E(𝑦1𝑇+1|𝑦1𝑇 , 𝑥1𝑇 = 1) = 𝜆1𝑦1𝑇 + 𝛽1.
910 The minimum MSE unit

averaging estimators corresponding to these focus parameters are used for estimation. We

consider weights based on both the fixed-𝑁 and large-𝑁 regime. In the large-𝑁 regime

we consider weights based on the choices 𝑁̄ = 10 and 𝑁̄ = 20.11 The performance of the

minimum MSE unit averaging estimator is benchmarked against a number of alternative

approaches. We consider the individual estimators of unit 1, the mean group estimator,

as well as the unit averaging estimator based on AIC/BIC weights (Buckland et al., 1997)

and MMA weights (Hansen, 2007; Wan et al., 2010). Note that AIC and BIC generate

the same weights, since each unit has the same number of coefficients.12 Similarly, the

MMA weights reduce to minimal BIC model selection.

Figure 1 summarizes the main results of the simulation study based on 2500 replications.

9The value of 𝑦1𝑇 is determined in each sample by the dynamic process governing 𝑦.
10In the online appendix, we also report results for estimating 𝛽1 and the long-run effect 𝛽1/(1− 𝜆1).
11When the panel cross-sectional dimension is 𝑁 = 10 all three approximations are identical.
12More formally, our weights effectively correspond to conditional AIC weights (Vaida and Blanchard,

2005) where we treat the random slopes as fixed parameters of interest. See also Vaida and Blanchard
(2005); Donohue et al. (2011); Zhang et al. (2014)
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Figure 1: MSE performance of the unit averaging estimator relative to the individual
estimator. The focus parameters are the autoregressive parameter 𝜆1 and conditional
mean (forecast). 𝑇 = 60, 𝑁 = 10, 25, 50

We report performance of different averaging strategies in terms of MSE relative to the

individual estimator for a range of values of 𝜆1. As the distribution of 𝜆1 is symmetric,

we report performance for half of the support of 𝜆1. In each plot, we plot the MSE of

different averaging estimators relative to the MSE of the individual estimator of unit 1. A

value larger than 1 indicates that the individual estimator is more efficient. The minimum

MSE unit averaging estimator performs favorably throughout most of the parameter space.

Large-𝑁 approximations work better for 𝜆1 closer to E(𝜆1) = 0. However, for larger

values of 𝜆1 the flexibility of the fixed-𝑁 regime is an advantage, as it can freely choose

units most similar to unit 1. None of the averaging estimators dominate the other. As

expected, the mean group estimator performs very well close to the mean of 𝜆1, but bias

starts to dominate as 𝜆1 is increased. AIC weights offers a risk profile somewhat similar

to that of the MG estimator for values closer mean of 𝜆1. As 𝜆1 becomes larger, AIC

moves towards the individual estimator. As noted above, MMA is effectively minimal
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BIC model selection in the context of unit averaging. MMA almost always selects unit 1,

and correspondingly MMA does not offer improvements over the individual estimator.

5 Empirical Application

We illustrate our methodology with a pseudo-real time nowcasting exercise for quarterly

GDP for a panel of European countries. GDP prediction is a natural application of our

unit averaging methodology. There is evidence of considerable heterogeneity between

countries, yet at the same time pooling the data at least partially improves prediction

accuracy (Garcia-Ferrer et al., 1987; Hoogstrate et al., 2000; Marcellino et al., 2003).

The design of our application follows standard practices in the nowcasting literature

(Marcellino and Schumacher, 2010; Schumacher, 2016). The literature on nowcasting is

vast and we do not to cover it here. We refer to Bańbura, Giannone, Modugno, and

Reichlin (2013) for a survey.

We use quarterly GDP data from 1995Q1 to 2019Q4 for 12 European countries: the

11 founding Eurozone economies and the UK. We enrich our dataset with a set of 162

monthly GDP predictors for each country. The set of predictors include both real, price,

and survey data. Table OA.1 in the online appendix contains the complete list of variables

and descriptions.13 All non-survey data is available from Eurostat whereas the survey data

is available from the DG ECFIN. We use final data releases incorporating all revisions,

making our study a pseudo-real time one.

Our empirical design takes into account both the delays in publication of monthly

data (“ragged-edge problem”) and the impact of timing on the information set available

(“vintages” of data). First, the predictor variables are typically released with different

delays after the end of the corresponding month, which is known as the “ragged-edge”

problem (Wallis, 1986).14 We adopt a stylized release calendar of bimonthly releases

13Not all variables are available for all countries at a given time. This only impacts the precision in
estimating country-specific factors.

14For example, industrial production data is released 6 weeks after the end of the month, while survey
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to account for this (table OA.1 in the online appendix lists the release delay for all

variables). Second, as the quarter goes by, more data becomes available.15 Each possible

position in time determines a data “vintage”. We assume that a month has 4 weeks; in

accordance with our release calendar, we nowcast every two weeks starting from the first

day of the quarter at −12 weeks (relative to the quarter end) until +4 weeks after the

end of the quarter (GDP is released at +6 weeks). Formally, let 𝑡 index months. Then

𝑣 = −3,−5/2,−2, . . . , 1/2,+1 is a fractional value that describes the monthly position

(or vintage) relative to the end of the quarter, in increments of two weeks.16

We nowcast GDP in quarter 3𝑡 using all information available at time 3𝑡+𝑣, separately

for each value of 𝑣 ∈ {−3,−5/2, . . . ,+1}. As we have a large number of predictors

available at monthly frequency, we opt for factor unrestricted MIDAS (U-MIDAS) (Foroni,

Marcellino, and Schumacher, 2015). Given 𝑣, for each country we estimate monthly factors

𝑓𝑖 𝑡 with 𝑓𝑖 𝑡|𝑣 for all 𝑡 = 1, . . . , ⌊𝑇 + 𝑣⌋ using the full dataset available at 𝑇 + 𝑣.17 The

GDP is modeled as

𝑦𝑖 3𝑡 = 𝛼𝑖|𝑣 +
11∑︁
𝑘=0

𝛽𝑖 𝑘|𝑣𝑓𝑖 ⌊3𝑡+𝑣−𝑘⌋|𝑣 + 𝜆𝑖|𝑣𝑦𝑖 3(𝑡−1) + 𝜀𝑖 3𝑡|𝑣,

where 𝑦𝑖 3𝑡 is GDP of country 𝑖 in quarter 3𝑡 and 𝜀𝑖 3𝑡|𝑣 is the prediction error. The country

factors estimates 𝑓𝑖 𝑡|𝑣 are extracted from the large set of predictor variables using the

EM-PCA method (Stock and Watson, 1999). If GDP of quarter 3(𝑡− 1) is not available

at moment 𝑣, we use 𝑦𝑖 3(𝑡−2) instead.
18 We use only one factor for prediction following

data is released at the end of the month without delay.
15For example, nowcasting Q4 GDP can be done at any moment between October 1 when no data on

Q4 is available yet up to the middle of the following February, when GDP data for Q4 is released. The
amount of data available increases monotonically between these two dates.

16For example, if 𝑣 = 0, nowcasting uses all information that is available at the end of quarter 3𝑡. If
𝑣 = +1, nowcasting uses all the data available +4 weeks after the end of quarter 3𝑡, the last weekly
position we consider. Each step of −1/2 corresponds to stepping back 2 weeks until 𝑣 = −3 corresponds
to the position of −12 weeks.

17For example, suppose we wish to nowcast Q4 GDP. If 𝑣 = 1, we estimate factors up to January of
the following year using information available at the end of January. If 𝑣 = 1/2, we estimate factors up
to December using all the information available in the middle of January.

18Quarterly GDP is released six weeks after the end of the relevant quarter, which corresponds to
𝑣 = −3/2. For 𝑣 = −3,−5/2,−2, we use 𝑦𝑖 3(𝑡−2) in place of 𝑦𝑖 3(𝑡−1).
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Marcellino and Schumacher (2010) and we include the lag of GDP following Clements

and Galvão (2008). We nowcast GDP for each country using the conditional mean of

GDP implied by the U-MIDAS specification. Parameter estimation is carried out using a

rolling-windows of sizes 44, 60 and 76 quarters.19 Factors are also re-estimated every two

weeks using the all the data available at each point in time.

We estimate the conditional mean using the fixed-𝑁 minimum MSE unit averaging

estimator, since cross-sectional dimension is not large and each unit is potentially relevant.

The performance of our minimum MSE unit averaging estimator is benchmarked against

the individual, mean group, and averaging estimators using AIC and Mallows weights.

In table 1 we provide a summary of forecasting performance results for GDP nowcasting.

The table reports the MSE of the individual estimator as well as the MSE relative to the

individual estimator for all other strategies. The table reports results for the five largest

economies in our sample along with the GDP-weighted mean.20 We select the vintages

that correspond to −6, 0,+4 weeks relative to the end of the quarter (corresponding to

𝑣 = −3/2, 0,+1). Full results for all vintages and countries are provided in table OA.7 in

the online appendix, and they are similar to the ones reported here.

Our key finding is that averaging with smooth data-dependent criteria – minimum

MSE or AIC weights – generally leads to improved forecasting performance, though the

degree of improvement varies with the country in question. This is clear from table 1, as

the vast majority of entries corresponding to those weights display relative MSE smaller

than one, with improvements reaching up to 20%. The average gain in performance is

on the scale of about 9% for minimum MSE weights and 5% for AIC weights. We also

observe that minimum MSE weights and AIC weights do not uniformly dominate each

other.

Figure 2 provides a box plot for relative MSEs for nowcasting GDP for all the

19Forecast evaluation begins in 2006Q1 for window size 44, 2010Q1 for T=60 and 2014Q1 for T=76.
20Weighing by GDP as in Marcellino et al. (2003) emulates forecasting the Eurozone GDP using

individual forecasts.
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−6 weeks 0 weeks +4 weeks
Averaging 44q 60q 76q 44q 60q 76q 44q 60q 76q

Mean Individual 1.113 0.986 1.167 0.973 1.010 1.196 0.933 0.914 1.124
minMSE 0.916 0.936 0.907 0.889 0.936 0.910 0.881 0.928 0.901
AIC 0.933 0.962 0.980 0.908 0.960 0.974 0.878 0.949 0.955
MMA 1.119 1.178 1.099 1.011 1.036 1.114 1.000 0.921 0.916
Mean group 1.417 1.570 1.524 1.635 1.696 1.505 1.879 1.704 1.489

DE Individual 0.661 0.546 0.537 0.509 0.421 0.434 0.565 0.449 0.456
minMSE 0.793* 0.822 0.815 0.787* 0.818 0.775 0.821* 0.809 0.794
AIC 0.963* 0.977* 0.989 0.974 0.982* 0.973 0.978 0.989* 0.978
MMA 1.002 1.257 1.098 0.860 0.970 0.742 0.741 0.830 0.834
Mean group 0.987 0.937 0.773 1.069 1.157 0.742 0.957 1.153 0.849

FR Individual 0.194 0.154 0.129 0.143 0.100 0.086 0.155 0.121 0.098
minMSE 0.988 1.067 1.037 0.971 1.059 1.159 0.916 0.978 1.069
AIC 0.883* 0.934 0.975 0.833* 0.978 1.049 0.828* 0.935* 0.999
MMA 1.223 1.343* 1.139 1.082 1.372* 1.659* 1.164 1.048 1.337
Mean group 2.125* 2.068* 1.348 2.736* 2.942* 2.169* 2.473* 2.652* 2.156*

IT Individual 0.591 0.253 0.156 0.279 0.178 0.116 0.232 0.131 0.082
minMSE 0.893* 0.908* 0.852* 0.973 0.974 0.858* 1.046 1.025 0.857*

AIC 0.945 0.972* 0.980 0.955 0.951* 0.976* 0.947 0.969* 0.975*

MMA 0.907 0.710* 0.729* 1.323 0.650* 0.704 1.351 0.917 0.688*

Mean group 0.895 0.901 0.822 1.289 1.042 0.719 1.491* 1.595* 1.239
ES Individual 0.288 0.198 0.147 0.233 0.121 0.106 0.253 0.114 0.102

minMSE 0.919 0.909* 0.856* 0.955 0.951 0.927 0.957 0.919 0.889
AIC 0.958 0.961* 0.974* 0.860 0.940 0.940* 0.813* 0.934 0.933*

MMA 0.928 0.900 1.000 0.922 0.906 1.002 1.312 0.821 1.000
Mean group 1.237* 1.427* 1.225 1.011 1.561* 1.352 0.946 1.886* 1.248

UK Individual 0.281 0.116 0.044 0.254 0.142 0.047 0.244 0.142 0.047
minMSE 0.928 0.988 0.953 0.840 0.984 0.868 0.743 1.034 0.913
AIC 0.871* 0.933 0.953 0.876 0.958 0.941 0.726* 0.917* 0.898*

MMA 1.457 1.375* 1.350 1.240 1.318* 1.580 1.523 1.069 0.854
Mean group 1.714 2.444* 3.688* 2.530* 2.445* 3.121* 4.330* 2.214* 2.650*

Table 1: Nowcasting MSE. For individual estimator : absolute value. For averaging estimators:
MSE relative to individual estimator. For different estimation window sizes (44, 60, 76); selected
weekly horizons relative to quarter end (−6, 0,+4 weeks). * – forecasting performance difference
significant at 10% in Diebold-Mariano test (Diebold and Mariano, 1995)

countries in the panel for the vintages considered in table 1. The figure illustrates that

the favorable performance is robust across countries and not limited to the five biggest

economies reported in table 1. Both minimum MSE and AIC weights generally lead to

an improvement in performance, as both rarely have relative MSE above one. There is

some evidence that the minimum MSE weights have a greater upside, at the price of

potentially some more variability in the results, while AIC leads to smaller, but more

tightly concentrated improvements. Further, we find that averaging is more attractive for

the smallest sample size of 𝑇 = 44, with relative MSE generally approaching one as 𝑇

increases. This can be clearly seen in figure 2, as the improvement range for AIC and
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Figure 2: Distribution of relative MSEs across countries. Split by different averaging strategies
and estimation window size. Same weekly positions as reported in table 1

minimum MSE weights becomes more concentrated and to closer to one. As previously

remarked, as 𝑇 increases, the minimum MSE estimator converges to the individual

estimator; a similar point applies to AIC weights if the log likelihood is not divided by

samples size and allowed to diverge as sample size grows.

Averaging methods that are data-independent (mean group) or not smooth (MMA)

lead to generally poor results. While capable of offering improvements, the two approaches

often lead to significantly worse performance than the individual estimator, regardless

of 𝑇 . This is clear from figure 2, where the distribution of the MSE of both averaging

strategies has substantial mass above one.

We remark that the online appendix contains a number of additional robustness checks.

First, we consider nowcasting using bridge equations instead of U-MIDAS. Second, we

consider one- and two-quarter-ahead GDP forecasting. The evidence emerging from

these additional robustness checks on the performance of minimum MSE unit averaging

estimator is consistent with the overall evidence reported here.
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6 Conclusions

In this work we introduce a unit averaging estimator to recover unit-specific parameters

in a general class of panel data models with heterogeneous parameters. The procedure

consists in estimating the parameter of a given unit using a weighted average of all the

unit-specific parameter estimators in the panel. The weights of the average are determined

by minimizing an MSE criterion. The paper studies the properties of the procedures

using a local heterogeneity framework that builds upon the literature on frequentist

model averaging (Hjort and Claeskens, 2003; Hansen, 2008). An application to GDP

nowcasting for a panel of European countries shows that the procedure performs favorably

for prediction relative to a number of alternative procedures.
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Proofs of Results in the Main Text

Under assumption A.1 we work conditional on {𝜂1,𝜂2, . . .}. We use E[·] to denote the

expectation operator conditional on {𝜂1,𝜂2, . . .}, whereas E𝜂[·] is the expectation taken

with respect the distribution of 𝜂. All results are shown to hold with probability one with

respect to the distribution of 𝜂 (denoted 𝜂-a.s.).

A.1 Proof of Lemma 1

Recall that the data vector 𝑧𝑖 𝑡 takes values in 𝒵 ⊂ R𝑑 and define the data matrix

𝑧𝑖 = (𝑧′
𝑖 1, . . . ,𝑧

′
𝑖 𝑇 )

′ that takes values in 𝒵𝑇 =
∏︀𝑇

𝑡=1 𝒵. Recall that that the parameter

vector 𝜃 = (𝜃1, . . . , 𝜃𝑝) takes values in Θ ⊂ R𝑝. We denote by ∇𝑚(𝜃, 𝑧𝑖 𝑡) the gradient

vector of 𝑚 with respect to 𝜃, by ∇2𝑚(𝜃, 𝑧𝑖 𝑡) the Hessian matrix of 𝑚 with respect to 𝜃,

by ∇𝜃𝑘𝑚(𝜃, 𝑧𝑖 𝑡) the partial derivative of 𝑚 with respect to 𝜃𝑘, and by ∇2
𝜃 𝜃𝑘

the gradient

vector of ∇𝜃𝑘𝑚(𝜃, 𝑧𝑖 𝑡) with respect to 𝜃.

We establish a mean value theorem that does not require compactness of Θ.

Lemma A.1.1. Suppose assumption A.3 is satisfied. Then for each unit 𝑖, any 𝑇 and any

𝑘 = 1, . . . , 𝑝 there exists a measurable function 𝜃𝑖 𝑘 from 𝒵𝑇 to Θ such that the individual

estimator 𝜃𝑖 of eq. (2) satisfies

1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡) =
1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

+

[︃
1

𝑇

𝑇∑︁
𝑡=1

∇2
𝜃 𝜃𝑘

𝑚(𝜃𝑖 𝑘, 𝑧𝑖 𝑡)

]︃′ (︁
𝜃𝑖 − 𝜃𝑖

)︁
,

where 𝜃𝑖 𝑘 lies on the segment joining 𝜃𝑖 and 𝜃𝑖.

Further, suppose A.5 is satisfied. Then for each 𝑖 and any 𝑇 there exist measurable

functions 𝜃𝑖, 𝜃𝑖 and 𝜃𝑖 from 𝒵𝑇 to Θ such that the individual estimator 𝜃𝑖 of eq. (2)
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satisfies

𝜇(𝜃𝑖) = 𝜇(𝜃1) +∇𝜇(𝜃𝑖)
′(𝜃𝑖 − 𝜃1) , (A.1.1)

𝜇(𝜃𝑖) = 𝜇(𝜃1) + 𝑑′
1(𝜃𝑖 − 𝜃1) +

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)(𝜃𝑖 − 𝜃1) , (A.1.2)

𝜇(𝜃𝑖) = 𝜇(𝜃𝑖) + 𝑑′
𝑖(𝜃𝑖 − 𝜃𝑖) +

1

2
(𝜃𝑖 − 𝜃𝑖)

′∇2𝜇(𝜃𝑖)(𝜃𝑖 − 𝜃𝑖) , (A.1.3)

where 𝑑1 = ∇𝜇(𝜃1); 𝜃𝑖 and 𝜃𝑖 lie on the segment joining 𝜃𝑖 and 𝜃1; and 𝜃𝑖 lies on the

segment joining 𝜃𝑖 and 𝜃𝑖.

Proof. Fix 𝑘 ∈ {1, . . . , 𝑝} and define the function 𝑓𝑖 : 𝒵𝑇 × [0, 1] → R as

𝑓𝑖(𝑧𝑖, 𝑦) =
1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡)−
1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

−

[︃
1

𝑇

𝑇∑︁
𝑡=1

∇2
𝜃 𝜃𝑘

𝑚(𝑦𝜃𝑖 + (1− 𝑦)𝜃𝑖, 𝑧𝑖)

]︃′
(𝜃𝑖 − 𝜃𝑖) .

A.3 implies that 𝑓𝑖 is well-defined, as for each 𝑦 ∈ [0,1] we have that 𝑦𝜃𝑖+(1−𝑦)𝜃𝑖 ∈ Θ. 𝑓𝑖

is a measurable function of 𝑧𝑖 for every fixed value 𝑦 ∈ [0, 1], as 𝜃𝑖 and 𝑚 are measurable

functions of 𝑧𝑖 and 𝑚 is continuously differentiable in 𝜃. 𝑓𝑖 is a continuous function of 𝑦

for every value of 𝑧𝑖.

Define the correspondence 𝜙𝑖 : 𝒵𝑇 → [0, 1] as 𝜙𝑖(𝑧𝑖) = {𝑦 ∈ [0, 1] : 𝑓𝑖(𝑧𝑖, 𝑦) = 0}. The

function 𝑓𝑖 satisfies the assumptions of corollary 18.8 in Aliprantis and Border (2006), and

so 𝜙𝑖 is a measurable correspondence. 𝜙𝑖(𝑧𝑖) is nonempty for every 𝑧𝑖, as by the mean

value theorem, for every fixed value of 𝑧𝑖 there exists some 𝑦 ∈ [0, 1] such that

1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡) =
1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

+

[︃
1

𝑇

𝑇∑︁
𝑡=1

∇2
𝜃,𝜃𝑘

𝑚(𝑦𝜃𝑖 + (1− 𝑦)𝜃𝑖, 𝑧𝑖 𝑡)

]︃′ (︁
𝜃𝑖 − 𝜃𝑖

)︁
.

In addition, 𝜙𝑖(𝑧𝑖) is closed for every 𝑧𝑖 as 𝑚 is twice continuously differentiable in 𝜃 by
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assumption A.3. Then by the Kuratowski-Ryll-Nardzewski measurable selection theorem

(theorem 18.13 in Aliprantis and Border (2006)), 𝜙𝑖(𝑧𝑖) admits a measurable selector

𝑦𝑖 𝑘 = 𝑦𝑖 𝑘(𝑧𝑖). Finally, define 𝜃𝑖 𝑘 = 𝑦𝑖 𝑘𝜃𝑖 + (1 − 𝑦𝑖 𝑘)𝜃𝑖 and note that 𝜃𝑖 𝑘 satisfies the

requirements of the lemma. This establishes the first claim of the lemma.

The proof of the second claim of the lemma is analogous.

The following lemma is needed to prove lemmas 1 and A.2.1.

Lemma A.1.2. Suppose A.3 is satisfied. Let 𝜃𝑖 𝑗 : 𝒵𝑇 → R𝑝 for 𝑗 = 1, . . . , 𝑝 be a sequence

of measurable functions that lie on the segment joining 𝜃𝑖 and 𝜃𝑖 and define

𝐻̂𝑖 𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣

[︂
1

𝑇

∑︀𝑇
𝑡=1∇2

𝜃,𝜃1
𝑚(𝜃𝑖 1, 𝑧𝑖 𝑡)

]︂′
· · ·[︂

1

𝑇

∑︀𝑇
𝑡=1∇2

𝜃,𝜃𝑝
𝑚(𝜃𝑖 𝑝, 𝑧𝑖 𝑡)

]︂′

⎤⎥⎥⎥⎥⎥⎥⎦ .

Then for all 𝑇 > 𝑇0 the matrix 𝐻̂𝑖 𝑇 (i) is a.s. nonsingular and (ii) satisfies

E

[︃⃦⃦⃦
𝐻−1

𝑖 − 𝐻̂−1
𝑖 𝑇

⃦⃦⃦ 2(2+𝛿)(1+𝛿)
𝛿

∞

]︃
≤ 𝑝

(2+𝛿)(1+𝛿)
𝛿 𝜆

− 2(2+𝛿)(1+𝛿)
𝛿

𝐻 𝐶∇2𝑚 ,

where 𝐻𝑖 = lim𝑇→∞ E
[︁
𝑇−1

∑︀𝑇
𝑡=1∇2𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

]︁
.

Proof. The proof of assertion (𝑖) is based on showing that
⃦⃦⃦
(𝐻𝑖 − 𝐻̂𝑖 𝑇 )𝐻

−1
𝑖

⃦⃦⃦
∞

< 1 holds

almost surely, which implies that the matrix 𝐻̂𝑖 𝑇 is a.s. nonsingular.21 Let 𝐻−1
𝑖 = (ℎ𝑖𝑗)

21This result follows from the standard observation that if ‖𝐼 −𝐴‖∞ < 1, then 𝐴 is nonsingular.

Write 𝐼 = 𝐻𝑖𝐻
−1
𝑖 and 𝐴 = 𝐻̂𝑖 𝑇𝐻

−1
𝑖 . Then ‖𝐼 −𝐴‖∞ =

⃦⃦⃦
(𝐻𝑖 − 𝐻̂𝑖 𝑇 )𝐻

−1
𝑖

⃦⃦⃦
∞

< 1. The matrix 𝐴 is

nonsingular, and 𝐻̂𝑖 𝑇 = 𝐴𝐻𝑖 is a product of two nonsingular matrices.
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and observe that

𝐻̂𝑖 𝑇𝐻
−1
𝑖 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑︀𝑝
𝑘=1∇2

𝜃𝑘 𝜃1
𝑚(𝜃𝑖 1, 𝑧𝑖 𝑡)ℎ

𝑘1 · · ·
∑︀𝑝

𝑘=1∇2
𝜃𝑘 𝜃1

𝑚(𝜃𝑖 1, 𝑧𝑖 𝑡)ℎ
𝑘𝑝∑︀𝑝

𝑘=1∇2
𝜃𝑘 𝜃2

𝑚(𝜃𝑖 2, 𝑧𝑖 𝑡)ℎ
𝑘1 · · ·

∑︀𝑝
𝑘=1∇2

𝜃𝑘 𝜃2
𝑚(𝜃𝑖 2, 𝑧𝑖 𝑡)ℎ

𝑘𝑝

...
. . .

...∑︀𝑝
𝑘=1∇2

𝜃𝑘 𝜃𝑝
𝑚(𝜃𝑖 𝑝, 𝑧𝑖 𝑡)ℎ

𝑘1 · · ·
∑︀𝑝

𝑘=1∇2
𝜃𝑘 𝜃𝑝

𝑚(𝜃𝑖 𝑝, 𝑧𝑖 𝑡)ℎ
𝑘𝑝

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Row 𝑗 of 𝐻̂𝑖 𝑇𝐻
−1
𝑖 −𝐼 coincides with row 𝑗 of

(︁
𝑇−1

∑︀𝑇
𝑡=1∇2𝑚

(︁
𝜃𝑖 𝑗, 𝑧𝑖 𝑡

)︁)︁
𝐻−1−𝐼. Then

we have that

⃦⃦⃦
(𝐻𝑖 − 𝐻̂𝑖 𝑇 )𝐻

−1
𝑖

⃦⃦⃦
∞

=
⃦⃦⃦
𝐻̂𝑖 𝑇𝐻

−1
𝑖 − 𝐼

⃦⃦⃦
∞

≤ max
1≤𝑗≤𝑝

⃦⃦⃦⃦
⃦
(︃
𝑇−1

𝑇∑︁
𝑡=1

∇2𝑚(𝜃𝑖 𝑗, 𝑧𝑖 𝑡)

)︃
𝐻−1

𝑖 − 𝐼

⃦⃦⃦⃦
⃦
∞

≤ sup
𝜃∈[𝜃𝑖,𝜃𝑖]

⃦⃦⃦⃦
⃦
(︃
𝑇−1

𝑇∑︁
𝑡=1

∇2𝑚(𝜃, 𝑧𝑖 𝑡)

)︃
𝐻−1

𝑖 − 𝐼

⃦⃦⃦⃦
⃦
∞

≡ 𝐷𝑖 𝑇 , (A.1.4)

where the second inequality holds as all 𝜃𝑖 𝑗 lie on the segment joining 𝜃𝑖 and 𝜃𝑖

and where 𝐷𝑖 𝑇 is defined in A.3. A.3 implies 𝐷𝑖 𝑇 < 1 a.s. for 𝑇 > 𝑇0, and thus⃦⃦⃦
(𝐻𝑖 − 𝐻̂𝑖 𝑇 )𝐻

−1
𝑖

⃦⃦⃦
∞

< 1 a.s. for 𝑇 > 𝑇0, which implies the first claim.

As 𝐻̂𝑖 𝑇 is invertible for 𝑇 > 𝑇0 we have (Horn and Johnson, 2012, section 5.8)

⃦⃦⃦
𝐻−1

𝑖 − 𝐻̂−1
𝑖 𝑇

⃦⃦⃦
∞

≤
⃦⃦
𝐻−1

𝑖

⃦⃦
∞

⃦⃦⃦
𝐻−1

𝑖 𝐻̂𝑖 𝑇 − 𝐼
⃦⃦⃦
∞

1−
⃦⃦⃦
𝐻−1

𝑖 𝐻̂𝑖 𝑇 − 𝐼
⃦⃦⃦
∞

≤
⃦⃦
𝐻−1

𝑖

⃦⃦
∞

𝐷𝑖 𝑇

1−𝐷𝑖 𝑇

,

where the last inequality follows from (A.1.4). Taking expectations, we obtain that

E

[︃⃦⃦⃦
𝐻−1

𝑖 − 𝐻̂−1
𝑖

⃦⃦⃦ 2(2+𝛿)(1+𝛿)
𝛿

∞

]︃
≤
⃦⃦
𝐻−1

𝑖

⃦⃦ 2(2+𝛿)(1+𝛿)
𝛿

∞ E

[︃(︂
𝐷𝑖 𝑇

1−𝐷𝑖 𝑇

)︂ 2(2+𝛿)(1+𝛿)
𝛿

]︃

≤ 𝑝
(2+𝛿)(1+𝛿)

𝛿

⃦⃦
𝐻−1

𝑖

⃦⃦ 2(2+𝛿)(1+𝛿)
𝛿 𝐶∇2𝑚
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≤ 𝑝
(2+𝛿)(1+𝛿)

𝛿 𝜆
− 2(2+𝛿)(1+𝛿)

𝛿
𝐻 𝐶∇2𝑚 ,

which establishes the second claim.

Proof of lemma 1. A.3 and Lemma A.1.1 imply that

0 =
1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

=
1

𝑇

𝑇∑︁
𝑡=1

∇𝜃𝑘𝑚(𝜃𝑖, 𝑧𝑖 𝑡) +

[︃
1

𝑇

𝑇∑︁
𝑡=1

∇2
𝜃,𝜃𝑘

𝑚(𝜃𝑖 𝑘, 𝑧𝑖 𝑡)

]︃′ (︁
𝜃𝑖 − 𝜃𝑖

)︁
,

where 𝜃𝑖 𝑘 lies on the segment joining 𝜃𝑖 and 𝜃𝑖. Define the matrix

𝐻̂𝑖 𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣

[︂
1

𝑇

∑︀𝑇
𝑡=1∇2

𝜃,𝜃1
𝑚(𝜃𝑖 1, 𝑧𝑖 𝑡)

]︂′
· · ·[︂

1

𝑇

∑︀𝑇
𝑡=1∇2

𝜃,𝜃𝑝
𝑚(𝜃𝑖 𝑝, 𝑧𝑖 𝑡)

]︂′

⎤⎥⎥⎥⎥⎥⎥⎦ . (A.1.5)

As all 𝜃𝑖 𝑘 lie between 𝜃𝑖 and 𝜃𝑖, by lemma A.1.2 the matrix 𝐻̂𝑖 𝑇 is a.s. nonsingular

for 𝑇 > 𝑇0. Observe that 𝜃𝑖 − 𝜃𝑖 = (𝜃𝑖 − 𝜃1) − (𝜃𝑖 − 𝜃1). Combining the above two

observations, we obtain that for 𝑇 > 𝑇0 it holds that

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
= −𝐻̂−1

𝑖 𝑇

1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡) + (𝜂𝑖 − 𝜂1).

By assumption A.3 and lemma A.1.2, it holds that

−𝐻̂−1
𝑖 𝑇

1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡) ⇒ 𝑁(0,𝑉𝑖).

The convergence is joint as all units are independent by A.2.

The second assertion follows from the delta method and the observation that ∇𝜇(𝜃1) =

∇𝜇(𝜃0 + 𝑇−1/2𝜂1) → ∇𝜇(𝜃0) = 𝑑0 under the continuity assumption of A.5.
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A.2 Proof of Theorem 1

Before presenting the proof of theorem 1 we introduce a number of intermediate results.

Lemma A.2.1. Suppose A.1 and A.3 are satisfied. Let 𝛿 be as in A.3. Then there exist

finite constants 𝐶𝜃,1, 𝐶𝜃,1+𝛿/2, 𝐶𝜃,2, 𝐶𝜃,2+𝛿, which do not depend on 𝑖 or 𝑇 , such that the

following moment bounds hold for the individual estimator (2) for all 𝑇 > 𝑇0

E
[︂⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦𝑘]︂

≤ 𝐶𝜃,𝑘 , 𝑘 = 1,1 + 𝛿/2, 2, 2 + 𝛿,

E
[︂⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃1)
⃦⃦⃦2]︂

≤ 𝐶𝜃,2 + 2𝐶𝜃,1 ‖𝜂𝑖 − 𝜂1‖+ ‖𝜂𝑖 − 𝜂1‖2 .

Proof. Let the matrix 𝐻̂𝑖 𝑇 be defined as in eq. (A.1.5). By lemma A.1.2 the matrix 𝐻̂𝑖 𝑇

is non-singular for 𝑇 > 𝑇0. Then, as in the proof of lemma 1, for 𝑇 > 𝑇0 it holds that

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁
= −𝐻̂−1

𝑖 𝑇

1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

= −𝐻−1
𝑖

1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡) +
(︁
𝐻−1

𝑖 − 𝐻̂−1
𝑖 𝑇

)︁ 1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡) ,

where 𝐻𝑖 = lim𝑇→∞ E
(︁
∇2𝑇−1

∑︀𝑇
𝑡=1 𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

)︁
. We separately bound the (2 + 𝛿)-th

moment of the norm for the two terms above. For the first term we have

E

⎡⎣⃦⃦⃦⃦⃦𝐻−1
𝑖

1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2+𝛿
⎤⎦

≤ E

⎡⎣⃦⃦𝐻−1
𝑖

⃦⃦2+𝛿

⃦⃦⃦⃦
⃦ 1√

𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2+𝛿
⎤⎦

≤
⃦⃦
𝐻−1

𝑖

⃦⃦2+𝛿 E

⎡⎣⃦⃦⃦⃦⃦ 1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2+𝛿
⎤⎦

≤ 𝜆−2−𝛿
𝐻 𝐶

2+𝛿
2(1+𝛿)

∇𝑚 ,

where the first inequality follows from ‖𝐴𝑥‖ ≤ ‖𝐴‖ ‖𝑥‖, and the last line follows by
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assumption A.3 and by Jensen’s inequality.

For the second term we have

E

⎡⎣⃦⃦⃦⃦⃦(︁𝐻−1
𝑖 − 𝐻̂−1

𝑖 𝑇

)︁ 1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2+𝛿
⎤⎦

≤ 𝑝
2+𝛿
2 E

⎡⎣⃦⃦⃦⃦⃦(︁𝐻−1
𝑖 − 𝐻̂−1

𝑖 𝑇

)︁ 1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2+𝛿

∞

⎤⎦
≤ 𝑝

2+𝛿
2 E

⎡⎣⃦⃦⃦𝐻−1
𝑖 − 𝐻̂−1

𝑖 𝑇

⃦⃦⃦2+𝛿

∞

⃦⃦⃦⃦
⃦ 1√

𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2+𝛿

∞

⎤⎦
≤ 𝑝

2+𝛿
2

(︃
E

[︃⃦⃦⃦
𝐻−1

𝑖 − 𝐻̂−1
𝑖 𝑇

⃦⃦⃦ 2(2+𝛿)(1+𝛿)
𝛿

∞

]︃)︃ 𝛿
2(1+𝛿)

⎛⎝E

⎡⎣⃦⃦⃦⃦⃦ 1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2(1+𝛿)

∞

⎤⎦⎞⎠
1+𝛿/2
1+𝛿

≤ 𝑝
2+𝛿
2

(︂
𝑝

(2+𝛿)(1+𝛿)
𝛿 𝜆

− 2(2+𝛿)(1+𝛿)
𝛿

𝐻 𝐶∇2𝑚

)︂ 𝛿
2(1+𝛿)

⎛⎝E

⎡⎣⃦⃦⃦⃦⃦ 1√
𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)

⃦⃦⃦⃦
⃦
2(1+𝛿)

⎤⎦⎞⎠
1+𝛿/2
1+𝛿

≤ 𝑝
2+𝛿
2

(︂
𝑝

(2+𝛿)(1+𝛿)
𝛿 𝜆

− 2(2+𝛿)(1+𝛿)
𝛿

𝐻 𝐶∇2𝑚

)︂ 𝛿
2(1+𝛿)

𝐶
1+𝛿/2
1+𝛿

∇𝜇 ,

where the second inequality follows from ‖𝐴𝑥‖∞ ≤ ‖𝐴‖∞ ‖𝑥‖∞; the third inequality from

Hölder’s inequality applied with 𝑝 = (1 + 𝛿)/(1 + 𝛿/2) > 1; the fourth inequality from

lemma A.1.2, and the last line follows by assumption A.3. Finally, we conclude that

E
[︂⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦2+𝛿

]︂
≤ 21+𝛿

[︃
𝜆−2−𝛿
𝐻 𝐶

2+𝛿
2(1+𝛿)

∇𝑚 + 𝑝
2+𝛿
2

(︂
𝑝

(2+𝛿)(1+𝛿)
𝛿 𝜆

− 2(2+𝛿)(1+𝛿)
𝛿

𝐻 𝐶∇2𝑚

)︂ 𝛿
2(1+𝛿)

𝐶
1+𝛿/2
1+𝛿

∇𝜇

]︃

≡ 𝐶𝜃,2+𝛿 ,

where we note that 𝐶𝜃,2+𝛿 does not depend on 𝑖 or 𝑇 . By Jensen’s inequality we have

E
[︂⃦⃦⃦√

𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁⃦⃦⃦2]︂
≤ 𝐶

2
2+𝛿

𝜃,2+𝛿
≡ 𝐶𝜃,2,

E
[︂⃦⃦⃦√

𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁⃦⃦⃦1+𝛿/2
]︂
≤ 𝐶

1
2

𝜃,2+𝛿
≡ 𝐶𝜃,1+𝛿/2,
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E
[︁⃦⃦⃦√

𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁⃦⃦⃦]︁
≤ 𝐶

1
2+𝛿

𝜃,2+𝛿
≡ 𝐶𝜃,1 ,

which establishes the first part of the claim.

Next we note that

E
[︂⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃1)
⃦⃦⃦2]︂

= E
[︁
𝑇 (𝜃𝑖 − 𝜃1)

′(𝜃𝑖 − 𝜃1)
]︁

≤ E
[︂⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦2]︂

+ 2
⃒⃒⃒
E
[︁
𝑇 (𝜃𝑖 − 𝜃𝑖)

′(𝜃𝑖 − 𝜃1)
]︁⃒⃒⃒

+ 𝑇 (𝜃𝑖 − 𝜃1)
′ (𝜃𝑖 − 𝜃1)

≤ E
[︂⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦2]︂

+ 2 ‖𝜂𝑖 − 𝜂1‖E
[︁⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦]︁

+ ‖𝜂𝑖 − 𝜂1‖2

≤ 𝐶𝜃,2 + 2𝐶𝜃,1 ‖𝜂𝑖 − 𝜂1‖+ ‖𝜂𝑖 − 𝜂1‖2 ,

where in the first inequality we add and subtract 𝜃𝑖 in both parentheses, in the third

inequality we apply the Cauchy-Schwarz inequality to the cross term and observe that

under A.1
√
𝑇 (𝜃𝑖 − 𝜃1) = 𝜂𝑖 − 𝜂1. This establishes the second part of the claim.

Lemma A.2.2. Suppose A.3 and A.5 are satisfied. Let 𝛿 be as in assumption A.3. Then

for all 𝑖 and 𝑇 > 𝑇0 it holds that

E
[︂⃒⃒⃒
𝜇(𝜃𝑖)

⃒⃒⃒2+𝛿
]︂
< ∞

E
[︂⃒⃒⃒√

𝑇 (𝜇(𝜃𝑖)− 𝜇(𝜃𝑖))
⃒⃒⃒2+𝛿

]︂
≤ 𝐶2+𝛿

∇𝜇 𝐶𝜃,2+𝛿

Proof. Equation (A.1.1) in lemma A.1.1 implies 𝜇(𝜃𝑖) = 𝜇(𝜃𝑖) + 𝑑′
𝑖(𝜃𝑖 − 𝜃𝑖), where

𝑑𝑖 = ∇𝜇
(︀
𝜃𝑖

)︀
for 𝜃𝑖 on the segment joining 𝜃𝑖 and 𝜃𝑖. Raising both sides to the power of

(2 + 𝛿) and applying the 𝐶𝑟 inequality we obtain that

⃒⃒⃒
𝜇(𝜃𝑖)

⃒⃒⃒2+𝛿

≤ 21+𝛿

[︂
|𝜇(𝜃𝑖)|2+𝛿 +

⃒⃒⃒
𝑑′
𝑖(𝜃𝑖 − 𝜃𝑖)

⃒⃒⃒2+𝛿
]︂
.

By assumption A.5 and the Cauchy-Schwarz inequality it holds that
⃒⃒⃒
𝑑′
𝑖(𝜃𝑖 − 𝜃𝑖)

⃒⃒⃒2+𝛿

≤
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⃦⃦
𝑑1

⃦⃦2+𝛿
⃦⃦⃦
𝜃𝑖 − 𝜃𝑖

⃦⃦⃦2+𝛿

≤ 𝐶2+𝛿
∇𝜇

⃦⃦⃦
𝜃𝑖 − 𝜃𝑖

⃦⃦⃦2+𝛿

, hence by lemma A.2.1 it follows that

E
[︂⃒⃒⃒
𝑑′
𝑖(𝜃𝑖 − 𝜃𝑖)

⃒⃒⃒2+𝛿
]︂
≤

𝐶2+𝛿
∇𝜇 𝐶𝜃,2+𝛿

𝑇 (2+𝛿)/2
,

where the constants are independent on 𝑖. Then both claims of the lemma follow.

We need an extension of a weighted law of large numbers due to Pruitt (1966).

Lemma A.2.3. Suppose

(i) 𝑋1, 𝑋2, . . . is a sequence of i.i.d. random variables such that E(𝑋1) = 0 and

E|𝑋1|1+1/𝛾 < ∞ for some 𝛾 ∈ (0, 1];

(ii) {𝑤𝑁}𝑁 with 𝑤𝑁 ∈ R∞ is a sequence of weight vectors such that 𝑤𝑖𝑁 ≥ 0 for 𝑖 > 0,∑︀𝑁
𝑖=1 𝑤𝑖𝑁 ≤ 1, and 𝑤𝑗 𝑁 = 0 for 𝑗 > 𝑁 ;

(iii) 𝑤 ∈ R∞ is a weight vector such that 𝑤𝑖 ≥ 0 for 𝑖 > 0,
∑︀∞

𝑖=1𝑤𝑖 ≤ 1; and

(iv) {𝑤𝑁} and 𝑤 are such that sup𝑖|𝑤𝑖𝑁 − 𝑤𝑖| = 𝑂(𝑁−𝛾).

Then it
∑︀∞

𝑖=1𝑤𝑖𝑋𝑖 exists a.s. and
∑︀𝑁

𝑖=1𝑤𝑖𝑁𝑋𝑖
𝑎.𝑠.−−→

∑︀∞
𝑖=1 𝑤𝑖𝑋𝑖.

Observe that the limit sequence of weights can be defective. If 𝑤𝑖𝑁 = 𝑁−1 I𝑖≤𝑁 (equal

weights), the above result becomes a standard SLLN with a second moment assumption.

Proof. Define 𝑤̃𝑁 ∈ R∞ by 𝑤̃𝑖𝑁 = 𝑤𝑖𝑁 − 𝑤𝑖 for 𝑖 ≤ 𝑁 and 𝑤̃𝑖𝑁 = 0 for 𝑖 > 𝑁 . Then

𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑋𝑖 =
𝑁∑︁
𝑖=1

𝑤𝑖𝑋𝑖 +
𝑁∑︁
𝑖=1

(𝑤𝑖𝑁 − 𝑤𝑖)𝑋𝑖 =
𝑁∑︁
𝑖=1

𝑤𝑖𝑋𝑖 +
𝑁∑︁
𝑖=1

𝑤̃𝑖𝑁𝑋𝑖

holds. For any 𝑛 it holds that
∑︀𝑛

𝑖=1Var(𝑤𝑖𝑋𝑖) =
∑︀𝑛

𝑖=1𝑤
2
𝑖 E(𝑋2

𝑖 ) = E(𝑋2
𝑖 )
∑︀𝑛

𝑖=1𝑤
2
𝑖 ≤

E(𝑋2
𝑖 ) < ∞ since 𝛾 ≤ 1. Hence the Kolmogorov two-series theorem (Kallenberg, 2021,

lemma 5.16) implies that
∑︀𝑁

𝑖=1𝑤𝑖𝑋𝑖
𝑎.𝑠.−−→

∑︀∞
𝑖=1𝑤𝑖𝑋𝑖. The vector 𝑤̃𝑁 satisfies the condi-

tions of theorem 2 of Pruitt (1966) (observe that the condition (1.2) in Pruitt (1966) is

not required by the assumption of E(𝑋) = 0 and the remark following (1.3)). Hence the

same theorem implies that
∑︀∞

𝑖=1 𝑤̃𝑖𝑁𝑋𝑖
𝑎.𝑠.−−→ 0. The claim of the lemma then follows.
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Lemma A.2.4. Suppose that the assumptions of theorem 1 are satisfied. Then (i)∑︀∞
𝑖=1 𝑤𝑖𝜂𝑖 exists 𝜂-a.s. and it holds that

𝑁∑︁
𝑖=1

𝑤𝑖𝑁(𝜂𝑖 − 𝜂1)
𝑎.𝑠.−−→

∞∑︁
𝑖=1

𝑤𝑖𝜂𝑖 − 𝜂1 ,

and (ii) sup𝑁

∑︀𝑁
𝑖=1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖𝑘 < ∞ is finite 𝜂-a.s. for 𝑘 = 1, 1 + 𝛿/2, 2, 2 + 𝛿 for the

choice of 𝛿 in A.3.

Proof. Notice that
∑︀𝑁

𝑖=1𝑤𝑖𝑁(𝜂𝑖 − 𝜂1) =
∑︀𝑁

𝑖=1𝑤𝑖𝑁𝜂𝑖 − 𝜂1. By assumption A.1 𝜂𝑖 are

i.i.d. random vectors with finite third moments and sup𝑖|𝑤𝑖𝑁 − 𝑤𝑖| = 𝑂(𝑁−1/2). Lemma

A.2.3 then implies that
∑︀∞

𝑖=1𝑤𝑖𝜂𝑖 exists 𝜂-a.s. and that
∑︀𝑁

𝑖=1 𝑤𝑖𝑁𝜂𝑖
𝑎.𝑠.−−→

∑︀∞
𝑖=1 𝑤𝑖𝜂𝑖, which

establishes the first claim.

Consider ‖𝜂𝑖 − 𝜂1‖𝑘 and note that the triangle and 𝐶𝑟 inequalities imply that

‖𝜂𝑖 − 𝜂1‖𝑘 ≤ (‖𝜂𝑖‖+ ‖𝜂1‖)𝑘 ≤ 2𝑘−1(‖𝜂𝑘‖𝑘 + ‖𝜂1‖𝑘) ,

which, in turn, implies

𝑁∑︁
𝑖=1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖𝑘 ≤ 2𝑘−1

𝑁∑︁
𝑖=1

𝑤𝑖𝑁 ‖𝜂𝑖‖𝑘 + 2𝑘−1 ‖𝜂1‖𝑘 . (A.2.1)

Observe that ‖𝜂𝑖‖𝑘 are i.i.d. random variables with E𝜂

[︁
‖𝜂𝑖‖3𝑘

]︁
< ∞ for 𝑘 ∈ [1, 2 + 𝛿]

by A.1. Then lemma A.2.3 applies with 𝛾 = 1/2, and
∑︀𝑁

𝑖=1𝑤𝑖𝑁 ‖𝜂𝑖‖𝑘 converges almost

surely, which implies that sup𝑁

∑︀𝑁
𝑖=1 𝑤𝑖𝑁 ‖𝜂𝑖‖𝑘 < ∞ 𝜂-a.s.. Since ‖𝜂1‖ is also 𝜂-a.s.

finite, together with eq. (A.2.1), this implies the second claim.

Finally, we present the proof of theorem 1.

Proof of theorem 1. First, from lemma A.2.2 it follows for each 𝑁 and 𝑇 > 𝑇0

E [𝜇̂(𝑤𝑁)− 𝜇(𝜃1)]
2 < ∞ ,
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establishing the second assertion of the theorem.

The MSE of the averaging estimator expressed as a sum of squared bias and variance is

𝑇×E [𝜇̂(𝑤𝑁)− 𝜇(𝜃1)]
2 =

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑁 E
(︁√

𝑇 (𝜇(𝜃𝑖)− 𝜇(𝜃1))
)︁)︃2

+𝑇 Var

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑁(𝜇(𝜃𝑖))

)︃
.

We examine the bias and the variance separately. We first focus on the bias. By eq.

(A.1.2) of lemma A.1.1, we have

𝜇(𝜃𝑖) = 𝜇(𝜃1) + 𝑑′
1

(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)(𝜃𝑖 − 𝜃1), (A.2.2)

where 𝑑1 = ∇𝜇(𝜃1) and 𝜃𝑖 lies on the segment joining 𝜃𝑖 and 𝜃1. The bias of 𝜇(𝜃𝑖) is

√
𝑇 E

(︁
𝜇(𝜃𝑖)− 𝜇(𝜃1)

)︁
= E

[︂
𝑑′
1

√
𝑇 (𝜃𝑖 − 𝜃1) +

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︂
= E

[︂
𝑑′
1

√
𝑇 (𝜃𝑖 − 𝜃𝑖) +

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︂
+
√
𝑇𝑑′

0(𝜃𝑖 − 𝜃1) + (𝑑1 − 𝑑0)
′
√
𝑇 (𝜃𝑖 − 𝜃1)

= E
[︂
𝑑′
1

√
𝑇 (𝜃𝑖 − 𝜃𝑖) +

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︂
+ 𝑑′

0(𝜂𝑖 − 𝜂1) + (𝑑1 − 𝑑0)
′(𝜂𝑖 − 𝜂1) , (A.2.3)

where in the first equality we use eq. (A.2.2); in the second equality 𝜃1 is replaced by 𝜃𝑖

in the first term using 𝑑′
1

√
𝑇 (𝜃𝑖 − 𝜃1)− 𝑑′

1(𝜂𝑖 − 𝜂1) = 𝑑′
1

√
𝑇 (𝜃𝑖 − 𝜃𝑖); 𝑑0 = ∇𝜇(𝜃0); and

we use the locality assumption A.1 in the last equality as
√
𝑇 (𝜃𝑖 − 𝜃1) = 𝜂1 − 𝜂1. Define

𝐴𝑖 𝑇 ≡ E
[︁
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁
+
1

2
E
[︁
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︁
+(𝑑1−𝑑0)

′(𝜂𝑖−𝜂1) ,
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and note that by eq. (A.2.3), the bias of the averaging estimator can be written as

𝑁∑︁
𝑖=1

𝑤𝑖𝑁 E
(︁√

𝑇 (𝜇(𝜃𝑖)− 𝜇(𝜃1))
)︁
=

𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1) +

𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝐴𝑖 𝑇 . (A.2.4)

We then proceed by showing that
⃒⃒⃒∑︀𝑁

𝑖=1𝑤𝑖𝑁𝐴𝑖 𝑇

⃒⃒⃒
≤ 𝑀/

√
𝑇 → 0 for some constant

𝑀 < ∞ independent of 𝑁 .22 Note that

1. By Hölder’s inequality, we obtain
⃒⃒⃒
𝑑′
1 E
(︁√

𝑇 (𝜃𝑖 − 𝜃𝑖)
)︁⃒⃒⃒

≤ ‖𝑑1‖∞
⃦⃦⃦√

𝑇 E(𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦
1

≤ 𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠𝑇
−1/2, where the last bound follows from assumptions A.4 and A.5;

2. By assumption A.5 the eigenvalues of ∇2𝜇 are bounded in absolute value by

𝐶∇2𝜇. Then
⃒⃒⃒
E(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

⃒⃒⃒
≤ 𝐶∇2𝜇𝑇

−1/2
[︁
𝐶𝜃,2+2𝐶𝜃,1 ‖𝜂𝑖 − 𝜂1‖+

‖𝜂𝑖 − 𝜂1‖2
]︁
where the bound is given by lemma A.2.1;

3. By assumption A.5, ‖𝑑1 − 𝑑0‖ ≡
⃦⃦
∇𝜇(𝜃0 + 𝑇−1/2𝜂1)−∇𝜇(𝜃0)

⃦⃦
≤ 𝐶∇2𝜇 ‖𝜂1‖𝑇−1/2.

All the 𝐶·-constants do not depend in 𝑖. Combining the above results, we obtain by the

triangle and Cauchy-Scwharz inequalities that

|𝐴𝑖 𝑇 | ≤
1√
𝑇

[︁
𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠 + 𝐶∇2𝜇𝐶𝜃,2 + 𝐶∇2𝜇 ‖𝜂𝑖 − 𝜂1‖2 + 𝐶∇2𝜇(2𝐶𝜃,1 + ‖𝜂1‖) ‖𝜂𝑖 − 𝜂1‖

]︁
.

Define

𝑀 = 𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠 + 𝐶∇2𝜇𝐶𝜃,2 + 𝐶∇2𝜇 sup
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2

+ 𝐶∇2𝜇

(︁
2𝐶𝜃,1 + ‖𝜂1‖

)︁
sup
𝑁

𝑁∑︁
𝑖=1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖ ,

and observe that 𝑀 does not depend on 𝑁 or 𝑇 , and by lemma A.2.4 𝑀 < ∞ (𝜂-a.s.).

22Recall that all statements are almost surely with respect to the distribution of 𝜂 in line with
assumption A.1. 𝑀 depends on the sequence of {𝜂1,𝜂2, . . .} only, and the sequence is held fixed.
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Take the weighted average of 𝐴𝑖 𝑇 to obtain

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝐴𝑖 𝑇

⃒⃒⃒⃒
⃒ ≤

𝑁∑︁
𝑖=1

𝑤𝑖𝑁 |𝐴𝑖 𝑇 | ≤
𝑀√
𝑇

−→ 0 as 𝑁, 𝑇 → ∞ . (A.2.5)

By lemma A.2.4,
∑︀𝑁

𝑖=1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1) →

∑︀∞
𝑖=1𝑤𝑖𝑑

′
0𝜂0 − 𝑑′

0𝜂𝑖, where the infinite sum

exists. Combining this with eqs. (A.2.4) and (A.2.5), we obtain that the bias converges

as 𝑁, 𝑇 → ∞:

𝑁∑︁
𝑖=1

𝑤𝑖𝑁 E
(︁√

𝑇
(︁
𝜇(𝜃𝑖)− 𝜇(𝜃1)

)︁)︁
−→

∞∑︁
𝑖=1

𝑤𝑖𝑑
′
0𝜂0 − 𝑑′

0𝜂𝑖, (𝜂-a.s.) (A.2.6)

Now turn to the variance series and observe that

𝑇 × Var

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑁(𝜇(𝜃𝑖))

)︃

= 𝑇
𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁 Var

(︁
𝜇(𝜃𝑖)

)︁
=

𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁

[︂
E
[︁√

𝑇
(︁
𝜇(𝜃𝑖)− 𝜇(𝜃𝑖)

)︁]︁2
−
[︁√

𝑇
(︁
E
(︁
𝜇(𝜃𝑖)

)︁
− 𝜇(𝜃𝑖)

)︁]︁2]︂
.

We tackle the two sums separately. First we show that

sup
𝑁

𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁

[︁√
𝑇
(︁
𝜇(𝜃𝑖)− E

(︁
𝜇(𝜃𝑖)

)︁)︁]︁2
= 𝑂(𝑇−1)

The argument is similar to that leading up to eq. (A.2.5). By eq. (A.1.3) of lemma A.1.1,

we can expand 𝜇(𝜃𝑖) around 𝜃𝑖 to obtain that

√
𝑇
(︁
E
(︁
𝜇(𝜃𝑖)

)︁
− 𝜇(𝜃𝑖)

)︁
= E

[︂
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁
+

1

2
(𝜃𝑖 − 𝜃𝑖)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃𝑖)

]︂
,

for some 𝜃𝑖 on the segment joining 𝜃𝑖 and 𝜃𝑖. Similarly to the above, we conclude by
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lemma A.2.1 and assumption A.4 that

⃒⃒⃒
E
[︁
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
≤ 𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠√

𝑇⃒⃒⃒
E
[︁
(𝜃𝑖 − 𝜃𝑖)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃𝑖)

]︁⃒⃒⃒
≤

𝐶∇2𝜇𝐶𝜃,2√
𝑇

.

From this it immediately follows that

𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁

[︁√
𝑇
(︁
E
(︁
𝜇(𝜃𝑖)

)︁
− 𝜇(𝜃𝑖)

)︁]︁2
≤ 1

𝑇

[︁
𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠 + 𝐶∇2𝜇𝐶𝜃,2

]︁2
, (A.2.7)

where the right hand side does not depend on 𝑖 or 𝑁 .

Second, we show that

𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁 E

[︁√
𝑇
(︁
𝜇(𝜃𝑖)− 𝜇(𝜃𝑖)

)︁]︁2
→

∞∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0.

Define 𝑋𝑖 𝑇 = E
[︁√

𝑇 (𝜇(𝜃𝑖)− 𝜇(𝜃𝑖))
]︁2
. By lemma A.2.2 there exists a constant 𝐶𝑋 < ∞

that does not depend on 𝑖 or 𝑇 such that 𝑋𝑖𝑇 ≤ 𝐶𝑋 for 𝑇 > 𝑇0. Then

𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁 E

[︁√
𝑇
(︁
𝜇(𝜃𝑖)− 𝜇(𝜃𝑖)

)︁]︁2
≡

𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁𝑋𝑖 𝑇

=
𝑁∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0 +

𝑁∑︁
𝑖=1

(𝑤2
𝑖𝑁 − 𝑤2

𝑖 )𝑑
′
0𝑉𝑖𝑑0 +

𝑁∑︁
𝑖=1

(𝑤2
𝑖𝑁 − 𝑤2

𝑖 )(𝑋𝑖 𝑇 − 𝑑′
0𝑉𝑖𝑑0)

+
𝑁∑︁
𝑖=1

𝑤2
𝑖 (𝑋𝑖 𝑇 − 𝑑′

0𝑉0𝑑0).

We deal with the four sums separately:

1. By assumption A.3,
∑︀𝑁

𝑖=1 𝑤
2
𝑖𝑑

′
0𝑉𝑖𝑑0 ≤ 𝜆̄Σ𝜆

2
𝐻 ‖𝑑0‖2, so

∑︀𝑁
𝑖=1𝑤

2
𝑖𝑑

′
0𝑉𝑖𝑑0 forms a

bounded non-decreasing sequence. Thus
∑︀𝑁

𝑖=1𝑤
2
𝑖𝑑

′
0𝑉𝑖𝑑0 →

∑︀∞
𝑖=1 𝑤

2
𝑖𝑑

′
0𝑉𝑖𝑑0.
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2. Consider
∑︀𝑁

𝑖=1(𝑤
2
𝑖𝑁 − 𝑤2

𝑖 )𝑑
′
0𝑉𝑖𝑑0

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

(𝑤2
𝑖𝑁 − 𝑤2

𝑖 )𝑑
′
0𝑉𝑖𝑑0

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

(𝑤𝑖𝑁 − 𝑤𝑖)(𝑤𝑖𝑁 + 𝑤𝑖)𝑑
′
0𝑉𝑖𝑑0

⃒⃒⃒⃒
⃒

≤ sup
𝑗
|𝑤𝑗 𝑁 − 𝑤𝑗|

𝑁∑︁
𝑖=1

(𝑤𝑖𝑁 + 𝑤𝑖)𝑑0𝑉𝑖𝑑0

≤ 2𝜆̄Σ𝜆
2
𝐻 ‖𝑑0‖2 sup

𝑗
|𝑤𝑗 𝑁 − 𝑤𝑗| → 0 ,

where we have used A.3.

3. Similarly we obtain that

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

(𝑤2
𝑖𝑁 − 𝑤2

𝑖 )(𝑋𝑖 𝑇 − 𝑑′
0𝑉𝑖𝑑0)

⃒⃒⃒⃒
⃒ =

⃒⃒⃒⃒
⃒

𝑁∑︁
𝑖=1

(𝑤𝑖𝑁 − 𝑤𝑖)(𝑤𝑖𝑁 + 𝑤𝑖)(𝑋𝑖 𝑇 − 𝑑′
0𝑉𝑖𝑑0)

⃒⃒⃒⃒
⃒

≤ sup
𝑗
|𝑤𝑗 𝑁 − 𝑤𝑗|

𝑁∑︁
𝑖=1

(𝑤𝑖𝑁 + 𝑤𝑖)|𝑋𝑖 𝑇 − 𝑑0𝑉𝑖𝑑0|

≤ 2
[︀
𝜆̄Σ𝜆

2
𝐻 ‖𝑑0‖2 + 𝐶𝑋

]︀
sup
𝑗
|𝑤𝑗 𝑁 − 𝑤𝑗| → 0 .

4. Last, we apply the dominated convergence theorem to show that
∑︀𝑁

𝑖=1𝑤
2
𝑖 (𝑋𝑖 𝑇 −

𝑑′
0𝑉𝑖𝑑0) → 0.

Define 𝑓𝑁,𝑇 : N → R as 𝑓𝑁,𝑇 (𝑖) = 𝑤2
𝑖𝑁(𝑋𝑖 𝑇 − 𝑑′

0𝑉𝑖𝑑0) if 𝑖 ≤ 𝑁 and 𝑓𝑁,𝑇 (𝑖) = 0 if

𝑖 > 𝑁 . For each 𝑖,
{︁√

𝑇 (𝜇(𝜃𝑖)− 𝜃𝑖), 𝑇 = 𝑇0 + 1, . . .
}︁

form a family with uniformly

bounded (2 + 𝛿)th moments (by lemma A.2.2). By lemma 1
√
𝑇 (𝜇(𝜃𝑖) − 𝜃𝑖) ⇒

𝑁(0,𝑑′
0𝑉𝑖𝑑0), hence by Vitali’s convergence theorem the second moments converge

as 𝑋𝑖 𝑇 → 𝑑′
0𝑉𝑖𝑑0. This convergence is equivalent to the observation that for each 𝑖

𝑓𝑁,𝑇 (𝑖) converges to zero as 𝑁, 𝑇 → ∞ .

Next, 𝑓𝑁,𝑇 is dominated: for any 𝑖 it holds that |𝑓𝑁,𝑇 (𝑖)| ≤ 𝑤2
𝑖 |𝑋𝑖 𝑇 − 𝑑′

0𝑉𝑖𝑑0| ≤

𝑤𝑖(𝐶𝑋 + 𝜆̄Σ𝜆
2
𝐻 ‖𝑑‖20). The bound is summable:

∑︀∞
𝑖=1𝑤𝑖(𝐶𝑋 + 𝜆̄Σ𝜆

2
𝐻 ‖𝑑‖20) ≤

(𝐶𝑋 + 𝜆̄Σ𝜆
2
𝐻 ‖𝑑‖20), which is independent of 𝑁 and 𝑇 .
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The dominated convergence theorem applies and so

𝑁∑︁
𝑖=1

𝑤2
𝑖 (𝑋𝑖 𝑇 − 𝑑′

0𝑉𝑖𝑑0) =
∞∑︁
𝑖=1

𝑓𝑁,𝑇 (𝑖) →
∞∑︁
𝑖=1

0 = 0 as 𝑁, 𝑇 → ∞.

Combining the above arguments, we obtain that as 𝑁, 𝑇 → ∞

𝑁∑︁
𝑖=1

𝑤2
𝑖𝑁 E

[︁√
𝑇
(︁
𝜇(𝜃𝑖)− 𝜇(𝜃𝑖)

)︁]︁2
→

∞∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0 . (A.2.8)

Combining together equations (A.2.6), (A.2.7), and (A.2.8) shows that as 𝑁, 𝑇 → ∞

𝑇 × E [𝜇̂(𝑤𝑁)− 𝜇(𝜃1)]
2 →

(︃
∞∑︁
𝑖=1

𝑤𝑖𝑑
′
0𝜂𝑖 − 𝑑′

0𝜂1

)︃2

+
∞∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0 .

A.3 Proof of Theorem 2

Before presenting the proof of theorem 2, we introduce a number of intermediate results.

We first give a straightforward modification of theorem 1 in Phillips and Moon (1999),

which allows us to replace sequential convergence (first taking limits as 𝑇 → ∞, then as

𝑁 → ∞) by joint convergence (𝑁, 𝑇 → ∞ jointly).

Lemma A.3.1. Let 𝑌𝑖 𝑇 be random variables indexed by 𝑖 = 1, . . . , 𝑁 and 𝑇 = 1,2, . . . ,.

Suppose 𝑌𝑖 𝑇 are independent over 𝑖 and that

(i) 𝑌𝑖 𝑇 ⇒ Λ𝑖 as 𝑇 → ∞,

(ii)
∑︀𝑁

𝑖=1 𝑤𝑖𝑁Λ𝑖 ⇒ 𝑋 as 𝑁 → ∞,

(iii) lim sup𝑁,𝑇→∞
∑︀𝑁

𝑖=1𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )− E(Λ𝑖)| = 0,

(iv) lim sup𝑁,𝑇→∞
∑︀𝑁

𝑖=1 E|𝑤𝑖𝑁𝑌𝑖 𝑇 | < ∞,

(v) lim sup𝑁→∞
∑︀𝑁

𝑖=1 E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
= 0 for any 𝜀 > 0, and

(vi) lim sup𝑁,𝑇→∞
∑︀𝑁

𝑖=1 E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑤𝑖 𝑁𝑌𝑖 𝑇 |>𝜀

]︀
= 0 for any 𝜀 > 0 .
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Then as 𝑁, 𝑇 → ∞
𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 ⇒ 𝑋.

In particular, if as 𝑁 → ∞ it holds that
∑︀𝑁

𝑖=1𝑤𝑖𝑁Λ𝑖
𝑝−→ 𝐴 for 𝐴 non-random, then as

𝑁, 𝑇 → ∞ it holds that
∑︀𝑁

𝑖=1𝑤𝑖𝑁𝑌𝑖 𝑇
𝑝−→ 𝐴.

Proof. The proof is close to that of theorem 1 in Phillips and Moon (1999). The key

modification consists in replacing 𝑛−1𝜁𝑘,𝑛,𝑇 (in their notation) by

𝑊𝑘𝑁 𝑇 =
∑︁
1≤𝑖<𝑘

𝑤𝑖𝑁𝑌𝑖 𝑇 +
∑︁

𝑘<𝑖≤𝑁

𝑤𝑖𝑁Λ𝑖

and every factor 1/𝑛 by the appropriate weight 𝑤𝑖𝑁 . As in their theorem 1, this establishes

condition (3.9) of Phillips and Moon (1999): for all bounded continuous 𝑓

lim sup
𝑁,𝑇→∞

⃒⃒⃒⃒
⃒E
(︃
𝑓

(︃
𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇

)︃)︃
− E

(︃
𝑓

(︃
𝑁∑︁
𝑖=1

𝑤𝑖Λ𝑖

)︃)︃⃒⃒⃒⃒
⃒ = 0

By lemma 6 in Phillips and Moon (1999), this implies the result of the theorem.

To apply lemma A.3.1, for the remainder of the section define

𝑌𝑖 𝑇 =
√
𝑇 (𝜇(𝜃𝑖)− 𝜇(𝜃1)), (A.3.1)

and note that 𝑌𝑖 𝑇 ⇒ Λ𝑖 as 𝑇 → ∞, where Λ𝑖 ∼ 𝑁 (𝑑′
0(𝜂𝑖 − 𝜂1),𝑑

′
0𝑉𝑖𝑑0) is the random

variable that appears on the right hand side in lemma 1. As before, let 𝑑1 = ∇𝜇(𝜃1),

𝑑0 = ∇𝜇(𝜃0).

Lemma A.3.2. Let 𝑌𝑖 𝑇 be defined as in eq. (A.3.1). Under assumptions of theorem 2

𝑁̄∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 ⇒
𝑁̄∑︁
𝑖=1

𝑤𝑖Λ𝑖 as 𝑁, 𝑇 → ∞.

Proof. Note that randomness enters only the 𝑇 dimension here. As {𝑌𝑖 𝑇}𝑁̄𝑖=1 ⇒ {Λ𝑖}𝑁̄𝑖=1
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as 𝑁, 𝑇 → ∞ (𝑁 does not matter), and as 𝑁, 𝑇 → ∞ {𝑤𝑖𝑁}𝑁̄𝑖=1 → {𝑤𝑖}𝑁̄𝑖=1 as 𝑁, 𝑇 → ∞.

Slutsky’s theorem gives the result.

Recall that under assumption (ii) of theorem 2 it holds that

sup
𝑖>𝑁̄

𝑤𝑖𝑁 = 𝑜(𝑁− 1
2 ) .

Lemmas A.3.3-A.3.7 verify conditions (𝑖𝑖)-(𝑣𝑖) of lemma A.3.1 for
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁𝑌𝑖 𝑇 , 𝑁 > 𝑁̄ .

Lemma A.3.3. Let 𝑌𝑖 𝑇 be defined as in eq. (A.3.1). Under assumptions of theorem 2

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁Λ𝑖
𝑝−→ −

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑖

)︃
𝑑′
0𝜂1 as 𝑁 → ∞ .

Proof. By the triangle inequality

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁Λ𝑖 −

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑖

)︃
(−𝑑′

0𝜂1)

⃒⃒⃒⃒
⃒⃒

≤

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁Λ𝑖 −
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)

⃒⃒⃒⃒
⃒⃒

+

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑖

)︃
(−𝑑′

0𝜂1)

⃒⃒⃒⃒
⃒⃒ . (A.3.2)

We show that both terms on the right hand side converge to zero in probability. First

we show that
⃒⃒⃒∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁Λ𝑖 −
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)

⃒⃒⃒
𝑝−→ 0. Consider the variance of∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁Λ𝑖:

Var

⎛⎝ 𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁Λ𝑖

⎞⎠ =
𝑁∑︁

𝑖=𝑁̄+1

𝑤2
𝑖𝑁𝑑

′
0𝑉𝑖𝑑0

≤

[︃
sup
𝑗>𝑁̄

𝑤𝑗 𝑁

]︃
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁𝑑
′
0𝑉𝑖𝑑0

≤ 𝜆̄Σ𝜆
2
𝐻 ‖𝑑0‖2

[︃
sup
𝑗>𝑁̄

𝑤𝑗 𝑁

]︃
,
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where we used independence of Λ𝑖, the expressions for variance of Λ𝑖 given in lemma

1, and the bound on variance 𝑉𝑖 = 𝐻−1
𝑖 Σ𝑖𝐻

−1
𝑖 implied by assumption A.3 on the

bounds of eigenvalues of component variance matrices. Since E
(︁∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁Λ𝑖

)︁
=∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1), by Chebyshev’s inequality and the above bound for variance, for

any 𝜀 > 0 it holds that

𝑃

⎛⎝⃒⃒⃒⃒⃒⃒ 𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁Λ𝑖 −
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)

⃒⃒⃒⃒
⃒⃒ > 𝜀

⎞⎠ (A.3.3)

≤
𝜆̄Σ𝜆

2
𝐻 ‖𝑑0‖2

[︀
sup𝑗>𝑁̄ 𝑤𝑗 𝑁

]︀
𝜀

= 𝑜(1),

by assumption (iii) of theorem 2. Next we show that

⃒⃒⃒⃒
⃒⃒ 𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑖

)︃
(−𝑑′

0𝜂1)

⃒⃒⃒⃒
⃒⃒→ 0

by considering two cases depending on whether
∑︀𝑁̄

𝑖=1 𝑤𝑖 is equal to 1 or not.

Case I : suppose that
∑︀𝑁̄

𝑖=1 𝑤𝑖 ̸= 1. In this case there exist 𝑁0, 𝜀𝑤 > 0 such that for

all 𝑁 > 𝑁0 it holds that
∑︀𝑁̄

𝑖=1𝑤𝑖𝑁 ≤ 1 − 𝜀𝑤. Note that 𝑁0 is necessarily larger than

𝑁̄ . Define 𝑤̃𝑖𝑁 = 𝑤𝑖𝑁/
(︁
1−

∑︀𝑁̄
𝑖=1𝑤𝑖𝑁

)︁
. For 𝑁 > 𝑁0, (𝑤̃𝑁̄+1𝑁 , 𝑤̃𝑁̄+2𝑁 , . . . , 𝑤̃𝑁−𝑁̄ 𝑁)

satisfies 𝑤̃𝑖𝑁 ≥ 0 and
∑︀𝑁

𝑖=𝑁̄+1 𝑤̃𝑖𝑁 = 1. For all 𝑁 > 𝑁̃ we have that 𝑤̃𝑖𝑁 ≤ 𝜀−1
𝑤 𝑤𝑖𝑁 ,

which implies that sup𝑖>𝑁̄ 𝑤̃𝑖𝑁 ≤ 𝜀−1
𝑤 sup𝑗>𝑁̄ 𝑤𝑖𝑁 = 𝑜(𝑁−1/2). By lemma A.2.4 taken with

𝛾 = 1/2, we obtain that
∑︀𝑁

𝑖=𝑁̄+1 𝑤̃𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1) =

∑︀𝑁
𝑖=𝑁̄+1 𝑤̃𝑖𝑁𝑑

′
0𝜂𝑖 − 𝑑′

0𝜂1 → −𝑑′
0𝜂1

(a.s. with respect to the distribution of 𝜂). The weights 𝑤̃ satisfy the hypothesis of

lemma A.2.4 with the limit weights equal to the zero sequence as sup𝑖>𝑁̄ 𝑤̃𝑖𝑁 = 𝑜(𝑁−1/2).

Since
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖−𝜂1) =

(︁
1−

∑︀𝑁̄
𝑖=1 𝑤𝑖𝑁

)︁∑︀𝑁
𝑖=𝑁̄+1 𝑤̃𝑖𝑁𝑑

′
0(𝜂𝑖−𝜂1), we obtain that⃒⃒⃒∑︀𝑁

𝑖=𝑁̄+1 𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︁
1−

∑︀𝑁̄
𝑖=1 𝑤𝑖

)︁
(−𝑑′

0𝜂1)
⃒⃒⃒
→ 0. Together with eqs. (A.3.2) and
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(A.3.3), this implies that in this case

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁Λ𝑖
𝑝−→ −

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑖

)︃
𝑑′
0𝜂1 .

Case II : suppose that
∑︀𝑁̄

𝑖=1𝑤𝑖 = 1. We show that
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁𝑑
′
0(𝜂𝑖 − 𝜂1) −→ 0 𝜂-a.s..

First,
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁𝑑
′
0𝜂1 = 𝑑′

0𝜂1

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 → 0 by the assumption that

∑︀𝑁̄
𝑖=1 𝑤𝑖𝑁 → 1.

Second,
∑︀𝑁

𝑖=𝑁̄+1 𝑤𝑖𝑁𝑑
′
0𝜂𝑖 −→ E𝜂(𝑑

′
0𝜂𝑖) = 0 by lemma A.2.3, since 𝑑′

0𝜂𝑖 are i.i.d. variables

with finite third moments. As above, this argument and eqs. (A.3.2) and (A.3.3) imply

that
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁Λ𝑖
𝑝−→ 0.

Combining the two cases yields the assertion.

Lemma A.3.4. Let 𝑌𝑖 𝑇 be defined as in eq. (A.3.1). Under assumptions of theorem 2

lim sup
𝑁,𝑇→∞

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )− E(Λ𝑖)| = 0 as 𝑁, 𝑇 → ∞.

Proof. First, from lemma A.2.2 it follows that E|𝑌𝑖 𝑇 | exists for all 𝑖 and 𝑇 > 𝑇0. By

lemma 1, EΛ𝑖 = 𝑑′
0(𝜂𝑖 − 𝜂1). By eq. (A.1.2) of lemma A.1.1, we have

𝜇(𝜃𝑖) = 𝜇(𝜃1) + 𝑑′
1

(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)(𝜃𝑖 − 𝜃1), (A.3.4)

where 𝑑1 = ∇𝜇(𝜃1) and 𝜃𝑖 lies on the segment joining 𝜃𝑖 and 𝜃1. Then

𝑌𝑖 𝑇 −E(Λ𝑖) = 𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 −𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 −𝜃1)−𝑑′

0(𝜂𝑖 −𝜂1). (A.3.5)

We now establish a bound on |E(𝑌𝑖 𝑇 )− E(Λ𝑖)|. Take expectations in eq. (A.3.5):

|E(𝑌𝑖 𝑇 )− E(Λ𝑖)|

=

⃒⃒⃒⃒
E
[︂
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)− 𝑑′

0(𝜂𝑖 − 𝜂1)

]︂⃒⃒⃒⃒

53



(*) ≤
⃒⃒⃒
𝑑′
1 E
[︁√

𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
+

⃒⃒⃒⃒
E
[︂
1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︂⃒⃒⃒⃒
+ |(𝑑1 − 𝑑0)

′(𝜂𝑖 − 𝜂1)|

(**) ≤ ‖𝑑1‖
𝐶𝐵𝑖𝑎𝑠√

𝑇
+ 𝐶∇2𝜇

⃒⃒⃒
E
(︁√

𝑇 (𝜃𝑖 − 𝜃1)
′(𝜃𝑖 − 𝜃1)

)︁⃒⃒⃒
+

𝐶∇2𝜇√
𝑇

‖𝜂1‖ ‖𝜂1 − 𝜂1‖

(* * *) ≤ ‖𝑑1‖
𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇√
𝑇

E
⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦2

+
2𝐶∇2𝜇√

𝑇
E
⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦
‖𝜂𝑖 − 𝜂1‖

+
𝐶∇2𝜇√

𝑇
‖𝜂𝑖 − 𝜂1‖2 +

𝐶∇2𝜇√
𝑇

‖𝜂1‖ ‖𝜂1 − 𝜂1‖

(* * **) ≤ 𝐶∇𝜇
𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇𝐶𝜃,2√
𝑇

+
𝐶∇2𝜇√

𝑇

(︁
2𝐶𝜃,1 + ‖𝜂1‖

)︁
‖𝜂𝑖 − 𝜂1‖

+
𝐶∇2𝜇√

𝑇
‖𝜂𝑖 − 𝜂1‖2 . (A.3.6)

where the constants 𝐶 do not depend on 𝑖. Here

(*) 𝜃1 is replaced by 𝜃𝑖 in the first term using 𝑑′
1

√
𝑇 (𝜃𝑖−𝜃1)−𝑑′

1(𝜂𝑖−𝜂1) = 𝑑′
1

√
𝑇 (𝜃𝑖−𝜃𝑖)

(**) In the first term we apply Hölder’s inequality inside the absolute value as

⃒⃒⃒
𝑑′
1 E
[︁√

𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
≤ ‖𝑑1‖∞

⃦⃦⃦
E(

√
𝑇 (𝜃𝑖 − 𝜃𝑖))

⃦⃦⃦
1
≤ ‖𝑑1‖2

√
𝑇
⃦⃦⃦
E(𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
1
.

Assumption A.4 bounds
√
𝑇
⃦⃦⃦
E(𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
1
≤ 𝐶𝐵𝑖𝑎𝑠/

√
𝑇 . In the second term apply

A.5 to replace the Hessian ∇2𝜇(𝜃𝑖). In the third term apply assumptions A.1 and

A.5: ∇𝜇 is a differentiable function with norm of the derivative bounded, which

implies that ‖𝑑1 − 𝑑0‖ =
⃦⃦
∇𝜇(𝜃0 + 𝑇−1/2𝜂1)−∇𝜇(𝜃0)

⃦⃦
≤ 𝐶∇2𝜇 ‖𝜂1‖/

√
𝑇 .

(***) Add and subtract 𝜃1 in both parentheses in the quadratic term, apply the triangle

inequality.

(****) Recall that 𝜃𝑖 − 𝜃1 = (𝜂𝑖 − 𝜂1)/
√
𝑇 by A.1. Expectations of

⃦⃦⃦√
𝑇 (𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
are

bounded using lemma A.2.1; by A.5 ‖𝑑1‖ ≤ 𝐶∇𝜇

Last, we can consider the sum
∑︀𝑁

𝑁̄+1 𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )−E(Λ𝑖)|, bounded by the corresponding

weighted sum of the right hand side of eq. (A.3.6). The first two terms in the bound do
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not depend on 𝑖, and so

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁

[︂
𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇𝐶𝜃,2√
𝑇

]︂
≤ 𝐶∇𝜇𝐶𝐵𝑖𝑎𝑠√

𝑇
+

𝐶∇2𝜇𝐶𝜃,2√
𝑇

→ 0

since 𝑤𝑖𝑁 are part of a weight vector. For the third and the fourth term we make use of

the conditions on weight decay and the moments of 𝜂𝑖. Examine

𝐶∇2𝜇√
𝑇

[︁
2𝐶𝜃,2 + ‖𝜂1‖

]︁ 𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖+
𝐶∇2𝜇√

𝑇

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 .

By lemma A.2.4 sup𝑁

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖𝑘, 𝑘 = 1, 2 are finite. Then for some 𝑀 < ∞

the above display is bounded by 𝑀/
√
𝑇 and thus converges to zero as well. Combining

the last two results together, we obtain that sup𝑁

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 |E(𝑌𝑖 𝑇 )− E(Λ𝑖)| → 0 as

𝑇 → ∞, giving the result of the lemma.

Lemma A.3.5. Let 𝑌𝑖 𝑇 be defined as in eq. (A.3.1). Under assumptions of theorem 2

lim sup
𝑁,𝑇→∞

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 | < ∞ as 𝑁, 𝑇 → ∞.

Proof. Existence of E|𝑌𝑖 𝑇 | for 𝑇 > 𝑇0 follows from lemma A.2.2. Add and subtract E(Λ𝑖)

under the absolute value in E|𝑌𝑖 𝑇 | to get

E|𝑌𝑖 𝑇 | ≤ |E(Λ𝑖)|+ E|𝑌𝑖 𝑇 − E(Λ𝑖)|

= |𝑑′
0(𝜂𝑖 − 𝜂1)|+ E|𝑌𝑖 𝑇 − E(Λ𝑖)|

≤ ‖𝑑0‖ ‖𝜂𝑖 − 𝜂0‖+ E|𝑌𝑖 𝑇 − E(Λ𝑖)| ,

55



where we apply the Cauchy-Schwarz inequality in the last line. Take weighted sums

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 | ≤ ‖𝑑0‖
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖+
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − Λ𝑖|.

We show that both sums are bounded as 𝑁, 𝑇 → ∞. First, as in lemma A.3.4, from

lemma A.2.4 it follows that sup𝑁

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖ < ∞. Now turn to the second

sum. Using eq. (A.3.4), we proceed similarly to the proof of lemma A.3.4:

E|(𝑌𝑖 𝑇 )− E(Λ𝑖)|

= E
⃒⃒⃒⃒[︂
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)− 𝑑′

0(𝜂𝑖 − 𝜂1)± 𝑑′
1(𝜂𝑖 − 𝜂1)

]︂⃒⃒⃒⃒
≤ E

⃒⃒⃒
𝑑′
1

[︁√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
+ E

⃒⃒⃒⃒[︂
1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

]︂⃒⃒⃒⃒
+ |(𝑑1 − 𝑑0)

′(𝜂𝑖 − 𝜂1)|

≤ 𝐶∇𝜇𝐶𝜃,1 +
𝐶∇2𝜇𝐶𝜃,2√

𝑇
+

𝐶∇2𝜇√
𝑇

[︁
2𝐶𝜃,1 + ‖𝜂1‖

]︁
‖𝜂𝑖 − 𝜂1‖+

𝐶∇2𝜇√
𝑇

‖𝜂𝑖 − 𝜂1‖2 .

There is one change relative to lemma A.3.4: by the Cauchy-Schwarz inequality and

assumption A.5, E
⃒⃒⃒
𝑑′
1

[︁√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁]︁⃒⃒⃒
≤ 𝐶∇𝜇 E

⃦⃦⃦√
𝑇 (𝜃𝑖 − 𝜃𝑖)

⃦⃦⃦
, to which we then ap-

ply lemma A.2.1. The constant 𝐶𝐵𝑖𝑎𝑠 does not appear in the above bound. Take

weighted sums in
∑︀𝑁

𝑖=𝑁̄+1 𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − Λ𝑖|, and use the above bound for each term in

the sum. The argument proceeds similarly to lemma A.3.4. The first two terms in

the bound satisfy
∑︀𝑁

𝑖=𝑁̄+1 𝑤𝑖𝑁

(︁
𝐶∇𝜇𝐶𝜃,1 + 𝐶∇2𝜇𝐶𝜃,2/

√
𝑇
)︁

≤ 𝐶∇𝜇𝐶𝜃,1 + 𝐶∇2𝜇𝐶𝜃,2/
√
𝑇 ,

which is independent of 𝑁 and convergent in 𝑇 . Both sums
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖ and∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 are bounded in 𝑁 regardless of 𝑇 by lemma A.2.4. We conclude

that
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − Λ𝑖| is bounded in 𝑁 and 𝑇 , giving the claim of the lemma.

Lemma A.3.6. Let assumptions of theorem 2 hold, and let Λ𝑖 be as in lemma 1. Then

for any 𝜀 > 0

lim sup
𝑁→∞

𝑁∑︁
𝑖=𝑁̄+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
= 0.
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Proof. Since sup𝑖>𝑁̄ 𝑤𝑖𝑁 = 𝑜(𝑁−1/2), there exists some 𝐶𝑤 > 0 and 𝑁0 such that for

all 𝑁 > 𝑁0 it holds that 𝑤𝑖𝑁 < 𝐶−1
𝑤 𝑁−1/2 for all 𝑖 > 𝑁̄ . Also observe that for 𝑝 > 1

E(|𝑋| I𝑋>𝑀) ≤ 𝑀−(𝑝−1) E(|𝑋|𝑝). Hence for 𝑝 > 1

𝑁∑︁
𝑖=𝑁̄+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
≤

𝑁∑︁
𝑖=𝑁̄+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖| I|Λ𝑖>𝐶𝑤𝑁1/2𝜀|

]︀
≤ 1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 E(|Λ𝑖|𝑝). (A.3.7)

Pick 𝑝 = 2. Since 1/(𝐶𝑤𝜀𝑁
1/2) → 0, it is sufficient to show that

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 E(|Λ𝑖|2) is

bounded over 𝑁 .

Since |Λ𝑖| is folded normal, its first two moments are given by (see Elandt (1961)):

E|Λ𝑖|2 = (𝑑′
0(𝜂𝑖 − 𝜂1))

2 + 𝑑′
0𝑉𝑖𝑑0 − (E|Λ𝑖|)2,

E|Λ𝑖| =
√︀

𝑑′
0𝑉𝑖𝑑0

√︂
2

𝜋
𝑒
− (𝑑′0(𝜂𝑖−𝜂1))

2

2𝑑′0𝑉𝑖𝑑0 + 𝑑′
0(𝜂𝑖 − 𝜂1)

(︃
1− 2Φ

(︃
−𝑑′

0(𝜂𝑖 − 𝜂1)

2
√︀

𝑑′
0𝑉𝑖𝑑0

)︃)︃
.

It is sufficient to establish the boundedness of the weighted sum of each term separately.

We proceed in order of appearance in the preceding display.

1. By the Cauchy-Schwarz inequality

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁(𝑑
′
0(𝜂𝑖 − 𝜂1))

2 ≤ ‖𝑑0‖2
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 .

The sum on the right is bounded over 𝑁 by lemma A.2.4.

2. By the bound on variance of assumption A.3 it holds that

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁𝑑
′
0𝑉𝑖𝑑0 ≤ 𝜆̄Σ𝜆

2
𝐻 ‖𝑑0‖2 .
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3. Consider the first term in (E|Λ𝑖|)2:

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁𝑑
′
0𝑉𝑖𝑑0

2

𝜋

[︃
𝑒
− (𝑑′0(𝜂𝑖−𝜂1))

2

2𝑑′0𝑉𝑖𝑑0

]︃2
≤ 𝜆̄Σ𝜆

2
𝐻 ‖𝑑0‖2

2

𝜋
.

4. Cross-term in (E|Λ𝑖|)2:

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁

⃒⃒⃒⃒
⃒√︀𝑑′

0𝑉𝑖𝑑0

√︂
2

𝜋
𝑒
− (𝑑′0(𝜂𝑖−𝜂1))

2

2𝑑′0𝑉𝑖𝑑0 𝑑′
0(𝜂𝑖 − 𝜂1)

(︃
1− 2Φ

(︃
−𝑑′

0(𝜂𝑖 − 𝜂1)

2
√︀

𝑑′
0𝑉𝑖𝑑0

)︃)︃⃒⃒⃒⃒
⃒

≤
√︁
𝜆̄Σ𝜆

2
𝐻 ‖𝑑0‖2

√︂
2

𝜋

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖ .

The sum in the last line is bounded over 𝑁 by lemma A.2.4.

5. Square of the second term:

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 [𝑑′
0(𝜂𝑖 − 𝜂1)]

2

(︃
1− 2Φ

(︃
−𝑑′

0(𝜂𝑖 − 𝜂1)

2
√︀
𝑑′
0𝑉𝑖𝑑0

)︃)︃2

≤
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁 [𝑑′
0(𝜂𝑖 − 𝜂1)]

2 ≤ ‖𝑑0‖2
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2 ,

where the last sum is bounded by lemma A.2.4.

Combining the above arguments, we conclude that sup𝑁

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 E(|Λ𝑖|2) < ∞. By

eq. (A.3.7)

𝑁∑︁
𝑖=𝑁̄+1

E
[︀
𝑤𝑖𝑁 |Λ𝑖|I|𝑤𝑖 𝑁Λ𝑖|>𝜀

]︀
≤ 1

𝐶𝑤𝜀𝑁1/2
sup
𝑁

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 E(|Λ𝑖|2

The right hand side tends to 0 as 𝑁 → ∞.

Lemma A.3.7. Let 𝑌𝑖 𝑇 be defined as in eq. (A.3.1). Under assumptions of theorem 2,

for any 𝜀 > 0

lim sup
𝑁,𝑇→∞

𝑁∑︁
𝑖=𝑁̄+1

E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑤𝑖 𝑁𝑌𝑖 𝑇 |>𝜀

]︀
= 0.
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Proof. Existence of E|𝑌𝑖 𝑇 | for 𝑇 > 𝑇0 follows from lemma A.2.2. We use the same strategy

as in lemma A.3.6. Since sup𝑖>𝑁̄ 𝑤𝑖𝑁 = 𝑜(𝑁−1/2), there exists some 𝐶𝑤 > 0 and 𝑁0 such

that for all 𝑁 > 𝑁0 it holds that 𝑤𝑖𝑁 < 𝐶−1
𝑤 𝑁−1/2 for all 𝑖 > 𝑁̄ . Then for 𝑝 > 1, if

E|𝑌𝑖 𝑇 |𝑝 exists, we obtain that

𝑁∑︁
𝑖=𝑁̄+1

E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑤𝑖 𝑁𝑌𝑖 𝑇 |>𝜀

]︀
≤

𝑁∑︁
𝑖=𝑁̄+1

E
[︀
𝑤𝑖𝑁 |𝑌𝑖 𝑇 |I|𝑌𝑖 𝑇 |>𝐶𝑤𝑁1/2𝜀

]︀
≤ 1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖,𝑁 E [|𝑌𝑖 𝑇 |𝑝]

≤ 2𝑝−1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|𝑝

+
2𝑝−1

(𝐶𝑤𝜀𝑁1/2)𝑝−1

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 |𝑑′
1(𝜂𝑖 − 𝜂1)|𝑝. (A.3.8)

It is sufficient to establish convergence of the weighted sums for some 𝑝 > 1, since the

leading 𝑁 (𝑝−1)/2 will then drive the expression to zero. Take 𝑝 = 1 + 𝛿′ where 𝛿′ = 𝛿/2 for

𝛿 from assumption A.3.

The second sum in eq. (A.3.8) is bounded over 𝑁 by lemma A.2.4, as

𝑁∑︁
𝑁̄+1

𝑤𝑖𝑁 |𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ ≤ 𝐶1+𝛿′

∇𝜇

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖1+𝛿′ .

Now consider
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁 E|𝑌𝑖 𝑇 −𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ . We proceed similarly to the proof

of lemma A.3.5. First, by lemma A.2.2 E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ < ∞. It remains to show

that the weighted sum is bounded over 𝑁 . Recall from lemma A.3.4 that

𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1) = 𝑑′

1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁
+

1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)
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for 𝜃𝑖 is intermediate between 𝜃𝑖 and 𝜃1. Then

|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′

≤ 2𝛿
′
⃒⃒⃒
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁⃒⃒⃒1+𝛿′

+ 2𝛿
′
⃒⃒⃒⃒
1

2
(𝜃𝑖 − 𝜃1)

′∇2𝜇(𝜃𝑖)
√
𝑇 (𝜃𝑖 − 𝜃1)

⃒⃒⃒⃒1+𝛿′

≤ 2𝛿
′
⃒⃒⃒
𝑑′
1

√
𝑇
(︁
𝜃𝑖 − 𝜃𝑖

)︁⃒⃒⃒1+𝛿′

+
22𝛿

′
𝐶1+𝛿′

∇2𝜇

𝑇 (1+𝛿′)/2

⃦⃦⃦√
𝑇 (𝜃 − 𝜃𝑖)

⃦⃦⃦2(1+𝛿′)

+ 21+3𝛿′𝐶1+𝛿′

∇2𝜇

⃒⃒⃒⃒√
𝑇 (𝜃𝑖 − 𝜃𝑖)

′ (𝜂𝑖 − 𝜂1)√
𝑇

⃒⃒⃒⃒1+𝛿′

+
22𝛿

′
𝐶1+𝛿′

∇2𝜇

𝑇 (1+𝛿′)/2
|(𝜂𝑖 − 𝜂1)

′(𝜂𝑖 − 𝜂1)|1+𝛿′
.

Taking expectations, we obtain

E|𝑌𝑖 𝑇 − 𝑑′
1(𝜂𝑖 − 𝜂1)|1+𝛿′ (A.3.9)

≤ 21+3𝛿′

[︃
𝐶1+𝛿′

𝜇 𝐶𝜃,1+𝛿/2 +
𝐶1+𝛿′

∇2𝜇 𝐶𝜃,2+𝛿

𝑇 (1+𝛿′)/2

+
2𝐶1+𝛿′

∇2𝜇 𝐶𝜃,1+𝛿/2

𝑇 (1+𝛿′)/2
‖𝜂𝑖 − 𝜂1‖1+𝛿′ +

𝐶1+𝛿′

∇2𝜇

𝑇 (1+𝛿′)/2
‖𝜂𝑖 − 𝜂1‖2(1+𝛿′)

]︃
,

where the bounds on E
⃦⃦⃦√

𝑇 (𝜃𝑖 − 𝜃𝑖)
⃦⃦⃦𝑘

, 𝑘 = 1 + 𝛿/2, 2 + 𝛿 follow from lemma A.2.1.

Take weighted sums
∑︀𝑁

𝑖=𝑁̄+1 𝑤𝑖𝑁 E|𝑌𝑖 𝑇 −𝑑′
1(𝜂𝑖−𝜂1)|1+𝛿′ . Then for the first two terms

it holds that

𝑁∑︁
𝑖=𝑁̄+1

𝑤𝑖𝑁𝐶
1+𝛿
∇𝜇 𝐶𝜃,1+𝛿/2 +

𝐶1+𝛿′

∇2𝜇 𝐶𝜃,2+𝛿

𝑇 (1+𝛿′)/2
≤ 𝐶1+𝛿

∇𝜇 𝐶𝜃,1+𝛿/2 +
𝐶1+𝛿′

∇2𝜇 𝐶𝜃,2+𝛿

𝑇 (1+𝛿′)/2
,

since constants are independent of 𝑖. For the third and the fourth term of eq. (A.3.9), it

is sufficient to observe that by lemma A.2.4 sup𝑁

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖2(1+𝛿′) < ∞ and

sup𝑁

∑︀𝑁
𝑖=𝑁̄+1𝑤𝑖𝑁 ‖𝜂𝑖 − 𝜂1‖1+𝛿′ < ∞.

Hence, both sums in eq. (A.3.8) are bounded uniformly over 𝑁 . Taking 𝑁 → ∞

shows the original sum of interest converges to 0.

Finally, we present the proof of theorem 2.
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Proof of theorem 2. Using the fact that
∑︀𝑁

𝑖=1𝑤𝑖𝑁 = 1 and recalling that 𝑁 > 𝑁̄ we write

√
𝑇 (𝜇̂(𝑤𝑁)− 𝜇(𝜃1)) =

𝑁∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 =
𝑁̄∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 +
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁𝑌𝑖 𝑇 .

The first sum contains the units whose weights are allowed to be asymptotically non-

negligible. By lemma A.3.2, as 𝑁, 𝑇 → ∞ jointly, it holds that

𝑁̄∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 ⇒
𝑁̄∑︁
𝑖=1

𝑤𝑖Λ𝑖 ∼ 𝑁

(︃
𝑁̄∑︁
𝑖=1

𝑤𝑖𝑑
′
1(𝜂𝑖 − 𝜂1),

𝑁̄∑︁
𝑖=1

𝑤2
𝑖𝑑

′
1𝑉𝑖𝑑1

)︃
.

The second sum contains the units whose weights satisfy sup𝑖>𝑁̄ 𝑤𝑖𝑁 = 𝑜(𝑁−1/2). By

appealing to lemma A.3.1, we show that
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁𝑌𝑖 𝑇
𝑝−→ −

(︁
1−

∑︀𝑁̄
𝑖=1 𝑤𝑖

)︁
𝑑′
0𝜂1 as

𝑁, 𝑇 → ∞ jointly. We turn to verifying the conditions of lemma A.3.1:

1. Assumption 1 (large 𝑇 step): follows from lemma 1 as

𝑌𝑖 𝑇 ⇒ Λ𝑖 ∼ 𝑁 (𝑑′
0(𝜂𝑖 − 𝜂1),𝑑

′
0𝑉𝑖𝑑0) .

2. Assumption 2 (large 𝑁 step): by lemma A.3.3,
∑︀𝑁

𝑖=𝑁̄+1𝑤𝑖𝑁Λ𝑖 converges in proba-

bility to −
(︁
1−

∑︀𝑁̄
𝑖=1𝑤𝑖

)︁
𝑑′
0𝜂1

3. Assumptions 3-6 are verified by lemmas A.3.4-A.3.7, respectively.

Last, by Slutsky’s theorem

𝑁̄∑︁
𝑖=1

𝑤𝑖𝑁𝑌𝑖 𝑇 +
𝑁∑︁

𝑖=𝑁̄+1

𝑤𝑖𝑁𝑌𝑖 𝑇

⇒ 𝑁

(︃
𝑁̄∑︁
𝑖=1

𝑤𝑖𝑑
′
0(𝜂𝑖 − 𝜂1)−

(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑖

)︃
𝑑′
0𝜂1,

𝑁̄∑︁
𝑖=1

𝑤2
𝑖𝑑

′
0𝑉𝑖𝑑0

)︃
,

which establishes the claim.
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A.4 Proof of Lemma 2

Proof of lemma 2. First assertion: in notation of the proof of lemma 1, for 𝑇 > 𝑇0

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
= 𝜂𝑖 − 𝜂1 +

√
𝑇

(︃
𝐻̂−1

𝑖 𝑇

1

𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃𝑖, 𝑧𝑖 𝑡)− 𝐻̂−1
1𝑇

1

𝑇

𝑇∑︁
𝑡=1

∇𝑚(𝜃1, 𝑧1 𝑡)

)︃
.

By lemma 1, the term in parentheses tends to 𝑍𝑖 − 𝑍1 ∼ 𝑁(𝜂𝑖 − 𝜂1,𝑉𝑖 + 𝑉1), as

𝑍1 and 𝑍𝑖 are independent. Convergence is joint by lemma 1 since
√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
=

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁
−

√
𝑇
(︁
𝜃1 − 𝜃1

)︁
.

Now turn to the second assertion. First, it holds that

√
𝑇

(︃
1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖 − 𝜃1

)︃
𝑝−→ −𝜂1

as 𝑁, 𝑇 → ∞ by theorem 2 with the 𝜇 the identity map (which satisfies condition A.5).23

Then

√
𝑇

(︃
𝜃1 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

)︃
=

√
𝑇
(︁
𝜃1 − 𝜃1

)︁
+
√
𝑇

(︃
𝜃1 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

)︃
⇒ 𝑍1+𝜂1 ∼ 𝑁(𝜂1,𝑉1),

by lemma 1 and Slutsky’s theorem.

A.5 Proof of Theorems 3 and 4

Proof of theorem 3. Lemma 2 implies that

√
𝑇 (𝜃𝑖 − 𝜃1) ⇒ 𝑍𝑖 −𝑍1

23Formally, we only establish theorem 2 for a scalar parameter 𝜇. To see that it applies to the case
of vector 𝜃 and 𝜇(𝜃) = 𝜃, it is sufficient to apply the Cramér-Wold device. The Cramér-Wold device
succeeds because for each 𝑐 ∈ Rdim 𝜃 𝜇(𝜃) = 𝑐′𝜃 is a scalar parameter that satisfies assumption A.5.
The corresponding gradient is 𝑑0 = 𝑐. Alternatively, the assertion can be seen by applying lemma A.3.1
directly to the MG estimator, the steps remain unchanged.
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jointly for all 𝑖 = 1, . . . ,𝑁 . Hence jointly for all 𝑖 and 𝑗 it holds that

[︁
Ψ̂𝑁̄

]︁
𝑖 𝑖
⇒ 𝑑′

0((𝑍𝑖 −𝑍1)(𝑍𝑖 −𝑍1)
′ + 𝑉𝑖)𝑑0 =

[︀
Ψ𝑁̄

]︀
𝑖 𝑖
,[︁

Ψ̂𝑁̄

]︁
𝑖 𝑗

⇒ 𝑑′
0((𝑍𝑖 −𝑍1)(𝑍𝑗 −𝑍1)

′)𝑑0 =
[︀
Ψ𝑁̄

]︀
𝑖 𝑗
, 𝑖 ̸= 𝑗.

Note that Ψ̂𝑁̄ is finite-dimensional, and all its elements jointly converge as 𝑇 → ∞. Then

the continuous mapping theorem readily implies that for any 𝑤𝑁̄ ∈ Δ𝑁̄

̂𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤
𝑁̄) ⇒ 𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤

𝑁̄) := 𝑤𝑁̄ ′
Ψ𝑁̄𝑤

𝑁̄ ,

which establishes the first claim.

The second claim is an implication of the argmax theorem (theorem 3.2.2 in Van der Vaart

and Wellner (1996)). The conditions of that theorem are satisfied since we have that

1. By the first assertion of the theorem, ̂𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤
𝑁̄) ⇒ 𝐿𝐴-𝑀𝑆𝐸𝑁̄(𝑤

𝑁̄) as

𝑇 → ∞ for every 𝑤𝑁̄ in the compact set Δ𝑁̄ .

2. The limit problem argmin𝑤𝑁̄∈Δ𝑁̄ 𝑤𝑁̄ ′
Ψ𝑁̄𝑤

𝑁̄ is a problem of minimizing a strictly

convex continuous function on a compact convex set Δ𝑁̄ , hence it has a unique

solution. Strict convexity of the objective function follows since Ψ𝑁̄ is positive

definite. To see that Ψ𝑁̄ is positive definite, it is sufficient to observe that for any

𝑤 ̸= 0 𝑤′Ψ𝑁̄𝑤 ≥ min𝑖:𝑤𝑖 ̸=0𝑤
2
𝑖𝑑

′
0𝑉𝑖𝑑0 > 0. The inequality follows as 𝑤′Ψ𝑁̄𝑤 is

formally the MSE associated with the problem with individual variances given by

𝑉𝑖 and biases of the form (𝑍𝑖 −𝑍1). Hence 𝑤′Ψ𝑁̄𝑤= Bias2(𝑤) + Variance(𝑤) ≥

Variance(𝑤) ≥ the minimal component of variance. Last, min𝑖:𝑤𝑖 ̸=0𝑤
2
𝑖𝑑

′
0𝑉𝑖𝑑0 > 0

since 𝑉𝑖 is positive definite by assumption A.3 and 𝑑0 ̸= 0.

3. The weights 𝑤̂𝑁̄ minimize ̂𝐿𝐴-𝑀𝑆𝐸𝑀(𝑤𝑁̄) over the compact set Δ𝑁̄ for all 𝑇 .

Then the argmax theorem applies and 𝑤̂𝑁̄ ⇒ 𝑤𝑁̄ = argmin𝑤𝑁̄∈Δ𝑁̄ 𝑤𝑁̄ ′
Ψ𝑁̄𝑤

𝑁̄ as 𝑇 → ∞.
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The third claim follows from joint convergence of the weights, the estimators being averaged,

and the continuous mapping theorem.

Proof of theorem 4. First assertion: let 𝑤𝑁̄,∞ ∈ Δ̃𝑁̄ . Then by lemma 2 and Slutsky’s

theorem we conclude that as 𝑁, 𝑇 → ∞

̂𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞)

= 𝑤𝑁̄,∞′
Ψ̂𝑁̄𝑤

𝑁̄,∞ +

[︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃(︃
√
𝑇𝑑′

1

(︃
𝜃1 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

)︃)︃

−2
𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖 𝑑′

1

√
𝑇
(︁
𝜃𝑖 − 𝜃1

)︁]︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃(︃
√
𝑇𝑑′

1

(︃
𝜃1 −

1

𝑁

𝑁∑︁
𝑖=1

𝜃𝑖

)︃)︃

⇒𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞)

:= 𝑤𝑁̄,∞′
Ψ𝑁̄𝑤

𝑁̄,∞ +

[︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃
𝑑′
0 (𝜂1 +𝑍1)

−2
𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖 𝑑′

0 (𝑍𝑖 −𝑍1)

]︃(︃
1−

𝑁̄∑︁
𝑖=1

𝑤𝑁̄,∞
𝑖

)︃
𝑑′
0 (𝜂1 +𝑍1)

Second assertion: follows by the same logic as in the fixed-𝑁 regime (theorem 3). The

objective function ̂𝐿𝐴-𝑀𝑆𝐸∞(𝑤𝑁̄,∞) can be represented as a quadratic function 𝑥′𝑄̂𝑥,

where 𝑥 ∈ Δ𝑁̄+1 stands in for
(︁
𝑤𝑁̄,∞, 1−

∑︀𝑁̄,∞
𝑖=1 𝑤𝑖

)︁
, and

𝑄̂ =

⎛⎜⎝Ψ̂𝑁̄ 𝑏̂

𝑏̂′ 𝑇
[︁
𝑑′
1

(︁
𝜃1 − 1

𝑁

∑︀𝑁
𝑖=1 𝜃𝑖

)︁]︁2
⎞⎟⎠⇒ 𝑄 =

⎛⎜⎝Ψ𝑁̄ 𝑏

𝑏
′

[𝑑′
0(𝜂1 +𝑍1)]

2

⎞⎟⎠

𝑏̂ =

⎛⎜⎜⎜⎜⎜⎝
−𝑑′

1𝑇 (𝜃1 − 𝜃1)
(︁
𝜃1 − 1

𝑁

∑︀𝑁
𝑖=1 𝜃𝑖

)︁′
𝑑1

...

−𝑑′
1𝑇 (𝜃𝑁̄ − 𝜃1)

(︁
𝜃1 − 1

𝑁

∑︀𝑁
𝑖=1 𝜃𝑖

)︁′
𝑑1

⎞⎟⎟⎟⎟⎟⎠⇒ 𝑏 =

⎛⎜⎜⎜⎜⎜⎝
𝑑′
0 (𝑍1 −𝑍1) (𝜂1 +𝑍1)

′𝑑0

...

𝑑′
0 (𝑍𝑁̄ −𝑍1) (𝜂1 +𝑍1)

′𝑑0

⎞⎟⎟⎟⎟⎟⎠ .

We now verify the condition of the argmax theorem for the problem of minimizing 𝑥′𝑄̂𝑥

over Δ𝑁̄+1:

1. By the first assertion of the theorem, for any 𝑥 in the compact set Δ𝑁̄+1 it holds
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that 𝑥′𝑄̂𝑥 ⇒ 𝑥′𝑄𝑥 as 𝑁, 𝑇 → ∞ jointly.

2. The limit problem argmin𝑥∈Δ𝑁̄+1 𝑥′𝑄𝑥 is a problem of minimizing a strictly convex

continuous function on a compact convex set Δ𝑁̄+1, hence it has a unique solution.

Similarly to the above, strict convexity follows from positive definiteness of 𝑄. To

establish positive definitiness, first let 𝑥 ̸= 0 such that at least one of first 𝑁̄ coordi-

nates are nonzero. For such an 𝑥 it holds that 𝑥′𝑄𝑥 ≥ min𝑖=1,...,𝑁̄ ,𝑥𝑖 ̸=0 𝑥
2
𝑖𝑑

′
0𝑉𝑖𝑑0 > 0

where the inequality follows as in the proof of theorem 3. Alternatively, if the first

𝑁̄ coordinates of 𝑥 are zero, then 𝑥′𝑄𝑤 = 𝑥2
𝑁̄+1

(𝑑′
0(𝜂1 +𝑍1))

2 > 0 ((𝑍1)-a.s.).

3. The vector 𝑥̂𝑁̄,∞ = (𝑤̂𝑁̄,∞, 1−
∑︀𝑁̄

𝑖=1 𝑤̂
𝑁̄,∞
𝑖 ) minimizes 𝑥′𝑄̂𝑥 over the compact set

Δ𝑁̄+1 for all 𝑁 > 𝑁̄, 𝑇 .

Then the argmax theorem shows that 𝑥̂𝑁̄,∞ ⇒ 𝑥𝑁̄,∞ := argmin𝑥∈Δ𝑁̄+1 𝑥′𝑄𝑥. Finally, it

is sufficient to observe that 𝑤̂𝑁̄,∞ comprises the first 𝑁̄ -coordinates of 𝑥̂𝑁̄,∞, and 𝑤𝑁̄,∞

comprises the first 𝑁̄ coordinates of 𝑥𝑁̄,∞.

The last assertion follows from the joint convergence of
(︀
𝑤̂𝑁̄,∞)︀, √𝑇 (𝜇(𝜃2−𝜇(𝜃1))), . . . ,

and
√
𝑇 (𝜇(𝜃𝑁̄ )−𝜇(𝜃1))) as 𝑁, 𝑇 → ∞, and from the fact that

√
𝑇 (
∑︀𝑁

𝑗=𝑁̄+1 𝑣𝑗 𝑁−𝑁̄𝜇(𝜃𝑖)−

𝜇(𝜃1))
𝑝−→ −𝑑′

0𝜂1 by theorem 2.
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