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Abstract

This paper discusses the problem of estimation and inference on the effects
of time-varying treatment. We propose a method for inference on the effects
treatment histories, introducing a dynamic covariate balancing method com-
bined with penalized regression. Our approach allows for (i) treatments to be
assigned based on arbitrary past information, with the propensity score being
unknown; (ii) outcomes and time-varying covariates to depend on treatment
trajectories; (iii) high-dimensional covariates; (iv) heterogeneity of treatment
effects. We study the asymptotic properties of the estimator, and we derive
the parametric n−1/2 convergence rate of the proposed procedure. Simula-
tions and an empirical application illustrate the advantage of the method over
state-of-the-art competitors.
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1 Introduction

This paper studies the estimation and inference of the average effect of treatment

trajectories (i.e., treatment history) for observational studies with n independent

units observed over T periods. Empirical examples include studying the effect of

public health insurance (Finkelstein et al., 2012), negative political advertisements

(Blackwell, 2013), or the long or short-run effects of minimum wages on employment.

We consider a setting where time-varying covariates and outcomes depend on

past treatment assignments, and treatments are assigned sequentially based on ar-

bitrary past information. Two alternative procedures can be considered for this

case. First, researchers may explicitly model how treatment effects propagate over

each period through time-varying covariates and intermediate outcomes. This ap-

proach is prone to large estimation error and misspecification in high dimensions:

it requires modeling outcomes and each time-varying covariate as a function of all

past covariates, outcomes, and treatment assignments. A second approach is to use

inverse-probability weighting estimators for estimation and inference (Tchetgen and

Shpitser, 2012; Vansteelandt et al., 2014). However, classical semi-parametric esti-

mators are prone to instability in the estimated propensity score. There are two main

reasons. First of all, the propensity score defines the joint probability of the entire

treatment history and can be close to zero for moderately long treatment histories.

Additionally, the propensity score can be misspecified in observational studies.1

Figure 1 presents an example. Here, the probability of being under treatment for

two consecutive periods in an application from Acemoglu et al. (2019) shifts towards

zero, making inverse-probability weighting estimators unstable in small sample.2

We overcome the problems above by proposing a parsimonious and easy-to-

interpret model for potential outcomes. In the spirit of local projections (Jordà,

2005), we model the potential outcome as an (approximately) linear function of pre-

1An example for misspecification is when treatments depend on the decisions of forward-looking
agents who maximize expected utility (Heckman and Navarro, 2007) with unknown utilities.

2Estimation is performed via logistic regression with a pooled regression with year, region fixed
effects, and four lagged outcomes. The right panel also controls for the past treatment assignment.
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Figure 1: Data from Acemoglu et al. (2019). Estimated probability of treatment for
one year (left-panel) and two consecutive years (right-panel).

vious potential outcomes and (high-dimensional) covariates.3 Unlike the standard

local projection framework, the model on potential outcomes allows researchers to

be agnostic on the treatment assignment mechanism. In particular, assignments can

depend on some unknown functions of arbitrary past information4, and treatment

effect have dynamics in outcomes and time-varying covariates.

Our method, entitled Dynamic Covariate Balancing (DCB), combines high di-

mensional estimation with covariate balancing. First, we study the identification of

the model’s parameters. Identification of treatment effects’ paths consists of project-

ing conditional expectations recursively onto previous periods while controlling for

past treatment history. We estimate each conditional expectation via penalized re-

gression. We derive novel dynamic balancing conditions to circumvent the propensity

score estimation and guarantee a negligible bias of the high-dimensional coefficients.

Balancing covariates is intuitive and common in practice: in cross-sectional stud-

ies, treatment and control units are comparable when the two groups have similar

3Potential outcomes and covariates are indexed by the past treatment history.
4The outcome model nests linear models with arbitrarily many auto-regressive components with-

out, however, being required to estimate separate regressions for each time-varying covariate. It
encompasses marginal structural models of Robins et al. (2000) under approximate linearity.
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characteristics (Hainmueller, 2012; Imai and Ratkovic, 2014; Li et al., 2018; Ning

et al., 2017). We generalize covariate balancing of Zubizarreta (2015) and Athey

et al. (2018) to a dynamic setting. One important insight is to construct weights

sequentially in time, where balancing weights in the current period depends on those

estimated in the previous period. We show that our balancing procedure (i) allows for

estimation and inference without knowledge of the propensity score; (ii) guarantees

a vanishing bias of order faster than n−1/2 and valid asymptotic inference; and (iii)

solves a feasible quadratic program to find the weights with minimal variance and

thus ensures robustness to poor overlap in a small sample. While identification and

balancing differ from the cross-sectional studies due to the dynamic structure, theo-

retical derivations differ since they require to study the joint distribution of weighted

combinations of residuals from local projections under arbitrary time dependence.

Our numerical studies show the advantage of the proposed method over state-

of-the-art competitors. In our empirical application, we study the effect of negative

advertisement on the election outcome and the effect of democracy on GDP growth.

The remainder of the paper is organized as follows. In Section 2, we discuss

the framework and model in the presence of two periods. In Section 3 we discuss

balancing with two periods. In Section 4 we extend to multiple periods and discuss

theoretical guarantees. Numerical studies and the empirical application are included

in Section 5 and Section 6 respectively. Section 7 concludes.

1.1 Related Literature

Dynamic treatments have been widely discussed in several independent strands of

literature. Robins (1986), Robins et al. (2000), Hernán et al. (2001), Boruvka et al.

(2018), Blackwell (2013), Bang and Robins (2005) and others discuss estimation and

inference on dynamic treatments (for a review, Vansteelandt et al., 2014). Bojinov

and Shephard (2019), Bojinov et al. (2020) study inverse-probability weighting es-

timators and characterize their properties from a design-based perspective. Doubly

robust estimators (Robins et al., 1994) for dynamic treatment assignment have been

studied by Jiang and Li (2015); Nie et al. (2021); Tchetgen and Shpitser (2012);
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Zhang et al. (2013), Bodory et al. (2020). One drawback of the above references is

that, while double-robust in low dimensions, in high-dimensions, they are sensitive

to the misspecification of the propensity score and poor overlap in small sample.5

Our contribution to balancing with dynamic treatments is of independent in-

terest. Differently from Zhou and Wodtke (2018), who extend entropy balancing

of Hainmueller (2012), we do not estimate one model for each covariate given the

past. Instead, we only estimate models for the end-line potential outcomes, which

leads to computationally efficient estimators. DCB explicitly characterizes the high-

dimensional model’s bias in a dynamic setting to avoid overly conservative moment

conditions, while Kallus and Santacatterina (2018) design balancing in the worst-case

scenario. Different from Imai and Ratkovic (2015), the number of moment conditions

here grows linearly with T and not exponentially. We do not require estimation of

the propensity model’s score function as in Yiu and Su (2018). Finally, Arkhangelsky

and Imbens (2019) propose balancing weights assuming no carry-overs in treatment

effects. None of the above references allows for high dimensional covariates.

Our problem more broadly connects to the literature on two-way fixed effects and

Difference-in-Differences (Abraham and Sun, 2018; Athey and Imbens, 2022; Call-

away and Sant’Anna, 2019; de Chaisemartin and d’Haultfoeuille, 2019; Goodman-

Bacon, 2021; Imai and Kim, 2016). The above references mostly focus on staggered

adoption, while allowing for time-invariant confounders. However, they prohibit dy-

namic selection into treatment based on past outcomes and time-varying covariates.6

Here, we allow for dynamics in treatments assigned based on arbitrary past informa-

tion and covariates to depend on the past assignments. Also, the above references

either require correct specification of the propensity score, assume that there are no

5In particular, they require consistency of the propensity score function at an appropriate fast
rate of convergence in the spirit of cross-sectional studies in high-dimensions (e.g., Farrell, 2015).

6The above references impose restrictions potential outcomes’ momentconditionally on future
assignments, imposing either strong exogeneity on future assignments or parallel trend assumptions.
These often require conditional mean independence of potential outcomes with respect to the future
treatment path, such as the one of “always being under control”. However, in the presence of
dynamic treatment assignments, past potential outcomes are predictive of future assignments (e.g.,
whether individuals do not receive the treatment may depend dynamically on their past outcomes).
See also Ghanem et al. (2022) for a discussion.
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high-dimensional covariates or both. Related methods also include discrete choice

models and dynamic treatments with instruments (Heckman et al., 2016; Heckman

and Navarro, 2007), which impose parametrizations on the propensity score.

Similarly, the literature on Synthetic Control (SC) methods (Abadie et al., 2010;

Arkhangelsky et al., 2021; Doudchenko and Imbens, 2016) assumes staggered adop-

tion with an exogenous treatment time, hence prohibiting dynamics in treatment

assignments. Specifically, Ben-Michael et al. (2018, 2019) balance covariates as in Zu-

bizarreta (2015), conditional on the treatment time. In their setting, staggered adop-

tion motivates the construction of the same balancing weights for all post-treatment

periods without allowing for dynamics in treatment assignments. Here, treatment

assignments are time-varying and endogenously assigned based on past information.

In a few studies regarding high-dimensional panel data, researchers instead re-

quire correct specification of the propensity score (Belloni et al., 2016; Bodory et al.,

2020; Chernozhukov et al., 2017, 2018; Lewis and Syrgkanis, 2020; Shi et al., 2018;

Zhu, 2017), or impose homogeneous treatment effects (Kock and Tang, 2015; Krampe

et al., 2020), differently from our study. An overview for panel data in econometrics

can be found in Arellano and Bonhomme (2011), Abadie and Cattaneo (2018).

Differently from the time-series literature (Plagborg-Møller, 2019; Stock and Wat-

son, 2018; White and Lu, 2010), this paper uses information from panel data and

allows for arbitrary dependence of outcomes, covariates, and treatment assignments

over time. Angrist and Kuersteiner (2011), and Angrist et al. (2018) study inference

using inverse probability weights estimator without incorporating carryover effects

in the weights.7 This difference reflects different target estimands. In the context of

local projections, Rambachan and Shephard (2019) discuss their causal interpretabil-

ity for assignments independent of the past. Here, we derive identification results

with serially correlated treatment assignments that depend on the past outcomes.

7Weights do not depend on the joint probability of treatment history.
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2 Dynamics and potential projections

We first discuss the case of two time periods since it provides a simple illustration of

the problem and our solution. Our focus is on ex-post evaluation, where treatment

effects are evaluated after the entire history of interventions has been deployed.

In the presence of two periods only, we observe n i.i.d. copies of a random vector(
Xi,1, Di,1, Yi,1, Xi,2, Di,2, Yi,2

)
∼i.i.d. P

where D1 and D2 are binary treatment assignments at time t = 1, t = 2, respectively.

Here, Xi,1 and Xi,2 are covariates for unit i observed at time t = 1 and t = 2,

respectively. We observe the outcome Yi,t right after Di,t, but prior to Di,t+1. That

is, at time t = 1, we observe {Xi,1, Di,1}. Outcome Yi,1 is revealed after time t = 1

but before time t = 2. At time t = 2 we observe {Xi,2, Di,2} and finally, outcome Yi,2

is revealed. An illustration is in Figure 2. Whenever we omit the index i, we refer

to the vector of observations for all units.

| | |
t = 0 t = 1 t = 2

X1, D1, (Y1, X2), D2, Y2

Figure 2: Illustration in two periods. At the baseline t = 0, we draw covariates X1

first, and then D1. At t = 1, we draw the outcome ad covariates, and then the
assignment D2. In the last period we draw the end-line outcome.

2.1 Potential outcomes and estimands

Potential outcomes and covariates are functions of the entire treatment history. Here,(
Yi,2(1, 1), Yi,2(1, 0), Yi,2(0, 1), Yi,2(0, 0)

)
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define the potential outcomes if individual i is under treatment for two consecutive

periods, under treatment for the first but not the second period, the second but not

the first, and none of the periods. We define compactly Yi,1(d1, d2) and Yi,2(d1, d2) the

potential outcomes in period one and two, respectively, for unit i, under a treatment

history that assigns treatment d1 in the first period and d2 in the second period.

Throughout our discussion, we implicitly assume that SUTVA holds (Rubin, 1990).

Treatment histories may also affect future covariates. Therefore, we denote

Xi,2(d1, d2), the potential covariates for a treatment history (d1, d2), while Xi,1 de-

notes baseline covariates. The causal effect of interest is the long-run impact of two

treatment histories (d1, d2),(d
′
1, d
′
2) on the potential outcomes conditional on baseline

covariates. Let

µ2(d1, d2) =
1

n

n∑
i=1

E
[
Yi,2(d1, d2)

∣∣∣Xi,1

]
denote the expectation of potential outcomes taken with respect to the conditional

distribution of Yi,2(d1, d2) given Xi,1.
8 We construct

ATE(d1:2, d
′
1:2) = µ2(d1, d2)− µ2(d

′
1, d
′
2), (1)

where d1:2 = (d1, d2). A simple example is ATE(1,0), which denotes the effect of a

policy when implemented on two consecutive periods against the effect of the policy

when never implemented (Athey and Imbens, 2022).

The first condition we impose is the no-anticipation. This is defined below.

Assumption 1 (No Anticipation). For d1 ∈ {0, 1}, let (i) Yi,1(d1, 1) = Yi,1(d1, 0),

and (ii) Xi,2(d1, 1) = Xi,2(d1, 0).

The no anticipation condition has two implications: (i) potential outcomes only

depend on past but not future treatments; (ii) the treatment status at t = 2 has

no contemporaneous effect on covariates. Observe that the no-anticipation allows

for anticipatory effects governed by expectation, but it prohibits anticipatory effects

8Formally, (Yi,2(d1, d2), Xi,1) ∼ D(d1, d2).
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based on the future treatment realization.9 Also, observe that the no-anticipation

is not imposed on the realized treatments, and it allows potential outcomes to be

correlated with the future assignments (e.g., see Equation 2).

Example 2.1 (Observed outcomes). Consider a dynamic model of the form (omit-

ting time-varying covariates at time t = 2 for expositional convenience)

Yi,2 = g2

(
Yi,1, Xi,1, Di,1, Di,2, εi,2

)
, Yi,1 = g1

(
Xi,1, Di,1, εi,1

)
,

for some arbitrary functions g1(·), g2(·) and unobservables (εi,2, εi,1) which we assume

are exogenous. Then we can write

Yi,2(d1, d2) = g2

(
Yi,1(d1), Xi,1, d1, d2, εi,2

)
, Yi,1(d1) = g1

(
Xi,1, d1, εi,1

)
.

Since g1(·) is not a function of d2, Assumption 1 holds, for any (conditional) distri-

bution of (Di,1, Di,2).

With abuse of notation, in the rest of our discussion, we index potential outcomes

and covariates by past treatment history only, letting Assumption 1 implicitly hold.

We define Hi,2 =
[
Di,1, Xi,1, Xi,2, Yi,1

]
, as the vector of past treatment assignments,

covariates, and outcomes in the previous period. We refer to

Hi,2(d1) =
[
d1, Xi,1, Xi,2(d1), Yi,1(d1)

]
as the “potential history” under treatment status d1 in the first period. In principle,

Hi,2 can also contains interaction terms, omitted for the sake of brevity.

The second condition we impose is the sequential ignorability condition.

Assumption 2 (Sequential Ignorability). Assume that for all (d1, d2) ∈ {0, 1}2 ,

(A) Yi,2(d1, d2) ⊥ Di,2

∣∣∣Di,1, Xi,1, Xi,2, Yi,1

(B)
(
Yi,2(d1, d2), Hi,2(d1)

)
⊥ Di,1

∣∣∣Xi,1,

9The no-anticipation assumption on potential outcomes has been previously discussed also in
Bojinov and Shephard (2019), Imai et al. (2018), Boruvka et al. (2018) to cite some.

9



The Sequential Ignorability (Robins et al., 2000) is common in the literature on

dynamic treatments. It states that treatment in the first period is randomized on

baseline covariates only, while the treatment in the second period is randomized with

respect to the observable characteristics in time t = 2.

Example 2.1 Cont’d We can equivalently write Assumption 2 as

Di,2 = f2

(
Di,1, Xi,1, Xi,2, Yi,1, εDi,2

)
, Di,1 = f1

(
Xi,1, εDi,1

)
, (2)

for some arbitrary (unknown) functions f1, f2, where the unobservables satisfy

εDi,2
⊥ εi,2

∣∣∣D1,i, Xi,1, Xi,2, Yi,1, εDi,1
⊥ (εi,1, εi,2)

∣∣∣Xi,1.

2.2 Potential projections

Next, we discuss the model for potential outcomes. Given baseline covariates Xi,1,

for a treatment history (d1, d2), we denote

θ1(x1, d1, d2) = E
[
Yi,2(d1, d2)

∣∣∣Xi,1 = x1

]
,

θ2(x1, x2, y1, d1, d2) = E
[
Yi,2(d1, d2)

∣∣∣Xi,1 = x1, Xi,2 = x2, Yi,1 = y1, Di,1 = d1

]
,

respectively the conditional expectation of the potential outcome at the end-line

period, given history at time t = 1 (base-line) and given the history at time t = 2.

In the same spirit of Jordà (2005) we model θ1(·), θ2(·) linearly.

Assumption 3 (Model). We assume that for some β
(1)
d1,d2
∈ Rp1 , β

(2)
d1,d2
∈ Rp2

θ1(x1, d1, d2) = x1β
(1)
d1,d2

, θ2

(
x1, x2, y1, d1, d2

)
=
[
d1, x1, x2, y1

]
β
(2)
d1,d2

.

The above models can be seen as a local projection model on potential outcomes,

with the end-line potential outcome depending linearly on information up to and from
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each period. An important feature of the proposed model is that we impose it directly

on potential outcomes without imposing a model on treatment assignments. The

coefficients β
(1)
d1,d2

, β
(2)
d1,d2

are different and indexed by the treatment history, capturing

the effects of (d1, d2) and heterogeneity (note that X1 also contains an intercept).

Example 2.2 (Linear Model). Let Xi,1, Xi,2 also contain an intercept. Consider the

following set of conditional expectations

E
[
Yi,1(d1)

∣∣∣Xi,1

]
= Xi,1αd1 , E

[
Xi,2(d1)

∣∣∣Xi,1

]
= Wd1Xi,1

E
[
Yi,2(d1, d1)

∣∣∣Xi,1, Xi,2, Yi,1, Di,1 = d1

]
=
(
Xi,1, Xi,2(d1), Yi,1(d1)

)
β
(2)
d1,d2

,

for some arbitrary parameters αd1 ∈ Rp1 and β
(2)
d1,d2

∈ Rp2 . In the above display,

Wd1 , Vd1 denote unknown matrices in Rp2×p1 . The model satisfies Assumption 3.

Example 2.2 shows that the linearity condition imposed in Assumption 3 holds

exactly whenever the potential outcomes follow a linear model and dependence be-

tween covariates is explained via an autoregressive structure.

Remark 1 (Linearity in high-dimensions as an approximation to the true model).

We observe that our results extend to the case where we relax Assumption 3 and

assume only approximate linearity up to an order O(rp), where rp is an arbitrary

sequence which depends on p with rp = o(n−1/2). Such a setting embeds empirical

applications where many covariates (and their transformation) can approximate the

conditional mean function as linear (see Belloni et al., 2014, for related discussions).

We do not require valid model approximation on the propensity score. This is in

contrast with high-dimensional settings which require valid model approximations

for both the propensity score and conditional mean function (e.g., Farrell, 2015).

As noted in Example 2.2, the local projection model has an important advan-

tage (especially in high-dimensions): while valid under linearity of covariates and

outcomes, it does not require specifying (and estimate) a structural model for each

time-varying-covariate, which is cumbersome in high dimensions and prone to sig-

nificant estimation error. Instead, the local projection model is parsimonious in the
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number of parameters. This motivates its large use in applications, dating back to

Jordà (2005). Here, we revisit the model within a causal framework.

We conclude this discussion with the following identification result.

Lemma 2.1 (Identification of the potential outcome model). Let Assumption 1, 2,

3 hold. Then10

E
[
Yi,2

∣∣∣Hi,2, Di,2 = d2, Di,1 = d1

]
= E

[
Yi,2(d1, d2)

∣∣∣Hi,2, Di,1 = d1

]
= Hi,2(d1)β

(2)
d1,d2

E
[
E
[
Yi,2

∣∣∣Hi,2, Di,2 = d2, Di,1 = d1

]∣∣∣Xi,1, Di,1 = d1

]
= E

[
Yi,2(d1, d2)

∣∣∣Xi,1

]
= Xi,1β

(1)
d1,d2

.

The proof is in the Appendix. Lemma 2.1 is new in the context of local projec-

tions. It connects to the literature in biostatistic on longitudinal data with marginal

structural models (Bang and Robins, 2005; Robins et al., 2000). We identify co-

efficients that capture causal effects of treatment histories using information from

recursive projections. As a result, we can first regress the observed outcome on the

information in the second period. We then regress its (estimated) conditional expec-

tation on information in the first period (see Algorithm 2). Note that the coefficients

β
(1)
d1,d2

would not be consistently estimated by simple linear regressions of the observed

outcomes on information in the first period (see Remark 2).

In the following section, we discuss as main contribution balancing conditions

with dynamic treatments.

Remark 2 (Why a model on potential outcomes?). The model on potential out-

comes instead of observed outcomes more flexibly accomodates dependence with and

between treatment assignments, motivating our choice. First, with binary (but not

necessarily continuous) treatments, linearity of observed outcomes might be violated.

Namely, suppose that covariates are time invariant and let (with Yi,0 = 0)

Yi,t = Yi,t−1α +Di,tβ +Xi,1γ + εi,t

⇒ E
[
Yi,2|Xi,1, Di,1

]
= αβDi,1 + E

[
βDi,2|Xi,1, Di,1

]
+Xi,1(γ + αγ).

(3)

10Here, we are implicitely assuming that the event (Di,2, Di,2) = (d1, d2) has non zero probability
for the conditional expectation to be well defined. This holds by discreteness of the treatment
assignments. An explicit condition is imposed in Assumption 4 (ii).
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Observe that E
[
Di,2|Xi,1, Di,1

]
(and hence E

[
Yi,2|Xi,1, Di,1

]
) is not a linear function

of Xi,1 unconditionally on treatment assignments, for binary treatments. This issue

does not arise if we impose the model directly on the potential outcomes, as we do in

the proposed potential projections.11 Second, note that by projecting the observed

(instead of potential) outcome Yi,2 onto (Di,1, Xi,1), would also capture effects of Di,1

mediated through Di,2, whenever Di,2 depends on Di,1.
12 This differs from the model

we propose on potential outcomes, whose parameters have an interpretation in terms

of a fixed treatment path.

3 Dynamic Covariate Balancing

In this section, we discuss the main algorithmic procedure. We start introducing an

estimator based on doubly-robust scores.

3.1 Balancing histories for causal inference

Following previous literature on doubly-robust scores (Jiang and Li, 2015; Nie et al.,

2021; Tchetgen and Shpitser, 2012; Zhang et al., 2013), we propose an estimator that

exploits linearity while reweighting observations to guarantee balance. We adapt the

estimator to the local projection model. Formally, we consider an estimator

µ̂2(d1, d2) =
n∑
i=1

{
γ̂i,2(d1, d2)Yi,2 −

(
γ̂i,2(d1, d2)− γ̂i,1(d1, d2)

)
Hi,2β̂

(2)
d1,d2

}
−

n∑
i=1

(
γ̂i,1(d1, d2)−

1

n

)
Xi,1β̂

(1)
d1,d2

,

(4)

11Returning to the previous example, observe that E
[
Yi,2(d1, d2)|Xi,1

]
= αβd1 + βd2 +Xi,1(γ +

αγ), which is linear in Xi,1, hence satisfying Assumption 3.
12It is interesting to note that this difference also relates to the interpretation of impulse response

functions (IRF). IRF capture the effect of a contemporaneous treatment also mediated through
future assignments if treatments are serially correlated. This can be noted from Equation (3) where
a local projection on Di,1 would also capture its effect mediated through Di,2 (and possibly past
outcomes). Here, we are concerned with the effects of a treatment history such as (d1 = 1, d2 = 0) in
the spirit of the Neyman-Rubin potential outcome framework (Imbens and Rubin, 2015) as opposed
to the effect of a treatment d1 = 1 also mediated through future assignments. This motivates our
model on potential outcomes directly.
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where we discuss the choice of the parameters β̂
(1)
d1,d2

, β̂
(2)
d1,d2

in Section 3.2.

A possible choice of the weights γ̂1, γ̂2 are inverse probability weights (IPW). As

for multi-valued treatments (Imbens, 2000), these weights can be written as follows

wi,1(d1, d2) =
1{Di,1 = d1}

nP (Di,1 = d1|Xi,1)
, wi,2(d1, d2) =

wi,1(d1, d2)1{Di,2 = d2}
P (Di,2 = d2|Yi,1, Xi,1, Xi,2, Di,1)

.

(5)

However, in high dimensions, IPW weights require the correct specification of the

propensity score, which in practice may be unknown. Motivated by these consider-

ations, we propose replacing IPW with more stable weights.

We start studying covariate balancing conditions induced by the local projection

model. By denoting X̄1 the sample average of covariates X1, we can write

µ̂2(d1, d2) = X̄1β
(1)
d1,d2

+ T1 + T2 + T3, (6)

where

T1 =
(
γ̂1(d1, d2)

>X1 − X̄1

)
(β

(1)
d1,d2

− β̂(1)d1,d2
) +

(
γ̂2(d1, d2)

>H2 − γ̂1(d1, d2)>H2

)
(β

(2)
d1,d2

− β̂(2)d1,d2
)

(7)

and

T2 = γ̂2(d1, d2)
>
[
Y2 −H2β

2
d1,d2

]
, T3 = γ̂1(d1, d2)

>
[
H2β

2
d1,d2
−X1β

(1)
d1,d2

]
.

The covariate balancing conditions must control T1, while the remaining two are

centered around zero under regularity conditions.

Lemma 3.1 (Covariate balancing conditions). The following holds

T1 ≤‖β̂1
d1,d2
− β(1)

d1,d2
‖1
∣∣∣∣∣∣X̄1 − γ̂1(d1, d2)>X1

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(i)

+

‖β̂2
d1,d2
− β(2)

d1,d2
‖1
∣∣∣∣∣∣γ̂2(d1, d2)>H2 − γ̂1(d1, d2)>H2

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(ii)

.

Element (i) is equivalent to what is discussed in Athey et al. (2018) in one period
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setting. Element (ii) depends instead on the additional error induced by the presence

of a second period. Therefore the above suggests controlling the following norms∣∣∣∣∣∣X̄1 − γ̂1(d1, d2)>X1

∣∣∣∣∣∣
∞
,
∣∣∣∣∣∣γ̂2(d1, d2)>H2 − γ̂1(d1, d2)>H2

∣∣∣∣∣∣
∞
. (8)

By imposing that the first norm converges to zero, the weights in the first-period bal-

ance covariates in the first period only. The second condition requires that histories

in the second period are balanced, given the weights in the previous period.

The remaining terms in (6) are mean zero under the following conditions.

Lemma 3.2 (Balancing error). Let assumptions 1 - 3 hold. Suppose that γ̂1 is mea-

surable with respect to σ(X1, D1) and γ̂2 is measurable with respect to σ(X1, X2, Y1, D1, D2).

Suppose in addition that γ̂i,1(d1, d2) = 0 if Di,1 6= d1 and γ̂i,2(d1, d2) = 0 if (Di,1, Di,2) 6=
(d1, d2). Then

E
[
T2

∣∣∣X1, D1, Y1, X2, D2

]
= 0, E

[
T3

∣∣∣X1, D1

]
= 0.

The proof is in the Appendix. Lemma 3.2 conveys a key insight: if we can

guarantee that each component in Equation (8) is op(1), under mild regularity as-

sumptions, the estimator µ̂ is centered around the target estimand plus an estimation

error which is asymptotically negligible. As a result, the estimation error of the (high-

dimensional) coefficients does not affect the rate of convergence of the estimator.

Interestingly, we note that Lemma 3.2 imposes the following intuitive condition.

The balancing weights in the first period are non-zero only for those units whose

assignment in the first period coincide with the target assignment d1, and this also

holds in the second period with assignments (d1, d2). Moreover, we can only balance

based on information observed before the realization of potential outcomes but not

based on future information. A special case is IPW in Equation (5), for known

propensity score. An illustrative example is provided in Figure 3.

Finally, note that under mild misspecification of linearity, i.e., for approximately

linear model as in Remark 1, our results hold for op(n
−1/2) conditional expectations.

The reader may refer to Section 4 for a discussion on estimation with long panels.
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Di,2 = 1 Di,2 = 0

Di,1 = 1

Di,1 = 0

Figure 3: Illustrative description for balancing when estimating E[Y (1, 1)], the av-
erage potential outcomes for those always under treatment. In the first period we
balance covariates of those individuals with shaded areas (both light and dark gray)
with covariates of all individuals in the region (red box). In the second period we
balance covariates between the two shaded regions (black box).

3.2 Algorithm description

We can now introduce Algorithm 1. The algorithm works as follows. First, we

construct weights in the first period that are nonzero only for those individuals with

treatment at time t = 1 equal to the target treatment status d1. We do the same

for γ̂i,2 for the desired treatment history (Di,1, Di,2) = (d1, d2). We then solve a

quadratic program with linear constraints. In the first period, we balance covariates

as in the one-period setting. In the second period, we balance present covariates

with the same covariates, weighted by those weights obtained in the previous period.

The weights sum to one, they are positive (to avoid aggressive extrapolation), and

they do not assign the largest weight to few observations. We choose the weights to

minimize their small sample variance to be robust to poor overlap in small samples.

Algorithm 2 summarizes the estimation of the regression coefficients.13 The algo-

rithm considers two separate model specifications which can be used. The first allows

for all possible interactions of covariates and treatment assignments as in Assump-

13See Tran et al. (2019) for related procedures.
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Algorithm 1 Dynamic covariate balancing (DCB): two periods

Require: Observations (D1, X1, Y1, D2, X2, Y2), treatment history (d1, d2), finite pa-
rameters K, constraints δ1(n, p1), δ2(n, p2).

1: Estimate β1
d1:2
, β2

d1:2
as in Algorithm 2.

2: γ̂i,1 = 0, if Di,1 6= d1, γ̂i,2 = 0 if (Di,1, Di,2) 6= (d1, d2)
3: Estimate

γ̂1 = arg min
γ1
||γ1||2, s.t.

∥∥∥X̄1 −
1

n

n∑
i=1

γi,1Xi,1

∥∥∥
∞
≤ δ1(n, p1),

1>γ1 = 1, γ1 ≥ 0, ‖γ1‖∞ ≤ log(n)n−2/3.

γ̂2 = arg min
γ2
||γ2||2, s.t.

∥∥∥ 1

n

n∑
i=1

γ̂i,1Hi,2 −
1

n

n∑
i=1

γi,2Hi,2

∥∥∥
∞
≤ δ2(n, p2),

1>γ2 = 1, γ2 ≥ 0, ‖γ2‖∞ ≤ K log(n)n−2/3.

(9)

return µ̂2(d1, d2) as in Equation (4).

tion 3. The second is more parsimonious and assumes that treatment effects enter

linearly in each equation, while it uses all the observations in the sample. The sec-

ond specification can also contain linear interaction components, omitted for brevity.

Note that the algorithm for the linear (second) specification builds predictions in the

second period only for those units with Di,1 = d1, and for all units in the first period.

This is without loss of generality, since the remaining units receive a zero weight.

3.3 Existence and convergence rate

We conclude this introductory discussion by developing properties of the estimator.

We first impose the following tail decay conditions.

Assumption 4. Let the following hold:

(i) H
(j)
i,2 is subgaussian given the past history for each entry j ∈ {1, · · · , p2} and

X
(j)
i,1 also is subgaussian for each j ∈ {1, · · · , p1}.

(ii) Assume that (i) P (Di,1 = 1|Xi,1), P (Di,2 = 1|D1, X1, X2, Y1) ∈ (δ, 1 − δ), δ ∈
(0, 1).
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Algorithm 2 Coefficients estimation

Require: Observations, history d1:2 = (d1, d2), model ∈ {full interactions,

linear}.
1: if model = full interactions then
2: Estimate β2

d1:2
by regressing Yi,2 onto Hi,1 for all i : (Di,1:2 = d1:2);

3: Estimate β1
d1:2

by regression Hi,1β̂
2
d1:2

onto Xi,1 for i that has Di,1 = d1.
4: else
5: Estimate β(2) by regressing Yi,2 onto (Hi,1, Di,2) for all i (without penalizing

(Di,1, Di,2)) and define Hi,2β̂d1,d2 = (Hi,2, d2)β̂
2 for all i : Di,1 = d1 ;

6: Estimate β(1) by regressing (Hi,1, d2)β̂
2 onto (Xi,1, Di,1) for all i (without

penalizing Di,1) and define Xi,1β̂
(1)
d1,d2

= (Xi,1, d1)β̂
(1) for all i.

7: end if

The first condition states that histories are Sub-Gaussian. The second condition

imposes overlap of the propensity score.

Theorem 3.3 (Existence of a feasible γ̂t). Let Assumptions 1 - 4 hold. Suppose that

δt(n, pt) ≥ c0 log3/2(npt)/n
1/2, for a finite constant c0. Then, with probability ηn → 1,

for each t ∈ {1, 2}, for some N > 0, n > N , there exists a feasible γ̂∗t , solving the

optimization in Algorithm 1, where

γ̂∗i,0 = 1/n, γ̂∗i,t = γ̂∗i,t−1
1{Di,t = dt}

P (Di,t = dt|Ft−1)

/ n∑
i=1

γ̂∗i,t−1
1{Di,t = dt}

P (Di,t = dt|Ft−1)
,

and F0 = σ(X1),F1 = σ(X1, X2, Y1, D1).

Theorem 3.3 has important practical implications. Inverse probability weights

tend to be unstable in a small sample for moderately large periods. The algorithm

thus finds weights that minimize the small sample variance, with the IPW weights

being allowed to be one of the possible solutions. We formalize this below.

Corollary 1. Under the conditions in Theorem 3.3, for some N > 0, n > N , with

probability ηn → 1, n||γ̂t||2 ≤ n||γ̂∗t ||2, for t ∈ {1, 2}.

We now characterize the convergence rate.
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Assumption 5. Let δt(n, pt) is such that δt(n, pt) ≥ c0 log(npt)/n
1/4 for a finite

constant c0, ‖β̂td1:2−β
t
d1:2
‖1δt(n, pt) = op(1/

√
n), t ∈ {1, 2}, ‖β̂td1:2−β

t
d1:2
‖1 = op(n

−1/4).

The above condition states that the estimation error of the linear regressor times

the parameter δt(n, pt) = o(1) is O(1/
√
n). A simple example is an high-dimensional

regression, where ‖β̂td1:2 − βtd1:2‖1 = Op(
√

log(pt)/n). Sufficient conditions for As-

sumption 5 are in Appendix B.1.2. Also, note that here the bound on covariates

imbalance (controlled through δt(n, pt)) becomes less stringent as t increases, since

pt is increasing in the number of periods. However, since we might expect that pt

grows linearly in t, δt(n, pt) grows logarithmically in t (for longer periods, researchers

can condition on a larger set of covariates). See Section 4 for details.

Under Assumption 3, let

Yi,2(d1, d2) = Hi,2(d1)β
(2)
d1,d2

+ εi,2(d1, d2), Hi,2(d1)β
(2)
d1,d2

= Xi,1(d1)β
(1)
d1,d2

+ νi,1(d1),

where νi,1(d1) = E
[
Yi,2(d1, d2)|Hi,2(d1)

]
− E

[
Yi,2(d1, d2)|Xi,1

]
denotes the difference

between the two local projections over two consecutive periods.

Assumption 6. Let the following hold:

(A) E[ε42(d1, d2)|H2],E[ν41(d1)|X1] < C for a finite constant C almost surely;

(B) Var(ε2(d1, d2)|Hi,2),Var(ν1(d1, d2)|Xi,1) > umin > 0.

The above condition states that the residuals from projections in two consecutive

time periods have non-zero variance and a bounded fourth moment.

Theorem 3.4. Let Assumptions 1 - 6 hold. Then, whenever log(n(p1+p2))/n
1/4 → 0

with n, p1, p2 →∞,

µ̂2(d1, d2)− µ2(d1, d2) = OP
(
n−1/2

)
.

The proofs are in the Appendix. Theorem 3.4 shows that the proposed estimator

guarantees parametric convergence rate with high-dimensional covariates. Observe
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that the theorem does not require conditions on the convergence rate of the estimated

propensity score, instead commonly encountered in the doubly-robust literature (Far-

rell, 2015). Inference is discussed with T periods in Section 4, where we construct

confidence bands, using the square-root of the critical quantile of a chi-squared dis-

tribution with T degrees of freedom.

4 The general case: multiple time periods and in-

ference

In this section we generalize our procedure to T time periods. Let d1:T = (d1, · · · , dT ).

We define the estimand of interest as:

ATE(d1:T , d
′
1:T ) = µT (d1:T )− µT (d′1:T ), µT (d1:T ) =

1

n

n∑
i=1

E
[
YT (d1:T )

∣∣∣Xi,1

]
. (10)

This estimand denotes the difference in potential outcomes conditional on baseline

covariates. We define Ft =
(
D1, · · · , Dt−1, X1, · · · , Xt, Y1, · · · , Yt−1

)
the information

at time t after excluding the treatment assignment Dt. We denote

Hi,t =
[
Di,1, · · · , Di,t−1, Xi,1, · · · , Xi,t, Yi,1, · · · , Yi,t−1

]
∈ Ht ⊆ Rpt (11)

the vector containing information from time one to time t, after excluding the treat-

ment assigned in the present period Dt. Here Ht denotes the space of history at time

t. Interaction components may also be considered in the above vector, and they are

omitted for expositional convenience only. We let the potential history be

Hi,t(d1:(t−1)) =
[
d1:(t−1), Xi,1:t(d1:(t−1)), Yi,1:(t−1)(d1:(t−1))

]
,

as a function of the treatment history. The following Assumption generalizes As-

sumptions 1-3 from the two-period setting: no-anticipation, sequential ignorability,

and potential outcome models.
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Assumption 7. For any d1:T ,∈ {0, 1}T , and t ≤ T ,

(A) (No-anticipation) The potential history Hi,t(d1:T ) is constant in dt:T ;

(B) (Sequential ignorability)
(
Yi,T (d1:T ), Hi,t+1(d1:(t+1)), · · · , Hi,T−1(d1:(T−1))

)
⊥ Di,t|Ft;

(C) (Potential projections) For some β
(t)
d1:T
∈ Rpt ,

E
[
Yi,T (d1:T )|Di,1:(t−1) = d1:(t−1), Xi,1:t, Yi,1:(t−1)

]
= Hi,t(d1:(t−1))β

(t)
d1:T

.

Condition (A) imposes a non-anticipatory behavior of histories at each point

in time, as commonly assumed in practice (Boruvka et al., 2018). With a slight

abuse of notation, we implicitly impose (A), by referring to the potential history as

Hi,t(d1:(t−1)). Condition (B) states that treatment assignments are randomized based

on the past only. Condition (C) states that the conditional expectation of the po-

tential outcome at the end-line period is linear in the potential history, Hi,t(d1:(t−1)).

Identification follows similarly to Lemma 2.1 and omitted for brevity.

Once DCB weights are formed, we construct the estimator of µT (d1:T ) as

µ̂T (d1:T ) =
n∑
i=1

γ̂i,T (d1:T )Yi,T −
n∑
i=1

T∑
t=2

(
γ̂i,t(d1:T )− γ̂i,t−1(d1:T )

)
Hi,tβ̂

(t)
d1:T

−
n∑
i=1

(
γ̂i,1(d1:T )− 1

n

)
Xi,1β̂

(1)
d1:T

.

(12)

Lemma 4.1. Suppose that γ̂i,T (d1:T ) = 0 if Di,1:T 6= d1:T . Then

µ̂T (d1:T )− µT (d1:T ) =

T∑
t=1

(
γ̂t(d1:T )Ht − γ̂t−1(d1:T )Ht

)
(β

(t)
d1:T
− β̂(t)d1:T )︸ ︷︷ ︸

(I1)

+ γ̂>T (d1:T )εT︸ ︷︷ ︸
(I2)

+
T∑
t=2

γ̂t−1(d1:T )
(
Htβ

(t)
d1:T
−Ht−1β

(t−1)
d1:T

)
︸ ︷︷ ︸

(I3)

(13)

where εi,t(d1:T ) = Yi,T (d1:T )−Hi,t(d1:(t−1))β
(t)
d1:T

.
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The proof is relegated to the Appendix. Lemma 4.1 decomposes the estimation

error into three components. First, (I1), depends on the estimation error of the coef-

ficient and on balancing properties of the weights. (I1) suggests imposing balancing

conditions on ∣∣∣∣∣∣γ̂t(d1:T )Ht − γ̂t−1(d1:T )Ht

∣∣∣∣∣∣
∞

each period. The components characterizing the estimation error are (I2) = γ̂T (d1:T )>εT ,

and (I3). In the following lemma, we provide conditions such that (I3) is mean zero.

Lemma 4.2. Let Assumption 7 hold. Suppose that the sigma algebra σ(γ̂t(d1:T )) ⊆
σ(Ft, Dt). Suppose in addition that γ̂i,t(d1:T ) = 0 if Di,1:t 6= d1:t. Then

E
[
γ̂i,t−1(d1:T )Htβ

(t)
d1:T
− γ̂i,t−1(d1:T )Ht−1β

(t−1)
d1:T

∣∣∣Ft−1, Dt−1

]
= 0.

The proof is presented in the Appendix. The above condition states that weights

need to be estimated using observations that match the desired treatment path up

at every t and are equal to zero on the other treatment paths. In the presence of long

panels, we can relax the conditions that Di,1:t 6= d1:t by studying carry-over effects

over a limited time period h and imposing that the treatment path matches only

over the last h periods. See Remark 4 for details.

Algorithm D.1 in the Appendix present the balancing algorithm for generic T pe-

riods (which follows similarly to two periods) and Algorithm D.3 shows how to choose

tuning parameters adaptively. Coefficients are estimated recursively as discussed in

the two periods setting (see Algorithm D.2 in the Appendix).

Remark 3 (Estimation error of the coefficients). The estimation error ||β̂(t)
d1:T
−β(t)

d1:T
||1

can scale either linearly or exponentially with T , depending on modeling assumptions.

Whenever we let coefficients be different across entire different treatment histories,

||β̂(t)
d1:T
−β(t)

d1:T
||1 would scale exponentially with T , since we would need to run different

regressions over the subsample with treatment histories D1:t = d1:t. On the other

hand, additional assumptions permit to estimate β̂
(t)
d1:T

using most or all in-sample

information. A simple example, is to explicitely model the effect of the treatment

history d1:T on the outcome, as in the linear model in Algorithm D.2.
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Remark 4 (Pooled regression and limited carry-overs). In some application, we may

be interested in a regression of the following form

Yi,t(d1:t) = β0 + β1dt + β2Yi,t−1(d1:(t−1)) +Xi,t(d1:(t−1))γ + τt + εi,t,

where τt denotes fixed effects, and in the estimand

E[Yi,t+h(d1:t, dt+1, · · · , dt+h)]− E[Yi,t+h(d1:t, d
′
t+1, · · · , d′t+h)],

denoting the effect of changing treatment history in the past h periods. Estimation

can be performed by considering each (i, t) as an observation for all t > h and

estimate its corresponding weight.14 By considering the effect over a limited number

of periods (h instead of T ), construction of the weights requires that past treatment

assignments coincide with the treatment history (d(t+1):(t+h)) only over h periods.

4.1 Asymptotic properties

We now derive properties as long as log(maxt ptn)/n1/4 → 0 while p1, · · · , pT can

potentially grow to infinity. For simplicity, we let maxt pt = pT (note that we expect

pt to grow linearly in t). We consider a finite-time horizon and T <∞ regime.

We discuss the first regularity condition below, similarly to two periods.

Assumption 8 (Overlap and tails’ conditions). Assume that P (Di,t = dt|Ft−1, Dt−1) ∈
(δ, 1 − δ), δ ∈ (0, 1) for each t ∈ {1, · · · , T}. Assume also that H

(j)
i,t , j ∈ {1, · · · , pt}

is Sub-Gaussian given past history and similarly X
(j)
i,1 , j ∈ {1, · · · , p1}.

The first condition is the overlap condition as in the case of two periods. The

second condition is a tail restriction. In the following theorem, we characterize the

existence of a solution to the optimization program.

14Note that here τt acts as an additional covariate for balancing. We obtain the corresponding
variances after clustering residuals of the same individuals over different periods for a panel with
finite T periods.
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Theorem 4.3. Let Assumptions 7, 8 hold. Consider δt(n, pt) ≥ c0n
−1/2log3/2(ptn)

for a finite constant c0, and K2,t = 2K2,t−1bt for some constant bt <∞. Then, with

probability ηn → 1, for each t ∈ {1, · · · , T}, T < ∞, for some N > 0, n > N , there

exists a feasible γ̂∗t , solving the optimization in Algorithm D.1, where

γ̂∗i,0 = 1/n, γ̂∗i,t = γ̂∗i,t−1
1{Di,t = dt}

P (Di,t = dt|Ft−1, Dt−1)

/ n∑
i=1

γ̂∗i,t−1
1{Di,t = dt}

P (Di,t = dt|Ft−1, Dt−1)
.

The above theorem shows existence of a feasible solution which encompasses

stabilized inverse probability weights. Next, we characterize asymptotic properties

of the estimator. We impose high-level assumptions on the coefficients similarly to

the two-periods setting.

Assumption 9. Let the following hold: for every t ∈ {1, · · · , T}, d1:T ∈ {0, 1}T ,

(i) maxt ‖β̂(t)
d1:T
− β

(t)
d1:T
‖1δt(n, pt) = op(1/

√
n), δt(n, pt) ≥ c0,tn

−1/4log(2ptn) for a

finite constant c0,t, maxt ‖β̂(t)
d1:T
− β(t)

d1:T
‖1 = op(n

−1/4);

(ii) For a finite constant C, E[ε4i,T |HT ] < C almost surely, with εi,T = Yi,T −
Hi,Tβ

(t)
d1:T

; E[(Hi,tβ
(t)
d1:T
−Hi,t−1β

(t−1)
d1:T

)4|Hi,t−1] < C;

(iii) Var(εi,T |Hi,T ),Var(Hi,tβ
(t)
d1:T
− Hi,t−1β

(t−1)
d1:T
|Hi,t−1) > umin, almost surely, for

some constant umin > 0.

Assumption 9 imposes the consistency in estimation of the outcome models. Con-

dition (i) is attained for many high-dimensional estimators, such as the lasso method,

under regularity assumptions; see e.g., Bühlmann and Van De Geer (2011). A dis-

cussion is included in Example B.1 which is valid recursively for any finite T (see

Appendix B.1.2). The remaining conditions impose moment assumptions similarly

to the two periods setting. Similarly to what discussed in Section 3, the balancing

constant δt(n, pt) is less stringent for larger t, growing logarithmically in t as the

dimension pt grows linearly in t.
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Theorem 4.4 (Asymptotic Inference). Let Assumptions 7 - 9 hold. Then, whenever

log(npT )/n1/4 → 0, as n, p1, · · · , pT →∞,

P
(∣∣∣√n

(
µ̂(d1:T )− µT (d1:T )

)
V̂T (d1:T )1/2

∣∣∣ >√χT (α)
)
≤ α, µ̂T (d1:T )− µT (d1:T ) = OP (n−1/2),

(14)

where

V̂T (d1:T ) = n

n∑
i=1

γ̂2i,T (d1:T )(Yi −Hi,T β̂
(t)
d1:T

)2 +
T−1∑
t=1

n
n∑
i=1

γ̂2i,t(d1:t)(Hi,t+1β̂
t+1
d1:T
−Hi,tβ̂

t
d1:T

)2

and χT (α) is (1 − α) quantile of a chi-squared random variable with T degrees of

freedom.

The proofs of the above two theorems are contained in the Appendix. Note that

the above theorem is also valid in low dimensional settings, where p1, · · · , pT are

finite. We now discuss inference on the ATE.

Theorem 4.5 (Inference on ATE). Let the conditions in Theorem 4.4 hold. Let

d1 6= d′1 Then, whenever log(npT )/n1/4 → 0 with n, p1, · · · , pT →∞,

P
(∣∣∣(V̂T (d1:T ) + V̂T (d′1:T ))−1/2

√
n
(
µ̂(d1:T )− µ̂(d′1:T )−ATE(d1:T , d

′
1:T )

)∣∣∣ >√χ2T (α)
)
≤ α.

The proof is in the Appendix. The above theorem permits inference on the ATE.

We conclude our discussion with a final remark.

Remark 5 (Tighter confidence bands under more restrictive conditions). The con-

fidence band depends on a chisquared random variable with T degrees of freedom.

In Appendix C.2 we show that under additional conditions we can get

(V̂T (d1:T ) + V̂T (d′1:T ))−1/2
√
n
(
µ̂(d1:T )− µ̂(d′1:T )− ATE(d1:T , d

′
1:T )
)
→d N (0, 1)

and hence, tighter confidence bands. The assumptions needed is that n||γ̂t||22 converge

almost surely to a finite constant. This condition imposes restrictions on the degree

of dependence of the optimal weights, and holds for a bernoulli design.
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5 Numerical Experiments

This section collects results from numerical experiments.15 We estimate in two and

three periods

E
[
Yi,T (1)− Yi,T (0)

]
, T ∈ {2, 3}.

We let the baseline covariates Xi,1 be drawn from as i.i.d. N (0,Σ) with Σ(i,j) =

0.5|i−j|. Covariates in the subsequent period are generated according to an auto-

regressive model {Xi,t}j = 0.5{Xi,t−1}j + N (0, 1), j = 1, · · · , pt. Treatments are

drawn from a logistic model that depends on all previous treatments as well as

previous covariates. Namely, Di,t ∼ Bern
(

(1 + eιi,t)−1
)

with

ιi,t = η
t∑

s=1

Xi,sφ+
t−1∑
s=1

δs(Di,s − D̄s) + ξi,t, D̄s = n−1
n∑
i=1

Di,s (15)

and ξi,t ∼ N (0, 1), for t ∈ {1, 2, 3}. Here, η, δ controls the association between

covariates and treatment assignments. We consider values of η ∈ {0.1, 0.3, 0.5},
δ1 = 0.5, δ2 = 0.25. We let φ ∝ 1/j, with ‖φ‖22 = 1, similarly to what discussed

in Athey et al. (2018). Table 1 illustrates the behavior of the propensity score as a

function of η. The larger the value of η, the weaker the overlap.

We generate the outcome according to the following equations:

Yi,t(d1:t) =
t∑

s=1

(
Xi,sβ + λs,tYi,s−1 + τds

)
+ εi,t(d1:t), t = 1, 2, 3,

where elements of εi,t(d1:t) are i.i.d. N (0, 1) and λ1,2 = 1, λ1,3, λ2,3 = 0.5. We consider

three different settings: Sparse with β(j) ∝ 1{j ≤ 10}, Moderate with moderately

sparse β(j) ∝ 1/j2 and the Harmonic setting with β(j) ∝ 1/j. We ensure ‖β‖2 = 1.

Throughout our simulations we set τ = 1. In Appendix E.1 we collect results in the

presence of non-linear (misspecified) outcome models.

15Replication code is available on the website https://dviviano.github.io/projects/.
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Table 1: Summary statistics of the distribution of the propensity score in two and
three periods in a sparse setting with dim(X) = 300.

η = 0.1 η = 0.3 η = 0.5

T=2 T=3 T=2 T=3 T=2 T=3

Min 0.012 0.003 0.004 0.0002 0.001 0.00000

1st Quantile 0.126 0.049 0.105 0.031 0.079 0.018

Median 0.218 0.097 0.216 0.097 0.216 0.094

3rd Quantile 0.248 0.126 0.259 0.153 0.277 0.183

Max 0.352 0.175 0.377 0.226 0.429 0.286

5.1 Methods

We consider the following competing methodologies. Augmented IPW, with known

propensity score and with estimated propensity score. The method replaces the bal-

ancing weights in Equation (4) with the (estimated or known) propensity score.

Estimation of the propensity score is performed using a logistic regression (denoted

as aIPWl ) and a penalized logistic regression (denoted as aIPWh).16 For both AIPW

and IPW we consider stabilized inverse probability weights. We also compare to ex-

isting balancing procedures for dynamic treatments. Namely, we consider Marginal

Structural Model (MSM) with balancing weights computed using the method in Yiu

and Su (2018, 2020). The method consists of estimating Covariate-Association Bal-

ancing weights CAEW (MSM) as in Yiu and Su (2018, 2020), which consists in

balancing covariates reweighted by marginal probabilities of treatments (estimated

with a logistic regression), and use such weights to estimate marginal structural

model of the outcome linear in past treatment assignments. We follow Section 3

in Yiu and Su (2020) for its implementation (here we do not also compare to Imai

and Ratkovic 2015 for MSM since it is intractable in high-dimensions).17 We also

16See for example Nie et al. (2021) and the recent work of Bodory et al. (2020) for a discussion
on doubly-robust estimators.

17Estimation consists in projecting the outcome on the two or three past assignemnts, use the
CAEW for reweighting. The reader can also refer to Blackwell (2013) for references on marginal
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consider “Dynamic” Double Lasso that estimates the effect of each treatment

assignment separately, after conditioning on the present covariate and past history

for each period using the double lasso discussed in one period setting in Belloni et al.

(2014).18 Naive Lasso runs a regression controlling for covariates and treatment

assignments only. Finally, Sequential Estimation estimates the conditional mean

in each time period sequentially using the lasso method, and it predicts end-line

potential outcomes as a function of the estimated potential outcomes in previous pe-

riods. For Dynamic Covariate Balancing, DCB choice of tuning parameters is data

adaptive, and it uses a grid-search method discussed in Appendix D.19 We estimate

coefficients as in Algorithm 2 for DCB and (a)IPW, with a linear model in treat-

ment assignments. Estimation of the penalty for the lasso methods is performed via

cross-validation.

5.2 Results

We consider dim(β) = dim(φ) = 100 and set the sample size to be n = 400. Under

such design, the regression in the first period contains p1 = 101 covariates, in the

second period p2 = 203 covariates, and in the third p3 = 305 covariates.

In Table 2 we collect results for the average mean squared error in two and three

periods. Throughout all simulations, the proposed method significantly outperforms

any other competitor for T = 3, with one single exception for T = 2, good overlap and

harmonic design. It also outperforms the case of known propensity score, consistently

with our findings in Theorem 3.3. Improvements are particularly significant when (i)

overlap deteriorates; (ii) the number of periods increases from two to three. This can

also be observed in the panel at the bottom of Figure 4, where we report the decrease

in MSE (in logarithmic scale) when using our procedure for T = 3. In Appendix E.1

we collect additional results with misspecified models.

structural models.
18See Lewis and Syrgkanis (2020) for related procedures.
19The grid-search procedure consists of finding the smallest feasible constraint-value through grid

search, while choosing more stringent constants for those variables whose estimated coefficients are
non-zero.
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Table 2: Mean Squared Error (MSE) of Dynamic Covariate Balancing (DCB) across
200 repetitions with sample size 400 and 101 variables in time period 1. This implies
that the number of variables in time period 2 and 3 are 203 and 304. Oracle Estimator
is denoted with aIPW∗ whereas aIPWh(l) denote AIPW with high(low)-dimensional
estimated propensity. CAEW (MSM) corresponds to the method in Yiu and Su
(2020), D.Lasso is adaptation of Double Lasso (Belloni et al., 2014).

η = 0.1 η = 0.3 η = 0.5

sparse mod harm sparse mod harm sparse mod harm

T = 2

aIPW∗ 0.069 0.092 0.071 0.102 0.104 0.118 0.131 0.127 0.132
DCB 0.060 0.077 0.075 0.092 0.076 0.084 0.099 0.077 0.085
aIPWh 0.064 0.091 0.070 0.180 0.204 0.218 0.265 0.312 0.368
aIPWl 0.260 0.229 0.212 0.157 0.201 0.165 0.214 0.234 0.213
IPWh 2.37 1.78 2.80 10.19 6.49 11.72 15.25 8.09 16.67
Seq.Est. 0.932 1.333 0.692 1.388 1.787 1.152 1.759 1.795 1.664
Lasso 0.247 0.410 0.132 0.509 0.710 0.298 0.762 0.948 0.560
CAEW 0.432 0.444 0.517 1.934 1.274 1.974 3.376 2.168 4.423
Dyn.D.Lasso 0.124 0.118 0.256 0.208 0.147 0.430 0.218 0.153 0.554

T = 3

aIPW∗ 0.226 0.296 0.261 0.403 0.251 0.339 0.472 0.496 0.562
DCB 0.155 0.208 0.199 0.257 0.217 0.329 0.294 0.267 0.455
aIPWh 0.201 0.273 0.280 0.595 0.747 0.835 0.999 1.328 1.607
aIPWl 0.823 0.625 0.829 0.623 0.704 0.638 1.078 1.396 1.234
IPWh 11.03 8.09 12.84 34.65 20.34 39.37 47.65 23.30 45.47
Seq.Est. 2.608 4.016 2.316 3.722 5.269 3.818 5.279 6.829 5.467
Lasso 0.409 0.492 0.514 0.559 0.732 0.507 1.290 1.315 1.174
CAEW 3.580 2.446 4.279 18.50 12.07 22.85 30.07 18.71 33.01
Dyn.D.Lasso 0.471 0.344 0.679 0.694 0.378 1.182 0.964 0.383 1.594

In the top panel of Figure 4 we report the length of the confidence interval and

the point estimates. The length increases with the number of periods, and point

estimates are more accurate for a non-harmonic (more sparse) setting.

Finally, we report finite sample coverage of the proposed method, DCB in Table

3 for estimating µ(1, 1) and µ(1, 1)− µ(0, 0) in the first two panel with η = 0.5 (see
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Table 3: Conditional average Coverage Probability of Dynamic Covariate Balancing
(DCB) over 200 repetitions, with η = 0.5 (poor overlap). Here, n = 400 and p = 100;
implying that the number of variables at time 2 and time 3 are 2p and 3p, respectively.
Homoskedastic and heteroskedastic estimators of the variance are denoted with Ho
and He, respectively. The first two panels use the square-root of the chi-squared
critical quantiles as discussed in Theorems 4.4, 4.5 (see Table E.1 in the Appendix
for the confidence intervals’ length) and the last panel uses instead critical quantiles
from the standard normal table (see Remark 5).

T = 2 T = 3

Sparse Moderate Harmonic Sparse Moderate Harmonic

Ho He Ho He Ho He Ho He Ho He Ho He

µ(1, 1): 95% Coverage Probability

p=100 1.00 0.98 1.00 0.99 0.99 0.96 0.99 0.99 1.00 1.00 1.00 0.96

p=200 0.99 0.99 0.99 0.98 0.97 0.95 1.00 0.99 0.99 0.98 0.99 0.93

p=300 1.00 0.99 0.99 0.99 0.96 0.94 0.99 0.97 0.99 0.97 0.98 0.93

µ(1, 1)− µ(0, 0): 95% Coverage Probability

p=100 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99

p=200 1.00 1.00 0.99 0.99 1.00 0.99 1.00 0.99 1.00 1.00 0.97 0.96

p=300 1.00 1.00 1.00 1.00 0.98 0.97 1.00 0.99 1.00 0.99 0.99 0.97

µ(1, 1)− µ(0, 0): 95% Coverage Probability with Gaussian quantile

p=100 0.96 0.94 0.98 0.96 0.98 0.94 0.97 0.90 0.98 0.92 0.90 0.79

p=200 0.97 0.94 0.98 0.92 0.91 0.85 0.98 0.92 0.98 0.91 0.75 0.64

p=300 0.99 0.96 0.99 0.95 0.89 0.84 0.92 0.85 0.94 0.86 0.73 0.61

Table E.1 in the Appendix for the confidence intervals’ length).20 The former is of

interest when the effect under control is more precise and its variance is asymptoti-

cally neglegible compared to the estimated effect under treatment (e.g., many more

individuals are not exposed to any treatment). The latter is of interest when both

20Results for η ∈ {0.1, 0.3} present over-coverage of the chi-squared method, and correct or
under-coverage (albeit less severe than η = 0.5) when considering a Gaussian critical quantile.
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Figure 4: Top panels collect the point estimate (crosses), minus the true effect of the
treatment, and confidence intervals of DCB for p = 100 across the three different
designs. The bottom panel reports the decrease in MSE (in logarithmic scale) of the
proposed method compared to the best competitor (excluding the one with known
propensity score) for T = 3.

µ(1, 1) and µ(0, 0) are estimated from approximately a proportional sample. In the

third panel, we report coverage when instead a Gaussian critical quantile (instead

of the square root of a chi-squared quantile discussed in our theorems) is used. We

observe that our procedure can lead to correct (over) coverage, while the Gaussian

critical quantile leads to under-coverage in the presence of poor overlap and many

variables, but correct coverage with fewer variables and two periods only.

Finally, we compare DCB and AIPW with high dimensional covariates with a

longer time period. Namely, in Figure 5, we collect results for T ∈ {1, · · · , 10},
where T ≤ 10 is chosen for computational constraints. We generate data using

a sparse model, p = 100, n = 400 over two-hundred replications. The outcome at

time t depends on the contemporaneous treatment, covariates, and previous outcome

at time t − 1. To simulate a scenario where a strong correlation occurs between

treatments over a long time period (similarly to applications in Figure 6), we generate

E[Di,t|Dt−1, Xt] = (1− α)Di,t−1 + α(1 + eιi,t)−1,
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where similarly to the propensity score model Equation (15), with ιi,t = η
α
Xi,t−1φ+

η
α
Xi,tφ+ 1

2
(Di,t−1− D̄t−1) + ξi,t, ξi,t ∼ N (0, 1). Here η controls overlap together with

α, where η/α has a similar role of the overlap constant in previous simulations.21

In the figure we report results for α ∈ {0.9, 0.7, 0.5} (denoted as “High, Medium

and Low correlation” respectively), and η ∈ {0.3, 0.5}. In Figure 5, we observe that

for very strong time dependence between treatments (i.e., there are limited or no

dynamics in assignments) the two methods are comparable. When instead, there are

relatively more dynamics in treatment assignments the proposed method significantly

improves in mean-squared error, with larger improvements in the presence of poorer

overlap. In the Appendix, Figure E.1 we provide results also for very good overlap

(η = 0.1), where the methods mostly provide comparable results on average. Such

results illustrate the benefits of the method with dynamics in treatment assignments

or poor overlap.
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Figure 5: Mean-squared error in log-scale. Simulations for T ≤ 10, p = 100, n =
400, two-hundred replications. Here high-correlation denotes strong serial depedence
between treatment assignments with α = 0.9, medium with α = 0.7 and weak with
α = 0.5. η ∈ {0.3, 0.5} for moderate and poor overlap, respectively.

21We take η/α as this plays approximately the same role of η in previous simulations from a
simple linear approximation of (1 + eιi,t)−1 with respect to η ≈ 0.

32



6 Empirical applications

6.1 The effect of negative advertisement on election outcome

Here, we study the effect of negative advertisements on the election outcome of

democratic candidates. We use data from Blackwell (2013) who collects information

on advertisement weeks before elections held in 2000, 2002, 2004, 2006.22 There were

176 races during this period. We select a subsample of 148 races, removing the non-

competitive races as in Blackwell (2013). Each race is associated with a different

democratic candidate and a set of baseline and time-varying covariates. Negative

advertisement is indicated by a binary variable as discussed in Blackwell (2013).23

Figure 6: The figure illustrates the dynamics of treatment assignments for each
application. The left-hand side is on the negative advertisement on the election
outcome, and the right-hand side on the democratization on GDP.

As shown in Figure 6 (left-panel), each week, races may or may not “go nega-

tive” with treatment assignments exhibiting correlation in time. Hence, controlling

for time-varying covariates and past assignments is crucial to avoid confounding. In

a first model (Case 1), we control for the share of undecided voters in the previous

week, whether the candidate is incumbent, the democratic polls, and whether the

22Data is available at https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/
19801.

23This indicates whether at least ten percent of the negative advertisement.
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democratic went negative in the previous week. Each of these variables (including

treatment assignments) enters linearly in the regression. In Figure 7 we compare

imbalance in covariates between the IPW weights estimated via logistic regression

and the DCB weights for Case 1. We observe that imbalance is substantially smaller

with the proposed weights, particularly for the share of undecided voters and the

polls. The only exception is the left-bottom panel (second period’s covariates for

control individuals) where imbalance is approximately zero for both methods (the

magnitude is 10−4 for this case). In Table 4 we collect results that demonstrate the

negative effects of going negative for two consecutive periods. We also observe neg-

ative effects, albeit of smaller magnitude, when implementing a second specification

(Case 2), which controls for a larger set of covariates.24 When comparing to AIPW,

we observe that DCB has a standard error twice as small as AIPW and larger point

estimates in magnitude.

Table 4: The first row corresponds to Case 1, while the second row to Case 2. (A)-
IPW refers to (Augmented)-inverse probability weights with stabilized weights. In
parenthesis, the standard errors.

ATE DCB ATE AIPW

Case 1 −1.767 −0.57
(0.70) (1.45)

Case 2 −0.493 −0.22
(0.764) (1.33)

6.2 Effect of democracy on economic growth

Here, we revisit the study of Acemoglu et al. (2019) on the effects of democracy on

economic growth.25 The data consist of an extensive collection of countries observed

24These are campaign length, the baseline number of undecided voters, baseline share of demo-
cratic voters, assignments two periods before, the type of office, and year fixed effects.

25In the past, Mulligan et al. (2004) find no significant effect, while Giavazzi and Tabellini (2005)
and Acemoglu et al. (2019) find positive and significant effects.
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Figure 7: Effect of negative advertisement on election outcome: imbalance plot.
Covariates are the share of undecided voters, whether the democratic candidate is
incumbent, the democratic polls, and the treatment in the previous period. At the
top, we report the imbalance on the treated and on the controls at the bottom. On
the left panel, we illustrate the imbalance in the first period and on the right in the
second period.

between 1960 and 2010.26 We consider observations starting from 1989. After re-

moving missing values, we run regressions with 141 countries. The outcome is the

log-GDP in country i in period t as discussed in Acemoglu et al. (2019). Following

Acemoglu et al. (2019) we capture democracy with a binary treatment based on in-

ternational ranking. Studying the long-run impact of democracy has two challenges:

(i) GDP growth depends on a long treatment history; (ii) unconfoundeness might

hold only when conditioning on a large set of covariates and past outcomes.

For each country, we condition on lag outcomes in the past four years, following

Acemoglu et al. (2019), past four treatment assignments which enter linearly in the

regression (for example, for t = 2010 we condition on the outcomes in the four years

before 2010, and similarly for every t ≥ 1989). We consider a pooled regression

(see Remark 4) and two alternative specifications. The first is parsimonious and

include dummies for different regions and different intercepts for different periods.27

A second one includes a larger set of covariates (in total 235 covariates). Coefficients

are estimated with a penalized linear regression as described in Algorithm 2 (with

26Data available at https://www.journals.uchicago.edu/doi/suppl/10.1086/700936.
27Country specific fixed effects are not included.
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Figure 8: Left-hand side: pooled regression from t ∈ {1989, · · · , 2010} Gray region
denotes the 90% confidence band for the least parsimonious model, with light-gray
corresponding to the

√
χ2T (α) critical quantile, and darker area to the Gaussian

critical quantile. DCB and DCB2 refer to two separate specification, with DCB
corresponding to the more parsimonious one. The dotted line reports the effect after
twenty five years of democracy discussed in Acemoglu et al. (2019). Right-hand side:
log-difference in of standard error between AIPW and DCB for t ∈ {2, · · · , 20}.

model = linear).28 Tuning parameters are chosed as in the Appendix.

The estimand of interest is the t-long run effect of democracy.29 It represents

the effect of the past t consecutive years of democracy. In Figure 8 (left-panel) we

collect our results, for endline outcomes pooled across 1989 to 2010. As t increases,

the darker gray region (confidence intervals obtained with Gaussian quantiles) stays

constant or slightly larger. The whiter region (chi-squared quantiles, which require

weaker assumptions but can be conservative) becomes larger as T increases since

the critical value also depends on the period length. Democracy has a statistically

insignificant effect on the first years of GDP growth but a statistically significant

positive impact on long-run GDP growth. The two specifications present similar

results, showing the robustness of the results. Figure 8 illustrates the flexibility of

28In practice, we may also want to penalize only some of the coefficients and not others, which is
also allowed in our framework.

29Formally E
[
Yi,t(1s, Di,(t−s):(−∞))

]
− E

[
Yi,t(0s, Di,(t−s):(−∞))

]
.
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the method in capturing the effects of policies that are possibly non-linear in the

exposure length. In the right-side panel we report the log-difference in standard

errors between the proposed method and AIPW for t ∈ {2, · · · , 20}. We note that

for short periods, AIPW performs similarly or slightly outperforms (by less than 0.5

percentage points) DCB. For t ≥ 5 improvements in standard errors of DCB upon

AIPW are up to twenty percentage points, and with a positive trend in T .

7 Discussion

This paper discusses the problem of inference on dynamic treatments via covariate

balancing. We allow for high-dimensional covariates, and we introduce novel balanc-

ing conditions that allow for the optimal
√
n-consistent estimation. The proposed

method relies on computationally efficient estimators. Simulations and empirical

applications illustrate its advantages over state-of-the-art methodologies.

Several questions remain open. First, the asymptotic properties crucially rely

on cross-sectional independence while allowing for general dependence over time. A

natural extension is where individuals exhibit dependence within clusters, which can

be accommodated by our method with minor modifications. More broadly, future

work should address more general extensions where cross-sectional i.i.d.-ness does

not necessarily hold. Second, our asymptotic results assume a fixed period. This

is an extension for future research, where the period is allowed to grow with the

sample size. Third, our derivations impose a weak form of overlap when construct-

ing balancing weights. A natural avenue for future research is whether conditions on

overlap might be replaced by alternative (weaker) assumptions. One additional ques-

tion, which cannot be directly handled in our framework, is how to handle dropouts

during the study due to confounding variables.

Finally, the derivation of general balancing conditions which do not rely on a

particular model specification remains an open research question.
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Appendix to “Dynamic covariate balancing:

estimating treatment effects over time”

A Definitions

Throughout our discussion, we denote y . x if the left-hand side is less or equal to

the right-hand side up to a multiplicative constant term. We will refer to βt as βtd1:T
whenever clear from the context. Recall that when we omit the script i, we refer to

the vector of all observations. We define

νi,t = Hi,t+1β
t+1
d1;T
−Hi,tβ

t
d1:T

, εi,T = Yi,T (d1:T )−Hi,Tβ
T
d1:T

.

and ν̂i,t for estimated coefficients (omitting the argument (d1:T ) for notational con-

venience). In addition, we define Vi,t = (Yi,1, · · · , Yi,t−1, Xi,1, · · · , Xi,t) the vector of

observations without including the treatment assignments.

B Lemmas

B.1 Lemmas in Section 3 and 4

B.1.1 Proof of Lemma 2.1

The first equation is a direct consequence of condition (A) in Assumption 2, and

the linear model assumption. Consider the second equation. By condition (B) in

Assumption 2, we have

E
[
Yi,2(d1, d2)

∣∣∣Xi,1

]
= E

[
Yi,2(d1, d2)

∣∣∣Xi,1, Di,1 = d1

]
.

Using the law of iterated expectations (since Xi,1 ⊆ Hi,2)

E
[
Yi,2(d1, d2)

∣∣∣Xi,1, Di,1 = d1

]
= E

[
E[Yi,2(d1, d2)|Hi,2, Di,1 = d1]|Xi,1, Di,1 = d1

]
.

1



Using condition (A) in Assumption 2, we have

E[Yi,2(d1, d2)|Hi,2, Di,1 = d1] = E[Yi,2(d1, d2)|Hi,2, Di,1 = d1, Di,2 = d2]

the proof completes as E[Yi,2(d1, d2)|Hi,2, Di,1 = d1, Di,2 = d2] = E[Yi,2|Hi,2, Di,1 =

d1, Di,2 = d2] as a consequence of condition (A) in Assumption 2.

B.1.2 Sufficient conditions for lasso

Lemma B.1 (Sufficient conditions for Lasso). Suppose that H2, X1 are uniformly

bounded and ||β2
d1:2
||0, ||β1

d1:2
||0 ≤ s, ||β2

d1:2
||∞, ||β1

d1:2
||∞ < ∞. Suppose that H2, X1

both satisfy the restricted eigenvalue assumption, and the column normalization con-

dition (Negahban et al., 2012).30 Suppose that β̂1
d1:2
, β̂2

d1:2
are estimated with Lasso

as in Algorithm 2 with a full interaction model and with penalty parameter λn �
s
√

log(p)/n. Let Assumptions 1 - 4 hold. Let ε2(d1:2)|H2 be subgaussian almost

surely and ν1(d1)|X1 be sub-gaussian almost surely. Then for each t ∈ {1, 2},∣∣∣∣∣∣β̂td1:2 − βtd1:2∣∣∣∣∣∣
1

= Op
(
s2
√

log(p)/n
)
.

Therefore,

‖β̂td1:2 − β
t
d1:2
‖1δt(n, p) = op(1/

√
n),

for δt(n, p) � log(np)/n1/4 and s2 log3/2(np)/n1/4 = O(1).

The proof is discussed below and follows similarly to Negahban et al. (2012),

with minor modifications. The above result provides a set of sufficient conditions

such that Assumption 5 holds for a feasible choice of δt.

Proof. The result for ∣∣∣∣∣∣β̂2
d1:2
− β2

d1:2

∣∣∣∣∣∣
1

= Op
(
s
√

log(p)/n
)

30Sufficient conditions that guarantee that the restricted eigenvalue assumption holds are dis-
cussed in (Negahban et al., 2012).
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follows verbatim from Negahban et al. (2012) Corollary 2. For the result for β̂1
d1:2

it

suffices to notice, following the same argument from Negahban et al. (2012) (Corol-

lary 2), that ∣∣∣∣∣∣β̂1
d1:2
− β1

d1:2

∣∣∣∣∣∣
1

= O(sλn), for λn ≥
∣∣∣∣∣∣ 1
n
X>1 ν̂1

∣∣∣∣∣∣
∞
,

since here we used the estimated outcome H2β̂
2
d1:T

as the outcome of interest in our

estimated regression instead of the true outcome.31 The upper bound as a function

of λn follows directly from Theorem 1 in Negahban et al. (2012).32 We note that we

can write ∣∣∣∣∣∣ 1
n
X>1 ν̂1

∣∣∣∣∣∣
∞
≤
∣∣∣∣∣∣ 1
n
X>1 ν1

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣ 1
n
X>1 (ν1 − ν̂1)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣ 1
n
X>1 ν1

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣ 1
n
X>1 H2(β

2
d1:2
− β̂2

d1:2
)
∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣ 1
n
X>1 ν1

∣∣∣∣∣∣
∞

+ ||X1||∞||H2||∞||β2
d1:2
− β̂2

d1:2
||1.

We now study each component separately. By sub-gaussianity, since E[ν1|X1] = 0 by

Assumption 3, we have for all t > 0, by Hoeffding inequality and the union bound,

P
(∣∣∣∣∣∣ 1

n
X>1 ν1

∣∣∣∣∣∣
∞
> t
∣∣∣X1

)
≤ p exp

(
−M t2n

s

)
for a finite constant M . This result follows since ν1 ≤ ||β1||1||X(j)

1 ||∞ ≤ Ms. It

implies that ∣∣∣∣∣∣ 1
n
X>1 ν1

∣∣∣∣∣∣
∞

= Op(
√
s log(p)/n)

The second component instead is Op(s
√

log(p)/n) by the bound on ||β2
d1:2
− β̂2

d1:2
||1.

This complete the proof. Finally, observe also that the same argument follows re-

cursively for any finite T , with the estimation error depending on T .

31Formally, here to compute R∗(∇L(θ∗)) in Negahban et al. (2012)’s notation we need to account
for the loss function to depend on the estimated outcome.

32Note that Theorem 1 in Negahban et al. (2012) does not depend on the distribution of the data
and is a deterministic statement which holds under strong convexity at the true regression param-
eter. For a linear model, strong convexity is satisfied under the restricted eigenvalue assumption
which does not depend on the regression parameter.
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B.1.3 Proof of Lemma 4.1

Since the Lemmas in Section 3 are a special case of those in Section 4 we directly

prove the results for multiple periods.

Throughout the proof we omit the argument d1:T of γ̂t(d1:T ) for notational con-

venience. Recall that γ̂i,T = 0 if Di,1:T 6= d1:T . Therefore, by consistency of potential

outcomes:

γ̂i,TYi,T = γ̂i,TYi,T (d1:T ) = γ̂i,T (Hi,Tβ
T
d1:T

+ εi,T ).

Then we can write

n∑
i=1

(
γ̂i,TYi,T −

T∑
t=2

(γ̂i,t − γ̂i,t−1)Hi,tβ̂
t
d1:T
− (γ̂i,1 −

1

n
)Xi,1β̂

1
d1:T

)
=

n∑
i=1

(
γ̂i,THi,Tβ

T
d1:T
−

T∑
t=2

(γ̂i,t − γ̂i,t−1)Hi,tβ̂
t
d1:T
− (γ̂i,1 −

1

n
)Xi,1β̂

1
d1:T

)
+ γ̂>T εT .

Consider first the term

n∑
i=1

(γ̂i,THi,Tβ
T
d1:T
− (γ̂i,T − γ̂i,T−1)Hi,T β̂

T
d1:T

) = (γ̂THT − γ̂T−1HT )(βTd1:T − β̂
T
d1:T

) + γ̂T−1HTβ
T
d1:T

.

Notice now that for any s > 1,

n∑
i=1

(γ̂i,s − γ̂i,s−1)Hi,sβ̂
s
d1:T

= (γ̂sHs − γ̂s−1Hs)(β̂
s
d1:T
− βsd1:T ) + γ̂sHsβ

s
d1:s − γ̂s−1Hsβ

s
d1:s .

For s = 1 we have instead

n∑
i=1

(γ̂i,1 −
1

n
)Xi,1β̂

1
d1:T

= (γ̂1X1 − X̄1)(β̂
1
d1:T
− β1d1:T ) + γ̂1X1β

1
d1:s − X̄1β

1
d1:s .
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Therefore, we can write

n∑
i=1

(
γ̂i,TYi,T −

T∑
t=2

(γ̂i,t − γ̂i,t−1)Hi,tβ̂
t
d1:T
− (γ̂i,1 −

1

n
)Xi,1β̂

1
d1:T

)
= (γ̂THT − γ̂T−1HT )(βTd1:T − β̂

T
d1:T

) +
T−1∑
s=2

(γ̂sHs − γ̂s−1Hs)(β
s
d1:T
− β̂sd1:T ) + (γ̂1X1 − X̄1)(β

1
d1:T
− β̂1d1:T )

+ γ̂THTβ
T
d1:T

+ γ>T εT −
[ T−1∑
s=2

γ̂s+1Hsβ
s
d1:s − γ̂sHsβ

s
d1:s

]
− γ̂1X1β

1
d1:s + X̄1β

1
d1:s .

The proof completes collecting the desired terms.

B.1.4 Proof of Lemma 4.2

Since γ̂i,t(d1:T ) is equal to zero if Di,1:t 6= d1:t we can focus to the case where Di,1:t =

d1:t. Since weights at time t− 1 are measurable with respect to Ft−1, Dt−1, we only

need to show that

E[γ̂i,t−1(d1:T )Htβ
t
d1:T
|Ft−1, D−i,t−1, Di,(1:(t−1)) = d1:(t−1)] = γ̂i,t(d1:T )Ht−1β

t−1
d1:T

, (B.1)

where, recall, weights γ̂i,t−1(d1:T ) are a measurable function of Ft−1, Dt−1. On the

event that Di,(1:(t−1)) 6= d1:(t−1) the expression is zero on both sides and the result

trivially holds. Therefore, we can implicitely assume that Di,(1:(t−1)) = d1:(t−1) since

otherwise the result trivially holds. Under Assumption 7 we can write

E[γ̂i,t−1(d1:T )Htβ
t
d1:T
|Ft−1, Dt−1] = E

[
γ̂i,t−1(d1:T )E[Yi,T (d1:T )|Ft, Dt]

∣∣∣Ft−1, Dt−1

]
= γ̂i,t−1(d1:T )E[Yi,T (d1:T )|Ft−1, Dt−1]

(B.2)

by the tower property of the expectation and the definition of Ft. Now notice that

under Assumption 7, E[Yi,T (d1:T )|Ft−1, Dt−1] = E[Yi,T (d1:T )|Ft−1]. Therefore

γ̂i,t−1(d1:T )E[Yi,T (d1:T )|Ft−1] = γ̂i,t−1(d1:T )Hi,t−1β
t−1
d1:(t−1)

(B.3)

which follows since γ̂i,t−1(d1:T ) = 0 if D1:t−1 6= d1:t−1.
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Corollary 2. Lemma 3.2 holds.

Proof. It follows directly choosing t ∈ {1, 2} from Lemma 4.2.

B.2 Additional auxiliary Lemmas

Lemma B.2. (Existence of Feasible γ̂1) Suppose that X
(j)
i,1 is subgaussian for all j ∈

{1, · · · , p1}, Xi,1 ∈ Rp1. Suppose that for d1 ∈ {0, 1}, P (Di,1 = d1|Xi,1) ∈ (δ, 1− δ).

Then with probability 1 − 5/n, for log(2np1)/n ≤ c0 for a constant 0 < c0 < ∞,

where δ1(n, p1) ≥ C
√

2 log(2np1)/n, for a constant 0 < C <∞, there exist a feasible

γ̂1. In addition,

lim
n→∞

P
(
n||γ̂1||22 ≤ E

[ 1

P (Di,1 = d1|Xi,1)

])
= 1.

Proof of Lemma B.2. This proof follows in the same spirit of one-period setting

(Athey et al., 2018). To prove existence of a feasible weight, we use a feasible guess.

We prove the claim for a general d1 ∈ {0, 1}. Consider first

γ̂∗i,1 =
1{Di,1 = d1}

nP (Di,1 = d1|Xi,1)

/( 1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

)
. (B.4)

For such weight to be well-defined, we need that the denominator is bounded away

from zero. We now provide bounds on the denominator. Since P (Di,1 = d1|Xi,1) ∈
(δ, 1− δ) by Hoeffding inequality

P
(∣∣∣ 1
n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

− 1
∣∣∣ > t

)
≤ 2 exp

(
− nt2

2a2

)
,

for a finite constant a. Therefore with probabiliy 1− 1/n,

1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

> 1−
√

2a2 log(2n)/n. (B.5)

Therefore for n large enough such that
√

2a2 log(2n)/n < 1 − κ, weights are finite

6



with high probability taking some arbitrary κ ∈ (0, 1). In addition, they sum up to

one and they satisfy the requirement with probability 1− 1/n

1{Di,1 = d1}
nP (Di,1 = d1|Xi,1)

. n−2/3 ⇒ γ∗i,1 ≤ K2,1n
−2/3

for a constant K2,1, where the first inequality follows by the overlap assumption

and the second by Equation (B.5). We are left to show that the first constraint is

satisfied. First notice that under Assumption 7 E
[
1
n

∑n
i=1

1{Di,1=d1}X
(j)
i,1

P (Di,1=1|Xi,1)
|X1

]
= X̄

(j)
1 .

In addition, since Xi,1 is subgaussian, and 1/P (Di,1 = d1|Xi,1) is uniformly bounded,

and the union bound

P
(∣∣∣∣∣∣X̄1 −

1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = 1|Xi,1)

Xi,1

∣∣∣∣∣∣
∞
> t
)
≤ p12 exp

(
− nt2

2a2

)
for a finite constant a2. With trivial rearrangement, with probability 1− 1/n,

∣∣∣∣∣∣X̄1 −
1

n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = 1|Xi,1)

Xi,1

∣∣∣∣∣∣
∞
≤ a
√

2 log(2np)/n (B.6)

Consider now the denominator. We have shown that the denominator concetrates

around one at exponential rate, namely that with probability 1− 1/n,

∣∣∣ 1
n

n∑
i=1

1{Di,1 = d1}
P (Di,1 = d1|Xi,1)

− 1
∣∣∣ ≤ 2a

√
log(2n)/n. (B.7)
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Therefore, with probability 1− 2/n,

∣∣∣∣∣∣X̄1 −
1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣X̄1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

− 1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣X̄1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

+ X̄1 − X̄1 − 1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

≤
∣∣∣∣∣∣X̄1 − 1

n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞

+
2a
√

log(2n)/n

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

≤
a
√

2 log(2np)/n+ 2a
√

log(2n)/n

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

,

(B.8)

where the first inequality follows by the triangular inequality and by concentration

of the term 1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

around one at exponential rate as in Equation (B.7).

The second inequality follows by concentration of the numerator as in Equation (B.6).

With probability 1 − 1/n, the denominator is bounded away from zero. Therefore

for a universal constant C <∞,33

P
(∣∣∣∣∣∣X̄1 −

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

Xi,1

1
n

∑n
i=1

1{Di,1=d1}
P (Di,1=1|Xi,1)

∣∣∣∣∣∣
∞
≤ Ca

√
2 log(2np)/n

)
≥ 1− 3/n. (B.9)

We are left to provide bounds on ||γ̂1||22. For n large enough, with probability at

least 1 − 5/n, ||γ̂1||22 ≤ ||γ̂∗1 ||22 since γ̂∗1 is a feasible solution. By overlap, the fourth

moment of 1/P (Di,1 = d1|Xi,1) is bounded. By the strong law of large numbers and

Slutsky theorem,

n||γ̂∗1 ||22 =

n∑
i=1

1{Di,1 = d1}
nP (Di,1 = d1|Xi,1)2

/( n∑
i=1

1{Di,1 = d1}
nP (Di,1 = d1|Xi,1)

)2
→as

E[
1{Di,1=d1}

P (Di,1=d1|Xi,1)2
]

E[
1{Di,1=d1}

P (Di,1=d1|Xi,1)
]2
<∞.

(B.10)

which completes the proof.

33Here 3/n follows from the union bound.
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Lemma B.3. (Existence of a feasible γ̂t) Let

Zi,t(dt) =
1{Di,t = dt}

P (Di,t = dt|Yi,1, ..., Yi,t−1, Xi,1, ..., Xi,t−1, Di,1, ..., Di,t−1)
.

Assume that for dt ∈ {0, 1}. Assume that H
(j)
i,t |Hi,t−1 is sub-gaussian for all j ∈

{1, · · · , pt} almost surely. Let Assumption 8 hold and let for a finite constant c0,

δt(n, pt) ≥ c0
log3/2(ptn)

n1/2
, and K2,t = 2K2,t−1c̄, for some finite constant c̄.

Then with probability ηn → 1, for some N > 0, n ≥ N , there exists a feasible γ̂∗t

solving the optimization in Algorithm D.1, where

γ̂∗i,t = γ̂i,t−1Zi,t(dt)
/ n∑

i=1

γ̂i,t−1Zi,t(dt)

In addition,

lim
n→∞

P
(
n||γ̂t||22 ≤ Ct

)
= 1 (B.11)

for a constant 1 ≤ Ct <∞ independent of (pt, n).

Proof of Lemma B.3. The proof follows by induction. By Lemma B.2 we know that

there exist a feasible γ̂1, with limn→∞ P (n||γ̂1||22 ≤ C ′) = 1. Suppose now that there

exist feasible γ̂1, ..., γ̂t−1, such that

lim
n→∞

P (n||γ̂s||22 ≤ Cs) = 1 (B.12)

for some finite constant Cs which only depends on s, and for all s < t. We want to

show that the statement holds for γ̂t. We find γ∗t that satisfies the constraint, with

γ̂∗i,t = γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

/( n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

)
. (B.13)

We break the proof into several steps.
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Finite and Bounded Weights To show that such weights are finite, with high

probability, we need to impose bounds on the numerator and the denominator. We

want to bound for a universal constant C̄ <∞,

P
({

max
i∈{1,...,n}

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
> C̄n−2/3K2,t−1

}⋃{ n∑
i=1

γ̂i,t
1{Di,t = dt}

P (Di,t = dt|Hi,t)
> ε
})

≤ P
(

max
i∈{1,...,n}

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
> C̄n−2/3K2,t−1

)
︸ ︷︷ ︸

(i)

+P
( n∑
i=1

γ̂i,t
1{Di,t = dt}

P (Di,t = dt|Hi,t)
> ε
)

︸ ︷︷ ︸
(ii)

.

We start by (i). Observe first that we can bound

max
i∈{1,...,n}

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
≤ n−2/3K2,t−1 max

i∈{1,...,n}

1{Di,t = dt}
P (Di,t = dt|Hi,t)

≤ K2,t−1C̄n
−2/3

for a finite constant C̄. We now provide bounds on the denominator. Since σ(Ht−1) ⊆
σ(Ht)

E
[ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

]
= E

[
E
[ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

∣∣∣Ht−1

]]
= E

[ n∑
i=1

γ̂i,t−1E
[
E
[ 1{Di,t = dt}
P (Di,t = dt|Hi,t)

∣∣∣Ht

]∣∣∣Ht−1

]]
=

n∑
i=1

γ̂i,t−1 = 1.

We show concentration of the denominator around its expectation to show that the

denominator is bounded away from zero with high probability. Let Ct−1 be the upper

limit on n||γ̂t−1||22, and let

c := 1
/
Ct−1 ηn,t := P (||γ̂t−1||22 ≤ 1/(cn)), (B.14)

for some constant c, which only depends on t − 1 (the dependence with t − 1 is

suppressed for expositional convenience). Observe in addition that ηn,t → 1 by the
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induction argument (see Equation (B.12)). We write for a finite constant a

P
(∣∣∣ n∑

i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1
∣∣∣ > h

)
≤ P

(∣∣∣ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1
∣∣∣ > h

∣∣∣||γ̂t−1||22 ≤ 1/(cn)
)
ηn,t + (1− ηn,t)

≤ 2 exp
(
− ah2

2||γ̂t−1||22

∣∣∣||γ̂t−1||22 ≤ 1/(cn)
)
ηn,t + (1− ηn,t)

≤ 2 exp
(
− ch2an

2

)
ηn,t + (1− ηn,t).

(B.15)

The third inequality follows from the fact that γ̂t−1 is measurable with respect to Ht−1

and
1{Di,t=dt}

P (Di,t=dt|Hi,t)
is sub-gaussian conditional on Hi,t−1 (since uniformly bounded).

Therefore with probability at least 1− δ,

∣∣∣ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1
∣∣∣ ≤√2 log(2ηn,t/(δ + ηn,t − 1))/(acn). (B.16)

By setting δ = ηn,t/n+ (1− ηn,t), with probability at least 1− ηn,t/n+ (1− ηn,t),

∣∣∣ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
− 1
∣∣∣ ≤√2 log(2n)/acn,

and hence the denominator is bounded away from zero for n large enough (recall

that ηn,t → 1).

First Constraint We now show that the proposed weights satisfy the first con-

straint in Algorithm D.1. The second trivially holds, while the third has been dis-
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cussed in the first part of the proof. We write

E
[ n∑
i=1

γ̂i,t−1H
(j)
i,t −

n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
H

(j)
i,t

]
= E

[
E
[ n∑
i=1

γ̂i,t−1H
(j)
i,t −

n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
H

(j)
i,t

∣∣∣Ht

]]
= 0.

We want to show concentration. First, we break the probability into two components:

P
(∣∣∣∣∣∣ n∑

i=1

γ̂i,t−1Hi,t −
n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
Hi,t

∣∣∣∣∣∣
∞
> h

)
≤ P

(∣∣∣∣∣∣ n∑
i=1

γ̂i,t−1Hi,t −
n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
Hi,t

∣∣∣∣∣∣
∞
> h

∣∣∣||γ̂t−1||22 ≤ 1/cn
)
ηn,t︸ ︷︷ ︸

(I)

+ (1− ηn,t)︸ ︷︷ ︸
(II)

,

where ηn,t = P (||γ̂t−1||22 ≤ 1/cn) for some constant c. We study (I), whereas, by

the induction argument (II) → 0 (Equation (B.12)). For a constant c̄ < ∞, sub-

gaussianity of Hi,t|Ht−1 and overlap, we can write for any λ > 0,

(I) ≤
p∑
j=1

E
[
E
[

exp
(
λc̄||γ̂t−1||22 − λh

)
|Ht−1, ||γ̂t−1||22 ≤ 1/cn

]∣∣∣||γ̂t−1||22 ≤ 1/cn
]
ηn,t.

(B.17)

Since γ̂t−1 is measurable with respect to Ht−1, we can write

(B.17) ≤ ηnpt exp
(
λ2/(cn)− λh

)
. (B.18)

Choosing λ = hcn/2 we obtain that the above equation converges to zero as log(pt)/n =

o(1). After trivial rearrangement, with probability at least 1− (1− ηn)− 1/n (recall

that ηn → 1) ,

∣∣∣∣∣∣ n∑
i=1

γ̂i,t−1Hi,t −
n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)
Hi,t

∣∣∣∣∣∣
∞

.
√

log(npt)/n. (B.19)
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As a result, we can write

∣∣∣∣∣∣ n∑
i=1

γ̂i,t−1Hi,t −
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)
Hi,t∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣∑n

i=1 γ̂i,t−1Hi,t

∑n
i=1 γ̂i,t−1

1{Di,t=dt}
P (Di,t=dt|Hi,t)

−
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)
Hi,t∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞

.
∣∣∣∣∣∣∑n

i=1 γ̂i,t−1Hi,t

(
1−

∑n
i=1 γ̂i,t−1

1{Di,t=dt}
P (Di,t=dt|Hi,t)

)
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(i)

+
∣∣∣∣∣∣∑n

i=1 γ̂i,t−1Hi,t

(
1− 1{Di,t=dt}

P (Di,t=dt|Hi,t)

)
∑n

i=1 γ̂i,t−1
1{Di,t=dt}

P (Di,t=dt|Hi,t)

∣∣∣∣∣∣
∞︸ ︷︷ ︸

(ii)

.

Observe now that the denominators of the above expressions are bounded away from

zero with high probability as discussed in Equation (B.16). The numerator of (ii) is

bounded by Equation (B.19). We are left with the numerator of (i). Note first that

E
[ n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

∣∣∣Hi,t

]
= 1.

We can write∣∣∣∣∣∣ n∑
i=1

γ̂i,t−1Hi,t

(
1−

n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

)∣∣∣∣∣∣
∞
≤ max

j

∣∣∣ n∑
i=1

γ̂i,t−1H
(j)
i,t

∣∣∣︸ ︷︷ ︸
(j)

∣∣∣1− n∑
i=1

γ̂i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

∣∣∣︸ ︷︷ ︸
(jj)

.

Here (jj) is bounded as in Equation (B.16), with probability 1 − 1/n at a rate√
log(n)/n. The component (j) instead is bounded as

(j) ≤ max
j,i
|H(j)

i,t | . log(ptn)

with probability 1−1/n using subgaussianity of H
(j)
i,t . As a result, all constraints are

satisfied.
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Finite Norm We now need to show that Equation (B.11) holds. With probability

converging to one,

n||γ̂t||22 ≤ n||γ̂∗t ||22 =
n∑
i=1

nγ̂∗2i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)2

/( n∑
i=1

γ̂∗i,t−1
1{Di,t = dt}

P (Di,t = dt|Hi,t)

)2
.

The denominator converges in probability to one by Equation (B.16). The numer-

ator can instead be bounded by n||γ∗t−1||2 up-to a finite multiplicative constant by

Assumption 8. By the recursive argument n||γ∗t ||2 = Op(1).

Lemma B.4. The weights solving the optimization problem in Algorithm D.1 are

such that

||γ̂t||22 ≥ 1/n.

Proof. Observe that for either algorithms, weights sum to one. The minimum under

this constraint only is obtained at γ̂i,t = 1/n for all i concluding the proof.

C Proofs of the Main Theorems

Proof of Theorem 4.3

By Lemmas B.2 and B.3, Theorem 4.3 and Theorem 3.3 directly hold.

Proof of Theorem 4.4

Throughout the proof we will be omitting the script d1:T in the weights and coeffi-

cients whenever clear from the context. Note that Theorem 3.4 is a direct corollary

of Theorem 4.4.

Weights do not diverge to infinity First notice that by Lemmas B.2, B.3, there

exist a γ̂∗t such that for N large enough, with probability converging to one, for some

constant C, and n > N

n||γ̂t||22 ≤ n||γ̂∗t ||22 = Op(1). (C.1)
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Similar reasoning also applies to n
∑n

i=1 γ
2
i,tVar(νi,t|Hi,t) and n

∑n
i=1 γ

2
i,TVar(εi,T |FT )

since the conditional variances are uniformly bounded by the finite third moment

condition.

Error Decomposition We denote σ̄2 the lower bound on the conditional variances

and σ2
up a the upper bound on the variances. Recall νi,t = Hi,t+1β

t+1
d1;T
− Hi,tβ

t
d1:T

and ν̂i,t for estimated coefficients, ν̂i,t = Hi,t+1β̂
t+1
d1;T
− Hi,tβ̂

t
d1:T

. First we write the

expression as

µ̂(d1:T )− X̄1β
1
d1:T√

V̂T (d1:T )
=

µ̂(d1:T )− X̄1β
1
d1:T√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)︸ ︷︷ ︸

(I)

×

×

√∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T ) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)√∑n

i=1 γ̂
2
i,T (Yi,T −Hi,T β̂Td1:T )2 +

∑T−1
t=1 γ̂

2
i,tν̂

2
i,t︸ ︷︷ ︸

(II)

.

(C.2)

Term (I) We consider the term (I). By Lemma 4.1, we have

(I) =

∑T
t=1(β

t − β̂t)>(γ̂tHt − γ̂t−1Ht)√∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)︸ ︷︷ ︸

(j)

+

∑n
i=1 γ̂i,T εi,T +

∑T−1
t=1 γ̂i,tνi,t√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)︸ ︷︷ ︸

(jj)

.

We start from (j). Notice since
∑n

i=1 γ̂i,t = 1 and the variances are bounded from

below (and Lemma B.4), it follows that

n∑
i=1

γ̂2i,TVar(εi,T |Hi,T−1) +
n∑
i=1

T−1∑
t=1

γ̂2i,tVar(νi,t|Hi,t) ≥ T σ̄2

n∑
i=1

1

n2
= T σ̄2/n.
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Therefore, since the denominator is bounded from below by σ̄
√
T/n, and since, by

Holder’s inequality

T∑
t=1

(βt − β̂t)>(γ̂tHt − γ̂t−1Ht) . T ||βt − β̂t||1
∣∣∣∣∣∣γ̂tHt − γ̂t−1Ht

∣∣∣∣∣∣
∞

we have

(j) . T max
t
δt(n, p)||βt − β̂t||1 →p 0 (C.3)

under Assumption 9 and the fact that T is fixed. We can now write

(I) = op(1) +

∑n
i=1 γ̂i,T εi,T√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1)︸ ︷︷ ︸

(i)

×

√√√√ ∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T−1)∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)︸ ︷︷ ︸

(ii)

+

T−1∑
t=1

∑n
i=1 γ̂i,1νi,t√∑

i Var(νi,t|Hi,t)γ̂2i,t︸ ︷︷ ︸
(iii)

×

√∑
i Var(νi,t|Hi,t)γ̂2i,t√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)︸ ︷︷ ︸

(iv)

.

First, notice that σ(γ̂T ) ⊆ σ(DT ,FT ), and by Assumption 7 εT ⊥ DT |FT . Therefore,

E[γ̂i,T εi,T |FT , DT ] = 0, σ̄2||γ̂T ||22 ≤ Var
( n∑
i=1

γ̂i,T εi,T |FT , DT

)
≤ ||γ̂T ||22σ2

ε ,

where the first statement follows directly from 4.2 and the second statement holds

for a finite constant σ2
ε by the third moment condition in Assumption 9. By the

third moment conditions in Assumption 9 and independence of εi,T of DT given FT
in Assumption 7, for a constant 0 < C <∞,

E
[( n∑

i=1

γ̂i,T εi,T

)3∣∣∣FT , DT

]
=

n∑
i=1

γ̂3i,TE[ε3i,T |FT ]

≤ C
n∑
i=1

γ̂3i,T ≤ C||γ̂T ||22 max
i
|γ̂i,T | . log(n)n−2/3||γ̂T ||22.
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Thus,

E
[ n∑
i=1

γ̂3i,T ε
3
i,T

∣∣∣FT , DT

]/
Var
( n∑
i=1

γ̂i,T εi,T

∣∣∣FT , DT

)3/2
= O(log(n)n−2/3||γ̂T ||−12 ) = o(1).

By Liapunov theorem, we have∑n
i=1 γ̂i,T εi,T√∑n

i=1 γ̂i,TVar(εi,T |FT )

∣∣∣σ(FT , DT )→d N (0, σ2).

Consider now (iii) for a generic time t. We study the behaviour of
∑n

i=1 γ̂i,tνi,t

conditional on σ(Ft, Dt). Since σ(γ̂t) ⊆ σ(Ft, Dt), γ̂t is deterministic given σ(Ft, Dt).

By Lemma 4.2, E[γ̂i,tνi,t|Ft, Dt] = 0. We now study the second moment. Notice that

σ̄2||γ̂t||22 ≤ Var(
n∑
i=1

γ̂i,tνi,t
∣∣Ft, Dt) =

n∑
i=1

γ̂2i,tVar(νi,t|Ft, Dt) ≤
n∑
i=1

γ̂2i,tσ
2
ub.

Finally, we consider the third moment. Under Assumption 9,

E
[ n∑
i=1

γ̂3i,tν
3
i,t

∣∣∣X1, D1

]
=

n∑
i=1

γ̂3i,tE[ν3i,t|Ft, Dt] ≤
n∑
i=1

γ̂3i,tu
3
max . log(n)n−2/3||γ̂t||22.

Since ||γ̂t||2 ≥ 1/
√
n by Lemma B.4 and since Var(νi,t|Ft, Dt) > umin,

E
[ n∑
i=1

γ̂3i,tν
3
i,t

∣∣∣Ft, Dt

]/
Var
( n∑
i=1

γ̂i,tνi,t

∣∣∣Ft, Dt

)3/2
= O(log(n)n−2/3||γ̂t||−12 ) = o(1).

⇒
∑n

i=1 γ̂i,tνi,t√∑n
i=1 γ̂

2
i,tVar(νi,t|Ft, Dt)

∣∣∣σ(Ft, Dt)→d N (0, 1).
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Collecting our results it follows that∑n
i=1 γ̂i,T εi,T√∑n

i=1 Var(εi,T |Hi,T )γ̂2i,T

∣∣∣ σ(FT , DT ) →d N (0, 1)

∑n
i=1 γ̂i,tνi,t√∑n

i=1 γ̂
2
i,tVar(νi,t|Ft, Dt)

∣∣∣ σ(Ft, Dt) →d N (0, 1), ∀t ∈ {1, ..., T − 1}

(C.4)

Notice now that σ(Ft, Dt) consistute a filtration and that

E[γ̂i,tεi,T γ̂i,tνi,t|FT , DT ] = γ̂i,tνi,tγ̂i,TE[εi,T |FT , DT ] = 0

E[γ̂i,tγ̂i,sνi,sγ̂i,tνi,t|Fmax{s,t}, Dmax{s,t}] = γ̂i,tγ̂i,sνi,min{t,s}E[νi,max{s,t}|Fmax{s,t}, Dmax{s,t}] = 0.

(C.5)

Since each component at time t converges conditionally on the filtration σ(Ft, Dt)

and each component is measurable with respect to σ(Ft+1, Dt+1), it follows the joint

convergence result[
Z1, · · ·ZT

]>
→d N (0, I) ,

Zt =

∑n
i=1 γ̂i,tνi,t√∑n

i=1 γ̂
2
i,tVar(νi,t|Ft, Dt)

, t ∈ {1, · · · , T − 1}, ZT =

∑n
i=1 γ̂i,T εi,T√∑n

i=1 Var(εi,T |Hi,T )γ̂2i,T

.

We are left to consider the components (ii), (iv). Define

WT =

√√√√ ∑n
i=1 γ̂

2
i,TVar(εi,T |Hi,T−1)∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)

,

Wt =

√∑
i Var(νi,t|Hi,t)γ̂2i,t√∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)

, t ∈ {1, · · · , T − 1}.

Note that ||W ||2 = 1. Note also that we can write the expression (I) as
∑T

t=1 ZtWt.
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Therefore we write for any t ≥ 0,

P
(∣∣∣ T∑

t=1

WtZt

∣∣∣ > t
)
≤ P

(
||W ||2

√√√√ T∑
t=1

Z2
t > t

)
= P

( T∑
t=1

Z2
t > t2

)
,

where the last equality follows from the fact that ||W ||2 = 1. Note now that since Zt

are independent standard normal,
∑T

t=1 Z
2
t is chisquared with T degrees of freedom.

To complete the claim, we are only left to show that (II)→p 1 to then invoke Slutksy

theorem.

Term (II) We can write

|(II)2 − 1| =
∣∣∣ ∑n

i=1 γ̂
2
i,T (Yi,T −Hi,T β̂

T )2 +
∑T−1

t=1 γ̂
2
i,tν̂

2
i,t∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)

− 1
∣∣∣

.
∣∣∣ n

∑n
i=1 γ̂

2
i,T ε

2
i,T + n

∑T−1
t=1 γ̂

2
i,tν

2
i,t

n
∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) + n

∑n
i=1

∑T−1
t=1 γ̂

2
i,tVar(νi,t|Hi,t)

− 1
∣∣∣︸ ︷︷ ︸

(A)∣∣∣ n
∑n

i=1 γ̂
2
i,T

[
(Yi,T −Hi,T β̂

T )2 − (Yi,T −Hi,Tβ
T )2
]

n
∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) + n

∑n
i=1

∑T
s=1 γ̂

2
i,sVar(νi,s|Hi,s)︸ ︷︷ ︸

(B)

∣∣∣

+

T−1∑
t=1

∣∣∣ n∑n
i=1 γ̂

2
i,t

[
(Hi,t+1β

t+1 −Hi,tβ̂
t+1)2 − (Hi,t+1β

t+1 −Hi,tβ
t)2
]

n
∑n

i=1 γ̂
2
i,TVar(εi,T |Hi,T−1) + n

∑n
i=1

∑T
s=1 γ̂

2
i,sVar(νi,s|Hi,s)︸ ︷︷ ︸

(C)

∣∣∣.

(C.6)

To show that (A) converges it suffices to note that the denominator is bounded

from below by a finite positive constant by Lemmas B.2, B.3 and the fact that each

variance component is bounded away from zero under Assumption 9. The conditional

variance of each component in the numerator reads as follows (recall by the above
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lemmas that n||γ̂t||2 = Op(1))

Var
(
n

n∑
i=1

γ̂2i,T ε
2
i,T

∣∣∣HT

)
≤ n2C̄||γ̂T ||44 ≤ log2(n)n2C̄n−4/3||γ̂T ||22 = Op(1) log2(n)nn−4/3 = op(1),

Var
(
n

n∑
i=1

γ̂2i,tν
2
i,t

∣∣∣Ht

)
≤ C̄n2||γ̂T ||44 ≤ n2 log2(n)C̄n−4/3||γ̂t||22 = Op(1) log2(n)nn−4/3 = op(1)

and hence (A) converges to zero by the continuous mapping theorem. For the term

(B), the denominator is bounded from below away from zero as discussed for (A).

The numerator is

n
n∑
i=1

γ̂2i,T

[
(Yi,T −Hi,T β̂

T )2 − (Yi,T −Hi,Tβ
T )2
]
≤ n

n∑
i=1

γ̂2i,T

(
Hi,T (β̂T − βT )

)2
(C.7)

We can now write

n
n∑
i=1

γ̂2i,T

(
Hi,T (β̂T − βT )

)2
≤ ||β̂T − βT ||21n||γ̂T ||2||max

i
|Hi,T |||2∞.

Notice now that by sub-gaussianity, with probability 1−1/n, we have ||maxiHi,T ||∞ =

O(log(np)).34 Since ||β̂T − βT ||1 = op(n
−1/4), n||γ̂T ||2 = Op(1) and log(np)/n1/4 =

o(1) the above expression is op(1). Consider now

n
n∑
i=1

γ̂2i,t

[
(Hi,t+1β

t+1 −Hi,tβ̂
t+1)2 − (Hi,t+1β

t −Hi,tβ
t)2
]
≤ n

n∑
i=1

γ̂2i,t

(
Hi,t(β

t − β̂t)
)2

which is op(1) similarly to the term in Equation (C.7).

Rate of convergence is n−1/2. To study the rate of convergences it suffices to

show that (for fixed T )

n
[ n∑
i=1

γ̂2i,TVar(εi,T |Hi,T−1) +
n∑
i=1

T−1∑
t=1

γ̂2i,tVar(νi,t|Hi,t)
]

= O(1).

34To note this, we can write P (maxi,j |H(j)
i,T | > t) ≤ npP (|H(j)

i,T | > t) ≤ npe−t
2v for some finite

constant v. Setting npe−t
2v = 1/n the claim holds.
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This follows directly from Lemma B.3, B.2 and the bounded conditional third mo-

ment assumption in Assumption 9.

C.1 Proof of Theorem 4.5

The proof of the corllary follows similarly to the proof of Theorem 4.4. In particular,

note that we can write

µ̂(d1:T )− µ̂(d′1:T )− X̄1β
1
d1:T

+ X̄1β
1
d′1:T√∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)(Yi,T −Hi,T β̂Td )2 +

∑T−1
t=1 γ̂

2
i,t(d)ν̂2i,t(d)

=
µ̂(d1:T )− µ̂(d′1:T )− X̄1β

1
d1:T

+ X̄1β
1
d′1:T√∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)Var(εi,T (d)|Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,t(d)Var(νi,t(d)|Hi,t)︸ ︷︷ ︸

(I)

×

×

√∑
d∈{d1:T ,,d′1:T }

∑n
i=1 γ̂

2
i,T (d)Var(εi,T (d)|Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,t(d)Var(νi,t(d)|Hi,t)√∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)(Yi,T −Hi,T β̂Td )2 +

∑T−1
t=1 γ̂

2
i,t(d)ν̂2i,t(d)︸ ︷︷ ︸

(II)

.

(C.8)

The component (II) converges in probability to one as discussed in the proof of

Theorem 4.4. The component (I) behaves similarly to the component (I) in Theorem

4.4 following verbatim the same argument with a single modification: here (I) can

be written as Zt(d1:T )Wt + Zt(d
′
1:T )W ′

t , where[
Z1(d1:T ), · · ·ZT (d1:T ), Z1(d

′
1:T ), · · ·ZT (d′1:T )

]>
→d N (0, I) ,

Zt(d1:T ) =

∑n
i=1 γ̂i,t(d1:T )νi,t(d1:T )√∑n

i=1 γ̂(d1:T )2i,tVar(νi,t(d1:T )|Ft, Dt)
, t ≤ T − 1,

ZT (d1:T ) =

∑n
i=1 γ̂i,T (d1:T )εi,T√∑n

i=1 Var(εi,T (d1:T )|Hi,T )γ̂2i,T

,

21



WT =

√√√√ ∑n
i=1 γ̂

2
i,T (d1:T )Var(εi,T |Hi,T−1)∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)Var(εi,T (d)|Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,t(d)Var(νi,t(d)|Hi,t)

,

Wt =

√√√√ ∑
i Var(νi,t|Hi,t)γ̂i,t(d1:t)2∑

d∈{d1:T ,,d′1:T }
∑n

i=1 γ̂
2
i,T (d)Var(εi,T (d)|Hi,T−1) +

∑n
i=1

∑T−1
t=1 γ̂

2
i,t(d)Var(νi,t(d)|Hi,t)

,

and similarly W ′
t corresponding to d′1:t. Here, independence of

[
Z1(d1:T ), · · ·ZT (d1:T )

]
of
[
Z1(d

′
1:T ), · · ·ZT (d′1:T )

]
follows from the fact that d1 6= d′1 and hence γi,t(d1:T )γi,s(d

′
1:T ) =

0 for all s, t conditional onX1, D1. The weights by construction satisfy ||(W,−W ′)||22 =

1. Therefore we write for any t ≥ 0,

P
(∣∣∣ T∑

t=1

WtZt(d1:T )−
T∑
t=1

W ′
tZt(d

′
1:T )
∣∣∣ > t

)
≤ P

(
||W ||2

√√√√ ∑
d∈{d1:T ,d′1:T }

T∑
t=1

Z2
t (d1:T ) > t

)
= P

(
χ2
2T > t2

)
,

with χ2
2T being a chi-squared random variable with 2T degrees of freedom.

C.2 Tighter asymptotic results

Theorem C.1 (Tighter confidence bands under more restrictive conditions). Sup-

pose that the conditions in Theorem 4.5 hold. Suppose in addition that for all

t ∈ {1, · · · , T−1}, n
∑n

i=1 γ̂
2
i,tVar(νi,t|Ft−1)→as ct, n

∑n
i=1 γ̂

2
i,tVar(εi,T |FT−1)→as CT

for constants {ct}Tt=1. Then, whenever log(np)/n1/4 → 0 with n, p→∞,

(V̂T (d1:T )+V̂T (d′1:T ))−1/2
√
n
(
µ̂(d1:T )−µ̂(d′1:T )−ATE(d1:T , d

′
1:T )
)
→d N (0, 1). (C.9)

Proof of Theorem C.1. The proof follows verbatim from the proof of Theorem 4.5,

while here the components Wt →a.s. ct,W
′
t →a.s. c

′
t for constants ct, c

′
t. Note that by

Lemma B.3, the asymptotic limits ct must be finite since

n

n∑
i=1

γ̂2i,tVar(νi,t|Ft−1) ≤ ūn||γ̂t||2 = Op(1),
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where ū is a finite constant by Assumption 9 (ii). Following the same argument as

in the proof of Theorem 4.5, we obtain that the left-hand side of Equation (C.9)

converges to

T∑
t=1

ctZt −
T∑
t=1

c′tZ
′
t, (Z1, · · · , ZT , Z ′1, · · · , Z ′T ) ∼ N (0, I).

The variance is therefore
∑T

t=1 c
2
t +
∑T

t=1 c
2′
t = 1, since ||(W,−W )||2 = 1 as discussed

in the proof of Theorem 4.5.

D Additional Algorithms

Algorithm D.1 presents balancing with multiple periods. Algorithm D.2 presents

estimation of the coefficients for multiple periods. Its extensions for a linear model on

the treatment assignments (hence using all in-sample information) follows similarly

to Algorithm 2. Algorithm D.3 presents the choice of the tuning parameters. The

algorithm imposes stricter tuning on those covariates whose coefficients are non-zero.

Whenever many coefficients (more than one-third) are non-zero, we impose a stricter

balancing on those with the largest size.35

35E.g., 60 coefficients are prioritized for T = 2, p = 100 design, since the dimension is Tp.
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Algorithm D.1 Dynamic covariate balancing (DCB): multiple time periods

Require: Observations {Yi,1, Xi,1, Di,1, · · · , Yi,T , Xi,T , Di,T}, treatment his-
tory (d1:T ), finite parameters {K1,t}, K2,1, K2,2, · · · , K2,T , constraints
δ1(n, p1), δ2(n, p2), · · · , δT (n, pT ).

1: Estimate β
(t)
d1:T

as in Algorithm D.2 in Appendix D.
2: Let γ̂i,0 = 1/n and t = 0;
3: for each t ≤ T − 1 do
4: γ̂i,t = 0, if Di,1:t 6= d1:t
5: Estimate time t weights with

γ̂t = arg min
γt

n∑
i=1

γ2i,t, s.t.
∥∥∥ 1

n

n∑
i=1

γ̂i,t−1Hi,t − γi,tHi,t

∥∥∥
∞
≤ K1,tδt(n, pt),

1>γt = 1, γt ≥ 0, ‖γt‖∞ ≤ K2,t log(n)n−2/3.

(D.1)

6: end for . obtain T balancing vectors
return Estimate of the average potential outcome as in Equation (12)

Algorithm D.2 Coefficients estimation with multiple periods

Require: Observations, history (d1:2), model ∈ {full interactions, linear}.
1: if model = full interactions then
2: Estimate βTd1:T by regressing Yi,T onto Hi,T for i with D1:T = d1:T .
3: for t ∈ {T − 1, · · · , 1} do
4: Estimate βtd1:T by regressing Hi,t+1β̂

t+1
d1:T

onto Hi,t for i that has the treat-
ment history (d1:t).

5: end for
6: else
7: Estimate βT by regressing Yi,T onto (Hi,T , Di,T ) for all i (without penalizing

(Di,1:T )) and define Hi,T β̂d1:T = (Hi,T , dT )β̂T for all i : Di,1:(T−1) = d1:(T−1) ;
8: Repeat sequentially as in Algorithm 2
9: end if
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Algorithm D.3 Tuning Parameters for DCB

Require: Observations {Yi,1, Xi,1, Di,1, ..., Yi,T , Xi,T , Di,T}, δt(n, p), treatment his-
tory (d1:T ), Lt, Ut, grid length G, number of grids R.

1: Estimate coefficients as in Algorithm D.2 and let γ̂i,0 = 1/n;
2: Define R grids of length G, denoted as G1, ...,GR, equally between Lt an Ut.
3: Define

S1 = {j : |β̂t,(j)| 6= 0}, S2 = {j : |β̂t,(j)| = 0}.

4: (Non-sparse regression): if |S1| is too large (i.e., > dim(β̂t)/3), select S1 the set
of the 1/3rd largest coefficients in absolute value and S2 = Sc1.

5: for each s1 ∈ 1 : G do
6: for each Ka

1,t ∈ Gs1 do
7: for each Kb

1,t ∈ Gs1 do
8: Let γ̂i,t = 0, if Di,1:t 6= d1:t and define γ̂t := argminγt

∑n
i=1 γ

2
i,t

s.t.
∣∣∣ 1
n

n∑
i=1

γ̂i,t−1H
(j)
i,t − γi,tH

(j)
i,t

∣∣∣ ≤ Ka
1,tδt(n, p), ∀j : β̂t,(j) ∈ S1

∣∣∣ 1
n

n∑
i=1

γ̂i,t−1H
(j)
i,t − γi,tH

(j)
i,t

∣∣∣ ≤ Kb
1,tδt(n, p) ∀j : β̂t,(j) ∈ S2

n∑
i=1

γi,t = 1, ||γt||∞ ≤ log(n)n−2/3, γi,t ≥ 0.

(D.2)

9: Stop if : a feasible solution exists.
10: end for
11: end for
12: end for

return µ̂T (d1:T )
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E More on simulations

Table E.1: Confidence intervals length for design in main text with chi-squared
distribution.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

p = 50 - Sparse 1.640 1.806 3.107 3.370
p = 100 - Sparse 1.754 1.912 3.221 3.488
p = 200 - Sparse 1.691 1.829 3.052 3.474
p = 300 - Sparse 1.706 1.847 3.113 3.446

p = 50 - Moderate 1.565 1.686 3.160 3.335
p = 100 - Moderate 1.640 1.745 3.215 3.466
p = 200 - Moderate 1.559 1.658 3.085 3.323
p = 300 - Moderate 1.541 1.628 3.028 3.230
p = 50 - Harmonic 1.641 1.777 3.138 3.287
p = 100 - Harmonic 1.682 1.796 3.201 3.323
p = 200 - Harmonic 1.678 1.781 3.257 3.433
p = 300 - Harmonic 1.733 1.856 3.348 3.527

E.1 Simulations under misspecification

We simulate the outcome model over each period using non-linear dependence be-

tween the outcome, covariates, and past outcomes. The function that we choose for

the dependence of the outcome with the past outcome and covariates follows sim-

ilarly to Athey et al. (2018), where, differently, here, such dependence structure is

applied not only to the first covariate only (while keeping a linear dependence with

the remaining ones) but to all covariates, making the scenarios more challenging for

the DCB method. Formally, the DGP is the following:

Y2(d1, d2) = log(1 + exp(−2− 2X1βd1,d2)) + log(1 + exp(−2− 2X2βd1,d2))

+ log(1 + exp(−2− 2Y1)) + d1 + d2 + ε2,
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Figure E.1: Mean-squared error in log-scale. Simulations for T ≤ 10, p = 100, n =
400, two-hundred replications. Here high-correlation denotes strong serial depedence
between treatment assignments with α = 0.9, medium with α = 0.7 and weak with
α = 0.5. η ∈ {0.1, 0.3, 0.5} for good, moderate and poor overlap, respectively.
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and similarly for Y3(d1, d2, d3), with also including covariates and outcomes in period

T = 2. Coefficients β are obtained from the sparse model formulation discussed in

the main text. Results are collected in Table E.3 for the MSE and for the bias and

variance in he subsequent tables below. Interestingly, we observe that DCB performs

relatively well under the misspecified model, even if our method does not use any

information on the propensity score. We also note that our adaptation of the double

lasso to dynamic setting performs comparable or better in the presence of two periods

only or a sparse structure. However, as the number of periods increase or sparsity

decreases Double Lasso’s performance deteriorates.

Table E.2: MSE under misspecified model in a sparse setting.

T = 2 T = 3

η = 0.3 η = 0.5 η = 0.3 η = 0.5

DCB 0.238 0.354 0.751 0.402

aIPW* 0.434 0.802 1.363 1.622

aIPWh 0.863 1.363 1.882 2.464

CAEW (MSM) 0.815 1.364 7.889 8.675

D. Lasso 0.121 0.142 0.689 0.503

Seq.Est 0.811 0.346 2.288 2.031
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Table E.3: MSE under misspecified model in a moderately sparse setting.

T = 2 T = 3

η = 0.3 η = 0.5 η = 0.3 η = 0.5

DCB 0.212 0.256 0.326 0.384

aIPW* 0.428 0.789 1.364 1.616

aIPWh 0.826 1.313 1.857 2.434

CAEW (MSM) 0.781 1.317 7.833 8.616

D. Lasso 0.115 0.133 0.675 0.494

Seq.Est 0.847 0.366 2.316 2.058

Table E.4: Bias for sparse setting under misspecified model.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

DCB 0.227 0.340 -0.467 -0.199
AIPW - Known Prop 0.146 0.288 -0.0003 0.318
AIPW - High Prop 0.852 1.119 1.245 1.459
AIPW - Low Prop 0.551 1.045 1.378 2.057

CAEW 0.760 1.086 2.718 2.872
Double Lasso 0.156 0.225 0.671 0.469

Seq.Est. -0.793 -0.448 -1.391 -1.276

Table E.5: Variance for sparse setting under misspecified model.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

DCB 0.187 0.239 0.533 0.363
AIPW - Known Prop 0.413 0.719 1.364 1.521

Naive Lasso 0.273 0.259 1.058 1.194
AIPW - High Prop 0.138 0.111 0.333 0.336
AIPW - Low Prop 0.612 0.225 0.827 0.438

CAEW 0.237 0.184 0.500 0.425
Double Lasso 0.098 0.092 0.239 0.284

Seq.Est. 0.183 0.145 0.354 0.404
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Table E.6: Bias for moderately sparse model under misspecification.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

This Paper 0.202 0.358 0.096 0.323
AIPW - Known Prop 0.123 0.266 -0.010 0.308
AIPW - High Prop 0.830 1.097 1.235 1.449
AIPW - Low Prop 0.529 1.023 1.367 2.047

CAEW 0.738 1.064 2.708 2.862
Double Lasso 0.134 0.202 0.661 0.459

Seq.Est. -0.815 -0.470 -1.401 -1.286

Table E.7: Variance for moderately sparse model under misspecification.

t = 2, η = 0.3 t = 2, η = 0.5 t = 3, η = 0.3 t = 3, η = 0.5

This Paper 0.171 0.129 0.317 0.280
AIPW - Known Prop 0.413 0.719 1.364 1.521
AIPW - High Prop 0.138 0.111 0.333 0.336
AIPW - Low Prop 0.612 0.225 0.827 0.438

CAEW 0.237 0.184 0.500 0.425
Double Lasso 0.098 0.092 0.239 0.284

Seq.Est. 0.183 0.145 0.354 0.404
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