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Abstract

In this paper, I study technological change as a candidate for the observed
increase in consumption inequality in the United States. I build an incomplete
market model with educational choice combined with a task-based model on
the production side. I consider two channels through which technology affects
inequality: the skill that an agent can supply in the labor market and the
level of capital she owns. In a quantitative analysis, I show that (i) the model
replicates the increase in consumption inequality between 1981 and 2008 in
the US (ii) educational choice and the return to wealth are quantitatively
important in explaining the increase in consumption inequality.
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1 Introduction

Since the beginning of the eighties, consumption inequality in the United States has
risen.! The increase ranges, between 1982 and 2005, from around 30% to 95%, depending
on the adopted measure.? In this paper, I evaluate the role played by technological change
and, in particular, by the automation of tasks, in the observed increase in consumption
inequality.

To this end, I build a general equilibrium model combining two theoretical frameworks.
On the household side, I use an Ayiagari incomplete market model with educational choice
while, on the production side, I use a task-based model borrowed from Acemoglu and
Restrepo (2018b). Agents face skill-specific uninsurable idiosyncratic risk and choose
how much to save and consume. When they die, they are replaced by their offspring
who can decide whether to go to college or not. A unique final good is produced by
aggregating a unit measure of tasks. Three inputs of production, capital, unskilled labor,
and skilled labor are endogenously allocated to perform tasks, given their productivities
and endogenous factor prices.

Automation directly displaces low-skill workers from the performance of some tasks
and increases aggregate productivity. The net effect on the wage of the low-skill workers
depends on the trade-off between the displacement and the productivity effect. Moreover,
as high-skill workers perform tasks that cannot be performed by machines, automation
increases the relative demand for skilled relative to unskilled workers (Acemoglu and
Autor (2011)). I consider the effect of the introduction of new tasks in which labor has
a comparative advantage, which has been argued to be one of the most important forces
countervailing the displacement effect of automation.? In my model, the introduction
of new tasks increases productivity and the demand for high-skill relative to low skill
workers. The assumption that new tasks increase the relative labor demand of more

educated workers receives support from the data.*

!See Aguiar and Bils (2015), Attanasio, Battistin, and Ichimura (2004), Attanasio and Pistaferri (2014),
Attanasio and Pistaferri (2016), and Heathcote, Perri, and Violante (2010).

2 Attanasio and Pistaferri (2016) show that consumption inequality, measured as the variance of log-
consumption, varies between 30% to 95%. The variation in this result depends on the different ways
in which consumption is computed in the data.

3 Automation technologies might need labor in order to be operated and this, directly, can create
demand for new jobs (or new tasks for existing jobs). Moreover, by decreasing the relative price
of labor with respect to capital, automation incentivizes the development of new, labor-intensive
technologies. Acemoglu and Restrepo (2019) show that the introduction of new tasks can account
for around 50% of the employment growth in the US between 1980 and 2010. Over the same period,
a 10 log points increase in labor demand is attributed to the introduction of new tasks.

4 Acemoglu and Restrepo (2018b) show that occupations with a greater number of new job titles employ,



Technological change affects labor demand and wages, but also the return to capi-
tal. In particular, the adoption of automation technology increases capital demand and,
therefore, the return to wealth for the agents who lend capital to the firms. As wealth is
unequally distributed among the agents, the increase in the price of capital has distribu-
tional implications. In this model, automation increases total income inequality for two
different but interconnected reasons. First, because it increases labor income inequality
due to differential ways in which technology impacts skill demands. Second, because it
increases capital income inequality by raising the return to wealth. As agents who earn
a higher salary are also able to accumulate more wealth, the rise in the return to wealth
increases total income inequality.

The spread in the income distribution translates into increased consumption inequality.
The mapping between these two depends on the aggregation of individual saving decisions
of the agents. This, in turn, depends on the amount of risk agents face. I assume
that labor income risk fluctuations depend on education, as this is the case in the data
(Guvenen (2009)).

Crucially, I model educational choice to allow agents to react to prices changes by
adjusting their skill supplies. To ignore this fact, the effect of automation on the edu-
cation premium would be overestimated. Indeed, as the education premium reacts to
scarcity, the education decision buffers the increase in the premium implied by techno-
logical change.

I calibrate the model to the US economy over the period between 1978 and 1981.
With the calibrated model, I compute transitional dynamics to a new steady-state with
different levels of technology. In particular, I show that, after an automation shock, the
wage of workers without education decreases in the short run and recovers along with
the transition. Despite the short-run decrease in the low-skill labor income, total income
does not decline for every agent without education. Indeed, richer low-skill agents who
had a positive series of labor income shocks can experience a rise in total income, as the
increase in the return of capital compensates for the decline in labor income.

Thereafter, I estimate from the data measures of task automation and task introduc-
tion spanning from 1981 - the initial steady-state - to 2008. I plug these series in the
model and compute the implied transitional dynamics. I show that the estimated tech-
nological change explains the increase in consumption inequality observed in the US in
the years under study. Moreover, the model explains around 35% of the increase in the

college premium and around 53% of the increase in the share of workers with a college

on average, workers with more years of schooling.



degree in the US. Finally, I estimate the role of various components in the model in
explaining the increase in inequality. In particular, I show that both the return to wealth
channel and the endogenous education decision are quantitatively important. To esti-
mate the role played by the increase in the return to wealth, I compute the transition
between steady-states with the interest rate fixed to its initial steady-state value. In this
case, the effect of technological change on inequality is 4% lower as it increases only the
education premium and it does not directly increase inequality in capital income. To
quantify the role of endogenous educational choice, I compute the transition with the
probability of dying equal to zero. In this way, the shares of educated and uneducated
workers remain fixed to the initial steady-state value. With this decomposition, I show
that without allowing the agents to adjust their skill supplies as the demand changes,

the overall effect of technology on inequality is twice as large.

Literature Review

First, this paper contributes to the literature that focuses on the determinants of income
and consumption inequality. There are several papers that use the Aiyagari (1994), Be-
wley (1986), and Huggett (1993) framework to study the role of technology on inequality
as, for instance, Heckman, Lochner, and Taber (1998), Hubmer, Krusell, and Smith Jr
(2016), and Kaymak and Poschke (2016). The most important differences with respect to
these studies are the way in which I conceptualize technological change - a combination
of automation and creation of new tasks - and that I consider the effect of the return
to wealth on inequality. Methodologically, my paper is similar to Kaymak and Poschke
(2016) in the way I decompose the effect on consumption inequality of various channels
in the model. Another paper that underlines the importance of the return to wealth is
Moll, Rachel, and Restrepo (2019). They combine a task-based model with a perpet-
ual youth structure with imperfect dynasties, which is another way to get a determinate
wealth distribution and study the implication of the return to wealth on inequality. Using
instead an incomplete market model, I can account for differences in labor income risk
between education groups (Guvenen (2009)). Another key difference with respect to that
paper is that I do model educational choice, and I show that it is crucial in the observed
increase in inequality. Finally, I also consider the effect of new tasks introduction.
Second, this paper contributes to the literature that studies the effect of automation,
spurred by recent advances in technological capabilities. Like the majority of papers
in this literature, I use a task-based model of production (Zeira (1998), Acemoglu and

Autor (2011) and Acemoglu and Restrepo (2018b)). Most of the papers studying the



effect of automation using general equilibrium models either focus on aggregate labor de-
mand (as Acemoglu and Restrepo (2018b)) or consider labor income inequality (Hémous
and Olsen (2014)). But as automation increases the demand for capital, I show that
the channel through the increase in the return of wealth is quantitatively important.
I extend the conceptual models used in previous research by including heterogeneous
capital accumulation that depends on the labor income and individual risk. In a rep-
resentative household model (e.g. Acemoglu and Restrepo (2018b)) automation always
increases total income and consumption. That is because automation always increases
output; hence, even if wages are reduced, the household is compensated with a higher
capital income. This is not true for all the agents in a model with endogenous wealth
distribution.

The rest of the paper is organized as follows: In Section 2 I explain the structure of
the model. In Section 3.1 I take the model to the data. In Section 3.2 I discuss the
mechanisms of the model. In Section 3.3 I explain the estimation of the shocks that I
use in Section 3.4 to contrast the model with the data. In Section 3.5 I quantify the role

of various elements of the model. Section 4 concludes.

2 Model

The model combines two theoretical frameworks. The consumption side borrows the
basic features of the Aiyagari (1994) incomplete market model combined with endogenous
educational choice. The production process, instead, is modeled with a particular task-
based production function borrowed from Acemoglu and Restrepo (2018b).

The population is normalized to one and time is discrete and indexed by ¢. I make
the dependence of time explicit to underline non-stationarity in the model. An agent is
born with a level of assets and chooses whether or not to become high skill by paying a
cost f(a) which is a function of asset holdings. This decision is permanent for an agent.
Then, during her life, the agent chooses how much to save and how much to consume; she
cannot borrow, and her labor supply is exogenous. In every period there is a probability
of dying d; when an agent dies, her offspring inherits the level of asset holdings the agent
had in her last period of life.

Productivity differs between skill groups but is identical within each skill group. Conse-
quently, wages differ between skills but are identical within skills. On top of this, agents

face a not insurable idiosyncratic shock and this creates heterogeneity within each skill

group.



Consumption Side:

The initial problem of an agent is the following:

vi'(a) = max {Eah {vth(a,eh)} —0(a), E. {Uf(a, EZ)}} , (1)

where v'(a) is the value function of new-born agents, v)'(a, ") is the value function of
a high skill agent that depends on the asset holdings and on the realization of the labor
endowment shock €. vf (a,€’) is, similarly, the value function of a low-skill agent. The
value of becoming a high-skill is reduced by a fixed cost, 6(a), which decreases with the
level of capital. The expectations are formed using the stationary Markov distributions
which are type-specific.

Once the decision regarding the type is taken, the agent i solves the following problem,

with j = {¢, h}:

o aieely) = max $ulesn) + 81— d) 37 (el [el,) vl (aiernelen) oo @)

Ct,a¢+1 -
J
€t+1

subject to ¢+ ajp1 = (1 + 7 —6)ai + wz . agt, and a; > 0.

Where w{ is the type-specific wage rate and egi is the idiosyncratic shock, which follows

a type-specific Markov process. 7 is the interest rate and J is capital depreciation.

Production Side:

As mentioned, the production side borrows from Acemoglu and Restrepo (2018b). In that
paper, they build a representative agent model combined with task-based production with
capital and labor. Then, in an extension (see page 1519), they propose a way to model
heterogeneous skills in their task-based production and characterize balance growth path
wage inequality depending on the difference between productivities between high and
low-skill labor. They do this exercise with fixed shares of labor skill types. In this paper,

I use the framework developed in that extension.

°I refer to the shock as “labor endowment” as in Aiyagari (1994). In the literatiure is maybe more com-
mon to use “productivity shocks”, however, in this model the shock does not change the productivity
of the agents which is a very precise thing in the production side (see below). The productivity of
the agent determines her wage rate, while, the shock, together with the wage rate determines the
total labor income.



There is a unique final good produced with a continuum of tasks:

InY = ! Inly(z)|dz,
N-1
where Y is the output of the final good and y(x) is the quantity of task x produced. The
final good is produced with a unit measure of tasks that ranges from N — 1 to N. An
increase in N, which corresponds to the introduction of new tasks, does not alter the total
measure of tasks in the economy. Each task is produced with a linear production function
as in Equation (3). Where, for instance, m(x) is the amount of capital (machines) used
in the production of task x and ~,,(x) is the productivity of capital in the production
of task x. vy, () is, therefore, the productivity schedule of capital: a function that for
every task gives the productivity of capital in that task. Similarly for the other factors

of production.
y(x) = ym(x)m(z) + ve(x)l(x) + yp(2)h(x). (3)

The relationship between the productivity schedules of capital and the two productivity
schedules of labor determines, together with factor prices, how the production of tasks

is split between capital and labor. I assume the following;:

Assumption 1

d('}%(%)) -0 and d(%@)) > 0. (A1)

This implies that labor has a comparative advantage in higher indexed tasks. And,

Assumption 2

(A2)

IN
=2 =

x
() - T =z

\%

(@) :{ V()

Where I' < 1. High-skill labor has a comparative advantage in higher index task with
respect to low-skills. N can be thought of as a division between old and new tasks, or
complex and non-complex tasks.

The highest indexed task produced with capital, I, is given by solving the following

equation,
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FIGURE 1: Allocation of factors of production in the unit measure of tasks.

Hence, I is the task in which the effective costs - price over productivity - of capital
and labor are equal. The division between high and low-skills in the labor area follows
a similar logic. However, given the discontinuity in the productivity of the low-skills,
there is not one clear equation that pins down the separation threshold, as we have for
the division capital-labor. Therefore, for simplicity, I restrict the attention to the case in

which the following condition is verified ©:

Assumption 3

<2< (A3)
Wh
This in turn implies the following:
Wy Wp, . G
< if <N,
Ye(@)  n(x)
We o Ui > N

Ye(x) ~ ()

The left hand side of both equations is the effective cost of producing tasks with low-
skill labor while, the right hand side is the same variable for high-skills. These equations
tell us that when assumptions A2 and A3 are satisfied, only high-skills are employed
in new tasks and only low-skills are employed in old tasks. The separation threshold
between the two types of labor is equal to N. Assumptions Al, A2 and A3 imply that
the unit measure of tasks is divided into three areas: tasks performed by capital, tasks
performed by low-skill labor, and tasks performed by high skill labor (see Figure 1).

Automation is modeled in the following way. As said, I is the highest indexed task
that is optimal to automate given productivity schedules and factor prices. I now define
I as the highest indexed task that is feasible to automate. This means that for z > I
simply does not exist the technology that allows producers to use machines to perform
these tasks. In general, then, the highest indexed task automated in equilibrium, I*, is
equal to

I* = min{I, I}.

5This assumption is made on endogenous objects and must be verified ex-post in equilibrium.



For some combinations of the parameters in the model, the profit maximization problem
of the firm is constrained in the equilibrium, that is I* = I. In these cases, automation is
a relazxation of this constraint, an increase in I. For the rest of the paper, I focus on this
case because is the only one which allows me to study the implication of an invention
in automation technology. Indeed, when some automation technologies are not adopted
(I < I), an increase in I has absolutely no effects on the equilibrium in this model.

The total output, Y, can be rewritten as a Cobb Douglas in the three factors of produc-

tion, in which, crucially, factors’ shares are endogenous and depend on technology.”

o) ) )

The expressions of factors’ prices take the usual form,

I-N+1

—y. "=
r T (5)

N-1T

—y. -
Wy L ) (6)

N-—-N

—y.
wp, I (7)

The price of each factor is proportional to total output and to the share of the factor in
aggregate production, and inversely proportional to the supply of the factor.

Before turning to the definition of equilibrium, it is useful to describe the transition
of the distribution between a generic period ¢ and ¢ 4+ 1. In every period ¢, each agent is
characterized by three variables, the level of assets she owns, a;;, the Markov state 5?,1&
and, her education level, e;. ); is the asset distribution of agents over states at time ¢. At
the end of the period, a random sample of size d - which corresponds to the probability
of dying in ¢ - is drawn from );. Before the beginning of the next period, the deceased
agents are replaced by their offspring who inherit their level of capital. First, they decide
their level of education based on (1). Second, their Markov state realizes based on the
education-specific stationary Markov distribution. The transition of the agents who do
not die in period ¢ into a new position in state space in ¢ + 1 depends on the solution of

the value function (2) - that depends on their level of asset holdings, Markov state, and

"With .
G =exp (/ In (ym) dz + /1 In (y¢(x)) dz + / In (vn(2)) d:c)

N-1 N



education type - and on the realization of the idiosyncratic shock in ¢ + 1.

Equilibrium:

Given a sequence of technological parameters {I;};°, and {N;}?°,, a recursive competi-
tive equilibrium are sequences of value functions {vth}toio and {vf}zo, policy functions
{cf}, a?ﬂ}zo and {cf, afﬂ}zo, firm’s choices { L, Hy, K }7° , prices {wf, wl, rt}zo and
ditributions {\¢};=, such that, for all t:

e Given prices, the policy functions solve the agents’ problems and the associated

value functions are {vf}zo and {vf}zo.
e Given prices and technology, firms choose optimally labor inputs and capital.

e The labor markets clear,
T
H, — [(H**h> : eh} sh,

L, = [(H*’E)T . EZ:| St

where II*7 is the stationary distribution associated with the Markov process of
type j; €/ is a vector containing the values of the shock corresponding with the

stationary distribution and Sg is the number of agents that belong to type j.

e The asset market clears,

Kt = / at+1(at,€t)d/\t,
AxE
where F is the space of labor endowment shocks e.

3 Quantitative Results

I now turn to the quantitative analysis of the model. First, I explain how I calibrate the
model parameters. Then, with the calibrated model, I discuss the mechanism at play
in the model. To do so, I report, separately, the transitional dynamics between steady-
states for two different shocks: an increase in automation and an introduction of new

tasks in which labor has a comparative advantage. For the sake of clarity, I assume that

10



these shock are instantaneous, that is, the final steady-state value of the shock is reached
immediately. In this way, it is easier to understand the reaction of the model economy
with respect to a case in which the shock happens gradually. This strong assumption is
relaxed in the main result of the paper, in which I compute the transitional dynamics
implied by sequences of technological parameters estimated from the data. Finally, with a
decomposition exercise, I quantitatively evaluate the contribution of various components

of the model in determining the increase in inequality.

3.1 Bringing the model to the data

The composition adjusted college premium is reported in Figure 2. The data is taken
from the March CPS database; I restrict the sample to include only full-time full-year
workers with age between 16 and 64. This measure of the college premium, taken from
Acemoglu and Autor (2011), ensures that this statistic is not “mechanically affected by
shift in experience, gender composition, or average level of completed schooling within
the broader categories of college and high-school graduates”.

I assume that the economy is in a steady state from year 1978 to 1981 - red dashed
horizontal line in the graph - because in this period the college premium displays more
stability relative to the whole period.

In Table II I report the calibrated parameters and the relative targets or sources used
in the calibration. The table is divided into two parts: preferences and technology. The
result of the calibration of the labor income risk parameters is excluded from the Table
but is also discussed in this section. I now explain the reasoning behind the calibration
strategy for each parameter.

Regarding the parameters that enter the preferences of the agents, I set the dying
probability equal to 3% to imply an average working life of 33 years. To estimate the
cost of education, I use as a target the average share of workers with a college degree
in the US between 1963 and 1981, which is equal to 14%. The remaining parameters
relative to the preferences of the agents have standard values taken from the literature.
All the parameters relative to the labor income risk that the agents face are calibrated
using the estimates from Guvenen (2009). Using data from the Panel Study of Income
Dynamics (PSID) covering 1968 to 1993, he estimates an AR(1) income process separately

for college and non-college graduates ®. The values he estimates for the persistence and

8Using Guvenen words, his sample consist of “/...] male head of households between the ages of 20 and
64. I include an individual into the sample if he satisfies the following conditions for twenty (not
necessarily consecutive) years: the individual has (1) reported positive labor earnings and hours; (2)

11



Composition Adjusted Log College Premium (Weekly Wage)
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FIGURE 2: Composition-adjusted log college premium from 1978 to 2008 in the United
States. Data from March CPS, full-time, full-year workers. The steady state value - red
dashed line in the graph - is equal to 0.39. I use the estimation technique of Acemoglu and

Autor (2011).

the variance of the innovation are reported in table I.

Parameters Values
pe .829
o} 022
Ph .805
o? 025

TABLE I: Values from Guvenen (2009).

I compute the associated Markov process using the Tauchen’s method. When doing

this, I have to set the number of Markov states, S, and the maximum number of standard

deviation from the mean, i.e. the dispersion of the Markov’s state space. I set S = 9

and maz(SD) = 1. From the discretization, I obtain the conditional probabilities of

the Markov matrix, II’, and the vector of Markov states, €’. Given that Guvenen uses

log labor earnings to estimate the labor income risk parameters, I have to normalize the

worked between 520 and 5110 hours in a given year; (3) had an average hourly earnings between
a preset minimum and a mazimum wage rate (to filter out extreme observations). I also exclude

individuals who belong to the poverty (SEO) subsample in 1968”.
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values of the Markov process to have E(exp(sg )) = 1. To do this, I symmetrically shift
the values found with the Tauchen method.

I now turn to the discussion of the parameters of the production side of the economy.
I normalize the highest-indexed task in the economy Ny = 1 (the sub-index “0” indicates
the initial steady-state). To compute the highest indexed task automated in equilibrium

I use the following relationship that holds in the model:”
I; = Ny — (LABOR SHARE),.

The series of the Labor Share (LS) is a crucial object for the result of this paper, as this is
used to impute the level of automation in the initial steady-state and, as will be explained

in the following section, to estimate the sequences of the technology parameters.

Labor Share
.67 -

.66 —
.65 -
.64 -

.63 -
I I I I I I I | I I
1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008

F1GURE 3: Labor share. Data from the Bureau of Economic Analysis. The average value
of the labor share in the initial steady-state is 0.64.

The remaining four parameters (7, gy, m, N) in Table II determine the shape of the

9From the definition of the labor share,

wrH + weL
Ls = Wt T wel
S v ,

substitute the expressions for the wages, (6) and (7), to obtain,

Y(N-N)+Y(N-1)

LS =
o Y

=N-1.
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DESCRIPTION VALUE TARGET/SOURCE
PREFERENCES

o Risk Aversion 2 Standard

B Discount 0.95 Standard

&  Depreciation 6% Standard

d  Death probability 3% 33 years average working life
6  Education Cost 15.04 Share of workers with col. degree
TECHNOLOGY

N  Highest-indexed task 1 Normalization

I  Highest-indexed automated task 0.35 Labor share = 0.66

7 Productivity 0.12 K/Y =3

qy  Productivity of labor 1 0.7 Cost saving = 30%

m  Productivity of labor 2 1.66 2=1.67

N Highest-indexed task non-college 0.84 Log college premium = 0.43

TABLE II: Calibrated parameters of the model.

dy

Productivity of

/ high-skill labor

\ Productivity of

low-skill labor

Productivity of

/ Capital

N -1 I

N N T

—>

FIGURE 4: Productivity schedules of the inputs of production. In red, the parameters to

calibrate.
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productivity schedules of the factors of production. The functional forms chosen for the

productivity schedules are the following;:

() =7-q, - om(@—15) (8)
_ o) z<N

Ye(z) = { @) T x> N (9)

Y ()

(10)

Il
N

To have a sense of how the to-be-calibrated parameters affect the shapes of the produc-
tivity schedules, take a look at Figure 4. 4 determines the aggregate productivity as an
increase in this parameter shifts up all productivity schedules. ¢, determines the dif-
ference between the productivity of capital and that of labor. N controls the difference
between the productivity schedule of unskilled and skilled labor while m regulates the
slope of the productivity schedule of labor.

As will be more precisely explained in the following section, the effect of task au-
tomation on the economy crucially depends on the trade-off between the displacement
and the productivity effect. The displacement effect depends on how tasks automation
changes the relative demand for factors, as an increase in I decreases the size of the set
of tasks performed by low-skills and increases the size of the set of tasks performed by
capital. However, automation also increases productivity and this tends to increase all
factor prices. I specify the productivity schedule in (8) so that the parameter m deter-
mines precisely this trade-off. As m increases, for a given productivity of capital and a
given displacement effect, the cost-saving (and therefore the productivity effect) implied
by automation is greater. The chosen specification for the productivity schedule in (8)
implies that, in the initial steady-state, a change in the parameter m within a range of
values, does not change the equilibrium of the model economy. This is because it does
not change the aggregate productivity G and does not change the relative demand for
factors'’. In this way, m is directly linked with the previously mentioned trade-off. m

reflects also the difference between the average productivity of workers with a college

10Wages in this model change because of two reasons (i) the aggregate productivity G changes (ii) the
relative demand for factors change. The aggregate productivity does not change with m because,
thanks to the specific chosen functional form, as, for instance, m increases, the productivity of skilled
workers increases but the productivity of low-skills decreases in a way that perfectly offsets the effect
on aggregate productivity. Moreover, the change in productivity does not change the relative demand
of labor because, on one side, there is the technological constraint (I) and, on the other side - the
threshold that separates the two types of labor - there is the discontinuity of the productivity schedule
of the low-skill workers.

15



degree and the average productivity of workers without a college degree. Indeed, as m
increases, the average productivity of college workers increases relative to non-college
workers. This is perfectly consistent with the relationship between m and the trade-off.
As the productivity of the workers who will be automated increases, the cost-saving com-
ing from automation decreases, and the impact of automation on the economy changes.

To calibrate this parameter, I use, therefore, the following statistics:

Average workplace productivity of workers with a college degree

= Average workplace productivity of workers without a college degree
I take the estimate for Z from Hellerstein et al. (1999): 2z = 1.67. In this paper, the authors
estimate precisely the difference in productivity between workers with and without college
education. To build the counterpart of this statistic in the model, I use the implication of
assumption A2 and A3 about the labor productivity schedule. In the initial steady-state,
low-skill workers perform tasks between I and N and skilled workers between N and N.

The average productivity of a low-skill worker is

Ji (@) - %daz

(= 7

While for high-skill workers,

N
_ fN Yn(z) - ﬁdm
H

=

Finally, the moment condition I sue to calibrate m is,

(m)

- =Z.

(m)

Which, after plugging the expressions for £ and h becomes,

exp(mN) —exp(mN) N —1T
exp(mN) —exp(mI) N — N

=z, (11)

To calibrate g, I use the estimate from Acemoglu and Restrepo (2017) of the cost-saving
associated with the adoption of automation technology. To pin down 7 I use the capital-
output ratio. Finally, for N, I use the adjusted log college premium, cP (average value
over the period 1963-1981, see Figure 2). Given that CP is the difference between
the average log wages for the two education groups, the moment condition is not simply

log (wp/wy) = CP. To explain the derivation of this moment condition, I use the example
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Expressions Data/Targets Model

log (wp/wy)  Log coll. premium  0.39 0.39
Z prod. ratio 1.67 1.67
K/Y Capital /output 3 2.58
7;;‘EZI)/,YLM Cost saving autom. 30% 30%
Sh college share 18% 18%

TABLE III: Calibration results, targeted moment.

of a three state Markov process. The average log wage for low-skills is

wf’e log (weet) + ﬂ';’é log (weeb) + W;,e log (weeb) =
log (wy) (7] + w5 + 73) + (H*’Z)T log (%) = (12)
—_————

1
log (wy) + (H*7€)T log (¢)

Where IT*7 is the stationary distribution associated with the type-specific Markov

process. Hence, the moment condition is

log (wy,) — log (wy) = log (wp,) — log (wy) +
+ (H*’h>Tlog (sh> - <H*’€>Tlog (55) =CP (13)

Which, given the model expression of the wage ratio,

w, N-N L
Zh_ T L= 14
wy N-I H (14)
becomes,
N-N L T T —
log < T H) + (H*’h) log <5h) - (H*’E) log (5[> =CP (15)

In Tables III I report the model generated moments used in the calibration and their
data counterparts. In Table IV I report the Gini’s coeflicients of the wealth and consump-
tion distribution of the simulated economy. These moment were not targeted directly.
The model generates 57% of the wealth inequality observed in the data and 62% of the

consumption inequality.
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Gini coefficients Data Model
Consumption 0.24 0.15
Wealth 0.77 0.44

TABLE IV: Untargeted moments. Source: Kuhn et al 2018 and Krueger and Perry 2006.

3.2 Mechanisms’ Discussion

To analyze the effect of task automation and new task introduction, I now report, sep-
arately, one transition for each shock. First, look at Figure 5. In these graphs I show
the transitional dynamics after a permanent and instantaneous increase in the tasks per-
formed with machines (a 5% increase of I). To understand the reaction of the interest

rate, capital and output, it is convenient to recall equation (5),

- N+1
—y. - T-
K

In the first period after the shock, the increase in I implies an instantaneous increase

r

in the interest rate. Indeed, the reaction of the aggregate capital stock is sluggish and
the supply of capital takes time and does not compensate immediately the increase in
demand. As time goes by, agents start to accumulate more capital and the interest rate
decreases until the final steady-state value. As more capital is accumulated, the output
increases.

In the short run, the effect of automation on the wage of educated workers is unambigu-
ously positive, as automation increases productivity and does not decrease the demand
for educated labor. Instead, in the short run, the effect on the wage of workers without
college education depends on the trade-off between the increase in productivity and the
decrease in the number of tasks in which they are demanded by the firms, or, in other
words, the fact that they are reallocated in a different set of tasks. This trade-off can be

analyzed by taking the following derivative:

dlnw,  dn(Y/L) n dIn(N —I)
ar dl dI
———

Productivity Effect Reallocation Effect
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FIGURE 5: Transitional dynamics between the initial, calibrated steady-state and a final
steady state in which the size of the set of tasks performed by capital has increased by 5%.
All reported variables are normalized to zero in the initial steady-state.

The productivity effect can be expressed in terms of productivities and prices,

dInwy ( wy > < r ) 1
=In —1In — —_ 16
a ~"am) Mo N1 1o
Productivity Effect Reallocation Effect

Thanks to this manipulation, we can see that the productivity effect is greater the greater
is the difference between the cost of producing task I with low-skill labor and with
capital. In other words, the greater is the cost saved thanks to the automation adoption,
the greater is the increase in productivity. Thus, whether the low-skill wage decreases
in the short-run depends on which of the two effects is bigger, which in turn depends
on the comparative advantage structure and on the magnitude of the shock. With the
chosen calibration for this model, the reallocation effect is stronger than the productivity
effect in the short run. In the long-run, the accumulation of capital and the increase in

the share of agents with a college education affect the transition of wages. The increase
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in capital tends to increase output and therefore both wages, while the increase in the
number of educated workers decreases the wage of high-skill labor and increases the wage
of the low-gkills. To understand the difference between the short and the long-run, it is
important to notice that while the reallocation effect is instantaneous, the implications
of the productivity effect change over time as more and more capital is accumulated.
For this reason, the reallocation effect can be greater than the productivity effect in the
short-run, but the opposite can be true in the long-run. Hence, for a fixed reallocation
of factor, the greater the productivity effect, the greater is the difference between the
short- and the long-run effects.

To analyze the transition of the college premium and the share of educated workers, it

is useful to report the expression of the wage ratio,

%ocN_N-(l_Sh)
we N —1I Sy,

and the problem of a new-born worker,

vy (k) = max {TES {vf (k, sh)} —0(k), E. {vf <k, esZ)}} .

Right after the shock, the immediate increase in the college premium implies an in-
crease in the expected lifetime utility of high-skills relative to low-skills. For this reason,
more agents decide to get education (increase in Sp,) thus implying a decline in the college
premium. However, there is another force that tends to increase the share of high-skill
agents: as aggregate capital and per capita capital increase, also the average new-born
worker becomes richer. As the cost of education is constant in the model, more agents
can afford to get education. This last point explains why, in the final steady-state, the
share of high-skills is higher than its value in the initial steady-state despite the college
premium being lower. The increase in the interest rate increases wealth inequality, as
the agents who own more capital benefit more from this increase. Also, the sudden jump
in the college premium, allows college-educated workers to accumulate more capital.
This boost in wealth inequality, combined with the increase in wage inequality implies
a permanent increase in the spread of the consumption distribution, measured with the
standard deviation.

In Figure 6 I further focus on the effect of automation on inequality. To show how the
total income and consumption distribution react to the sudden substitution between low-

skill labor and capital in production, I report, for each distribution, the relative change
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Income Percentiles changes Consumption Percentiles changes

. . . . . . . . . . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
percentiles percentiles

FIGURE 6: Percent variation of percentiles with respect to the initial steady-state value.
Each line represents the variation a given number of years after the shock hits the
economy. Left panel, total income distribution. Right panel, consumption distribution.

with respect to the initial steady-state value of each percentile. In these graphs, each
line represents the percentiles changes in a given period after the shock. The blue line
depicts the change at ¢t = 3, which is almost immediately after the shock. To understand
what happens, recall that the wage of the uneducated workers decreases immediately
but the interest rate increases. As a consequence, about half of the population in the
model economy experience a decrease in total income when tasks are automated. This,
despite the fact that the fraction of agents without a college degree is 82% in the initial
steady-state (see Table IIT). The reason is that uneducated workers who had a lucky
series of shocks and managed to accumulate a relative big wealth, do not see their total
income decrease, as the increase in the capital income compensates the decline in their
return from the labor market. This highlights the importance of departing from the
representative household model when studying the effect of technology on total income
and consumption. In that model, as automation increases output, even if the labor in-
come declines, the household is compensated with the increase in capital income. As
a consequence, consumption and welfare necessarily increase. This is not true anymore
with heterogeneous agents: only a small fraction of the agents who see their labor income
drop benefit from greater capital income. The implication for consumption distribution
can be seen in the right panel of the same figure. Right after the shock (blue line) per-
centiles up to the 85th decrease with respect to initial steady-state value. The decrease

in consumption is greater than the one in the income distribution because agents are
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taking advantage of the high interest rate therefore postponing their consumption. As
time goes by both distribution “shift to the right” and approximately after 50 years every

percentile of both distribution is at a higher value.

New Tasks Shock Output Capital
0.02 0.01 0
-0.02
0.01 0 J
-0.04
0 -0.01 -0.06
0 20 40 60 0 20 40 60 0 20 40 60
Interest Rate Wages Share high skills
0 0.15 0.1
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0.02 0.1 high skills
0.05
-0.04 0.05
-0.06 0 0
0 20 40 60 0 20 40 60 0 20 40 60
STD of the Wealth Distribution0 5 Log wage ratio (wh/wl) 0 %gD of the Cons. Distribution
0 . .
0.2 0.04
-0.02
0.1 0.02
-0.04 0“4 0
0 20 40 60 0 20 40 60 0 20 40 60

FIGURE 7: Transitional dynamics between the initial, calibrated steady-state and a final
steady state in which the highest-indexed task in the economy, N, increases by 2%. All
reported variables are normalized to zero in the initial steady-state.

In Figure 7 I show the transition after an introduction of tasks in which labor has a
comparative advantage with respect to capital. In the short run, the introduction of new
tasks increases productivity, and, consequently output increases. However, the produc-
tion of the final good becomes more labor-intensive and the relative demand for capital
decreases. The effect on the absolute demand for capital depends on the interaction
between the boost in productivity and the decrease in the relative demand for capital;
with the chosen calibration the demand for capital decreases, as can be observed in the
transition of the interest rate. The decrease in the interest rate implies that the aggregate
level of capital starts decreasing, in turn implying a decrease in the production of the
final good. Both wages increase because of the increase in productivity; however, the

wage of educated workers increases more, as they also benefit from the increase in the
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relative demand for skilled labor. By looking at the following equation,

w, TN-=N (1-25)
— X _ .
wy N -1 Sh

it is clear why the college premium increases in the short run. Along with the transition,
as more agents choose to get education given the increased premium, the gap between
the wage of high- and low-skill workers declines until its final steady-state value. The
effect on wealth inequality depends, as before, on the interaction between the effect on
the return of capital and wage inequality. The increase in wage inequality dominates
in the short-run, implying an increase in wealth inequality which, however, decreases
along with the transition because of the lower interest rate and the decreasing college
premium. For similar reasons, the standard deviation of the consumption distribution
increases when new tasks are introduced and reaches its maximum right after the shock.

After that, it starts to decline.

3.3 Estimation of the Shock

In the two transitions I showed in the previous subsection, the shocks are instantaneous
and their magnitudes are chosen ad hoc to have the clearest possible dynamics. In
this section, instead, I explain how I estimate from the data the sequences of the two
technology variables {I;, N}. In the following section, I use these estimated sequences
to compute the transition that I then compare with the data. For the estimation of I;
and Ny, I use the series of the labor share as reported by the BEA (see Figure 3) and
the expression that links, in the model, these two variables with the labor share, I; =
N;—(LABOR SHARE),. Given the initial values for Iy and Ny I adopt a similar technique
as in Acemoglu and Restrepo (2019) which in turn relies on the theory developed in
(alias?): in a model with endogenous technological change, in a given period, is either
profitable to develop technologies which are labor-intensive or automation technologies
with the purpose of substituting labor in a given set of tasks. With this reasoning in
mind, I assume that in a given period there are three possibilities: an increase in I, an
increase in NV, or no technological change. Following this logic, if the labor share increases
I impute this increase to the introduction of new tasks, if it decreases, to the automation

of tasks. This computation results in the sequences reported in Figure 8.
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FIGURE 8: Estimated sequences of the technology parameters N - left panel - and I - right
panel.

3.4 Transitional dynamics of the calibrated economy

In this section, I compute the transition of the model economy using the estimated
sequences and compare the transition with real data in the period from 1981 to 2008.
To simulate a balanced growth path, I extend the estimated sequences with linear trends
until 50 years after the initial steady state. After this period, the technology parameters
remain constant. As the agents discount the future and also have a probability of dying
in every period, what happens in the first 30 years after the initial steady-state - which
is the period under study - is not affected by what happens in a so remote future.

In Figure 9 I contrast the model generated series of consumption inequality with the
data. For completeness, I report both the Gini’s coefficient and the standard deviation
of the distribution. The standard deviation implied by the model follows closely the
increase in the spread of the distribution measured in the data until 1999. At that
point, the inequality measured in the data increases relatively to the model. The Gini’s
coefficients are pretty close along the period under study: the model is able to generate
the 14% increase in the Gini’s coefficient. Consumption inequality depends on the college
premium and on the fraction of workers with a college degree, for this reason, in Figure
10 T also contrast the evolution of these variables with the data. The model is able
to explain around 35% of the increase in the college premium and around 63% of the

increase in the share of educated workers.
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FIGURE 9: Evolution over time of the standard deviation and the Gini’s coefficient of the
consumption distribution. The model generated series are contrasted with the data
counterparts. All values are normalized to zero in 1981. For illustrative purposes, I also
report the 10-year moving average for the data series.
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F1GURE 10: Evolution over time of the college premium and the share of workers with a
college degree. The model generated series are contrasted with the data counterparts. All
values are normalized to zero in 1981. For illustrative purposes, I also report the 10-year
moving average for model generate college premium.

3.5 Effect Decomposition

In this section, I analyze the role played by task automation, the introduction of new
tasks, the return of wealth, and endogenous education decision in the transition showed
in the previous section. To understand the role of these components I compute the
transition keeping the component fixed to the initial steady-state value. In Figure 11
I report the transition in which I fix the capital intensity to the initial steady-state

value, the transition with no introduction of new tasks, and the benchmark transition for
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F1GURE 11: This figure compares the benchmark transition with two transitions in which
I fix the automation of tasks and the introduction of new tasks.

comparison. From this figure, we see how task automation contributes to the increase
in inequality. The college premium increases less when no tasks are automated and,
as consequence, the share of college workers is also smaller along with the transition.
Task automation also contributes to the increase in the return of wealth. The lower
return to wealth combined with the lower college premium implies that both measures of
consumption inequality are lower in every year under study when no tasks are automated.

In the same figure, we see how also the new task introduction contributes to the
increase in consumption inequality. First, the introduction of new tasks increases the
college premium. Second, as the relative demand of capital decreases because production
becomes more labor-intensive, tasks introduction decreases the value of the return to
wealth. This has the effect of decreasing wealth inequality. However, the increase in the
college premium dominates and, according to the model, the introduction of new tasks
has contributed to the observed increase in consumption inequality between 1981 and
2008.

In Figure 12 I report the transition with a fixed return to wealth and fixed education

shares. Similarly to the previous exercises, I fix the interest rate to the initial steady-
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F1GURE 12: This figure compares the benchmark transition with two transitions in which
I shut down the educational choice decision and the increase in the return to wealth.

state value. As the interest rate is an endogenous variable in the model, fixing it implies
that, along with the transition and in the final steady-state the capital supply does not
equal the capital demand. This exercise shows the importance of taking into account het-
erogeneous capital accumulation when studying the implication of technological change
on inequality. Indeed, the increase in the interest rate contributes to the growth of
consumption inequality by almost 4%.

In the same figure, I report the transition in which agents do not have the opportunity
to choose their education. The way I do this in practice is to set to zero the probability
of dying, d, in the household optimization problem. In this way, the shares of college
and non-college-educated agents remain fixed to the initial steady-state level. When the
labor force does not adjust the skill supply, the level of inequality is much higher. The
college premium increases dramatically more with respect to the benchmark transition.
As the college premium increases, both measures of consumption inequality increase more
as well. The role of educational choice is therefore to buffer the increase in inequality

implied by technological change.
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4 Conclusion

I study the relationship between automation and consumption inequality by combining
two theoretical frameworks. I use an incomplete market model & la Ayiagari with en-
dogenous educational choice with a task-based model borrowed from (alias?). After
calibrating the model to the US economy between 1978 and 1980 I first show what are
the effects of a sudden adoption of automation technology and a sudden introduction of
new tasks. I do that by computing the transitional dynamics from the initial steady-
state. In particular, I show that automation decreases the labor income of uneducated
workers and that the implied increase in the return to wealth counteracts that drop only
for the uneducated rich. As the high-skill workers earn more and have, on average, higher
wealth, the increase in the return to wealth widens the gap between the total income of
high- and low-skills.

After estimating the series of automation and new tasks creation from the data, I
compute the model implied transition and contrast this with the data. The model is able
to replicate the increase in consumption inequality that took place in the US between
1981 and 2007. Finally, I decompose the effects of various components of the model along
with the transition. I find that both educational choice and the return to wealth channel
are quantitatively important in accounting for the increase in consumption inequality.
A natural use of the calibrated model developed in this paper is to use it for policy
analysis. Regarding the possible effect of massive adoption of automation technology, a
tax on robots has been proposed and evaluated by economists ''. This is left for future

research.
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