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We propose a framework for making Bayesian parametric models robust to local mis-
specification. Suppose in a baseline parametric model, a parameter of interest has an inter-
pretation in a more general semiparametric model and the baseline model is only locally
misspecified. In general, Bayesian and maximum likelihood estimators will be biased in
these settings. We propose to augment the baseline likelihood by a multiplicative factor that
involves scores for the baseline model, the efficient scores for the encompassing semipara-
metric model, and an auxiliary parameter that has the same dimension as the parameter of
interest. We show that this augmentation asymptotically results in a marginal posterior for the
parameter of interest that is normal with the mean equal to the semiparametrically efficient
estimator and the variance equal to the semiparametric efficiency bound. The augmented
model nests the baseline model as a special case when the auxiliary parameter is zero. The
approach should be especially useful when not only the parameters but other aspects of the
distribution are of interest. We develop an MCMC algorithm for the augmented model esti-
mation. The approach is illustrated in applications.

KEYWORDS: Bayesian methods, Semiparametric efficiency, Bernstein-von Mises theo-
rem, Local misspecification, Robustness.

1. INTRODUCTION

Consider a researcher seeking to conduct Bayesian inference in a simple location model
with independently identically distributed (i.i.d.) observations. The researcher is interested both
in the population mean, and the quantiles of the distribution (say, for forecasting purposes).
The data seems symmetric, but with tails that are heavier than those of a normal model. The
researcher thus follows textbook advice and models the data as distributed Student’s t, shifted
by the location parameter.

By the parametric Bernstein-von Mises theorem, if the Student’s t model is correct, the large
sample posterior for the population mean is approximately normal with the same asymptotic
variance as the maximum likelihood estimator (MLE). This variance is smaller than the vari-
ance of the sample mean. Yet, as is well known, the sample mean is the semiparametrically
efficient estimator of the location parameter. By implication, there exist local deviations of the
Student’s t model that induce a local bias in the MLE, and thus the posterior distribution, that
are of the same order as the posterior uncertainty about the population mean. These deviations
are not detectable with high probability, even in large samples. So the researcher has no way
of knowing for sure that the Student’s t model is misspecified, and the implications of the
Student’s t model for the data quantiles continue to be first-order correct.
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Of course, if the researcher is confident in the correctness of the Student’s tmodel, then these
considerations are irrelevant. But if the Student’s t model was merely chosen for convenience
and analytical tractability, then they are potentially worrying: implicitly, the Student’s t model
imposes constraints that allow for more efficient estimation of the population mean if correct,
but under local violations, they generate local biases that lead to potentially highly erroneous
inference about the population mean.

In this paper, we propose to embed a baseline parametric model into a higher dimensional
augmented parametric model so that by construction, large sample posteriors are centered at
the semiparametrically efficient estimator, and have a variance equal to the semiparametric ef-
ficiency bound. Thus, the parameter of interest in the augmented model does not suffer from
local biases, for any local misspecification. The augmented model here really is a model, that is,
it fully specifies a data generating process (DGP) and the analysis is still fully Bayesian. Many
of the desirable features of Bayesian analysis are therefore preserved, such as the likelihood
principle, the automatic coherence of multiple Bayes actions, the ability to flexibly incorporate
prior knowledge, and accounting for parameter uncertainty in decision and forecasting prob-
lems.

A natural alternative to our approach is to directly employ Bayesian semiparametric mod-
elling. Under high level assumptions, semiparametric Bernstein-von Mises (BVM) theorems
state that in such models the marginal posteriors for the finite dimensional parameters behave
like classical semiparametrically efficient estimators; see, for example Shen (2002), Bickel and
Kleijn (2012), Castillo (2012), Rivoirard and Rousseau (2012), Kato (2013), Castillo and Nickl
(2013), and Castillo and Rousseau (2013). However, this direct Bayes semiparametric approach
has some considerable shortcomings. First, the assumptions of semiparametric BVM theorems
are notoriously difficult to verify. In the context of models used in economics, we are aware of
only one example where the assumptions of a semiparametric BVM theorem have been ver-
ified: a partially linear regression with normal homoskedastic errors and a Gaussian process
prior on the nonlinear part of the regression, see Bickel and Kleijn (2012). Second, it is possi-
ble to construct examples based on sieve priors for which such semiparametric BVM theorems
do not hold, see Appendix B.1. Finally, MCMC estimation of models with nonparametric pri-
ors could be very computationally expensive or even infeasible for higher dimensions or large
sample sizes.

For these reasons, the approach suggested here might be a practically appealing alternative
in many settings. The proposed model augmentation consists of a multiplicative factor that
involves scores for the baseline model, the efficient scores for the encompassing semiparametric
model, and an auxiliary parameter that has the same dimension as the parameter of interest. The
augmented model nests the baseline model as a special case when the auxiliary parameter is
zero.

We develop a Markov chain Monte Carlo (MCMC) algorithm to estimate the augmented
model for a generic baseline model. The algorithm is based on auxiliary latent variables and
acceptance sampling, which handle difficult to compute normalization constants induced by
the augmentation factors, and Hamiltonian Monte Carlo (HMC). The algorithm only requires
the following functions as inputs: logarithms of the baseline likelihood and prior and their
derivatives, a function that simulates random variables from the baseline model, baseline scores
and efficient scores and their derivatives.

We illustrate our approach in a linear regression with Student’s t errors in Section 4; work
on illustrations in several other models is currently underway.



LOCALLY ROBUST BAYESIAN INFERENCE 3

2. MODEL AUGMENTATION

In this section we rely heavily on the definitions and basic asymptotics results from van der
Vaart (1998), especially Chapter 25 on semiparametric models.

2.1. Baseline model, notation, and standard asymptotics under correct specification

For simplicity, consider the case where the observations Yi ∈ Y , i = 1, . . . , n are indepen-
dently identically distributed according to distribution Pθ , where θ ∈ Rm. Suppose θ = (γ, ζ),
where γ = ψ(Pθ) ∈Rk is the parameter of interest and ζ is a nuisance parameter. Let ℓ̇θ be the
score, so that the MLE θ̂ = (γ̂, ζ̂) (or, equivalently, the Bayes estimator under an undogmatic
prior) satisfies under correct specification that

√
n(θ̂− θ) =

1√
n
I−1
θ

n∑
i=1

ℓ̇θ(Yi) + oPθ(1)

=
1√
n

(
Iγ Iγζ
Iζγ Iζ

)−1 n∑
i=1

(
ℓ̇γ(Yi)

ℓ̇ζ(Yi)

)
+ oPθ(1)⇒θ N (0, I−1

θ ),

where Iθ = Eθ[ℓ̇θ ℓ̇
′
θ], Iγ = Eθ[ℓ̇γ ℓ̇

′
γ ], Iζ = Eθ[ℓ̇ζ ℓ̇

′
ζ ], and I ′ζγ = Iγζ = Eθ[ℓ̇γ ℓ̇

′
ζ ]. Thus, with A

denoting the first k columns of the m×m identity matrix,

√
n(γ̂ − γ) =

1√
n
A′I−1

θ

n∑
i=1

ℓ̇θ(Yi) + oPθ(1)⇒θ N (0,A′I−1
θ A)

and equivalently, from taking the inverse of the matrix, with Îγ = Iγ − IγζI
−1
ζ Iζγ

√
n(γ̂ − γ) =

1√
n
Î−1
γ

n∑
i=1

(
ℓ̇γ(Yi)− IγζI

−1
ζ ℓ̇ζ(Yi)

)
+ oPθ(1)

=
1√
n
Î−1
γ

n∑
i=1

ℓ̂γ(Yi) + oPθ(1)⇒θ N (0, Î−1
γ ).

Note that ℓ̂γ is the residual of a projection of ℓ̇γ on ℓ̇ζ , so that Eθ[ℓ̂γ(Yi)ℓ̇ζ(Yi)] = 0.

2.2. Bias under local misspecification

We consider misspecifications of the baseline model of a nonparametric form: Let Pθ,η with
η ∈ H nonparametric be the distribution of the observations, where Pθ,η0 = Pθ . Let ηt, t ∈
[0,∞) be one dimensional paths through H starting at η0. Under the regularity conditions in
chapter 25.3 of van der Vaart (1998), (the appropriate subset of) these paths are characterized
by their corresponding score g, as in

log

n∏
i=1

dPθ,η1/
√

n

dPθ

(Yi) =
1√
n

n∑
i=1

g(Yi)− 1
2
Eθ[g(Yi)

2] + oPθ(1) (1)

(the first displayed equation on page 363 in van der Vaart (1998)). Denote the set of scores that
are obtained in this manner by the tangent set Ṗθ . We are exclusively concerned with such local
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misspecifications of the baseline model, that is, under DGPs where ηt = η1/√n, as in the above
equation.

Now for any g, we can characterize the local bias of γ̂ induced by such local misspecification
using contiguity and LeCam’s Third Lemma (Example 6.7, page 90 in van der Vaart (1998)).
In particular, (

√
n(θ̂− θ), log

∏n

i=1

dPθ,η1/√n

dPθ
(Yi)

)
⇒θ N

((
0

− 1
2
Eθ[g(Yi)

2]

)
,

(
I−1
θ ·

Eθ[I
−1
θ ℓ̇θ(Yi)g(Yi)] Eθ[g(Yi)

2]

))
,

so that under Pθ,η1/
√

n
,

√
n(θ̂− θ)⇒θ,η1/

√
n
N (Eθ[I

−1
θ ℓ̇θ(Yi)g(Yi)], I

−1
θ ) (2)

and
√
n(γ̂ − γ)⇒ θ,η1/

√
n
N (Eθ[A

′I−1
θ ℓ̇θ(Yi)g(Yi)],A

′I−1
θ A)

∼ N (Eθ[Î
−1
γ ℓ̂γ(Yi)g(Yi)], Î

−1
γ ).

Thus, unless Eθ[ℓ̂γ(Yi)g(Yi)] = 0 for all g ∈ Ṗθ , ignoring the misspecification leads to non-zero
local biases.

2.3. Semiparametrically efficient estimation and model augmentation

Now consider paths of the form t 7→ Pθ+at,ηt , as on page 369 in van der Vaart (1998). Then

∂ logPθ+at,ηt

∂t
|t=0 = a′ℓ̇θ + g = a′γ ℓ̇γ + a′ζ ℓ̇ζ + g

and for ψ(Pθ+at,ηt) = γ + aγt, we find that ∂ψ(Pθ+at,ηt)/∂t|t=0 = aγ . So γ is differentiable
as a part of the model if and only if there exists ψ̃ ∈ Ṗθ such that

aγ = Eθ[ψ̃(Yi)(a
′
γ ℓ̇γ(Yi) + a′ζ ℓ̇ζ(Yi) + g(Yi))]

and setting aγ to zero, we can see that it is necessary that

0 = Eθ[ψ̃(Yi)ℓ̇ζ(Yi)] = E[ψ̃(Yi)g(Yi)] (3)

for g ∈ Ṗθ , and any semiparametrically efficient estimators T ∗ of θ satisfies (cf. equation
(25.22))

√
n(T ∗ − θ) =

1√
n

n∑
i=1

ψ̃(Yi) + oPθ(1)⇒N (0,Eθ[ψ̃(Yi)ψ̃(Yi)
′]). (4)

Furthermore, proceeding as in Lemma 25.25, with Πγ the orthogonal projection operator on
the linear closure of linℓ̇ζ + Ṗθ , we have

ψ̃ = Ĩ−1
γ ℓ̃γ where ℓ̃γ = ℓ̇γ −Πγ ℓ̇γ and Ĩγ = Eθ[ℓ̃γ(Yi)ℓ̃γ(Yi)

′]. (5)
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From this definition of ℓ̃θ it follows (cf. the proof of Lemma 25.25)

Eθ[ℓ̃γ(Yi)ℓ̇γ(Yi)
′] = Eθ[ℓ̃γ(Yi)ℓ̃γ(Yi)

′] = Ĩγ .

Now consider an augmented baseline model Qθ,δ with parameters θ ∈Rm and δ ∈Rk, which
is constructed such that

log
n∏

i=1

dQθ,d/
√

n

dPθ

(Yi) =
1√
n
d′

n∑
i=1

sγ(Yi)− 1
2
d′Eθ[sγ(Yi)sγ(Yi)

′]d+ oPθ(1)

where the score sγ equals

sγ(Yi) = ℓ̇γ(Yi)− ℓ̃γ(Yi).

As in the parametric case above, the resulting expansion of the MLE for γ simply involves the
residual variation in the score ℓ̇γ , after projecting out variation that comes from the nuisance
scores ℓ̇ζ and sγ . We thus find that the effective score has variance

Iγ −
(

Iγζ
Iγ − Ĩγ

)′(
Iζ Iγζ
Iζγ Iγ − Ĩγ

)−1(
Iγζ

Iγ − Ĩγ

)
= Ĩγ

as required. Explicitly calculating the effective score yields ℓ̃γ , as expected. Thus, the MLE γ̂a

for γ in the augmented model satisfies

√
n(γ̂a − γ) =

1√
n
Ĩ−1
γ

n∑
i=1

ℓ̃γ(Yi) + oPθ(1) (6)

so it is semiparametrically efficient. Note that if (6) holds under Pθ, then by the definition of
contiguity, it also holds under any Pθ,η1/

√
n

satisfying (1), so that also

√
n(γ̂a − γ) =

1√
n
Ĩ−1
γ

n∑
i=1

ℓ̃γ(Yi) + oPθ,η1/√n
(1)

and by (3), γ̂a is asymptotically locally unbiased under local misspecification.
The key regularity condition for these results are the assumptions of Lemma 25.25 in van der

Vaart (1998).
From (5), we have that the asymptotic variance of any efficient estimator T ∗ satisfies

Eθ[ψ̃(Yi)ψ̃(Yi)
′] = Ĩ−1

γ .

Thus

ℓ̃γ = Eθ[ψ̃(Yi)ψ̃(Yi)
′]−1ψ̃

so all we need to be able to obtain ℓ̃γ for the construction of the augmented model is knowledge
of the asymptotically linear representation of the semiparametrically efficient estimator T ∗ of
γ.

One explicit construction for Qθ,δ (inspired by Example 25.16 in van der Vaart (1998)) is

q(y|θ, δ) = c(θ, δ)k(y, θ, δ)p(y|θ), (7)
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where p(y|θ) is the baseline density under Pθ relative to ν, c(θ, δ) is the normalization constant
chosen so that

∫
q(y|θ, δ)dν(y) = 1, k(y, θ, δ) = k0(δ

′(ℓ̇γ(y)− ℓ̃γ(y))), and k0 is a nonnegative
function with k0(0) = k′

0(0) = 1 such as a bounded above k0(z) = 2(1 + e−2z)−1. For the
MCMC algorithm presented in Section 3 below, it is convenient to use a function k0 that is
both bounded above and bounded away from zero, namely

k0(z) = 1/2 + (1 + e−4z)−1. (8)

The following alternative construction avoids having to explicitly obtain the scores ℓ̇γ of the
baseline model. In particular, note that

q̃(y|θ, δ) = 2c̃(θ, δ)

1 + exp
[
2δ′ℓ̃γ+δ(y)

]p(y|(γ + δ, ζ)) (9)

with c̃(θ, δ) chosen such that
∫
q̃(y|θ, δ)dν(y) = 1 also has the required local properties for

small values of ||δ||. This follows, since

∂ log q̃(y|θ, δ)
∂γ

|δ=0 =
∂ log c̃(θ, δ)

∂γ
|δ=0 + ℓ̇γ(y)

∂ log q̃(y|θ, δ)
∂ζ

|δ=0 =
∂ log c̃(θ, δ)

∂ζ
|δ=0 + ℓ̇ζ(y)

∂ log q̃(y|θ, δ)
∂δ

|δ=0 =
∂ log c̃(θ, δ)

∂δ
|δ=0 − ℓ̃γ(y) + ℓ̇γ(x)

so that ∂ ln cθ,δ
∂θ

|δ=0 =
∂ ln cθ,δ

∂δ
|δ=0 = 0 from Eθ[ℓ̃γ(Yi)] = Eθ[ℓ̇γ(Yi)] = 0. The required second

order properties (expectation of the Hessians) follow from the information matrix equality.

3. AUGMENTED POSTERIOR SIMULATION

3.1. Normalization constants, auxiliary latent variables, and acceptance sampling

Let Y = {y1, . . . , yn} denote a sample of iid observations. The baseline or original likelihood
contribution for observation yi is denoted by p(yi|θ). To accommodate models with covariates
one could add the covariates in the conditioning set of p(yi|θ); we omit this for notation sim-
plicity. The likelihood contribution of observation yi in the augmented model is denoted by
q(yi|θ, δ) defined in (7) and (8) where the augmentation factor k(yi, θ, δ) has a finite upper
bound k̄ and c(θ, δ) is a difficult to compute normalization constant. The posterior distribution
for the augmented model is given by

π(θ, δ|Y )∝
n∏

i=1

q(yi|θ, δ)π(θ)π(δ), (10)

where π(δ) and π(θ) are the prior densities. Note that standard MCMC algorithms, such as
a Metropolis-Hastings algorithm, do note require the normalization constant p(Y ) but would
require c(θ, δ).

Following the approach from Rao, Lin, and Dunson (2016), we use auxiliary latent variables
and acceptance sampling to avoid the computation of c(θ, δ) in a posterior simulator. Let us
represent the distribution q(yi|θ, δ) as if yi is obtained by an acceptance sampling algorithm
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with the target density q(·|θ, δ), the source density p(·|θ), and rejected draws ỹi = {ỹi,j , j =
1, . . . , Ji}. In this acceptance sampling algorithm, a proposal ỹi,j is simulated from p(·|θ) and
rejected with probability 1−k(ỹi,j , θ, δ)/k̄. The joint distribution of the accepted draw and the
rejected draws can be expressed as follows,

π(yi, ỹi|θ, δ) = p(yi|θ)
k(yi, θ, δ)

k̄
·

Ji∏
j=1

p(ỹi,j |θ)
(
1− k(ỹi,j , θ, δ)

k̄

)
. (11)

It is easy to check that the marginal density for yi is the target

q(yi|θ, δ) =
∞∑

Ji=0

∫
π(yi, ỹi|θ, δ)dỹi,1 . . . dỹi,Ji

.

Therefore, the joint posterior for θ, δ and the auxiliary latent variables Ỹ = {ỹi, i= 1, . . . , n}

π(θ, δ, Ỹ |Y )∝
n∏

i=1

π(yi, ỹi|θ, δ)π(θ)π(δ) (12)

implies the marginal posterior of interest π(θ, δ|Y ) in (10) and the draws (θm, δm, Ỹ m),
m = 1, . . . ,M from a Markov chain with the stationary distribution in (12) can be used to
approximate (integrals with respect to) π(θ, δ|Y ).

3.2. MCMC

An MCMC algorithm for simulation from (12) consists of two main blocks: (1) (θm, δm)∼
π(θ, δ|Ỹ m−1, Y ) and (2) Ỹ m ∼ π(Ỹ |δm, θm, Y ). For the block π(θ, δ|Ỹ m−1, Y ) one could use
a Metropolis-Hastings algorithm with a target proportional to (12); in our applications we use
HMC as implemented in a Matlab package. To simulate from block π(Ỹ |δm, θm, Y ) one could
run the acceptance sampling algorithm described above (11) for each i using (δm, θm) to obtain
the rejected draws ỹmi . The accepted draw can be ignored as it is independent of the rejected
draws and the distribution of the rejected draws ỹmi is proportional to (11) as desired.

The MCMC algorithm is implemented in Matlab for a generic baseline model for which the
user needs to supply the following functions: logarithms of the baseline likelihood and prior
and their derivatives, a function that simulates yi from the baseline model, scores and efficient
scores and their derivatives.

3.3. Importance sampling

Importance sampling is an alternative to the MCMC algorithm from Section 3.2 that could
be easier to implement if draws θm, m= 1, . . . ,M from the posterior of the baseline model

π(θ|Y )∝
n∏

i=1

p(yi|θ)π(θ) (13)

are readily available. Specifically, consider the following importance sampling source distribu-
tion for (θ, δ; Ỹ , ỹ1,J1+1, . . . , ỹn,Jn+1)

π(θ|Y )π(δ)
n∏

i=1

π(ỹi,Ji+1, ỹi|θ, δ).
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Note that we include the accepted draws ỹi,Ji+1 here because without them the intractable
constants c(θ, δ) would be present in the marginal distribution of the rejected draws and we
would need to evaluate them in the computation of the importance sampling weights. The
target distribution is

π(θ, δ, Ỹ |Y )
n∏

i=1

p(ỹi,Ji+1|θ),

where the target density for ỹi,Ji+1 is taken to be the baseline likelihood (in principle, it could
be arbitrary). Then, for a sample from the source density (or MCMC for the source density),
(θm, δm, Ỹ m, ỹm1,J1+1, . . . , ỹ

m
n,Jn+1), m = 1, . . . ,M , the importance sampling weights are as

follows,

wm ∝
π(θm, δm, Ỹ m|Y )

n∏
i=1

p(ỹmi,Ji+1|θm)

π(θm|Y )π(δm)
n∏

i=1

π(ỹmi,Ji+1, ỹ
m
i |θm, δm)

∝
n∏

i=1

k(yi, θ
m, δm)

k(ỹmi,Ji+1, θ
m, δm)

.

The last expression in the above display can be normalized and used as importance sampling
weights.

4. APPLICATIONS

4.1. Regression with Student’s t errors

A linear regression model with Student’s t errors is recommended for modelling heavy tailed
data in most Bayesian econometrics textbooks. It is also prescribed as a tool to introduce indi-
vidual specific variances in normal linear regression, as a Student’s t distribution can be repre-
sented as a scale mixture of normal distributions, see, for example, Geweke (2005), Greenberg
(2012), Koop (2003), and Geweke (1993). In this model, for a random sample of responses yi
and covariate vectors xi, i= 1, . . . , n,

yi = x′
iβ + ϵi, ϵi/σ ∼ ps(·), ps(t) =

Γ((ν + 1)/2)√
νπΓ(ν/2)

(
1 +

t2

ν

)−(ν+1)/2

.

In the application below we treat the regression coefficients β as a parameter of interest and the
scale σ and the degrees of freedom ν as nuisance parameters.

In a homoskedastic linear regression model with an unknown distribution of the errors, the
ordinary least squares (OLS) estimator is semiparametrically efficient with the efficient score
given by

l̃β = xi(yi − x′
iβ)

1

var(ϵi)
.

4.1.1. House price data

Koop (2003) used data on house prices and covariates from Anglin and Gencay (1996) to
illustrate regression with Student’s t errors. The dataset includes 546 observations. The depen-
dent variable is the sale price of a house standardized to have sample mean zero and variance
one. The covariates are the constant, the lot size of a property (standardized), the number of
bedrooms, the number of full bathrooms, and the number of stories excluding basement. We fix
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the degrees of freedom parameter to ν = 4 (the posterior mean from Koop (2003)). The prior
distributions for βi, i= 1, . . . ,5 and log(σ) are normal with mean 0 and variance 100.

The prior for the augmentation parameters δ is a multivariate normal centered at zero. The
prior variance covariance is set to an estimate of the asymptotic variance of the MLE for δ
under the assumption of no misspecification (δi = 0, i= 1, . . . ,5 in the data generating process)
multiplied by 2.

To estimate the baseline model we use a Matlab’s HMC package. The augmented model is
estimated by the MCMC algorithm described in Section 3.2. The MCMC algorithms converge
quickly as can be assessed in Figures A.1 and A.2 in Appendix A.1 displaying MCMC trace
plots.

Figure 1 shows the marginal posterior distributions of the regression coefficients in the base-
line and augmented models. Additionally, normal distributions centered at the MLE and OLS
with the corresponding estimator variances are displayed. As expected from the standard BVM
result, the MLE dash dotted lines are aligned with the dotted lines of the baseline posteriors.
The solid augmented posteriors are aligned or at least moved towards the dashed OLS lines as
expected from the theoretical results in Section 2.
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FIGURE 1.—Estimation results for house price data: posteriors of regression coefficients in the baseline and aug-
mented models; normal distributions centered at the MLE and OLS with the corresponding estimator variances.
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FIGURE 2.—Estimation results for house price data: marginal priors and posteriors for δ.

Figure 2 displays the marginal prior and posterior distributions of the augmentation parame-
ters δ. Zero values of the augmentation parameters are well within the support of the posteriors.
These results do not contradict the local misspecification assumption justifying the asymptotic
properties of the augmented posteriors.

5. FUTURE WORK

We plan to further illustrate the proposed methodology for robustifying Bayesian inference
in parametric models in a number of applications: time series models, models with stochastic
volatility, instrumental variable models, Weibull regressions, and others.
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APPENDIX A: AUXILIARY DETAILS FOR APPLICATIONS

A.1. Regression with Student’s t errors. House price data.

0 5 10

104

-2

-1.5

-1
1

0 5 10

104

0.3

0.4

0.5

0.6
2

0 5 10

104

-0.1

0

0.1

0.2

0.3
3

0 5 10

104

0.2

0.4

0.6

0.8

1
4

0 5 10

104

0.1

0.2

0.3

0.4

0.5
5

0 5 10

104

-0.9

-0.8

-0.7

-0.6

-0.5
log( )

FIGURE A.1.—MCMC trace plots for parameters of a baseline (unaugmented) regression with Student’s t errors
estimated on house price data.
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FIGURE A.2.—MCMC trace plots for parameters of an augmented regression with Student’s t errors estimated
on house price data.

APPENDIX B: AUXILIARY RESULTS

B.1. Failure of semiparametric BVM theorem under sieve priors

Consider the problem of estimating a function g on the unit interval based on n equi-spaced
observations

yi = g

(
i− 1/2

n

)
+ εi, εi ∼ iidN (0,1).

Let β̂0 = n−1
∑n

i=1 yi, β0 = n−1
∑n

i=1 g

(
i− 1/2

n

)
,

β̂j = n−1

n∑
i=1

√
2cos

(
πj
i− 1/2

n

)
yi, j = 1, . . . , n− 1

βj = n−1

n∑
i=1

√
2cos

(
πj
i− 1/2

n

)
g

(
i− 1/2

n

)
, j = 1, . . . , n− 1.

By the orthonormality of the type II discrete cosine transform, we then have

β̂j ∼ independent N (βj ,1/n), j = 0, . . . , n− 1.

By standard calculations, a continuous function g will lead to βj ≍ j−2, a differentiable func-
tion to βj ≍ j−3, an infinitely differentiable function to an exponential decay, etc.



LOCALLY ROBUST BAYESIAN INFERENCE 13

Let γ =
∑n

j=1αjβj ∈R be the functional of interest, where we normalize
∑n

j=1α
2
j = 1.The

MLE is

γ̂ =
n∑

j=1

αjβ̂j ∼N (γ,n−1).

B.1.1. Gaussian Process Prior

Consider the prior, βj ∼ independent N (0, cj), j = 0, . . . , n− 1 for some cj → 0 (such as
cj = 2−j or cj = j−5). Under this prior, the posterior is

βj |Y ∼ independent N
(

ncj
1 + ncj

β̂j , (c
−1
j + n)−1

)
where Y = (y1, . . . , yn). For any fixed j, clearly (c−1

j +n)−1 → n−1, so the posterior variance
of γ will also converge to n−1, just like the MLE. So under a Gaussian process prior, we obtain
semiparametrically efficient inference about γ.

B.1.2. Sieve Prior

Let the model indexed by the integer m = 1, . . . , n be such that βj = 0 for j ≥m, and the
prior on βj , j <m is βj ∼N (0,1). Let the prior on the model m be 2−m (and to ensure adding
up, let the prior on model m= n be 2 · 2−n).

Fix m0 > 1. Consider the case where g = 0, and γ = βm0
= 0. Then surely, the posterior

probability of m≤m0 is smaller than one for all n—the posterior for m will visit m>m0, but
with very low probability. Thus, the posterior variance for γ is a mixture of zero and (1+n)−1,
with most of the mass on 0, so it is certainly smaller than n−1 even as n→∞.

By contiguity, this continues to hold for local alternatives to g = 0 (say, β0 ̸= 0, βj = bjn
−1/2

for j = 1, . . . ,2m0), where the Bayesian posterior for γ is biased (since it’s a mixture between
zero with high probability, and n

1+n
β̂m0

). So Bayesian semiparametric inference here will not
yield semiparametrically efficient inference about γ.

The same applies under a “sieve” Gaussian process prior where the prior βj ∼ N (0,1) is
replaced by βj ∼N (0, cj).

One might argue that the failure is non-generic, since the above argument depends on βj to
be very nearly zero for all but a finite number of j. So consider now a true model where βj =
exp(−δ0j), for some δ0 > 0. (So the truth is very smooth). Consider a prior βj ∼N (0, cj), and
an exponential prior on m.

The likelihood ratio of β̂j ∼ N (0, cj + n−1) (including the jth component) and β̂j ∼
N (0, n−1) (excluding it) is

√
n−1√

cj + n−1
exp[− 1

2
β̂2
j (

1

cj + n−1 − 1

n−1 )]

=
1√

1 + cjn
exp[ 1

2
β̂2
j

cjn
2

1 + cjn
]

≈ 1√
1 + cjn

exp[ 1
2
exp(−2δ0j)

cjn
2

1 + cjn
].
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With cj = exp(−δπj), the log-likelihood ratio becomes

− 1
2
log(1 + exp(−δπj)n) + 1

2
exp(−2δ0j)

exp(−δπj)n2

1 + exp(−δπj)n

which is O(1) when j ≈ 2
2δ0+δπ

logn for δπ ≥ 2δ0 or j ≈ 1
δπ

logn for δπ < 2δ0. Initially focus
on the latter which covers the case where the prior decay is the same as the decay of the truth
(so the truth is as smooth as expected a priori). In this model the posterior for m concentrates
around valuesm≈ 1

δπ
logn. The approximate bias of γ induced by shrinking all βj with j >m

to zero thus is

bias=
n∑

j= 1
δπ

logn

αjβj =

n∑
j= 1

δπ
logn

αj exp(−δ0j)

For αj = exp(−δγj), this evaluates to

bias ≈ n−(δγ+δ0)/δπ

so the bias is of order at least n−1/2 as long as δγ ≤ 1
2
(δπ − 2δ0). This is impossible given the

above restriction, so at least in this case, there won’t be bias of order n−1/2.
So now consider the case where δπ ≥ 2δ0 (so the truth is less smooth than expected, but there

is still exponential decay). Proceeding as above yields

bias ≈ n−2(δγ+δ0)/(2δ0+δπ)

so the bias is of order at least n−1/2 as long as δγ ≤ 1
4
(δπ − 2δ0). So even though everything

here is very smooth in the sense of exponentially decaying, there is a systematic bias of order
at least n−1/2.
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