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Abstract

We analyze a dynamic investment model in which short-lived agents sequentially
decide how much to invest in a project of uncertain feasibility. The outcome of the
project (success/failure) is observed after a fixed lag. We characterize the unique equi-
librium and show that, in contrast with the case without lag, the unique equilibrium
dynamics is not in thresholds. If the initial belief is relatively high, investment de-
creases monotonically as agents become more pessimistic about the feasibility of the
innovation. Otherwise, investment is not monotonic in the public belief: players al-
ternate periods of no investment and periods of positive, decreasing investment. The
reason is that the outcome lag creates competition between a player and her imme-
diate predecessors. A player whose predecessors did not invest may find investment
attractive even if she is more pessimistic about the technology than her predecessors.
We compare the total investment obtained in this equilibrium with that obtained with
an alternative reward scheme where a mediator collects all the information about the
players’ experiences until some deadline, and splits the payoff between all the players

who obtained a success before the deadline.
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JEL codes: C73, D83

1 Introduction

When it comes to research or innovation, the return on investment is usually not imme-
diate. In physics, large-scale experiments such as those carried out to discover exo-planets,
or to prove the existence of the Higgs bozon, require the development of specific measuring
instruments, so that it takes several years to observe the results of these experiments. In
biology, the development of a new drug requires several validation steps that often take

several years. In the start-up economy, it can take several years before a new application is
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known and massively used. Timing would not be an issue in a world without competition.
However, as illustrated in the COVID-19 vaccine race, for investors it is often crucial to
complete their project before their competitors.

The aim of this paper is to investigate how investment decisions are affected by the time
it takes before observing the outcome of one’s investment when investors are rewarded only
if they are the first to obtain a success. To do so, we analyze a stylized model of dynamic
investment in which short-lived agents sequentially choose how much to invest in a project
of uncertain feasibility. If the project is not feasible, investment is lost and yields no payoff.
If it is feasible, investment can generate a positive payoff after a fixed time lag A, with a
probability that increases with the invested amount. In the main model, the game ends
the first time a player receives a payoff, even though some players may have invested after
this player. We call this reward scheme the winner-takes-all mechanism. Because of the
outcome lag, a player who must decide how much to invest at time ¢ knows that players who
invested before time t — A have invested at a loss, but does not know whether investments
made by players between ¢t — A and ¢ will be successful or not. Moreover, because players
learn from predecessors’ experiences in a Bayesian fashion, they become more pessimistic
about the feasibility of the project as time passes. Therefore, this model features both a
negative payoff externality and a positive informational externality. What is the tradeoff
faced by the player investing at time ¢7 Investment will yield the player a positive payoff
if 1) her investment is successful, which can happen only if the project is feasible and 2)
she is not preempted by a player investing between ¢ — A and ¢t. As time passes, players
can only become more pessimistic about the feasibility of the project, which decreases the
desirability of investment. However, the effect of competition may not be monotonic in
time. Indeed, the innovation lag creates competition between the player investing at time ¢
and all the players investing between ¢ — A and ¢. Therefore, even if player ¢ is necessarily
more pessimistic than her predecessors, she may face a smaller risk of preemption and thus
find investment more desirable than her predecessors.

When there is no outcome lag, the equilibrium strategy is of the cutoff type: players
make the maximal investment effort if their belief that the project is feasible is above some
threshold and invest nothing otherwise. In contrast, with a positive lag, the equilibrium
strategy does not have a cutoff structure. When players are initially very pessimistic, none
of them ever invests in the project. Otherwise, first players make the maximal investment
until some cutoff time that depends on the prior belief. Afterwards, they invest only a
fraction of their resource in the project, according to a pattern that depends on the prior
belief. When they are initially very optimistic, investment decreases with time and belief
in a discontinuous way, jumping downward at regular intervals (as a consequence, some
investment levels are never realized in equilibrium). Surprisingly, for intermediate prior
beliefs, investment is non-monotonic in time or belief: the investment dynamics feature
periods of no investment and periods of decreasing, but positive investment, even though
players are continuously more pessimistic about the project as time passes. To understand

this result, imagine three generations of researchers: Gen X, Gen Y and Gen Z. Each



generation chooses in turn how much to invest, and the outcome of a given generation is
realized only two generations after. Suppose Gen X invests in the project. Gen Y does
not know yet the outcome of Gen X, thus they have the same belief about the feasibility of
the project. However, because Gen X has already invested, there is a positive probability
for Gen Y to be preempted by Gen X, which makes investment riskier and less desirable
for them than for Gen X. Suppose Gen Y decides not to invest and that Gen X does
not complete the project. Because of this failure, Gen Z is more pessimistic than both
their predecessors. But because Gen Y did not invest, Gen Z does not face any risk of
preemption, and may thus find investment optimal even while being more pessimistic than
Gen Y.

We compare our equilibrium investment dynamics with that obtained with an alter-
native reward scheme called “hidden-equal-sharing mechanism, which works as follows:
outcomes are observed only by a principal who keeps them secret until some deadline T
At time T, outcomes are revealed to all and the benefit of the project is shared among
all the players who obtained a success before T'— A. The principal chooses T in such a
way that the total amount of investment is maximal. We find that the total investment
may but must not be larger with the hidden-equal-sharing mechanism. Let us illustrate
why in the three generations example. Suppose now that T' = 4. On the one hand, in-
vestment may be more attractive for Gen Y in the hidden-equal-sharing, because it may
yield a positive payoff even if Gen X is successful. Also, Gen Z is not informed of Gen X’s
outcome and is therefore more optimistic about the feasibility of the project. On the other
hand, conditional on the innovation being feasible, the expected profit is smaller for Gen
Z, since they may have to share the benefits with Gen X or Gen Y. We find a necessary
and sufficient condition on the initial belief under which the “hidden equal-sharing” entails

a larger total investment.

Related literature. The framework we use to model learning is borrowed from the
exponential-bandit literature, in which long-lived players trade off exploration vs. exploita-
tion (Keller, Rady and Cripps (2005), Keller and Rady (2010), Rady and Klein (2011), etc).
Some authors have analyzed how imperfect observation of players’ actions or outcomes can
increase the exploration efforts in equilibrium (Bonatti and Horner (2011), Heidhues, Rady
and Strack (2015), Marlats and Ménager (2021)). Bimpikis and Drokopoulos (2014) and
Che and Hérner (2015) study how a principal should disclose information to improve ag-
gregate learning. In all these papers, externalities are only informational. There is a strand
of literature mixing learning and competition issues. For instance, Choi (1991), Malueg
and Tsutsui (1997) or Moscarini and Squintani (2010) analyze R&D competition under a
winner-takes-all mechanism. Das and Klein (2021.a, 2021.b) analyze a patent race in a
two-arm exponential bandit framework. Bimpikis, Ehsani and Mostagir (2014) and Halac,
Kartik and Liu (2017) also address the issue of contest design in a dynamic environment.
The paper by Halac, Kartik and Liu (2017) is the most closely related to our paper. They

characterize the optimal contest in a class of mechanisms in which the principal chooses



both a prize-sharing policy and a disclosure policy. They show that the optimal contest
of this class is either a winner-takes-all with immediate disclosure of the outcomes or a
hidden-equal-sharing mechanism. Only few papers in game and decision theory address
the effects of delayed feedbacks. Gordon, Marlats and Ménager (2021) analyze a team
problem where partners work together to achieve a project which is commonly known to
be feasible. Players learn immediately whether they succeed but observe their partners’
outcome only after a fixed lag. The observation lag has an effect that is similar to that
in our paper, as, in equilibrium, players alternate between periods in which they exert the

maximal effort and periods in which they make no effort at all.

The remainder of this paper is organized as follows. Section 2 sets up the model. Section
3 characterizes the unique equilibrium in the winner-takes-all framework. In Section 4, we

compare our results to that obtained with the hidden-equal-sharing mechanism.

2 The set-up

Time is continuous and there is a continuum of players indexed by ¢ € [0, 400). Each
player ¢ chooses at time t what fraction k; € [0,1] to invest in a risky technology at unit
cost & > 0. The technology can be good or bad. If it is bad, the technology never yields
any payoff. If it is good, it yields a payoff of 1 at time ¢ + A at the first jump of a time-
inhomogeneous Poisson process with rate A\k;, with A > a. The first time a player receives

a positive payoff is called a breakthrough, and the game stops after a breakthrough.

As player ¢ plays only at time ¢, a pure strategy for player ¢ is k; € [0, 1] and a strategy
profile is a function k : Ry — [0,1]. To guarantee that players can always update their
beliefs on the observation of past investments, we restrict the analysis to admissible strategy
profiles, defined as profiles k such that ftz kidt is well-defined for every ¢ < t.

Players observe the whole history of actions and outcomes but do not know the type
of the technology, absent a breakthrough. The public belief at time ¢ that the technology
is good is denoted p;, with py € (0,1) the initial common belief. The public belief is
continuously updated on the basis of the observation of past investments. As a player’s
investment operates on the Poisson process with a time lag A, players have no feedback at
all before A, hence p; = pg for all £ < A. For t > A, the public belief follows the law of

motion
Pt = —pe(1 — pr)Aki—n. (1)

Therefore, for every admissible strategy profile k, the public belief at time ¢ is defined as

follows:!
Po
Pt = (t_A)]ltzA . (2)
po + (1 — po)erlo Fadls

!This is obtained by integrating (1) between A and ¢ > A and using the initial condition pa = po.



Player t will have the opportunity to invest only if no breakthrough occurred before time
t, that is if no player in [0, (t — A)1;>a] made a successful investment.? Therefore, player
t competes only with players in [(t — A)L;>a,t). With k_; standing for the investment
profile of players in [(t — A)L;>a,t), the expected payoff to player ¢ is

(ke k—y) = —arky + pte_)\f(t_A)ltzA deS)\kt (3)

instantaneous cost  expected benefit

Let us explain why with a heuristic argument. Suppose that player t invests k; during the
interval [t,t + dt) with dt > 0, in the sense that she is the only player to invest during the
interval and chooses ky = k; for every t' € [t,t 4+ dt). This costs her akidt and yields a
success with probability p;Akidt. This success will give her a payoff of 1 in ¢t 4+ A if and

only if she has not been preempted by a player in [(t — A)L;>a,t), which happens with

At ksd
probability e UCISHEN .,

3 Equilibrium analysis

t
Y f(t—A)ltzA ksds

d
Defining s := pre and p := §, the payoff of player ¢ can be expressed

as u(ky, k—t) = Aky (,ut — ]3). The best response of player ¢ to k_; is thus to invest if and
only if her confidence in the technology, p;, and the probability of not being preempted by

t
—A f(t*A)ltEA ksd

. S
a competitor, e , are large enough:

=1 if,ut>g,
ked €[0,1] if = p, (4)
=0 if,ut<]3.

To interpret this, imagine that player ¢ faces no competition, i.e., ks = 0 for every
s € [(t — A))Lg>a,t). In this situation, the attractiveness of investment p is exactly py,
thus player t invests whenever p; > p. Therefore, p is interpreted as the single-player
cutoff. When ks > 0 for some of player t’s predecessors, she invests if and only if her

MY ksd
belief is larger than pe UGS

which is strictly larger than p: competition makes
investment less attractive, thus the cutoff above which player ¢ invests is larger than the

single-player cutoff p.
The behavior of y; is key to the construction of the equilibrium. Differentiating p; with
respect to t, using (1) and simplifying, we obtain:
fir = — Nk — peki—ali>a). (5)

It follows directly from (5) that u; weakly decreases when t < A or k;—a = 0. This implies
that investment is continuously less and less attractive on the interval [0, A] and during

periods with no competition.

2This occurs with probability 1 for players ¢ < A. For players ¢t > A, this occurs with probability 1 if

SE Aks_ads

the technology is bad, and with probability e~ if the technology is good, thus with probability

t— A .
1 —po + poe™ Jo Aksds which reduces to e M JAPsks—nds by integrating (1).



Player 0 has no competitor and is the most optimistic of all players, thus she is the one
with the most incentives to invest.? If py < p, even player 0 finds investment unattractive,
thus it is dominant for all players to play k; = 0. Therefore, if pg < p, there in the unique
equilibrium £k} = 0 and u; = pg for all t.

Po : 1t

Figure 1: Dynamics of p¢ when py < p.

Let us now characterize the equilibrium profile when py > p. Since po = po > p, player
0 invests all of her resource into the technology. As p is weakly decreasing on [0, A], the
immediate successors of player 0 also invest, up to some player 7 > 0 for which u, = p.
Every player after player 7 is indifferent about whether to invest, because p; = p for every

t > 7.% Plugging k; = 1;<, into (2), the attractiveness of investment becomes

poe—)\t

pe =19 poe MmAL=a 41— pg
P ift>r

ife<r

By definition of 7, 7 < A if and only if ua > p, that is if and only if py > ]_oeAA. The value
of the cutoff 7 thus depends on py and is obtained by solving p, = p, which yields:

AA
A — %ln B;O > if po € [p, Be’\A],

7(po) =
Q(perd .
A—i—%ln %) if pg EQeAA.

It is straightforward to establish that 7(pg) decreases with A for every py.

Figure 3 represents the dynamics of p; when p; reaches p before A (i.e., when pg €
[]_9’ BeAA)) and after A (i.e., when pg > Qe)‘A),

3For every t, it holds that p: < p: by definition. Moreover, p; < po because p; is weakly decreasing.

‘Let 7/ = inf{t > 7 : it # 0}. Suppose that 7/ > 7. On [1,7'], p: = p, thus pr = p. If fir <0
then ey <P which implies kT‘IF = 0. Plugging this into (5), it follows that i,/ = g Ap; k. _a, which
contradicts fi,r < 0. If 1. > 0 then et > P which implies kﬂ_ = 1. Plugging this into (5), it follows that
frr = = M1 — prr(krr—a)) <0, which contradicts fi.» > 0.



7(po) A A 7(po)

Figure 2: Dynamics of yy when pg > p.

Players ¢t < 7(po) play k; = 1. Since p; = p for every t > 7(po), players t > 7(pg) are
indifferent about whether to invest. Plugging the indifference condition f; = 0 into (5),
we find that player t’s best response at ¢t > 7(pg) depends on her predecessor’ investment

as follows:

ke = piki—ali>A. (7)

Therefore, the best response of a player ¢ > 7(py) whose predecessor at t — A either does
not exist (when ¢ < A) or did not invest (when k;—a) = 0) is not to invest: k; = 0. In
contrast, a player ¢ whose predecessor invested a positive fraction in the technology invests

a strictly smaller, but strictly positive fraction of her own resource.

The equilibrium dynamics of investment thus qualitatively depends on pg. When player
0 is very optimistic (pg > ge’\A), the cutoff 7(pp) is larger than A. Therefore, there is no
period before A during which players do not invest, which implies that players always invest
a positive and decreasing amount in the technology. When player 0 has more pessimistic
beliefs (pg € [Q,Qe)‘A]), the cutoff 7(pg) is smaller than A, which implies that players in
[7(po), A] do not invest at all. This period without investment replicates identically A
“periods” later, while investment periods replicate with a fraction of resource decreasing in
time. This leads to a non-monotonic equilibrium strategy, in the sense that a less optimistic

player may invest more in the technology than a more optimistic predecessor.

The following proposition describes the equilibrium dynamics of investment. For every

Q
(n7t) € N x ]R—H let ¢(n7t) = Q(p) + Q(pn)(é_)zpo)eA(t_nA) y with Q(p) = %

Proposition 1. There is a unique Nash equilibrium (k}); described as follows:
o if po < p, ki =0 for every t;

e ifpg € (Q,Qe)‘A], k¥ =1ifte0,7(po)), and, Y n € N,

L :{ 0 ift € [r(po) +nA, (n+ 1)A),
t d(n,t) ift € [(n+ 1A, 7(po) + (n+ 1A).



o if po > pe®, ki =1ift €[0,7(po)) and, ¥ n € Ny,

ki = ¢(n,t) ift € [T(po) + (n — 1)A, 7(po) + nA).

Figures (3) and (3) describe the equilibrium investment dynamics when pg € [Q,QeAA)
and pg > Qe)‘A, respectively.
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Figure 3: Equilibrium investment dynamics when o = 0.2, A = 0.7, A = 1.64 and py =
0.7 < QeAA =0.9.

The attractiveness of investment increases with the confidence in the technology and
decreases with the level of competition. Players cannot become more optimistic with time,
whatever their strategies or history may be. However, the intensity of competition may
not be monotone in time, which explains why investment is non-monotone in the public
belief. Consider a period during which predecessors invested in the technology. As time
passes within this period, the total amount of past investments increases, which increases

the intensity of competition and the probability of preemption. Since players also become
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Figure 4: Equilibrium investment dynamics when o = 0.2, A = 0.7, A = 1.64 and py =
0.97 > pe*® = 0.9.

more pessimistic about the technology, they eventually stop investment. But then the
probability of being the first to get a success increases again and the discouraging effects
of competition fades away. When the intensity of competition is sufficiently low, investing

in the risky technology becomes profitable again, even though the public belief is smaller.

3.1 Comparative statics

It follows directly from the expression of ¢(n, t) that kf converges to 0. This is the reason
why, while players do not stop investment in finite time, the public belief converges to the
single player cutoff but never falls below it. As a result, the total amount of investment

only depends on p and pg, not on A.

Lemma 1. For every po € [p,1), in equilibrium it holds that:

() lim p; =p;

t——4o00

(i7) /Oook::ds = %ln <§(%;))>

Proof. Since lim ®(n,t) = 0, it holds that lim k' = Oand lim e */i-a®ds — o This
t—+o00 t—+o00 t—+o00

implies that t—ligloo e = t_l)lgloo pe. Yet tl}lgloo pt = p. This proves (i). Expression (2) can
t—A

be rewritten as eMo =~ Keds — % for ¢ > A. Taking the limit and using (i), we obtain

(id). O

The equilibrium payoff to player ¢ is u(ky, k*;) = Akf (ue — p). Therefore,



e if po < p, then u(k},k*,) = 0 for every ;

2o p—At _ 1) if t <
o if po € [p,pe*d], then u(kf, k%) =4 ( p© if t < 7(po),
o 0 if ¢ > (po).
a(bre ™~ 1) ift < A,
if Do > ped . th ¥ k) = 1 oA )
o1 pO—Be ,t GHU( to —t)_ [0 Em—l) lftE[A77’(p0)]’
0 if t > 7(po).

It is easy to see that early investors have an advantage, in the sense that u(kf,k*,)
decreases with t. The total payoff is W (k*) = 0+°° u(ky, k*,)dt, which works out as follows;

o If pg < p, then W(k™) = 0.

o If pg € [p,peAA], then W (k™) =po—p+pln <p£>
o T 0

. _ _ 1 —po
AA o _ AA AA
e if pg > pe*?, then W (k™) = po(1 —e *7) —e ln<1_B€)\A>—OéT(p0)-

Proposition 2. The total payoff in equilibrium weakly decreases with A.

Proof. See Section 5.1.2 in the Appendix. O

3.2 Disentangling the effects of outcome lag and uncertainty

In order to disentangle the respective effects of the innovation lag and uncertainty on
the shape of the equilibrium dynamics, we apply Proposition 1 in the case where pg = 1
(no uncertainty) and A = 0 (no outcome lag).

Plugging pp = 1 into the expressions of ¢ and 7, we find that ¢(n,t) = 1 for every (n,t)
—1In(p) ifge)‘A > 1,

and 7(1) =1, if perd < 1

. Therefore,

o if Qe)‘A <1, then kf =1 for every ¢,

1 ift € [nA,(n+1)7(1)]

o if pe*® > 1, then kf =
L " {OiﬂehﬂWH&%@+DM

In other words, if the outcome lag is small enough, every player fully invests in the technol-
ogy. Otherwise, the equilibrium dynamics is cyclical: players regularly alternate between
full investment and no investment at all. In contrast, when A = 0, the equilibrium dy-

namics is in threshold:
o if po < p, ki = 0 for every ¢;

o if pg >p, kf = where T =sln (——) is the first time the
OB =0 0, ittt > r(po), (o) = 310 (et

public belief reaches p.
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Players fully invest when the public belief is larger than the single player cutoff p, and 0

otherwise.

Even if players know that the project is feasible, the outcome lag creates competition
between player ¢t and every player in [t — A,t): the larger A, the more intense the com-
petition. If A is small, the competition is so soft that every player fully invests. When
competition is harder, players are too likely to be preempted by a past competitor and de-
cide not to invest as a result. After a period with no investment, competition has softened
enough to make investment valuable again. The non-monotonic feature of the equilib-
rium dynamics is thus driven by the outcome lag. Without an outcome lag, players use
threshold strategies, but the equilibrium investment decreases with time, because players
become more pessimistic about the feasibility of the project as time passes and no break-
through occurs. Thus uncertainty drives the fact that, in periods where players invest in

the technology, equilibrium investment is interior and decreasing with time.

4 Welfare criteria

4.1 Probability of breakthrough

The probability of breakthrough in equilibrium is po(1 — e~ o TR ). As the total

investment is f0+°° kdt = +1In (&S—;))) when pg € [p, 1), the probability of breakthrough is

Po—P
L-p

P(Breakthrough) =

As with the total amount of investment, the probability of a breakthrough does not depend

on the delay in equilibrium.

4.2 Expected time of completion

A social planner may want the breakthrough to occur as fast as possible, hence to
maximize E[e~""], where T is the random time of arrival of the breakthrough.

AsP(T <t)=1- e oS keds if the technology is good and t > A, and P(7 <T) =0
otherwise, P(T' < t) = py (1 e A Jima ksds) I;>a. Therefore, T is distributed according

_A
to the density function f(t) = po)\kt_Ae_AfOt ksdslltZA.
—rT %t X [T ked
Ele™™ ]:pO/ e " Nk_pe Mo T ksds gy
A

It is easy to prove that the optimal policy for this benchmark is to play k; = 1 for
every t, thus that the equilibrium is suboptimal. Moreover, in equilibrium the expected

completion time increases with the delay.

11



4.3 Aggregate payoff

The social planner may want to maximize the sum of the players’ payoffs, i.e. to

determine the investment profile k that maximizes

(t—A)]ltzA

“+oo _ + o
W(k) = / —ak(1 = po) + poe o Fadls <>\kte QUCENIVENL ak:t> dt
0

+00 (t—A)1 [t s
— / k, <_a(1 —po) Epoe Mo T hads ()\e Mit—ayzs keds _ a>> dt  (8)
0

The lag in the state variable makes the problem of the social planner difficult to solve.
However, we can prove that the equilibrium is inefficient, in the sense that it does not
maximizes the aggregate payoff. This is because the social planner would prefer players to <
“take a break” to see if previous experimentation has yielded a success, something players

are not willing to do in equilibrium.
Proposition 3. The equilibrium k* is inefficient.

Proof. To prove the proposition we first note that there exists a cutoff strategy k such that
W (k) = W(k*), namely k, = Li<r(py)- We now show that, for any given cutoff strategy,
there exists another strategy that yields a strictly larger aggregate payoff.

As a preliminary, observe that, for every strategy profile k such that f0+oo kdt < 400,
the aggregate payoff can be rewritten as
(t—A)]ltzA

+00 - +o0
W(k) = —p(1 - po)A/ kedt + po(1 — e kedty _ ppo)\/ ke~ Jo ksds gy
p ; P, i

Let us now prove that the optimal strategy is not in cutoff. Consider a cutoff strategy
k defined by k; = Li<, and let us prove that there exists k such that W (k) > W (k).

If m < A, let /;:(e) be defined by l;:(e)t = Li<r—e + Licaaqq With 0 < e <7 —€. As
0+°° kydt = T, one has

7 A-+te
W (k(e)) = =p(1 = po)AT + po(1 = €*7) = ppoX <T —e+ / e_’\(t_A)dt>
- B A

Differentiating W (k(e)) with respect to e, we obtain W (k(e))/de = popA(l — e™2) > 0.

Moreover, W (k(0)) = W (k). Therefore, there exists k() such that W (k(e)) > W (k).
If 7 > A, let k(e) be defined by k(e); = Ti<r_c + Ligprr4q With A < 7 —€. As
0+°° kydt = T, one has

B T—€ (t—A)1y T+e (t—A)1,
W (k(e€)) = —p(1—po) AT+po(1—e ) —ppoA (/ e Mo =% hads / e o =% kyds dt> .
p D ; i

Differentiating W (k(e)) with respect to €, we obtain

8W(l;3(6))/86 = popA (6_)‘ J A ds e_)\fo7'+efA ke ds> '

12



T+e—A

This is strictly greater than 0 if and only if [7"° " k,ds > 0, which is satisfied for any

A > 0. Moreover, W (k(0)) = W (k). Therefore, there exists k(e) such that W (k(e)) >

0

5 An alternative reward scheme.

In this section, we compare the equilibrium we characterized in the previous section
with the equilibrium obtained under another reward scheme called hidden-equal-sharing
(HES). Under HES, players do not observe past outcomes and do not communicate with
each other; instead, there is a mediator who observes all the breakthroughs and keeps them
secret until some commonly known deadline T' > A. At time T, the mediator splits the
payoff 1 among all the players who obtained a breakthrough, if any. The difference with
the winner-takes-all reward scheme is that a player does not know what payoff she will
receive from obtaining a success. Let r; stand for the random reward of player ¢ in case of
success. As successes are hidden, the public belief is pg at every time, thus the expected

payoff to player t given a strategy profile k is
’U,(k)t, k) = po)\ktE[T’t | k] — Oékt
The best response of player ¢t is as follows:

=1 if poE[ry | K] > p,
kiq €[0,1] ifpoE[rs | k] =p,
=0 if poE[r; | k] <p

Let us compute E[r; | k]. Since players ¢ > T — A will observe the output of their
investment after the deadline T, they will not receive any payoff, hence r, = 0 fort > T —A.
Now consider ¢t < T'— A. If n > 0 other players among [0,7 — A] obtain a success, player
t will receive a payoff of 1/(n + 1). Her expected reward is thus

oo

1
Elry | k] = Z —y 1P(n other players obtain a success)

n=0

Yet the number of success occurrences during the interval [0,7 — A] follows a Poisson law
of intensity A fOT ~2 kyd. Therefore,

00 A T_AdeS)n _
1 ( Jo oMo T8 keds

Elrg| kK =)
n:On+1 n!

1 — e Mo B hsds

A JiF 72 kyds

=I'(k)
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P 4 Lot TH b defined by L2602 _ P
roposition 4. Let e define _— ==
YTNTH A wo
(i) If T < TH, there is an (essentially) unique equilibrium K* such that kf = 1 for
t<T—Aandkf=0ift>T—A. It is unique if T < TH.

(i) If T > TH then in every equilibrium k*, it holds that ftTZBA k¥ds = TH — A and

kf=0ift>T—A.

Proof. As a preliminary, observe that the function z — 1_)6\;“ is strictly decreasing.

e Proof of (i). Suppose that T < T and consider the strategy profile k defined by
l;:t = Iy<7—a. Let us prove that no player has a profitable deviation from k. We
already know that players ¢ > T — A have no profitable deviation from k; = 0. Fix

fod 1_67A(T7A) g

some player ¢ < T — A. Straightforwardly, I'(k) = NT=A) As T'(k)) decreases

AMTH - n)

with T, the fact that 7 < T* implies that T'(k) > 1_;(;,{7_& = p/po. Playing
k: = 1 is thus a best response to k. This proves that k£ is an equilibrium. Let us
now prove that it is the unique equilibrium. This is immediate if T < TH. Now we
shall prove ad absurdum that it remains essentially unique (i.e., but for deviations
on a null set) if 7= TH. Suppose that k is an equilibrium such that k; < 1 for some
subset of [0,7 — A] that has positive measure. It follows that fOT_A ksds < T — A,

hence that T'(k) > I'(k). As T'(k) > p/po, this implies that I'(k) > p/po, and that

player t’s best response is to play k; = 1, which is a contradiction.

e Proof of (i4). Suppose now that T > T and consider an equilibrium strategy k.
If ftZBA keds < TH — A, then T(k) > % = p%, which implies that there
is at least a player ¢ < T — A such that k; < 0 who has a profitable deviation to
k; = 1. Therefore, ftTZBA keds > TH — A, If ftTZBA keds > TH — A, then T'(k) <
% = p%, hence there is at least a player ¢ < T — A such that k; > 0 who
has a profitable deviation to k; = 0. This proves that ftTZBA keds = TH — A.

O

What is the best HES mechanism? If the mediator seeks to maximize the probability of
breakthrough, then she should design T so as to maximize the total amount of investment.

It follows from Proposition 4 that, in every equilibrium under HES,

o0 T-A ifT<TH
kidt = = 7 =min{T, T} - A
A ‘ {TH—AiMBJﬂ, min{T, T}

Clearly, the total amount of investment is maximum when the mediator sets the deadline
T after TH. However, even if all deadlines T > T entail the same probability of break-
through, deadlines T > TH allow for equilibria where investment is dispersed over time,

which increases the expected time of completion.

14



Proposition 5. The probability of breakthrough is mazimal when T > TH. The expected

time of completion is minimal when T = TH.

We now compare the welfare properties of the optimal HES with the winner-takes-all

reward scheme. The total investment in equilibrium is 77 — A with HES and %ln (&S—;)))

with the winner-takes-all mechanism by Lemma 1. As z — 1_)6\;“ is strictly decreasing,

Q(p) ) 1— e MT"-4) 1—Q(po)/Qp) P 1—Q(po)/Qp)

Hoao Ly
Tmoasy (Q(po) NTT—2) (@) - Q) ~ po ~ Q) — m(2(po)

This allows to prove the following result.
Proposition 6. It holds that (i) < (i7).
(i) p < 1/2 and po < po, where po is the unique solution of Q(p)—(po) = In (%) 1;—02.

(i) The probability of breakthrough is larger under the HES mechanism than the winner-

takes-all mechanism.

Moreover, (i) implies that the expected time of completion is smaller under HES.
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Appendix

5.1 Proof of Proposition 1

t
—A f(t_A)ltzA ksd

Proof. Differentiating u; = pre * with respect to ¢, we obtain

. —\ t_ ksds , .
[ =e f(t A)1i>A (pt — pt)\(kt - kt—A ]ltZA)) ’

which reduces to

Lo = — A (ke — peki—ali>a) (9)

after using (1).

e Case when py <p

The objective is to prove by induction on n that the proposition P(n): “kf = 0V t €
[nA, (n+ 1)A]” is true for every n € N. By definition of ju, for every ¢ € [0, A] and every
k_¢, pt < pr = po < p. Therefore, it is dominant for every player in [0, A] to play k; = 0,
which implies that P(0) is true. Suppose now that P(n) holds for some n € N, i.e., that
every player t € [nA, (n + 1)A] plays kf = 0. Plugging this into (9), it comes that g; <0
for every t € [(n+1)A, (n+2)A]. Moreover, k¢, +1)a = 0 implies that 1, 11)a < p by (4).
Therefore, p; < p for every t € [(n + 1)A, (n + 2)A], which implies that P(n + 1) is true.

e Case when py > p

As po = po, pio > p. Therefore, there exists 7 > 0 such that us > p for every s < 7,
hence such that ks = 1 for every s < 7 by (4). Plugging this into the expression of u; and
into (1), it comes that

/’LT — pTe_)‘(T_(T_A)]lTZA)

and pr = _)\pT(l _pT)lTZA-
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Straightforwardly, the function h(r) := pre M7=(7=8)1-24) i5 continuous and strictly de-

creasing in 7. Moreover, h takes the value pg > p in 7 = 0 and the value Be_)‘A <pin
Q .. . . . _ _

T=A+ % In (%). This implies that there exists a unique 7 such that h(7) = p, whose

expression depends on whether it is larger than A or not.
If h(A) > p, then 7 > A, hence

M = p

© pr=pet =P

h(T)=p < pre”

Integrating the law of motion of p; pr = —Ap;(1 — p;) between A and 7, we obtain
AT=A) = 8B which is rewritten
Q(po)

which is rewritten

Therefore, there exists 7(po) such that ki = 1 for every t < 7(pg) and pi,(,,) = p. We

now use the next lemma.

Lemma 2. In equilibrium, if py = p, then us = p for every s > t.

Proof. Fix some player t and suppose that p; = p. As py is continuous, if there is ¢’ > ¢
such that ;> p, then there is an open interval S C [t,#'] such that ) > 0 and p, > p for
every s € S. This implies that that ks = 1 for every s € S by (4), thus contradicts p), > 0
by (9). Also, if there is ¢’ > t such that py < p, then there is an open interval S C [t,#]
such that ) < 0 and p, < § for every s € S. This implies that that ks = 0 for every s € S
by (4), thus contradicts p} < 0 by (9). O

As a consequence, in equilibrium j; = p for every ¢ > 7(po), hence fi; = 0 for every
t > 7(po). By (9), this implies that in equilibrium, satisfies kf = 1 if t < 7(pp), and
ki = piki_ala if t > 7(po).

t
S:]lt>At—

ko does not depend on the other players’ strategy, the equilibrium is unique. O

Uniqueness Note that the best response of player ¢ is a function of {k;} A- Because
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5.1.1 Analytic expressions of k*

Analytic expression of k* and p when py > p.

Let p} and kj* respectively denote the public belief and player ¢’s action in time ¢ €
[T+ (n — 1)A, 7 + nAl.

_ . n—1

Also, p"* := p:f-l-(n—l)A = Prt(n—1)A- By definition of 7, p! = ]_oeAA.

2

3

P P P’ Pt P

VbR @R R PR R

[ [ [ [ [ [ [

[ [ [ [ [ [ [

[ [ [ [ [ [ [
: — | | ] | | ¢
0 A T T+A T+ 2A T+3AT+(n—2)A 7+ (n—1A T7+nA
Step 1 The first step is to establish by induction on n that, for every n > 2,

Q(p} 1

Q") 1— (1 e N—=DA=D) T[7=1 jk

1) Relation between p} and p?__Al
Let n > 2. By definition, pp = —App(1 — pp)kP A and pp~' = —Apr 11 — pp &P 2.

n—1

Moreover, in equilibrium, k,‘f__A1 = p?__Alle__;A, Therefore, k,‘f__A1 = —ﬁ. It follows
BRI
that, for every n > 2 and every ¢,
. ‘n—1
Py Pi_n
= n—1 (11)

pr(l—pf) 1-pi A

Integrating (11) between 7+ (n — 1)A and ¢t € [T + (n — 1)A, 7 + nA], we obtain:

ln< Q(pp) ) :1n< 1—-p}"A )
APy n1ya) 1= (o)

which, by definition of p", becomes

n n—1
Q(py) _ L—p,_a
Q) 1!

(12)

2) Let us prove that (10) is true for n = 2. As k; = 1 for every t < 7, Q(p}) = Q(p1)e M7,

1

P 0@
1— ]51 + I;le—)\(t—f)

=(1-7




3) Suppose that (10) is true for some given n, i.e.,
Q(p")

Qp") +1 = (1 — e A=(=DA=D)) TTR 71
0 n+1 1 —pn

(i) _ pt:A. As
Q( n+1) 1— pn

Q(p")
Q") + 1= (1= e Mna=D) [Tiz) b

1—pf =

and let us prove it is true for n + 1. By (12),

L—plaA=

1 _p?_A . 1
1—pn T 1 (1 _ e—)\(t—nA—r)) szlﬁk)’
hence (10) is true for n + 1.

Step 2 The second step is to establish by induction on n that, for every n > 1,

o a-Ha-p)
W= Gy e

This is straightforward for n = 1; Moreover, Q(p%) = Q(pL, A) and, as k; =1 for <,
Q(pLia) = Q(p1)eNTHA=T) | Therefore, Q%) = Q(p')e*®. As we obtain Q(p?) = 2 by
plugging n = 2 into (13), and s p* = pe*>, (13) is true for n = 2.

Fix n > 3 and suppose that (13) is true for every k < n, i.e., suppose that

k—1
4 PP —p) +p1 -5
— Vk<n
P PPt —p) +1—-p! B

The aim is to establish that (13) is true for n+1. Asp"t! = pZL{LA PY o by definition,
taking (10) for t = 7 + nA, we obtain:

Q(ﬁn—i-l) —

n—1
1—(1—e?)]]5*
k=1

As p = e *2p!, the latter expression is rewritten:

p'p")

~n+1y __
QP = — (14)
= —p ][5
k=1
Let us compute HZ;% P under the induction hypothesis. Noticing that, for every k < n,
Ak -1
= p X %, with A(k) = p*~1(p! —p) + 1 —p', we can simplify the product as
follows:
= (k—1) ., A0 2 -p) 1 -
p = pX——" =p" = =p" Therefore,
11 e A(k) = Aln-1) = p2(p'-p)+1-pt
n—1 ~1
e neo p(1-p)
p =D ~ = 15
11 2Bl —p) + 1 p! (15)



Plugging this into (14) and simplifying by !, we obtain:

PPt —p)+1—p

Q(ﬁn—i-l) = Q(ﬁn)gn_2(ﬁ1 — ]_9) +1 _p — (p _B)Bn_z(l _B)

As Q(p") = a-p)0- 2 ! under the induction hypothesis, we ob-
- p P2 (P! —p) +1-p! ’
tain:
oy - 1270 D) 1
p Bn—l(ﬁl _]_9) +1 _]51

hence (13) is true for n + 1.

Step 3 Plugging (15) and (13) into (10), we obtain

Q) = 5 D N (16)

Step 4: Equilibrium action

n—1

It is straightforward to show by induction that, in equilibrium, k" = [[;=; pi'~/A. Yet,

by (16),

n Q(ﬁl)(]_ — B ) —|- (]_ _ p) —“At—(n—-1)A—-71)
t

Q(pHQp) + QHY) (1 — p=1) + pr2(1 — peA-(-DA=T)
DA —7=t-

Because t —iA — (n —1i — T (n—1)A — 7, for every i <n — 2,

Piin = BW’

with A(i) = Q") (1 — p* %) + p" 1741 — p)e~M=(=DA=T)  Therefore,

which simplifies to

As Q(ﬁl) = Q(po)eA(t_A),

n_ p"Q(p)
ki = BHQ(B) +(1 _Bn)Q(pO)eA(t—nA) (17)

Analytic expression of £* and p when pg € (p,p)-

Let p? and kj* respectively denote the public belief and player t’s action in time ¢ €
[nA, T+ nAl.
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Also, p" := p's. P' = po. Finally, by definition of 7(pg), eMA~7(P0)) = p%, thus

Po’
ﬁl ﬁZ ﬁZ ﬁn ﬁn+1 ﬁn+1
(po, 1} (po,0) | (P}, K1) |(5°,0) | (0}, kD) LpF kD) 7 0) (o k)

[ [ [ [ [ [ [ [ [

[ [ [ [ [ [ [ [ [

[ [ [ [ [ [ [ [ [
— | | | | | | | | t
0 T A T+A 2A T4+ 3A nA T+nA  (n+1)A 7+ (n+ 1A
Step 1 The first step is to establish by induction on n that, for every n > 2,

Q(py 1

")~ 1= (1= e [ 7

Qi) _ A(t-A)

and QG = ©

1) Relation between p} and p?__i
Let n > 2. By definition, p' = —Apj(1 — pf)kj' A and py~' = —App ' (1 — pp ")k} R.

n—1
Moreover, in equilibrium, kf__Al = p?__Alk:?__;A_ Therefore, kf__Al = —ﬁ. It follows
BRI
that, for every n > 2 and every ¢,
. n—1
S N (19)
pr(l=p})  1-piA
Integrating (19) between nA and ¢t € [nA, T + nA], we obtain:
~1
(00D, (1om
n - =n| ——,
Q(pnA) 1- 25N
which, by definition of p", becomes
-1
o) 1A o)

Qpr)  1-p!
2) Let us prove that (18) is true for n = 2. As k; = 1 for every t < 7, Q(p}) = Q(po)e =2,

Q(po)ert=2) 1—po
14 Q(po)ert=2) 1 — pg + poe=AE=2)

1—p§:

Q(p7) 1
Qp%)  1—(1—eA=28)pg

3) Suppose that (18) is true for some given n, i.e.,

Q")

1—p} = :
PETQ0m) 11— (1= e =) [l
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and let us prove it is true for n 4+ 1. After rearrangement,

1—-p"
= (= e XA, 7

1—pf =

Qi _1-wr

By (2 _ t—A A
y (20), Q@) 1-—pn i
1—pl A= =L
N 1—(1— e—)\(t—(n-i-l)A)) HZ:l o
L=pia _ L

1—pn T 1— (1 _ e—)\(t—(n+1)A)) szlﬁk)’
hence (18) is true for n + 1.
Step 2 The second step is to establish by induction on n that, for every n > 1,

?(po—p) +1—po
Ypo—p)+1—po

~N

P
=P (21)

This is straightforward for n = 1; Moreover, p?> = pi ) and, as ky = 1 for t < 7,

QpLia) = Q(po)eM™). Therefore, p? = nglL—po’ which implies that (21) is true for n = 2.
Fix n > 3 and suppose that (21) is true for every k& < n. Observing that, under the

induction hypothesis, p* = Q% with A(u) = p*(po — p) + 1 — po, we can write

n—1 n—1
_ Ak —2) 1 A(-1) _ po(1—p)
k n—1 n—2 z
U=l = s~ 5 i @
Asptl = p?:jlm = pZ, A by definition, taking (18) for t = 7 +nA, we obtain, for every

n > 2:

n—1
1-(1—e) ] 5"
k=1

As e = L the latter expression is rewritten:

=L
@) = — 2P n)n_l (23)
po— (po — p) Hﬁk
k=1

Plugging (22) into the (23) and simplifying by pg, we obtain:

““(po—p) +1—po
"L(po—p)+1-po

Q) = Q")
p
Using the induction hypothesis, the latter expression becomes:

(1=po)(1 —p) 1

9) ~n—+1 —
) p P L(po—p) +1—po’
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hence (21) is true for n + 1.

Step 3 Plugging (22) and (21) into (18), we obtain

Q(p)S2(po)
Qpo)(1 —p1) 4 pn=2(1 — pleAt=nA)

Q(p) = (24)

Step 4: Equilibrium action
It is straightforward to show by induction that, in equilibrium, k' = H?:_ol p?__ZZA Yet,
by (24),

( )(1__n 1)_|_pn 2(1__) —A(t—nA)
F o)L= p) +p 11— pe D

n

by

Because t —iA — (n —i)A =t —nA, for every i <n — 2,
nei _ Aln—i—1)
Dyin =P A(n _ Z) )
with A(u) = Q(po)(1 — p*) +p* (1 - B)e"\(t_”A). Therefore,

w T Am—i-1\ A0
=1 ) -

1=0

which simplifies to
= Q(p)
L) + Qpo)Q(pr)erind)

5.1.2 Proof of Proposition 2

Proof. W (k*) does not depend on A when py < pe*>. When py > pe*>

oW (k") “AA YN 1—po p o7 (po)
= Apge + e In _Al—]geAA_a A

and O7(pg)/0A = —Qe)‘A/(l - ]EeAA), thus

W (k) =A <—]_9 +poe 2 + eI <71 — P >> .

0A 1 — per&
Differentiating 81/1(;21&) with respect to pg, we obtain —Ae **pg/(1 — pg). Moreover, it
equals 0 when pg = QeAA. Therefore, amggc*) is negative. [l
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5.2 Proof of Proposition 5

Proof. Let 7(k) the random time of arrival of the first success given investment profile k.

For every ¢,
—A
P(r(k) <) = po(1 — e o™~ Fedsy1,s

If T = TH, then the unique equilibrium is k* such that k} = Ly<cpr_a- At this
equilibrium,
P(r(k*) <t) =0 ift <A
=po(1 — e E=2)) ift € [A, TH]
= po(1 — e MTT=2)y if ¢ > TH

If T > TH all equilibria are such that k, = 0if t > T — A and fOT_A keds = TH — A.
Consider one of these equilibria such that & # k* a.s. At this equilibrium,

Pr(k)<t) =0 it <A
= po(l — e Mo “Rds)y if ¢ e [A, T
= po(1 — e MT=2)) ifg>T

For every t < A or t > T, then P(r(k) < t) = P(r(k*) < t)

For every t € [TH,T], P(r(k) < t) < P(r(k*) < t) because fg_A kyds < fOT_A kods =
Ty — A.

For every t € [A,TH], P(r(k) < t) < P(r(k*) < t) because fg_A keds < t — A.
Moreover, k # k* a.s. implies that 3t € [A, T*] such that fg_A keds < t — A, hence there
is t € [A, TH] such that P(r(k) <t) < P(r(k*) < t).

Therefore, 7(k*) first-order stochastically dominates 7(k). As a consequence, F [e_”(i“)] <
Ele=mm(+7)], O

5.3 Proof of Proposition 77

Proof. We seek conditions on pg such that

_ P 1 —Q(po)/p)
0= = o) — m@G)

is true. Multiplying both sides by Q(p) and using that pio =1+ Q(po), (I) is rewritten

Q(p) = 2(po)
In(©(p)) — n(2(po))’

p(1 +Q(po)) <
which is equivalent to f(Q(pg)) > 0 with f(x) := % — (1 +2)(1 —p). Let us
study the function f for z € [0, Q(p)]. B

Let us first establish that f(€2(p)) = 0. The limit of % in Q(p) is undeter-

mined as both the numerator and the denominator converge to 0. Applying L’Hoépital’s

rule, we find that lim, o) % = Q(p). As aresult, lim,_,o,) f(x) = 0.
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Differentiating f with respect to =, we obtain

b 1 Q(p)
f(z)) = () —na)? (=(n(2(p)) —Inz) + —= —1— (1 = p)(In(2p)) — In)?)

=g()

Differentiating g with respect to z, we obtain

¢(x) = (2 — Q) +2(1 - pa(in(Q(p)) — Inz))

a'e

:=h(z)

Differentiating h with respect to =, we obtain
P(x)=2p—1+2(1—-p)(InQ(p) —Inx)

o If p > 1/2, then h'(x) > 0 for every z. As h(§2(p)) = 0, this implies that h(z) < 0,
thus ¢'(x) < 0, for every x. As g(Q(p)) = 0, this implies that g(x) > 0, thus f'(z) > 0,
for every z. As f(Q(p)) = 0, this implies f(z) < 0 for every x € [0,€(p)). Therefore, (1)
cannot be satisfied when p > 1/2.

elf p < 1/2, M(z) >0 x < Q(B)e@ﬂ_l)/@(l_ﬂ)) == Z1(< Q(p)). Hence, h is
increasing on [0, #1] and decreasing on [Z1,Q(p)]. As h(0) = —Q(p) and h(Q2(p)) = 0, there

exists Zo € (0,21) such that h(z) < 0 (thus ¢’(z) < 0) on [0,Z2) and h(x) > 0 (thus
g (z) > 0) on [Z2,9(p)]. This implies that g(z) is decreasing on [0, #3) and increasing on

[Z2,2p)]. As g(Q(p)) = 0 and lim; .0 g(z) = +oo, there exists Z3 € (0,Z2) such that

g(xz) > 0 (thus f'(xz) > 0) on [0,23) and g(z) < 0 (thus f'(z) < 0) on [Z3,Q(p)]. As a
consequence, f(x) is increasing on [0,3) and decreasing on [Z3,Q(p)]. As f(0) = —(1 —p)
and f(Q(p)) = 0, there exists 4 € (0,Z3) such that f(z) < 0 on [0,%4] and f(z) > 0
otherwise.

Therefore, (I) is satisfied if and only if p < 1/2 and & > Z4, where Z4 is the unique

solution to f(z) = 0, that is

= (1+24)(1—-p)
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