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Abstra
t

We analyze a dynami
 investment model in whi
h short-lived agents sequentially

de
ide how mu
h to invest in a proje
t of un
ertain feasibility. The out
ome of the

proje
t (su

ess/failure) is observed after a �xed lag. We 
hara
terize the unique equi-

librium and show that, in 
ontrast with the 
ase without lag, the unique equilibrium

dynami
s is not in thresholds. If the initial belief is relatively high, investment de-


reases monotoni
ally as agents be
ome more pessimisti
 about the feasibility of the

innovation. Otherwise, investment is not monotoni
 in the publi
 belief: players al-

ternate periods of no investment and periods of positive, de
reasing investment. The

reason is that the out
ome lag 
reates 
ompetition between a player and her imme-

diate prede
essors. A player whose prede
essors did not invest may �nd investment

attra
tive even if she is more pessimisti
 about the te
hnology than her prede
essors.

We 
ompare the total investment obtained in this equilibrium with that obtained with

an alternative reward s
heme where a mediator 
olle
ts all the information about the

players' experien
es until some deadline, and splits the payo� between all the players

who obtained a su

ess before the deadline.
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1 Introdu
tion

When it 
omes to resear
h or innovation, the return on investment is usually not imme-

diate. In physi
s, large-s
ale experiments su
h as those 
arried out to dis
over exo-planets,

or to prove the existen
e of the Higgs bozon, require the development of spe
i�
 measuring

instruments, so that it takes several years to observe the results of these experiments. In

biology, the development of a new drug requires several validation steps that often take

several years. In the start-up e
onomy, it 
an take several years before a new appli
ation is
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known and massively used. Timing would not be an issue in a world without 
ompetition.

However, as illustrated in the COVID-19 va

ine ra
e, for investors it is often 
ru
ial to


omplete their proje
t before their 
ompetitors.

The aim of this paper is to investigate how investment de
isions are a�e
ted by the time

it takes before observing the out
ome of one's investment when investors are rewarded only

if they are the �rst to obtain a su

ess. To do so, we analyze a stylized model of dynami


investment in whi
h short-lived agents sequentially 
hoose how mu
h to invest in a proje
t

of un
ertain feasibility. If the proje
t is not feasible, investment is lost and yields no payo�.

If it is feasible, investment 
an generate a positive payo� after a �xed time lag ∆, with a

probability that in
reases with the invested amount. In the main model, the game ends

the �rst time a player re
eives a payo�, even though some players may have invested after

this player. We 
all this reward s
heme the winner-takes-all me
hanism. Be
ause of the

out
ome lag, a player who must de
ide how mu
h to invest at time t knows that players who

invested before time t−∆ have invested at a loss, but does not know whether investments

made by players between t−∆ and t will be su

essful or not. Moreover, be
ause players

learn from prede
essors' experien
es in a Bayesian fashion, they be
ome more pessimisti


about the feasibility of the proje
t as time passes. Therefore, this model features both a

negative payo� externality and a positive informational externality. What is the tradeo�

fa
ed by the player investing at time t? Investment will yield the player a positive payo�

if 1) her investment is su

essful, whi
h 
an happen only if the proje
t is feasible and 2)

she is not preempted by a player investing between t −∆ and t. As time passes, players


an only be
ome more pessimisti
 about the feasibility of the proje
t, whi
h de
reases the

desirability of investment. However, the e�e
t of 
ompetition may not be monotoni
 in

time. Indeed, the innovation lag 
reates 
ompetition between the player investing at time t

and all the players investing between t−∆ and t. Therefore, even if player t is ne
essarily

more pessimisti
 than her prede
essors, she may fa
e a smaller risk of preemption and thus

�nd investment more desirable than her prede
essors.

When there is no out
ome lag, the equilibrium strategy is of the 
uto� type: players

make the maximal investment e�ort if their belief that the proje
t is feasible is above some

threshold and invest nothing otherwise. In 
ontrast, with a positive lag, the equilibrium

strategy does not have a 
uto� stru
ture. When players are initially very pessimisti
, none

of them ever invests in the proje
t. Otherwise, �rst players make the maximal investment

until some 
uto� time that depends on the prior belief. Afterwards, they invest only a

fra
tion of their resour
e in the proje
t, a

ording to a pattern that depends on the prior

belief. When they are initially very optimisti
, investment de
reases with time and belief

in a dis
ontinuous way, jumping downward at regular intervals (as a 
onsequen
e, some

investment levels are never realized in equilibrium). Surprisingly, for intermediate prior

beliefs, investment is non-monotoni
 in time or belief: the investment dynami
s feature

periods of no investment and periods of de
reasing, but positive investment, even though

players are 
ontinuously more pessimisti
 about the proje
t as time passes. To understand

this result, imagine three generations of resear
hers: Gen X, Gen Y and Gen Z. Ea
h

2



generation 
hooses in turn how mu
h to invest, and the out
ome of a given generation is

realized only two generations after. Suppose Gen X invests in the proje
t. Gen Y does

not know yet the out
ome of Gen X, thus they have the same belief about the feasibility of

the proje
t. However, be
ause Gen X has already invested, there is a positive probability

for Gen Y to be preempted by Gen X, whi
h makes investment riskier and less desirable

for them than for Gen X. Suppose Gen Y de
ides not to invest and that Gen X does

not 
omplete the proje
t. Be
ause of this failure, Gen Z is more pessimisti
 than both

their prede
essors. But be
ause Gen Y did not invest, Gen Z does not fa
e any risk of

preemption, and may thus �nd investment optimal even while being more pessimisti
 than

Gen Y .

We 
ompare our equilibrium investment dynami
s with that obtained with an alter-

native reward s
heme 
alled �hidden-equal-sharing me
hanism, whi
h works as follows:

out
omes are observed only by a prin
ipal who keeps them se
ret until some deadline T .

At time T , out
omes are revealed to all and the bene�t of the proje
t is shared among

all the players who obtained a su

ess before T − ∆. The prin
ipal 
hooses T in su
h a

way that the total amount of investment is maximal. We �nd that the total investment

may but must not be larger with the hidden-equal-sharing me
hanism. Let us illustrate

why in the three generations example. Suppose now that T = 4. On the one hand, in-

vestment may be more attra
tive for Gen Y in the hidden-equal-sharing, be
ause it may

yield a positive payo� even if Gen X is su

essful. Also, Gen Z is not informed of Gen X's

out
ome and is therefore more optimisti
 about the feasibility of the proje
t. On the other

hand, 
onditional on the innovation being feasible, the expe
ted pro�t is smaller for Gen

Z, sin
e they may have to share the bene�ts with Gen X or Gen Y . We �nd a ne
essary

and su�
ient 
ondition on the initial belief under whi
h the �hidden equal-sharing� entails

a larger total investment.

Related literature. The framework we use to model learning is borrowed from the

exponential-bandit literature, in whi
h long-lived players trade o� exploration vs. exploita-

tion (Keller, Rady and Cripps (2005), Keller and Rady (2010), Rady and Klein (2011), et
).

Some authors have analyzed how imperfe
t observation of players' a
tions or out
omes 
an

in
rease the exploration e�orts in equilibrium (Bonatti and Hörner (2011), Heidhues, Rady

and Stra
k (2015), Marlats and Ménager (2021)). Bimpikis and Drokopoulos (2014) and

Che and Hörner (2015) study how a prin
ipal should dis
lose information to improve ag-

gregate learning. In all these papers, externalities are only informational. There is a strand

of literature mixing learning and 
ompetition issues. For instan
e, Choi (1991), Malueg

and Tsutsui (1997) or Mos
arini and Squintani (2010) analyze R&D 
ompetition under a

winner-takes-all me
hanism. Das and Klein (2021.a, 2021.b) analyze a patent ra
e in a

two-arm exponential bandit framework. Bimpikis, Ehsani and Mostagir (2014) and Hala
,

Kartik and Liu (2017) also address the issue of 
ontest design in a dynami
 environment.

The paper by Hala
, Kartik and Liu (2017) is the most 
losely related to our paper. They


hara
terize the optimal 
ontest in a 
lass of me
hanisms in whi
h the prin
ipal 
hooses
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both a prize-sharing poli
y and a dis
losure poli
y. They show that the optimal 
ontest

of this 
lass is either a winner-takes-all with immediate dis
losure of the out
omes or a

hidden-equal-sharing me
hanism. Only few papers in game and de
ision theory address

the e�e
ts of delayed feedba
ks. Gordon, Marlats and Ménager (2021) analyze a team

problem where partners work together to a
hieve a proje
t whi
h is 
ommonly known to

be feasible. Players learn immediately whether they su

eed but observe their partners'

out
ome only after a �xed lag. The observation lag has an e�e
t that is similar to that

in our paper, as, in equilibrium, players alternate between periods in whi
h they exert the

maximal e�ort and periods in whi
h they make no e�ort at all.

The remainder of this paper is organized as follows. Se
tion 2 sets up the model. Se
tion

3 
hara
terizes the unique equilibrium in the winner-takes-all framework. In Se
tion 4, we


ompare our results to that obtained with the hidden-equal-sharing me
hanism.

2 The set-up

Time is 
ontinuous and there is a 
ontinuum of players indexed by t ∈ [0,+∞). Ea
h

player t 
hooses at time t what fra
tion kt ∈ [0, 1] to invest in a risky te
hnology at unit


ost α > 0. The te
hnology 
an be good or bad. If it is bad, the te
hnology never yields

any payo�. If it is good, it yields a payo� of 1 at time t+ ∆ at the �rst jump of a time-

inhomogeneous Poisson pro
ess with rate λkt, with λ > α. The �rst time a player re
eives

a positive payo� is 
alled a breakthrough, and the game stops after a breakthrough.

As player t plays only at time t, a pure strategy for player t is kt ∈ [0, 1] and a strategy

pro�le is a fun
tion k : R+ → [0, 1]. To guarantee that players 
an always update their

beliefs on the observation of past investments, we restri
t the analysis to admissible strategy

pro�les, de�ned as pro�les k su
h that

∫ t
t ktdt is well-de�ned for every t ≤ t.

Players observe the whole history of a
tions and out
omes but do not know the type

of the te
hnology, absent a breakthrough. The publi
 belief at time t that the te
hnology

is good is denoted pt, with p0 ∈ (0, 1) the initial 
ommon belief. The publi
 belief is


ontinuously updated on the basis of the observation of past investments. As a player's

investment operates on the Poisson pro
ess with a time lag ∆, players have no feedba
k at

all before ∆, hen
e pt = p0 for all t ≤ ∆. For t ≥ ∆, the publi
 belief follows the law of

motion

ṗt = −pt(1− pt)λkt−∆. (1)

Therefore, for every admissible strategy pro�le k, the publi
 belief at time t is de�ned as

follows:

1

pt =
p0

p0 + (1− p0)eλ
∫ (t−∆)1t≥∆
0 ksds

. (2)

1

This is obtained by integrating (1) between ∆ and t > ∆ and using the initial 
ondition p∆ = p0.
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Player t will have the opportunity to invest only if no breakthrough o

urred before time

t, that is if no player in [0, (t −∆)1t≥∆] made a su

essful investment.

2

Therefore, player

t 
ompetes only with players in [(t − ∆)1t≥∆, t). With k−t standing for the investment

pro�le of players in [(t−∆)1t≥∆, t), the expe
ted payo� to player t is

u(kt; k−t) = −αkt
︸ ︷︷ ︸

instantaneous 
ost

+ pte
−λ

∫ t

(t−∆)1t≥∆
ksds

λkt
︸ ︷︷ ︸

expe
ted bene�t

(3)

Let us explain why with a heuristi
 argument. Suppose that player t invests kt during the

interval [t, t+ dt) with dt > 0, in the sense that she is the only player to invest during the

interval and 
hooses kt′ = kt for every t′ ∈ [t, t + dt). This 
osts her αktdt and yields a

su

ess with probability ptλktdt. This su

ess will give her a payo� of 1 in t + ∆ if and

only if she has not been preempted by a player in [(t − ∆)1t≥∆, t), whi
h happens with

probability e
−λ

∫ t

(t−∆)1t≥∆
ksds

.

3 Equilibrium analysis

De�ning µt := pte
−λ

∫ t

(t−∆)1t≥∆
ksds

and p := α
λ , the payo� of player t 
an be expressed

as u(kt, k−t) = λkt
(
µt − p

)
. The best response of player t to k−t is thus to invest if and

only if her 
on�den
e in the te
hnology, pt, and the probability of not being preempted by

a 
ompetitor, e
−λ

∫ t

(t−∆)1t≥∆
ksds

, are large enough:

kt







= 1 if µt > p,

∈ [0, 1] if µt = p,

= 0 if µt < p.

(4)

To interpret this, imagine that player t fa
es no 
ompetition, i.e., ks = 0 for every

s ∈ [(t −∆))1t≥∆, t). In this situation, the attra
tiveness of investment µt is exa
tly pt,

thus player t invests whenever pt ≥ p. Therefore, p is interpreted as the single-player


uto�. When ks > 0 for some of player t's prede
essors, she invests if and only if her

belief is larger than pe
λ
∫ t

(t−∆)1t≥∆
ksds

whi
h is stri
tly larger than p: 
ompetition makes

investment less attra
tive, thus the 
uto� above whi
h player t invests is larger than the

single-player 
uto� p.

The behavior of µt is key to the 
onstru
tion of the equilibrium. Di�erentiating µt with

respe
t to t, using (1) and simplifying, we obtain:

µ̇t = −µtλ(kt − ptkt−∆1t≥∆). (5)

It follows dire
tly from (5) that µt weakly de
reases when t ≤ ∆ or kt−∆ = 0. This implies

that investment is 
ontinuously less and less attra
tive on the interval [0,∆] and during

periods with no 
ompetition.

2

This o

urs with probability 1 for players t ≤ ∆. For players t > ∆, this o

urs with probability 1 if

the te
hnology is bad, and with probability e−
∫
t

∆
λks−∆ds

if the te
hnology is good, thus with probability

1− p0 + p0e
−

∫
t−∆
0

λksds
, whi
h redu
es to e−λ

∫
t

∆
psks−∆ds

by integrating (1).
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Player 0 has no 
ompetitor and is the most optimisti
 of all players, thus she is the one

with the most in
entives to invest.

3

If p0 ≤ p, even player 0 �nds investment unattra
tive,

thus it is dominant for all players to play kt = 0. Therefore, if p0 ≤ p, there in the unique

equilibrium k∗t = 0 and µt = p0 for all t.

t
∆

p

peλ∆

µtp0

Figure 1: Dynami
s of µt when p0 < p.

Let us now 
hara
terize the equilibrium pro�le when p0 > p. Sin
e µ0 = p0 > p, player

0 invests all of her resour
e into the te
hnology. As µt is weakly de
reasing on [0,∆], the

immediate su

essors of player 0 also invest, up to some player τ > 0 for whi
h µτ = p.

Every player after player τ is indi�erent about whether to invest, be
ause µt = p for every

t ≥ τ .4 Plugging kt = 1t≤τ into (2), the attra
tiveness of investment be
omes

µt =







p0e
−λt

p0e
−λ(t−∆)1t≥∆ + 1− p0

if t ≤ τ

p if t ≥ τ

By de�nition of τ , τ ≤ ∆ if and only if µ∆ ≥ p, that is if and only if p0 ≥ peλ∆. The value

of the 
uto� τ thus depends on p0 and is obtained by solving µτ = p, whi
h yields:

τ(p0) :=







∆− 1
λ ln

(
peλ∆

p0

)

if p0 ∈ [p, peλ∆],

∆+ 1
λ ln

(
Ω(peλ∆)

Ω(p0)

)

if p0 ≥ peλ∆.
(6)

It is straightforward to establish that τ(p0) de
reases with ∆ for every p0.

Figure 3 represents the dynami
s of µt when µt rea
hes p before ∆ (i.e., when p0 ∈

[p, peλ∆)) and after ∆ (i.e., when p0 ≥ peλ∆).

3

For every t, it holds that µt ≤ pt by de�nition. Moreover, pt ≤ p0 be
ause pt is weakly de
reasing.

4

Let τ ′ = inf{t ≥ τ : µ̇t 6= 0}. Suppose that τ ′ > τ . On [τ, τ ′], µt = p, thus µτ ′ = p. If µ̇τ ′ < 0

then µτ ′

+
< p whi
h implies kτ ′

+
= 0. Plugging this into (5), it follows that µ̇τ ′ = µτ ′λpτ ′kτ ′−∆, whi
h


ontradi
ts µ̇τ ′ < 0. If µ̇τ ′ > 0 then µτ ′

+
> p whi
h implies kτ ′

+
= 1. Plugging this into (5), it follows that

µ̇τ ′ = −µτ ′λ(1− pτ ′(kτ ′−∆)) ≤ 0, whi
h 
ontradi
ts µ̇τ ′ > 0.
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t
∆

p

peλ∆

µt

p0

τ(p0)
t

∆

p

peλ∆

τ(p0)

p0

µt

Figure 2: Dynami
s of µt when p0 > p.

Players t ≤ τ(p0) play kt = 1. Sin
e µt = p for every t ≥ τ(p0), players t > τ(p0) are

indi�erent about whether to invest. Plugging the indi�eren
e 
ondition µ̇t = 0 into (5),

we �nd that player t's best response at t ≥ τ(p0) depends on her prede
essor' investment

as follows:

kt = ptkt−∆1t≥∆. (7)

Therefore, the best response of a player t > τ(p0) whose prede
essor at t−∆ either does

not exist (when t < ∆) or did not invest (when kt−∆) = 0) is not to invest: kt = 0. In


ontrast, a player t whose prede
essor invested a positive fra
tion in the te
hnology invests

a stri
tly smaller, but stri
tly positive fra
tion of her own resour
e.

The equilibrium dynami
s of investment thus qualitatively depends on p0. When player

0 is very optimisti
 (p0 > peλ∆), the 
uto� τ(p0) is larger than ∆. Therefore, there is no

period before∆ during whi
h players do not invest, whi
h implies that players always invest

a positive and de
reasing amount in the te
hnology. When player 0 has more pessimisti


beliefs (p0 ∈ [p, peλ∆]), the 
uto� τ(p0) is smaller than ∆, whi
h implies that players in

[τ(p0),∆] do not invest at all. This period without investment repli
ates identi
ally ∆

�periods� later, while investment periods repli
ate with a fra
tion of resour
e de
reasing in

time. This leads to a non-monotoni
 equilibrium strategy, in the sense that a less optimisti


player may invest more in the te
hnology than a more optimisti
 prede
essor.

The following proposition des
ribes the equilibrium dynami
s of investment. For every

(n, t) ∈ N× R+, let φ(n, t) :=
Ω(p)

Ω(p) + Ω(pn)Ω(p0)eλ(t−n∆)
, with Ω(p) := 1−p

p .

Proposition 1. There is a unique Nash equilibrium (k∗t )t des
ribed as follows:

• if p0 ≤ p, k∗t = 0 for every t;

• if p0 ∈ (p, peλ∆], k∗t = 1 if t ∈ [0, τ(p0)), and, ∀ n ∈ N,

k∗t =

{

0 if t ∈ [τ(p0) + n∆, (n+ 1)∆),

φ(n, t) if t ∈ [(n+ 1)∆, τ(p0) + (n+ 1)∆).

7



• if p0 > peλ∆, k∗t = 1 if t ∈ [0, τ(p0)) and, ∀ n ∈ N+,

k∗t = φ(n, t) if t ∈ [τ(p0) + (n− 1)∆, τ(p0) + n∆).

Figures (3) and (3) des
ribe the equilibrium investment dynami
s when p0 ∈ [p, peλ∆)

and p0 ≥ peλ∆, respe
tively.

Figure 3: Equilibrium investment dynami
s when α = 0.2, λ = 0.7, ∆ = 1.64 and p0 =

0.7 < peλ∆ = 0.9.

The attra
tiveness of investment in
reases with the 
on�den
e in the te
hnology and

de
reases with the level of 
ompetition. Players 
annot be
ome more optimisti
 with time,

whatever their strategies or history may be. However, the intensity of 
ompetition may

not be monotone in time, whi
h explains why investment is non-monotone in the publi


belief. Consider a period during whi
h prede
essors invested in the te
hnology. As time

passes within this period, the total amount of past investments in
reases, whi
h in
reases

the intensity of 
ompetition and the probability of preemption. Sin
e players also be
ome

8



Figure 4: Equilibrium investment dynami
s when α = 0.2, λ = 0.7, ∆ = 1.64 and p0 =

0.97 > peλ∆ = 0.9.

more pessimisti
 about the te
hnology, they eventually stop investment. But then the

probability of being the �rst to get a su

ess in
reases again and the dis
ouraging e�e
ts

of 
ompetition fades away. When the intensity of 
ompetition is su�
iently low, investing

in the risky te
hnology be
omes pro�table again, even though the publi
 belief is smaller.

3.1 Comparative stati
s

It follows dire
tly from the expression of φ(n, t) that k∗t 
onverges to 0. This is the reason

why, while players do not stop investment in �nite time, the publi
 belief 
onverges to the

single player 
uto� but never falls below it. As a result, the total amount of investment

only depends on p and p0, not on ∆.

Lemma 1. For every p0 ∈ [p, 1), in equilibrium it holds that:

(i) lim
t→+∞

pt = p;

(ii)

∫ ∞

0
k∗sds =

1

λ
ln

(
Ω(p)

Ω(p0)

)

.

Proof. Sin
e lim
t→+∞

Φ(n, t) = 0, it holds that lim
t→+∞

k∗t = 0 and lim
t→+∞

e−λ
∫ t

t−∆ k∗sds = 0. This

implies that lim
t→+∞

µt = lim
t→+∞

pt. Yet lim
t→+∞

µt = p. This proves (i). Expression (2) 
an

be rewritten as eλ
∫ t−∆
0 ksds = Ω(pt)

Ω(p0)
for t ≥ ∆. Taking the limit and using (i), we obtain

(ii).

The equilibrium payo� to player t is u(k∗t , k
∗
−t) = λk∗t (µt − p). Therefore,

9



• if p0 ≤ p, then u(k∗t , k
∗
−t) = 0 for every t;

• if p0 ∈
[
p, peλ∆

]
, then u(k∗t , k

∗
−t) =

{

α
(
p0
p e

−λt − 1
)

if t ≤ τ(p0),

0 if t ≥ τ(p0).

• if p0 ≥ peλ∆, then u(k∗t , k
∗
−t) =







α
(
p0
p e

−λt − 1
)

if t ≤ ∆,

α
(
1
p

e−λ∆

1+Ω(p0)eλ(t−∆) − 1
)

if t ∈ [∆, τ(p0)],

0 if t ≥ τ(p0).

It is easy to see that early investors have an advantage, in the sense that u(k∗t , k
∗
−t)

de
reases with t. The total payo� isW (k∗) =
∫ +∞

0 u(k∗t , k
∗
−t)dt, whi
h works out as follows;

• If p0 ≤ p, then W (k∗) = 0.

• If p0 ∈
[
p, peλ∆

]
, then W (k∗) = p0 − p+ p ln

(
p

p0

)

.

• if p0 ≥ peλ∆, then W (k∗) = p0(1− e−λ∆)− e−λ∆ ln

(
1− p0

1− peλ∆

)

− ατ(p0).

Proposition 2. The total payo� in equilibrium weakly de
reases with ∆.

Proof. See Se
tion 5.1.2 in the Appendix.

3.2 Disentangling the e�e
ts of out
ome lag and un
ertainty

In order to disentangle the respe
tive e�e
ts of the innovation lag and un
ertainty on

the shape of the equilibrium dynami
s, we apply Proposition 1 in the 
ase where p0 = 1

(no un
ertainty) and ∆ = 0 (no out
ome lag).

Plugging p0 = 1 into the expressions of φ and τ , we �nd that φ(n, t) = 1 for every (n, t)

and τ(1) =

{

− 1
λ ln(p) if peλ∆ > 1,

+∞ if peλ∆ ≤ 1
. Therefore,

• if peλ∆ ≤ 1, then k∗t = 1 for every t;

• if peλ∆ > 1, then k∗t =

{

1 if t ∈ [n∆, (n+ 1)τ(1)]

0 if t ∈ [τ(1)(n + 1), (n + 1)∆]

In other words, if the out
ome lag is small enough, every player fully invests in the te
hnol-

ogy. Otherwise, the equilibrium dynami
s is 
y
li
al: players regularly alternate between

full investment and no investment at all. In 
ontrast, when ∆ = 0, the equilibrium dy-

nami
s is in threshold:

• if p0 ≤ p, k∗t = 0 for every t;

• if p0 > p, k∗t =

{

1 if t ≤ τ(p0)

0, if t > τ(p0),
where τ(p0) =

1
λ ln

(
Ω(p)

Ω(p0)

)

is the �rst time the

publi
 belief rea
hes p.
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Players fully invest when the publi
 belief is larger than the single player 
uto� p, and 0

otherwise.

Even if players know that the proje
t is feasible, the out
ome lag 
reates 
ompetition

between player t and every player in [t − ∆, t): the larger ∆, the more intense the 
om-

petition. If ∆ is small, the 
ompetition is so soft that every player fully invests. When


ompetition is harder, players are too likely to be preempted by a past 
ompetitor and de-


ide not to invest as a result. After a period with no investment, 
ompetition has softened

enough to make investment valuable again. The non-monotoni
 feature of the equilib-

rium dynami
s is thus driven by the out
ome lag. Without an out
ome lag, players use

threshold strategies, but the equilibrium investment de
reases with time, be
ause players

be
ome more pessimisti
 about the feasibility of the proje
t as time passes and no break-

through o

urs. Thus un
ertainty drives the fa
t that, in periods where players invest in

the te
hnology, equilibrium investment is interior and de
reasing with time.

4 Welfare 
riteria

4.1 Probability of breakthrough

The probability of breakthrough in equilibrium is p0(1 − e−λ
∫+∞
0 k∗t dt). As the total

investment is

∫ +∞

0 k∗t dt =
1
λ ln

(
Ω(p)

Ω(p0)

)

when p0 ∈ [p, 1), the probability of breakthrough is

P (Breakthrough) =
p0 − p

1− p

As with the total amount of investment, the probability of a breakthrough does not depend

on the delay in equilibrium.

4.2 Expe
ted time of 
ompletion

A so
ial planner may want the breakthrough to o

ur as fast as possible, hen
e to

maximize E[e−rT ], where T is the random time of arrival of the breakthrough.

As P (T ≤ t) = 1−e−λ
∫ t−∆
0 ksds

if the te
hnology is good and t ≥ ∆, and P (τ ≤ T ) = 0

otherwise, P (T ≤ t) = p0

(

1− e−λ
∫ t−∆
0

ksds
)

1t≥∆. Therefore, T is distributed a

ording

to the density fun
tion f(t) = p0λkt−∆e
−λ

∫ t−∆
0

ksds
1t≥∆.

E[e−rT ] = p0

∫ ∞

∆
e−rtλkt−∆e

−λ
∫ t−∆
0 ksdsdt

It is easy to prove that the optimal poli
y for this ben
hmark is to play kt = 1 for

every t, thus that the equilibrium is suboptimal. Moreover, in equilibrium the expe
ted


ompletion time in
reases with the delay.
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4.3 Aggregate payo�

The so
ial planner may want to maximize the sum of the players' payo�s, i.e. to

determine the investment pro�le k that maximizes

W (k) =

∫ +∞

0
−αkt(1− p0) + p0e

−λ
∫ (t−∆)1t≥∆
0 ksds

(

λkte
−λ

∫ t

(t−∆)1t≥∆
ksds

− αkt

)

dt

=

∫ +∞

0
kt

(

−α(1− p0) + p0e
−λ

∫ (t−∆)1t≥∆
0 ksds

(

λe
−λ

∫ t

(t−∆)1t≥∆
ksds

− α

))

dt (8)

The lag in the state variable makes the problem of the so
ial planner di�
ult to solve.

However, we 
an prove that the equilibrium is ine�
ient, in the sense that it does not

maximizes the aggregate payo�. This is be
ause the so
ial planner would prefer players to <

�take a break� to see if previous experimentation has yielded a su

ess, something players

are not willing to do in equilibrium.

Proposition 3. The equilibrium k∗ is ine�
ient.

Proof. To prove the proposition we �rst note that there exists a 
uto� strategy k̃ su
h that

W (k̃) = W (k∗), namely k̃t = 1t≤τ(p0). We now show that, for any given 
uto� strategy,

there exists another strategy that yields a stri
tly larger aggregate payo�.

As a preliminary, observe that, for every strategy pro�le k su
h that

∫ +∞

0 ktdt < +∞,

the aggregate payo� 
an be rewritten as

W (k) = −p(1− p0)λ

∫ +∞

0
ktdt+ p0(1− e−λ

∫+∞

0
ktdt)− pp0λ

∫ +∞

0
kte

−λ
∫ (t−∆)1t≥∆
0 ksdsdt.

Let us now prove that the optimal strategy is not in 
uto�. Consider a 
uto� strategy

k de�ned by kt = 1t≤τ and let us prove that there exists k̃ su
h that W (k̃) > W (k).

If τ < ∆, let k̃(ǫ) be de�ned by k̃(ǫ)t = 1t≤τ−ǫ + 1t∈[∆,∆+ǫ] with 0 < ǫ < τ − ǫ. As

∫ +∞

0 k̃tdt = τ , one has

W (k̃(ǫ)) = −p(1− p0)λτ + p0(1− e−λτ )− pp0λ

(

τ − ǫ+

∫ ∆+ǫ

∆
e−λ(t−∆)dt

)

Di�erentiating W (k̃(ǫ)) with respe
t to ǫ, we obtain ∂W (k̃(ǫ))/∂ǫ = p0pλ(1 − e−λǫ) > 0.

Moreover, W (k̃(0)) = W (k). Therefore, there exists k̃(ǫ) su
h that W (k̃(ǫ)) > W (k).

If τ > ∆, let k̃(ǫ) be de�ned by k̃(ǫ)t = 1t≤τ−ǫ + 1t∈[τ,τ+ǫ] with ∆ < τ − ǫ. As

∫ +∞

0 k̃tdt = τ , one has

W (k̃(ǫ)) = −p(1−p0)λτ+p0(1−e−λτ )−pp0λ

(∫ τ−ǫ

0
e−λ

∫ (t−∆)1t≥∆
0 ksds +

∫ τ+ǫ

τ
e−λ

∫ (t−∆)1t≥∆
0 ksds dt

)

.

Di�erentiating W (k̃(ǫ)) with respe
t to ǫ, we obtain

∂W (k̃(ǫ))/∂ǫ = p0pλ
(

e−λ
∫ τ−ǫ−∆
0 ks ds − e−λ

∫ τ+ǫ−∆
0 ks ds

)

.

12



This is stri
tly greater than 0 if and only if

∫ τ+ǫ−∆
τ−ǫ−∆ ks ds > 0, whi
h is satis�ed for any

∆ > 0. Moreover, W (k̃(0)) = W (k). Therefore, there exists k̃(ǫ) su
h that W (k̃(ǫ)) >

W (k).

5 An alternative reward s
heme.

In this se
tion, we 
ompare the equilibrium we 
hara
terized in the previous se
tion

with the equilibrium obtained under another reward s
heme 
alled hidden-equal-sharing

(HES). Under HES, players do not observe past out
omes and do not 
ommuni
ate with

ea
h other; instead, there is a mediator who observes all the breakthroughs and keeps them

se
ret until some 
ommonly known deadline T > ∆. At time T , the mediator splits the

payo� 1 among all the players who obtained a breakthrough, if any. The di�eren
e with

the winner-takes-all reward s
heme is that a player does not know what payo� she will

re
eive from obtaining a su

ess. Let rt stand for the random reward of player t in 
ase of

su

ess. As su

esses are hidden, the publi
 belief is p0 at every time, thus the expe
ted

payo� to player t given a strategy pro�le k is

u(kt,k) = p0λktE[rt | k]− αkt

The best response of player t is as follows:

kt







= 1 if p0E[rt | k] > p,

∈ [0, 1] if p0E[rt | k] = p,

= 0 if p0E[rt | k] < p

Let us 
ompute E[rt | k]. Sin
e players t ≥ T − ∆ will observe the output of their

investment after the deadline T , they will not re
eive any payo�, hen
e rt = 0 for t ≥ T−∆.

Now 
onsider t < T −∆. If n ≥ 0 other players among [0, T −∆] obtain a su

ess, player

t will re
eive a payo� of 1/(n + 1). Her expe
ted reward is thus

E[rt | k] =

∞∑

n=0

1

n+ 1
P (n other players obtain a su

ess)

Yet the number of su

ess o

urren
es during the interval [0, T −∆] follows a Poisson law

of intensity λ
∫ T−∆
0 ksd. Therefore,

E[rt | k] =
∞∑

n=0

1

n+ 1

(

λ
∫ T−∆
0 ksds

)n

n!
e−λ

∫ T−∆
0 ksds

=
1− e−λ

∫ T−∆
0

ksds

λ
∫ T−∆
0 ksds

:= Γ(k)
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Proposition 4. Let TH
be de�ned by

1− e−λ(TH−∆)

λ(TH −∆)
=

p

p0
.

(i) If T ≤ TH
, there is an (essentially) unique equilibrium k

∗
su
h that k∗t = 1 for

t ≤ T −∆ and k∗t = 0 if t > T −∆. It is unique if T < TH
.

(ii) If T > TH
then in every equilibrium k

∗
, it holds that

∫ T−∆
t=0 k∗sds = TH − ∆ and

k∗t = 0 if t > T −∆.

Proof. As a preliminary, observe that the fun
tion x 7→ 1−e−λx

λx is stri
tly de
reasing.

• Proof of (i). Suppose that T ≤ TH
and 
onsider the strategy pro�le k̃ de�ned by

k̃t = 1t≤T−∆. Let us prove that no player has a pro�table deviation from k̃. We

already know that players t > T −∆ have no pro�table deviation from kt = 0. Fix

some player t ≤ T − ∆. Straightforwardly, Γ(k̃) = 1−e−λ(T−∆)

λ(T−∆) . As Γ(k̃)) de
reases

with T , the fa
t that T ≤ TH
implies that Γ(k̃) ≥ 1−e−λ(TH−∆)

λ(TH−∆)
= p/p0. Playing

kt = 1 is thus a best response to k̃. This proves that k̃ is an equilibrium. Let us

now prove that it is the unique equilibrium. This is immediate if T < TH
. Now we

shall prove ad absurdum that it remains essentially unique (i.e., but for deviations

on a null set) if T = TH
. Suppose that k is an equilibrium su
h that kt < 1 for some

subset of [0, T −∆] that has positive measure. It follows that

∫ T−∆
0 ksds < T −∆,

hen
e that Γ(k) > Γ(k̃). As Γ(k̃) ≥ p/p0, this implies that Γ(k) > p/p0, and that

player t's best response is to play kt = 1, whi
h is a 
ontradi
tion.

• Proof of (ii). Suppose now that T > TH
and 
onsider an equilibrium strategy k̃.

If

∫ T−∆
t=0 k̃sds < TH − ∆, then Γ(k̃) > 1−e−λ(TH−∆)

λ(TH−∆) =
p

p0
, whi
h implies that there

is at least a player t < T − ∆ su
h that k̃t < 0 who has a pro�table deviation to

kt = 1. Therefore,

∫ T−∆
t=0 k̃sds ≥ TH − ∆. If

∫ T−∆
t=0 k̃sds > TH − ∆, then Γ(k̃) <

1−e−λ(TH−∆)

λ(TH−∆) =
p

p0
, hen
e there is at least a player t < T −∆ su
h that k̃t > 0 who

has a pro�table deviation to kt = 0. This proves that
∫ T−∆
t=0 k̃sds = TH −∆.

What is the bestHESme
hanism? If the mediator seeks to maximize the probability of

breakthrough, then she should design T so as to maximize the total amount of investment.

It follows from Proposition 4 that, in every equilibrium under HES,

∫ ∞

0
k∗t dt =

{

T −∆ if T ≤ TH ,

TH −∆ if T > TH ,
= min{T, TH} −∆.

Clearly, the total amount of investment is maximum when the mediator sets the deadline

T after TH
. However, even if all deadlines T ≥ TH

entail the same probability of break-

through, deadlines T > TH
allow for equilibria where investment is dispersed over time,

whi
h in
reases the expe
ted time of 
ompletion.
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Proposition 5. The probability of breakthrough is maximal when T ≥ TH
. The expe
ted

time of 
ompletion is minimal when T = TH
.

We now 
ompare the welfare properties of the optimal HES with the winner-takes-all

reward s
heme. The total investment in equilibrium is TH −∆ with HES and

1
λ ln

(
Ω(p)

Ω(p0)

)

with the winner-takes-all me
hanism by Lemma 1. As x 7→ 1−e−λx

λx is stri
tly de
reasing,

TH−∆ >
1

λ
ln

(
Ω(p)

Ω(p0)

)

⇔
1− e−λ(TH−∆)

λ(TH −∆)
<

1− Ω(p0)/Ω(p)

ln(Ω(p))− ln(Ω(p0))
⇔

p

p0
<

1−Ω(p0)/Ω(p)

ln(Ω(p))− ln(Ω(p0))

This allows to prove the following result.

Proposition 6. It holds that (i) ⇔ (ii).

(i) p ≤ 1/2 and p0 ≤ p̃0, where p̃0 is the unique solution of Ω(p)−Ω(p0) = ln
(

Ω(p)

Ω(p0)

)
1−p

p0
.

(ii) The probability of breakthrough is larger under the HES me
hanism than the winner-

takes-all me
hanism.

Moreover, (i) implies that the expe
ted time of 
ompletion is smaller under HES.
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Appendix

5.1 Proof of Proposition 1

Proof. Di�erentiating µt = pte
−λ

∫ t

(t−∆)1t≥∆
ksds

with respe
t to t, we obtain

µ̇t = e
−λ

∫ t

(t−∆)1t≥∆
ksds

(ṗt − ptλ(kt − kt−∆1t≥∆)) ,

whi
h redu
es to

µ̇t = −λµt(kt − ptkt−∆1t≥∆) (9)

after using (1).

• Case when p0 ≤ p

The obje
tive is to prove by indu
tion on n that the proposition P(n): �k∗t = 0 ∀ t ∈

[n∆, (n+ 1)∆]� is true for every n ∈ N. By de�nition of µt, for every t ∈ [0,∆] and every

k−t, µt ≤ pt = p0 ≤ p. Therefore, it is dominant for every player in [0,∆] to play kt = 0,

whi
h implies that P(0) is true. Suppose now that P(n) holds for some n ∈ N, i.e., that

every player t ∈ [n∆, (n+ 1)∆] plays k∗t = 0. Plugging this into (9), it 
omes that µ̇t ≤ 0

for every t ∈ [(n+1)∆, (n+2)∆]. Moreover, k(n+1)∆ = 0 implies that µ(n+1)∆ < p by (4).

Therefore, µt < p for every t ∈ [(n + 1)∆, (n + 2)∆], whi
h implies that P(n + 1) is true.

• Case when p0 > p

As µ0 = p0, µ0 > p. Therefore, there exists τ > 0 su
h that µs > p for every s ≤ τ ,

hen
e su
h that ks = 1 for every s ≤ τ by (4). Plugging this into the expression of µt and

into (1), it 
omes that

µτ = pτe
−λ(τ−(τ−∆)1τ≥∆)

and ṗτ = −λpτ (1− pτ )1τ≥∆.
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Straightforwardly, the fun
tion h(τ) := pτe
−λ(τ−(τ−∆)1τ≥∆)

is 
ontinuous and stri
tly de-


reasing in τ . Moreover, h takes the value p0 > p in τ = 0 and the value pe−λ∆ < p in

τ = ∆+ 1
λ ln

(
Ω(p)

Ω(p0)

)

. This implies that there exists a unique τ̄ su
h that h(τ̄ ) = p, whose

expression depends on whether it is larger than ∆ or not.

If h(∆) > p, then τ̄ > ∆, hen
e

h(τ̄ ) = p ⇔ pτ̄e
−λ∆ = p

⇔ pτ̄ = peλ∆ := p̃

Integrating the law of motion of pt ṗτ = −λpτ (1 − pτ ) between ∆ and τ̄ , we obtain

eλ(τ̄−∆) = Ω(p̃)
Ω(p0)

, whi
h is rewritten

τ̄ = ∆+
1

λ
ln

(
Ω(p̃)

Ω(p0)

)

.

If h(∆) < p, then τ̄ < ∆, hen
e

h(τ̄ ) = p ⇔ p0e
−λτ̄ = p

⇔ eλ(∆−τ̄ ) = p̃
p0

whi
h is rewritten

τ̄ = ∆−
1

λ
ln

(
p̃

p0

)

.

Therefore, there exists τ(p0) su
h that k∗t = 1 for every t < τ(p0) and µτ(p0) = p. We

now use the next lemma.

Lemma 2. In equilibrium, if µt = p, then µs = p for every s ≥ t.

Proof. Fix some player t and suppose that µt = p. As µt is 
ontinuous, if there is t′ > t

su
h that µt′ > p, then there is an open interval S ⊂ [t, t′] su
h that µ′
s > 0 and µs > p for

every s ∈ S. This implies that that ks = 1 for every s ∈ S by (4), thus 
ontradi
ts µ′
s > 0

by (9). Also, if there is t′ > t su
h that µt′ < p, then there is an open interval S ⊂ [t, t′]

su
h that µ′
s < 0 and µs <

α
λ for every s ∈ S. This implies that that ks = 0 for every s ∈ S

by (4), thus 
ontradi
ts µ′
s < 0 by (9).

As a 
onsequen
e, in equilibrium µt = p for every t ≥ τ(p0), hen
e µ̇t = 0 for every

t ≥ τ(p0). By (9), this implies that in equilibrium, satis�es k∗t = 1 if t < τ(p0), and

k∗t = ptk
∗
t−∆1∆ if t ≥ τ(p0).

UniquenessNote that the best response of player t is a fun
tion of {kt}
t
s=1t>∆t−∆. Be
ause

k0 does not depend on the other players' strategy, the equilibrium is unique.
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5.1.1 Analyti
 expressions of k∗

Analyti
 expression of k∗ and p when p0 ≥ p̃.

Let pnt and knt respe
tively denote the publi
 belief and player t's a
tion in time t ∈

[τ + (n− 1)∆, τ + n∆].

Also, p̃n := pnτ+(n−1)∆ = pn−1
τ+(n−1)∆. By de�nition of τ , p̃1 = peλ∆.

t
0 ∆ τ

p̃1

(p1t , k
1
t )

τ +∆

(p2t , k
2
t )

p̃2

τ + 2∆

(p3t , k
3
t )

p̃3

τ + 3∆

. . .

τ + (n− 2)∆

p̃n−1

(pn−1
t , kn−1

t )

τ + (n− 1)∆

(pnt , k
n
t )

p̃n

τ + n∆

Step 1 The �rst step is to establish by indu
tion on n that, for every n ≥ 2,

Ω(pnt )

Ω(p̃n)
=

1

1− (1− e−λ(t−(n−1)∆−τ))
∏n−1

k=1 p̃
k

(10)

1) Relation between pnt and pn−1
t−∆

Let n ≥ 2. By de�nition, ṗnt = −λpnt (1− pnt )k
n−1
t−∆ and ṗn−1

t = −λpn−1
t (1− pn−1

t )kn−2
t−∆.

Moreover, in equilibrium, kn−1
t−∆ = pn−1

t−∆k
n−2
t−2∆. Therefore, kn−1

t−∆ = −
ṗn−1
t−∆

λ(1−pn−1
t−∆)

. It follows

that, for every n ≥ 2 and every t,

ṗnt
pnt (1− pnt )

=
ṗn−1
t−∆

1− pn−1
t−∆

(11)

Integrating (11) between τ + (n− 1)∆ and t ∈ [τ + (n− 1)∆, τ + n∆], we obtain:

ln

(

Ω(pnt )

Ω(pnτ+(n−1)∆)

)

= ln

(

1− pn−1
t−∆

1− pn−1
τ+(n−2)∆

)

,

whi
h, by de�nition of p̃n, be
omes

Ω(pnt )

Ω(p̃n)
=

1− pn−1
t−∆

1− p̃n−1
(12)

2) Let us prove that (10) is true for n = 2. As kt = 1 for every t ≤ τ , Ω(p1t ) = Ω(p̃1)eλ(t−τ)
,

i.e.,

1− pt1 =
Ω(p̃1)

Ω(p̃1) + e−λ(t−τ)
= (1− p̃1)

1

1− p̃1 + p̃1e−λ(t−τ)

By (12),

Ω(p2t )
Ω(p̃2)

=
1−p1t−∆

1−p̃1
, hen
e

Ω(p2t )

Ω(p̃2)
=

1

1− (1− e−λ(t−∆−τ))p̃1
.

18



3) Suppose that (10) is true for some given n, i.e.,

1− pnt =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−(n−1)∆−τ))
∏n−1

k=1 p̃
k
,

and let us prove it is true for n+ 1. By (12),

Ω(pn+1
t )

Ω(p̃n+1)
=

1− pnt−∆

1− p̃n
. As

1− pnt−∆ =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−n∆−τ))
∏n−1

k=1 p̃
k
,

1− pnt−∆

1− p̃n
=

1

1− (1− e−λ(t−n∆−τ))
∏n

k=1 p̃
k)
,

hen
e (10) is true for n+ 1.

Step 2 The se
ond step is to establish by indu
tion on n that, for every n ≥ 1,

Ω(p̃n) =
(1− p̃1)(1− p)

pn−1(p̃1 − p) + p(1− p̃1)
. (13)

This is straightforward for n = 1; Moreover, Ω(p̃2) = Ω(p1τ+∆) and, as kt = 1 for t ≤ τ ,

Ω(p1τ+∆) = Ω(p̃1)eλ(τ+∆−τ)
. Therefore, Ω(p̃2) = Ω(p̃1)eλ∆. As we obtain Ω(p̃2) =

1−p

p̃1 by

plugging n = 2 into (13), and s p̃1 = peλ∆, (13) is true for n = 2.

Fix n ≥ 3 and suppose that (13) is true for every k ≤ n, i.e., suppose that

p̃k =
pk−1(p̃1 − p) + p(1− p̃1)

pk−1(p̃1 − p) + 1− p̃1
∀ k ≤ n.

The aim is to establish that (13) is true for n+1. As p̃n+1 = pn+1
τ+n∆ = pnτ+n∆ by de�nition,

taking (10) for t = τ + n∆, we obtain:

Ω(p̃n+1) =
Ω(p̃n)

1− (1− e−λ∆)

n−1∏

k=1

p̃k

As p = e−λ∆p̃1, the latter expression is rewritten:

Ω(p̃n+1) =
p̃1Ω(p̃n)

p̃1 − (p̃1 − p)
n−1∏

k=1

p̃k

(14)

Let us 
ompute

∏n−1
k=1 p̃

k
under the indu
tion hypothesis. Noti
ing that, for every k ≤ n,

p̃k = p ×
A(k − 1)

A(k)
, with A(k) = pk−1(p̃1 − p) + 1 − p̃1, we 
an simplify the produ
t as

follows:

n−1∏

k=1

p̃k =

n−1∏

k=1

p×
A(k − 1)

A(k)
= pn−1 A(0)

A(n − 1)
= pn−1 p−1(p̃1 − p) + 1− p̃1

pn−2(p̃1 − p) + 1− p̃1
Therefore,

n−1∏

k=1

p̃k = pn−2 p̃1(1− p)

pn−2(p̃1 − p) + 1− p̃1
(15)
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Plugging this into (14) and simplifying by p̃1, we obtain:

Ω(p̃n+1) = Ω(p̃n)
pn−2(p̃1 − p) + 1− p̃1

pn−2(p̃1 − p) + 1− p̃1 − (p̃1 − p)pn−2(1− p)

As Ω(p̃n) =
(1− p̃1)(1− p)

p

1

pn−2(p̃1 − p) + 1− p̃1
under the indu
tion hypothesis, we ob-

tain:

Ω(p̃n+1) =
(1− p̃1)(1− p)

p

1

pn−1(p̃1 − p) + 1− p̃1
,

hen
e (13) is true for n+ 1.

Step 3 Plugging (15) and (13) into (10), we obtain

Ω(pnt ) =
Ω(p)Ω(p̃1)

Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−τ)
(16)

Step 4: Equilibrium a
tion

It is straightforward to show by indu
tion that, in equilibrium, knt =
∏n−1

i=0 pn−i
t−i∆. Yet,

by (16),

pnt = p
Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−τ)

Ω(p̃1)Ω(p) + Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−τ)

Be
ause t− i∆ − (n− i− 1)∆ − τ = t− (n− 1)∆ − τ , for every i ≤ n− 2,

pn−i
t−i∆ = p

A(i+ 1)

A(i)
,

with A(i) = Ω(p̃1)(1 − pn−i) + pn−1−i(1− p)e−λ(t−(n−1)∆−τ)
. Therefore,

knt =
n−1∏

i=0

(

p
A(i+ 1)

A(i)

)

= pn
A(n)

A(0)
,

whi
h simpli�es to

knt =
pnΩ(p)

pn−1(1− p) + Ω(p1)(1 − pn)eλ(t−(n−1)∆−τ)

As Ω(p̃1) = Ω(p0)e
λ(t−∆)

,

knt =
pnΩ(p)

pnΩ(p) + (1− pn)Ω(p0)eλ(t−n∆)
(17)

Analyti
 expression of k∗ and p when p0 ∈ (p, p̃).

Let pnt and knt respe
tively denote the publi
 belief and player t's a
tion in time t ∈

[n∆, τ + n∆].
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Also, p̃n := pnn∆. p̃1 = p0. Finally, by de�nition of τ(p0), eλ(∆−τ(p0)) = p̃
p0
, thus

e−λτ(p0) =
p

p0
.

t
0

(p0, 1)

τ

(p0, 0)

∆

p̃1

(p1t , k
1
t )

τ +∆

p̃2

(p̃2, 0)

2∆

p̃2

(p2t , k
2
t )

τ + 3∆

. . .

n∆

p̃n

(pnt , k
n
t )

τ + n∆

p̃n+1

(p̃n+1, 0)

(n+ 1)∆

p̃n+1

(pn+1
t , kn+1

t )

τ + (n+ 1)∆

Step 1 The �rst step is to establish by indu
tion on n that, for every n ≥ 2,

Ω(pnt )

Ω(p̃n)
=

1

1− (1− e−λ(t−n∆))
∏n−1

k=1 p̃
k

(18)

and

Ω(p1t )
Ω(p̃1)

= eλ(t−∆)
.

1) Relation between pnt and pn−1
t−∆

Let n ≥ 2. By de�nition, ṗnt = −λpnt (1− pnt )k
n−1
t−∆ and ṗn−1

t = −λpn−1
t (1− pn−1

t )kn−2
t−∆.

Moreover, in equilibrium, kn−1
t−∆ = pn−1

t−∆k
n−2
t−2∆. Therefore, kn−1

t−∆ = −
ṗn−1
t−∆

λ(1−pn−1
t−∆)

. It follows

that, for every n ≥ 2 and every t,

ṗnt
pnt (1− pnt )

=
ṗn−1
t−∆

1− pn−1
t−∆

(19)

Integrating (19) between n∆ and t ∈ [n∆, τ + n∆], we obtain:

ln

(
Ω(pnt )

Ω(pnn∆)

)

= ln

(

1− pn−1
t−∆

1− pn−1
n∆

)

,

whi
h, by de�nition of p̃n, be
omes

Ω(pnt )

Ω(p̃n)
=

1− pn−1
t−∆

1− p̃n−1
(20)

2) Let us prove that (18) is true for n = 2. As kt = 1 for every t ≤ τ , Ω(p1t ) = Ω(p0)e
λ(t−∆)

,

i.e.,

1− pt1 =
Ω(p0)e

λ(t−∆)

1 + Ω(p0)eλ(t−∆)
=

1− p0
1− p0 + p0e−λ(t−∆)

By (20),

Ω(p2t )
Ω(p̃2)

=
1−p1

t−∆

1−p0
, hen
e

Ω(p2t )

Ω(p̃2)
=

1

1− (1− e−λ(t−2∆))p0
.

3) Suppose that (18) is true for some given n, i.e.,

1− pnt =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−n∆))
∏n−1

k=1 p̃
k
,

21



and let us prove it is true for n+ 1. After rearrangement,

1− pnt =
1− p̃n

1− (1− e−λ(t−n∆))
∏n

k=1 p̃
k
,

By (20),

Ω(pn+1
t )

Ω(p̃n+1)
=

1− pnt−∆

1− p̃n
. As

1− pnt−∆ =
1− p̃n

1− (1− e−λ(t−(n+1)∆))
∏n

k=1 p̃
k
,

1− pnt−∆

1− p̃n
=

1

1− (1− e−λ(t−(n+1)∆))
∏n

k=1 p̃
k)
,

hen
e (18) is true for n+ 1.

Step 2 The se
ond step is to establish by indu
tion on n that, for every n ≥ 1,

p̃n = p
pn−2(p0 − p) + 1− p0

pn−1(p0 − p) + 1− p0
. (21)

This is straightforward for n = 1; Moreover, p̃2 = p1τ+∆) and, as kt = 1 for t ≤ τ ,

Ω(p1τ+∆) = Ω(p0)e
λ(τ)

. Therefore, p̃2 =
p

p+1−p0
, whi
h implies that (21) is true for n = 2.

Fix n ≥ 3 and suppose that (21) is true for every k ≤ n. Observing that, under the

indu
tion hypothesis, p̃k = pA(k−2)
A(k−1) with A(u) = pu(p0 − p) + 1− p0, we 
an write

n−1∏

k=1

p̃k =
n−1∏

k=1

p
A(k − 2)

A(k − 1)
= pn−1 A(−1)

A(n − 2)
= pn−2

p0(1− p)

pn−2(p0 − p) + 1− p0
(22)

As p̃n+1 = pn+1
(n+1)∆ = pnτ+n∆ by de�nition, taking (18) for t = τ +n∆, we obtain, for every

n ≥ 2:

Ω(p̃n+1) =
Ω(p̃n)

1− (1− e−λτ )

n−1∏

k=1

p̃k

As e−λτ =
p

p0
, the latter expression is rewritten:

Ω(p̃n+1) =
p0Ω(p̃

n)

p0 − (p0 − p)

n−1∏

k=1

p̃k

(23)

Plugging (22) into the (23) and simplifying by p0, we obtain:

Ω(p̃n+1) = Ω(p̃n)
pn−2(p0 − p) + 1− p0

pn−1(p0 − p) + 1− p0

Using the indu
tion hypothesis, the latter expression be
omes:

Ω(p̃n+1) =
(1− p0)(1− p)

p

1

pn−1(p0 − p) + 1− p0
,
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hen
e (21) is true for n+ 1.

Step 3 Plugging (22) and (21) into (18), we obtain

Ω(pnt ) =
Ω(p)Ω(p0)

Ω(p0)(1 − pn−1) + pn−2(1− p)e−λ(t−n∆)
(24)

Step 4: Equilibrium a
tion

It is straightforward to show by indu
tion that, in equilibrium, knt =
∏n−1

i=0 pn−i
t−i∆. Yet,

by (24),

pnt = p
Ω(p0)(1− pn−1) + pn−2(1− p)e−λ(t−n∆)

Ω(p0)(1− pn) + pn−1(1− p)e−λ(t−n∆)

Be
ause t− i∆ − (n− i)∆ = t− n∆, for every i ≤ n− 2,

pn−i
t−i∆ = p

A(n − i− 1)

A(n− i)
,

with A(u) = Ω(p0)(1− pu) + pu−1(1− p)e−λ(t−n∆)
. Therefore,

knt =

n−1∏

i=0

(

p
A(n− i− 1)

A(n− i)

)

= pn
A(0)

A(n)
,

whi
h simpli�es to

knt =
Ω(p)

Ω(p) + Ω(p0)Ω(pn)eλ(t−n∆)

5.1.2 Proof of Proposition 2

Proof. W (k∗) does not depend on ∆ when p0 ≤ peλ∆. When p0 > peλ∆,

∂W (k∗)

∂∆
= λp0e

−λ∆ + λe−λ∆ ln

(
1− p0

1− peλ∆

)

− λ
p

1− peλ∆
− α

∂τ(p0)

∂∆
,

and ∂τ(p0)/∂∆ = −peλ∆/(1 − peλ∆), thus

∂W (k∗)

∂∆
= λ

(

−p+ p0e
−λ∆ + e−λ∆ ln

(
1− p0

1− peλ∆

))

.

Di�erentiating

∂W (k∗)
∂∆ with respe
t to p0, we obtain −λe−λ∆p0/(1 − p0). Moreover, it

equals 0 when p0 = peλ∆. Therefore, ∂W (k∗)
∂∆ is negative.
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5.2 Proof of Proposition 5

Proof. Let τ(k) the random time of arrival of the �rst su

ess given investment pro�le k.

For every t,

P (τ(k) ≤ t) = p0(1− e−λ
∫ t−∆
0 ksds)1t≥∆

If T = TH
, then the unique equilibrium is k∗ su
h that k∗t = 1t≤TH−∆. At this

equilibrium,

P (τ(k∗) ≤ t) = 0 if t ≤ ∆

= p0(1− e−λ(t−∆)) if t ∈ [∆, TH ]

= p0(1− e−λ(TH−∆)) if t ≥ TH

If T > TH
, all equilibria are su
h that k̃t = 0 if t ≥ T −∆ and

∫ T−∆
0 k̃sds = TH −∆.

Consider one of these equilibria su
h that k̃ 6= k∗ a.s. At this equilibrium,

P (τ(k̃) ≤ t) = 0 if t ≤ ∆

= p0(1− e−λ
∫ t−∆
0 k̃sds) if t ∈ [∆, T ]

= p0(1− e−λ(TH−∆)) if t ≥ T

For every t ≤ ∆ or t ≥ T , then P (τ(k̃) ≤ t) = P (τ(k∗) ≤ t)

For every t ∈ [TH , T ], P (τ(k̃) ≤ t) ≤ P (τ(k∗) ≤ t) be
ause
∫ t−∆
0 k̃sds ≤

∫ T−∆
0 k̃sds =

TH −∆.

For every t ∈ [∆, TH ], P (τ(k̃) ≤ t) ≤ P (τ(k∗) ≤ t) be
ause

∫ t−∆
0 k̃sds ≤ t − ∆.

Moreover, k̃ 6= k∗ a.s. implies that ∃ t ∈ [∆, TH ] su
h that

∫ t−∆
0 k̃sds < t−∆, hen
e there

is t ∈ [∆, TH ] su
h that P (τ(k̃) ≤ t) < P (τ(k∗) ≤ t).

Therefore, τ(k∗) �rst-order sto
hasti
ally dominates τ(k̃). As a 
onsequen
e, E[e−rτ(k̃)] ≤

E[e−rτ(k∗)].

5.3 Proof of Proposition ??

Proof. We seek 
onditions on p0 su
h that

(I) :=
p

p0
<

1− Ω(p0)/Ω(p)

ln(Ω(p))− ln(Ω(p0))

is true. Multiplying both sides by Ω(p) and using that

1
p0

= 1 + Ω(p0), (I) is rewritten

p(1 + Ω(p0)) <
Ω(p)− Ω(p0)

ln(Ω(p))− ln(Ω(p0))
,

whi
h is equivalent to f(Ω(p0)) > 0 with f(x) :=
Ω(p)−x

ln(Ω(p))−ln(x) − (1 + x)(1 − p). Let us

study the fun
tion f for x ∈ [0,Ω(p)].

Let us �rst establish that f(Ω(p)) = 0. The limit of

Ω(p)−x

ln(Ω(p))−ln(x) in Ω(p) is undeter-

mined as both the numerator and the denominator 
onverge to 0. Applying L'H�pital's

rule, we �nd that limx→Ω(p)
Ω(p)−x

ln(ω(p))−ln(x) = Ω(p). As a result, limx→Ω(p) f(x) = 0.
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Di�erentiating f with respe
t to x, we obtain

f ′(x)) =
1

(ln(Ω(p))− lnx)2
(−(ln(Ω(p))− lnx) +

Ω(p)

x
− 1− (1− p)(ln(Ω(p))− lnx)2

︸ ︷︷ ︸

:=g(x)

)

Di�erentiating g with respe
t to x, we obtain

g′(x) =
1

x2
(x− Ω(p) + 2(1− p)x(ln(Ω(p))− lnx)
︸ ︷︷ ︸

:=h(x)

)

Di�erentiating h with respe
t to x, we obtain

h′(x) = 2p − 1 + 2(1 − p)(ln Ω(p)− lnx)

• If p ≥ 1/2, then h′(x) > 0 for every x. As h(Ω(p)) = 0, this implies that h(x) < 0,

thus g′(x) < 0, for every x. As g(Ω(p)) = 0, this implies that g(x) > 0, thus f ′(x) > 0,

for every x. As f(Ω(p)) = 0, this implies f(x) < 0 for every x ∈ [0,Ω(p)). Therefore, (I)


annot be satis�ed when p ≥ 1/2.

• If p < 1/2, h′(x) > 0 ⇔ x < Ω(p)e(2p−1)/(2(1−p)) := x̃1(< Ω(p)). Hen
e, h is

in
reasing on [0, x̃1] and de
reasing on [x̃1,Ω(p)]. As h(0) = −Ω(p) and h(Ω(p)) = 0, there

exists x̃2 ∈ (0, x̃1) su
h that h(x) < 0 (thus g′(x) < 0) on [0, x̃2) and h(x) ≥ 0 (thus

g′(x) ≥ 0) on [x̃2,Ω(p)]. This implies that g(x) is de
reasing on [0, x̃2) and in
reasing on

[x̃2,Ω(p)]. As g(Ω(p)) = 0 and limx→0 g(x) = +∞, there exists x̃3 ∈ (0, x̃2) su
h that

g(x) > 0 (thus f ′(x) > 0) on [0, x̃3) and g(x) ≤ 0 (thus f ′(x) ≤ 0) on [x̃3,Ω(p)]. As a


onsequen
e, f(x) is in
reasing on [0, x̃3) and de
reasing on [x̃3,Ω(p)]. As f(0) = −(1− p)

and f(Ω(p)) = 0, there exists x̃4 ∈ (0, x̃3) su
h that f(x) < 0 on [0, x̃4] and f(x) ≥ 0

otherwise.

Therefore, (I) is satis�ed if and only if p < 1/2 and x ≥ x̃4, where x̃4 is the unique

solution to f(x) = 0, that is

Ω(p)− x̃4

ln(Ω(p))− ln(x̃4)
= (1 + x̃4)(1− p)
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