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Abstrat

We analyze a dynami investment model in whih short-lived agents sequentially

deide how muh to invest in a projet of unertain feasibility. The outome of the

projet (suess/failure) is observed after a �xed lag. We haraterize the unique equi-

librium and show that, in ontrast with the ase without lag, the unique equilibrium

dynamis is not in thresholds. If the initial belief is relatively high, investment de-

reases monotonially as agents beome more pessimisti about the feasibility of the

innovation. Otherwise, investment is not monotoni in the publi belief: players al-

ternate periods of no investment and periods of positive, dereasing investment. The

reason is that the outome lag reates ompetition between a player and her imme-

diate predeessors. A player whose predeessors did not invest may �nd investment

attrative even if she is more pessimisti about the tehnology than her predeessors.

We ompare the total investment obtained in this equilibrium with that obtained with

an alternative reward sheme where a mediator ollets all the information about the

players' experienes until some deadline, and splits the payo� between all the players

who obtained a suess before the deadline.

Keywords: Risky investment; Outome lag; Payo� rivalry.

JEL odes: C73, D83

1 Introdution

When it omes to researh or innovation, the return on investment is usually not imme-

diate. In physis, large-sale experiments suh as those arried out to disover exo-planets,

or to prove the existene of the Higgs bozon, require the development of spei� measuring

instruments, so that it takes several years to observe the results of these experiments. In

biology, the development of a new drug requires several validation steps that often take

several years. In the start-up eonomy, it an take several years before a new appliation is
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known and massively used. Timing would not be an issue in a world without ompetition.

However, as illustrated in the COVID-19 vaine rae, for investors it is often ruial to

omplete their projet before their ompetitors.

The aim of this paper is to investigate how investment deisions are a�eted by the time

it takes before observing the outome of one's investment when investors are rewarded only

if they are the �rst to obtain a suess. To do so, we analyze a stylized model of dynami

investment in whih short-lived agents sequentially hoose how muh to invest in a projet

of unertain feasibility. If the projet is not feasible, investment is lost and yields no payo�.

If it is feasible, investment an generate a positive payo� after a �xed time lag ∆, with a

probability that inreases with the invested amount. In the main model, the game ends

the �rst time a player reeives a payo�, even though some players may have invested after

this player. We all this reward sheme the winner-takes-all mehanism. Beause of the

outome lag, a player who must deide how muh to invest at time t knows that players who

invested before time t−∆ have invested at a loss, but does not know whether investments

made by players between t−∆ and t will be suessful or not. Moreover, beause players

learn from predeessors' experienes in a Bayesian fashion, they beome more pessimisti

about the feasibility of the projet as time passes. Therefore, this model features both a

negative payo� externality and a positive informational externality. What is the tradeo�

faed by the player investing at time t? Investment will yield the player a positive payo�

if 1) her investment is suessful, whih an happen only if the projet is feasible and 2)

she is not preempted by a player investing between t −∆ and t. As time passes, players

an only beome more pessimisti about the feasibility of the projet, whih dereases the

desirability of investment. However, the e�et of ompetition may not be monotoni in

time. Indeed, the innovation lag reates ompetition between the player investing at time t

and all the players investing between t−∆ and t. Therefore, even if player t is neessarily

more pessimisti than her predeessors, she may fae a smaller risk of preemption and thus

�nd investment more desirable than her predeessors.

When there is no outome lag, the equilibrium strategy is of the uto� type: players

make the maximal investment e�ort if their belief that the projet is feasible is above some

threshold and invest nothing otherwise. In ontrast, with a positive lag, the equilibrium

strategy does not have a uto� struture. When players are initially very pessimisti, none

of them ever invests in the projet. Otherwise, �rst players make the maximal investment

until some uto� time that depends on the prior belief. Afterwards, they invest only a

fration of their resoure in the projet, aording to a pattern that depends on the prior

belief. When they are initially very optimisti, investment dereases with time and belief

in a disontinuous way, jumping downward at regular intervals (as a onsequene, some

investment levels are never realized in equilibrium). Surprisingly, for intermediate prior

beliefs, investment is non-monotoni in time or belief: the investment dynamis feature

periods of no investment and periods of dereasing, but positive investment, even though

players are ontinuously more pessimisti about the projet as time passes. To understand

this result, imagine three generations of researhers: Gen X, Gen Y and Gen Z. Eah
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generation hooses in turn how muh to invest, and the outome of a given generation is

realized only two generations after. Suppose Gen X invests in the projet. Gen Y does

not know yet the outome of Gen X, thus they have the same belief about the feasibility of

the projet. However, beause Gen X has already invested, there is a positive probability

for Gen Y to be preempted by Gen X, whih makes investment riskier and less desirable

for them than for Gen X. Suppose Gen Y deides not to invest and that Gen X does

not omplete the projet. Beause of this failure, Gen Z is more pessimisti than both

their predeessors. But beause Gen Y did not invest, Gen Z does not fae any risk of

preemption, and may thus �nd investment optimal even while being more pessimisti than

Gen Y .

We ompare our equilibrium investment dynamis with that obtained with an alter-

native reward sheme alled �hidden-equal-sharing mehanism, whih works as follows:

outomes are observed only by a prinipal who keeps them seret until some deadline T .

At time T , outomes are revealed to all and the bene�t of the projet is shared among

all the players who obtained a suess before T − ∆. The prinipal hooses T in suh a

way that the total amount of investment is maximal. We �nd that the total investment

may but must not be larger with the hidden-equal-sharing mehanism. Let us illustrate

why in the three generations example. Suppose now that T = 4. On the one hand, in-

vestment may be more attrative for Gen Y in the hidden-equal-sharing, beause it may

yield a positive payo� even if Gen X is suessful. Also, Gen Z is not informed of Gen X's

outome and is therefore more optimisti about the feasibility of the projet. On the other

hand, onditional on the innovation being feasible, the expeted pro�t is smaller for Gen

Z, sine they may have to share the bene�ts with Gen X or Gen Y . We �nd a neessary

and su�ient ondition on the initial belief under whih the �hidden equal-sharing� entails

a larger total investment.

Related literature. The framework we use to model learning is borrowed from the

exponential-bandit literature, in whih long-lived players trade o� exploration vs. exploita-

tion (Keller, Rady and Cripps (2005), Keller and Rady (2010), Rady and Klein (2011), et).

Some authors have analyzed how imperfet observation of players' ations or outomes an

inrease the exploration e�orts in equilibrium (Bonatti and Hörner (2011), Heidhues, Rady

and Strak (2015), Marlats and Ménager (2021)). Bimpikis and Drokopoulos (2014) and

Che and Hörner (2015) study how a prinipal should dislose information to improve ag-

gregate learning. In all these papers, externalities are only informational. There is a strand

of literature mixing learning and ompetition issues. For instane, Choi (1991), Malueg

and Tsutsui (1997) or Mosarini and Squintani (2010) analyze R&D ompetition under a

winner-takes-all mehanism. Das and Klein (2021.a, 2021.b) analyze a patent rae in a

two-arm exponential bandit framework. Bimpikis, Ehsani and Mostagir (2014) and Hala,

Kartik and Liu (2017) also address the issue of ontest design in a dynami environment.

The paper by Hala, Kartik and Liu (2017) is the most losely related to our paper. They

haraterize the optimal ontest in a lass of mehanisms in whih the prinipal hooses
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both a prize-sharing poliy and a dislosure poliy. They show that the optimal ontest

of this lass is either a winner-takes-all with immediate dislosure of the outomes or a

hidden-equal-sharing mehanism. Only few papers in game and deision theory address

the e�ets of delayed feedbaks. Gordon, Marlats and Ménager (2021) analyze a team

problem where partners work together to ahieve a projet whih is ommonly known to

be feasible. Players learn immediately whether they sueed but observe their partners'

outome only after a �xed lag. The observation lag has an e�et that is similar to that

in our paper, as, in equilibrium, players alternate between periods in whih they exert the

maximal e�ort and periods in whih they make no e�ort at all.

The remainder of this paper is organized as follows. Setion 2 sets up the model. Setion

3 haraterizes the unique equilibrium in the winner-takes-all framework. In Setion 4, we

ompare our results to that obtained with the hidden-equal-sharing mehanism.

2 The set-up

Time is ontinuous and there is a ontinuum of players indexed by t ∈ [0,+∞). Eah

player t hooses at time t what fration kt ∈ [0, 1] to invest in a risky tehnology at unit

ost α > 0. The tehnology an be good or bad. If it is bad, the tehnology never yields

any payo�. If it is good, it yields a payo� of 1 at time t+ ∆ at the �rst jump of a time-

inhomogeneous Poisson proess with rate λkt, with λ > α. The �rst time a player reeives

a positive payo� is alled a breakthrough, and the game stops after a breakthrough.

As player t plays only at time t, a pure strategy for player t is kt ∈ [0, 1] and a strategy

pro�le is a funtion k : R+ → [0, 1]. To guarantee that players an always update their

beliefs on the observation of past investments, we restrit the analysis to admissible strategy

pro�les, de�ned as pro�les k suh that

∫ t
t ktdt is well-de�ned for every t ≤ t.

Players observe the whole history of ations and outomes but do not know the type

of the tehnology, absent a breakthrough. The publi belief at time t that the tehnology

is good is denoted pt, with p0 ∈ (0, 1) the initial ommon belief. The publi belief is

ontinuously updated on the basis of the observation of past investments. As a player's

investment operates on the Poisson proess with a time lag ∆, players have no feedbak at

all before ∆, hene pt = p0 for all t ≤ ∆. For t ≥ ∆, the publi belief follows the law of

motion

ṗt = −pt(1− pt)λkt−∆. (1)

Therefore, for every admissible strategy pro�le k, the publi belief at time t is de�ned as

follows:

1

pt =
p0

p0 + (1− p0)eλ
∫ (t−∆)1t≥∆
0 ksds

. (2)

1

This is obtained by integrating (1) between ∆ and t > ∆ and using the initial ondition p∆ = p0.
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Player t will have the opportunity to invest only if no breakthrough ourred before time

t, that is if no player in [0, (t −∆)1t≥∆] made a suessful investment.

2

Therefore, player

t ompetes only with players in [(t − ∆)1t≥∆, t). With k−t standing for the investment

pro�le of players in [(t−∆)1t≥∆, t), the expeted payo� to player t is

u(kt; k−t) = −αkt
︸ ︷︷ ︸

instantaneous ost

+ pte
−λ

∫ t

(t−∆)1t≥∆
ksds

λkt
︸ ︷︷ ︸

expeted bene�t

(3)

Let us explain why with a heuristi argument. Suppose that player t invests kt during the

interval [t, t+ dt) with dt > 0, in the sense that she is the only player to invest during the

interval and hooses kt′ = kt for every t′ ∈ [t, t + dt). This osts her αktdt and yields a

suess with probability ptλktdt. This suess will give her a payo� of 1 in t + ∆ if and

only if she has not been preempted by a player in [(t − ∆)1t≥∆, t), whih happens with

probability e
−λ

∫ t

(t−∆)1t≥∆
ksds

.

3 Equilibrium analysis

De�ning µt := pte
−λ

∫ t

(t−∆)1t≥∆
ksds

and p := α
λ , the payo� of player t an be expressed

as u(kt, k−t) = λkt
(
µt − p

)
. The best response of player t to k−t is thus to invest if and

only if her on�dene in the tehnology, pt, and the probability of not being preempted by

a ompetitor, e
−λ

∫ t

(t−∆)1t≥∆
ksds

, are large enough:

kt







= 1 if µt > p,

∈ [0, 1] if µt = p,

= 0 if µt < p.

(4)

To interpret this, imagine that player t faes no ompetition, i.e., ks = 0 for every

s ∈ [(t −∆))1t≥∆, t). In this situation, the attrativeness of investment µt is exatly pt,

thus player t invests whenever pt ≥ p. Therefore, p is interpreted as the single-player

uto�. When ks > 0 for some of player t's predeessors, she invests if and only if her

belief is larger than pe
λ
∫ t

(t−∆)1t≥∆
ksds

whih is stritly larger than p: ompetition makes

investment less attrative, thus the uto� above whih player t invests is larger than the

single-player uto� p.

The behavior of µt is key to the onstrution of the equilibrium. Di�erentiating µt with

respet to t, using (1) and simplifying, we obtain:

µ̇t = −µtλ(kt − ptkt−∆1t≥∆). (5)

It follows diretly from (5) that µt weakly dereases when t ≤ ∆ or kt−∆ = 0. This implies

that investment is ontinuously less and less attrative on the interval [0,∆] and during

periods with no ompetition.

2

This ours with probability 1 for players t ≤ ∆. For players t > ∆, this ours with probability 1 if

the tehnology is bad, and with probability e−
∫
t

∆
λks−∆ds

if the tehnology is good, thus with probability

1− p0 + p0e
−

∫
t−∆
0

λksds
, whih redues to e−λ

∫
t

∆
psks−∆ds

by integrating (1).
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Player 0 has no ompetitor and is the most optimisti of all players, thus she is the one

with the most inentives to invest.

3

If p0 ≤ p, even player 0 �nds investment unattrative,

thus it is dominant for all players to play kt = 0. Therefore, if p0 ≤ p, there in the unique

equilibrium k∗t = 0 and µt = p0 for all t.

t
∆

p

peλ∆

µtp0

Figure 1: Dynamis of µt when p0 < p.

Let us now haraterize the equilibrium pro�le when p0 > p. Sine µ0 = p0 > p, player

0 invests all of her resoure into the tehnology. As µt is weakly dereasing on [0,∆], the

immediate suessors of player 0 also invest, up to some player τ > 0 for whih µτ = p.

Every player after player τ is indi�erent about whether to invest, beause µt = p for every

t ≥ τ .4 Plugging kt = 1t≤τ into (2), the attrativeness of investment beomes

µt =







p0e
−λt

p0e
−λ(t−∆)1t≥∆ + 1− p0

if t ≤ τ

p if t ≥ τ

By de�nition of τ , τ ≤ ∆ if and only if µ∆ ≥ p, that is if and only if p0 ≥ peλ∆. The value

of the uto� τ thus depends on p0 and is obtained by solving µτ = p, whih yields:

τ(p0) :=







∆− 1
λ ln

(
peλ∆

p0

)

if p0 ∈ [p, peλ∆],

∆+ 1
λ ln

(
Ω(peλ∆)

Ω(p0)

)

if p0 ≥ peλ∆.
(6)

It is straightforward to establish that τ(p0) dereases with ∆ for every p0.

Figure 3 represents the dynamis of µt when µt reahes p before ∆ (i.e., when p0 ∈

[p, peλ∆)) and after ∆ (i.e., when p0 ≥ peλ∆).

3

For every t, it holds that µt ≤ pt by de�nition. Moreover, pt ≤ p0 beause pt is weakly dereasing.

4

Let τ ′ = inf{t ≥ τ : µ̇t 6= 0}. Suppose that τ ′ > τ . On [τ, τ ′], µt = p, thus µτ ′ = p. If µ̇τ ′ < 0

then µτ ′

+
< p whih implies kτ ′

+
= 0. Plugging this into (5), it follows that µ̇τ ′ = µτ ′λpτ ′kτ ′−∆, whih

ontradits µ̇τ ′ < 0. If µ̇τ ′ > 0 then µτ ′

+
> p whih implies kτ ′

+
= 1. Plugging this into (5), it follows that

µ̇τ ′ = −µτ ′λ(1− pτ ′(kτ ′−∆)) ≤ 0, whih ontradits µ̇τ ′ > 0.
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t
∆

p

peλ∆

µt

p0

τ(p0)
t

∆

p

peλ∆

τ(p0)

p0

µt

Figure 2: Dynamis of µt when p0 > p.

Players t ≤ τ(p0) play kt = 1. Sine µt = p for every t ≥ τ(p0), players t > τ(p0) are

indi�erent about whether to invest. Plugging the indi�erene ondition µ̇t = 0 into (5),

we �nd that player t's best response at t ≥ τ(p0) depends on her predeessor' investment

as follows:

kt = ptkt−∆1t≥∆. (7)

Therefore, the best response of a player t > τ(p0) whose predeessor at t−∆ either does

not exist (when t < ∆) or did not invest (when kt−∆) = 0) is not to invest: kt = 0. In

ontrast, a player t whose predeessor invested a positive fration in the tehnology invests

a stritly smaller, but stritly positive fration of her own resoure.

The equilibrium dynamis of investment thus qualitatively depends on p0. When player

0 is very optimisti (p0 > peλ∆), the uto� τ(p0) is larger than ∆. Therefore, there is no

period before∆ during whih players do not invest, whih implies that players always invest

a positive and dereasing amount in the tehnology. When player 0 has more pessimisti

beliefs (p0 ∈ [p, peλ∆]), the uto� τ(p0) is smaller than ∆, whih implies that players in

[τ(p0),∆] do not invest at all. This period without investment repliates identially ∆

�periods� later, while investment periods repliate with a fration of resoure dereasing in

time. This leads to a non-monotoni equilibrium strategy, in the sense that a less optimisti

player may invest more in the tehnology than a more optimisti predeessor.

The following proposition desribes the equilibrium dynamis of investment. For every

(n, t) ∈ N× R+, let φ(n, t) :=
Ω(p)

Ω(p) + Ω(pn)Ω(p0)eλ(t−n∆)
, with Ω(p) := 1−p

p .

Proposition 1. There is a unique Nash equilibrium (k∗t )t desribed as follows:

• if p0 ≤ p, k∗t = 0 for every t;

• if p0 ∈ (p, peλ∆], k∗t = 1 if t ∈ [0, τ(p0)), and, ∀ n ∈ N,

k∗t =

{

0 if t ∈ [τ(p0) + n∆, (n+ 1)∆),

φ(n, t) if t ∈ [(n+ 1)∆, τ(p0) + (n+ 1)∆).
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• if p0 > peλ∆, k∗t = 1 if t ∈ [0, τ(p0)) and, ∀ n ∈ N+,

k∗t = φ(n, t) if t ∈ [τ(p0) + (n− 1)∆, τ(p0) + n∆).

Figures (3) and (3) desribe the equilibrium investment dynamis when p0 ∈ [p, peλ∆)

and p0 ≥ peλ∆, respetively.

Figure 3: Equilibrium investment dynamis when α = 0.2, λ = 0.7, ∆ = 1.64 and p0 =

0.7 < peλ∆ = 0.9.

The attrativeness of investment inreases with the on�dene in the tehnology and

dereases with the level of ompetition. Players annot beome more optimisti with time,

whatever their strategies or history may be. However, the intensity of ompetition may

not be monotone in time, whih explains why investment is non-monotone in the publi

belief. Consider a period during whih predeessors invested in the tehnology. As time

passes within this period, the total amount of past investments inreases, whih inreases

the intensity of ompetition and the probability of preemption. Sine players also beome
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Figure 4: Equilibrium investment dynamis when α = 0.2, λ = 0.7, ∆ = 1.64 and p0 =

0.97 > peλ∆ = 0.9.

more pessimisti about the tehnology, they eventually stop investment. But then the

probability of being the �rst to get a suess inreases again and the disouraging e�ets

of ompetition fades away. When the intensity of ompetition is su�iently low, investing

in the risky tehnology beomes pro�table again, even though the publi belief is smaller.

3.1 Comparative statis

It follows diretly from the expression of φ(n, t) that k∗t onverges to 0. This is the reason

why, while players do not stop investment in �nite time, the publi belief onverges to the

single player uto� but never falls below it. As a result, the total amount of investment

only depends on p and p0, not on ∆.

Lemma 1. For every p0 ∈ [p, 1), in equilibrium it holds that:

(i) lim
t→+∞

pt = p;

(ii)

∫ ∞

0
k∗sds =

1

λ
ln

(
Ω(p)

Ω(p0)

)

.

Proof. Sine lim
t→+∞

Φ(n, t) = 0, it holds that lim
t→+∞

k∗t = 0 and lim
t→+∞

e−λ
∫ t

t−∆ k∗sds = 0. This

implies that lim
t→+∞

µt = lim
t→+∞

pt. Yet lim
t→+∞

µt = p. This proves (i). Expression (2) an

be rewritten as eλ
∫ t−∆
0 ksds = Ω(pt)

Ω(p0)
for t ≥ ∆. Taking the limit and using (i), we obtain

(ii).

The equilibrium payo� to player t is u(k∗t , k
∗
−t) = λk∗t (µt − p). Therefore,
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• if p0 ≤ p, then u(k∗t , k
∗
−t) = 0 for every t;

• if p0 ∈
[
p, peλ∆

]
, then u(k∗t , k

∗
−t) =

{

α
(
p0
p e

−λt − 1
)

if t ≤ τ(p0),

0 if t ≥ τ(p0).

• if p0 ≥ peλ∆, then u(k∗t , k
∗
−t) =







α
(
p0
p e

−λt − 1
)

if t ≤ ∆,

α
(
1
p

e−λ∆

1+Ω(p0)eλ(t−∆) − 1
)

if t ∈ [∆, τ(p0)],

0 if t ≥ τ(p0).

It is easy to see that early investors have an advantage, in the sense that u(k∗t , k
∗
−t)

dereases with t. The total payo� isW (k∗) =
∫ +∞

0 u(k∗t , k
∗
−t)dt, whih works out as follows;

• If p0 ≤ p, then W (k∗) = 0.

• If p0 ∈
[
p, peλ∆

]
, then W (k∗) = p0 − p+ p ln

(
p

p0

)

.

• if p0 ≥ peλ∆, then W (k∗) = p0(1− e−λ∆)− e−λ∆ ln

(
1− p0

1− peλ∆

)

− ατ(p0).

Proposition 2. The total payo� in equilibrium weakly dereases with ∆.

Proof. See Setion 5.1.2 in the Appendix.

3.2 Disentangling the e�ets of outome lag and unertainty

In order to disentangle the respetive e�ets of the innovation lag and unertainty on

the shape of the equilibrium dynamis, we apply Proposition 1 in the ase where p0 = 1

(no unertainty) and ∆ = 0 (no outome lag).

Plugging p0 = 1 into the expressions of φ and τ , we �nd that φ(n, t) = 1 for every (n, t)

and τ(1) =

{

− 1
λ ln(p) if peλ∆ > 1,

+∞ if peλ∆ ≤ 1
. Therefore,

• if peλ∆ ≤ 1, then k∗t = 1 for every t;

• if peλ∆ > 1, then k∗t =

{

1 if t ∈ [n∆, (n+ 1)τ(1)]

0 if t ∈ [τ(1)(n + 1), (n + 1)∆]

In other words, if the outome lag is small enough, every player fully invests in the tehnol-

ogy. Otherwise, the equilibrium dynamis is ylial: players regularly alternate between

full investment and no investment at all. In ontrast, when ∆ = 0, the equilibrium dy-

namis is in threshold:

• if p0 ≤ p, k∗t = 0 for every t;

• if p0 > p, k∗t =

{

1 if t ≤ τ(p0)

0, if t > τ(p0),
where τ(p0) =

1
λ ln

(
Ω(p)

Ω(p0)

)

is the �rst time the

publi belief reahes p.
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Players fully invest when the publi belief is larger than the single player uto� p, and 0

otherwise.

Even if players know that the projet is feasible, the outome lag reates ompetition

between player t and every player in [t − ∆, t): the larger ∆, the more intense the om-

petition. If ∆ is small, the ompetition is so soft that every player fully invests. When

ompetition is harder, players are too likely to be preempted by a past ompetitor and de-

ide not to invest as a result. After a period with no investment, ompetition has softened

enough to make investment valuable again. The non-monotoni feature of the equilib-

rium dynamis is thus driven by the outome lag. Without an outome lag, players use

threshold strategies, but the equilibrium investment dereases with time, beause players

beome more pessimisti about the feasibility of the projet as time passes and no break-

through ours. Thus unertainty drives the fat that, in periods where players invest in

the tehnology, equilibrium investment is interior and dereasing with time.

4 Welfare riteria

4.1 Probability of breakthrough

The probability of breakthrough in equilibrium is p0(1 − e−λ
∫+∞
0 k∗t dt). As the total

investment is

∫ +∞

0 k∗t dt =
1
λ ln

(
Ω(p)

Ω(p0)

)

when p0 ∈ [p, 1), the probability of breakthrough is

P (Breakthrough) =
p0 − p

1− p

As with the total amount of investment, the probability of a breakthrough does not depend

on the delay in equilibrium.

4.2 Expeted time of ompletion

A soial planner may want the breakthrough to our as fast as possible, hene to

maximize E[e−rT ], where T is the random time of arrival of the breakthrough.

As P (T ≤ t) = 1−e−λ
∫ t−∆
0 ksds

if the tehnology is good and t ≥ ∆, and P (τ ≤ T ) = 0

otherwise, P (T ≤ t) = p0

(

1− e−λ
∫ t−∆
0

ksds
)

1t≥∆. Therefore, T is distributed aording

to the density funtion f(t) = p0λkt−∆e
−λ

∫ t−∆
0

ksds
1t≥∆.

E[e−rT ] = p0

∫ ∞

∆
e−rtλkt−∆e

−λ
∫ t−∆
0 ksdsdt

It is easy to prove that the optimal poliy for this benhmark is to play kt = 1 for

every t, thus that the equilibrium is suboptimal. Moreover, in equilibrium the expeted

ompletion time inreases with the delay.
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4.3 Aggregate payo�

The soial planner may want to maximize the sum of the players' payo�s, i.e. to

determine the investment pro�le k that maximizes

W (k) =

∫ +∞

0
−αkt(1− p0) + p0e

−λ
∫ (t−∆)1t≥∆
0 ksds

(

λkte
−λ

∫ t

(t−∆)1t≥∆
ksds

− αkt

)

dt

=

∫ +∞

0
kt

(

−α(1− p0) + p0e
−λ

∫ (t−∆)1t≥∆
0 ksds

(

λe
−λ

∫ t

(t−∆)1t≥∆
ksds

− α

))

dt (8)

The lag in the state variable makes the problem of the soial planner di�ult to solve.

However, we an prove that the equilibrium is ine�ient, in the sense that it does not

maximizes the aggregate payo�. This is beause the soial planner would prefer players to <

�take a break� to see if previous experimentation has yielded a suess, something players

are not willing to do in equilibrium.

Proposition 3. The equilibrium k∗ is ine�ient.

Proof. To prove the proposition we �rst note that there exists a uto� strategy k̃ suh that

W (k̃) = W (k∗), namely k̃t = 1t≤τ(p0). We now show that, for any given uto� strategy,

there exists another strategy that yields a stritly larger aggregate payo�.

As a preliminary, observe that, for every strategy pro�le k suh that

∫ +∞

0 ktdt < +∞,

the aggregate payo� an be rewritten as

W (k) = −p(1− p0)λ

∫ +∞

0
ktdt+ p0(1− e−λ

∫+∞

0
ktdt)− pp0λ

∫ +∞

0
kte

−λ
∫ (t−∆)1t≥∆
0 ksdsdt.

Let us now prove that the optimal strategy is not in uto�. Consider a uto� strategy

k de�ned by kt = 1t≤τ and let us prove that there exists k̃ suh that W (k̃) > W (k).

If τ < ∆, let k̃(ǫ) be de�ned by k̃(ǫ)t = 1t≤τ−ǫ + 1t∈[∆,∆+ǫ] with 0 < ǫ < τ − ǫ. As

∫ +∞

0 k̃tdt = τ , one has

W (k̃(ǫ)) = −p(1− p0)λτ + p0(1− e−λτ )− pp0λ

(

τ − ǫ+

∫ ∆+ǫ

∆
e−λ(t−∆)dt

)

Di�erentiating W (k̃(ǫ)) with respet to ǫ, we obtain ∂W (k̃(ǫ))/∂ǫ = p0pλ(1 − e−λǫ) > 0.

Moreover, W (k̃(0)) = W (k). Therefore, there exists k̃(ǫ) suh that W (k̃(ǫ)) > W (k).

If τ > ∆, let k̃(ǫ) be de�ned by k̃(ǫ)t = 1t≤τ−ǫ + 1t∈[τ,τ+ǫ] with ∆ < τ − ǫ. As

∫ +∞

0 k̃tdt = τ , one has

W (k̃(ǫ)) = −p(1−p0)λτ+p0(1−e−λτ )−pp0λ

(∫ τ−ǫ

0
e−λ

∫ (t−∆)1t≥∆
0 ksds +

∫ τ+ǫ

τ
e−λ

∫ (t−∆)1t≥∆
0 ksds dt

)

.

Di�erentiating W (k̃(ǫ)) with respet to ǫ, we obtain

∂W (k̃(ǫ))/∂ǫ = p0pλ
(

e−λ
∫ τ−ǫ−∆
0 ks ds − e−λ

∫ τ+ǫ−∆
0 ks ds

)

.
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This is stritly greater than 0 if and only if

∫ τ+ǫ−∆
τ−ǫ−∆ ks ds > 0, whih is satis�ed for any

∆ > 0. Moreover, W (k̃(0)) = W (k). Therefore, there exists k̃(ǫ) suh that W (k̃(ǫ)) >

W (k).

5 An alternative reward sheme.

In this setion, we ompare the equilibrium we haraterized in the previous setion

with the equilibrium obtained under another reward sheme alled hidden-equal-sharing

(HES). Under HES, players do not observe past outomes and do not ommuniate with

eah other; instead, there is a mediator who observes all the breakthroughs and keeps them

seret until some ommonly known deadline T > ∆. At time T , the mediator splits the

payo� 1 among all the players who obtained a breakthrough, if any. The di�erene with

the winner-takes-all reward sheme is that a player does not know what payo� she will

reeive from obtaining a suess. Let rt stand for the random reward of player t in ase of

suess. As suesses are hidden, the publi belief is p0 at every time, thus the expeted

payo� to player t given a strategy pro�le k is

u(kt,k) = p0λktE[rt | k]− αkt

The best response of player t is as follows:

kt







= 1 if p0E[rt | k] > p,

∈ [0, 1] if p0E[rt | k] = p,

= 0 if p0E[rt | k] < p

Let us ompute E[rt | k]. Sine players t ≥ T − ∆ will observe the output of their

investment after the deadline T , they will not reeive any payo�, hene rt = 0 for t ≥ T−∆.

Now onsider t < T −∆. If n ≥ 0 other players among [0, T −∆] obtain a suess, player

t will reeive a payo� of 1/(n + 1). Her expeted reward is thus

E[rt | k] =

∞∑

n=0

1

n+ 1
P (n other players obtain a suess)

Yet the number of suess ourrenes during the interval [0, T −∆] follows a Poisson law

of intensity λ
∫ T−∆
0 ksd. Therefore,

E[rt | k] =
∞∑

n=0

1

n+ 1

(

λ
∫ T−∆
0 ksds

)n

n!
e−λ

∫ T−∆
0 ksds

=
1− e−λ

∫ T−∆
0

ksds

λ
∫ T−∆
0 ksds

:= Γ(k)

13



Proposition 4. Let TH
be de�ned by

1− e−λ(TH−∆)

λ(TH −∆)
=

p

p0
.

(i) If T ≤ TH
, there is an (essentially) unique equilibrium k

∗
suh that k∗t = 1 for

t ≤ T −∆ and k∗t = 0 if t > T −∆. It is unique if T < TH
.

(ii) If T > TH
then in every equilibrium k

∗
, it holds that

∫ T−∆
t=0 k∗sds = TH − ∆ and

k∗t = 0 if t > T −∆.

Proof. As a preliminary, observe that the funtion x 7→ 1−e−λx

λx is stritly dereasing.

• Proof of (i). Suppose that T ≤ TH
and onsider the strategy pro�le k̃ de�ned by

k̃t = 1t≤T−∆. Let us prove that no player has a pro�table deviation from k̃. We

already know that players t > T −∆ have no pro�table deviation from kt = 0. Fix

some player t ≤ T − ∆. Straightforwardly, Γ(k̃) = 1−e−λ(T−∆)

λ(T−∆) . As Γ(k̃)) dereases

with T , the fat that T ≤ TH
implies that Γ(k̃) ≥ 1−e−λ(TH−∆)

λ(TH−∆)
= p/p0. Playing

kt = 1 is thus a best response to k̃. This proves that k̃ is an equilibrium. Let us

now prove that it is the unique equilibrium. This is immediate if T < TH
. Now we

shall prove ad absurdum that it remains essentially unique (i.e., but for deviations

on a null set) if T = TH
. Suppose that k is an equilibrium suh that kt < 1 for some

subset of [0, T −∆] that has positive measure. It follows that

∫ T−∆
0 ksds < T −∆,

hene that Γ(k) > Γ(k̃). As Γ(k̃) ≥ p/p0, this implies that Γ(k) > p/p0, and that

player t's best response is to play kt = 1, whih is a ontradition.

• Proof of (ii). Suppose now that T > TH
and onsider an equilibrium strategy k̃.

If

∫ T−∆
t=0 k̃sds < TH − ∆, then Γ(k̃) > 1−e−λ(TH−∆)

λ(TH−∆) =
p

p0
, whih implies that there

is at least a player t < T − ∆ suh that k̃t < 0 who has a pro�table deviation to

kt = 1. Therefore,

∫ T−∆
t=0 k̃sds ≥ TH − ∆. If

∫ T−∆
t=0 k̃sds > TH − ∆, then Γ(k̃) <

1−e−λ(TH−∆)

λ(TH−∆) =
p

p0
, hene there is at least a player t < T −∆ suh that k̃t > 0 who

has a pro�table deviation to kt = 0. This proves that
∫ T−∆
t=0 k̃sds = TH −∆.

What is the bestHESmehanism? If the mediator seeks to maximize the probability of

breakthrough, then she should design T so as to maximize the total amount of investment.

It follows from Proposition 4 that, in every equilibrium under HES,

∫ ∞

0
k∗t dt =

{

T −∆ if T ≤ TH ,

TH −∆ if T > TH ,
= min{T, TH} −∆.

Clearly, the total amount of investment is maximum when the mediator sets the deadline

T after TH
. However, even if all deadlines T ≥ TH

entail the same probability of break-

through, deadlines T > TH
allow for equilibria where investment is dispersed over time,

whih inreases the expeted time of ompletion.
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Proposition 5. The probability of breakthrough is maximal when T ≥ TH
. The expeted

time of ompletion is minimal when T = TH
.

We now ompare the welfare properties of the optimal HES with the winner-takes-all

reward sheme. The total investment in equilibrium is TH −∆ with HES and

1
λ ln

(
Ω(p)

Ω(p0)

)

with the winner-takes-all mehanism by Lemma 1. As x 7→ 1−e−λx

λx is stritly dereasing,

TH−∆ >
1

λ
ln

(
Ω(p)

Ω(p0)

)

⇔
1− e−λ(TH−∆)

λ(TH −∆)
<

1− Ω(p0)/Ω(p)

ln(Ω(p))− ln(Ω(p0))
⇔

p

p0
<

1−Ω(p0)/Ω(p)

ln(Ω(p))− ln(Ω(p0))

This allows to prove the following result.

Proposition 6. It holds that (i) ⇔ (ii).

(i) p ≤ 1/2 and p0 ≤ p̃0, where p̃0 is the unique solution of Ω(p)−Ω(p0) = ln
(

Ω(p)

Ω(p0)

)
1−p

p0
.

(ii) The probability of breakthrough is larger under the HES mehanism than the winner-

takes-all mehanism.

Moreover, (i) implies that the expeted time of ompletion is smaller under HES.

Referenes

[1℄ Bimpikis, K., & Drakopoulos; K., (2014). Dislosing Information in Strategi Experi-

mentation. Manusript, Grad. Shool Bus., Stanford University.

[2℄ Bimpikis, K., Ehsani, S., & Mostagir, M. (2019). Designing dynami ontests. Oper-

ations Researh, 67(2), 339-356.

[3℄ Bonatti, A., & Hörner, J. (2011). Collaborating. Amerian Eonomi Review, 101(2),

632-63.

[4℄ Che, Y. K., & Horner, J. (2015). Optimal design for soial learning.

[5℄ Das, K., & Klein, N., (2021), Do Stronger Patents Lead to Faster Innovation? The

E�et of Dupliative Searh. Manusript.

[6℄ Das, K., & Klein, N., (2021), Over-and Under-Experimentation in a Patent Rae with

Private Learning. Manusript.

[7℄ Hala, M., Kartik, N., & Liu, Q. (2017). Contests for experimentation. Journal of

Politial Eonomy, 125(5), 1523-1569.

[8℄ Heidhues, P., Rady, S., & Strak, P. (2015). Strategi experimentation with private

payo�s. Journal of Eonomi Theory, 159, 531-551.

[9℄ Keller, G., Rady, S., & Cripps, M. (2005). Strategi experimentation with exponential

bandits. Eonometria, 73(1), 39-68.

15



[10℄ Keller, G., & Rady, S. (2010). Strategi experimentation with Poisson bandits. Theo-

retial Eonomis, 5(2), 275-311.

[11℄ Klein, N., & Rady, S. (2011). Negatively orrelated bandits. The Review of Eonomi

Studies, 78(2), 693-732.

[12℄ Malueg, D. A., & Tsutsui, S. O. (1997). Dynami R&D ompetition with learning.

The RAND Journal of Eonomis, 751-772.

[13℄ Marlats, C., & Ménager, L. (2021). Strategi observation with exponential bandits.

Journal of Eonomi Theory, 193, 105232.

[14℄ Mosarini, G., & Squintani, F. (2010). Competitive experimentation with private in-

formation: The survivor's urse. Journal of Eonomi Theory, 145(2), 639-660.

Appendix

5.1 Proof of Proposition 1

Proof. Di�erentiating µt = pte
−λ

∫ t

(t−∆)1t≥∆
ksds

with respet to t, we obtain

µ̇t = e
−λ

∫ t

(t−∆)1t≥∆
ksds

(ṗt − ptλ(kt − kt−∆1t≥∆)) ,

whih redues to

µ̇t = −λµt(kt − ptkt−∆1t≥∆) (9)

after using (1).

• Case when p0 ≤ p

The objetive is to prove by indution on n that the proposition P(n): �k∗t = 0 ∀ t ∈

[n∆, (n+ 1)∆]� is true for every n ∈ N. By de�nition of µt, for every t ∈ [0,∆] and every

k−t, µt ≤ pt = p0 ≤ p. Therefore, it is dominant for every player in [0,∆] to play kt = 0,

whih implies that P(0) is true. Suppose now that P(n) holds for some n ∈ N, i.e., that

every player t ∈ [n∆, (n+ 1)∆] plays k∗t = 0. Plugging this into (9), it omes that µ̇t ≤ 0

for every t ∈ [(n+1)∆, (n+2)∆]. Moreover, k(n+1)∆ = 0 implies that µ(n+1)∆ < p by (4).

Therefore, µt < p for every t ∈ [(n + 1)∆, (n + 2)∆], whih implies that P(n + 1) is true.

• Case when p0 > p

As µ0 = p0, µ0 > p. Therefore, there exists τ > 0 suh that µs > p for every s ≤ τ ,

hene suh that ks = 1 for every s ≤ τ by (4). Plugging this into the expression of µt and

into (1), it omes that

µτ = pτe
−λ(τ−(τ−∆)1τ≥∆)

and ṗτ = −λpτ (1− pτ )1τ≥∆.
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Straightforwardly, the funtion h(τ) := pτe
−λ(τ−(τ−∆)1τ≥∆)

is ontinuous and stritly de-

reasing in τ . Moreover, h takes the value p0 > p in τ = 0 and the value pe−λ∆ < p in

τ = ∆+ 1
λ ln

(
Ω(p)

Ω(p0)

)

. This implies that there exists a unique τ̄ suh that h(τ̄ ) = p, whose

expression depends on whether it is larger than ∆ or not.

If h(∆) > p, then τ̄ > ∆, hene

h(τ̄ ) = p ⇔ pτ̄e
−λ∆ = p

⇔ pτ̄ = peλ∆ := p̃

Integrating the law of motion of pt ṗτ = −λpτ (1 − pτ ) between ∆ and τ̄ , we obtain

eλ(τ̄−∆) = Ω(p̃)
Ω(p0)

, whih is rewritten

τ̄ = ∆+
1

λ
ln

(
Ω(p̃)

Ω(p0)

)

.

If h(∆) < p, then τ̄ < ∆, hene

h(τ̄ ) = p ⇔ p0e
−λτ̄ = p

⇔ eλ(∆−τ̄ ) = p̃
p0

whih is rewritten

τ̄ = ∆−
1

λ
ln

(
p̃

p0

)

.

Therefore, there exists τ(p0) suh that k∗t = 1 for every t < τ(p0) and µτ(p0) = p. We

now use the next lemma.

Lemma 2. In equilibrium, if µt = p, then µs = p for every s ≥ t.

Proof. Fix some player t and suppose that µt = p. As µt is ontinuous, if there is t′ > t

suh that µt′ > p, then there is an open interval S ⊂ [t, t′] suh that µ′
s > 0 and µs > p for

every s ∈ S. This implies that that ks = 1 for every s ∈ S by (4), thus ontradits µ′
s > 0

by (9). Also, if there is t′ > t suh that µt′ < p, then there is an open interval S ⊂ [t, t′]

suh that µ′
s < 0 and µs <

α
λ for every s ∈ S. This implies that that ks = 0 for every s ∈ S

by (4), thus ontradits µ′
s < 0 by (9).

As a onsequene, in equilibrium µt = p for every t ≥ τ(p0), hene µ̇t = 0 for every

t ≥ τ(p0). By (9), this implies that in equilibrium, satis�es k∗t = 1 if t < τ(p0), and

k∗t = ptk
∗
t−∆1∆ if t ≥ τ(p0).

UniquenessNote that the best response of player t is a funtion of {kt}
t
s=1t>∆t−∆. Beause

k0 does not depend on the other players' strategy, the equilibrium is unique.
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5.1.1 Analyti expressions of k∗

Analyti expression of k∗ and p when p0 ≥ p̃.

Let pnt and knt respetively denote the publi belief and player t's ation in time t ∈

[τ + (n− 1)∆, τ + n∆].

Also, p̃n := pnτ+(n−1)∆ = pn−1
τ+(n−1)∆. By de�nition of τ , p̃1 = peλ∆.

t
0 ∆ τ

p̃1

(p1t , k
1
t )

τ +∆

(p2t , k
2
t )

p̃2

τ + 2∆

(p3t , k
3
t )

p̃3

τ + 3∆

. . .

τ + (n− 2)∆

p̃n−1

(pn−1
t , kn−1

t )

τ + (n− 1)∆

(pnt , k
n
t )

p̃n

τ + n∆

Step 1 The �rst step is to establish by indution on n that, for every n ≥ 2,

Ω(pnt )

Ω(p̃n)
=

1

1− (1− e−λ(t−(n−1)∆−τ))
∏n−1

k=1 p̃
k

(10)

1) Relation between pnt and pn−1
t−∆

Let n ≥ 2. By de�nition, ṗnt = −λpnt (1− pnt )k
n−1
t−∆ and ṗn−1

t = −λpn−1
t (1− pn−1

t )kn−2
t−∆.

Moreover, in equilibrium, kn−1
t−∆ = pn−1

t−∆k
n−2
t−2∆. Therefore, kn−1

t−∆ = −
ṗn−1
t−∆

λ(1−pn−1
t−∆)

. It follows

that, for every n ≥ 2 and every t,

ṗnt
pnt (1− pnt )

=
ṗn−1
t−∆

1− pn−1
t−∆

(11)

Integrating (11) between τ + (n− 1)∆ and t ∈ [τ + (n− 1)∆, τ + n∆], we obtain:

ln

(

Ω(pnt )

Ω(pnτ+(n−1)∆)

)

= ln

(

1− pn−1
t−∆

1− pn−1
τ+(n−2)∆

)

,

whih, by de�nition of p̃n, beomes

Ω(pnt )

Ω(p̃n)
=

1− pn−1
t−∆

1− p̃n−1
(12)

2) Let us prove that (10) is true for n = 2. As kt = 1 for every t ≤ τ , Ω(p1t ) = Ω(p̃1)eλ(t−τ)
,

i.e.,

1− pt1 =
Ω(p̃1)

Ω(p̃1) + e−λ(t−τ)
= (1− p̃1)

1

1− p̃1 + p̃1e−λ(t−τ)

By (12),

Ω(p2t )
Ω(p̃2)

=
1−p1t−∆

1−p̃1
, hene

Ω(p2t )

Ω(p̃2)
=

1

1− (1− e−λ(t−∆−τ))p̃1
.
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3) Suppose that (10) is true for some given n, i.e.,

1− pnt =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−(n−1)∆−τ))
∏n−1

k=1 p̃
k
,

and let us prove it is true for n+ 1. By (12),

Ω(pn+1
t )

Ω(p̃n+1)
=

1− pnt−∆

1− p̃n
. As

1− pnt−∆ =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−n∆−τ))
∏n−1

k=1 p̃
k
,

1− pnt−∆

1− p̃n
=

1

1− (1− e−λ(t−n∆−τ))
∏n

k=1 p̃
k)
,

hene (10) is true for n+ 1.

Step 2 The seond step is to establish by indution on n that, for every n ≥ 1,

Ω(p̃n) =
(1− p̃1)(1− p)

pn−1(p̃1 − p) + p(1− p̃1)
. (13)

This is straightforward for n = 1; Moreover, Ω(p̃2) = Ω(p1τ+∆) and, as kt = 1 for t ≤ τ ,

Ω(p1τ+∆) = Ω(p̃1)eλ(τ+∆−τ)
. Therefore, Ω(p̃2) = Ω(p̃1)eλ∆. As we obtain Ω(p̃2) =

1−p

p̃1 by

plugging n = 2 into (13), and s p̃1 = peλ∆, (13) is true for n = 2.

Fix n ≥ 3 and suppose that (13) is true for every k ≤ n, i.e., suppose that

p̃k =
pk−1(p̃1 − p) + p(1− p̃1)

pk−1(p̃1 − p) + 1− p̃1
∀ k ≤ n.

The aim is to establish that (13) is true for n+1. As p̃n+1 = pn+1
τ+n∆ = pnτ+n∆ by de�nition,

taking (10) for t = τ + n∆, we obtain:

Ω(p̃n+1) =
Ω(p̃n)

1− (1− e−λ∆)

n−1∏

k=1

p̃k

As p = e−λ∆p̃1, the latter expression is rewritten:

Ω(p̃n+1) =
p̃1Ω(p̃n)

p̃1 − (p̃1 − p)
n−1∏

k=1

p̃k

(14)

Let us ompute

∏n−1
k=1 p̃

k
under the indution hypothesis. Notiing that, for every k ≤ n,

p̃k = p ×
A(k − 1)

A(k)
, with A(k) = pk−1(p̃1 − p) + 1 − p̃1, we an simplify the produt as

follows:

n−1∏

k=1

p̃k =

n−1∏

k=1

p×
A(k − 1)

A(k)
= pn−1 A(0)

A(n − 1)
= pn−1 p−1(p̃1 − p) + 1− p̃1

pn−2(p̃1 − p) + 1− p̃1
Therefore,

n−1∏

k=1

p̃k = pn−2 p̃1(1− p)

pn−2(p̃1 − p) + 1− p̃1
(15)
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Plugging this into (14) and simplifying by p̃1, we obtain:

Ω(p̃n+1) = Ω(p̃n)
pn−2(p̃1 − p) + 1− p̃1

pn−2(p̃1 − p) + 1− p̃1 − (p̃1 − p)pn−2(1− p)

As Ω(p̃n) =
(1− p̃1)(1− p)

p

1

pn−2(p̃1 − p) + 1− p̃1
under the indution hypothesis, we ob-

tain:

Ω(p̃n+1) =
(1− p̃1)(1− p)

p

1

pn−1(p̃1 − p) + 1− p̃1
,

hene (13) is true for n+ 1.

Step 3 Plugging (15) and (13) into (10), we obtain

Ω(pnt ) =
Ω(p)Ω(p̃1)

Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−τ)
(16)

Step 4: Equilibrium ation

It is straightforward to show by indution that, in equilibrium, knt =
∏n−1

i=0 pn−i
t−i∆. Yet,

by (16),

pnt = p
Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−τ)

Ω(p̃1)Ω(p) + Ω(p̃1)(1− pn−1) + pn−2(1− p)e−λ(t−(n−1)∆−τ)

Beause t− i∆ − (n− i− 1)∆ − τ = t− (n− 1)∆ − τ , for every i ≤ n− 2,

pn−i
t−i∆ = p

A(i+ 1)

A(i)
,

with A(i) = Ω(p̃1)(1 − pn−i) + pn−1−i(1− p)e−λ(t−(n−1)∆−τ)
. Therefore,

knt =
n−1∏

i=0

(

p
A(i+ 1)

A(i)

)

= pn
A(n)

A(0)
,

whih simpli�es to

knt =
pnΩ(p)

pn−1(1− p) + Ω(p1)(1 − pn)eλ(t−(n−1)∆−τ)

As Ω(p̃1) = Ω(p0)e
λ(t−∆)

,

knt =
pnΩ(p)

pnΩ(p) + (1− pn)Ω(p0)eλ(t−n∆)
(17)

Analyti expression of k∗ and p when p0 ∈ (p, p̃).

Let pnt and knt respetively denote the publi belief and player t's ation in time t ∈

[n∆, τ + n∆].
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Also, p̃n := pnn∆. p̃1 = p0. Finally, by de�nition of τ(p0), eλ(∆−τ(p0)) = p̃
p0
, thus

e−λτ(p0) =
p

p0
.

t
0

(p0, 1)

τ

(p0, 0)

∆

p̃1

(p1t , k
1
t )

τ +∆

p̃2

(p̃2, 0)

2∆

p̃2

(p2t , k
2
t )

τ + 3∆

. . .

n∆

p̃n

(pnt , k
n
t )

τ + n∆

p̃n+1

(p̃n+1, 0)

(n+ 1)∆

p̃n+1

(pn+1
t , kn+1

t )

τ + (n+ 1)∆

Step 1 The �rst step is to establish by indution on n that, for every n ≥ 2,

Ω(pnt )

Ω(p̃n)
=

1

1− (1− e−λ(t−n∆))
∏n−1

k=1 p̃
k

(18)

and

Ω(p1t )
Ω(p̃1)

= eλ(t−∆)
.

1) Relation between pnt and pn−1
t−∆

Let n ≥ 2. By de�nition, ṗnt = −λpnt (1− pnt )k
n−1
t−∆ and ṗn−1

t = −λpn−1
t (1− pn−1

t )kn−2
t−∆.

Moreover, in equilibrium, kn−1
t−∆ = pn−1

t−∆k
n−2
t−2∆. Therefore, kn−1

t−∆ = −
ṗn−1
t−∆

λ(1−pn−1
t−∆)

. It follows

that, for every n ≥ 2 and every t,

ṗnt
pnt (1− pnt )

=
ṗn−1
t−∆

1− pn−1
t−∆

(19)

Integrating (19) between n∆ and t ∈ [n∆, τ + n∆], we obtain:

ln

(
Ω(pnt )

Ω(pnn∆)

)

= ln

(

1− pn−1
t−∆

1− pn−1
n∆

)

,

whih, by de�nition of p̃n, beomes

Ω(pnt )

Ω(p̃n)
=

1− pn−1
t−∆

1− p̃n−1
(20)

2) Let us prove that (18) is true for n = 2. As kt = 1 for every t ≤ τ , Ω(p1t ) = Ω(p0)e
λ(t−∆)

,

i.e.,

1− pt1 =
Ω(p0)e

λ(t−∆)

1 + Ω(p0)eλ(t−∆)
=

1− p0
1− p0 + p0e−λ(t−∆)

By (20),

Ω(p2t )
Ω(p̃2)

=
1−p1

t−∆

1−p0
, hene

Ω(p2t )

Ω(p̃2)
=

1

1− (1− e−λ(t−2∆))p0
.

3) Suppose that (18) is true for some given n, i.e.,

1− pnt =
Ω(p̃n)

Ω(p̃n) + 1− (1− e−λ(t−n∆))
∏n−1

k=1 p̃
k
,

21



and let us prove it is true for n+ 1. After rearrangement,

1− pnt =
1− p̃n

1− (1− e−λ(t−n∆))
∏n

k=1 p̃
k
,

By (20),

Ω(pn+1
t )

Ω(p̃n+1)
=

1− pnt−∆

1− p̃n
. As

1− pnt−∆ =
1− p̃n

1− (1− e−λ(t−(n+1)∆))
∏n

k=1 p̃
k
,

1− pnt−∆

1− p̃n
=

1

1− (1− e−λ(t−(n+1)∆))
∏n

k=1 p̃
k)
,

hene (18) is true for n+ 1.

Step 2 The seond step is to establish by indution on n that, for every n ≥ 1,

p̃n = p
pn−2(p0 − p) + 1− p0

pn−1(p0 − p) + 1− p0
. (21)

This is straightforward for n = 1; Moreover, p̃2 = p1τ+∆) and, as kt = 1 for t ≤ τ ,

Ω(p1τ+∆) = Ω(p0)e
λ(τ)

. Therefore, p̃2 =
p

p+1−p0
, whih implies that (21) is true for n = 2.

Fix n ≥ 3 and suppose that (21) is true for every k ≤ n. Observing that, under the

indution hypothesis, p̃k = pA(k−2)
A(k−1) with A(u) = pu(p0 − p) + 1− p0, we an write

n−1∏

k=1

p̃k =
n−1∏

k=1

p
A(k − 2)

A(k − 1)
= pn−1 A(−1)

A(n − 2)
= pn−2

p0(1− p)

pn−2(p0 − p) + 1− p0
(22)

As p̃n+1 = pn+1
(n+1)∆ = pnτ+n∆ by de�nition, taking (18) for t = τ +n∆, we obtain, for every

n ≥ 2:

Ω(p̃n+1) =
Ω(p̃n)

1− (1− e−λτ )

n−1∏

k=1

p̃k

As e−λτ =
p

p0
, the latter expression is rewritten:

Ω(p̃n+1) =
p0Ω(p̃

n)

p0 − (p0 − p)

n−1∏

k=1

p̃k

(23)

Plugging (22) into the (23) and simplifying by p0, we obtain:

Ω(p̃n+1) = Ω(p̃n)
pn−2(p0 − p) + 1− p0

pn−1(p0 − p) + 1− p0

Using the indution hypothesis, the latter expression beomes:

Ω(p̃n+1) =
(1− p0)(1− p)

p

1

pn−1(p0 − p) + 1− p0
,
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hene (21) is true for n+ 1.

Step 3 Plugging (22) and (21) into (18), we obtain

Ω(pnt ) =
Ω(p)Ω(p0)

Ω(p0)(1 − pn−1) + pn−2(1− p)e−λ(t−n∆)
(24)

Step 4: Equilibrium ation

It is straightforward to show by indution that, in equilibrium, knt =
∏n−1

i=0 pn−i
t−i∆. Yet,

by (24),

pnt = p
Ω(p0)(1− pn−1) + pn−2(1− p)e−λ(t−n∆)

Ω(p0)(1− pn) + pn−1(1− p)e−λ(t−n∆)

Beause t− i∆ − (n− i)∆ = t− n∆, for every i ≤ n− 2,

pn−i
t−i∆ = p

A(n − i− 1)

A(n− i)
,

with A(u) = Ω(p0)(1− pu) + pu−1(1− p)e−λ(t−n∆)
. Therefore,

knt =

n−1∏

i=0

(

p
A(n− i− 1)

A(n− i)

)

= pn
A(0)

A(n)
,

whih simpli�es to

knt =
Ω(p)

Ω(p) + Ω(p0)Ω(pn)eλ(t−n∆)

5.1.2 Proof of Proposition 2

Proof. W (k∗) does not depend on ∆ when p0 ≤ peλ∆. When p0 > peλ∆,

∂W (k∗)

∂∆
= λp0e

−λ∆ + λe−λ∆ ln

(
1− p0

1− peλ∆

)

− λ
p

1− peλ∆
− α

∂τ(p0)

∂∆
,

and ∂τ(p0)/∂∆ = −peλ∆/(1 − peλ∆), thus

∂W (k∗)

∂∆
= λ

(

−p+ p0e
−λ∆ + e−λ∆ ln

(
1− p0

1− peλ∆

))

.

Di�erentiating

∂W (k∗)
∂∆ with respet to p0, we obtain −λe−λ∆p0/(1 − p0). Moreover, it

equals 0 when p0 = peλ∆. Therefore, ∂W (k∗)
∂∆ is negative.
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5.2 Proof of Proposition 5

Proof. Let τ(k) the random time of arrival of the �rst suess given investment pro�le k.

For every t,

P (τ(k) ≤ t) = p0(1− e−λ
∫ t−∆
0 ksds)1t≥∆

If T = TH
, then the unique equilibrium is k∗ suh that k∗t = 1t≤TH−∆. At this

equilibrium,

P (τ(k∗) ≤ t) = 0 if t ≤ ∆

= p0(1− e−λ(t−∆)) if t ∈ [∆, TH ]

= p0(1− e−λ(TH−∆)) if t ≥ TH

If T > TH
, all equilibria are suh that k̃t = 0 if t ≥ T −∆ and

∫ T−∆
0 k̃sds = TH −∆.

Consider one of these equilibria suh that k̃ 6= k∗ a.s. At this equilibrium,

P (τ(k̃) ≤ t) = 0 if t ≤ ∆

= p0(1− e−λ
∫ t−∆
0 k̃sds) if t ∈ [∆, T ]

= p0(1− e−λ(TH−∆)) if t ≥ T

For every t ≤ ∆ or t ≥ T , then P (τ(k̃) ≤ t) = P (τ(k∗) ≤ t)

For every t ∈ [TH , T ], P (τ(k̃) ≤ t) ≤ P (τ(k∗) ≤ t) beause
∫ t−∆
0 k̃sds ≤

∫ T−∆
0 k̃sds =

TH −∆.

For every t ∈ [∆, TH ], P (τ(k̃) ≤ t) ≤ P (τ(k∗) ≤ t) beause

∫ t−∆
0 k̃sds ≤ t − ∆.

Moreover, k̃ 6= k∗ a.s. implies that ∃ t ∈ [∆, TH ] suh that

∫ t−∆
0 k̃sds < t−∆, hene there

is t ∈ [∆, TH ] suh that P (τ(k̃) ≤ t) < P (τ(k∗) ≤ t).

Therefore, τ(k∗) �rst-order stohastially dominates τ(k̃). As a onsequene, E[e−rτ(k̃)] ≤

E[e−rτ(k∗)].

5.3 Proof of Proposition ??

Proof. We seek onditions on p0 suh that

(I) :=
p

p0
<

1− Ω(p0)/Ω(p)

ln(Ω(p))− ln(Ω(p0))

is true. Multiplying both sides by Ω(p) and using that

1
p0

= 1 + Ω(p0), (I) is rewritten

p(1 + Ω(p0)) <
Ω(p)− Ω(p0)

ln(Ω(p))− ln(Ω(p0))
,

whih is equivalent to f(Ω(p0)) > 0 with f(x) :=
Ω(p)−x

ln(Ω(p))−ln(x) − (1 + x)(1 − p). Let us

study the funtion f for x ∈ [0,Ω(p)].

Let us �rst establish that f(Ω(p)) = 0. The limit of

Ω(p)−x

ln(Ω(p))−ln(x) in Ω(p) is undeter-

mined as both the numerator and the denominator onverge to 0. Applying L'H�pital's

rule, we �nd that limx→Ω(p)
Ω(p)−x

ln(ω(p))−ln(x) = Ω(p). As a result, limx→Ω(p) f(x) = 0.
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Di�erentiating f with respet to x, we obtain

f ′(x)) =
1

(ln(Ω(p))− lnx)2
(−(ln(Ω(p))− lnx) +

Ω(p)

x
− 1− (1− p)(ln(Ω(p))− lnx)2

︸ ︷︷ ︸

:=g(x)

)

Di�erentiating g with respet to x, we obtain

g′(x) =
1

x2
(x− Ω(p) + 2(1− p)x(ln(Ω(p))− lnx)
︸ ︷︷ ︸

:=h(x)

)

Di�erentiating h with respet to x, we obtain

h′(x) = 2p − 1 + 2(1 − p)(ln Ω(p)− lnx)

• If p ≥ 1/2, then h′(x) > 0 for every x. As h(Ω(p)) = 0, this implies that h(x) < 0,

thus g′(x) < 0, for every x. As g(Ω(p)) = 0, this implies that g(x) > 0, thus f ′(x) > 0,

for every x. As f(Ω(p)) = 0, this implies f(x) < 0 for every x ∈ [0,Ω(p)). Therefore, (I)

annot be satis�ed when p ≥ 1/2.

• If p < 1/2, h′(x) > 0 ⇔ x < Ω(p)e(2p−1)/(2(1−p)) := x̃1(< Ω(p)). Hene, h is

inreasing on [0, x̃1] and dereasing on [x̃1,Ω(p)]. As h(0) = −Ω(p) and h(Ω(p)) = 0, there

exists x̃2 ∈ (0, x̃1) suh that h(x) < 0 (thus g′(x) < 0) on [0, x̃2) and h(x) ≥ 0 (thus

g′(x) ≥ 0) on [x̃2,Ω(p)]. This implies that g(x) is dereasing on [0, x̃2) and inreasing on

[x̃2,Ω(p)]. As g(Ω(p)) = 0 and limx→0 g(x) = +∞, there exists x̃3 ∈ (0, x̃2) suh that

g(x) > 0 (thus f ′(x) > 0) on [0, x̃3) and g(x) ≤ 0 (thus f ′(x) ≤ 0) on [x̃3,Ω(p)]. As a

onsequene, f(x) is inreasing on [0, x̃3) and dereasing on [x̃3,Ω(p)]. As f(0) = −(1− p)

and f(Ω(p)) = 0, there exists x̃4 ∈ (0, x̃3) suh that f(x) < 0 on [0, x̃4] and f(x) ≥ 0

otherwise.

Therefore, (I) is satis�ed if and only if p < 1/2 and x ≥ x̃4, where x̃4 is the unique

solution to f(x) = 0, that is

Ω(p)− x̃4

ln(Ω(p))− ln(x̃4)
= (1 + x̃4)(1− p)
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