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Abstract

We explore whether marginal Q and investment fluctuate due to revisions in expected marginal

profits or discount rates, and by how much of each. We infer marginal Q from the marginal cost of

investment, derive a present-value relation, and conduct a VAR-based variance decomposition for

marginal Q. We find that discount rates (expected investment returns) drive the bulk of fluctuations

in average Q and investment in the time series, but play no role in driving the cross-section of

portfolios’ average Q and investment. That is, marginal profits are the sole determinant of the

cross-section of marginal Q and investment.
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1 Introduction

Marginal Q is the present value of all future marginal profits entailed by installing an extra

unit of capital. Thus, similar to stock prices, variations in marginal Q are driven by shocks to ex-

pected cash flows (expected marginal profits in the case of marginal Q) as well as by discount rate

shocks (shocks to expected investment returns in the case of marginal Q). That aggregate invest-

ment varies substantially over the business cycle implies that the marginal value of capital is also

highly volatile. In the time series, aggregate investment (and consequently also aggregate marginal

Q) negatively predicts stock returns (Cochrane, 1991). Simultaneously aggregate investment and

marginal Q should also be related to future marginal profits. In the cross-section, firms with

low investment (implying low marginal Q) have on average higher subsequent stock returns than

firms with high investment (Anderson and Garcia-Feijoo, 2006, Xing, 2008, and Cooper, Gulen,

and Schill, 2008). Cross-sectional differences in investment (and marginal Q) should, however,

also forecast cross-sectional differences in subsequent marginal profits. The relative importance of

these two contributing factors to the time-series and cross-sectional variations of marginal Q and

investment remains largely open empirical questions.

Exploring these questions is important for several reasons. First, investment is an immensely

important macroeconomic variable as it facilitates economic growth. Second, investment varies

substantially over the business cycle, and more so than output or consumption. Third, efficient

allocation of capital is very important for the economy. Studying the cross-sectional determinants of

investment and marginal Q contributes to our understanding of resource allocation in the economy.

Fourth, the exploration informs us of the drivers of managers’ valuations of their firms, as opposed

to studying the sources of fluctuations of investors’ valuations of these firms (which is obtained by

examining the sources of fluctuations in equity valuation ratios, such as the dividend-to-price ratio,

or the book-to-market ratio).

Extensive literature studies the sources of fluctuations in (scaled) stock prices (for example,

Cochrane, 2008, 2011). In contrast, the determinants of variations in marginal Q are relatively
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unexplored. Our contribution is twofold. Our first contribution is to explore and quantify the roles

of the sources of fluctuations in the time-series of realized marginal Q at both the aggregate level

and at the portfolio level. In our setting, marginal Q is a linear function of investment. Thus,

by exploring the sources of fluctuations in marginal Q we also explore the sources of variation in

investment. The observation that time-series variation in marginal Q and investment is driven by

discount rate fluctuations is not new. For example, Cochrane (1991) shows that the aggregate

investment-to-capital ratio negatively predicts future stock market returns at quarterly and annual

horizons. This finding suggests that investment responds to discount rate variations at least to some

extent, implying that the marginal value of capital also varies due to changes in discount rates.

The contribution of our analysis is that by using a structural model of investment, a present-value

relation, and a VAR-based variance decomposition, we are able to measure exactly how much the

time-series variation in expected marginal profits and in expected investment returns contribute

each to the time-series variation of marginal Q and investment at both the aggregate level as well

as at the portfolio level.

Our second contribution concerns the cross-sectional variation of portfolios’ average marginal Q

and average investment. We derive a decomposition for the cross-section of average marginal Q (and

given the linear relation between marginal Q and investment, also for the cross-section of average

investment). This relation implies that portfolios with high average marginal Q (and average

investment) should have higher average marginal profits and/or lower average investment returns.

Relatedly, there is a vast literature examining the investment-cash flow sensitivity (starting with

Fazzari, Hubbard, and Petersen, 1988). Marginal profits are somewhat related to cash flows and

hence the relation of that literature to our paper. That literature does not explore the relative roles

of average marginal profits and average investment returns in driving the cross-sectional variation

in average investment and average marginal Q. To the best of our knowledge our paper is the first

to quantify the roles of cash flows (average marginal profits) and discount rates (average investment

returns) in driving the cross-section of portfolios’ average investment and average marginal Q.
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In order to study the roles of expected marginal profit shocks and discount rate shocks in

driving marginal Q, we employ a classical model of optimal investment (as in Liu, Whited, and

Zhang, 2009) and derive a present-value relation for the model-implied marginal Q. In the model,

the firm’s optimal investment behavior implies that marginal Q, that is, the marginal value of

capital, is equal to the marginal cost of investment. Assuming a (standard) functional form for the

adjustment cost function implies that the marginal cost of investment is a linear function of the

investment-to-capital ratio. Belo, Xue, and Zhang (2013) use the same model to infer marginal Q

from investment data. Thus, our approach is the supply approach to valuation, as in Belo et al.

(2013) who use the supply side, that is, the firm’s optimization conditions, to identify marginal Q.

Whereas stock prices are determined by investors in the stock market, investment is undertaken

by the firm’s manager. Thus, our approach of using investment data to infer marginal Q from the

marginal adjustment cost of investment implies that we are studying the marginal value that firms’

managers, not necessarily investors, attribute to an extra unit of capital.

In the estimation of the model’s parameters, namely the share of capital in profit and the adjust-

ment cost parameter, we follow Gonçalves, Xue, and Zhang (2020) and correct for aggregation bias

when conducting the GMM estimation (see also Belo, Gala, Salomao, and Vitorino, 2022). That

is, we estimate the model’s parameters by using firm-level data to match two moment conditions.

First, we match portfolio-level stock returns to a weighted average of firm-level levered investment

returns (the investment return moment). Second, we match weighted average Tobin’s marginal Q

in the data to a weighted average model-implied Tobin’s Q (the valuation moment). Following the

parameter estimation, we construct time series of marginal Q, marginal profits, and investment

returns at the aggregate level.

Armed with the estimated time-series for investment returns and its components, we derive

a dynamic present-value relation for the log marginal Q (q), in which q is positively correlated

with both future multi-period log marginal profits and the future q at some terminal date, and

negatively correlated with future multi-period log investment returns. This present-value relation is
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analogous to the present-value relation associated with the log stock price derived in Campbell, Lo,

and MacKinlay (1997) and is similar to the present-value relation derived in Lettau and Ludvigson

(2002). Such relationship gives rise to a variance decomposition for q at each forecasting horizon,

which contains the fractions of the variance of current q attributed to the predictability of future

investment returns, marginal profits, and q.

We use two methods to estimate empirically the variance decomposition for q: first-order re-

stricted VAR (as in Cochrane, 2008), and first-order unrestricted VAR (as in Larrain and Yogo,

2008 and Maio and Xu, 2020). For aggregate marginal Q (and thus, aggregate investment) the

two methods produce qualitatively similar variance decompositions at both intermediate and long

horizons. Specifically, the bulk of variation in q turns out to be investment return predictability,

with predictability of the marginal profitability of capital assuming a secondary role (although sta-

tistically significant when the decomposition is based on the restricted VAR). On the other hand,

predictability of future q only plays a relevant role at very short horizons.1 To have an idea of

these predictability patterns, the shares of long-run (infinite horizon) investment return (marginal

profits) predictability (at the aggregate level) are 0.61 (0.37) and 0.80 (0.18) under the restricted

and unrestricted VAR approaches, respectively. In fact, in the case of the variance decomposition

based on the unrestricted VAR, we cannot reject the null that all the variation in q stems from

long-run investment return predictability.

These findings are robust to a host of robustness checks. Specifically, the findings are robust

to using median stock returns and investment returns instead of value-weighted stock returns and

investment returns, as well as to conducting the GMM estimation of the structural investment

model based on decile portfolios sorted by marginal Q. Our findings are also robust to using

a bootstrap simulation (based on the restricted VAR), which represents an alternative statistical

inference for the implied horizon-specific predictive slope estimates (that complements the standard

asymptotic inference). Further, we obtain qualitatively similar results by estimating the variance

1This finding is consistent with Eberly, Rebelo, and Vincent (2012) that lagged investment is a strong predictor
of current investment.
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decomposition for q based on long-horizon regressions (direct approach) rather than relying on

the first-order VAR (indirect approach). The findings are also robust to varying the values of the

capital depreciation parameter. As an additional robustness check, we re-estimate the technology

parameters using the methodology in Liu, Whited, and Zhang (2009). This methodology does not

account for aggregation bias. Reassuringly, the long-run predictability mix is qualitatively similar

to that in our benchmark setting, even though the structural parameter estimates differ to some

degree: the discount rate channel explains most (71%) of the variation in q at the aggregate level.

Given that the share of capital in production and the adjustment cost parameters are estimated

with errors, we conduct comparative statics by experimenting with several possible values of these

parameters. We test several combinations of these parameters such that the fraction of adjustment

costs in output varies in the range of 0% to 20% (the range surveyed in Bloom, 2009). Importantly,

we use the same values of investment and sales as in the data, but varying the parameters yields

different series of marginal profits, q, and investment returns. We find the following. First, the share

of investment return (marginal profits) predictability declines (increases) with the share of capital

parameter. Intuitively, if the share of capital is zero, then marginal profits are constant at zero and

are not predictable at all. As the share of capital rises, the relative predictability of marginal profits

versus investment returns rises. Second, the shares of return (marginal profits) predictability tend

to increase (decrease) monotonically with the adjustment costs parameter. Intuitively, if adjustment

costs are zero, marginal Q equals to one at each point in time, implying that investment returns are

less time-varying. Overall, for a wide range of plausible parameter values the bulk of the variation

in q is driven by investment return predictability.

We choose to explore the determinants of the time-series fluctuations not only for aggregate

marginal Q (and aggregate investment), but also for portfolio-level marginal Q (and investment).

Our purpose in doing so is to examine whether the results at the aggregate level carry over to a more

disaggregated level.2 Hence, we extend the time-series variance decomposition analysis for equity

2Relatedly, at the aggregate portfolio level, the equity discount rate channel dominates the cash-flow channel
(Campbell, 1991, Campbell and Ammer, 1993, and Cochrane, 2008, 2011). However, at the individual firm level,
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portfolios sorted on the book-to-market ratio, asset growth, and operating profitability. These

equity characteristics are associated with some of the major anomalies in asset pricing. Each group

of decile portfolios (e.g., asset growth deciles) has a different GMM estimation of the structural

investment model and thus a different set of estimates for the two key investment parameters. Such

analysis enables us to put in perspective the evidence obtained for the aggregate portfolio. Overall,

the results suggest that what drives the variation in the q of different equity portfolio groups is

the investment return channel, with the cash-flow channel being marginal in most cases. Hence,

this result is consistent with the evidence obtained for the market portfolio. However, there are

some important differences on the long-run predictability mix within the cross-section of firms. In

particular, predictability of future marginal profits plays a critical role in explaining the variation

of q for low-profitability firms.

In the last part of the paper, we estimate a variance decomposition for average q in the cross-

section of the 30 equity portfolios, which represents an important part of our analysis.3 Under the

cross-sectional decomposition, firms/portfolios that have a higher average q tend to register a higher

average marginal profitability of capital and/or a lower average investment return. Hence, simi-

larly to the dynamic present-value relation, there is a positive (negative) correlation between q and

marginal profitability (investment return). In order to obtain the shares in the cross-sectional vari-

ance decomposition, we estimate cross-sectional regressions of average return or average marginal

profits onto average q. The results show that the cash-flow channel is the source of cross-sectional

variation in average q, that is, firms with higher average q are firms with higher average marginal

profitability of capital, instead of being firms with lower average investment return. In fact, average

investment return is positively correlated with average q, which is inconsistent with the prediction

Vuolteenaho (2002) finds that individual stock returns are mainly driven by cash-flow news. Maio and Santa-Clara
(2015) find that in contrast to the aggregate stock market portfolio, for portfolios of small and value stocks dividend
yields are mainly related to future dividend changes and less so to future returns.

3We choose to study the cross-section of marginal Q of portfolios sorted on characteristics known to generate large
spreads in stock returns. In the model we employ, (levered) investment returns are equal to stock returns. Hence,
our use of these portfolios provides a potentially large spread in investment returns increasing the power of the tests
relating average investment returns to average marginal Q.
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of the cross-sectional decomposition. This implies that from an economic viewpoint all the cross-

sectional variation in average q stems from the cash-flow channel. This result is in clear contrast

with the findings for the time-series analysis, in which the discount-rate channel explains most of

the variation of q (associated with either the market or equity portfolios) over time.

Related to our cross-sectional tests, Cochrane (2011) finds mixed evidence on the driving forces

of the cross-sectional variation of the dividend-to-price ratios of portfolios sorted on market cap-

italization or the book-to-market ratio.4 In related work, Cohen, Polk, and Vuolteenaho (2003)

decompose the cross-sectional variance of firms’ book-to-market ratios. They find that in contrast

to aggregate time-series results, variation in expected stock returns causes only a relatively small

fraction of the cross-sectional variance of book-to-market ratios. The bulk of the dispersion in

book-to-market ratios is explained by expected profitability spreads, as well as the persistence of

valuation ratios. This result resembles our cross-sectional result. Cohen et al. (2003) note that

“If the cross section of valuation ratios is largely driven by rational cash-flow expectations, the

conclusion that aggregate valuation ratios are exclusively driven by irrational investor sentiment is

perhaps premature.” Similarly, our result that the cross-section of marginal Q and investment is

driven solely by average marginal profit spreads implies that managers’ investment decisions are

closely related to economic fundamentals.

The paper most closely related to ours is Abel and Blanchard (1986), who also analyze the

empirical implications of a present-value relation for marginal Q (in levels) at the aggregate level.

The main goal of Abel and Blanchard (1986) is to compute a marginal Q measure (i.e. the present

value of future marginal profits) by using a VAR to extract expected marginal profits and discount

rates and understand how its two components (namely expected future marginal profits and dis-

count rates) drive its variability over time. Abel and Blanchard (1986) then relate the marginal Q

series to investment in a separate step. They conclude that variations in marginal Q are due more

to discount rate variations than to variations in expected marginal profits. They also find that the

4As shown in his Table AIV (first two columns), the average stock return channel is dominant for the book-to-
market portfolios, while the average dividend growth channel is dominant for the size portfolios.
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marginal profits component has a larger and more significant effect on investment than the cost of

capital component.

Among several other differences in the empirical designs of the two studies, there are several

major differences. First, Abel and Blanchard extract from a VAR estimation both discount rates

and expected marginal profits from which they compute a present-value series (i.e. a time-series of

the marginal values of capital). They then compute the standard deviations of the two components

of Q and find that discount rates vary more. This leads them to conclude that discount rates

contribute more to the variation of marginal Q than expected marginal profits. However, they do

not conduct a proper variance decomposition in the sense that they do not calculate the weights

associated with the variance and covariance terms, as well as the corresponding standard errors.5

Thus, they are not able to formally quantify how important shocks to discount rates and expected

profits are in terms of driving the dynamics of marginal Q. That is, their results cannot inform

us of the statistical and economic significance of the driving forces of Q. In contrast, our variance

decomposition informs us how much of the variation in q is due to predictability of investment

returns and how much is due to predictability of marginal profits, while also quantifying the statis-

tical significance of these effects. Hence, our paper focuses on the predictive information in the log

marginal Q for future investment returns and marginal profits, something that is not addressed in

Abel and Blanchard (1986). Second, Abel and Blanchard (1986) study the aggregate time-series

level of marginal Q and investment. However, in this study we also explore the determinants of

the time-series and cross-sectional fluctuations in portfolio-level marginal Q and investment, which

represents an important analysis in the paper.

Lettau and Ludvigson (2002) use a dynamic present-value relation for q to motivate their

empirical design, in which traditional predictors of the equity premium (such as the dividend yield,

term spread, or default spread) are used to forecast future aggregate investment growth (controlling

5See, for example, Campbell (1991), Campbell and Ammer (1993), Maio (2014), and Guo, Kontonikas, and Maio
(2020), for properly defined variance decompositions (based on the variances and covariances of the components)
associated with stock and bond returns.
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for investment-based variables). There are two key differences between the two papers. First, Lettau

and Ludvigson (2002) do not compute a variance decomposition for q and hence they do not test

the relative importance of discount rate shocks and expected marginal profits shocks in driving q.

Second, the investment-based predictors that they employ in forecasting investment growth (such

as the average Q or profit growth) are not directly obtained from a structural model of investment.6

Yashiv (2016) estimates a variance decomposition of the aggregate log marginal Q-to-productivity

ratio. The present-value and variance decomposition associated with that variable are very distinct

from those associated with q. This implies that our time-series evidence for the aggregate portfolio

is not directly comparable to Yashiv’s results.7

It is important to note that the discussion in the literature regarding the investment-cash flow

sensitivity is irrelevant for our purpose. That is, the present value relation we derive holds regardless

of whether or not firms’ investment is sensitive to contemporaneous cash flows. According to our

present-value relation, the model-implied marginal Q (which is a linear function of the investment to

capital ratio) must always forecast future values of the marginal profit of capital, future investment

returns, or both.

The rest of the paper is organized as follows. In Section 2, we present a model of a firm’s optimal

investment decisions. Section 3 describes the data and the econometric methodology for estimating

the production and adjustment costs parameters and the components of investment returns. Section

4 provides the results for the time-series variance decomposition for the aggregate portfolio, while

Section 5 contains a sensitivity analysis. In Sections 6 and 7, we conduct respectively time-series

and cross-sectional variance decompositions for equity portfolios. The paper concludes in Section

8.

6Chen, Da, and Larrain (2016) find that discount rates play no role in driving shocks to the time-series of aggregate
investment growth. Importantly, they study a present-value relation that pertains to total investment, which includes
investment in liquid assets such as cash and cash equivalent assets. Most likely, investment in cash does not incur
adjustment costs (see, for example, Gonçalves et al., 2020) and therefore the cash component should not forecast
future returns or cash flows. This renders their findings difficult to interpret.

7Moreover, Yashiv (2016) relies on a restricted VAR, which is likely to yield a severe misspecification on the
estimated long-run variance decomposition (see the discussion in Cooper, Maio, and Yang, 2021).
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2 The Background Model

In this section, we provide the details of the underlying structural investment model.

2.1 Theoretical model

We employ the model in Liu, Whited, and Zhang (2009) in order to derive our variables of

interest. The firm is assumed to have linearly homogenous production function and adjustment

cost function. The factors of production are capital, as well as costlessly adjustable inputs, such

as labor. The firm is a price taker, and in each period chooses optimally the costlessly adjustable

inputs to maximize operating profits, defined as revenues minus the cost of the costlessly adjustable

inputs. Taking operating profits as given, the firm chooses optimal investment and debt to maximize

the value of equity.

Let Π (Ki,t, Xi,t) denote the maximized operating profits of firm i at time t, where K is the

stock of capital and X is a vector of aggregate and idiosyncratic shocks. The firm is assumed to

have a Cobb-Douglas production function with constant returns to scale. The marginal operating

profit of capital is given by

∂Π (Ki,t, Xi,t)

∂Ki,t
= α

Yi,t
Ki,t

, (1)

where α > 0 is the share of capital and Y is sales.

We assume standard quadratic functional form for the adjustment cost function,

Φ (Ii,t,Ki,t) =
a

2

(
Ii,t
Ki,t

)2

Ki,t, (2)

where a > 0 is the adjustment cost parameter. Taxable profits equal operating profits minus capital

depreciation minus interest expenses.
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The firm’s investment return is given by

Ri,t+1 =

(1− τt+1)

[
α
Yi,t+1

Ki,t+1
+ a

2

(
Ii,t+1

Ki,t+1

)2]
+ τt+1δ + (1− δ)

[
1 + (1− τt+1) a

Ii,t+1

Ki,t+1

]
[
1 + (1− τt) a Ii,t

Ki,t

] . (3)

The marginal value of an additional unit of capital appears in the numerator, whereas the marginal

cost of investment is in the denominator. (1− τt+1)αYi,t+1/Ki,t+1 is the after-tax marginal op-

erating profit of capital, (1− τt+1) (a/2) (Ii,t+1/Ki,t+1)
2 is the after-tax marginal reduction in ad-

justment costs in period t+ 1 that stems from the existence of an extra unit of capital installed in

period t, τt+1δ is the marginal depreciation tax shield, and (1− δ) [1 + (1− τt+1) a (Ii,t+1/Ki,t+1)]

is the marginal value at t+ 1 of the undepreciated part of the unit of capital installed in period t

(which under optimal investment at t+ 1 is equal to the marginal cost of investment at t+ 1).

We define marginal profit of capital, M , as follows:

Mi,t+1 ≡ (1− τt+1)

[
α
Yi,t+1

Ki,t+1
+
a

2

(
Ii,t+1

Ki,t+1

)2
]

+ τt+1δ. (4)

Thus, the marginal profit of capital is the sum of the after-tax marginal operating profit of cap-

ital and reduction in adjustment costs due to the existence of the extra unit of capital, plus the

depreciation shield. Optimal investment entails equating the marginal value of capital (Q) to the

marginal cost of investment. Hence, optimal investment behavior implies that

Qi,t+1 = 1 + (1− τt+1) a
Ii,t+1

Ki,t+1
. (5)

Therefore, the investment return for firm i can be rewritten as

Ri,t+1 =
Mi,t+1 + (1− δ)Qi,t+1

Qi,t
, (6)

and the levered investment return RIwi,t+1 depends on the investment return Ri,t+1, the after-tax
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corporate bond return RBai,t+1, and the market leverage wi,t:

RIwi,t+1 =
Ri,t+1 − wi,tRBai,t+1

1− wi,t
. (7)

2.2 A model of aggregation and aggregate investment return

Given the firm-level parameters: the capital share (α) and the adjustment cost parameter (a),

using Equation (4) to (6), for each firm, we can construct a time series of the firm’s investment

returns and the associated two components: the firm’s marginal profitability of capital (M) and

the firm’s marginal value of capital (Q). At the aggregate market level, we need to construct the

aggregate investment return and a similar representation as Equation (6) but with two aggregate

components, namely aggregate marginal profitability of capital and aggregate marginal value of

capital. This is needed in order to derive the present-value relation connecting the aggregate

marginal value of capital to future aggregate marginal profitability of capital and future aggregate

investment returns. In this section, we present a model of aggregation of firms and present the

model-implied weights. Our derivation follows Cooper et al. (2021).

Let N be the number of firms in the market. Each firm optimizes by equating the marginal

adjustment costs of investment to the marginal value of capital. Each firm makes an investment

Ii,t at time t, and exiting time t with a level of capital stock Ki,t+1. Given the constant returns to

scale assumption, applying the result of Hayashi (1982) implies that the marginal value of capital

is equal to the average value of capital, and hence the firm’s value at the end of time t is given by

Ki,t+1Qi,t where Qi,t is the marginal value of capital at the end of time t.8 The aggregate market

value is therefore
N∑
i=1
Ki,t+1Qi,t. We measure the aggregate marginal value of capital at the end of

time t, denoted by Qt, by assuming that Qt can price the total capital stock value at the end of

8This notation is consistent with the notation in Belo, Xue, and Zhang (2013).
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time t if multiplied by the total capital stock at the end of time t, as follows:

(
N∑
i=1

Ki,t+1

)
Qt =

N∑
i=1

Ki,t+1Qi,t. (8)

Equivalently, Qt can be expressed as

Qt =

N∑
i=1

 Ki,t+1

N∑
j=1

Kj,t+1

Qi,t. (9)

Thus, Qt is a weighted average of individual firms’Q values where the weight of firm i is proportional

to firm i’s capital stock at the end of time t. Notice that an extra unit of capital in the economy

invested according to the existing capital allocation in the economy, that is, invested proportionally

to the fraction of capital of each firm from the total capital in the economy will indeed have a value

of Qt.
9

For the same N firms at time t + 1, we can measure the aggregate marginal Q at time t + 1,

Qt+1, by assuming that Qt+1 can price the total firm value at t+ 1:

Qt+1 =
N∑
i=1

(
Ki,t+2∑N
j=1Kj,t+2

)
Qi,t+1.

We assume that an extra unit of capital for the aggregate economy at time t is invested according

to the firms’ proportion of their capital stock at the end of time t. Therefore, the aggregate marginal

profit of that extra unit of capital (Mt+1) is a capital stock weighted average of firms’ marginal

profits of capital. That is,

Mt+1 =
N∑
i=1

 Ki,t+1

N∑
j=1

Kj,t+1

Mi,t+1. (10)

9The allocation of an extra unit of capital in the aggregate economy according to firms’ proportions of capital
stocks keeps unchanged the distribution of capital in the economy.
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Finally, we define the aggregate investment return as the ratio of the aggregate marginal benefit

of investment at time t+ 1 to the aggregate marginal cost of investment at time t:

Rt+1 ≡
Mt+1 + (1− δ)Qt+1

Qt
. (11)

For an investor who holds the economy’s stock of capital, an extra unit of capital at time t

costs Qt. This extra unit of capital generates profit Mt+1 at time t+ 1 and depreciate to 1− δ unit

exiting time t+ 1 with a continuation value of (1− δ)Qt+1.

3 Estimating the Investment Return and its Components

In this section, we provide structural estimates of firm-level parameters and aggregate measures

of the investment return and the respective components, which are based on the model presented

in the last section.

3.1 Methodology

We follow Gonçalves, Xue, and Zhang (2020) and estimate the firm-level parameters, namely

the capital share (α) and the adjustment cost parameter (a), using one-step GMM to fit the invest-

ment Euler equation moment for each testing portfolio jointly with an additional moment, namely

the valuation moment as in Belo, Xue, and Zhang (2013). We include the valuation moment in

the estimation because in the benchmark setting we consider the aggregate market portfolio as the

testing portfolio. Hence, using only the investment Euler equation leads to an unidentified estima-

tion with one moment but two parameters (the capital share and the adjustment cost parameter).10

With two moments and two parameters, the estimation is exactly identified and the two moments

fit perfectly.

Specifically, for a given set of testing portfolios (indexed by j), the first set of moment conditions

10Similarly, Belo, Xue, and Zhang (2013) base their tests on both the investment Euler equation and the valuation
equation.
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corresponds to testing whether the average stock return equals the average levered investment return

for each testing portfolio j,

erj ≡ ET [RSj,t+1 −RIwj,t+1(α, a)] = 0, (12)

where ET (·) denotes the sample moment, RSj,t+1 is the portfolio stock return, and RIwj,t+1 is the

portfolio levered investment return that depends on parameters α and a.

The second set of moment conditions tests whether the average Tobin’s Q in the data equals

the average Q predicted by the model,

eqj ≡ ET

[
Q̃j,t −

(
1 + (1− τt)a

Ij,t
Kj,t

)
Kj,t+1

Aj,t

]
= 0, (13)

where Aj,t is the book value of assets and Q̃j,t is the Tobin’s Q in the data defined as the ratio of

the sum of market equity and total debt to the total assets, Q̃j,t ≡ (Pj,t +Bj,t+1) /Aj,t, where Pj,t

is the market value of the firm’s equity and Bj,t+1 is the firm’s book value of debt.

Firm-level accounting variables and, thus, firm-level investment returns are subject to the issue

of outliers. The outliers in firm-level investment returns can contaminate the aggregate portfolio-

level investment returns and lead to noisy parameter estimates from the GMM estimation. To

alleviate the impact of outliers, we follow Gonçalves, Xue, and Zhang (2020) and construct firm-level

investment returns using winsorized firm-level accounting variables, then compute value-weighted

portfolio levered investment returns to match with value-weighted portfolio stock returns.11 As a

robustness check (see Section 5), instead of winsorization, we also follow an alternative approach

that is employed in Belo, Gala, Salomao, and Vitorino (2022), where portfolio median is used to

aggregate firm-level investment returns to portfolio level since the median is known to be robust to

outliers.

11We winsorize firm-level accounting variables at the 1-99% level.
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3.2 Data

We largely follow Gonçalves, Xue, and Zhang (2020) and Belo, Xue, and Zhang (2013) in

measuring accounting variables and in aligning their timing with the timing of stock returns. Our

sample consists of all common stocks on NYSE, Amex, and Nasdaq from 1963 to 2018. The firm-

level data are from the merged CRSP and COMPUSTAT industrial database. We include all firms

with fiscal year ending in the second half of the calendar year. We exclude firms with primary

standard industrial classifications between 4900 and 4999 (utilities) and between 6000 and 6999

(financials). We also delete firm-year observations for which total assets, capital stock, or sales are

either zero or negative.

Capital stock (Ki,t) is net property, plant, and equipment (Compustat annual item PPENT).

Investment (Ii,t) is capital expenditures (Compustat annual item CAPX) minus sales of property,

plant, and equipment (Compustat annual item SPPE, zero if missing). Total debt (Bi,t+1) is long-

term debt (Compustat annual item DLTT, zero if missing) plus short-term debt (Compustat annual

item DLC, zero if missing). Ai,t is total assets (Compustat annual item AT). Market equity (Pi,t)

is the stock price per share (CRSP item prc) times the number of shares outstanding (CRSP item

shrout). Market leverage (wi,t) is the ratio of total debt to the sum of total debt and market

equity. We follow Cochrane (1991) and assume a depreciation rate (δ) equal to 0.1. Output (Yi,t)

is sales (Compustat annual item SALE). Market leverage, wi,t, is the ratio of total debt to the

sum of total debt and the market value of equity. We measure the tax rate (τt) as the statutory

corporate income tax (from the Commerce Clearing House, annual publications). The after-tax

corporate bond returns (RBai,t+1) are computed from RBi,t+1 using the average of tax rates in year t

and t + 1. For the pre-tax corporate bond returns (RBi,t+1) we use the ratio of total interest and

related expenses (Compustat annual item XINT) scaled by the total debt (Bi,t+1).
12

At the end of June of year t, we construct the aggregate “market” portfolio. That is, a portfolio

whose value is the value of the aggregate capital stocks and whose return is the aggregate investment

12As shown in Gonçalves, Xue, and Zhang (2020), doing so increases the sample coverage by 12.7% as compared
to the prior studies that use credit rating imputation such as Liu, Whited, and Zhang (2009).
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returns. Alternatively, we sort all stocks on Tobin’s Q at the end of June of year t into deciles

based on the NYSE breakpoints. For each testing portfolio, we compute annual value-weighted

stock returns from July of year t to June of year t + 1. We construct annual levered investment

returns to match with annual stock returns and annual valuation ratios to match with annual

Tobin’s Q. To construct the matching annual levered investment returns, we use capital at the end

of fiscal year t − 1 (Ki,t), the tax rate, investment, and capital at the end of year t (τt, Ii,t, and

Ki,t+1), as well as other variables at the end of year t+ 1 (τt+1, Yi,t+1, and Ii,t+1). To match with

Q̃i,t for portfolios formed at the end of June of year t, we take Ii,t from the fiscal year ending in

calendar year t and Ki,t from the fiscal year ending in year t− 1.13

3.3 Structural parameter estimates

In the basecase GMM estimation, the testing portfolio is the aggregate stock market portfolio

and the portfolio returns are measured as the value-weighted returns. The estimation is exactly

identified and the two moments fit perfectly. The estimate of capital share (α) is 0.08, which is

similar to the results in Gonçalves, Xue, and Zhang (2020).14 The 8% estimate seems rather small

relative to common values assigned to this parameter in the macroeconomic literature. However,

this estimate refers to the firm-level, not the aggregate level. When we conduct the GMM estimation

using the Liu, Whited, and Zhang (2009) methodology (i.e. estimating the parameters at the

aggregate portfolio-level) our estimated share of capital rises to 0.23 which is closer to the value

assigned to this parameter in the macroeconomic literature, and our main results turn out similar.15

Relatedly, Basu and Fernald (1997) find that the estimates of returns to scale generally rise with

the level of aggregation.

13Compustat records both stock and flow variables at the end of year t. In the model, however, stock variables dated
t are measured at the beginning of year t, and flow variables dated t are over the course of year t. To capture this
timing difference, we follow Liu, Whited, and Zhang (2009) and take, for example, for the year 2003 the beginning-
of-year capital (Ki,2003) from the 2002 balance sheet and any flow variable over the year, such as Ii,2003, from the
2003 income or cash flow statement.

14Gonçalves, Xue, and Zhang (2020) report estimates of capital share varying from 5.04% to 7.53% across different
testing portfolios in Table 5 Panel B.

15Barkai (2020) finds that the share of capital since 1985 has been mostly well below 0.25.
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The estimate of adjustment cost parameter (a) is 15.18, which is higher than the corresponding

estimates in Gonçalves, Xue, and Zhang (2020) based on testing portfolios different from our setup,

but similar to the estimates in Liu, Whited, and Zhang (2009).16 The reason for the difference

in the adjustment cost estimate is that we are fitting both the investment return moment and

the valuation moment, whereas Gonçalves et al. (2020) fit only the investment return moment.

Untabulated results when using the same portfolios and sample as in their study and fitting both

the return and valuation moments produce very similar capital share and adjustment cost estimates

to those estimates that we report. The estimated magnitude of the adjustment costs is 11.09% of

sales, which is in line with those reported in prior studies.17

Given the parameters α and a that are estimated using firm-level data, we compute the aggregate

investment return and its components, by plugging these parameter estimates in Equations (9) to

(11), together with firm-level accounting variables.

4 Variance Decomposition for q: Time-Series Analysis with Mar-

ket Portfolio

In this section, we evaluate the forecasting performance of q for both future investment returns

and marginal profits by deriving and estimating a variance decomposition for the log Q. The

objective is to assess what are the sources of predictability that drive the variation in aggregate log

Q over time.

16Gonçalves, Xue, and Zhang (2020) report estimates of adjustment cost parameter varying from 0.72 to 5.66 in
Table 5 (Panel B) and from 1.63 to 8.11 in Table 3 (Panel B). Liu, Whited, and Zhang (2009) report estimates varying
from 11.5 to 28.9 when matching two moments: expected returns and variances. Belo et al. (2022) (e.g., their Table
3) report adjustment costs in the range of 21 to 29 in the one-capital specification.

17For example, Cooper and Priestley (2016) find that implied adjustment costs represent 12.21% of sales across a
host of manufacturing industries. Bloom (2009) surveys the estimates of convex adjustment costs to be between zero
and 20% of revenue.
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4.1 A present-value relation

We start by deriving a dynamic present-value relation for the log Q, which represents the basis

for the empirical analysis conducted in the rest of the section.

Our methodology relies on the definition of the realized gross investment return (R) presented

in Equation (11). This definition is analogous to the usual definition of the gross stock return

with Q playing the role of the stock price and M being the analog of dividends. By conducting a

log-linear transformation of the investment return in Equation (11), and proceeding along the lines

of Campbell and Shiller (1988) and Campbell, Lo, and MacKinlay (1997), we derive the following

approximate difference equation in log Q,

qt ≈ const.+ ρqt+1 − rt+1 + (1− ρ)mt+1, (14)

where qt ≡ ln(Qt) is the log Q at time t; rt+1 ≡ ln(Rt+1) represents the log investment return at

time t + 1; and mt+1 ≡ ln(Mt+1) denotes the log marginal profit at time t + 1. In this setting,

variables denoted with lower-case letters represent the logs of the corresponding variables in upper-

case letters.

ρ plays an important role in the analysis, representing a (log-linearization) discount coefficient

that depends on the mean of the log marginal profits-to-Q ratio (mqt ≡ mt − qt),

ρ ≡ eln(1−δ)−mq

1 + eln(1−δ)−mq
,

where mq represents the average of mqt.

By iterating the equation above forward, we obtain the following present-value dynamic relation

for q at each forecasting horizon H:

qt ≈ const.−
H∑
h=1

ρh−1rt+h +

H∑
h=1

ρh−1(1− ρ)mt+h + ρHqt+H . (15)
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Under this present-value relation, current q (qt) is positively correlated with both future multi-

period log profits (mt+h) and the future q at terminal date t + H (qt+H), while being negatively

correlated with future multi-period log investment returns (rt+h). This present-value relation is

analogous to the present-value relation associated with the stock price derived in Campbell, Lo,

and MacKinlay (1997), where q replaces the log stock price (p), m is analogous to the log dividend

(d), and r replaces the log stock return.

At an infinite horizon, by assuming the following transversality (or no-bubbles) condition,

lim
H→∞

ρHqt+H = 0,

we obtain the following long-run present-value relation:

qt ≈ const.−
∞∑
h=1

ρh−1rt+h +
∞∑
h=1

ρh−1(1− ρ)mt+h. (16)

Hence, at very long horizons, only predictability of future investment returns and predictability

of marginal profits drives the variation in the current q.18 Which of these two components matters

most in terms of driving the dynamics of q remains an empirical question, which will be addressed

in the following sections.

Table 1 (Panel A) presents the descriptive statistics for the variables in the present-value relation

for q. Both the investment return and q have a volatility of 10%. On the other hand, both q (with

a first-order autocorrelation of 0.61) and m (0.54) are considerably more persistent than r (0.12).

Figure 1 plots the time series of r, m, and q. All three variables appear to be mean-reverting to a

large degree, and hence, stationary. Both r and m seem to be procyclical variables, as they tend

to decline around most recession periods and rise during economic booms. On the other hand, q

appears to be less correlated with the business cycle.

Panel B of Table 1 contains the correlations among the three variables. The correlation between

18Lettau and Ludvigson (2002) derive a related dynamic accounting decomposition for the log Q. However, their
present-value relation is based on a second-order Taylor expansion.
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m and q is very high, at 0.95. Thus, times of high marginal profitability of capital correspond to

times when both the marginal value of capital and investment are high. We can also see that the

investment return is positively correlated with both m and q, albeit to a lower degree, as indicated

by the correlations around 0.60. The reason is that shocks to both marginal profits and Q are also

shocks to contemporaneous returns.

Regarding the critical parameter ρ, which is a function of the average mq ratio, we obtain

an estimate of 0.85 for our sample period (1964–2018). This estimate is somewhat smaller than

corresponding estimates for the analogue parameter values in present-value relations associated with

stock returns, which are typically above 0.90 (see Campbell and Vuolteenaho, 2004; Cochrane, 2008,

2011; Maio, 2013; Maio and Santa-Clara, 2015, among others).19

4.2 Restricted VAR

Following Cochrane (2008), we specify the following first-order restricted VAR,

rt+1 = πr + λrqt + εrt+1, (17)

mt+1 = πm + λmqt + εmt+1, (18)

qt+1 = πq + φqt + εqt+1, (19)

where the εs represent forecasting errors. This VAR system is estimated by multiple-equation OLS

(see Hayashi, 2000), with Newey and West (1987) t-statistics (computed with one lag).20

By combining the VAR above with the present-value relation in Equation (15), we obtain an

approximate identity involving the predictability coefficients associated with qt, at each forecasting

19In those studies, the value of ρ is either calibrated or estimated as a function of the average log dividend-to-price
ratio.

20Using zero lags (White, 1980) leads to similar statistical inference.
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horizon H:

1 ≈ bHm − bHr + bHq , (20)

bHr ≡ λr
1− ρHφH

1− ρφ
,

bHm ≡ (1− ρ)λm
1− ρHφH

1− ρφ
,

bHq ≡ ρHφH .

This equation can be interpreted as a variance decomposition for q. The predictive coefficients,

−bHr , bHm, and bHq , represent the fraction of the variance of current q attributed to the predictability

of future investment returns, marginal profits, and q, respectively. Hence, these slopes measure the

weight (of the predictability) of each of these variables (
∑H

h=1 ρ
h−1rt+h,

∑H
h=1 ρ

h−1(1 − ρ)mt+h,

and ρHqt+H) in terms of driving the variation in the current q. This relation also imposes a

quantitative constraint on the predictability associated with q in the sense that the slopes need to

add (approximately) to one. Hence, if at some forecasting horizon H, qt forecasts neither future

investment returns nor future marginal profits, then it must forecast its own future value at time

t+H. Otherwise q would not vary over time, something that is counterfactual, as discussed above.

In this variance decomposition, the predictive slopes at each forecasting horizon H are obtained

from the one-period VAR slopes. Cochrane (2008, 2011) specifies a similar variance decomposition

for the dividend yield. The expressions above imply that the relative shares of predictability (e.g.,

bHr /b
H
m) are invariant with the forecasting horizon. Further, the multi-horizon slopes represent

mechanical transformations of the one-year VAR slopes, which means that the short-run VAR

dynamics dictate all the implied long-run dynamics. The first-order VAR addresses the concern of

the lack of statistical power at long horizons associated with long-horizon regressions.
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We can also compute the variance decomposition for an infinite horizon (H →∞):

1 ≈ blrm − blrr , (21)

blrr ≡ λr
1− ρφ

,

blrm ≡ λm
1− ρ

1− ρφ
.

In the long-run decomposition, all the variation in current q is associated with either return

or marginal profits predictability. The VAR approach enables one to estimate this long-run de-

composition, something that is not feasible under the direct method. The t-statistics associated

with both the multi-horizon and long-run predictive coefficients are computed from the t-statistics

corresponding to the VAR slopes by using the delta method. The full details on the derivation of

the variance decomposition are available in the online appendix.

Following Cochrane (2008), we compute t-statistics for two joint null hypotheses of long-run

predictability: the first null assumes that there is only marginal profits predictability,

H0 : blrr = 0, blrm = 1,

while the second null hypothesis assumes that there is only return predictability:

H0 : blrr = −1, blrm = 0.

The results for the baseline variance decomposition are shown in Table 2 (Panel A) and Figure

2 (Panels A and C). The return channel plays a dominant role at nearly all forecasting horizons.

Apart from H = 1, predictability of future investment returns is the major source of variation

in q. Indeed, the return slope estimates are strongly significant (1% level) at all horizons beyond

one year, with magnitudes around or above 0.60 at most horizons. Marginal profits predictability

assumes a secondary role, with weights close to 0.40 at intermediate and long horizons. Despite the
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smaller magnitudes, it turns out that the m coefficient estimates are also strongly significant (1%

or 5% level) at all horizons. This arises from the fact that the corresponding one-year VAR slope

estimate is largely significant (t-ratio of 4.58). In fact, the VAR equation for m has a larger fit than

the corresponding return equation, as indicated by the explanatory ratio of 0.28 (versus 0.08 for

r). However, there is a downward effect caused by the term 1 − ρ, which is substantially smaller

than one (0.15). Therefore, the larger magnitude of the m VAR coefficient (1.24 versus −0.29)

is not enough to generate larger multi-horizon predictive slopes than the coefficients associated

with future investment returns (in magnitude). The shares associated with predictability of future

(single-date) q are economically and statistically significant at very short horizons. However, such

estimates decay to zero, and become insignificant, at a relatively rapid pace (H > 3).

We observe that the sum of the variance decomposition is very close to one (above 0.98) at all

forecasting horizons. This shows that the present-value relation for q is quite accurate. In other

words, ignoring the higher-order terms, which are absent from the first-order Taylor approximation

underlying the present-value relation for q, does not have a significant impact on the variance

decomposition.

At very long horizons, the results in Table 2 (Panel A) indicate that the return and marginal

profits coefficients are −0.61 and 0.37, respectively. We clearly reject the null that blrr = 0, blrm = 1

(t-ratios around 4 in magnitude). Yet, we also reject the null that blrr = −1, blrm = 0, with t-ratios

around 2.50. Hence, in statistical terms, both the return and marginal profits channels matter in

terms of driving q. However, the size of the return channel is nearly twice as large as the size of the

marginal profits channel. These results for the long-run predictability mix associated with q are not

particularly surprising. In fact, since 1 − ρ is a number substantially below one (around 0.15), in

order to obtain (at least) similar long-run shares for m and r, we would need the magnitude of the

marginal profits VAR slope estimate to be almost seven times larger than that of the VAR return

slope estimate. The VAR estimation results confirm a higher magnitude of λm relative to λr (1.24

versus 0.29), but such discrepancy is clearly not enough to generate similar long-run weights. In

24



order words, despite the larger short-run predictability of q for m than for r, such difference does

not compensate for the pre-specified tilt (embedded in the decomposition) towards a larger weight

for return predictability.

4.3 Simulation

Next, we conduct a bootstrap simulation of the restricted VAR model estimated above. The

objective is to account for the relatively poor small-sample properties of long-horizon predictabil-

ity and the question of whether the asymptotic inference is valid when assessing the statistical

significance of the implied multi-horizon slopes (see Valkanov, 2003; Torous, Valkanov, and Yan,

2004; Boudoukh, Richardson, and Whitelaw, 2008, among others for a discussion on this issue). In

related work, Cochrane (2008) and Maio and Santa-Clara (2015) conduct VAR-based Monte-Carlo

simulations to assess the predictive ability of the dividend yield for future stock returns and divi-

dend growth. One key advantage of a bootstrap simulation relative to a monte-carlo simulation is

that we can skip the normally-distributed assumption for the variables in the system.

To assess predictability of future returns, we impose a null hypothesis where q does not forecast

the future investment return. Under this null, all the variation in q comes from predicting future

marginal profits. Thus, we simulate the first-order VAR by imposing the restrictions, both in the

predictive slopes and residuals, associated with this null hypothesis,


rt+1

mt+1

qt+1

 =


0

1−ρφ
1−ρ

φ

 qt +


ρεqt+1 + (1− ρ)εmt+1

εmt+1

εqt+1

 , (22)

where all the variables in the VAR are demeaned.

To assess predictability of future marginal profits, we simulate an alternative VAR specification

under the null hypothesis that q does not forecast future m. This means that all the variation in q
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emanates from predicting future investment returns:


rt+1

mt+1

qt+1

 =


ρφ− 1

0

φ

 qt +


ρεqt+1 + (1− ρ)εmt+1

εmt+1

εqt+1

 . (23)

We conduct a bootstrap experiment associated with each of the VARs specified above. We

draw the VAR residuals (10,000 times) with replacement from the original VAR estimates. The

realization of q for the base period is chosen randomly from the original time-series of qt. We

compute the pseudo p-values associated with the implied VAR return slopes at each horizon, which

represent the fractions of simulated estimates of the return coefficients (from the simulations as-

sociated with the first VAR above) that are lower than the corresponding estimates found in the

data. Similarly, the pseudo p-values associated with the marginal profits coefficients represent the

fractions of pseudo estimates of the profitability slopes (obtained from the simulations under the

second VAR presented above) that are higher than the corresponding sample estimates. The full

details of the bootstrap simulation are available in the online appendix.

We note that our bootstrap simulation does not account for the fact that the variables in the

predictive system are nested variables, that is, they are estimated with error (rather than observed).

In principle, we could simulate the structural model (described in Section 2) inside the bootstrap

experiment in order to account for the estimation error in those variables. However, such procedure

is problematic in our case, since we have to employ non-linear GMM estimation of the structural

model, as described in Section 3. Specifically, it is likely that for many of the pseudo samples, the

numerical optimization underlying the GMM estimation does not converge properly, which would

lead to a problematic or infeasible bootstrap simulation. Perhaps, more important, the bootstrap

simulation conducted in this subsection produces p-values for the return slopes that are very small.

Hence, it is unlikely that incorporating such additional source of statistical uncertainty would turn

the most relevant predictive coefficients (in the variance decomposition) insignificant.
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The results associated with the bootstrap simulation are presented in Figure 3. It turns out

that the p-values associated with the return slopes are below 1% at all forecasting horizons beyond

the two-year horizon. In the case of the marginal profit coefficient estimates, the corresponding

p-values are below 1% at all horizons beyond the four-year horizon. At very short horizons, both

r and m coefficient estimates are significant at the 10% or 5% level. Therefore, these results

are consistent with the asymptotic inference presented in the previous subsection, that is, both

the return and marginal profits slope estimates are strongly statistically significant at nearly all

forecasting horizons.

4.4 Unrestricted VAR

In this subsection, we estimate an alternative variance decomposition for q, based on a less

restrictive first-order VAR.

Specifically, we consider an unrestricted VAR(1):

rt+1 = πr + γrrt + θrmt + λrqt + εrt+1, (24)

mt+1 = πm + γmrt + θmmt + λmqt + εmt+1, (25)

qt+1 = πq + γqrt + θqmt + φqt + εqt+1. (26)

This specification accounts for relevant predictability of lagged returns and marginal profits on

all three variables in the system, something that the benchmark VAR misses. Indeed, Maio and

Xu (2020) show that the restricted VAR(1), in a similar context, can be severely misspecified. This

originates an implausible long-run variance decomposition for aggregate stock price ratios, such as

the earnings yield or dividend yield.
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The VAR above can be presented in matrix form,


rt+1

mt+1

qt+1

 =


πr

πm

πq

+


γr θr λr

γm θm λm

γq θq φ




rt

mt

qt

+


εrt+1

εmt+1

εqt+1

 . (27)

Equivalently, the VAR can be defined as

zt+1 = π + Azt + εt+1, (28)

where the last equation defines the variables of interest.

The benchmark restricted VAR(1) is nested in this general specification, with

A =


0 0 λr

0 0 λm

0 0 φ

 .

Consider the indicator vectors, er ≡ (1, 0, 0)′, em ≡ (0, 1, 0)′, and eq ≡ (0, 0, 1)′, which represent

the position of each state variable in the VAR. As in the benchmark case, the VAR is estimated

by applying multiple-equation OLS, with Newey-West t-ratios. The t-ratios of the implied horizon-

specific coefficients are produced by employing the delta method. The covariance matrix of the

state variables is given by Σ ≡ Cov(zt, z
′
t). Given these definitions, and following Larrain and

Yogo (2008) and Maio and Xu (2020), we derive the following variance decomposition for q at each
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horizon H,

1 ≈ bHm − bHr + bHq , (29)

bHr ≡ e′rA(I− ρHAH)(I− ρA)−1Σeq
e′qΣeq

,

bHm ≡ (1− ρ)e′mA(I− ρHAH)(I− ρA)−1Σeq
e′qΣeq

,

bHq ≡
ρHe′qA

HΣeq

e′qΣeq
,

where I represents a conformable identity matrix.

Further details on the derivation of this variance decomposition are available in the online

appendix. The expressions above show that the relative shares of predictability (e.g., bHr /b
H
m)

change with the forecasting horizon, in contrast to the restricted VAR case. In other words, the

unrestricted VAR enables for a decoupling between the short-run and implied long-run forecasting

dynamics.

At an infinite horizon, it turns out that limH→∞ ρ
HAH approaches to a matrix of zeros. Thus,

the corresponding long-run VAR-based variance decomposition for q is given by

1 ≈ blrm − blrr , (30)

blrr ≡ e′rA(I− ρA)−1Σeq
e′qΣeq

,

blrm ≡ (1− ρ)e′mA(I− ρA)−1Σeq
e′qΣeq

.

As in the restricted VAR case, the t-ratios for the implied infinite-horizon slope estimates are

obtained by using the delta method.
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The estimation of the unrestricted VAR above yields the following results,


rt+1

mt+1

qt+1

 = π̂ +


0.41(2.43) −0.06(−0.29) −0.39(−0.91)

0.59(1 .65 ) 0.13(0.31) 0.63(0.65)

0.39(2.98) −0.08(−0.56) 0.59(1 .74 )




rt

mt

qt

+


ε̂rt+1

ε̂mt+1

ε̂qt+1

 ,

with R2 estimates of 0.18, 0.33, and 0.45, respectively. The numbers in parentheses represent the

t-ratios, with bold, underlined, and italic numbers denoting significance at the 1%, 5%, and 10%,

respectively.

These results show that rt helps to forecast a rise in all three variables in the system, as the

respective coefficient estimates are positive and statistically significant in all cases (marginally so

in the equation for marginal profits). On the other hand, the slope estimates associated with

mt are largely insignificant in all cases. Moreover, the estimate of λm is cut to about half the

magnitude of the corresponding estimate in the restricted VAR (0.63 versus 1.24) and becomes

largely insignificant. In comparison, the estimate of λr increases in magnitude (−0.39 versus −0.29),

but also with no statistical significance. The estimate of φ is similar to that obtained in the baseline

VAR (0.59 versus 0.61), albeit the statistical significance becomes relatively weak (10% level). These

results suggest that the short-run dynamics associated with the restricted and unrestricted VARs

can differ by a good deal. In particular, there is a kind of a “substitution effect” in predictive power

among some of the variables: Restricting to zero the slopes associated with lagged r, magnifies the

forecasting role of q for future marginal profits.

The horizon-specific variance decompositions based on the unrestricted VAR(1) are presented in

Figure 2 (Panels B and D). The results point to an even more dominant role of return predictabil-

ity in comparison to the benchmark VAR. Specifically, the long-run (infinite horizon) return and

marginal profit slope estimates are −0.80 and 0.18, respectively. Further, while the return coeffi-

cient estimates are strongly significant at all forecasting horizons, there is significance for the m

slopes estimates only at very short horizons (H < 3). Untabulated results indicate that we cannot
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reject the null (at the 10% level, t-ratio of 1.20) that all the variation in q stems from long-run

return predictability. As in the restricted VAR, predictability of future q is the major driving force

at H = 1, but this effect dies off at a faster pace.

All in all, the punch line of this section is that predictability of future investment returns (the

discount-rate channel) is the major driving force of variation in q. Predictability of future marginal

profits (the cash-flow channel) plays a secondary role at most. This pattern is even more evident

under the more robust unrestricted VAR.

5 Sensitivity Analysis

In this section, we provide a sensitivity analysis to the empirical results discussed in the previous

section. To save space and keep the focus, most results are based on the restricted VAR method.

5.1 Alternative investment series

We conduct the variance decomposition for q by using alternative time series of the investment

variables.

First, the data is generated from GMM estimation of the structural investment model based on

ten Tobin’s Q-sorted portfolios, as in Belo, Xue, and Zhang (2013). The resulting GMM estimates

are similar to the base case. The estimate of capital share (α) is 0.07. The estimate of the

adjustment cost parameter (a) is 20.31 and the corresponding ratio of adjustment-cost-to-sales is

equal to 14.84%. The model is not rejected by the χ2-test, with a p-value around 0.44. The results

tabulated in Table 2 (Panel B) show that the predictability mix is very similar to that estimated

with the benchmark data. Specifically, the long-run return and profits slopes are −0.62 and 0.36,

respectively. The statistical significance is also very close to that obtained in the benchmark case.

Second, the investment data are associated with the median firm, rather than the value-weighted

average. This is in line with Belo, Gala, Salomao, and Vitorino (2022) who use the portfolio median

to aggregate firm-level investment returns to portfolio level since the median is robust to outliers. In
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particular, for a given portfolio of firms, they compute the portfolio median of firm-level investment

returns to match with the portfolio median of stock returns. Using artificial data simulated from

known firm-level parameters, they show that matching the portfolio median in the GMM estimation

can recover the true firm-level parameters without bias. The estimate of α is 0.08, while the estimate

of a is 20.89 (with the corresponding ratio of adjustment-cost-to-sales being equal to 15.27%). As

shown in Table 2 (Panel C), the long-run predictability mix is identical to that estimated under

the benchmark case.

5.2 Higher-order VAR

Next, we estimate a variance decomposition for q, based on a restricted second-order VAR.

The rationale is that the second lag of q might provide useful information for predicting the three

variables in the system.

The restricted VAR(2) specification is given by

rt+1 = πr + λr1qt + λr2qt−1 + εrt+1, (31)

mt+1 = πm + λm1qt + λm2qt−1 + εmt+1, (32)

qt+1 = πq + φ1qt + φ2qt−1 + εqt+1. (33)

The VAR(2) is estimated by multiple-equation OLS, with Newey–West t-statistics (computed

with two lags). We can write the VAR above as a VAR(1) in the companion form:



rt+1

mt+1

qt+1

rt

mt

qt


=



πr

πm

πq

0

0

0


+



0 0 λr1 0 0 λr2

0 0 λm1 0 0 λm2

0 0 φ1 0 0 φ2

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0





rt

mt

qt

rt−1

mt−1

qt−1


+



εrt+1

εmt+1

εqt+1

0

0

0


, (34)
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or equivalently,

zt+1 = π + Azt + εt+1. (35)

The indicator vectors are defined as follows,

er ≡ (1, 0, 0, 0, 0, 0)′, (36)

em ≡ (0, 1, 0, 0, 0, 0)′, (37)

eq ≡ (0, 0, 1, 0, 0, 0)′, (38)

while the covariance matrix of zt corresponds to

Σ = Cov(zt, z
′
t) =



var(rt) Cov(rt,mt) Cov(rt, qt) 0 0 0

Cov(rt,mt) var(mt) Cov(mt, qt) 0 0 0

Cov(rt, qt) Cov(mt, qt) var(qt) 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


. (39)

In order to obtain the predictive slopes at each forecasting horizon H, we use the definitions

above into the same formulas presented in the previous section for the case of the unrestricted

VAR(1). Similar to the unrestricted VAR case, the t-ratios for the long-horizon coefficients are

obtained by applying the delta method.

The estimation of the VAR(2) above yields the following results,


rt+1

mt+1

qt+1

 = π̂ +


−0.02(−0.16) −0.42(−2.75)

1.67(6.36) −0.67(−2.01)

0.86(7.82) −0.39(−3.31)


 qt

qt−1

+


ε̂rt+1

ε̂mt+1

ε̂qt+1

 ,

with R2 estimates of 0.18, 0.33, and 0.45, respectively. The numbers in parentheses represent the
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t-ratios, with bold, underlined, and italic numbers denoting significance at the 1%, 5%, and 10%,

respectively.

These results show that qt−1 helps to forecast (a decline in) all three variables in the system,

as the respective slope estimates are negative and statistically significant in all cases. On the other

hand, the estimate of λr1 becomes close to zero and largely insignificant. We also observe that the

estimates for both λm1 and φ1 register larger magnitudes than the corresponding estimates under

the restricted VAR(1). Notably, there is a large increase in the fit of the forecasting regressions

associated with r (from 0.08 to 0.18) and q (from 0.35 to 0.45), in comparison to the baseline VAR.

Untabulated results show that the long-run predictive slopes associated with future r and m

are −0.69 and 0.29, respectively, and both of these estimates are statistically significant (at the

5% or 1% level). This indicates a slightly larger share of return predictability (69% versus 61%) in

comparison to the restricted VAR(1) case.

5.3 Alternative δ

We employ an alternative value for the depreciation rate (δ = 0.1219). This value represents

the capital-weighted average firm-level depreciation rate in the sample, where the depreciation rate

has the difference between Compustat item DP and Compustat item AM in the numerator, and

Compustat item PPENT in the denominator.

The VAR estimation results are displayed in Table 2 (Panel D). We can see that the results are

very similar to those in the benchmark case. Specifically, the long-run r and m coefficient estimates

are −0.60 and 0.38, respectively. Regarding the statistical significance of these estimates, we get

the same qualitative inference as in the benchmark setting.

5.4 Alternative structural estimation

We conduct the variance decomposition for q by using other time series of the investment

variables. In contrast with the rest of the paper, we rely on the structural estimation method
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employed in Liu, Whited, and Zhang (2009). Using the aggregate market portfolio as the testing

portfolio and matching the value-weighted portfolio returns, the estimated capital share (α) is 0.23,

which is higher than the basecase estimate. On other hand, the estimated adjustment costs are

similar to the basecase, as indicated by both the estimated parameter (a) of 16.10 and the estimated

adjustment-costs-to-sales ratio (Φ/Y ) of 11.76%.

The VAR estimation results are displayed in Table 2 (Panel E). The predictability mix is

qualitatively similar to that estimated under the benchmark case, with a somewhat higher degree

of return predictability. Specifically, the long-run return and marginal profits coefficient estimates

are −0.71 and 0.30, respectively. This means that return predictability accounts for more than

twice the share of marginal profits profitability in terms of explaining the variation in q. Both of

these estimates are strongly significant (1% level), which means that both channels are important

from a statistical viewpoint. In comparison to the benchmark case, the larger role for the discount-

rate channel stems from both a larger magnitude of the VAR return slope estimate (−0.35 versus

−0.29) and a lower magnitude of the m coefficient estimate (0.82 versus 1.24).

5.5 Direct approach

We estimate the variance decomposition for q by using the direct approach.

Following Cochrane (2008, 2011) and Maio and Santa-Clara (2015), we estimate weighted long-

horizon regressions of future multiperiod log investment returns, future multiperiod log marginal

profits, and future q on the current q:

H∑
h=1

ρh−1rt+h = aHr + bHr qt + εrt+H , (40)

H∑
h=1

ρh−1(1− ρ)mt+h = aHm + bHmqt + εmt+H , (41)

ρHqt+H = aHq + bHq qt + εqt+H . (42)
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The estimation is conducted by equation-by-equation OLS and the t-statistics for the direct

predictive slopes are based on Newey and West (1987) standard errors with H − 1 lags (i.e., the

Bartlett Kernel with a bandwidth of H). These standard errors incorporate a correction of the bias

induced by using overlapping observations in the regressions presented above.

Similarly to Cochrane (2011), by combining the present-value relation for q in Equation (15)

with the predictive regressions presented above, we obtain an approximate identity involving the

predictability coefficients associated with qt, at each forecasting horizon H:

1 ≈ −bHr + bHm + bHq . (43)

If the first-order VAR does not fully capture the dynamics of the data generating process for r,

q, and m, it follows that the corresponding variance decomposition will be a poor approximation

of the true decomposition for q, as discussed in Cochrane (2008) and Maio and Xu (2020). This

problem does not exist under the direct approach, which a priori should yield the most correct

estimates for the variance decomposition (see Cochrane, 2008, 2011; Maio and Santa-Clara, 2015).

The minus side of the direct approach is that with small or moderate samples, the statistical power

of the long-horizon regressions is negatively affected at very long horizons, given the substantial

decline in the number of usable observations. For example at H = 20, 20 observations are lost by

running the corresponding long-horizon regression.

The term structure of direct variance decompositions are presented in Figure 4. At the one-

year horizon, the dominant source of variation in current q is its own predictability, with a share

of 52%. This result emanates from the existence of some short-run persistence in this variable, as

indicated in Table 1. Yet, such effect dies off quickly. Indeed, for forecasting horizons beyond one

year, the key driving force of variation in q becomes return predictability, with shares above 65%

at most horizons. At very long horizons, there is a slightly lower share of return predictability,

with weights below 56%. The negative return slope estimates are strongly statistically significant

(at the 1% or 5% level) at all horizons. In comparison, the positive coefficient estimates associated
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with future marginal profits are significantly smaller in magnitude, with shares around or below

30% at most forecasting horizons. At very long horizons (H > 18), we obtain a slightly larger role

for m predictability, with weights around 40%. These slope estimates are statistically significant

(at the 5% level) at most forecasting horizons, with the few exceptions occurring at some short and

intermediate horizons.

Overall, the results from the direct approach are largely consistent with those based on the

indirect or VAR approach used in our main empirical analysis.

5.6 Comparative statics

In this subsection, we conduct a comparative statics exercise. Specifically, we estimate a range of

long-run variance decompositions associated with q for a set of artificial series of the key investment

variables in the system (r, m, and q). The artificial time-series are obtained from calibration of

the two key structural parameters of the theoretical model presented in Section 2 (α and a).21 The

goal of this analysis is to assess if the predictability mix associated with q, that we obtained above,

holds for a reasonable range of those two underlying parameters.

The simulation results when the variance decomposition is based on the restricted VAR are

presented in Table 3. Table 4 displays the simulation results based on the unrestricted VAR. We

calibrate five different values for α (0.05, 0.15, 0.30, 0.50, and 0.70) and five values for a (1.37,

6.85, 13.69, 20.53, and 27.38). In the case of a, these values are associated with a calibration of

the adjustment cost-to-output ratio (Φ/Y ) of 0.01, 0.05, 0.10, 0.15, and 0.20, respectively. Hence,

we have a total of 25 (5× 5) different artificial data sets, which are used in the computation of the

variance decomposition.22 To save space and keep the focus, we report only the long-run (infinite

horizon) variance decompositions for q.

The first key pattern that emerges from Tables 3-4 is that the share of return (marginal profits)

21Importantly, we use the same series of investment and sales as in the data. However, different parameter values
will yield different series of r, m, and q.

22These ratios are consistent with Bloom (2009). Bloom (2009, Table IV) surveys the estimates of convex adjust-
ment costs to be between zero and 20% of revenues.
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predictability declines (increases) with α. Such pattern is especially predominant in the case of

the unrestricted VAR: at high values of this parameter, that is α = 0.50, 0.70, it turns out that

the return slopes (that have the correct sign) are below 60% (in magnitude) in most cases, despite

the large statistical significance. At the other end of the spectrum, for α = 0.05, the estimates

of blrr are around or above 0.80 (in magnitude) in most cases. In the case of the restricted VAR,

the difference in return slope estimates is not as large. On the other hand, we observe exactly the

opposite pattern for the m slopes, and this holds for both VAR specifications. For example, we

obtain estimates of blrm around 0.60 for α = 0.05, a = 1.37, while the corresponding estimates are

around 2 for α = 0.70, a = 1.37, and this holds under both VAR frameworks. We also observe

across the board that the weights of return predictability tend to be larger under the unrestricted

VAR than under the restricted VAR method. This pattern is especially evident among low values

of α and is consistent with the evidence from Section 4.

Higher values of α entail higher volatilities of both marginal profits and investment returns.

However, the volatility of marginal profits rises substantially more. For example, for a value of a

of 1.37, a rise in the share of capital in production from 0.05 to 0.7, implies that the volatility of

investment returns is six times higher, whereas the volatility of marginal profits is about 12 times

higher. Consequently, the rise in the covariance of marginal profits and lagged q is substantially

higher than the rise in the covariance of investment returns and lagged q.

The second key result from Tables 3-4 is that, for a given value of α, the share of return (marginal

profits) predictability tends to increase (decrease) monotonically with a. Indeed, apart from the

extreme case of α = 0.05, the long-run return slope estimates have the wrong sign (positive) at

very low values of a (1.37), albeit most of these estimates not being significant at the 10% level.

Consequently, at those pairs of calibrated structural parameters, we obtain shares for long-run

marginal profit predictability above 100%, which are strongly significant. This means that, in

economic terms, marginal profits predictability explains all the variation in q, for extreme low

values of a. However, for a ≥ 13.69, it follows that the discount rate channel is dominant for most
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choices of α. Intuitively, in the extreme, if the value of the adjustment cost is zero, marginal Q is

always one, implying no investment return predictability.

All in all, the results of this subsection show that the dominant role of return predictability in

terms of driving variation in q is robust to a plausible range of the key parameters in the structural

investment model. However, these simulation results also show that it is possible to find a relevant

(and even dominant) share of marginal profits predictability under less plausible values for those

structural parameters.

6 Variance Decomposition for q: Time-Series Analysis with Eq-

uity Portfolios

In this section, we extend the analysis in Section 4 for equity portfolios sorted on different equity

characteristics. We are interested in studying whether the results for the sources of fluctuations in

aggregate q extend to other portfolios and explore possible heterogeneity at the more disaggregated

level. We study portfolios sorted on book-to-market (Rosenberg, Reid, and Lanstein, 1985; Fama

and French, 1992), asset growth (Titman, Wei, and Xie, 2004; Cooper, Gulen, and Schill, 2008;

Fama and French, 2008), and operating profitability (Haugen and Baker, 1996; Fama and French,

2008; Novy-Marx, 2013). These represent some of the main characteristics driving the cross-section

of equity returns.

6.1 Data and variables

We conduct the GMM estimation of the structural investment model based on decile portfolios

sorted on book-to-market (BM10), asset growth (IA10), and operating profitability (OP10). More

concretely, we use the same sample as described in Section 3 to construct testing deciles based on

the NYSE breakpoints at the end of June of each year and rebalance at the end of June of next

year.
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To form the BM10 deciles, at the end of June of each year t, we sort stocks on the book-to-

market ratio, which is the book equity for the fiscal year ending in calendar year t−1 divided by the

market equity (from CRSP) at the end of December of t−1.23 To form the IA10 deciles, at the end

of June of each year t, we sort stocks on asset growth, defined as total assets (Compustat annual

item AT) for the fiscal year ending in year t − 1 divided by total assets for the fiscal year ending

in t− 2 (Cooper et al., 2008). Finally, to form the OP10 deciles, at the end of June of each year t,

we sort stocks on operating profitability, which is measured with accounting data for the fiscal year

ending in year t− 1 and is revenue (Compustat annual item REVT) minus the cost of goods sold

(Compustat annual item COGS), minus selling, general, and administrative expenses (Compustat

annual item XSGA), minus interest expense (Compustat annual item XINT), all divided by book

equity (Fama and French, 2015).

For each equity characteristic, we estimate the capital share (α) and the adjustment cost pa-

rameter (a) by fitting both the investment Euler equation moments and the valuation moments

across that group of portfolio deciles. Then, given the parameter estimates, we construct the series

of investment returns and the series of its two components (M and Q) for each decile portfolio.

Using the physical capital model with a depreciation rate of 0.1 and the firm-level aggregation

as in Gonçalves, Xue, and Zhang (2020), we obtain GMM estimates of α as 0.08 (BM10), 0.07

(IA10), and 0.07 (OP10). The corresponding estimates of a are 15.83 (BM10), 15.74 (IA10), and

15.66 (OP10). Our estimates of α are similar to the estimates in Gonçalves et al. (2020) and also

similar to our estimate in Section 3. Our estimates of a are higher than in Gonçalves et al. (2020)

due to the fact that we fit additional moment conditions, namely the valuation moments.24 As

23Following Davis et al. (2000), we measure book equity as stockholders’ book equity, plus balance sheet deferred
taxes and investment tax credit (Compustat annual item TXDITC) if available, minus the book value of preferred
stock. Stockholders’ equity is the value reported by Compustat (item SEQ), if it is available. If not, we measure
stockholders’ equity as the book value of common equity (item CEQ) plus the par value of preferred stock (item
PSTK), or the book value of assets (item AT) minus total liabilities (item LT). Depending on availability, we use
redemption (item PSTKRV), liquidating (item PSTKL), or par value (item PSTK) for the book value of preferred
stock.

24As a quality assurance, we follow Gonçalves, Xue, and Zhang (2020) to fit only the investment Euler equation
moments. We obtain estimates of α and a that are similar to theirs for the book-to-market and asset growth deciles.
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robustness checks, we consider several variations of the GMM estimates. Similar to the findings

in Gonçalves et al. (2020), using the aggregation approach as in Liu, Whited, and Zhang (2009)

or the two-capital model as in Gonçalves et al. (2020) we obtain higher estimates of α but the

estimates of a are not affected much. Using a higher depreciation rate of 0.12 only slightly changes

the estimates of α and a.

The descriptive statistics associated with the extreme low (L) and high (H) deciles within each

anomaly group (BML, BMH, IAL, IAH, OPL, and OPH) are reported in Table 5. We can see that

all three variables in the VAR are more volatile among low-profitability firms (OPL) in comparison

to high-profitability firms (OPH). A similar, albeit weaker, pattern holds for high-investment firms

(IAH) in comparison to low-investment firms (IAL). In the case of the two extreme book-to-market

deciles, the differences in volatility of the three variables are clearly less pronounced. It turns out

that BMH, IAH, and OPL show a higher persistence in both m and q in comparison to the BML,

IAL, and OPH portfolios, respectively.

Similarly to the case of the market portfolio discussed in Section 4, we find that m and q are

strongly correlated, with correlations above 0.84 in all six cases. Nonetheless, these correlations are

larger for BML and IAH in comparison to BMH and IAL, respectively. We can also see that the

correlations between r and m are above 0.54 in all cases. Across extreme deciles, such correlation is

larger among BML and IAH in comparison to BMH and IAL, respectively. Overall, these statistics

show some differences for the key variables among the three anomaly groups and among the extreme

deciles within each group.

6.2 Results

The results for the variance decompositions associated with each of the equity portfolios are

presented in Table 6. To save space and keep the focus, we restrict the analysis to the “extreme” six

portfolios described above. We can see that the discount rate channel is dominant for most equity

portfolios, as the the long-run return slope estimates (in magnitude) are in most cases around or
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above 0.74 (0.70) when the estimation is based on the restricted (unrestricted) VAR. This indicates

an even larger share of investment return predictability than that obtained for the market portfolio

(61%). Indeed, when the estimates are based on the unrestricted VAR, for most portfolios we

cannot reject (at the 10% level) the null that all the variation in q stems from return predictability

(blrr = −1). By comparing the portfolios associated with each sort, we find that the share of

investment return predictability tends to be higher among low-investment firms in comparison to

high-investment firms. A similar pattern holds for growth firms relative to value firms, although in

this case, such patterns holds under the unrestricted VAR.

The key exception to the dominance of the discount-rate channel is the lowest OP decile. When

the long-run coefficient estimates are based on the restricted VAR, we obtain relatively comparable

shares of return and marginal profits predictability (0.57 versus 0.42) and both of these estimates

are significant at the 5% level. When the long-run estimates are based on the unrestricted VAR,

the results are even more extreme, as the weight associated with marginal profits predictability

has almost twice the magnitude of the share of return predictability (0.64 versus 0.34). The long-

run m slope estimate is marginally significant (10% level with a t-ratio of 1.89), while the return

coefficient is largely insignificant (t-ratio of −0.91). Further, the null that all variation in q stems

from marginal profits predictability, blrm = 1, is not rejected at the 10% level (t-ratio of −1.06).

Hence, the low-profitability portfolio appears as an outlier relative to all other five portfolios in the

sense that the dynamics of the corresponding q is entirely driven by the cash-flow channel when

the estimates are based on the unrestricted VAR.

Table 7 displays the results when the portfolio series of q, r, and m are based on the structural

estimation method from Liu, Whited, and Zhang (2009). Across most portfolios, we find a slightly

larger share of investment return predictability than in the benchmark case documented above

and this pattern is specially evident when the estimates are based on the unrestricted VAR. This

implies that the return channel is clearly dominant across most portfolios in terms of driving

the time-series dynamics of q. The key exception is again the OPL portfolio. Under both the
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restricted and unrestricted VAR cases, we find that the shares of long-run return and marginal

profits predictability are nearly the same (about 50%). We also find that both slope estimates are

strongly significant (1% level), that is, both sources of long-run predictability drive the variation

in q for that portfolio. In comparison to the results displayed in Table 6, there is a smaller role for

marginal profits predictability under the unrestricted VAR (0.50 versus 0.64) for OPL. Nonetheless,

such estimate is still largely significant in economic terms.

Overall, the results of this section suggest that what drives the variation in the q of different

equity portfolio groups is the investment return channel, with the cash-flow channel being marginal

in most cases. This result is consistent with the evidence obtained for the market portfolio in the

previous sections. However, there are some important differences on the long-run predictability

mix within the cross-section of firms. In particular, predictability of future marginal profits plays

a critical role in explaining the variation of q for low-profitability firms.

7 Variance Decomposition for q: Cross-Sectional Analysis

In this section, we estimate a variance decomposition for average q in the cross-section of equity

portfolios.

7.1 Methodology

We start by deriving a cross-sectional accounting decomposition for average q. The difference

equation in q presented in Equation (14) can be defined for a given firm/portfolio i,

qi,t ≈ ρqi,t+1 − ri,t+1 + (1− ρ)mi,t+1, (44)

where qi,t denotes the log Q for firm/portfolio i at time t, while ri,t+1 and mi,t+1 represent respec-

tively the investment return and marginal profits for firm/portfolio i at time t+ 1. For simplicity,

we assume that ρ is constant across firms/portfolios.
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By assuming stationarity in qi,t, E(qi,t) = E(qi,t+1), and rearranging, we have:

E(qi,t) ≈ E(mi,t+1)−
1

1− ρ
E(ri,t+1). (45)

This equation represents the cross-sectional analogue of the present-value relation for aggregate

q in Equation (15): firms/portfolios that have a higher average q tend to register a higher average

marginal profitability of capital and/or a lower average investment return. Hence, similarly to the

dynamic present-value relation from Section 4, there is a positive (negative) correlation between q

and marginal profitability (investment return).

To simplify notation, we define E(qi,t) ≡ µq,i, E(mi,t+1) ≡ µm,i, and E(ri,t+1) ≡ µr,i, leading to

µq,i ≈ µm,i −
1

1− ρ
µr,i. (46)

Multiplying both sides by µq,i−E∗(µq,i), and taking expectations in the cross-section, we obtain,

var∗(µq,i) ≈ Cov∗(µm,i, µq,i)−
1

1− ρ
Cov∗(µr,i, µq,i), (47)

where ∗ denotes a cross-sectional moment.

Finally, dividing both sides by var∗(µq,i), we obtain the following cross-sectional variance de-

composition for average q (µq,i),

1 ≈ cm −
cr

1− ρ
. (48)

Under this decomposition, the cross-sectional dispersion in average q is attributed to cross-

sectional investment return correlation (captured by the term −cr(1 − ρ)) and/or cross-sectional

marginal profit correlation (given by cm). Cochrane (2011) employs a similar cross-sectional vari-

ance decomposition for the average log dividend-to-price ratio.

The slopes in the previous equation are obtained from the following single cross-sectional re-
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gressions (estimated by OLS):

µr,i = ar + crµq,i + ζr,i, (49)

µm,i = am + cmµq,i + ζm,i. (50)

Hence, these cross-sectional regressions play the role of the first-order VAR in the case of

the time-series variance decompositions estimated in the previous sections. This cross-sectional

decomposition shares a property with the time-series decomposition. Since 1 − ρ is a number

substantially below one, the decomposition is a priori “forced” to produce a larger share for the

return channel (captured by −cr/(1− ρ)) than for the cash-flow channel (captured by cm).

7.2 Results

We start by presenting summary statistics for the variables of interest (µr, µm, and µq) across

the BM10, IA10, and OP10 decile groups. The results in Table 8 show that all three variables are

more volatile within BM10 in comparison to the corresponding variables within IA10 and especially

OP10. We also observe that the cross-sectional means of µr, µm, and µq do not vary much across

the three portfolio groups. Regarding the linear association among the variables, we can see that

both µr and µm are strongly correlated with µq within BM10 or IA10, as indicated by the large

correlation coefficients (around or above 0.90). In the case of the OP10 deciles, the correlation

between µr and µq is substantially more modest (0.41).

The results for the cross-sectional variance decomposition for average q are displayed in Table 9,

Panel A. We conduct cross-sectional regressions containing all 30 portfolios (BM10+IA10+OP10).

This ensures a higher statistical power of the resulting estimates in comparison to conducting the

regressions for each group of deciles. Given the relatively small sample size of our cross-section (30

portfolios), we report both OLS and heteroskedasticity-robust (White, 1980) t-ratios. The estimate
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of ρ used in the analysis is based on a simple cross-sectional mean (across the 30 portfolios) of mqi,t,

ρ ≡ eln(1−δ)−m̂q

1 + eln(1−δ)−m̂q
,

where m̂q represents the time-series average of m̂qt = (1/30)
∑30

i=1mqi,t.

We can see that the marginal profit slope estimate is clearly above one (2.18) and strongly

significant (1% level) based on both t-ratios. The R2 of 0.89 indicates a large fit in the cross-

sectional regression associated with average m. The large magnitude of cm stems from the estimate

of cr assuming the wrong sign (0.18). Hence, the weight associated with average r is negative,

implying that from an economic viewpoint all the cross-sectional variation in average q stems from

the cross-sectional correlation between µq and average m (rather than average r). The sum of the

variance decomposition, cm − cr/(1− ρ), is relatively close to one at 0.92. Therefore, these results

clearly indicate that firms with higher average q are firms with higher average marginal profitability

of capital instead of lower average investment return.

Panel B of Table 9 displays the results when the portfolio structural investment series are

estimated under the method of Liu, Whited, and Zhang (2009). The magnitudes of the slope

estimates are smaller than in the benchmark case: µm and µr are 1.71 and 0.12, respectively, with

strong significance in both cases. The corresponding shares in the decomposition are 1.71 and

−0.71, respectively, which implies that the sum of the decomposition is about one. Hence, the

approximation of the variance decomposition is better than in the benchmark case.

In Panel C of Table 9, all the investment series are based on a different calibration of the

depreciation rate parameter (δ = 0.1219). The results are quite similar to those in the benchmark

case, with shares of marginal profits and return predictability of 2.07 and −1.13, respectively. This

implies that cm − cr/(1 − ρ) is marginally closer to one than in the baseline case (0.94 versus

0.92). In Panel D, the cross-sectional regression includes the Tobin’s Q deciles instead of the BM

deciles. The shares associated with µm and µr are 2.10 and −1.27, respectively. This implies that

cm − cr/(1− ρ) is more distant from one (0.86) than in the baseline regression, which means that
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the variance decomposition is less accurate in this setup. Nonetheless, in economic terms, all the

variation in average q stems from the cash-flow channel.

These findings are in sharp contrast with the evidence for the time-series decompositions for q

analyzed in the previous sections. As discussed above, both decompositions have an ex ante tilt

towards the investment return channel. What makes the cross-sectional decomposition distinct is

that the cross-sectional return slope has the wrong sign, that is, average q is positively (rather than

negatively) correlated with average r. This implies that the positive correlation between average q

and average m drives all the cross-sectional dispersion in the first variable in economic terms.

Figure 5 displays the pairs of observed µm and µr and the fitted values from the corresponding

regressions in the benchmark setup (Panel A of Table 9). We can see that the fit of the cross-

sectional regression associated with µm is clearly higher than that for µr, as the pairs of observed

and fitted values are much closer to the diagonal line. This represents another way to illustrate

the higher R2 in the regression associated with average m. The plot of the regression for µr

illustrates well that such variable is positively correlated with average q, exactly the opposite pattern

postulated by the cross-sectional variance decomposition. The main outlier in both regressions is

the first OP decile, which generates the largest positive errors among all portfolios. This finding

is consistent with the evidence presented in Section 6, which shows that the time-series variance

decomposition for that portfolio deviates substantially from that of other portfolios.

Overall, the message from this section is clear: the cash-flow channel is the source of cross-

sectional variation in average q, that is, firms with higher average q are firms with higher average

marginal profitability of capital, instead of being firms with lower average investment return. This

result is in clear contrast with the findings for the time-series analysis documented in Sections

4 and 6, in which the discount-rate channel explains most of the variation of q (associated with

either the market or equity portfolios) over time. Considering that in our specification marginal

Q is a linear function of investment, our results in this section are consistent with the empirical

investment literature that finds a positive investment-to-cash-flow sensitivity. However, the novel
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fact we document is the lack of explanatory power for average investment return in driving the cross-

sectional variation in average marginal Q and investment. That is, in the cross-section discount

rates play no role.

8 Conclusion

This paper explores the sources of time-series fluctuations in aggregate and portfolio-level re-

alized marginal Q (and investment). In addition, the paper studies the determinants of the cross-

section of portfolios’ average marginal Q (and average investment). The extant literature studies

intensively the sources of variation in (scaled) stock prices but the drivers of marginal Q (and

investment) are relatively unexplored. The approach we undertake is the supply approach to valu-

ation. That is, we infer marginal Q from the marginal adjustment cost of investment, as in Belo,

Xue, and Zhang (2013).

We employ a parsimonious model of optimal investment behavior with standard production

and adjustment cost technologies. The model’s optimal investment condition, namely that the

marginal value of capital equals the marginal cost of investment, implies that marginal Q is a

linear function of the investment-to-capital ratio. Subsequently, we estimate the share of capital

and adjustment cost parameters by employing GMM estimation for the aggregate of firms on the

Compustat database. Following Gonçalves, Xue, and Zhang (2020), we correct for aggregation

bias. We then derive a present-value relation to show that variations in the log of marginal Q (q)

(and hence in investment) must reflect shocks to expected future marginal profits of capital, shocks

to expected investment returns, or the future value of q at some terminal date, or any combination

of these three variables.

We conduct variance decomposition for q using alternative methodologies, namely a first-order

restricted VAR and an unrestricted VAR. We find that the bulk of variations in q is due to in-

vestment return predictability, whereas predictability of the marginal profits of capital assumes a

secondary role (albeit statistically significant in some cases). We conduct several robustness checks,
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namely using portfolios sorted by Tobin’s Q as well as using portfolio medians in the GMM es-

timation of the structural model; conducting simulation exercises in the variance decomposition;

employing weighted long-horizon regressions to estimate the decomposition; estimating the variance

decomposition from a second-order VAR; varying the value of the depreciation rate; and conduct-

ing the GMM estimation without correcting for aggregation bias. Our main qualitative results are

robust in all those checks.

In addition to studying the sources of the time-series variation of q of the aggregate of firms

we also explore the determinants of the time-series fluctuations in portfolio-level q. We find that

like in the aggregate level, the time-series variation of portfolios’ q are largely due to revisions to

discount rates as measured by expected investment returns.

Finally, we estimate a variance decomposition for average q in the cross-section of 30 portfolios

sorted on book-to-market, asset growth, and profitability. We find that the cash-flow channel

(namely marginal profits) is the dominant channel in describing the cross-section of marginal Q

and investment. That is, firms with higher average q are firms with higher average marginal

profitability of capital, instead of being firms with lower average investment return. This result is

markedly different from the time-series results.

A possible extension of our work is to compute time-series and cross-sectional variance decom-

positions respectively for the realized and average q of individual firms rather than for portfolios

of firms. This is left for future research.
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Table 1: Descriptive statistics
This table reports descriptive statistics for the log investment return (r), log marginal profits (m),

and log Q (q) associated with the market portfolio. The sample is 1964–2018. AR(1) designates

the first-order autocorrelation. The correlations between the variables are presented in Panel B.

Panel A
Mean S.D. Min. Max. AR(1)

r 0.06 0.10 −0.19 0.31 0.12
m −0.85 0.24 −1.30 0.03 0.54
q 1.03 0.10 0.85 1.29 0.61

Panel B (Correl.)
r m q

r 1.00 0.62 0.57
m 1.00 0.95
q 1.00
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Table 2: VAR estimates
This table reports the VAR(1) estimation results when the predictor is log Q (q). The variables in

the VAR are the log investment return (r), log marginal profits (m), and q. The results in Panel A

correspond to the baseline set of investment variables. Results in Panels B to E correspond to alter-

native sets of the investment variables. λ, φ denote the VAR slopes associated with lagged q, while

t denotes the respective Newey and West (1987) t-statistics (calculated with one lag). R2 is the co-

efficient of determination for each equation in the VAR. blr denote the long-run coefficients (infinite

horizon). t(blrr = 0) and t(blrr = −1) denote the t-statistics associated with the null hypotheses

(blrr = 0, blrm = 1) and (blrr = −1, blrm = 0), respectively. The original sample is 1964–2018. Italic, un-

derlined, and bold numbers denote statistical significance at the 10%, 5%, and 1% levels, respectively.

λ, φ t R2 blr t(blrr = 0) t(blrr = −1)
Panel A

r −0.29 −2.32 0.08 −0.61 −3.96 2.52
m 1.24 4.58 0.28 0.37 −4.24 2.54
q 0.61 5.91 0.35

Panel B (Q Deciles)
r −0.30 −2.38 0.09 −0.62 −4.16 2.54
m 1.21 4.63 0.28 0.36 −4.48 2.55
q 0.61 5.93 0.35

Panel C (Median firm)
r −0.29 −2.31 0.08 −0.61 −3.99 2.51
m 1.27 4.59 0.28 0.37 −4.30 2.52
q 0.61 5.91 0.35

Panel D (Alternative δ)
r −0.30 −2.33 0.08 −0.60 −3.90 2.56
m 1.17 4.53 0.28 0.38 −4.14 2.57
q 0.61 5.91 0.35

Panel E (Alternative series)
r −0.35 −3.30 0.13 −0.71 −6.52 2.71
m 0.82 4.38 0.23 0.30 −6.49 2.73
q 0.61 6.46 0.36
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Table 3: Simulation with restricted VAR
This table reports the simulation results for the long-run variance decomposition associated with log Q

(q). The simulated series for the log investment return (r), log marginal profits (m), and q are based on

different pairs of the calibrated structural parameters α and a from the theoretical model. The implied

long-run predictive statistics are based on a restricted VAR(1). blr denote the long-run coefficients (infi-

nite horizon), while t represent the corresponding t-statistics. The original sample is 1964–2018. Italic,

underlined, and bold numbers denote statistical significance at the 10%, 5%, and 1% levels, respectively.

blrr t blrm t
α = 0.05, a = 1.37 −0.39 (−1.37) 0.60 (2.15)
α = 0.05, a = 6.85 −0.58 (−3.38) 0.40 (2.43)
α = 0.05, a = 13.69 −0.61 (−3.95) 0.37 (2.50)
α = 0.05, a = 20.53 −0.63 (−4.20) 0.36 (2.53)
α = 0.05, a = 27.38 −0.63 (−4.34) 0.35 (2.54)
α = 0.15, a = 1.37 0.08 (0.15) 1.09 (2.13)
α = 0.15, a = 6.85 −0.52 (−2.66) 0.48 (2.49)
α = 0.15, a = 13.69 −0.59 (−3.66) 0.40 (2.58)
α = 0.15, a = 20.53 −0.61 (−4.06) 0.38 (2.60)
α = 0.15, a = 27.38 −0.62 (−4.27) 0.37 (2.61)
α = 0.30, a = 1.37 0.50 (0.71) 1.53 (2.15)
α = 0.30, a = 6.85 −0.44 (−1.99) 0.56 (2.48)
α = 0.30, a = 13.69 −0.56 (−3.27) 0.44 (2.61)
α = 0.30, a = 20.53 −0.59 (−3.84) 0.40 (2.65)
α = 0.30, a = 27.38 −0.61 (−4.13) 0.39 (2.67)
α = 0.50, a = 1.37 0.82 (0.98) 1.86 (2.18)
α = 0.50, a = 6.85 −0.38 (−1.50) 0.63 (2.45)
α = 0.50, a = 13.69 −0.53 (−2.88) 0.48 (2.60)
α = 0.50, a = 20.53 −0.57 (−3.56) 0.43 (2.67)
α = 0.50, a = 27.38 −0.59 (−3.94) 0.41 (2.70)
α = 0.70, a = 1.37 1.02 (1.11) 2.07 (2.21)
α = 0.70, a = 6.85 −0.34 (−1.23) 0.68 (2.43)
α = 0.70, a = 13.69 −0.50 (−2.60) 0.50 (2.58)
α = 0.70, a = 20.53 −0.56 (−3.32) 0.45 (2.66)
α = 0.70, a = 27.38 −0.58 (−3.75) 0.42 (2.70)
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Table 4: Simulation with unrestricted VAR
This table reports the simulation results for the long-run variance decomposition associated with log Q

(q). The simulated series for the log investment return (r), log marginal profits (m), and q are based on

different pairs of the calibrated structural parameters α and a from the theoretical model. The implied

long-run predictive statistics are based on an unrestricted VAR(1). blr denote the long-run coefficients

(infinite horizon), while t represent the corresponding t-statistics. The original sample is 1964–2018. Italic,

underlined, and bold numbers denote statistical significance at the 10%, 5%, and 1% levels, respectively.

blrr t blrm t
α = 0.05, a = 1.37 −0.37 (−0.83) 0.62 (1.42)
α = 0.05, a = 6.85 −0.78 (−4.14) 0.19 (1.11)
α = 0.05, a = 13.69 −0.82 (−5.19) 0.16 (1.10)
α = 0.05, a = 20.53 −0.83 (−5.60) 0.15 (1.10)
α = 0.05, a = 27.38 −0.83 (−5.83) 0.14 (1.10)
α = 0.15, a = 1.37 0.33 (0.79) 1.35 (3.24)
α = 0.15, a = 6.85 −0.50 (−1 .78 ) 0.49 (1 .77 )
α = 0.15, a = 13.69 −0.70 (−3.19) 0.29 (1.40)
α = 0.15, a = 20.53 −0.76 (−4.15) 0.23 (1.30)
α = 0.15, a = 27.38 −0.79 (−4.74) 0.20 (1.26)
α = 0.30, a = 1.37 0.59 (1.41) 1.64 (3.88)
α = 0.30, a = 6.85 −0.39 (−1 .79 ) 0.62 (2.90)
α = 0.30, a = 13.69 −0.55 (−2.42) 0.45 (1.99)
α = 0.30, a = 20.53 −0.64 (−2.94) 0.35 (1 .65 )
α = 0.30, a = 27.38 −0.70 (−3.46) 0.30 (1.51)
α = 0.50, a = 1.37 0.80 (1 .84 ) 1.86 (4.25)
α = 0.50, a = 6.85 −0.36 (−2.05) 0.66 (3.74)
α = 0.50, a = 13.69 −0.50 (−2.76) 0.50 (2.79)
α = 0.50, a = 20.53 −0.56 (−2.86) 0.44 (2.23)
α = 0.50, a = 27.38 −0.61 (−3.01) 0.39 (1 .91 )
α = 0.70, a = 1.37 0.94 (2.14) 2.01 (4.49)
α = 0.70, a = 6.85 −0.34 (−2.11) 0.68 (4.16)
α = 0.70, a = 13.69 −0.49 (−3.19) 0.52 (3.36)
α = 0.70, a = 20.53 −0.54 (−3.24) 0.46 (2.75)
α = 0.70, a = 27.38 −0.58 (−3.18) 0.42 (2.35)
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Table 5: Descriptive statistics for equity portfolios
This table reports descriptive statistics for the log investment return (r), log marginal profits (m), and

log Q (q) associated with alternative equity portfolios. BML, IAL, and OPL represents respectively the

lowest decile among the book-to-market, asset growth, and profitability portfolios. BMH, IAH, and OPH

represents respectively the highest decile among the book-to-market, asset growth, and profitability port-

folios. The sample is 1964–2018. AR(1) designates the first-order autocorrelation. Corr(x, q) designates

the correlation between either r or m and q. Corr(x,m) designates the correlation between r and m.

Mean S.D. Min. Max. AR(1) Corr(x, q) Corr(x,m)
Panel A (BML)

r 0.12 0.19 −0.23 0.71 −0.13 0.62 0.73
m −0.17 0.35 −0.93 1.05 0.38 0.93
q 1.32 0.15 0.96 1.74 0.49

Panel B (BMH)
r 0.04 0.17 −0.53 0.52 −0.17 0.54 0.54
m −1.16 0.35 −1.89 0.31 0.58 0.87
q 0.86 0.17 0.54 1.49 0.55

Panel C (IAL)
r 0.06 0.21 −0.37 0.63 −0.44 0.65 0.56
m −0.86 0.35 −1.58 0.24 0.28 0.84
q 0.98 0.17 0.52 1.46 0.35

Panel D (IAH)
r 0.12 0.25 −0.71 0.93 −0.28 0.62 0.67
m −0.30 0.45 −1.08 1.31 0.38 0.96
q 1.28 0.21 0.85 1.94 0.47

Panel E (OPL)
r 0.12 0.27 −0.64 0.90 −0.36 0.53 0.63
m −0.56 0.58 −1.78 1.39 0.51 0.94
q 1.04 0.27 0.60 1.94 0.64

Panel F (OPH)
r 0.08 0.17 −0.22 0.57 −0.12 0.58 0.69
m −0.49 0.33 −1.06 0.19 0.40 0.93
q 1.21 0.15 0.86 1.58 0.53
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Table 6: VAR estimates for equity portfolios
This table reports the VAR-based variance decompositions associated with alternative equity portfo-

lios. The variables in the VAR are the log investment return (r), log marginal profits (m), and log

Q (q). Results in Panels A to F refer to the restricted VAR(1) case, in which the sole predictor is

q. In Panels G to L, each variance decompositions is based on an unrestricted VAR(1). BML, IAL,

and OPL represents respectively the lowest decile among the book-to-market, asset growth, and prof-

itability portfolios. BMH, IAH, and OPH represents respectively the highest decile among the book-

to-market, asset growth, and profitability portfolios. blr denote the long-run coefficients (infinite hori-

zon). t(blrr = 0) and t(blrr = −1) denote the t-statistics associated with the null hypotheses (blrr =

0, blrm = 1) and (blrr = −1, blrm = 0), respectively. The original sample is 1964–2018. Italic, under-

lined, and bold numbers denote statistical significance at the 10%, 5%, and 1% levels, respectively.

blr t(blrr = 0) t(blrr = −1) blr t(blrr = 0) t(blrr = −1)
Panel A: BML Panel G: BML

r −0.75 −6.41 2.15 r −0.85 −6.25 1.10
m 0.26 −6.44 2.22 m 0.16 −6.48 1.19

Panel B: BMH Panel H: BMH
r −0.74 −5.33 1 .85 r −0.80 −6.22 1.55
m 0.24 −6.11 1 .92 m 0.19 −6.94 1.60

Panel C: IAL Panel I: IAL
r −0.82 −14.02 3.01 r −0.75 −8.34 2.80
m 0.17 −15.48 3.06 m 0.23 −9.01 2.72

Panel D: IAH Panel J: IAH
r −0.74 −5.94 2.10 r −0.70 −4.07 1 .75
m 0.26 −6.03 2.08 m 0.27 −4.54 1 .71

Panel E: OPL Panel K: OPL
r −0.57 −2.59 1 .94 r −0.34 −0.91 1 .79
m 0.42 −2.77 2.01 m 0.64 −1.06 1 .89

Panel F: OPH Panel L: OPH
r −0.76 −5.17 1 .68 r −0.86 −6.90 1.10
m 0.25 −5.27 1 .74 m 0.14 −6.98 1.16
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Table 7: VAR estimates for equity portfolios: Alternative series
This table reports the VAR-based variance decompositions associated with alternative equity portfolios. The

variables in the VAR are the log investment return (r), log marginal profits (m), and log Q (q). The series of

r, m, and q are based on the Liu–Whited–Zhang structural estimation method. Results in Panels A to F refer

to the restricted VAR(1) case, in which the sole predictor is q. In Panels G to L, each variance decompositions

is based on an unrestricted VAR(1). BML, IAL, and OPL represents respectively the lowest decile among the

book-to-market, asset growth, and profitability portfolios. BMH, IAH, and OPH represents respectively the

highest decile among the book-to-market, asset growth, and profitability portfolios. blr denote the long-run

coefficients (infinite horizon). t(blrr = 0) and t(blrr = −1) denote the t-statistics associated with the null

hypotheses (blrr = 0, blrm = 1) and (blrr = −1, blrm = 0), respectively. The original sample is 1964–2018. Italic,

underlined, and bold numbers denote statistical significance at the 10%, 5%, and 1% levels, respectively.

blr t(blrr = 0) t(blrr = −1) blr t(blrr = 0) t(blrr = −1)
Panel A: BML Panel G: BML

r −0.78 −7.03 1 .96 r −0.93 −8.97 0.63
m 0.22 −7.00 1.96 m 0.07 −8.90 0.65

Panel B: BMH Panel H: BMH
r −0.80 −8.34 2.03 r −0.92 −8.14 0.67
m 0.20 −8.32 2.05 m 0.08 −7.94 0.66

Panel C: IAL Panel I: IAL
r −0.89 −18.62 2.31 r −0.81 −9.58 2.27
m 0.12 −18.62 2.42 m 0.20 −9.37 2.36

Panel D: IAH Panel J: IAH
r −0.83 −10.06 2.04 r −0.95 −10.18 0.50
m 0.17 −9.91 2.02 m 0.05 −9.95 0.47

Panel E: OPL Panel K: OPL
r −0.53 −3.79 3.32 r −0.51 −2.72 2.65
m 0.47 −3.79 3.32 m 0.50 −2.70 2.65

Panel F: OPH Panel L: OPH
r −0.73 −5.79 2.14 r −0.92 −11.21 0.98
m 0.27 −5.89 2.14 m 0.08 −11.18 0.94
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Table 8: Descriptive statistics for time-series means
This table reports descriptive statistics for the average log investment return (µr), average log marginal

profits (µm), and average log Q (µq) across equity portfolios. The portfolios represent deciles

sorted on book-to-market ratio (BM10), asset growth (IA10), and operating profitability (OP10).

The sample is 1964–2018. Corr(x, µq) designates the correlation between either µr or µm and µq.

Panel A (BM10)
Mean S.D. Min. Max. Corr(x, µq)

µr 0.06 0.03 0.03 0.12 0.94
µm −0.80 0.34 −1.16 −0.17 0.99
µq 1.07 0.14 0.86 1.32

Panel B (IA10)
µr 0.05 0.03 0.03 0.12 0.90
µm −0.86 0.28 −1.15 −0.29 0.96
µq 1.05 0.12 0.94 1.27

Panel C (OP10)
µr 0.06 0.02 0.04 0.12 0.41
µm −0.83 0.21 −1.08 −0.50 0.85
µq 1.04 0.10 0.92 1.21
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Table 9: Cross-sectional variance decomposition
This table reports the results for cross-sectional regressions of either the average investment return (µr) or the

average marginal profitability of capital (µm) onto the average q. c denotes the slope estimate from the cor-

responding regression. tOLS (tW ) represents the respective OLS (heteroskedasticity-robust) t-statistic. R2 is

the coefficient of determination. “weight” represents the share associated with either return or marginal prof-

its predictability in the cross-section. ρ is the log-linearization coefficient. The cross-section consists of decile

portfolios sorted on book-to-market ratio, asset growth, and operating profitability for a total of 30 portfolios.

The original sample is 1964–2018. Italic, underlined, and bold numbers denote statistical significance at the

10%, 5%, and 1% levels, respectively. Panel B shows the results when the series of the investment return,

marginal profitability, and q are based on the Liu–Whited–Zhang structural estimation method. Panel C

refers to the results based on series constructed from an alternative calibrated depreciation rate. In Panel

D, the cross-section consists of portfolios sorted on asset growth, operating profitability, and Tobin’s Q.

c tOLS tW R2 weight cm − cr/(1− ρ) ρ
Panel A

µr 0.18 7.06 8.96 0.64 −1.26 0.92 0.86
µm 2.18 15.13 19.44 0.89 2.18

Panel B (Alternative series)
µr 0.12 5.84 5.54 0.55 −0.71 1.00 0.83
µm 1.71 15.29 13.51 0.89 1.71

Panel C (Alternative δ)
µr 0.18 6.90 9.20 0.63 −1.13 0.94 0.84
µm 2.07 15.16 20.59 0.89 2.07

Panel D (Alternative portfolios)
µr 0.18 7.33 8.75 0.66 −1.27 0.84 0.86
µm 2.10 15.12 19.74 0.89 2.10
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Panel A (r)

Panel B (m)

Panel C (q)

Figure 1: Time-Series for r, m, and q
This figure plots the time-series for the log investment return (r), log marginal profit

(m), and log Q (q). The bars contain the years with NBER recessions (the 1980

and 2001 recessions are indicated by a single line). The sample is 1964 to 2018.
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Panel A (Rest. VAR, slopes) Panel B (Unrest. VAR, slopes)

Panel C (Rest. VAR, t-stats) Panel D (Unrest. VAR, t-stats)

Figure 2: Variance decomposition
This figure plots the term structure of multiple-horizon predictive coefficients (in %), and respective t-

statistics, corresponding to the variance decompositions for log Q (q). The predictive slopes are obtained

from either a restricted or an unrestricted first-order VAR. The coefficients are associated with the log in-

vestment return (r), log marginal profits (m), and future q. The forecasting variable is q in all three

cases. “Sum” denotes the value of the variance decomposition. H represents the number of years ahead.

The horizontal lines represent the 5% critical values (−1.96, 1.96). The original sample is 1964 to 2018.
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Panel A (r)

Panel B (m)

Figure 3: Bootstrap simulation
This figure plots the simulated p-values for the restricted VAR-based return (r) and profitability (m) slopes from

a Bootstrap simulation with 10,000 replications. The predictive variable is log Q (q). The numbers indicate the

fraction of pseudo samples under which the return (profitability) coefficient is lower (higher) than the corresponding

estimates from the original sample. H represents the number of years ahead. The original sample is 1964 to 2018.
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Panel A (slopes)

Panel B (t-stats)

Figure 4: Variance decomposition: Direct approach
This figure plots the term structure of multiple-horizon predictive coefficients (in %), and respective t-

statistics, corresponding to the variance decompositions for log Q (q). The predictive slopes are ob-

tained from weighted long-horizon regressions. The coefficients are associated with the log investment re-

turn (r), log marginal profits (m), and future q. The forecasting variable is q in all three cases.

“Sum” denotes the value of the variance decomposition. H represents the number of years ahead. The

horizontal lines represent the 5% critical values (−1.96, 1.96). The original sample is 1964 to 2018.
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Panel A (µr)

Panel B (µm)

Figure 5: Cross-sectional regressions
This figure plots the observed versus fitted values in the cross-sectional regressions as-

sociated with average investment return (Panel A) and average marginal profits (Panel

B) as dependent variables. The sample represents decile portfolios sorted on book-

to-market ratio (BM10), asset growth (IA10), and operating profitability (OP10).
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A Online Appendix: Not for Publication

A.1 Variance Decompositions

In this section, we provide details on the derivations of the VAR-based variance decompositions

for q.

A.1.1 Restricted VAR(1)

By multiplying both sides of the present-value relation for q by qt −E(qt), and taking uncondi-

tional expectations, we obtain the following variance decomposition for qt,

var(qt) ≈ (1− ρ) Cov

(
H∑
h=1

ρh−1mt+h, qt

)
− Cov

(
H∑
h=1

ρh−1rt+h, qt

)
+ Cov

(
ρHqt+H , qt

)
. (A.1)

By dividing both sides by var(qt), we have,

1 ≈ β

[
(1− ρ)

H∑
h=1

ρh−1mt+h, qt

]
− β

(
H∑
h=1

ρh−1rt+h, qt

)
+ β

(
ρHqt+H , qt

)
, (A.2)

where β(y, x) denotes the slope from a regression of y on x. This represents the variance decom-

position for q based on the direct approach.

By using the property of regression coefficients, β(y + z, x) = β(y, x) + β(z, x), we have:

1 ≈ (1− ρ)
H∑
h=1

ρh−1β(mt+h, qt)−
H∑
h=1

ρh−1β(rt+h, qt) + ρHβ(qt+H , qt). (A.3)

Under the restricted first-order VAR, we have,

qt+h−1 = φh−1qt + φh−1
h−1∑
l=1

φ−l(πq + εqt+l), (A.4)
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and by combining with the VAR equation for the currency return,

rt+h = πr + λrqt+h−1 + εrt+h, (A.5)

implies the following equation for rt+h:

rt+h = πr + φh−1λrqt + φh−1λr

h−1∑
l=1

φ−l(πq + εqt+l) + εrt+h. (A.6)

Since Cov(εqt+l, qt) = 0, l > 0 and Cov(εrt+h, qt) = 0, by construction, it follows that

β(rt+h, qt) = φh−1λr. (A.7)

Similarly, we have,

β(mt+h, qt) = φh−1λm. (A.8)

On the other hand, given the expanded expression for qt+H ,

qt+H = φHqt + φH
H∑
l=1

φ−l(πq + εqt+l), (A.9)

we have

β(qt+H , qt) = φH , (A.10)

which leads to

1 ≈ (1− ρ)
H∑
h=1

ρh−1φh−1λm −
H∑
h=1

ρh−1φh−1λr + ρHφH . (A.11)

By simplifying the sums above, we obtain the VAR-based variance decomposition associated with
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q:

1 ≈ bHm − bHr + bHq , (A.12)

bHm ≡ (1− ρ)
λm(1− ρHφH)

1− ρφ
,

bHr ≡ λr(1− ρHφH)

1− ρφ
,

bHq ≡ ρHφH .

To compute the t-statistics for the predictive coefficients, bH ≡
(
bHm, b

H
r , b

H
q

)′
, we use the delta

method. From the standard errors associated with the VAR slopes, b ≡ (λm, λr, φ)′, we have:

var
(
bH
)

=
∂bH

∂b′
var (b)

∂bH

∂b
. (A.13)

The matrix of derivatives is given by

∂bH

∂b′
≡


∂bHm
∂λm

∂bHm
∂λr

∂bHm
∂φ

∂bHr
∂λm

∂bHr
∂λr

∂bHr
∂φ

∂bHq
∂λm

∂bHq
∂λr

∂bHq
∂φ

 =


(1− ρ)1−ρ

HφH

1−ρφ 0 −Hλm(1−ρ)ρHφH−1(1−ρφ)+ρλm(1−ρ)(1−ρHφH)

(1−ρφ)2

0 1−ρHφH
1−ρφ

−HλrρHφH−1(1−ρφ)+ρλr(1−ρHφH)

(1−ρφ)2

0 0 HρHφH−1

 .
(A.14)

A.1.2 Unrestricted VAR(1)

After recursive substitution, the vector of state variables at t+ h can be written as,

zt+h = (I + A + ...+ Ah−1)π + Ahzt + Ah−1εt+1 + ...+ Aεt+h−1 + εt+h, (A.15)

or equivalently,

zt+h = Ahzt + Ah
h∑
l=1

A−l(π + εt+l). (A.16)
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This implies that the regression coefficient of rt+h on qt is given by

β(rt+h, qt) =
Cov(e′rzt+h, e

′
qzt)

var(e′qzt)
=

Cov(e′rA
hzt, e

′
qzt)

var(e′qzt)
=

e′rA
hΣeq

e′qΣeq
, (A.17)

where we use the fact that Cov(εt+l, zt) = 0 for l > 0.

By using the result above, it follows that the H-period return slope is given by

H∑
h=1

ρh−1β(rt+h, qt) =
H∑
h=1

e′rρ
h−1AhΣeq
e′qΣeq

=
e′r

e′qΣeq

(
H∑
h=1

ρh−1Ah

)
Σeq

=
e′r

e′qΣeqρ

(
H∑
h=1

ρhAh

)
Σeq

=
e′r(ρA− ρH+1AH+1)(I− ρA)−1Σeq

ρe′qΣeq

=
e′rA(I− ρHAH)(I− ρA)−1Σeq

e′qΣeq
. (A.18)

The H-period m slope is defined in an analogous way. The slope associated with future q at

t+H is derived as follows:

β(qt+H , qt) =
Cov(e′qzt+H , e

′
qzt)

var(e′qzt)
=

Cov(e′qA
Hzt, e

′
qzt)

var(e′qzt)
=

e′qA
HΣeq

e′qΣeq
, (A.19)

which implies that

ρHβ(qt+H , qt) =
ρHe′qA

HΣeq

e′qΣeq
. (A.20)

In the case of the unrestricted VAR(1), the t-ratios associated with the horizon-specific coeffi-

cients bH ≡
(
bHm, b

H
r , b

H
q

)′
, are obtained by using the delta method,

var
(
bH
)

=
∂bH

∂b′
var (b)

∂bH

∂b
, (A.21)
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where b ≡ (γm, θm, λm, γr, θr, λr, γq, θq, φ)′. The derivatives are obtained from numerical meth-

ods.25

A.2 Bootstrap Simulation

The bootstrap simulation associated with the (restricted VAR-based) decomposition for q con-

sists of the following steps.

1. We estimate the first-order restricted VAR,

rt+1 = πr + λrqt + εrt+1,

mt+1 = πm + λmqt + εmt+1,

qt+1 = πq + φqt + εqt+1,

and save the time-series of residuals (εrt+1, ε
m
t+1, and εqt+1), as well as the estimates of φ and

ρ.

2. In each replication (s = 1, ..., 10, 000), we construct pseudo VAR innovations by drawing with

replacement from the original VAR residuals:

(εr,st+1, ε
m,s
t+1, ε

q,s
t+1)

′, t = vs1, ..., v
s
T ,

where the time indices vs1, ..., v
s
T—which are common for all the three VAR innovations—are

created randomly from the original time sequence 1, ..., T .

3. For each replication, we construct pseudo-samples by imposing the data generating process

for r (no-return predictability null),

rs,t+1 = ρεq,st+1 + (1− ρ)εm,st+1,

25We use the statistical package Gauss.
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for m (no-profit predictability null),

ms,t+1 = εm,st+1,

and for q:

qs,t+1 = φqs,t + εq,st+1.

The log Q for the base period (q1) is picked at random from one of the observations of qt.

4. In each replication, we use the artificial data to estimate the VAR (1),

rs,t+1 = πr,s + λr,sqs,t + υr,st+1,

ms,t+1 = πm,s + λm,sqs,t + υm,st+1,

and estimate the implied long-horizon slopes,

bHr,s ≡ λr,s
1− ρHs φHs
1− ρsφs

,

bHm,s ≡ (1− ρ)λm,s
1− ρHs φHs
1− ρsφs

,

where ρs is the estimate of ρ based on the artificial sample. In result, we have a distribution

of the VAR implied slope estimates,
{
bHr,s, b

H
m,s

}10,000
s=1

for each forecasting horizon H.

5. The p-values associated with the implied VAR slope estimates are calculated as

p(bHr ) = #
{
bHr,s < bHr

}
/10000,

p(bHm) = #
{
bHm,s > bHm

}
/10000,

where #
{
bHm,s > bHm

}
denotes the number of simulated slope estimates that are higher than
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the original slope estimate.
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