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Abstract

This paper considers a random utility model (RUM) in which migrants view locations

as aggregates of large numbers of alternatives from which they can freely choose. The

best alternative is more likely to be found in a location where they are many and diverse.

This predicted effect of size and dispersion contrasts with models considering regions or

countries as atomistic units of choice, or where the outcome obtained within a location is

stochastic and more dispersion implies more uncertainty. The coefficient on size equals

1 in an ideally specified RUM model including all relevant control variables and appro-

priate nesting of locations such that residual correlation between alternatives within

locations is small. Only then intuitive spatial properties hold: there is zero predicted

net migration between otherwise similar regions of different size, and migration flows

scale proportionally when aggregating locations. Imposing proportional scaling also

constrains how measures of size corresponding to distinct sets of alternatives (e.g. the

number of houses and jobs in a location) should be combined. Lastly, assuming normally

distributed returns from individual alternatives within locations, the coefficient on the

variance should be close to 0.5 in the suggested framework. The approach is showcased

and key predictions are tested in a study of internal migration and urbanisation in

Ethiopia.
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1 Introduction

This papers considers prospective migrants who view locations as aggregates of fundamental

units of choice. Depending on the context, such a unit of choice could be a job, a dwelling, a

partner, a piece of arable land, etc. We call these ‘alternatives’, or ‘opportunities’.

Some well known models for migration consider locations as aggregates, but typically

these are not aggregates of alternatives between which migrants can freely choose. In

Harris and Todaro (1970) or Katz and Stark (1986) locations are viewed as lotteries over

alternatives. Migrants choose locations depending on their ex-ante expected utility and draw

an alternative on arrival. In Borjas (1987), prospective migrants are first assigned an outcome

from a conditional distribution in every location, and then choose the best location given

these draws.

In this paper, we apply a less known extension of the nested logit model of McFadden

(1977) to migration.
1
In this framework migrants have idiosyncratic preferences over all

alternatives in all locations, and with full information choose their best alternative. The

probability that a location is chosen (contains the single best alternative) depends on the

expected maximum utility the location provides, which increases with the number alternatives

it contains (the destination ‘size’), and with higher dispersion in the utility derived from

the opportunities within a location. It is clearly context dependent whether a framework

assuming stochastic outcomes in destinations as in Harris and Todaro (1970) and Katz

and Stark (1986) is suited, or rather one assuming perfect information and free choice as

considered in this paper.

In the next paragraphs we summarise four insights obtained from the proposed frame-

work, as well as some testable predictions, and point out the contributions of this paper.

A first result from considering locations as aggregates of choice alternatives following

McFadden (1977) is that the utility from choosing a location increases log-linearly in the

number of alternatives it contains. When deriving a gravity equation from the discrete choice

framework, the number of opportunities available in a destination country or region shows

up as an attractive factor, serving as the size or mass variable for the destination. A first

contribution of this paper is to point to the logic and importance of including a size variable

for the destination in analyses of migration. Current economic research on migration (see

Beine, Bertoli, and Fernández-Huertas Moraga, 2016, for an overview) does not explicitly

consider choice within locations. In these models size or dispersion are missing or added

1
See section 8 ‘Aggregation of alternatives and the treatment of similarities’ in McFadden (1977), available

here: https://drive.google.com/file/d/1QJAH2jR0HWGYy41qgTHItUgJ2UESFsue/view?usp=sharing, and also

Lerman (1975) pages 155-164 for aggregation in a multinomial context. Kanaroglou and Ferguson (1996) relax

some of the underlying assumptions.
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in an ad-hoc fashion. We point out some well known studies in this literature that may

suffer from bias due to not controlling adequately for the size of the opportunity set in the

destinations.

Second, in the suggested framework the coefficient associated with the number of under-

lying alternatives in a location (i.e. the coefficient on destination size) reflects the dissimilarity

of the alternatives within the location. In an ideal model including the most relevant variables

affecting migration and implementing appropriate nesting of destinations
2
, residual corre-

lation in the utility derived from different opportunities within countries should be small,

opportunities should be perceived as dissimilar, and the mass variable should therefore have

an associated coefficient close to 1.
3
A coefficient on size significantly different from 1 can

point to a mass variable that does not proxy well for the number or the type of opportunities

in a destination, or point to significant residual correlation between opportunities within

destinations, which would suggest that an important control variable is missing or additional

nesting of destinations should be considered. This possible interpretation of the coefficient

on size is hardly recognised in current economic research on migration, or contributions

using gravity equations in various contexts within economics. A second contribution of this

paper is to remind modellers considering spatial aggregates such as regions or countries of

this interpretation of the coefficient on size offered by the micro-foundation using random

utility theory.

Third, a coefficient of 1 on destination size relates to several spatial properties of the

model: (1) As is well known in trip-distribution analysis since at least Daly (1982), a coefficient

of 1 on destination size is required to make predicted flows independent from the level of

spatial aggregation of destinations, such that the predicted migration flow to a country equals

the predicted migration flows to its constituent regions and vice-versa. (2) Again following

Daly (1982), if migrants are looking for combinations of opportunities (for example a job and

a dwelling), and if predicted migration flows are to scale proportionally when considering

aggregates of destinations, then the corresponding size variables should be combined (for

example in a weighted index), entering the gravity equation as a single mass variable for

2
Some key contributions in this literature such as Ortega and Peri (2013), Beine, Bourgeon, and Bricongne

(2019) or Beine, Bierlaire, and Docquier (2021) consider nests of locations. This paper suggests that while

this nesting of locations is highly relevant, it is insightful to additionally consider locations themselves as

aggregates (nests) of many opportunities as in Section 8 of McFadden (1977).

3
See also Train (2002) who notes that ‘It is important to realize that the independence assumption is not

as restrictive as it might at first seem, and in fact can be interpreted as a natural outcome of a well-specified

model. [...] In a deep sense, the ultimate goal of the researcher is to represent utility so well that the only

remaining aspects constitute simply white noise. That is: the goal is to specify utility well enough that a logit

model [for which the dissimilarity parameter equals 1] is appropriate. Seen in this way, the logit model is the

ideal rather than a restriction.’
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the destination with an associated coefficient equal to 1. We implement the aggregation

of multiple mass variables in the empirical application. To the best of my knowledge, this

consistent combination of multiple mass variables has never been considered in the context

of migration, or related frameworks such as trade gravity equations. (3) We show that a

coefficient of 1 on size is required to have a spatial equilibrium with zero net migration

between locations of different size with similar opportunities. It is intuitive that there exist

spatial equilibria between regions or countries with similar opportunities, even if the number

of these opportunities is very different, such as between two similar EU member states of

different size (say Denmark and Germany) or a rural area within a country and a much larger

aggregate of similar areas in the same country. This intuition does not hold in analyses

omitting a mass variable, or when the coefficient on mass differs significantly from 1. These

three properties of the coefficient on mass or size seem unknown in the migration literature.

Fourth, the expected maximum utility from choosing a destination, and therefore the

expected migration flow to this destination, increases with the dispersion between the

opportunities within the destination. Following McFadden (1977), for normally distributed

opportunities, if the coefficient on size is close to 1, theory predicts a coefficient on the

variance between opportunities of 0.5. This attractive property of dispersion contrasts

sharply with models of migration where a prospective migrant draws an alternative within

destinations under uncertainty and evaluates the expected utility in a destination such that

higher dispersion in outcomes implies lower expected utility in presence of risk aversion as

in Katz and Stark (1986). The attractiveness of variation in opportunities follows directly

from the theory of random utility maximisation when considering locations as aggregates

of units of choice as described in McFadden (1977), but seems little known or applied. It

may offer an unexplored alternative explanation for the observed attractiveness of cities to

migrants, in spite of high inequality in economic outcomes in cities and high unemployment

rates; an issue studied by economists since at least Harris and Todaro (1970).

We apply the described methodology in a study of interregional migration in Ethiopia.

Ethiopia provides an interesting setting to test the suggested framework because informa-

tion flows are likely hampered over larger distances and across regional borders, given the

significant ethno-linguistic heterogeneity within the country. It is found that dispersion in

outcomes within a location is attractive for the current location, less attractive for neigh-

bouring locations, and even less attractive when crossing ethno-linguistic regional borders.

As information becomes less readily available over larger distances, a traditional framework

with stochastic outcomes and risk-aversion may be increasingly relevant, rather than the
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model perfect information and free choice considered in this paper.
4

To control for unobserved differences between migrants and non-migrants, the familiar

type of nesting of locations is used distinguishing between the own region and all other

possible destinations as in Ortega and Peri (2013) and Beine, Bourgeon, and Bricongne (2019).

The proposed framework is implemented in an additional lower level of nesting, which

is implicit, as in section 8 of McFadden (1977). Different types of opportunities (different

mass variables for destinations) are considered combined in a single index as in Daly (1982):

population, the number of houses with running water, and the number of jobs with paid

earnings.

Existing contributions that are closest to this work are Kanaroglou and Ferguson (1996)

which also discuss the framework of McFadden (1977), and Ferguson and Kanaroglou (1997)

who apply it to internal migration in Canada. These insightful contributions have received

little attention. Relative to Kanaroglou and Ferguson (1996), we add by considering the

predictions and implications related to the coefficients on size and dispersion. Ferguson

and Kanaroglou (1997) take the number of census areas per province as the proxy for the

province size. However, given that these areas are of very different size in terms of GDP

or population, their number within a province may have little relevance to migrants, and

the number of individuals, houses and jobs within locations we use in this paper may be

better proxies of the size of the opportunity sets considered by migrants. Another important

difference is that we do not to rely on the effect of dispersion for the identification of the

dissimilarity parameter, given that the effect of dispersion likely to depends on information

availability. We obtain results that are much more in line with theory compared to Ferguson

and Kanaroglou (1997), whose estimates often violate the theoretical framework.

The remainder of this paper is organised as follows: Section 2 presents a nested logit

framework for migration where locations are viewed as aggregates of opportunities. Section

3 considers the link with the existing literature. Section 4 considers the application to internal

migration in Ethiopia. Section 5 concludes.

2 Theory

2.1 A nested logit model with locations nesting choice alternatives

An individual 𝑖 living in location 𝑜 considers different choice alternatives 𝑓 , for example

jobs. Each alternative belongs to a single location 𝑑 ∈ 𝐷 . Write 𝐹𝑑 for the set of alternatives

4
See also Bertoli, Moraga, and Guichard (2020) on how costly information acquisition can shape migration

decisions.

5



in 𝑑 . Choosing an alternative or opportunity 𝑓 ∈ 𝐹𝑑 implies living in destination 𝑑 , which

involves migrating if 𝑜 ≠ 𝑑 .

Starting from the notation of Beine, Bertoli, and Fernández-Huertas Moraga (2016), utility

𝑈 of individual 𝑖 is assumed to depend on an index of observables at the destination 𝑤𝑑 ,

on the bilateral cost 𝑐𝑜𝑑 of moving from 𝑜 to 𝑑 , and on factors 𝑧𝑓𝑑 specific to the chosen

alternative 𝑓 within the destination. As in Cardell (1997); Berry (1994) and Ortega and Peri

(2013), also the unobserved part of individual utility is split in a destination specific part 𝜇𝑑𝑖 ,

and an opportunity-specific part 𝜖𝑜𝑓 𝑖 such that

𝑈𝑜𝑓 𝑖 = 𝑤𝑑 + 𝑧𝑓𝑑 − 𝑐𝑜𝑑 + (1 − 𝜆𝑑)𝜇𝑑𝑖 + 𝜆𝑑𝜖𝑜𝑓 𝑖 . (1)

All elements in the utility function are known by the individual. The unobserved (to the

econometrician) part of utility which is shared among all opportunities within a destination

for an individual 𝜇𝑑𝑖 is iid extreme value. The fully idiosyncratic part which also varies

between opportunities 𝜖𝑜𝑓 𝑖 is distributed as the unique random variable ensuring that also the

joint error term (1−𝜆𝑑)𝜇𝑑𝑖 +𝜆𝑑𝜖𝑜𝑓 𝑖 is extreme value distributed. The ‘dissimilarity parameter’

𝜆𝑑 governs the correlation between the unobserved part of utility for individuals between

opportunities within destinations. A low value of 𝜆𝑑 implies that individuals perceive the

opportunities in a destination as similar, increasing the role of the observed opportunity

specific characteristics 𝑧𝑓𝑑 in the choice between opportunities within a given destination.

Given the assumptions on the error terms, the probability 𝑃𝑓 that an alternative 𝑓 within

the opportunity set 𝐹𝑑 of destination 𝑑 is chosen has a closed form solution as shown by

McFadden (1977). Consider the decomposition 𝑃𝑓 = 𝑃𝑑 · 𝑃𝑓 |𝑑 which provides the following

convenient and well-known representation of the nested logit model:

𝑃𝑓 = 𝑃𝑑 · 𝑃𝑓 |𝑑

𝑃𝑑 =
exp(𝑤𝑑 − 𝑐𝑜𝑑 + 𝜆𝑑𝐼𝑑)∑
𝑒 exp(𝑤𝑒 − 𝑐𝑜𝑒 + 𝜆𝑒𝐼𝑒)

(2a)

𝐼𝑑 = log

∑︁
𝑔∈𝐹𝑑

exp(𝑧𝑔𝑑/𝜆𝑑). (2b)

𝑃𝑓 |𝑑 =
exp(𝑧𝑓𝑑/𝜆𝑑)∑

𝑔∈𝐹𝑑 exp(𝑧𝑔𝑑/𝜆𝑑)
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2.2 Location choice

In migration analysis interest lies with the locations (countries, regions) and the probabilities

that they are chosen, which is given by 𝑃𝑑 given in (2a) and (2b). Information on the individual

alternatives within locations may be unavailable, and there may simply be little interest in

knowing exactly which alternative (which job, which dwelling, which partner) was chosen.

As can be seen from expressions (2a) and (2b), the presence of a set of choice alternatives

within destinations implies that the probability that a particular destination is chosen does not
simply depend on the expected utility derived from the opportunities it contains, as is assumed

in many applications. It rather depends on the expected maximum utility that can be obtained

from choosing an element from the set 𝐹𝑑 :

𝑉𝑑 ≡ 𝐸 [max

𝑓 ∈𝐹𝑑
𝑈𝑜𝑓 𝑖] = 𝑤𝑑 − 𝑐𝑜𝑑 + 𝜆𝑑𝐼𝑑 = 𝑤𝑑 − 𝑐𝑜𝑑 + 𝜆𝑑 log

∑︁
𝑓 ∈𝐹𝑑

exp(𝑧𝑓𝑑/𝜆𝑑).

Write 𝑧𝑑 for the average of the 𝑧𝑑 𝑓 within location 𝑑 . Then 𝑉𝑑 can be written as

𝑉𝑑 = 𝑤𝑑 − 𝑐𝑜𝑑 + 𝑧𝑑 + 𝜆𝑑 log(𝑁𝑑) + 𝜆𝑑 log
©­« 1

𝑁𝑑

∑︁
𝑓 ∈𝐹𝑑

exp

(
𝑧 𝑓 𝑑 − 𝑧𝑑

𝜆𝑑

)ª®¬,
where 𝑁𝑑 is the number of elements in 𝐹𝑑 which can be simply called the size of 𝑑 . The

last term is always positive and increases with larger dispersion of the 𝑧 𝑓 𝑑 from their mean.

This shows that the utility from choosing a location 𝑑 is increasing in the location size and
the dispersion between the opportunities it contains. Again following McFadden (1977), if the

opportunities are many and iid normally distributed 𝑧 𝑓 𝑑 ∼ N(𝑧𝑑 , 𝜎2

𝑑
) it follows that this

expression almost surely converges to

𝑉𝑑
a.s.

� 𝑤𝑑 − 𝑐𝑜𝑑 + 𝑧𝑑 + 𝜆𝑑 log(𝑁𝑑) + 0.5
𝜎2

𝑑

𝜆𝑑
, (3)

and the probability that a location 𝑑 is chosen therefore is

𝑃𝑑 =
exp(𝑤𝑑 − 𝑐𝑜𝑑 + 𝑧𝑑 + 𝜆𝑑 log(𝑁𝑑) + 0.5

𝜎2

𝑑

𝜆𝑑
)∑

𝑒 exp(𝑤𝑒 − 𝑐𝑜𝑒 + 𝑧𝑒 + 𝜆𝑑 log(𝑁𝑒) + 0.5
𝜎2

𝑒

𝜆𝑑
)
.

The choice at the aggregate (location) level therefore is described by a standard logit model,

where the utility𝑉𝑑 derived from choosing location𝑑 includes measures of size and dispersion

between the opportunities contained in 𝑑 . Apart from including appropriate control variables
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in the discrete choice model (or a gravity model derived from it) at the aggregate (location)

level, the lower level choice between alternatives can be left implicit. There is no need to

explicitly model the presence or the choice between the alternatives within locations, unless

there is an interest in understanding the choice between them.

Following the notation of Beine, Bertoli, and Fernández-Huertas Moraga (2016), define

𝑦𝑑 = 𝑒𝑥𝑝 (𝑤𝑑); 𝑞𝑑 = 𝑒𝑥𝑝 (𝑧𝑑); 𝜁𝑑 = 𝑒𝑥𝑝 (𝜎2

𝑑
) and 𝜙𝑜𝑑 = 𝑒𝑥𝑝 (−𝑐𝑜𝑑), moreover write𝑚𝑜𝑑 for the

number of migrants from 𝑜 to 𝑑 and 𝑝𝑜𝑝𝑜 for the population in 𝑜 . If the number of prospective

migrants is large, the probability of migration to a destination 𝑃𝑑 equals the share 𝑠𝑜𝑑 of

migrants from 𝑜 to 𝑑 relative to the local population 𝑃𝑑 = 𝑠𝑜𝑑 =
𝑚𝑜𝑑

𝑝𝑜𝑝𝑜
. Migration flows then

are described by the following gravity equation:

𝑚𝑜𝑑 = 𝑝𝑜𝑝𝑜𝑦𝑑𝑞𝑑𝑁
𝜆𝑑
𝑑
𝜁
0.5/𝜆𝑑
𝑑

𝜙𝑜𝑑
1∑

𝑒 𝑦𝑒𝑞𝑒𝑁
𝜆𝑑
𝑒 𝜁

0.5/𝜆𝑑
𝑑

𝜙𝑜𝑑

. (4)

Here 𝑦𝑑 collects the influence of variables pertaining the country (climate, etc.), 𝑞𝑑 pertains

to characteristics of the opportunities (average wage, housing price level, etc.), 𝑁𝑑 is the

number or mass of opportunities (number of jobs or houses, arable land area, etc.
5
), and the

associated parameters 0 ≤ 𝜆𝑑 ≤ 1 reflect how independent the unobserved part of utility is

between opportunities in each destination. 𝜁𝑑 controls for dispersion between opportunities,

and 𝜙𝑜𝑑 is an inverse measure of the cost of migration from 𝑜 to 𝑑 .

𝑃𝑑 = 𝑠𝑜𝑑 =𝑚𝑜𝑑/𝑝𝑜𝑝𝑜 are the odds of migration to 𝑑 . Using the odds of staying in 𝑜 as the

reference, the log odds ratio is given by

ln

(
𝑠𝑜𝑑

𝑠𝑜𝑜

)
= ln

(
𝑚𝑜𝑑

𝑚𝑜𝑜

)
= 𝜆𝑑 ln(𝑁𝑑)−𝜆𝑑 ln(𝑁𝑜)+0.5

𝜎2

𝑑

𝜆𝑑
−0.5𝜎

2

𝑜

𝜆𝑜
+𝑤𝑑−𝑤𝑜 +𝑧𝑑−𝑧𝑜−(𝑐𝑜𝑑−𝑐𝑜𝑜). (5)

Equations (4) and (5) can be estimated using aggregate data using Poisson maximum

likelihood and OLS respectively. Here 𝑝𝑜𝑝𝑜 and 𝑁𝑑 are the mass variables for origin and

destination, and dispersion between alternatives enters as an additional control variable. As

argued in the next section, in an ideal setting the parameters 𝜆𝑑 should be close to 1. An older

version of this paper considers the link between the gravity equation (4) and the gravity

equation of Anderson and Wincoop (2003) as well as the single and doubly constrained

models of Wilson (1967, 1970, 1971).

5
The next sections considers how multiple mass variables can be considered jointly.
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2.3 Three arguments to aim for 𝜆𝑑 = 1 in applications to migration

The ideal RUMmodel As equation (1) shows, 𝜆𝑑 < 1 is indicative of correlation in the

residual part of utility between the individual opportunities within a location. As more

relevant control variables are included in𝑤𝑑 −𝑐𝑜𝑑 , the residual part 𝜇𝑑 that is shared between
alternatives within 𝑑 becomes smaller, and residuals become increasingly idiosyncratic and

uncorrelated between alternatives. Individuals then increasingly perceive alternatives as

dissimilar. Therefore 𝜆𝑑 = 1 would hold in an ideally specified model including all relevant

control variables at the location level. The model then collapses to a multinomial logit model
6

between individual alternatives.

There may exist correlation between opportunities that is hard to control for using

observables, leading to 𝜆𝑑 ≪ 1. If the factors causing the correlation are shared between

subsets of locations, however, then higher levels of nesting can be considered, grouping

locations as in for example Ortega and Peri (2013) or Beine, Bourgeon, and Bricongne (2019).

Considering the probabilities and utilities conditional on having chosen a specific nest,

correlation between the alternatives should again be small and 𝜆 therefore be closer to 1.

Controlling for such unobserved common factors between subsets of locations may amount

to including dummies in a regression such as in Beine, Bourgeon, and Bricongne (2019).

In applied work population is often used as the mass variable for both origin and des-

tination. However, expressions (4) and (5) show it is important to distinguish between the

number of potential migrants as the mass variable in the origin, and the mass variable for the

destinations which should rather capture the multitude of alternatives for migrants within

the destination. When the proxy chosen as the size variable for the destinations, for example

the destination population or number of jobs, correlates only weakly with this number of

alternatives, one would expect 𝜆 ≪ 1.

In short, a coefficient on destination size significantly different from 1 may point to model

misspecification . There may be important explanatory variables missing from the analysis

leading to correlation between alternatives within locations; some subsets of locations may

have common unobserved characteristics, which calls for an additional level of nesting of

locations or the inclusion of dummy variables capturing these factors; or the proxy for

destination size may not capture well what migrants are looking for.

Aggregation of migration flows Because migration is a spatial phenomenon, it is inter-

esting to consider the relationship between 𝜆𝑑 and spatial properties implied by the model.

6
See also (Train, 2002, p. 42-43). Anas (1983) discusses aggregation in such a multinominal logit framework.

His resulting gravity equation is isomorphic to Anderson and Wincoop (2003) and the doubly constrained

models of Wilson (1967, 1970, 1971).
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One such property is that only for 𝜆𝑑 = 1 the migration flow to an aggregate such as a country

equals the sum of the predicted flows to its constituents regions. This can be seen directly

from the gravity equation (4), or taking ratio of the migration flows to two destinations 𝑘

and 𝑙 assuming that their size differs by a factor 𝑅 such that 𝑁𝑘 = 𝑅𝑁𝑙 . Collecting all other

determinants of the migration flows in the factors 𝑏𝑘 and 𝑏𝑙 one obtains in logs

log(𝑚𝑘) − log(𝑚𝑙 ) = log(𝑏𝑘) − log(𝑏𝑙 ) + 𝜆𝑘 log(𝑅) + 𝜆𝑘 log(𝑁𝑙 ) − 𝜆𝑙 log(𝑁𝑙 ).

which shows that migration flows increase proportionally with destination size 𝑅 only if

𝜆𝑘 = 1. Only in this case the predicted migration flow to a country consisting of R regions of

size N equals the sum of the predicted flows to the individual regions.

Alternatively, consider equation (4) while assuming away migration costs
7
such that

𝜙 = 𝑒𝑥𝑝 (−𝑐𝑜𝑑) = 1 and assuming all destination specific factors apart from size are equal

among locations and normalised such that 𝑏𝑑 = 𝑦𝑑𝑞𝑑𝜁
0.5/𝜆𝑑
𝑑

= 1. Consider an aggregate of

locations 𝑆 ⊂ 𝐷 . Then the flow to an aggregate of size

∑
𝑗∈𝑆 𝑁 𝑗 equals the sum of the flows

to each of its constituents of size 𝑁 𝑗 considered separately if

𝑝𝑜𝑝𝑜

(∑︁
𝑗∈𝑆

𝑁 𝑗

)𝜆
1(∑

𝑗∈𝑆 𝑁 𝑗

)𝜆 + ∑
𝑗∈𝐷\𝑆 𝑁

𝜆
𝑗

=
∑︁
𝑗∈𝑆

(
𝑝𝑜𝑝𝑜𝑁

𝜆
𝑗

1∑
𝑗∈𝑆 (𝑁 𝜆

𝑗
) + ∑

𝑗∈𝐷\𝑆 𝑁
𝜆
𝑗

)
which holds for 𝜆 = 1.

Since a failure of migration flows to scale proportionally when aggregating locations

corresponds to 𝜆 < 1, it may indicate model misspecification as discussed above. In presence

of unobserved factors common to subsets of locations, nesting of locations may be required

to ensure 𝜆𝑑 ≊ 1 and proportional scaling to hold within the nests.
8

Trip analyses often impose perfect scaling of flows with size by assuming 𝜆 = 1. This

also restricts how different size variables can be considered jointly. If migrants choose sets of

alternatives, such as a combination of a job and a dwelling, Daly (1982) suggests combining

7
In presence of migration costs 𝜆 = 1 is still required for migration to the aggregate to be the sum of the

migration flows of its constituents, but the notation would have to keep track of the role of migration costs in

the internal structure of the aggregate. This was considered in an earlier draft of this paper.

8
Consider the textbook example of the choice between transport modes bus-car-bike. If each mode has a

choice probability of 1/3, the choice probability of an aggregate of 2 alternatives scales proportionally, equalling

2/3. If we rather consider three buses of a different colour with choice probabilities of 1/9 each alongside car

and bike (with probabilities 1/3), proportional scaling fails: if we consider aggregates of a bus of a specific

colour and a car, the probability will be 1/9+1/3. By rather nesting the buses in a separate nest, probabilities

again scale proportionally within the non-bus and bus nests.
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the corresponding size variables in a single weighted index. Assuming homogeneous
9

opportunities, with different relevant size variables in the destination, 𝑁1𝑑 , 𝑁2𝑑 , . . . the utility

from choosing destination 𝑑 can be modelled as (compare to equation (3))

𝑉𝑑 = 𝑤𝑑 − 𝑐𝑜𝑑 + 𝑧𝑑 + 𝜆 log(𝑁1𝑑 + 𝑏2𝑁2𝑑 + . . .).

The single index 𝑁𝑑 = 𝑁1𝑑 + 𝑏2𝑁2𝑑 + . . . would enter the gravity equation as the combined

mass or size variable for the destination. The index weights 𝑏 can be estimated from data.

Combining multiple mass variables in a single index is compatible with proportional scaling

if 𝜆 = 1.

Spatial equilibrium Consider the definition of spatial equilibrium used in quantitative

spatial models, such as Behrens and Murata (2021) or Kline and Moretti (2014). The long run

is considered with migration costs set to 0. Agent characteristics and preferences are assumed

to be independent from the current location of residence, such that in spatial equilibrium

the population share of a region equals its choice probability by the agents, or following the

notation of Behrens and Murata (2021):

𝑃𝑑 =
𝑒𝑥𝑝 (𝑉𝑑/𝛽𝑑)∑
𝑒 𝑒𝑥𝑝 (𝑉𝑒/𝛽𝑒)

=
𝑝𝑜𝑝𝑑∑
𝑒 𝑝𝑜𝑝𝑒

,

where 𝛽𝑑 is the inverse of the scale parameter of the EV distributed residuals which was

normalised in Section 2. Accounting for differences between locations in the number of

underlying opportunities, for example through differences in the level of spatial aggregation

between units, can be introduced by defining𝑉𝑑 = 𝑉 ′
𝑑
+𝛽′

𝑑
log(𝑁 ) where𝑉 ′

𝑑
collects properties

other than size, 𝛽′
𝑑
is the inverse of the scale parameter of residuals at the lower level between

opportunities within locations such that 𝛽𝑑 > 𝛽′
𝑑
and 0 ≤ 𝜆𝑑 = 𝛽′

𝑑
/𝛽 ≤ 1. The spatial

equilibrium then is defined by

𝑃𝑑 =
exp(𝑉 ′

𝑑
/𝛽𝑑 +

𝛽′
𝑑

𝛽𝑑
log(𝑁𝑑))∑

𝑒 exp((𝑉 ′
𝑒 /𝛽𝑒 + 𝛽′𝑒

𝛽𝑒
log(𝑁𝑒))

=
𝑁

𝜆𝑑
𝑑

exp(𝑉 ′
𝑑
/𝛽𝑑))∑

𝑒 𝑁
𝜆𝑑
𝑑

exp((𝑉 ′
𝑒 /𝛽𝑒)

=
𝑝𝑜𝑝𝑑∑
𝑒 𝑝𝑜𝑝𝑒

.

9
In case of heterogeneous opportunities, the expression would additionally depend on the dispersion

between the various opportunities. This is left for future research.
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Now consider the ratio of the equilibrium population of two regions 𝑘 and 𝑙 of different size

such that 𝑁𝑘 = 𝑅𝑁𝑙

(𝑅𝑁𝑙 )𝜆𝑘𝑒𝑥𝑝 (𝑉 ′
𝑘
/𝛽𝑘)

𝑁
𝜆𝑙
𝑙
𝑒𝑥𝑝 (𝑉 ′

𝑙
/𝛽𝑙 )

=
𝑝𝑜𝑝𝑚

𝑝𝑜𝑝𝑛
.

With 𝜆𝑘 = 1, the long run population distribution scales proportionally when aggregating

locations. If two spatial aggregates are different in size but are otherwise similar in terms of

key variables which may affect migration such as for example population density, average

wages, housing prices and the variance of the idiosyncratic residuals governed by 𝛽𝑖 , intu-

itively a spatial aggregate twice as large should contain twice the population in equilibrium.

In presence of agglomeration economies locations with a high population density are more

attractive. This can best be modelled by including population density in 𝑉 ′
. The framework

then allows to decouple the concepts of size and density. Modelling size differences as

suggested while imposing 𝜆 = 1 would ensure that an aggregate containing two similar cities

with a similar population density will have an equilibrium population that is twice as large as

an aggregate containing one such city, while simultaneously allowing cities to have different

equilibrium populations compared to rural areas through the influence of population density

included as a variable in 𝑉 ′
.

As before with migration flows, if equilibrium population does not scale with location

size (𝜆 ≪ 1), it may point to model misspecification. The inclusion of relevant covariates or

better proxies for the size of locations may be required, or the use of higher levels of nesting,

to ensure that equilibrium population scales proportionally, when considering aggregates of

locations within nests.

3 Comparing with the existing literature

3.1 The traditional RUM framework for migration

Consider the gravity equation for migration as derived by Grogger and Hanson (2011) and

many subsequent contributions (see Beine, Bertoli, and Fernández-Huertas Moraga, 2016,

for an overview) based on the random utility maximisation framework of McFadden (1974).

A potential migrant 𝑖 in an origin country 𝑜 compares utility among possible destination

countries indexed by 𝑑 ∈ 𝐷 , among which the country of origin itself. Following the notation

of Beine, Bertoli, and Fernández-Huertas Moraga (2016) as before, utility 𝑈 of individual 𝑖 is

assumed to depend on an index of observables at the destination 𝑤𝑑 , and on the bilateral

12



cost 𝑐𝑜𝑑 of moving from 𝑜 to 𝑑 :

𝑈𝑜𝑑𝑖 = 𝑤𝑑 − 𝑐𝑜𝑑 + 𝜖𝑜𝑑𝑖 .

With 𝜖𝑜𝑑𝑖 EV distributed, the probability 𝑃𝑑 of an individual in location 𝑜 to prefer destination

𝑑 ∈ 𝐷 over all other destinations 𝑥 ∈ 𝐷 is

𝑃𝑑 =
exp(𝑤𝑑 − 𝑐𝑜𝑑)∑
𝑒∈𝐷 exp(𝑤𝑒 − 𝑐𝑜𝑒)

If the number of prospective migrants is large such that 𝑃𝑑 = 𝑠𝑜𝑑 =𝑚𝑜𝑑/𝑝𝑜𝑝𝑜𝑑 and defining

𝑦𝑑 = 𝑒𝑥𝑝 (𝑤𝑑) and 𝜙𝑜𝑑 = 𝑒𝑥𝑝 (−𝑐𝑜𝑑) the following gravity equation is obtained:

𝑚𝑜𝑑 = 𝑝𝑜𝑝𝑜𝑦𝑑𝜙𝑜𝑑
1∑

𝑒 𝑦𝑒𝜙𝑜𝑒
.

A destination-mass variable may be included by the empirical researcher as a destination-

specific explanatory variable in 𝑦𝑑 , but its inclusion does not stringently follow from this

popular theoretical framework. The corresponding log odds ratio is given by

ln

(
𝑠𝑜𝑑

𝑠𝑜𝑜

)
= ln

(
𝑚𝑜𝑑

𝑚𝑜𝑜

)
= 𝑤𝑑 −𝑤𝑜 − (𝑐𝑜𝑑 − 𝑐𝑜𝑜) (6)

Again the researcher is left to decide whether the vector of explanatory variables should

include some measure of size or dispersion, which would logically then be included in both

in𝑤𝑑 and𝑤𝑜 .

3.2 Potential issues in existing empirical studies

In the framework of Section 2 where destinations are viewed as aggregates of choice alter-

natives, the number of alternatives in a location and the variation between them appear

naturally as determinants of migration. In the traditional RUM based migration literature

based on the framework described in the previous section, there is no choice within locations

and no explicit role for the size of locations and dispersion within them. In empirical work

often size and sometimes dispersion are added as explanatory variables in an ad-hoc fashion.

However, given that these variables do not explicitly appear in the expressions, it is easy

to make mistakes when doing so, and this section turns to considering some examples that

may affected by this.

A source of confusion may be the fact that when considering the log-odds ratio as in

13



equation (5) in a framework where locations aggregate opportunities, the number of choice

makers, 𝑝𝑜𝑝𝑜 drops out of the expression, but the number of alternatives in both origin and

destination 𝑁𝑜 and 𝑁𝑑 remain. In an analysis based on equation (6) where size variables have

to be added in an ad-hoc fashion, a researcher may wrongly believe that all mass variables

cancel out and there is no need to include any measure of size, or perhaps that only the

destination sizes 𝑁𝑑 needs to be added.

Consider the seminal work of Grogger and Hanson (2011, p. 54) who include origin-

destination (dyadic) fixed effects which capture size and other factors in an analysis based on

the log-odds ratio similar to equation (6), omitting any size variable. In a secondary analysis,

they consider the value of these estimated fixed effects as estimates of the ‘fixed costs’ of

migration. Among all destinations considered they observe the largest residual attractiveness

(as captured by the fixed effects) for the USA and Germany. Offered explanations are higher

wages in these countries, labour-recruitment strategies in the 1960s, post-war asylum policies

and immigrant networks. Whereas such factors may play a role, a more basic explanation

for the large residual migration flows to these countries is that the USA and Germany are

the largest destination countries in the dataset, and their analysis does not control for size.

Ortega and Peri (2013) and Beine, Bourgeon, and Bricongne (2019), estimate a dynamic

version of the log odds equation (6) which may be stylised as

ln(𝑚𝑜𝑑𝑡 ) = ln(𝑚𝑜𝑜𝑡 ) +𝑤𝑑𝑡 −𝑤𝑜𝑡 − 𝑐𝑜𝑑𝑡 + 𝜉𝑜𝑑𝑡 .

Beine, Bourgeon, and Bricongne (2019) emphasise the importance of including origin-time

fixed effects to control for𝑚𝑜𝑜𝑡 and other origin-time-varying variables in𝑤𝑜𝑡 . There is an

asymmetry in their analysis, however, in that no destination-time fixed effects are included.

Any time-varying measure of the number of opportunities in the destination or the dispersion

between them present in𝑤𝑑𝑡 would not be controlled for. In contrast to equation (6), in the

suggested framework equation (5) shows explicitly that variables such as the number of

jobs or dispersion in wages in both origin and destination determine migration flows and

the log odds, and should be controlled for, suggesting that their analysis may suffer from

omitted variable bias. Alternatively, destination-time fixed effects could have been included

alongside the origin-time fixed effects to control for such factors.

In an innovative contribution Beine, Bierlaire, and Docquier (2021) consider a cross-nested

logit model for migration. Their analysis assumes that the utility derived from choosing

the origin does not depend on its size, whereas the utility of any other location does. The

analysis in Section 2 rather suggests that the expected maximum utility from choosing any

location increases with size, including for the origin region.
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The relation between the coefficient on size and spatial phenomena described in Section

2.3 is easily misinterpreted. Estimating a gravity equation for migration in China from rural

locations to cities Xing and Zhang (2017) find size coefficients close to 1.
10

They conclude

that this explains the growth of larger cities. This seems unfounded since a coefficient of

1 on the size of the destination is compatible with a spatial equilibrium between spatial

aggregates of different size without net migration, as argued in section 2.3. Urbanisation

trends and agglomeration economies could rather be studied by including variables such

as population density among the control variables, and a proxy for size or mass would be

added to control for the more basic size differences occurring due to differences in the level

of spatial aggregation of the observations, with an expected coefficient close to 1.

4 Empirical Application: Internal migration in Ethiopia

This section implements the framework of Section 2 where locations are viewed as aggregates

of many choice alternatives, in an analysis of internal migration in Ethiopia. As richer

specifications are considered the coefficient on destination size increases, as predicted. The

predicted attractive effect of dispersion is confirmed, with a coefficient on the variance in the

consumption per capita in the own region close to 0.5. The estimated coefficient is smaller

for other locations, and smaller still for locations across ethno-linguistic borders. This runs

counter to predictions of models using risk-aversion where dispersion in a location always

is unattractive, and counter to the Borjas (1987) model where higher dispersion in the home

region leads to more emigration. The fact that dispersion in outcomes is less attractive

for farther destinations is to be expected if information is more difficult to obtain in such

destinations such that uncertainty and risk aversion increasingly come into play. A last

innovation is the inclusion of a weighted index combining several size variables.

4.1 Data Description

The main dataset used in the analysis is the 2013 wave of the Ethiopian labour force survey

(LFS).
11
A recent study of internal Ethiopian migration using the LFS is Bundervoet (2018),

who uses a multinomial framework and also considers qualitative aspects of migration. The

LFS contains information on 240660 individuals. Such a large cross-section is important

when studying migration which is a rare occurrence. We consider only individuals between

15 and 65 years old who have migrated in the 20 years prior to the interview or have never

10
They find estimates below and above 1. Their preferred estimate is 1.056 with a standard error of 0.133

11
The LFS can be downloaded freely from .
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migrated, leaving 110615 individuals. About 9 percent of these report to have moved zone in

the 20 years before the interview.

The number of variables in the LFS is limited, but crucially includes the current and

previous zone of residence, and whether this (previous) place of residence is (was) in an

urban or rural area within the zone. Migrants are also asked how many years ago they

migrated.

We combine the LFS with data on housing from the Ethiopian Central Statistical Agency

(CSA) ‘Population and Housing Census of Ethiopia’ from 2007,
12
and with the 2018 wave

of the Living Standards Measurement Study (LSMS) for consumption expenditures
13
. We

believe it is unproblematic to merge data from different years because the identification relies

on cross-sectional variation. The relevant differences between zones driving our results, in

terms of for example migration flows, housing stock, or population span several orders of

magnitude and are persistent over time.

Although the LFS contains information on earned income, for several zones there are

only a handful of sampled individuals with earned income, or none at all. This reflects

the scarceness of paid jobs in these areas, which is taken into account in the analysis by

controlling for the number of paid jobs as an independent variable. It is impossible to estimate

the zonal mean or variance of earnings for zones without paid jobs, however. We therefore

use the spatially adjusted consumption per adult equivalent from the LSMS to estimate the

mean and dispersion in the return from opportunities at the zonal level, rather than earnings

data. This variable is calculated with the explicit aim of measuring the standard of living of

the individuals, including individuals who do not earn an income in monetary terms. Due to

some border changes between zones that occurred between 2013 and 2018, combining the

LFS and LSMS data implies that some small zones had to be merged.

There were 86 zones in Ethiopia in 2013. The LFS and both auxiliary datasets (on housing

and consumption) differentiate between urban and rural areas within each zone. Some zones

are purely rural or urban, however. We merge the 10 zones corresponding to the capital

Addis Ababa. Others zones were merged due to border changes which are hard to trace:

4 small zones of the SNNPR region, the zones of the Gambela region and the zones of the

Benishangul-Gumuz region. The Afar and Somalia regions are not considered because of

the large share of semi-nomadic population. In total, the analysis considers 98 different

locations. Appendix A provides a list of regions and zones included in the analysis, with

some summary statistics, and an indicator for the zones which were merged. Considering

12
This dataset is downloadable from the CSA website at and can be obtained in digitised form from the

authors website or on request.

13
This dataset is publicly available through the World Bank Central Microdata Catalog. See the project

website for a description, technical documentation, and to download the microdata.
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this many alternatives in a discrete choice model is computationally intensive. Often this

is solved by considering the chosen alternative (migration destination), combined with a

relatively small random sample from the set of non-chosen alternatives. We rather opted

to keep the full set of alternatives and used extensive computing resources. Estimation

was done using the maximum likelihood implementation of the Biogeme Python package

(Bierlaire, 2020). This provides a convenient environment for handling data while allowing

for the non-linear specifications of the utility functions which is required in the suggested

framework when considering multiple size variables. All the datasets used in the analysis

are publicly available. The Stata and Python code is available from the authors’ website or

on simple request.

4.2 Estimation equation and variable definitions

One of the richer specifications which will be brought to the data defines utility for an

individual 𝑖 from origin 𝑜 from choosing destination 𝑑 (allowing for 𝑑 = 𝑜) as

𝑈𝑜𝑑𝑖 = 𝜆 log(ℎ𝑜𝑢𝑠𝑒𝑠𝑑 + 𝑏 𝑗 𝑗𝑜𝑏𝑠𝑑) + 𝛽𝑐 log(𝑐𝑜𝑛𝑠𝑑) + 𝛽𝑣Var(cons𝑑) + 𝛽𝑢𝐼 (𝑢𝑟𝑏𝑎𝑛𝑑)
+ 𝐼 (𝑜 = 𝑑) · (𝛽𝑜𝑜 + 𝛽𝑎𝑎𝑔𝑒𝑖 + 𝛽𝑒𝑒𝑑𝑢𝑐𝑖 + 𝛽 𝑓 𝐼 (𝑓 𝑒𝑚𝑎𝑙𝑒𝑖))
+ 𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝑑) · 𝛽𝑠 + 𝛽𝑑 log(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑜𝑑) + 𝑒𝑜𝑑𝑖, (7)

where 𝑒𝑜𝑑𝑖 is extreme value distributed. As in Ortega and Peri (2013) and Beine, Bourgeon, and

Bricongne (2019), correlation in the error term 𝑒𝑜𝑑𝑖 is allowed for between destinations other

than the origin, giving rise to a nested logit structure with the origin as a single alternative

in a degenerate nest, and all other destinations grouped in a second nest. Write 𝜉 for the

dissimilarity parameter associated with this upper level of nesting. This basic structure

captures and controls for the important fact that migrants are different from non-migrants in

many ways that are hard to measure. A risk-averse individual may have a strong preference

for the origin compared to any other destination, for example, which introduces correlation

between destinations other than the origin.

The nesting of opportunities within each destination zone is only considered implicitly

by the inclusion of a size variable for the destination. Specification (7) considers the weighted

index ℎ𝑜𝑢𝑠𝑒𝑠𝑑 + 𝑏 𝑗 𝑗𝑜𝑏𝑠𝑑 as the size variable. The weight 𝑏 𝑗 will be estimated from data

together with the other parameters. The coefficient 𝜆 on the size variable captures the

dissimilarity between the opportunities proxied by the size variable, as discussed in the

previous sections. It should not be confused with the dissimilarity parameter 𝜉 which pertains

to the dissimilarity between the origin zone and all destinations.
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We variously consider population 𝑝𝑜𝑝𝑑 as a sole size variable, or the index ℎ𝑜𝑢𝑠𝑒𝑠𝑑 +
𝑏 𝑗 𝑗𝑜𝑏𝑠𝑑 combining the number of jobs 𝑗𝑜𝑏𝑠𝑑 (number of employment persons with earned

income in the LFS) with the number of houses with running water ℎ𝑜𝑢𝑠𝑒𝑠𝑑 . Some specifica-

tions will include the variance of the consumption in the destinations, Var(𝑐𝑜𝑛𝑠𝑑), and an

indicator 𝐼 (𝑢𝑟𝑏𝑎𝑛𝑑) for urban destinations. All specifications consider the average level of

consumption in the destination zone 𝑐𝑜𝑛𝑠𝑑 , in logs.

If a constant would be added to the utility of every alternative it would not affect the

probabilities and therefore would not be identified. The constant 𝛽𝑜𝑜 therefore only appears

for the origin region, capturing all factors which make choosing the origin (i.e. not migrating)

a more likely outcome. Similarly, variables such as the individual’s age are modelled only

to affect the probability of choosing to stay in the origin. Controls at the individual level

include the age at the time of migration (we take the age at the time of the interview for

non-migrants), a dummy for females, and the education level at the time of the interview.

Education is measured on a 4-level scale which enters as a continuous variable to limit the

number of parameters.

Origin-destination level controls include the distance distance𝑜𝑑 between the geographic

centres of origin and destination zone, in logs, and an indicator whether the origin and

destination zone are in the same region 𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛𝑜𝑑). The internal distance was taken
to be 20km for all zones. Although this is a crude approximation, any error in scale will be

captured by the own-region specific dummy.

Some specifications include interactions of variables with 𝐼 (𝑜 = 𝑑), for example to

investigate whether the coefficient on the variance of consumption is different for the origin

region versus when choosing a destination different from the origin. Likewise, interactions

with 𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛) will be considered.

4.3 Results

Table 1 presents the results. Column (1) considers a basic specification with population

as the mass variable for the destination. The coefficient is less than 0.5, compared to the

value of 1 expected in theory. A likely explanation is that the population size of a zone does

not correlate strongly with the number of opportunities therein. Ethiopia is characterised

by a large disparity in the level of development between localities: some populous rural

low income zones offer few opportunities to migrants, whereas a city like Addis Ababa is

both populous and offers many opportunities. The effect of distance is as expected. The

coefficient on the dummy indicating a destination zone in the same region as the origin

𝐼 (𝑠𝑎𝑚𝑒𝑟𝑒𝑔𝑖𝑜𝑛) has the ‘wrong’ sign. This may be a further indication of a misspecified
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model. The coefficients for the individual characteristics show the effect of these variables

on the probability of not migrating. The effects are as expected: older or less educated

individuals and woman are less likely to migrate. In Bundervoet (2018), in contrast, females

are found to migrate more in Ethiopia.
14

The sign on gender will turn out to change between

specifications. The very low value of the dissimilarity parameter 𝜉 suggests that there is

significant unobserved correlation between destinations other than the origin.

Column (2) introduces a dummy variable for the own region, capturing some of the

unobserved part of utility that is specific to either the own-origin nest or the nest containing

all other destinations (adding the dummy to the other nest would lead to the same result

with the sign flipped). The dissimilarity parameter 𝜉 for the upper level jumps from 0.155 to

0.242, suggesting that the simple dummy indeed captures some of this correlation.

Column (3) replaces the population in the destinationwith a weighted index of the number

of houses and the number of jobs in the destination, as described in section ??. The weight 𝑏 𝑗
of the jobs variable in the index is estimated together with the other model parameters. The

coefficient on the combined mass variable is 0.77, compared to the coefficient of 0.472 when

considering population as the mass variable. This value being much closer to 1 suggests

that the index combining the number of houses and jobs is significantly better at capturing

the size of the underlying opportunity-set in the destination. Intuitive properties such as

scaling and aggregation then hold approximately and the model describes a situation closer

to a spatial equilibrium, as described in section ??. Also noteworthy is the change in the

dissimilarity parameter 𝜉 associated with the choice between the own region and any other

region: this parameter further increases from 0.242 to 0.302, suggesting that relevant control

variables have been added, reducing the correlation in the unobserved part of individual

utility in the explicitly modelled nests, and bringing the model somewhat closer to the

multinomial ideal. Moreover, the effect of per capita consumption drops significantly after

introducing appropriate controls for the size of destinations, suggesting that this variable

was partially capturing the effect of the abundance of opportunities in the destinations in the

first two columns. Another sign that the specification with two mass variables in column (3)

is to be preferred, is the fact that destination zones in another region now are estimated to be

less attractive compared to those in the own region, as one would expect. This small effect

of regional borders in partially explained by migration to Addis Ababa, the capital, which

is highly attractive to migrants from all regions. In an unreported specification, adding a

dummy for Addis Ababa to the specification of column (3) increases the effect of regional

14
This may be related to the fact that individuals reporting are considered to have migrated from the same

origin-zone as their current zone of residence (and also do not switch between rural or urban areas within the

zone) as non-migrants, whereas Bundervoet (2018) also considers these intra-zone movements as migration.
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(1) (2) (3) (4) (5) (6)

log(pop) 0.48 0.472

(0.011) (0.011)

log(houses + 𝑏 𝑗 jobs) 0.767 0.784 0.775 0.789

(0.0065) (0.00752) (0.00768) (0.00769)

𝑏 𝑗 0.479 1.78 1.49 1.614

(0.0248) (0.17) (0.14) (0.16)

log(distance) -1.72 -1.7 -1.61 -1.59 -1.59 -1.6

(.0103) (0.0104) (0.00951) (0.0093) (0.00926) (0.00931)

log(cons) 2.07 2.06 0.838 0.293 0.31 0.274

(0.0246) (0.0249) (0.0195) (0.0223) (0.0223) (0.022)

I(urban) 1.13 1.05 1.05

(0.0289) (0.0288) (0.03667)

Var(cons) 0.104

(0.00396)

I(same region) -0.499 -0.456 0.0566 0.0552 -0.0461 0.354

(0.0239) (0.0241) (0.0231) (0.023) (0.0227) (0.0479)

I(same region)·I(urban) -0.136 -0.18

(0.0431) (0.0434)

I(same region)·Var(cons) 0.174

(0.00882)

I(o=d) 2.91 3.52 4.29 6.92 2.45

(0.128) (0.109) (0.132) (0.129) (0.117)

I(o=d)·age 0.461 0.248 0.203 0.242 0.196 0.181

(0.0212) (0.0104) (0.00552) (0.00691) (0.0063) (0.00614)

I(o=d)·educ -1.72 -1.77 -2.02 -2.46 -1.92 -1.8

(0.101) (0.0668) (0.0474) (0.059) (0.0691) (0.0669)

I(o=d)·I(female) 0.265 -0.241 -0.253 -0.306 -0.239 -0.222

(0.0984) (0.0662) (0.056) (0.0665) (0.0513) (0.0502)

I(o=d)·I(urban) -0.393 -0.595

(0.096) (0.121)

I(o=d)·Var(cons) 0.247

(0.0289)

𝜉 0.155 0.242 0.287 0.242 0.3 0.323

(0.00767) (0.00936) (0.00652) (0.00587) (0.00993) (0.00978)

AIC 228336 227930 214915 213278 213208 212334

BIC 228413 228016 215011 213384 213333 212487

N 110615

Table 1: Parameter estimates of a nested logit model for internal migration in Ethiopia. Robust
standard errors in parenthesis.
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borders from 0.0566 to 0.177.

Column (4) introduces a dummy for urban destinations. Urban destinations are found

to be more attractive. However, the lower dissimilarity parameter suggests that residual

correlation has been introduced within the nests. We therefore allow the effect of the urban

dummy to differ for the origin and for destinations in the same region (this includes the

origin zone) in column (5). This substantially increases the estimated dissimilarity parameter,

suggesting a better fit. Individuals are also more likely to choose their own region (not to

migrate) if it is urban, with the effect of an urban origin on the probability of staying equal

to 1.05-0.393-0.136=0.521. Urban zones within the same region are also more likely to be

chosen, with an estimated effect of 1.05-0.136=0.914. For zones in a different region, the

effect is largest at 1.05. Put differently, migration is estimated to be more likely from rural

origins and to urban destinations. However, the attraction of a city is weakest for the origin

region (deterring migration), stronger for cities in the same region, and strongest for cities

outside of the own region.

Column (6), lastly, introduces the variance in annual consumption per adult equivalent

at the zonal level as an additional explanatory variable. Also here differences in the effect

are allowed between the zone of origin, zones within the same region, and zones in other

regions. The attractive effect of dispersion in opportunities is found to be largest for the

own region (0.104+0.174+0.247=0.525). It is smaller for other destinations in the own region

(0.104+0.174=0.278), and smallest for destinations in other regions (0.104). These differences

are statistically significant. It is reasonable to assume that information is more readily

available on the availability and properties of opportunities in the own current location,

or locations nearby (in the same region). The differences found in the attractive effect of

dispersion then are in line with the model, which assumes that dispersion in the return

to opportunities is attractive to individuals if they can observe and choose among the

opportunities. Lastly, the estimated coefficient of 0.525 on the variance of consumption in

the own region is very close to the predicted value of 0.5 in section ??, equation (??), when
assuming a true value for the dissimilarity parameter of 1.

A final observation is that the introduction of dispersion reduces the effect of the urban

dummies. Also here, this reduction is strongest for the origin (deterrence of migration),

less strong for other zones in the same region, and quite small for the destination zones in

other regions. This suggests that the lack in local dispersion of opportunities may explain

migration from rural areas.
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5 Summary and Conclusion

This paper presented a random utility framework for migration where destination countries

or regions are considered as aggregates of many alternatives between which migrants can

freely choose. Migrants then consider the expected maximum utility when choosing a

location, which increases with the number of alternatives and the dispersion between them

in a location. The model serves as an extension or alternative to the prevalent specifications

considering countries or regions as the fundamental unit of choice of migrants, where size

and dispersion have to be considered in an ad-hoc fashion, without guidance from theory.

It was argued that the coefficient associated with size should be close to 1 in a well-

specified model. Only then intuitive spatial properties hold such as independence of predicted

flows or equilibrium population distribution from the level of spatial aggregation.

associated coefficient smaller than one, attenuating the effect of size. The traditional

gravity equation where countries are the relevant unit of choice for migrants is obtained as

a limiting case with perfectly correlated opportunities. In this case only properties at the

country level which are unrelated to size, such as climate, averagewage, or the unemployment

rate, explain migration flows.

We showed that a coefficient on size equal to 1 is a property of an ideally specified

model containing all relevant covariables and additional levels of nesting of locations. A

coefficient on size substantially smaller than 1 (or omitting size altogether), is symptomatic of

misspecification, and results in undesirable spatial properties: migration and the equilibrium

distribution of population then depend on the level of spatial aggregation.

This result assumes that migrants can choose between opportunities at the destination,

ignoring less favourable ones. This is only realistic if prospective migrants have sufficient

information about the opportunities. In this case, destinations with equal average opportuni-

ties but more extremes opportunities are more attractive. The attractiveness of otherwise

similar destinations with a wider variance in economic opportunities may be linked to trends

of urbanisation in developing countries, where cities typically are characterised by very

unequal economic outcomes; and with the observed overall attractiveness of destination

countries with a more unequal income distribution in the context of international migration.

Practical implications for applied research are that (1) a size proxy for the destination

should be included in gravity equations for migration. This proxy should be related to the

number or mass of opportunities operating as an attractive force in the destinations. The

associated coefficient reflects the dissimilarity between the underlying opportunities. A

coefficient substantially smaller than 1 could point to a poorly defined model. (2) In log-

odds expressions, the size variable capturing attractiveness through the number of available
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opportunities in the destinations appears twice, in logs: once for the destination and once

(with a negative sign) for the considered alternative (most often the location of origin). (3) If

migrants are simultaneously looking for different types of opportunities (jobs, housing, etc.)

the size variables are combined in a weighted index, the weights of which can be estimated

from data. (4) If the utility from opportunities in a destination can be described stochastically,

and migrants receive information on the specific opportunities and can choose between

them, other things equal, dispersion of utility within a destination is an attractive factor and

enters the utility function and gravity equation. For iid normally distributed opportunities,

with a coefficient of 1 on the mass variable, the expected coefficient on the variance variable

is 0.5.

The application to Ethiopian internal migration shows how the framework can be im-

plemented and aims to further our understanding of the factors driving urbanisation. Two

size variables were combined and the index weights were estimated from data. Dispersion

in adult-equivalent consumption in destinations was considered, revealing a positive corre-

lation with migration flows, as predicted. This effect is larger for the origin (discouraging

migration), it is weaker for alternative destinations within the same region, and weakest

for destinations outside of the own region. This is supportive of the hypothesis that the

effect is stronger if more information is available. Controlling for dispersion in opportunities

explains part of the attraction of urban origins. Put differently, the results suggest that lack

of dispersion in opportunities in rural origins may be causing migration out of rural areas.
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Appendix

Appendix A — Included zones and summary statistics

Table 2 gives a list of zones included in the analysis, together with summary statistics of

the main variables. The sample used includes only individuals in the LFS that have never

migrated or less than 20 years ago and who are between between 15 and 65 years old currently

or at the time of migration. ‘obs.LFS’ pertains to the number of observation in our final

sample derived from the LFS. pop 15-65 is the population of the zone estimated using the LFS

sampling weights. Jobs is the estimated population-level number of jobs with paid earnings.

Houses is the number of houses with a tap within the house or compound. ‘consum.’ is the

nominal annual level of consumption per adult equivalent, spatially adjusted for food prices.

‘MERGED’ in the column Zone indicates that the line corresponds to a collection of

merged zones within the region. Merging these zones was necessary to merge the LFS

data with the LSMS data. All of the zones in the sparsely populated regions of Gamela and

Benishangul-Gumuz were merged. In the SNNPR region containing a very large number of

small zones, the zones Burji, Konso, Derash and the Segen Peoples’ zone were merged.

Table 2: Zones included in the analysis, with summary statistics.

Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Tigray North Western Rural 916 738003 8479 417 11605

Tigray North Western Urban 308 117236 18645 7162 14564

Tigray Central Rural 1634 1112806 24360 1197 9660

Tigray Central Urban 560 260882 40431 15531 20655

Tigray Eastern Rural 784 555801 29224 1436 10241

Tigray Eastern Urban 1193 214502 31622 12147 29136

Tigray Southern Rural 1310 994514 39122 1923 10102

Tigray Southern Urban 412 146198 19477 7482 29031

Tigray Western Rural 428 340463 3734 460 10650

Tigray Western Urban 194 76726 8925 3432 23187

Tigray Mekele Urban 1278 264919 65167 0 32341

Amhara North Gonder Rural 1959 2850946 45881 6349 8833

Amhara North Gonder Urban 1873 567302 90459 34388 23038

Amhara South Gonder Rural 1515 2153115 60910 3609 11916

Amhara South Gonder Urban 398 276101 44638 15784 15192

Amhara North Wollo Rural 1093 1459643 34185 4507 9974
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Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Amhara North Wollo Urban 300 195177 20083 18039 22823

Amhara South Wollo Rural 1809 2371873 52294 7626 7832

Amhara South Wollo Urban 2787 414613 71568 37080 31647

Amhara North Shewa Amhara Rural 1236 1684467 22970 4215 12380

Amhara North Shewa Amhara Urban 1512 287253 37152 30733 31366

Amhara East Gojam Rural 1602 1956255 47724 3054 8400

Amhara East Gojam Urban 1490 252745 38544 24028 13754

Amhara West Gojam Rural 1524 2125181 49548 3656 14120

Amhara West Gojam Urban 517 299153 28787 18394 16549

Amhara Wag Himra Rural 345 516981 10028 1201 3341

Amhara Wag Himra Urban 56 21820 6931 170 10365

Amhara Awi/Agew Rural 686 969006 36269 1716 11709

Amhara Awi/Agew Urban 236 128303 25516 12771 17535

Amhara Oromia Rural 269 377667 5052 2802 9321

Amhara Oromia Urban 111 73148 17655 8349 25814

Amhara Bahir Dar Special Urban 1280 199973 67352 33255 37100

Oromia West Wellega Urban 226 155389 25020 5085 17108

Oromia East Wellega Rural 765 1581861 33609 1753 11102

Oromia East Wellega Urban 1292 173846 35718 10654 12697

Oromia Ilubabor Rural 639 1141336 14215 1718 12839

Oromia Ilubabor Urban 269 155223 31420 7607 19313

Oromia Jimma Rural 1530 2498684 38894 3769 10305

Oromia Jimma Urban 229 147357 26545 3951 29148

Oromia West Shewa Rural 1088 1851274 33318 2615 12157

Oromia West Shewa Urban 391 321917 62012 23030 14644

Oromia North Shewa Oromia Rural 815 1358272 73819 3691 12197

Oromia East Shewa Rural 555 1035219 74971 6765 12652

Oromia East Shewa Urban 1838 442626 89180 44856 24972

Oromia Arsi Rural 1388 2525899 91616 4372 13322

Oromia Arsi Urban 1612 392751 61509 31754 24410

Oromia West Harerge Rural 1038 2226038 47245 3432 14115

Oromia West Harerge Urban 280 222586 41052 12073 20917

Oromia East Harerge Rural 1623 2810431 26646 9714 15522

Oromia East Harerge Urban 353 280888 18255 9065 25100

Oromia Bale Rural 691 1256138 22855 3869 15477

Oromia Bale Urban 275 241488 29749 20009 20399

Oromia Borena Rural 495 1073541 14207 1599 11305

Oromia South West Shewa Rural 670 1199779 13247 2848 9832
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Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Oromia Guji Rural 694 1707576 10118 1738 13614

Oromia Guji Urban 216 141631 24155 8059 22543

Oromia Jimma special Urban 1399 155720 38615 14542 23025

Oromia West Arsi Rural 986 1940371 26367 5128 7674

Oromia West Arsi Urban 1562 397638 48230 24449 13559

Oromia Kelem Wellega Rural 488 812633 17603 1333 13399

Oromia Kelem Wellega Urban 145 79948 7653 2304 17687

Oromia Horo Guduru Rural 279 487584 33867 2520 12566

Benish.-G. MERGED Rural 2767 788836 15285 499 12295

Benish.-G. MERGED Urban 2086 156318 27892 302 23353

SNNPR Gurage Rural 1078 1144072 16721 4042 22565

SNNPR Gurage Urban 350 220342 39479 11541 21887

SNNPR Hadiya Rural 1103 1223226 25444 3070 13706

SNNPR Hadiya Urban 1436 168083 28130 10421 42814

SNNPR kembata tembaro Rural 574 624118 12856 906 6491

SNNPR kembata tembaro Urban 293 122834 20496 4850 7909

SNNPR Sidama Rural 2566 3006280 31079 7749 11712

SNNPR Sidama Urban 377 254024 32371 9879 24916

SNNPR Gedio Rural 688 757318 7421 1504 10610

SNNPR Wolayita Rural 1318 1438751 15606 4291 12939

SNNPR Wolayita Urban 1621 272785 45363 11628 18237

SNNPR South Omo Rural 475 573842 6264 901 6100

SNNPR South Omo Urban 114 57976 12626 1987 35429

SNNPR Keffa Rural 706 880847 24985 883 7874

SNNPR Keffa Urban 180 98390 13333 1806 10066

SNNPR Gamo Gofa Rural 1311 1586130 21092 3177 13430

SNNPR Gamo Gofa Urban 1495 229939 36760 15153 11656

SNNPR Bench Maji Rural 570 609542 14211 1122 6059

SNNPR Bench Maji Urban 229 136934 24737 1719 13093

SNNPR Dawro Rural 429 551500 13830 541 7491

SNNPR Dawro Urban 65 48928 11483 169 29510

SNNPR Konta Rural 131 170581 1771 282 7112

SNNPR Selti Rural 634 631856 13698 2548 7852

SNNPR Selti Urban 120 90954 18882 2175 33856

SNNPR Alaba Rural 243 250763 7678 635 6409

SNNPR MERGED Rural 459 602806 12645 369 4921

SNNPR MERGED Urban 124 54735 10326 4900 11418

Gambela MERGED Rural 2124 248060 6156 350 8819
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Region Zone Rur./Urb. obs.LFS pop(15-65) jobs houses consum.

Gambela MERGED Urban 2358 102926 17199 155 18638

Harari Hareri Rural 1626 96766 1336 440 15796

Harari Hareri Urban 2379 114248 24826 15108 25086

Addis Ababa Addis Ababa Urban 19196 3105712 892649 871494 22848

Dire Dawa Dire Dawa Rural 1609 140032 4051 823 14615

Dire Dawa Dire Dawa Urban 2392 244119 48724 20123 23222
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