Identification of Average Marginal Effects
in Fixed Effects Dynamic Discrete Choice Models*

Victor Aguirregabiriafl Jests M. Carrot
University of Toronto, CEPR Universidad Carlos III de Madrid

October 29, 2022

Abstract

In nonlinear panel data models, fixed effects methods are often criticized because
they cannot identify average marginal effects (AMEs) in short panels. The common
argument is that the identification of AMEs requires knowledge of the distribution of
unobserved heterogeneity, but this distribution is not identified in a fixed effects model
with a short panel. In this paper, we derive identification results that contradict this
argument. In a panel data dynamic logic model, and for 1" as small as three, we prove
the point identification of different AMESs, including causal effects of changes in the
lagged dependent variable or in the duration in last choice. Our proofs are constructive
and provide simple closed-form expressions for the AMEs in terms of probabilities of
choice histories. We illustrate our results using Monte Carlo experiments and with an
empirical application of a dynamic structural model of consumer brand choice with
state dependence.
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1 Introduction

In dynamic panel data models, ignoring the correlation between unobserved heterogeneity
and pre-determined explanatory variables can generate important biases in the estimation
of dynamic causal effects. The literature distinguishes two approaches to deal with this is-
sue. The random effects (RE) approach integrates over the unobserved heterogeneity using
a parametric assumption on the distribution of this heterogeneity conditional on the initial
values of the predetermined explanatory variables. In short panels, this distribution cannot
be identified nonparametrically, and random effects approaches are not robust to misspecifi-
cation of parametric restrictions. This is the so called initial conditions problem (Heckman,
1981). In contrast, fized effects (FE) approaches impose no restriction on this distribution
such that the identification of parameters of interest is robust to misspecification of this
primitive.

In discrete choice models with short panels, a limitation of FE methods is that they cannot
deliver identification of the distribution of the time-invariant unobserved heterogeneity. This
is because the data consist of a finite number of probabilities — as many as the number of
possible choice histories — but the distribution of the unobserved heterogeneity has infinite
dimension. This identification problem has generated a more substantial criticism of FE
approaches. The applied researcher is often interested in estimating average marginal effects
(AME) of changes in explanatory variables or in structural parameters. Since these AMEs
are expectations over the distribution of the unobserved heterogeneity, and this distribution
is not identified, the common wisdom is that FE approaches cannot (point) identify AMEs.!

In this paper, we present new results on the point identification of AMEs in FE dynamic
logit models. We prove the identification of the AME of a change in the lagged dependent
variable. This is a key parameter in dynamic models as it measures the causal effect of
an agent’s past decision on her current decision. We show that the identification of this
parameter does not require knowledge of the full distribution of the unobserved heterogeneity.
Our proof is constructive and it provides a simple closed form expression for this AME in
terms of probabilities of choice histories in panels where the time dimension can be as small
as T = 3. This result can be used to have a root-N consistent estimator of the AME.

We extend this identification result to more general models and to other AME parameters.
First, we show the identification of the AME n periods after the change in the dependent
variable, where n can be between 1 and the number of periods in the data minus two. We
denote this parameter the n—periods forward AME. This sequence of AMEs provides the
impulse response function associated to an exogenous change in the dependent variable. Sec-
ond, we show this identification also holds in dynamic models that include strictly exogenous
explanatory variables. Third, we show identification of average transition probabilities in a
multinomial logit model, and identification of the AME in an ordered logit model. Fourth,
we consider a more general dynamic discrete choice model with duration dependence and

Examples of recent papers describing this common wisdom are Abrevaya and Hsu (2021) (on page 5:
"For ‘pure’ fized effects models, where the conditional distribution is left unspecified, identification of the
partial effects described above would generally require T — o0c.") and Honoré and DePaula (2021) (on page
2: "It is important to recognize that knowing B [slope parameters] is typically not sufficient for calculating
counterfactual distributions or marginal effects. Those will depend on the distribution of «; [incidental
parameters| as well as on B and they are typically not point-identified even if 3 is.")



prove the identification of AMEs where duration is the causal variable. All these identifica-
tion results provide simple analytical expressions for the AMEs in terms of probabilities of
choice histories.

This paper is related to a large literature on FE estimation of panel data discrete choice
models pioneered by Rasch (1961), Andersen (1970), and Chamberlain (1980) for static
models, and by Chamberlain (1985) and Honoré¢ and Kyriazidou (2000) for dynamic models.
Most papers in this literature focus on the identification and estimation of slope parameters
and do not present identification results on AMEs. Two important exceptions of studies that
deal with the identification of AMEs in FE models are Bonhomme (2011) and Chernozhukov,
Fernandez-Val, Hahn, and Newey (2013; hereinafter CFHN).

Bonhomme (2011) considers the identification of AMEs in non-linear panel data models.
It makes clear the difficulties in point identifying the AMEs in fixed effect discrete choice
models with fixed T'. A sufficient condition for point identifiying any AME is the existance
of an injective operator relating the distribution of the unobserved heterogeneity with the
observed distribution, which amounts to being able to recover the distribution function of
the unobserved heterogeneity. As Bonhomme (2011) shows, such condition is not satisfied in
discrete choice models. Nonetheless, Proposition 1 in Bonhomme (2011) gives a condition for
point identification for which injectivity suffices but it is not necessary. Bonhomme (2011)
does not give any case in discrete choice models where the condition is satisfied and there
is point identification of an AME. In this regard, our contribution is to find such cases and
provide the expressions that identifies the mentioned AMEs.

CFHN (2013) study the identification of AMEs in nonparametric and semiparametric
binary choice models. In the nonparametric model, the distribution of all the unobservables
— the time-invariant and the transitory shock — is nonparametric. Their semiparametric
model — that corresponds to the model that we consider in this paper — assumes that the
transitory shock has a known distribution — e.g., FE dynamic probit and logit models. They
propose a computational method to estimate the bounds in the identified set of the AME.
Using numerical examples, they find that the bounds for the AME can be very wide for the
fully nonparametric model, but that these bounds shrink fast with 7" in the semiparametric
model.

In contrast to CFHN, we consider a sequential identification approach, whose first step
is the identification and estimation of the 3 parameters.? Previous results on dynamic
logit models establish the identification of slope parameters (Chamberlain, 1985; Honoré
and Kyriazidou, 2000; Magnac, 2000, 2004; Aguirregabiria, Gu, and Luo, 2021; Honoré and
Weidner, 2020; Dobronyi, Gu, and Kim,2021; and Honoré, Muris, and Weidner,2021). In the
second stage, which is where we start, we take the § parameters as known to the researcher
and consider the identification of AMEs. These AMEs are defined as functions of the slope
parameters [ and the distribution of the unobserved heterogeneity. The distribution of the
Probability Choices contains all the information in the data to identify the AME. They take
a finite number of values, whereas the necessary and sufficient conditions for identification
of the AMEs (without having any knowledge of the distribution of the fixed effects) impose

2The sequential approach that we consider in this paper has been also recently suggested by Honoré and
DePaula (2021) [on page 2 of their paper|: "it seems that point- or set-identifying and estimating B is a
natural first step if one is interested in bounding, say, average marginal effects.”



an infinite number of restrictions. However, as we show, the logistic structure allows to
transform that into a finite system of linear equations. We show cases in which the system
of equations has a solution and simple manipulations provide a closed form expression for
AMEs of interest. While the approach in CFHN is computationally demanding due to the
very large dimensionality of the distribution of the unobserved heterogeneity —in fact, it has
infinite dimension in FE models— our approach is computationally very simple as it provides
closed form expressions for AMEs.?4

Chamberlain (1984), Hahn (2001), and more recently Arellano and Bonhomme (2017),
show the identification of a few AMEs in FE nonlinear panel data models. However, these
are AMEs for a particular subpopulation of individuals defined by the data. In contrast, we
focus on the identification of marginal effects that are averaged over the whole population of
individuals. As far as we know, the point identification of this type of AMEs has not been
previously established in FE dynamic discrete choice models.

The rest of the paper is organized as follows. Section 2 describes the models and the
AMEs of interest. Sections 3 and 4 present our main identification results. We illustrate
our results using Monte Carlo experiments (in section 5) and an empirical application to a
model of dynamic demand using consumer scanner data (in section 6). We summarize and
conclude in section 7.

2 Model and Average Marginal Effects

2.1 Model

Consider a panel dataset {y;,x; : ¢ = 1,2,..., N;t = 1,2, ..., T} where y; can take J + 1
values: y; € Y ={0,1,..., J}. We study panel data dynamic logit models. In these models,
the dependent variable can be represented as the choice alternative that maximizes a utility
or payoff function. That is,

J
Yir = argmax {Oéi(j) + Z/Bkj(dit) Wyis1 =k} +x5 7+ 5it(j)} : (1)

k=0

where {f;(d) : k,7 € ¥, d =0,1,...} and {v; : j € Y} are parameters of interest, and
a; = {a;(j) : j € Y} are incidental parameters. The unobservables {e;(7) : j € YV} are i.i.d.
type 1 extreme value. Variable d;; € {0, 1,...} represents the duration in the choice at period
t — 1. More formally, dy = 1{y;s—1 = yit—2} (dir.—1 + 1). The explanatory variables in the
K x 1 vector x;; are strictly exogenous with respect to the transitory shocks €;(j): that is,
for any pair of time periods (¢,s), variables x;; and ¢;5 are independently distributed.
Parameters [;;(d) represent the change in utility associated to switching from alternative
k to alternative j given that the agent has been choosing k during the last d periods. This

31t is important to note that CFHN approach can be used for any AME, while we have shown point
identification of some AMEs. However, given the computational complexity, all their numerical examples
and empirical illustrations deal with models with only one binary exogenous regressor.

4Other recent papers studying identification of AMEs in FE discrete choice models are Davezies,
D’Haultfoeuille, and Laage (2021) and Pakel and Weidner (2021). They have only set identification re-
sults, and they require more computationally intensive methods than our simple close-forms expressions.



switching cost may vary with the duration in the last choice, such that the parameters /3;(1),
$;(2), ... can be different. Identification of the § parameters requires some normalization
conditions, for instance, f3;;(d) = 0 and S;o(d) = 0 for any j € ) and any d.

There are many applications of dynamic models where the dependent variable has dura-
tion dependence. For instance, in a model of individual employment (where y = 1 represents
employment and y = 0 unemployment), a worker’s productivity may increase with job ex-
perience and this implies that the probability of employment increases with the duration in
that state. Similarly, in a model of firm market entry/exit (where y = 1 means a firm is
active in the market and y = 0 inactive), a firm’s profit may increase with its experience in
the market.

The vector a; represents (permanent) unobserved individual heterogeneity in preferences
or payoffs. The marginal distribution of «; is f,(c;), and fa|$(ai|xl{1’T}) is the distribution
of «; conditional on the history of x variables xl{l’T} = (X1, X2, ..., X;7). These distributions
are unrestricted. Similarly, the probability of the initial values (y;1,d;1) conditional on «;
and xi{l’T} — that we represent as p*(vi1, di |, XZ{I’T}) — is unrestricted. Following the stan-
dard setting in fixed effect (FE) approaches, our identification results are not based on any
restriction on the initial conditions. Assumption 1 summarizes the conditions in this model.
Assumption 1. (A) (Logit) £4(j) isi.i.d. over (i,t, j) with type 1 extreme value distribution,
and is independent of «;; (B) (Strict exogeneity of xi) for any two periods, t and s, the
variables €;(j) and x;5 are independently distributed; and (C) (Fized effects) the probability
density functions fo(c;) and fa|z(ai|xfl’T}), and the probability of the initial condition

P*(Yi1, di |, XEI’T}) are unrestricted. [ |

The form of our identification results varies across different versions of the general model
in equation (1). We focus on four models.

(1) Model MNL-AR1. Multinomial AR1 model without duration dependence: that is,
Br;(d) = P; for every value of d.

J
Yie = argImax {ai(j) + Zﬁkj Hyi1 =k} + x5 95 + 5z‘t(j)} : (2)

k=0

(2) Model BC-Dur. Binary choice model (J 4+ 1 = 2) with duration dependence in y = 1
but not in y = 0 (that is, Soo(d) = Boo and Fy1(d) = Bo1 for every value of d), and without x
variables.

Y = 1{ i+ B(dit) yiz—1 +ei >0} (3)
It is straightforward to verify the following relationship between the parameters and variables
in this model and those in the original model in equation (1): a; = a;(1) — a;(0) + Bo1 — Boo;
B(d) = Br1(d) — Bro(d) — Bor + Boo; and &4 = €i(1) — €41(0).
(3) Model BC-AR1-X. Binary choice model without duration dependence but with x vari-
ables.

Yio = 1{ & + B Yiy—1 + Xy v+ > 0} (4)
The relationship between the parameters in this model and those in equation (1) is § =
Bi1 — Bro — Bo1 + Boo, and v = 71 — 0.



(4) Model BC-AR1. Binary choice, without duration dependence, and without x variables.

Yie = 1{ a; + B yiy—1 + €1 > 0}. (5)

2.2 Average Marginal Effects (AME)

2.2.1 Average transition probabilities

For the definition of the AMEs and other parameters of interest, it is convenient to define
transition probabilities and their average versions. For j, k € ), define the individual-specific
transition probabilities:

ﬂ-kj(a’h)g d) =P (yi,tJrl =7 | a;, Yir =k, Xit+1 = X, diy = d) (6)

For instance, in the binary choice version of the model, m;(;, x,d) = Ala; + B(d) + x'7),
where A(u) is the Logistic function €"/[1 + €"]. Similarly, we use m;(«;) to represent these
transition probabilities in models without x and duration variables.

We define II;;(x,d) as the average transition probability from k to j that results from
integrating the individual-specific transition probability over the distribution of ;. That is,

My, (x, d) = / mj(ex,d) falay | X7 =[x, ... x]) day (7)

Similarly, for models without x and duration variables, we use Ilj; to represent the average
transition probability [ 7y, (o) fa(eu) da.

For the model without duration, we can extend these definitions to n — periods forward
transition probabilities. That is, for any integer n > 1, we define W,(C?)(ai,x) = P(yit4n =
{11}

= (

Jlau, Xiten = X,y = k), and its average H,(g)(x) = fﬂ,(g.)(ai,x) fola;|x; X, .oy X))

dOéi .

2.2.2 One-period forward AME - Binary choice, no duration, no x’s

We start with a simple AME that is commonly used in empirical applications. Consider the
BC-AR1 model in equation (5). Let A (o) be the individual specific causal effect on y;; of
a change in variable y;;_1 from 0 to 1. That is:

AV ()) = Eyu | i g1 =1) —E (yir | s, i1 = 0)
(8)
= mi(a;) — mor(aq) = Aoy + 8) — Aa).

This parameter measures the persistence of individual 7 in state 1 that is generated by true
state dependence. It is an individual-specific treatment (causal) effect.

Using a short panel, parameter ( is identified (Chamberlain, 1985; Honoré and Kyr-
iazidou, 2000), but the individual effects «; are not identified because the incidental pa-
rameters problem (Neyman and Scott, 1948; Heckman, 1981; Lancaster, 2000). Therefore,
the individual-specific treatment effects A™M(q;) are not identified. Instead, we study the
identification of the following Average Marginal Effect (AME):

AME(l) = /A(1)<Oél) fa(()éi) dOéi = / [71‘11(0(2') — 7T01(Oéi)] fa(Oéi) dai = H11 — H01. (9)

5



The sign of the parameter 3 tell us the sign of AM EM™ . However, the absolute magnitude
of 3 provides basically no information about the magnitude of AME® . For instance, given
any positive value 3, we have that AME® can take virtually any value within the interval
(0,1) depending on the location of the distribution of a;. This is why the identification of
AMEs is so important.

Example 1. Consider a model of market entry, where y;; is the indicator that firm 7 is
active in the market at period ¢. Let Vj;(1,v;:—1) and Vit (0, y; 1) represent firm 4’s value if
active and inactive, respectively. Firms make choices to maximize their value such that firm
i chooses to be active if Viy(1, y; 1) — Vit (0, y5.—1) > 0, or equivalently, if V;;(1,0)—V;(0,0)+
Yir—1 [Vir(1,1) =Vie(1,0) —=Vie(0,1) + Vit (0,0)] > 0. Our model imposes the restriction that
Vie(1,0) — V4 (0,0) = a; + g5 and Vi(1,1) —Vi(1,0) —=Vi(0,1) — V;4(0,0) = 5. Therefore,
parameter [ captures the complementarity (or supermodularity) in the value function be-
tween the decisions of being active at periods ¢t and ¢t — 1. It captures state dependence in
market entry and it can be interpreted as a sunk entry cost. However, this parameter by
itself does not give us a treatment effect or causal effect. Consider the following thought
experiment. Suppose that we could split firms randomly in two groups, say groups 0 and 1.
Firms in group 0 are assigned to be inactive in the market, and firms in group 1 are assigned
to be active. Then, after one period we look at the proportion of firms who are active in
the market in each of the two groups. AMEW® is equal to the proportion of active firms in
group 1 minus the proportion of active firms in group 0. ]

The parameter AMEW is also related to the average treatment effects (ATEs) from
two policy experiments with economic interest. For concreteness, we describe these policy
experiments and their corresponding AT E's using the application in Example 1. Consider
a policy experiment where firms in the experimental group are assigned to active status at
period ¢t — 1. For instance, they receive a large temporary subsidy to operate in the market.
Firms in the control group are left in their observed status at period t — 1. Then, at period ¢
the researcher observes the proportion of firms that remain active in the experimental group
and in the control group. The difference between these two proportions is the average effect
of this policy treatment, that we can denote as AT Ey; ;. According to the model, this average
treatment effect has the following form:

ATEH’t = /71'11(0(2') fa(ai) dOéi — E(y,tﬁ) = H11 - E(yzt|t) (].0)

where E(y;|t) is the mean value of y in the actual distribution of this variable at period
t. Since this distribution may change over time, this ATE may also vary with t. We can
consider a similar experiment but where firms in the experimental group are assigned to be
inactive at period t — 1 — e.g., they receive a large temporary subsidy for being inactive. We
use AT Ep;, to denote the average effect of this other policy treatment. By definition,

ATFEy,; = /Wm(@i) Jalay) da; — E(ya|t) = ot — E(yalt) (11)

Given the definitions of AMEW, ATE,,, and ATEy;, in equations (9), (10), and (11),
respectively, it is clear that AME®Y = ATE);; — AT Egy .



In section 3, we show the identification of the parameters Ily; and II;;. This implies
the identification AT Eyy 4, AT Eq1,, and AM E®M . Knowledge of IIy; and II;; also implies
the identification of other relevant causal effects, such as the ratio Ily;/Ily;, the percentage
change (I13; — Ilp1)/Tlp; (as long as Iy # 0), the additive effect T1g; + 137, a weighted sum
of Ilp; and II;;, or more generally, any known function of these parameters.

2.2.3 n-periods forward AME - Binary choice, no duration, no x’s

Researchers can be interested in the response to a treatment after more than one period.
Let A(”)(ai) be the individual-specific causal effect on y; 1, of a change in y;; from 0 to 1.

A () = E Wigin | 01,y = 1) = E (Yigin | 0y = 0) = 10 () — 7P (o). (12)

Similarly as discussed above for A (qy), this n—periods forward individual effect is not
identified using a short-panel. We are interested in the average of this effect:

AME® = [A"(@) faler) das = [ [m(@0) = 7 (00)] fuler) das =1 - 1) (13

In general, this n-periods forward AME is different to the 1-period AME to the power
of n: that is, AME™ £ [AME®M]", such that the identification of AME™ is not a simple
corollary that follows from the identification of AME®.

2.2.4 One-period forward AME - Binary choice, model with x’s

Consider the binary choice model with exogenous explanatory variables (BC-AR1-X) as
described in equation (4). In this model, the AME of the effect of y;;—1 on y; has to take
into account the presence of x and its correlation with «a;. Let A(l)(ai, x) be the individual-
specific causal effect on y;; of a change in variable y;;_; from 0 to 1 when x;; = x.

A(l)(aux) = ]E(yit | i, Y1 = 1, X5 = X) - E(yit \ i, Yir—1 = 0, X5 = X)
(14)
= Wll(ai,x) - 7T01(047;7X)-

This individual-specific marginal effect is not identified using short panels. We show the
identification results of three different average versions of this effect. A first AME is based
on the condition that x remains constant over the 1" sample periods:

AMEW(x) = /[71'11(042',)() — 7o1 (v, X)] falx(Oé¢|Xz{17T} = (x,...,X)) do (15)

= Hll(X) — HOl(X)

In the other two AMEs, whose identification is shown in section 4.3, the condition that x
remains constant is not imposed. In particulat a second AME is defined as follows:

AMEW (x5 =x) = / (11 (i, X) — To1( 0, X)] fax(au]xs = x) doy (16)

7



A third AME is defined as follows:
AMES,? = /[711(041',Xz‘t) —7T01(%,Xz‘t)] f(a,xt)(Oéi,Xit) d(Oéi,Xz‘t) (17)

This third AME is not conditional to a value of x but integrated over the joint distribution
of a; and x;; at period t. Chamberlain (1984) describes this AME as the expected causal
effect for an individual randomly drawn from the distribution of (a4, x;) at period ¢. Since
this distribution can change over time, these AMEs can vary over time.’

Example 2. Consider the model of market entry/exit in Example 1, but now we extend this
model to include an exogenous explanatory variable z;; that represents the population size
of the market where the firm considers entry/exit. Then, AM Egcl)(a:) represents the average
effect on a firm’s entry status at period ¢ of going (exogenously) from inactive to active at
t — 1, and for the subpopulation of markets with size x over the T sample periods. The
parameter AM Eg(clt) is a similar effect but averaged over all the markets (firms) according to
their distribution of population size at period t. [ |

Similarly as for the AR1 model, we are also interested in n-periods forward AMEs for
this AR1X model. The AME conditional on a constant value of x is:

AME™(x) = / [ (i, %) — o1 (s, X)) fape(s x5 = (x, .., %)) doy (18)

2.2.5 AME of a change in duration - Binary choice

Consider the binary choice model with duration dependence (BC-Dur) as described in equa-
tion (3). We are interested in the causal effect on y; of a change in the duration variable
d;;. For instance, in a model of firm market entry/exit, we can be interested on the causal
effect of one more year of experience on the probability of being active in the market.

Let Ay_q(c;) be the individual-specific causal effect on y;; of a change in d;; from d to
d.

Agsa(as) = E(ya | au,dy =d) —E(yu | as,diy = d)
(19)
= 7aa(ai) = mai(os) = Mo + B(d') — Aos + B(d)).

where 741 () = E(yi|a;, dir = d). Note that, given the definition of the duration variable
d;;, we have that d;; = d > 0 implies y;;,—1 = 1 and d;; = 0 implies ¥, ;1 = 0, such that we
do not need to include explicitly y;;—1 as a conditioning variable in these expectations. We
are interested in the identification of the following AME:

AME . = / A () fulew) dev = / () — mas(@)] falas) daw  (20)

5Given that we show the identification of these time-specific AMEs at every sample period, they can be
used to test the null hypothesis of stationarity of the distribution of («;,x;¢).




2.2.6 AMEs in the multinomial choice model

Consider the multinomial model MNL-AR1 in equation (2). Let A;;_,;(c;) be the individual-
specific causal effect on the probability of y;; = j of a change in y;,—; from k to j.

Ajrilai) =E My = jtai, vie-1 = 7) — E My = j}Hai, yiz—1 = k) = m55(q) — mrj(cu).

(21)
We are interested in identification of the following AMEs:
AMEj); = / Ajijlai) faloq) dog = 11;; — Tl (22)
and
AT Ejje = 11 = E(Hya = j} | 1) (23)

3 Identification of AMEY, AME™ in BC-ARI, and II;;
in MNL-AR1

Since the distribution of the fixed effects cannot be non-parametrically identified in discrete
choice models, the default situation is one of no-identification of any function that depends
on the distribution of the fixed effects like the AME. To show that there are models and
AMEs that can be point identified without any knowledge or restriction of the distribution
of the fixed effects, we start by proving a simple but relevant result. It is simple both in
term of the identifying expression and its proof. In subsection 3.1 we show the identification
of one-period AME, AMEW , and of the n-periods forward AME, AME®™ in the simple
BC-AR1 model in which the only explanatory variable is a lag of the dependent variable and
there is no duration. Second, we show identification of the Average transition probabilities,
I1;;, in a multinomial logit without covariates nor duration dependence. This result is also
easy to prove. In Section 4 we will use a procedure based on new necessary and sufficient
conditions to obtain more identification results.

We take the vector of slope parameters 8 = (3, ) as known. The identification of these
parameters in FE dynamic logit models has been established in previous papers: Chamber-
lain (1985) for the binary choice AR(1) model without exogenous regressors; Magnac (2000)
for multinomial AR(1) models; Honoré¢ and Kyriazidou (2000) for binary and multinomial
models with exogenous regressors; Aguirregabiria, Gu, and Luo (2021) for models with dura-
tion dependence; Honoré and Weidner (2020) and Dobronyi, Gu, and Kim (2021) for binary
AR(p) models with p > 2; and Honoré, Muris, and Weidner (2021) for the dynamic ordered
logit.

3.1 Identification of AME®in BC-AR1 model

Consider the binary choice AR1 model without duration or x regressors, as described by
equation (5). Our proof of identification exploits a relationship between the individual effect
AW (q;), the transition probabilities m;(a;) and 711(c;) and the parameter 3 in the Logit
model. The following Lemma 1 establishes this relationship.



Lemma 1. LEMMA 1. In the BC-AR1 model, the following conditions hold:
AV (q;) = [exp {B} — 1] mo1(cs) mro(es). (24)

11 (Oéi) 00 (Oéz‘)

exp {ﬂ} = 77—10(041') WOl(ai) . u (25>
Proof of Lemma 1. By definition, we have that:
exp{a; + 8} exp{as} exp{ai} [exp{B} —1]

(q _ -
A () 1+exp{a; + 8} 14+exp{a;} [1+exp{a;}] [1+exp{a;+ 5} (26)

= [exp{B8} — 1] mo1(cu) mo(cw),

that give us equation (24). We also have that:

11 () moo () _ exp{a; + 8}/[1 + exp{a; + 5}] 1/[1 + exp{a;}
T1o(ev) mo1 (i) 1/[1 + exp{a; + B}] exp{a;}/[1 + exp{a;}]
(27)
_ —GXS}ES‘E;}B b expls),

Proposition 1 establishes the identification of AMEW® in the binary choice model BC-
AR1.

Proposition 1. Consider the binary choice model defined by equation (5), Assumption 1,
and that 3 is given. For any given T, T >3, AMEW is identified as:

AME® = exp{B} —1] [Po0+Pio1] (28)
where Py, y, 4, represents the probability of the choice history (Y1, Yiz, Yis) = (Y1, Y2, Y3)- u

Proof of Proposition 1: w.l.0.g. we consider T' = 3.5 For any sequence (y1, s, y3):

Prvanis = [ 700109 700 00) Ty (03) Sulo)d 29

Applying equation (24) in Lemma 1 to P(0,1,0) and P(1,0,1), we have that:

W/ pr(0las) A (@) fa(es) day
(30)

Pio1 = W/p*(ll%) A(l)(ai) falai) day

6Given identification with T = 3, it is obvious that there is also identification for any value of T' greater
than 3, as we can take subhistories with three periods.
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Adding up these two equations, multiplying the resulting equation times exp {5} — 1, and
taking into account that p*(0|a;) + p*(1|ay) = 1, we have that AMEW = [exp {8} — 1] [Po,1.0
+P) o1] such that AMEW is identified. W

Remark 1.1 (Estimation). Equation (28) provides simple analog or plug-in estimator for
AME® . In a first step, we estimate 8 using CML and the probabilities Py, 4o,y USING a
frequency estimator. Then, we plug these estimates in equation (28) to obtain estimates of
AME® . This estimator is root—N consistent.

Remark 1.2 (Identification with T > 3). For T' = 3 the model is just identified. For panels
with T > 4 there are over-identifying restrictions on AM E® . When T > 4 we can use the
panel to construct the empirical distribution of 3-period histories. For each of these groups
of histories, we can obtain a separate estimator of AME® such that the model implies
T — 3 over-identifying restrictions on AM E® . This is why to prove identification is enough
to prove it with 3 periods. Nonetheless, in Appendix we will derive closed form identifying
expressions for T' > 4 using the procedure that we will describe in Section 4.

Corollary 1.1. The identification result in Proposition 1 and its proof holds in the model
with covariates (4) if we condition on x that remain constant over time, so that AM E™" (x)
in (15) is identified as

AME® (x) = [exp {8} = 1] [Po10(x) + P11(x)] (31)

Proof of Corollary 1.1 1t is straightforward to show that Lemma 1 applies also to this
model with exogenous explanatory variables such that, conditional on x; = x, AM (a;,x) =
[eXp {ﬁ} — 1] 7T10(Oéi, X) 7T01(Oéi, X), and exXp {ﬂ} = 7T11<Oéi, X) 7T00(Oéi, X)/ 7T10(Oéi, X) 7T01(Oél', X).
W.lo.g. we consider that T'= 3. Then, we can prove this Corollary using exactly the same
procedure we have used for the proof of Proposition 1. |

Remark 1.3. When x can take many values, like when having continuos covariates, the
identification result in this corollary is on a set of mass zero. However, in those cases, a
marginal effect conditional on a specific value of x, i.e. an AME only for a set of individuals
with mass zero, is not very interesting, as we will have a different AME for each of the many
values of x. In this case, the AM Efﬁlt) defined in (17) is more interesting because it gives the
average effect integrating also over the distribution of the continuos x. It gives the AME

for the entire population. More important, AM Ei,lt) is not restricted to the case in which x

remain constant over time. We will show the identification of AM Ei,lt) in section 4.3.

3.2 Identification of AME™ in BC-AR1 model
Our proof of the identification of AM E®™ builds on Lemma 1 and the following Lemma.

Lemma 2. Consider the binary choice model defined by equation (5) and Assumption 1.
Then, the n-periods forward individual-specific causal effect A™ (o) satisfies the following
equation:

AW (eq) = [exp{B} = 1]" [mo(es)]" [mor(es)]”. W (32)
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Proof of Lemma 2 Using the Markov structure of the model and the chain rule, we have
that:

E(Wistn | @ vit) = PWitgn—1 =0 s, yi) mo1(a) + P (Yigrn—1 =1 | i, yir) m1(cw)

= mor() + E (Yign—1 | @i, vi) [mi1(s) — mor ()]
(33)
Given the definition of A™ (o) as E(y;sin | i, Yir = 1) — E(Yissn|, yir = 0), and applying
equation (33), we have that:

A () = [EWisin-1 | @i yit =1) = E Wireno1 | @iy = 0)] [m11(cw) — mo1(as)]

= A () [my1(a;) — mor ()]
(34)
Applying this expression recursively, we obtain that A (q;) = [m1(0y) — 7o (w)]” =
[AM ()" Finally, an implication of Lemma 3 is that 7 (c;)— mo1(ci) = [exp{B} — 1]
m10() mo1(c;). To see this, note that by Lemma 3, exp{8} m1o(a;) mo1(c;) = m11(y) moo(cv)-
This 1mphes that [exp{ﬁ} — 1] 10 o1 — 711 Too— 710 To1 — 7T11(1 — 7T01)— (1 — 7T11)7T01 =
711 — To1- n

Proposition 2. Consider the binary choice model defined by equation (5) and Assumption
1. Let n be any positive integer, and let 10" be the choice history that consists of the n-
times repetition of the sequence (1,0), e.g., for n = 2, we have that 10" = (1,0,1,0). If
T > 2n+ 1, then parameter AME™ is identified as:

AME®™ = [exp{8} — 1]" [Pojﬁn n Pﬁnvl] (35)
Proposition 3. where Py 10" and Pron, are the probabilities of choice histories (0, iﬁn) and
(10", 1). ]

Proof of f/rgpositz’o& Qn W.lo.g. we consider that 7' = 2n 4+ 1. Given the definition of
histories (0,10 ) and (10 , 1), it is straightforward to see that:

Poor = /P*(O|az‘) [m10(aa)]™ [mor(ci)]” fa(ai) day
(36)
Py = [(1100) (o))" [ror@)]” fuler) day
Applying equation (32) from Lemma 2, we have that:
- 1 “(0las) A™ (a 3 des
PO,IO [eXp{B} . 1]n/p (O‘Oél) A (Oél) foz<041) daz
(37)
1 3 "
Pira = = (1) A fo(e) doy

12



Adding up these two equations, multiplying the resulting equation times [exp{3} — 1]", and
taking into account that p*(0|ay) + p*(1]la;) = 1, we have that AME™ = [exp{p} — 1]
[P, 75" + Pygr ;) such that AME®™ is identified. |
7Corollar37/ 2.1. The identification result in Proposition 2 and its proof holds in the model
with covariates (4) if we condition on x that remain constant over time, X}LMH} = (X,...,X),
so that
AMB®™ (x) = [exp{8} — 1" [By 157 + Prgn 1 (%) (39)

where P 757 (x) and Pggr , (x) are the probabilities of choice histories (0, 10") and (10", 1)

L2t} (X, ..., X). [

7

conditional on x

3.3 Identification of II;; in multinomial model

Consider the multinomial model without duration in equation (2). To obtain our identifica-
tion results for the multinomial model, we apply the following Lemma, which is an extension
of Lemma 1 to the multinomial case.

Lemma 3. In the model defined by equation (1) and assumption 1, for any triple of choice
alternatives j, k, € (not necessarily all different, but with j # k and j # {, the following
condition holds:

Tre( v, X, d) Wjj(o% X, d)

exp {Bre(d) — Brj(d) + Bj;(d) — Bje(d)} = u (39)

g (i, X, d) (i, X, d)

Proof of Lemma 3: Given the expression for the choice probabilities in the logit model,
it is simple to verify that mg (v, x,d)/mgi(0y, x,d) = exp{ai(f) — a;(j) + Bre(d) —Sr;j(d)},
and similarly, m;; (o, x,d)/ mje(a;, x,d) = exp{a;(j) — i (¢) + Bj;(d) — Bje(d)}. The product
of these two expressions is equation (39).

Proposition 4 establishes the identification of the average transition probabilities IT;;(x)
in the logit model without duration dependence.

Proposition 4. Consider the model without duration dependence in equation (2) under

Assumption 1. If T > 3, the average transition probabilities {11;;(x) : j € Y} are identified
using the following equation,

(%) = Pi(x)+ Y |Peyg(x) + Y exp{Bre — Bij + B — Biey Prje(x)|,  (40)

ey i
where Py, 4, 45 (x) and Py, ,,(x) represent the probability of choice histories (yi1,Yiz, Yis) =
(y1,y2,y3) and (yix, Yiz) = (y1,y2), respectively, conditional on X;-{l’g} = (x,X,X) . |

Proof of Proposition 4: For notational simplicity, we omit x as an argument throughout
this proof. However, it should be understood that the probability of the initial conditions
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p*, the density function of «;, the empirical probabilities of choice histories, and the average
transition probabilities are all conditional on X;-{LS} = (x,x,x). We can write II;; as:

Iy I/[p*(o\az‘) +p*(Uew)... +p*(J|w)] mjj(u) falow) dey (41)

This expression includes the term [p*(j|oy) mj;(w) fa(e;) do; that is equal to the choice

history probability P; ;. However, it also includes the "counterfactuals" 51(:;) ;= S (k|ow)
mjj() falay) day for k # j. We can represent each of these counterfactuals as:

o Z/p*(/ﬂ%‘) [mro(ci) + i (i) + o+ g (u)] mii(cu) falou) (42)

That is, we have that 5,9% =37, 5,5327].7]., with 5,(37],7], = [p*(klay) mre(ew) mj5(as) falay).

For ¢ = j, we have that 5,22]) ;.; corresponds to the choice history probability P ; ;. For the
rest of the terms 6,(3 ;j» we apply Lemma 3. According to Lemma 3, we have that Tre( Q)
;i) = exp{Bre — Br; — Bje} mrj(w) mje(ey). Finally, note that [p*(k|oy) mii(as) mie(e)
fa(cv) is the choice history probability Py ;.. Putting all the pieces together, we have that
the expression in equation (40). |

Corollary 3.1. Proposition 4 implies the identification of any parameter that is a nonlin-
ear function of the average transitions II,;. For instance, in the binary choice model, for
IIp; > 0, the marginal effect in percentage change, (II;; — Ilg;) /Iy, is identified. Similarly,
in the multinomial case we can identify the log-odds ratio parameter In (II;; /IIyo). This pa-
rameter measures the degree of state dependence in choice alternative j relative to a baseline
alternative 0.

Corollary 3.2. Proposition 4 implies the identification result in Proposition I for the binary
choice model. In particular, it is straightforward to verify that for the binary choice model,
equation (40) implies (note that Sy = 0): II1; = P13 + P11 + exp{Bi} Po1o, and Iy =
Poo +P1oo+exp{fi} Pig1. In the binary case, we have that IIp; = 1 — Iy such that Iy,
is also identified, and so is AME® = II;; — I1y;.

Corollary 3.3. The identification of II,; implies the identification AT'E};;. Remember that
ATE;;, is the average treatment effect on 1{y;; = j} from a randomized experiment where
individuals in the experimental group are assigned to y;_1 = j, and individuals in the control
group receive no treatment. By definition, ATE;;; = II;; — E (yx|t), such that ATE};, is
identified at any period ¢ in the sample.

Remark 3.1. Unfortunately, the procedure described in the proof of Proposition 4 does
not provide an identification result for the parameters II;;, with j # & when the number of
choice alternatives is greater than two. In next section, based on necessary and sufficient
conditions, we will prove that this is not possible.

4 Identification results from necessary and sufficient con-
ditions

Identification results in the previous section show that, despite the general difficulty because
of the non-identification of the fixed effects distribution in discrete choice models, there are
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cases in which parameters of interest can be fixed effect identified with fixed-T. However,
they raise a number of questions. The proofs start from a given linear combination (weighted
sum) of the Probability choices and show they are equal to the AME, but, how can those
weights be obtained? Is there a procedure to check whether a linear combination identifying
the AME exists for other AMEs and models?

In section 4.1, starting from necessary and sufficient conditions, a constructive approach
is provided to obtain AMEs in a general class of dynamic logit models. We apply this
approach to obtain different AMEs or causal effects, such as: in the binary AR(1) model,
the effect of last period choice when having different 7', and the AME when having exogenous
explanatory variables (in section 4.3); the average transition probabilities II;; and AME in
the ordered logit (in section 4.5); and the effect of a change in duration (in section 4.6). We
also use the approach to show that the AME in the (unordered) multinomial model is not
identified (in section 4.4).

4.1 Procedure to study identification of AMEs in discrete choice
models based on necessary and sufficient conditions

Let y; = (di, Yi1, Yio, -, yir) € D x YT be the vector with individual i’s choice history, in-
cluding the initial duration, and let x; € X7 represent the history of the exogenous variables,
(X1, Xi2, ..., Xi7). We use y}Q’T} € Y71 to denote the sub-history from period 2 to T'. For ar-
bitrary histories y € Dx YT and x € X7, let Pyx represent the probability P(y; = y|x; = x).
This probability is identified from the data. Let Py x be the vector with the probabilities
Py x for every possible value of y and x: i.e., Pyxy = {Pyx 1y € D x YT, x € XT}. Vector
Py x contains all the information in the data that is relevant to identify the parameters of
interest @, the distribution of «, and any AME of interest.
According to the model, probability Py« has the following structure:

Pyx = /G(y{Q’T}Iyl,dl,X,a;G) P (1, dile, x) fo(alx) dao, (43)

where p*(y1, di| ) is the probability of the initial condition given a and x, and G(y>7}y,, dy, x, a; 9)
is the probability of sub-history y{*>T} predicted by the model. More specifically:

T
G(y{2’T}|y1,d1,X,a;9) = HA(yt’yt_hdt,Xt,a;e), (44)

t=2

and A (y¢|yi—1, di, X¢, a; 0) is the logit transition probability from the model.

Let A(ay, x, 0) be an individual marginal effect, and let AM E(x) = [ A(ay,x,0) fo(ou|x) dey
be the corresponding average marginal effect. In general, we can say that this AM FE is point
identified if there is a function h(Py,x, @) such that AME(x) = h(Pyx,8). Lemma 4 states
a necessary and sufficient condition for the point identification of AMFE in a broad class of
FE dynamic discrete choice models that includes our logit models as a particular case.

Lemma 4. Consider a FE dynamic discrete choice model characterized by the probability
function G(y Ty, di,x,;0). Let AME(x) = [ Ala,x,0)fo(ci|x) doy be an average
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marginal effect of interest. Then, this AME s point identified if and only if there is a
weighting function w(y,x, 0) from Dx YT x XTx© — R that satisfies the following equation:

Z w(dl) U, Y{Q’T}, X, 0) G (y{Q,T} |y17 dla X, & 0) = A<a7 X, 0)) (45>

y{Q,T} eyT-1

for every value (dy,y1) € D x Y and every o € R’. Furthermore, this condition implies the
following form for the function that identifies AM E(x):

AME(X) = h(PyH’ae) = Z w(y7X70) ]P)Y\X u (46)

yeDxYT

Proof. In the Appendix, section 8.1. O]

While the proofs are different, the results in Lemma 4, requiring the AME to be expressed
as a linear function of the observables, are not new. They can be found in Bonhomme (2011)
for non-linear panel data models, and in Severini and Tripathi (2012) Severini and Tripathi
(2012) in the context of nonparametric IV regression.

Lemma 4 does not impose any restriction on the form of function G. For instance, it
does not require the structure in equation (44) above. Therefore, Lemma 4 applies to a
general class of FE dynamic discrete choice models, and not only to the logit class. Equation
(45) defines, for every given value of (dy, 1), an infinite system of equations — as many as
values of a;. The researcher knows the closed-form expressions for functions G(.|a, x, 0)
and A(a, x,0). The unknowns in this infinite system of equations are the weights w(y, x, 0)
for every y € ). Since the set ) is finite, we have a system with infinite restrictions and a
finite number of unknowns. Without some particular structure, this system does not have a
solution.

Lemma 5 shows that in the FE dynamic logit model, the structure of functions G(.|e, x, 8)
and A(a,x,0) is such that equation (45) can be represented as a finite order polynomial
in the variables exp{a;(j)} for j = 1,2,...,J. This implies that there is a solution to the
system if and only if the coefficients multiplying every monomial term in this polynomial
are all equal to zero. This property transforms the infinite system of equations into a finite
linear system with finite unknowns. Furthermore, if a solution exists, this solution implies a
closed-form expression for the weights w(y, x, 0), and therefore, for AME.

Lemma 5. Consider the FE dynamic logit model defined by equation (1) and Assumption
1. Equation (45) can be represented as a finite order polynomial in the variables exp{c;(j)}
forg=1,2,...)J. This implies a system with a finite number of linear equations with respect
to the unknown finite number of weights w(y,x,0) for everyy € ). [ |

Proof. In the Appendix, section 8.2. O]

Once we have the identification problem reduced to a system of linear equations, we can
check whether or not the weights that identify AM F(x) exist: that is, whether the system of
equations is compatible such that at least one solution exists. If it is compatible, then we can
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obtain the weights by solving the system. Uniqueness or multiplicity of the solution does not
affect the identification result. Given the weights, we can calculate AM E(x) using equation
(46). In sections 4.2 to 4.6, we apply this approach to obtain closed-form expressions for
different AM Es and different versions of the FE dynamic logit model. Those applications
will help understanding the result in Lemma 5, and how it is used to study identification.

4.2 One-period AMEs in the BC-AR1 model

We start using Lemmas 4 and 5 in the BC-AR1 model without x covariates as described in
equation (5), and the identification of AM E() defined in equation (9). The identification of
this has already being shown in section 3.1. Thus, the purpose of this section is to illustrate
to use of the procedure that arises from section 4.1. We do this in the Appendix, section 8.3,
showing that the weights that satisfy (45) in the BC-AR1 model and AME® lead to the
linear combination in (28), AMEWY = [exp {3} — 1] [Po10+ P1o1]. Additionally, this way
of obtain the weights and proving identifications shows that the weights are unique and the
model does not provide additional restrictions on AMFE when T = 3.

In section 8.4 in the Appendix, we use the same procedure presented in previous subsec-
tion to obtain the closed-form expression of the weights for different values of T'. As said,
for panels with 7' > 4 there are over-identifying restrictions on AME® | because we can use
the panel to construct the empirical distribution of 3-period histories. There we obtain one
of the possible combinations, using all T' periods without having to make combinations of 3
periods.

4.3 Identification of AMEy

The identification results in section 3.1 without x have been extended in Corollary 1.1 only
to the case where the x variables are constant over time. Since we can identify this AME
for any value of x, it is clear that we can obtain an integrated AME over all the values of x.
However, that integrated AME is still imposing the restriction that the exogenous variables
are constant over time, and therefore, it is an AME for that subpopulation of individuals.
Furthermore, when x can take many values, like when having continuos covariates, the
identification result for constant x is on a set of mass zero. We would like to obtain an
AME that does not have these limitations and it is not restricted to x taking a constant
value. This type of AME corresponds to AM Eg(glt) that we have defined in equation (17).

Proposition 5 establishes the identification of AM Eg(clt) .

Proposition 5. Consider the binary choice model defined by equation () and Assumption
1, and suppose that'T' > 3. Then, AME&), as defined in equation (17), is identified for any
period t > 3 in the sample. For instance, for T = 3 and t = 3, we have that:

W(0,0,1;x) IED(0,0,1) | (x1,%x2,x3)
AME;I) = Px X2,X, (0,1,0:) (0,1,0) | (x1,%2,x3) 47
3 Z 1,%2,%3 +w(1,071;x) ]P)(l,o,l) | (x1,x2,x3) ( )

(x1,%x2,x3)eXx 11,3}
Fwa 1,00 Pa,1,0) | (x1,%0.x3)
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where Py, xy x5 0Nd Py, 1y 00) | (x1,x0,%3) 7€ the density functions of (x1,%2,%3) and (Y1, Y2, Y3)

conditional on (Xy,Xa,X3), respectively. The weights Wy, y, y,x) are:
ex’Q'y _ ex/s'y eﬁ—‘—xg'y _ 66+x/2'y
W01 = T o W0,1,0x) = o ;
(48)
eﬂ+x’27 o ex,37 ex§7 . ex’Q'y
w X)) = ———— W ) = ————. [ |
(1,0,1,X) exg'y ) (1,1,0,)() ex/z'y
Proof. In section 8.5 in the Appendix. n

Remark 5.1. Proposition 5 does not impose any restriction on the stochastic process of x;; —
other than it is strictly exogenous with respect the transitory shock €;;. Furthermore, though
the notation in the enunciate and proof of Proposition 5 assumes that the support of x;; is
discrete, this identification result trivially extends to the case of continuous x variables.

Remark 5.2. There is a relationship between the identification of AM Eg(clt) in Proposition
5 and the identification of AM E®(x) in Corollary 1.1 of Proposition 1. These two AMEs
are the same if x;; is constant over time — with probability one — for every individual in the
sample. Under this condition, the (sub)population of individuals with constant x;; is simply

the population of all the individuals, and we can confirm that the weights to obtain AM Eg(ﬁlt)

in equation (48) are equal to the weights to obtain AM EM(x) in equation (31). That is:

/ / / /
X — X eftx'y _ X'y

W01 = WL0m) = oy = 05 W) = W) =

o =’ —1.
(49)
Corollary 5.1. Fverything in Proposition 5 and in its proof holds if we condition every-
where on x;3 = x, so that we could estimate

AME(I)(xB =)= Z P(x1 x0)| x3=2 Z Wysyo,5%) Plyrems) | (x1,%2,x5=2) (50)
(Xl,xz)ex{l’Q} y:{’GFT
where the weights Wy, y, ys:x) are the same as in Proposition 5. |

AMEW (2,3 = x) is like AME®™ () but without imposing that z remains constant over
the sample periods. In the first two periods x can take any value, and the AME is only
conditional on x;3 = .

4.4 No identification of the AME in the multinomial model

Consider the multinomial model without duration in equation (2). In section 3.3 we have
shown identification of the average transition probabilities II;; and of ATE};;. However
we would also like to study identification of AME;;_,; defined in equation (22) and that
it is equal to II;; — II;. To that end we need to identify II;; with j # k. Unfortunately,
the identification of II;; in Proposition 4 does not provide an identification result for the
parameters II;;, with j # k& when the number of choice alternatives is greater than two.
Furthermore, in the following proposition we prove that the identification of Il in a model
with 3 choices and with T" = 3 is not possible because the necessary conditions specified in
Lemma 4 are not satisfied.
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Proposition 6. Consider the model without duration dependence in equation (2) under
Assumption 1, given 5 and v, and 3 choices (i.e. J+1=3). If T =3, there is no function
h (Py‘x,G) of the observed probability choices Py and 0 that equal the average transition
probability I11o(x). |

Proof. In section 8.6 in the Appendix. m

Proving this for I, is enough to prove it is not possible to identify II;; for all possible
values of j and k, with j # k. If we cannot identify II;;, then we cannot obtain AME};_,; =
I1,; — II;; in model (2) with more than two alternatives, because knowing two of the three
elements imply knowing the third. Contrary to this negative result, in next subsection we
show the identification in an ordered logit, which is a restricted version of our multinomial
choice model in which the choices are ordered and the individual specific effects are common
to all alternatives, that is «;(j) = «;.

4.5 Identification of average transition probabilities and AMEs in
an ordered logit model

Consider the following ordered logit model without duration dependence, for J + 1 possible
choices,”

Yir = j if y;kt € ()\jfl,)\j], with j = O, 1, vy J
J-1 (51)
Uy = o+ 26’“ Hyir1 =k} + i
k=0
with, A_; := —oo and \;;; := 400, and ¢;; follows a logistic distribution. This implies
Pr(yit = jlyi—1 =k, 0u) = A (B + i — N\jo1) — A (B + ;. — Aj) (52)

Honoré, Muris, and Weidner (2021) establish the identification of the § and A parameters
(under some normalization, like, for example, By = A\g = 0). The following proposition
establishes the identification of all the Average Transition Probabilities from any previous
choice in t — 1 to choice 0 in period ¢, Iy and, therefore, the identification of the Average
Marginal Effect of a previous choice on the probability of choosing 0 in period t.

Proposition 7. Consider the ordered logit model without duration dependence in equations
(51) with J +1 = 3 and given the values of 5 and \ parameters. If T > 3, the average

"For simplicity we write it without x, but the extension of the results conditioning to x taking constant
values, as in some of the previous results, is straight forward.
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transition probabilities {yo : k € {0,1,2}} are identified using the following equation,

oo = Z]Pk 0,0 T+ ZZ exp { B — Lo} Proy (53)

k=0 I=1
Il = ZZPkOI + ZGXP{ﬁk = B1} Proa +Pogo + (exp{Ba — i} — 1) Paag (54)
k=0 =0
J
(exp {51 Ao} —exp {Bx — Mi}) (exp{B} —exp{5i})
+ Z exp {ﬁk o )\0} — exp {6]9 _ )\1}) exp {51} ]P)k,l,O (55)
a0 = Poo,0 + Poo1 + exp { A — Ao} Poo2 + <1 - %) Po.2.0 (56)
+iip PO 5 - SR AT +§IP’ (57)
1,k o (B — M) 1,2,0 2,0,k
k=0 1=0 k=0

where Py, ., 4, Tepresent the probability of choice histories (yi, Yiz, Yis) = (Y1, Y2, Y3)- -

Proof. In section 8.7 in the Appendix.

Corollary 6.1. From II;q we can obtain the average marginal effect on the Probability of
having y;; = 0 of moving from y; 1 = k to y;;—1 = O:

AMEyy = [ (moo(ei) — mro(ew)) fa (i) dey;
= Ipo — Tlxo

As has been done for II;g, the general procedure and result in Section 4.1 can be used to
obtain the combination of observed probabilities that identify any other II;.

4.6 Identification of AMEs of changes in duration

Proposition 8. Consider the binary choice model with duration dependence defined by equa-
tion (3) and Assumption 1, and suppose that T > 4. Under these conditions, AMEq_,,
AME, 5, and AMEy_,s — as defined in equation (20) — are identified.

P —q P _q

AMEy,, = — Po,o,1,0 + Po1,00] + PO Po0,1,1 (53)

+ (66(1) — 1) [PLO,LO + P1,0,1,1]

In section 8.8 in the Appendiz, we provide the expression for the identification of AM E;_
and AMEO_>2 . [ |

Proof. In section 8.8 in the Appendix. O]
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5 Monte Carlo experiments

The purpose of these Monte Carlo experiments is twofold. First, we compare the bias and
variance of the FE estimator of AM E® to those from RE estimators imposing restrictions
that we find in applications of RE models. Second, we compare the power of two testing
procedures for rejecting a misspecified RE model: the standard Hausman test based on
RE and FE estimators of slope parameters, and a Hausman test based on the RE and FE
estimators of AMEs.

The DGP is a binary choice AR1 model as in equation (5). The model for the initial
condition is y; = 1{a; + u; > 0} where w; is i.i.d. Logistic and independent of «; and e;.
The number of periods is 7' = 4. We implement experiments for two sample sizes N, 1000
and 2000. We consider six DGPs based on two values of parameter § (i.e., § = —1 and
B = 1) and three distributions of the unobserved heterogeneity a;: no heterogeneity, such
that a; = 0 for every i; finite mixture with two points of support, a; = —1 with probability
0.3, and a; = 0.5 with probability 0.7; and a mixture of two normal random variables:
a; ~ N (—1,3) with probability 0.3, and «; ~ N (0.5, 3) with probability 0.7.

Table 1 summarizes the six DGPs, the labels we use to represent them, and the corre-
sponding value of AME® in the population. Keeping parameter § constant, the AME can
vary substantially when we change the distribution of the unobserved heterogeneity. For
instance, when § =1, AMFE is equal to 0.23 in the DGP without unobserved heterogeneity,
0.20 for the finite mixture, and 0.11 for mixture of normal distributions.

Table 1
DGPs and true value of AME
Distribution of oy

Value of [ No «; Finite mizture Mizture of normals

B=_1 DGP NoUH(-1) DGP FinMiz(-1) DGP MizNor(-1)
- AME® = —0.2311 AME®Y = —0.2164 | AME®Y = —0.113

B—1 DGP NoUH(+1) DGP FinMix(+1) DGP MixzNor(+1)
- AME® = 0.2311 AME® = 0.2059 AMEW =0.1108

For each DGP, we simulate 1,000 random samples with N individuals (with N = 1,000
or N =2,000) and T' = 4. For each sample, we calculate three estimators of 3 and AMEW:
(1) a FE estimator, that we denote FE-CMLE:® (2) a maximum likelihood estimator that

8The FE estimator of 8 is the CMLE proposed by Chamberlain (1985). For parameter AME(M | we use
a plug-in estimator based on the formula for the identified AME™) when T = 4 that we present in Table 7
in the Appendix. In this formula, we replace parameter 8 with its CML estimate, and the probabilities of
choice histories with frequency estimates.
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assumes that the distribution of «; is discrete with two mass points, that we denote RE-MLFE;
and (3) a maximum likelihood estimator that assumes there is no unobserved heterogeneity,
that we denote NoUH-MLE.? Table 2 present results from experiments with N = 1000.%°

Table 2
Monte Carlo Experiments with sample size N=1,000
Statistics

True | Mean | Std True | Mean Std | RMSE
3 B B | AME | AME | AME | AME
DGP FE-CMLE | -1.0 | -1.0074 | 0.1310 | -0.2311 | -0.2314 | 0.0235 | 0.0235

NoUH(-1) RE-MLE | -1.0 NA NA |-0.2311 | NA NA NA
NoUH-MLE | -1.0 | -0.9998 | 0.0798 | -0.2311 | -0.2309 | 0.0175 | 0.0175
DGP FE-CMLE | -1.0 | -1.0012 | 0.1338 | -0.2164 | -0.2160 | 0.0222 | 0.0221
FinMix(-1) RE-MLE | -1.0 | -1.0036 | 0.1214 | -0.2164 | -0.2165 | 0.0215 | 0.0214
NoUH-MLE | -1.0 | -0.5979 | 0.0781 | -0.2164 | -0.1430 | 0.0183 | 0.0757
DGP FE-CMLE | -1.0 | -1.0136 | 0.2160 | -0.1113 | -0.1110 | 0.0178 | 0.0176
MixNor(-1) RE-MLE | -1.0 | -0.3604 | 0.1825 | -0.1113 | -0.0470 | 0.0218 | 0.0679
NoUH-MLE | -1.0 | 1.7190 | 0.1028 | -0.1113 | 0.4022 | 0.0214 | 0.5139
DGP FE-CMLE | 1.0 | 1.0013 | 0.1654 | 0.2311 | 0.2344 | 0.0526 | 0.0527

NoUH(+1) RE-MLE | 1.0 NA NA | 02311 | NA NA NA
NoUH-MLE | 1.0 | 0.9980 | 0.0778 | 0.2311 | 0.2305 | 0.0176 | 0.0176
DGP FE-CMLE | 1.0 | 0.9982 | 0.1841 | 0.2059 | 0.2089 | 0.0539 | 0.0539
FinMix(+41) RE-MLE | 1.0 | 0.9864 | 0.1296 | 0.2059 | 0.2034 | 0.0315 | 0.0316
NoUH-MLE | 1.0 1.4100 | 0.0843 | 0.2059 | 0.3212 | 0.0183 | 0.1168
DGP FE-CMLE | 1.0 | 1.0055 | 0.2873 | 0.1108 | 0.1169 | 0.0511 | 0.0515
MixNor(+1) RE-MLE | 1.0 | 1.4863 | 0.1828 | 0.1108 | 0.2120 | 0.0367 | 0.1078
NoUH-MLE | 1.0 | 3.2453 | 0.1194 | 0.1108 | 0.6645 | 0.0166 | 0.5541

(i) Bias of FE estimators relative to MLE. The mean biases of the FE estimator is very small:
between 0.1% and 0.7% of the true value for 3, and between 0.2% and 1.4% for AME®.
In this FE approach, the estimation of AM E® does not involve a substantially larger bias
than the estimation of 3. This bias is of similar magnitude as the ones of NoUH-MLE and
RE-MLE estimators when these estimators are consistent (i.e., when the DGPs are NoUH
and FinMizx, respectively).

9For the DGPs without unobserved heterogeneity (i.e., NoUH(-1) and NoUH(+1)), we do not report
results for the RE MLE. This is because, for these DGPs, the finite mixture (two-types) RE model is not
identified and the estimates of 8 are extremely poor. As expected, the estimate of the mixing probability
in the mixture is close to zero, but the points in the support of «; are not identified and they take extreme
values. This also affects the estimation of 3 that presents very large bias and variance. For this reason, we
have preferred not to present results for this combination of estimator and DGP. However, it is important
to note that avoiding these numerical/identification problems in the estimation of the distribution of « is a
key advantage of FE estimation.

10The results for sample size N = 2000 are qualitative very similar except that, as one would expect, all
the estimators have lower variance when the sample size increases. For this reason, we present here only
results from experiments with N = 1000.
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(i1) Variance of FE estimators relative to RE-MLE. As percentage of the true value, the
standard deviation of the FE estimator is between 10% and 20% for the estimator of 3, and
between 7% and 30% for the estimator of AM E™. These ratios are substantially smaller for
the RE-MLE estimator: between 9% and 13% for the estimator of 3, and between 8% and
23% for the estimator of AM EM . As expected, the FE estimators have larger variances than
the RE-MLE estimators. The loss of precision associated with FE estimation is of similar
magnitude when estimating AM E® than when estimating 3.

The variance of the FE estimator is substantially larger when S is positive than when
it is negative, but this is not the case for the RE-MLE estimators. This has a clear expla-
nation. The histories that contribute to the identification of the parameters 5 and AMEW
involve some alternation of the two choices over time, e.g., {0,1,0,1} or {0,0,1,1}.These
histories occur more frequently when [ is negative than when it is positive. It is easier to
identify negative state dependence than positive state dependence because the former has
very different implications than unobserved heterogeneity, while the later have similarities
with unobserved heterogeneity.

(i1i) Bias of RE-MLE estimators due to misspecification. The biases due to the misspec-
ification of the RE model are substantial. The bias in the estimation of 8 from ignoring
unobserved heterogeneity, when present, is between 41% of the true value (with the finite
mixture DGP) and 270% (with the mixture of normals DGP). The bias is even larger in the
estimation of AM EMW: 60% of the true value in the finite mixture DGP, and more than 500%
in the mixture of normals DGP. The bias is also substantial for the RE-MLE that accounts
for heterogeneity but misspecifies its distribution: between 50% and 65% in the estimation of
3; and between 58% and 93% for AMEW . As a result, the FE estimator clearly dominates
the RE-MLE in terms of Root Mean Square Error (RMSE) in the cases where the RE model
is misspecified.

(iv) Testing for misspecification of RE models. A common approach to test the validity of a
RE model consists in using a Hausman test that compares the FE estimator of 5 (consistent
under the null and the alternative) and the RE-MLE of g (efficient under the null but
inconsistent under the alternative). See Hausman (1978) and Hausman and Taylor (1981).
Given our identification results, we can define a similar Hausman test but using the FE and
RE estimators of AME® . Therefore, we have two different Hausman statistics to test for
the validity of a RE model. The statistic based on the estimators of [:

(BFE - BRE) i

HSp; = ——— — under Hy ~ x? (59)
Var (5FE> — Var (5RE>
And the statistic based on the estimators of AME®M:
_— . 2
(AMEFE _ AMERE)
HSAME = — under Ho ~ X% (60)

Var <A/]\4\EFE> —Var (A/]W\ERE>

The Hausman test based on AMFE has several advantages with respect the test based
on . First, the researcher can be particularly interested in the causal effect implied by
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the model and not on the slope parameter itself. Second, and more substantially, the test
on the parameter § may suffer of a scaling problem that does not affect the test on the
AME. That is, the parameter 3 depends on the variance of the transitory shock &;, and
this variance depends on the specification of RE model. For instance, when we compare fSrg
with Byovr—ave part of the reason why these two estimators are different is because in the
model that does not account for unobserved heterogeneity the actual error term is «; + €,
and the variance of this variable is larger than the variance of ;. The estimation of AMFE
— using either FE or RE approaches — is not affected by this scaling problem.

We compare the power of these two tests using our Monte Carlo experiments. Figures 1
to 6 summarize our results. Each figure corresponds to one DGP and presents the cumulative
distribution function of the p-value — for each of the two tests— of the null hypothesis of valid
RE model. More specifically:

Figure 1: DGP is FinMiz(-1) and null hypothesis is no unobserved heterogeneity.
Figure 2: DGP is FinMiz(+1) and null hypothesis is no unobserved heterogeneity.
Figure 3: DGP is MizNor(-1) and null hypothesis is no unobserved heterogeneity.
Figure 4: DGP is MizNor(+1) and null hypothesis is no unobserved heterogeneity.
Figure 5: DGP is MizNor(-1) and null hypothesis is the finite mizture model.
Figure 6: DGP is MizNor(+1) and null hypothesis is the finite mizture model.

Figures 1 to 6: Empirical distribution of p-values of Hausman tests

Figure 1. Figure 2
p-values for Hausman Tests: NoUH vs. FE p-values for Hausman Tests: NoUH vs. FE
DGP FinMix(-1) DGP FinMix(+1)

Cumulative distribution
Cumulative distribution

T T T T T T T T T T

0 .1 2 3 4 0 2 4 .6 8 1
p-value p-value

————— HS1: test on beta HS2: test on AME ————- HSI: test on beta HS2: test on AME
Figure 3 Figure 4
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Figures 3 and 4 show that both tests have strong power to reject the null of no unobserved
heterogeneity when the DGP is a mixture of normals. In Figures 1 and 5, the two tests have
also strong power when the true value of 3 is negative. The relevant comparison appears in
Figures 2 and 6. In the DGP with a mixture of normals (Figure 6), the HS e test has
substantially larger power than the test H.S3. In particular, HSs has a serious problem of
low power. For this test, with a 5% significance level we do not reject the null for more
than than half of the samples. In contrast, the HS4y/g test has reasonable power. For this
test, with a 5% significance level we can reject the null for 80% of the samples. In Figure
2, the HSp test has more power than the HS4yp test. However, the differences in power
are much smaller than in Figure 6 and neither of the two tests has a serious problem of low
power. Overall, the HSayp test has larger power than the test HSz. This test seems a
useful byproduct of identification of AMEs in FE models.

6 State Dependence in Consumer Brand Choice

We apply our identification results to measure state dependence in consumer brand choices.
There is an important literature on testing and measuring state dependence in consumer
brand choices, with seminal papers by Erdem (1996), Keane (1997), and Roy, Chintagunta,
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and Haldar (1996).'' These applications use consumer scanner panel data and estimate
dynamic discrete choice models with persistent unobserved heterogeneity in consumer brand
preferences and state dependence generated by purchasing/consumption habits or/and brand
switching costs. The main goal is to determine the relative contribution of unobserved
heterogeneity and state dependence to explain the observed time persistence of consumer
brand choices. Disentangling the contribution of these two factors has important implications
on demand elasticities, competition, consumer welfare, and the evaluation of mergers.!?

All these previous studies estimate Random Effects (RE) models. In this application, we
consider a FE model, estimate average transition probabilities 1I,; and average treatment
effects AT'F;;, and use them to measure the contribution of state dependence to brand-choice
persistence.

6.1 Data

The dataset is A.C. Nielsen scanner panel data from Sioux Falls, South Dakota, for the
ketchup product category.'® It contains 996 households and covers a 123-week period from
mid-1986 to mid-1988.14 For our analysis, a time period is a household purchase occasion.
That is, periods t = 1,2, ... represent a household’s first, second, ... purchase of ketchup
during the sample period. This timing is common in this literature (e.g., Erdem, 1996;
Keane, 1997). T; is the number of purchase occasions for household i. The total number of
observations or purchase occasions in this sample is Zfil T; = 9,562. Table 3 presents the
distribution of T;.

Table 3
Distribution of number of purchase occasions (7;)
Minimum | 5% | 25% | Median | 75% | 95% | Mazimum
3 4 > 8 12 21 o2

There are four brands in this market: three national brands, Heinz, Hunta€As and Del
Monte; and a store brand. We ignore the quantity purchased and focus on brand choice.
Table 4 presents brands’ market shares (i.e., shares in number of purchases) and the matrix
of transition probabilities between the four brands. Heinz is the leading brand, with 66%
share of purchases, followed by Hunts at 16%, Del Monte at 12% and Store brands at 5%. A

1 Other contributions in this literature are Seetharaman, Ainslie, and Chintagunta (1999), Erdem, Imai,
and Keane (2003), Seetharaman (2004), Dubé, Hitsch, and Rossi (2010), and Osborne (2011), among others.
There is also growing literature on the implications of brand-choice state dependence on market competition
(see Viard, 2007, and Pakes, Porter, Shepard, and Calder-Wang 2021.

12See Erdem, Imai, and Keane (2003) for a detailed discussion of the important economic implications of
distinguishing between unobserved heterogeneity and state dependence in consumer demand.

130ur sample comes from Erdem, Imai, and Keane (2003). We thank the authors for sharing the data
with us.

14The raw data contains 2797 households. Here we use the same working sample of 996 households as in
Erdem, Imai, and Keane (2003). This sample focuses on households who are regular ketchup users. See page
30 in that paper for a description of the selection of this working sample.
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measure of choice persistence for brand j is the difference between the transition probability
Pr(y;i+1 = jlya = j) and the unconditional probability or market share Pr(y; = j). This
measure shows choice persistence for all the brands, with the largest for Del Monte and Store
brands with 21.88% and 21.66%, respectively, followed by Hunts with 16.67%, and Heinz
with 12.30%. This persistence may be due both to consumer taste heterogeneity and state
dependence. Our maim goal in this application is to disentangle the contribution of these
two factors.

Table 4
Matrix of Transition Probabilities of Brand Choices
(percentage points)

Brand choice at t + 1 Total
Brand choice att | Heinz | Hunts | Del Monte | Store
(=0)G=1)] (G=2) |(=3)

Heinz (7 =0) | 78.95 10.67 6.98 3.40 100.00

Hunts (j =1) | 45.16 32.30 15.76 6.78 100.00

Del Monte (j =2) | 41.11 18.98 34.07 5.83 100.00

Store (j =3) | 42.32 17.11 13.38 27.19 | 100.00

Market share (P;) | 66.65 15.63 12.19 5.53 | 100.00
Choice persistence (P;; —P;) | 12.30 16.67 21.88 21.66

6.2 Model
Let y;; € {0,1,2,3} be the brand choice of household i at purchase occasion ¢t. We consider

the following brand choice model with habit formation:

(61)

yir = arg max  { a;(j) + Bjj 1{yz‘,t—1 =J}+euly) }-

j€{071’273}

Parameter j;; represents habits in the purchase/consumption of brand j: the additional
utility from keeping purchasing the same brand as in previous purchase. Parameter 3y (for
Heinz) is normalized to zero. Variable a;(j) represents the household’s time invariant taste
for brand j. For simplicity, we ignore duration dependence. We also omit prices.'?

Following Aguirregabiria, Gu, and Luo (2021), equation (61) can be interpreted as a
model where households are forward-looking. That is, the fixed effects «;(j) can be inter-
preted as the sum of two components: a fixed effect in the current utility of choosing brand
j; and the continuation value (expected and discounted future utility) of choosing brand j
today. In this model, these continuation values depend on the current choice j but not on
the state variable y; ;1 or on current e;.

15Tn this dataset, supermarkets follow High-Low pricing and prices can stay at the high (regular) level for
relatively long periods. Omitting prices in our model can be interpreted in terms of estimating the model
using choice histories where prices remain constant.
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6.3 Estimation

To illustrate our method using a short panel, we split the purchasing histories in the original
sample into subs-histories of length 7', where T is small. We present results for 7" = 6 and
T =8.

Table 5
Conditional Maximum Likelihood Estimates

of Brand Habit (f;;) Parameters

Parameter | T'= 6 sub-histories ‘ T = 8 sub-histories

Bj; | Estimate  (s.e.)Y | Estimate  (s.e.)

Heinz 0.00 (\) 0.00 (.)
Hunts | 0.2312 (0.0590) 0.2566 (0.0570)

Del Monte | 0.1155 (0.0718) 0.1191 (0.0722)
Store | 0.3245 (0.1166) 0.4675 (0.1106)

# histories of length T 4,764 3,396

(1) Standard errors (s.e) are obtained using a boostrap method. We generate

1,000 resamples (independent, with replacement, and with N = 996) from the
996 purchasing histories in the original dataset. Then, we split each history
of the bootstrap sample into all the possible sub-histories of length T'.

Table 5 presents our Fixed Effect estimates of the brand habit parameters 3;;. We use the
Conditional Maximum Likelihood estimator. Standard errors are obtained using a bootstrap
method that resamples the 996 purchasing histories in the original dataset.'® Parameter
estimates with T = 6 and T' = 8 are very similar. They are significantly greater than zero at
5% significance level, showing evidence of state dependence in brand choice. The magnitude
of the parameter estimate is not monotonically related to the brand’s market share, or to the
degree of brand choice persistence shown in Table 4. However, we need to take into account
that a larger value of 8;; does not imply a larger degree of state dependence as measured by
the Average Transition Probabilities or by AT'E};.

16Using the original sample of 996 purchasing histories, we resample independently and with replacement
996 histories. Then, we generate all the possible sub-histories of length 7' from these histories. We also
obtained asymptotic standard errors, Bootstrap standard errors are only a bit larger (at the second or third
significant digit) than the asymptotic ones.
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Table 6
Fixed Effects Estimates of Average Transition Probabilities (ATPs) and AMEs

T = 6 sub-histories ‘ T = & sub-histories
Pers ATP ATE UHet Pers ATP ATE UHet
(s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.) (s.e.)

Heinz | 0.1230 | 0.6744 | 0.0079 | 0.1151 | 0.1230 | 0.6708 | 0.0043 | 0.1187
(0.0033) | (0.0057) | (0.0066) | (0.0068) | (0.0033) | (0.0062) | (0.0067) | (0.0069)

Hunts | 0.1667 | 0.1752 | 0.0189 | 0.1478 | 0.1667 | 0.1783 | 0.0225 | 0.1442
(0.0077) | (0.0075) | (0.0107) | (0.0109) | (0.0077) | (0.0072) | (0.0106) | (0.0109)

Del Monte | 0.2188 | 0.1324 | 0.0105 | 0.2183 | 0.2188 | 0.1345 | 0.0126 | 0.2062
(0.0090) | (0.0067) | (0.0112) | (0.0115) | (0.0090) | (0.0062) | (0.0110) | (0.0113)

Store | 0.2166 | 0.0736 | 0.0183 | 0.1983 | 0.2166 | 0.0805 | 0.0252 | 0.1914
(0.0062) | (0.0071) | (0.0094) | (0.0099) | (0.0062) | (0.0072) | (0.0094) | (0.0099)

(1) Pers is brand choice persistence, IP;|; — P, as measured at the bottom line of Table 4.
(2) ATP is the brand’s Average Transition Probability, II;;.

(3) ATE is the one defined in equation (23): ATE;; =1I;; — E(1{y;: = j}).

(4) UHet is defined as IP;; — II;;. By construction, Pers = AME + UHet.

(5)

5) Standard errors (s.e) are obtained using the same boostrap method as for the estimates in Table 6.

Table 6 presents Fixed Effect estimates of average transition probabilities (ATPs), and
provides a decomposition of brand choice persistence into the contributions of state depen-
dence and unobserved heterogeneity. The estimation of the ATPs II;; is based on equation
40 in Proposition 4. In this equation, we plug-in the CML estimates of 3;; parameters and
frequency estimates of probabilities of choice histories. Standard errors are obtained using
a bootstrap method.

In Table 6, column labelled Pers provides brand choice persistence as measured by the
difference between the transition probability P;; and the uncodnitional probability ;. The
estimates of ATPs (in the columns labelled ATP) are very precise and similar for 7' = 6 and
T = 8. The column labelled AME presents the AME defined in equation (23): ATE;; =
II,; — E(1{y; = j}). This AME is a measure of the contribution of state dependence to
brand choice persistence. For all the brands, this contribution is quite small: between 1 and
2 percentage points. In fact, for Heinz and Del Monte, we cannot reject the null hypothesis
that this AME is zero at 5% significance level. The Store brand is the one with the largest
contribution of state dependence. The column labelled U Het presents the contribution of
consumer taste heterogeneity to brand choice persistence, as measured by the difference
between brand choice persistence and AM Ej;. This heterogeneity accounts for most of the
brand choice persistence. This finding contrasts with results found in studies using similar
models and data but with a Random Effects specification of consumer unobserved taste
heterogeneity (e.g., Keane, 1997).
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7 Conclusion

Average marginal effects (AMEs) are useful parameters to represent causal effects in econo-
metric applications. AMEs depend on the structural parameters of the model but also on
the distribution of the unobserved heterogeneity. In fixed effects nonlinear panel data models
with short panels, the distribution of the unobserved heterogeneity is not identified, and this
problem has been associated with the common belief that AMEs are not identified.

In the context of dynamic logit models, we prove the identification of AMEs associated
with changes in lagged dependent variables and in duration variables. Our proofs of the iden-
tification results are constructive and provide simple closed-form expressions for the AMEs
in terms of frequencies of choice histories that can be obtained from the data. We illustrate
our identification results using both simulated data and real-world consumer scanner data
in dynamic demand model with state dependence.

In this paper we have derived identification results only for logit models, but the proce-
dure that arises from necessary and sufficient conditions may work beyong the logistic. In
particular it may work for any function that shares with the logistic the property of having
terms in which the fixed effect appears multiplicatively separated from other parameters of
the model, so that polynomials of functions of the fixed effect can be formed. We leave this
for future research.
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8 Appendix

8.1 Proof of Lemma 4

For notational simplicity but w.o.l.g., in this section we omit = and 6 as arguments in all the
functions. Remember that equation (45) is:

Z w(dhyl;y{Q’T})G<y{2’T}|ylad1,a) = Aa). (62)

y{2.TyeyT-1

(A) Sufficient condition. Multiplying (45) times p*(d1, y1|c) fo(c), integrating over a, and taking
into account that, as defined in (43), [ G(y*THy1, di, @) p*(di, y1|e) fo(e) da is equal to Py,

we obtain:

> wld v ) By = [Ale) 5 uila) fu(a) da. (63)

y{2T}eyT—1

We can sum equation (63) over all the possible values of (dj,y;). Given that the sum of p*(dy, y1 |«x)
over all values of (dy,y;) is equal to 1, the right-hand-side becomes f A(a) fo(@) da, which is the
definition of AM E. Furthermore, the sum of equation (63) over all the possible values of (d1, y1)
implies equation (46):

> w(y) Pyx = AME. (64)

yeDxYT

(B) Necessary condition. The proof has two parts. First, we prove that function h(Pyx) should
be linear in Pyx. Second, we show that equation (45) should hold.

Necessary (i). Equality h(Pyx) = AME should hold for every distribution f,. In particular, it
should hold for: (Case 1) a degenerate distribution where a;; = ¢ with probability one, ¢ is constant;
(Case 2) a degenerate distribution where a; = ¢ with probability one, where ¢ is a constant different
to ¢; and (Case 3) a distribution with two points of support, ¢ and ¢/, with ¢ = f,(c). Then, AME
has the following form: (Case 1) AME = A(c); (Case 2) AME = A(c); and (Case 3) AME =
q Ac)+ (1 —q) A(c). Function h(Pyx) should satisfy:

Casel : h Pg,l‘)x = A(c)
Case2 : h Pg,z‘)x = A(c) (65)

Case3 : h Pg?\)x =q Alc)+ (1 —q) A(d)

where PJ(}';(, P)(f'g(, and Pl(’?l);f represent the distributions of y conditional on x under the DGPs of
(

cases 1, 2, and 3, respectively. Note that, by construction, PJ(,TEY =q Py&f +(1—9q) P3(22|2\f These
conditions are for arbitrary values of ¢, ¢/, and ¢ € [0, 1]. Multiplying equation (65)(Case 1) times ¢,
multiplying equation (65)(Case 2) times (1 — ), adding up these two results, and then subtracting
equation (65)(Case 3), we get that function h (Py‘ X) should satisfy the following equation:

ah(PYL)+ 0 —a) h(PSy) =h(a PYh+ (-0 PYL). (66)
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The only possibility that equation (66) holds for any arbitrary value of ¢, ¢/, and ¢ € [0, 1] is that
function h (Py|X) is linear in Py|y, such that h (Py|X) =2, w(y) Pyx-

Necessary (ii). We need to prove that, given equation Zy w(y) = AM E, then equation (45) should
hold for every value o« € R’. The proof is by contradiction. Suppose that: (a) equation Zy w(y) =
AM E holds for any distribution f, in the DGP; and (b) there is a value & = ¢ and a value (dy, 31 ) of
the initial condition such that equation (45) does not hold: Zy{zj‘} w(dy,y,y?>™ G (y{Q’T} ly1, dy, c) #*
A(c). We show below that condition (b) implies that there is a density function f, (in fact, a
continuum of density functions) such that condition (a) does not hold.
W.lLo.g. consider distributions of o with only two points support, ¢ and ¢, with f,(c) = ¢.
Define:
dle,dy, ) = Z w(dy,y,y>™) G (y{Q’T}|y1,d1,a) - Aa) (67)

y{2T}

Condition (b) implies that d(c, dy, 1) # 0. For notational simplicity but w.l.o.g., consider that the
initial condition (dy,y;) has binary support {0, 1}. Applying the same operations as in the proof
of the sufficient condition, we get:

> w(y) Py — AME =
y

q [p*(0lc) d(c,0) +p*(1le) d(c,1)] + (1 —q) [p*(0lc) d(c',0) + p*(1]c) d(c', 1)]

(68)

By definition, each value d(a, dy,y;) is for a particular value of v, and therefore, it does not depend
on distribution f,. More specifically, d(«a, dy,y;) does not depend on the value of q. Therefore,
there always exist (a continuum of) values of ¢ such that the right hand side of (68) is different to
zero, and condition (a) does not hold. |

8.2 Proof of Lemma 5

For notational simplicity but w.o.l.g., in this section we omit x and 6 as arguments in all the
functions. Lemma 4 applies under the conditions of Lemma 5 such that equation (45) holds. Using
the structure of function G in equation (44), and the definition of the transition probabilities 7x; (),
we can rewrite equation (45) as follows:

T
Yo wldiyy® ) [[miw(@) = Al@), (69)
y{2TteyT-1 t=2

Given the dynamic logit in equation (1), the transition probabilities are:
exp {By;(d) +x"v;} exp{a(j)}
1+ 320 exp{Bre(d) + xv,} exp{a(0)}

And in the right-hand-side of equation (69), the individual effect A(«) is either a difference of
transition probabilities — as in 71 (a) — mp(@) — or a transition probability — as in 7j;(). For

T(a) = (70)

concreteness, suppose that A(a) = m;;(«), but it is straightforward to extend the proof to the case

32



where A(«) is the difference of two transition probabilities. Therefore, we have:

T /
d17 ” {2,T} exp {5yt—1,yt(dt>+xt7yt} exp{@(yt>}
y;f”( ey T i + i} e a0 o
71
exp {B;(d) +x7,} exp{a(j)}

S0 e (00 + 7} e a0}

Multiplying this equation times HZ;Q (1 + ijl exp {5yt_1’g(dt> + Xg’y[} exp {Oz(ﬁ)}) to elim-

n
inate the denominators, and using the Binomial Theorem to expand the terms [1 + 2]" as ZZ:O (k) 2,

Ny J
we obtain a polynomial in {60‘(])}].: Therefore, this system of equations holds for every value

1"
a € R’ if and only if the coefficients multiplying each monomial term in the polynomial are all
equal to zero. This defines a finite system of equations.

In this polynomial, the coefficients multiplying each monomial term are linear functions of
products between the weights w(dy, y1, y>"?) and the terms exp {/Bytfl,yt (di) + %177y, } The finite
system of equations, as many equations as the order of the polynomial, that makes the monomial

coefficients equal to zero is a linear system in the weights w(dy, y, y{Q’T}). |

8.3 Proof of Proposition 1 using Lemmas 4 and 5
For the binary choice model in equation (5) and AM E®) we have

( B e” (eﬁ — 1)
Ale) T (It et (1+e%)

()" (&)™

(1 + ea)T*HyT*yrm (1 + ea+ﬁ)n1—y:r+y1

(72)

G (y{27T} |y17 Oé) =

\

where n; = 2322 y; and ny; = ZtTZQ Yi—1y;. With T = 3 there are (2771) 4 possible values of
y2T} with each of the two values of y;. In this case, condition (45) in Lemma 4 for y; = 0 is

wl]P (y = (07 07 O) |y21 = 07 ai) + w2]P> (y = (07 07 1) |y11 = 07 ai) + U)g]P) (y = (07 ]-7 O) |y11 = 07 ai) +
+wiP (y =(0,1,1) [yin = 0, i) = A(ewi)

Replacing P (y|yi1 = 0, ;) and A(q;) by its expressions according to (72), multiplying the result
times (1 + 6“)2 (1 + eoth ) to remove denominators, doing some algebra and putting everything in
the left hand side of the equality, we have a polynomial in exp (¢;) as Lemma 5 established:

wy + [wy exp (B) +wy + w3 — (exp (B) — 1)] exp (a;) +
+ [wy exp (B) + ws + wyexp (8) — (exp (8) — 1)] exp (e:)” + wy exp (8) exp (a;)* =0 (73)
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As said in Lemma 5, this reduces the infinite conditions in (45) to a system of linear equations that
we have to solve for the weights:

w1:O
wy exp (B) +we +ws —exp (B) +1=0
wy exp (8) + ws +wyexp (B) —exp (B) +1=0
wyexp (B) =0

Solving it we obtain {w; = wy = wy = 0; w3 = exp () — 1} as the only solution. For y; = 1 we

(74)

have

’UJ5]P> (y = (1,0,0) |y21 = 1,0@) + UJGP (y = (1,0, 1) |’y11 = 1,0@) + IU7P (y = (1, 1, 0) |y11 = 1,0éi) +
+U}8]P> (y = (17 1, ].) |y11 = 1, Oéi) = A(l) (Oéz)

and it leads to the system of linear equations

=0
w5exp(ﬂ)+w3+w3exp( )—exp(f)+1=
we exp (B) + wr exp (B) + wg exp (8)° — exp (B) (exp () = 1) = 0
ws exp (3)° =0

whose only solutions is {ws = w; = wg = 0;wg = exp (§) — 1}. Therefore,
AMEY = [exp {8} — 1] [P(0,1,0) +P(1,0,1)]

This is exactly the expression that we have in Proposition 1. This way of obtain the weights
and proving identification also shows that the weights are unique and the model does not provide
additional restrictions on AME when T = 3.

8.4 Applying Lemma 5 to obtain expression for AME(I) with T > 3

The identification result using only 3 periods proves identification for any 17" > 3, because with
more than 3 periods we can always take 3 periods. Nonetheless, it is possible to obtain close form
expression for higher values of T using the same procedure based on section 4.1. This expression
will use all T periods without having to combine several 3-periods estimates.

For T > 3, as said, there is overidentification, so more than one combination of the probability of
histories exits. A way of choosing one of them in the BC-AR1 model is to focus on the probabilities
of the sufficient statistics that are used to identify 5 in the CMLE. This is as follows. For this model
and other logit models, the log-probability of a choice history has the following structure:

InP (yilei, B) = s(y:) glaw) +c(ys)' B (76)

where $(y;) and c(y;) are vectors of statistics (functions of y;), and g(cy) is a vector of functions
;. $(y) is a sufficient statistic for o; because P(y;|, 8, s;) = P(yi|5, s:).}” Let St be the set of

17See Aguirregabiria, Gu, and Luo (2021) for further details on this decomposition of the probability choice
and on sufficient statistics for discrete choice logit models.
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possible values of s(y), let Ps be the probability of a value s of s(y), and let Ps = {Ps : s € St}
be the probability distribution of this statistic. Given 6, the empirical distribution Ps contains all
the information in the data about the distribution of ay;, and therefore, about AMEs. Taking into
account the structure of the probability of a choice history in equation (76), the model implies:

Po= ) [ / exp(s’ glay) +c(y) 0} fula) da (77)

y: s(y)=s

If two sequences, say k and [, have the same $(y;), the ratio of the probabilities of these two
sequences is equal to exp [¢(yx) B — c(y;)" B], which is not a function of a;. This includes the case
in which P(y; |, ;) is the same for both sequences. Therefore, the set of sequences with the same
or proportional P(y; |8, ;) is the set of sequences with the same value of the sufficient statistic
s(y;). This leads to an infinite number of combinations of these sequences with the only restriction
being that all the combinations have to sum up to the same number (overall weight). What we do
is to choose the combination in which all these sequences have the same weight w, and, therefore,

look for combinations of Py instead of .
/

In the BC-AR1 model the sufficient statistics s(y;) is the vector (y,l wir, Z Yir | —see Aguir-

regabiria, Gu, and Luo (2021)— and it can take 47" — 4 different values, 27" — 2 Values with y;; =0
and 27" — 2 values with y;; = 1. The conditions in (45) are here

272
D owiP(silyn =0.50) = Al
49;14 for every «; € R, (78)
Z wy P(sj [yn=1,0,0:) = Ala)

j=2T—2+1

where P (Sj | Yj1 = O? ﬁ’ ai) - Zy:s(y):sj P (y{27T}|y1 - O, Ba ai)~
Proceeding as in 8.3, we obtain the weights for AM E™ in the binary choice AR(1) model for
different values of T'. These are in Tables 7 and 8.
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Table 7

Weights ws for histories with y; =0

T
yl;yTazyt) T =4 T:5 T:6 T:7
o 0 0 0
eF—1 eF—1 eF—1 eF—1
2 3 4 5
0 0 0
0 eB—1 2(ef—1) 3(eP—1)
142eP 3+3eP 6+4eP
eP—1 eP—1 eP—1 ef—1
1+ef 24P 34[;6’6 44%6[3 -
. eb— e —1)(1+2e
Not possible | 0 HT}B w
0 -1 (P =1)(A+eP) (" —1)(2+€F)
248 1+4eP +e28 3B—|—6165—|—€2B
Not possible | Not possible 0@ 364;3266 ;
. ef — e’ —1)(24e
Not possible | 0 3 +e; W&ew)
Not possible | Not possible | Not possible | 0
Not possible | Not possible | 0 Zi_gé
Not possible | Not possible | Not possible | 0
Table 8
Weights ws for histories with y; =1
yl,ymZyt) T=4 T = T=6 T=71
0 0 0 0
eP—1 eF—1 eF—1 eF—1
14-eP 2+ef 3+ef 4tef
0 0 0 0
0 eBf_1 (eP—1)(1+€P) (eP=1)(2+€P)
24-eP 1+4eB +e2P 3+6eP+e28
eF—1 eF—1 eF—1 eF—1
2 1428 2+2¢ef 34%255 -
Not possible | 0 gi;é %
0 1 2(43}1) (615%1)/3(1;226;3)
3 3+e +6eP +3e
N . eP—1
Not possible | Not possible | 0 Iy
1 Not possible | 0 e[iT_l Séi 4;;)
1 Not possible | Not possible | Not possible | 0
1 Not possible | Not possible | 0 eﬁg L
1 Not possible | Not possible | Not possible | 0
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8.5 Proof of Proposition 5

W.l.o.g. we consider T' = 3 and t = 3. According to Lemma 4 to prove identification of the AM F,

we have to find weights w( that satisfy condition (45) for any value of . Equation (45) for

Y1,Y2,Y35%)
AM Eg?z takes the following form for each value of y;:

Zw(yhyQ,ys%X) P(yl,w,y:&) | (y1,x,00) = A(a% + B + 7563) - A(Ozl + ’71‘3) = A(1)<aiv x?)) (79)

Y2,Y3
For shortness w(o,0,0,x) is written as wy;, w(,0,1,x) as Wa;, ..., and w(1,1,1,x) as wg;. We start by
ﬁnding Wi, Wos, W34, and Wy, such that
w1 * P0,0,0) | (r=0x,00) T Wai * P(0,0,1) | (1=0x,00) T W3i * P(0,1,0) | (y1=0,x,001)
Fwai * Po1,1) | (n=0x,00) = M + B+ v2i3) — Aoy + y243)
Replacing the Probabilities by their expression:
wi; (1= A (i +y2i2)) (1 — Aoy +y@i3)) + wai (1 — Aoy + i) A (i + yi3)
FwsilA (i +y2i2) (1 — A + B+ y2i3)) + walk (a; +y2i2) Aoy + B+ vais)
= Aoy + B+ y2i3) — Ao + v3)
Replacing the logistic cdf by its expression:

1 exp(a;+yTi3) exp(ait+yziz)

wli(1+exp(ai+7xi2))(1+9Xp(ai+’}’$i3)) Tw 22(1+exp(az +yzi2))(1+exp(a; +ywi3)) + wgi(1+9XP(%’+’Y$¢2))(1+exp(ai+5+”ﬂ%3))
1w exp(ai+yzi2) exp(ai+B+yi3) _ _exp(oi+Btywiz) _ _explaityTis)
4 (Texp(ai+yziz)) (I+exp(o;+B+7:3)) 14exp(a;+B+v1i3) 1+exp(a;+vzi3)

Operating to undo the fractions in both sides and simplifying:

wy; + Wy €xXp (7$23) €Xp (6) €xXp (ai) + wa; €Xp (’73713) €Xp (al) + wa; exp (7xi3)2 €Xp (6) exp (a/i)Z
+ws; exp (yxi2) exp (ay) + ws; exp (yx;2) exp (yxi3) exp (ai)Q

+wy; exp (yi2) exp (y24i3) exp () exp (ai)Q + wy; exp (Yx;2) €Xp (")/332‘3)2 exp (B) exp (ai)g’

= exp (yz3) (exp (B) — 1) exp (o) + exp (y2:2) exp (Yas3) (exp (B) — 1) exp (o)

Since wy;, way;, ws;, and wy; cannot depend on «; all the terms in the polynomial of exp (o) in
both sides must be the same. Therefore, as in lemma 5, this implies the following (finite) system of
linear equations:

;=0
wy; exp (Yx3) exp (B) + wa; exp (Y243) + ws; exp (’7%2) = exp (yz;3) (exp (8) — 1)
Wa; €XP (71&'3)2 exp () + ws; exp (Yxiz) exp (Yi3) wa; exXp (Y2i2) exp (Y2i3) exp () = exp (Yxiz) exp (Y3) (ex
wy; exp (Yxi2) exp (v113)” exp (B) =

Solving this system of equation we obtain

wy; = 0
o &Xp (Y&i2) — exp (Y2i3)
“ exp (yi3)
g, = 2 (17is) exp (B) — exp (y2i2)
exp (yxs)
wy; = 0
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Proceeding the same way with

Wsg; * ]P)(LO’(]) | (y1=1,%,05) + we; * ]P)(l,o,l) | (y1=1,%,00;) + wr; * ]P(l,l,o) | (y1=1,x,00)
Fwsi * P11y | (=1x00) = Mo + B+ vxi3) — Aoy + v43)

we obtain
Wxy; — 0
Wer — exp (Yziz) exp (8) — exp (zi3)
o exp (V2:3)
_ eXp (7%‘3) — €Xp (71‘1‘2)
7P =
exp (y2)
wg; = 0

Using the previous results,

E : W(y1,y2,y3:%) IP)(yhyz,y:s) | xi =

Y1,Y2,Y3

/ [w2i # P0,0,1) | (i=0ax,.00) + Wi % P(0,0,0) | (ra=0.xii0)] P (0l0ti, X;) far (cvifxs) e
+/ [wﬁi * P1,0,1) | (yi=1,xi,00) T Wri * P(1,1,0) | (y1=1,xi,ai)] P (Lev, X;) fage (Qulxi) da
= /A(l)(ai, x3)p" (0]cv, X;) fale (s ;) da; + /A(l)(ai, x3)p* (L|vi, X;) fajz (0i]x;)day
- /A(l)(ai,X;;) (p"(0]cvi, %) + p* (L], X3)) faje(as]x;)doy
/A(l)(ai,x3)fa|x(ai|xi)dai

So, we have shown that those weights are such that

Z Wy ys) Pl wovs) | = /A(l)(az‘axa)fax(ai|xi)d04i

Y1,Y2,Y3

This implies

Z ( Z W(y1,y2,y3:%) ]P)(y17y2,y3) | Xi> P (XZ)

T Y1,Y2,Y3

> ([ A% el ) B

= /A(l)(ai,X3)f(a,x)(Oéi,Xi)d(Oéi,Xi)
= AMEY,

and AM ES?)) is identified. [ |
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8.6 Proof of Proposition 6

For notational simplicity, we omit x as an argument throughout this proof. In model (2) with
J+1 =3 and T = 3, the necessary and sufficient condition in equation (45) of Lemma 4 for
Y1 = 0is

w1 * Po,0,0) | n=0.01) + W2 * P(0,01) | (r=0,00) T W3 * P(0,0.2) | (y1=0,0)
Fws * Pro1,0) | (g1=0,00) T W5 * Pro1,1) | (g1=0,00) T W6 * P0,1,2) | (y1=0,0) (81)
+w7 * P2,0) | (y1=0,00) T Ws * P0,2,1) | (y1=0,0:) T Wo * P0.22) | (y1=0,0;) = mo(a;)

Let’s denote d; = 1+ exp{f +a; (1)} + exp{fj2 + ;i (2)} for j = 0,1,2. Replacing the
Probabilities by their expression based on the logistic cdf,

X i 1 X i 1 X 7 1
wl% 4wy p{ﬁo;—gﬁ-a €9); + wge p{ﬂozga €9); +w, S P{Bgl(l);-la €9);
exp{Bo1t+a; (1)} exp{Bi1+a;(1)} exp{Bi2+a;(2)} exp{Boi+a;(1)} exp{Bo2+ai(2)}
o (81 +ou(1)f exp{ B +as(2)) T (Ban+as(  kp Boa +as(2) T e
expipP21t+a; eXpiro2 T expp22ta; eXpi1Po2 T 1
+ws doda + wy doda —d

After some algebra to undo the fractions in both sides and simplifying,

w1d1d2 + wa exp {ﬁOl + oy (1)} d1d2 + ws exp {ﬁ02 + oy (2)} d1d2 + wy exp {601 + oy (1)} dodz
+ws exp { Bor + @i (1)} exp {B11 + a; (1)} doda + we exp { fr2 + ; (2) } exp { Bor + @i (1)} dods
+wz exp {Boz + a; (2)} dody + ws exp {Ba1 + ; (1)} exp { oz + @i (2)} dodh

+wg exp {Baz + i (2)} exp { Bz + @i (2)} dody = dida

Expanding this equation by doing the products of d; and of the exponential, we obtain in both
sides of the equality a polynomial in exp {«a; (1)}h % exp {; (2)}1, where the minimum value of
h and [ is 0, and the maximum value is 4. Following lemma 5, equating the coefficient of each
monomial in both sides of the equality, this results on a system of linear equation whose unknowns
are the weights wy, ..., wg. This condition on the monomials of exp {a; (1)}3 and exp {q; (1)}2
imply respectively:

ws exp (P11) + waexp (Bon) =0 (82)
wo exp (Ba1) + wa exp (f21) + wo exp (B11) + waexp (Bo1) = exp (Ba1) (83)
which leads to

At the same time, the condition on the monomial of exp {a; (1)} implies

ws exp (Bo1) + waexp (1) = exp (Bo1) + exp (Ba1) - (85)
That is, (B)
_ exp (S
Wy + Wy = 1+ —eXp (601), (86)

which is incompatible with condition (84). Therefore, there do not exist weights that satisfy (45) of
Lemma 4 -represented by equation (81) in this particular case—, and, according to Lemma 4, there
is no function of the observed probability choices that identifies I1;q. n
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8.7  Proof of Proposition 7

The weights in the enunciate of Proposition 7 were obtained using the general procedure and result
in Section 4.1. However, given the weights, it is easier to prove directly that the linear combination
give the average transition probability. We present this proof for Ilsg, but it proceeds the same for
other IIj;. Notice that Hgo = f Too(t;) faly) doy, where, according to the probability (52) of this

model, moo(a;) = We start with the probabilities of choice histories conditional

1+exp(ﬂg Aota;)”
on «y, that is, Py, yo.ys) | a;- First, we write the expression for these probabilities implied by the
model as functions of parameters 5, A and ;. Second, for each of these probabilities, we multiply
the equation times the weights w(y, 4, 4,) that appear in the enunciate of Proposition 7. For the

probabilities with non-zero weights for Iy, we have:

_ * 1
Fooo 1+ Fooy e = 200) rrsgm—saa st
_ % exp(fo—Ao+a;
eXp ()\1 - AO) ]P)(O,O,Z) | (6% - p (0|a7’) (1+exp(ﬁ0f)q+a¢))(1+exp(,807/\o+ai))
exp(B2—Ao) - , exp(Bo—A1ta;)—exp(B2—Aota)
(1 - eXpwi—A(f)) P20 1a] = " (O) (Trexp(Fo—A+ o)) (L+exp(Baro L)
l J-1
o ' 1 _ 1—exp(B2—Ao+a)
ZZP(L’“” jar = P(Haw) <1+eXp(62—>\o+ai) (1+6XP(61—>\1+0¢i))(1+exp(ﬁ2—/\0+ai))>
k=0 1=0

exp(B2—Ao) * ) 1—exp(B2—Ao+a;)
(1 N exp(ﬁl—kl)) ]P)(l’Q’O) e = P (1‘041) 1+exp(B1—A1+a;)1+exp(B2—Ao+a;)

> Peon o = P(20) emm e

(87)

Notice that exp (A} — Ag) = %. Third, we sum these equations. Simplifying factors and

taking into account that p*(0|ca;)+ p*(1|a;) + p*(2]au) = 1, we get:

exp{fs — A
P©0,0,0) | i T P0,0,1) | a; + €XP {AM =X} P0,02) | a; T (1 — M) P0,2,0) | 2

exp {50 - )\1}
L exp {f2 — Ao} d
27 N0
+D Y Pakn et (1 - m) P20) o + O _PRok) | o
k=0 1=0 k=0
1
= ma0(ui) (88)

B L+exp(fa— Ao+ ;)

Finally, we integrate the two sides of this equation over the distribution of c; to obtain:

ex Y
Pooo +Poor +exp {1 = Ao} Pooa + (1 - %) Pozo (89)
I J-1 P
E exp {B2 — Ao}
2P 1 - —— 0 | P P, — I
Tt ( o (i — ) P10+ 2 Faoe = o (90)

8.8 Proof of Proposition 8

As in 8.7, given the weights, it is easier to prove directly that they give the AME. We present this
proof for AM Eqy_,, but it proceeds the same for the other AMEs. We start with the probabilities
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of choice histories conditional on cv;, that is, Py, ys.ys.0) | a;- First, we write the expression for these
probabilities implied by the model as functions of parameters 5 and ;. Second, for each of these

probabilities, we multiply the equation times the weights w( that appear in Proposition 8.

Y1,Y2,Y3:Y4)
For the probabilities with non-zero weights for AM Fjy_,1, we have:

P —1 (V) —1) e
T p W+ P o= (0
2 |: (0’07170) | 7 + (07170’0) | ’L] p ( |OZ ) (1 _'_ eai+ﬁ(1)) (1 + eai)Q
P 1 p "0 (65(1) - 1) e%ipi
eﬂ(l) (0107111) | (677 - p ( |Oé1) (1 _'_ eai+6(1)) (1 + eai)Q
(A _ 1) et (e B 4 1)
(1 + eai+5(l))2 (1 + eOéi)

(91)

(€D 1) [Pao10) e +Paorn ] = p*(1aw)

Third, we sum these three equations. Simplifying factors and taking into account that p*(0|a;)+
p*(1|ay) = 1, we get:

P 1 P 1

2
(65(1) — 1) e eitB(1) e
= = - = Ao ()
(1+extBM) (1 +ev) (14 exwtBD) (14 )

(92)
Finally, we integrate the two sides of this equation over the distribution of «; to obtain:

P —q P _q

5 [Po.o.1.0+ Po1,00] + WPO,O,LI + (66(1) — 1) P1o10+Pro11] = AME;; (93)

such that AM Eqy_,; is identified. We can proceed similarly to prove the identification of the others
AME,; 4. In particular, we can prove that:

eB2) _ eB(1) eP2) _ B(1)
AME1_>2 = T [Po,o,l,o + I[])0,1,0,0] + W IP>0,0,171
P2 (1 = P@
+ (65(1) ) +e"P — 1| Pyiag (94)

P P2 _q 1
+ (1 — m) P101,0+Pro11] + (W -1+ m) Pi100

and
B(2) _1q B2 _1
e e
AMEy ,, = Y [Po.0.1,0 + Po100] + O Poo,1,1
B2) (1 _ B2
e e
+ (66(1) ) + 66(2) -1 ]P)O,l,l,() (95)

801) P P2 1 1
+ (6 - 65(2)) P1o10+Proa] + <W -1+ m) P1100 W
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