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Abstract

We analyze a multilateral war of attrition game with majority rule. A chair and two

competing players decide how to split one unit of surplus over continuous time. Each player has

an exogenously given demand that are incompatible. In each period, the players simultaneously

choose whether to concede or continue. The chair can concede to either of the two competing

players but the competing players can concede only to the chair. An agreement is reached

when at least one player concedes. We characterize the equilibria of this game and establish

the necessary and sufficient conditions under which equilibria with delay exists.

1 Introduction

In this paper, we study a concession game between three players in continuous time in which

only two players are needed to reach an agreement on how to split a unit of surplus. In their

influential paper on reputational bargaining, Abreu and Gül (2000) study a bilateral concession

game and show that players can benefit from building a reputation for being stubborn, i.e.,

irrationally following a strategy of demanding a high share of surplus and not conceding to

any offer below a specified low level. In multilateral bargaining with majority rule, such a

reputation has its costs. When one of the players can be excluded from the agreement, players

can benefit from building a reputation for being compliant, i.e., irrationally following a strategy

of demanding a low share of surplus. Players prefer to split the surplus with compliant types by

conceding to them, so compliant types may become more likely to be included in the winning

coalition. As a preliminary for analyzing a reputational multilateral bargaining game with
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majority rule, we first analyze a multilateral war of attrition game with majority rule with

complete information.

Even with complete information, a multilateral concession game has some interesting fea-

tures not present in a bilateral concession game (Hendricks, Weiss and Wilson (1988)). We

analyze a continuous time game in which three players are deciding how to split one unit of

surplus. Each player has an exogenously given demand and the sum of the demands of every

potential winning coalition exceeds one, i.e., it is not possible to reach an agreement that

satisfies the demands of all its participants. The game ends as soon as at least one player

concedes. At any moment the players simultaneously choose whether to concede by accepting

the demand of another player or continue, given that the game has not ended thus far. We

assume that one of the players (the chair) must be included in the agreement, but only one of

the remaining two players (competing players) is required to reach an agreement. As a result,

the competing players can only concede to the chair, while the chair can concede to either of

the two competing players.

We first characterize the equilibria in which agreement is reached immediately. We show

that there is a continuum of such equilibria. When the demands of the competing players are

not equal to each other, or when their demands are sufficiently small, in every immediate-

agreement equilibrium, both of the competing players concede at the beginning of the game

with certainty and the chair concedes later. When the demands of the competing players are

equal to each other and are sufficiently large, the type of equilibria just described exists, but

there is also another equilibrium in which the chair concedes at the beginning of the game,

and the competing players concede later.

We then turn to characterizing equilibria with delay. We start by showing that when the

demands of the competing players differ from each other, delay equilibria cannot exist. As

such, to characterize the equilibria with delay, we assume the demands of the competing players

are identical. We show that if the game does not end immediately, while the total probability

of concession by the chair has a constant hazard rate, the hazard rates of concession to each

of the competing players can vary over the course of the game. Similarly, the hazard rates of

concession by the competing players to the chair can also vary over the course of the game.

We show that there exist equilibria in which the competing players (one at a time) have rates

of concession arbitrarily close to zero. In such equilibria, the competing players alternate in

“holding out”, i.e., not conceding to the chair over non-trivial time intervals.

For delay equilibria in which all players gradually concede throughout the game, we find

that the magnitude of the interest incompatibility, measured by the total demands of two

players in the agreement minus the total surplus to be divided, decreases the concession rate

for the chair and the aggregate concession rate for competing players. This captures the

sense that the agreement is harder to be achieved with more intense interest conflict. We

also show that these concession rates strictly increase in the chair’s impatience; in particular,
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the concession rate for the chair also strictly increases in both competing players’ impatience.

Furthermore, the chair obtains the same payoff in the bilateral war of attrition and in the

three-player war of attrition; whereas competing players obtain strictly lower payoffs in the

three-player war of attrition due to the bargaining competition.

TO BE COMPLETED.

1.1 Literature

The model of war of attrition was introduced by John Maynard Smith in the context of evolu-

tionary games (Smith, 1974; Bishop and Cannings, 1978) and since then has been applied to a

wide array of problems in economics, in particular, in bargaining. The first full characteriza-

tion of Nash equilibria in the bilateral war of attrition with complete information has appeared

in Hendricks, Weiss and Wilson (1988). Our goal is to provide a full characterization of Nash

equilibria in the multilateral war of attrition arising in bargaining situations with majority

rule and a veto player.

Our paper is related to the literature on reputational bargaining that takes war of attrition

as an important ingredient. This literature is initiated by Myerson (1991) and Abreu and Gül

(2000).1 Here, we only discuss the most closely related papers. Özyurt (2015) studies a model

of bargaining between a buyer and two sellers of an identical good. Similar to our model, there

is an asymmetry between the players: the buyer must be included in any agreement while

only one of the sellers is required to strike a deal. However, the model restricts which seller

can reach an agreement at any given time: the bargaining procedure consists of alternating

sequences of bilateral negotiations with the possibility for the buyer to switch between sellers at

a cost. By contrast, our bargaining procedure is always multilateral: both competing players

can concede to the chair at any time and the chair can concede to any competing player at

any time.

Ma (2022) studies the effect of reputational concerns in a Baron and Ferejohn (1989)

model of legislative bargaining with three players and majority rule. This time, any two

players can form a winning coalition and the players differ only in the probability of being

a non-compromising type. Ma (2022) constructs a class of equilibria in which obtaining a

reputation for being a non-compromising type guarantees that such player is excluded from

the winning coalition. In turn, the threat of exclusion forces the rational players to end the

game immediately (and thus quickly reveal the irrational types).

Kambe (2019) studies an incomplete information multilateral war of attrition in which a

single exit is required to end the game. Kambe (2019) assumes that the payoffs of the players

who remain do depend on the idenity of the player who exits. He shows that the equilibrium

is unique when each player has a positive probability of being a noncompromising type. A

1For a complete overview, we refer the reader to an exceptional survey by Fanning and Wolitzky (2022).
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natural application of this model is a provision of a public good, for example, the selection of a

volunteer by a group. In contrast, we allow the possibility of being excluded from the winning

coalition when dividing a surplus to study coalition-building, and hence in our setting, unlike

in Kambe (2019), the payoffs of the players who remain does depend on the identity of the

player who yields first. In addition, our setting features asymmetry among players in terms

of who can yield to whom. Similar to our model, Kambe (2019) shows that some players may

wait in equilibrium while other players exit at positive rates, however, the combined rates of

exiting are weakly decreasing instead of being constant.

In an earlier paper, Bulow and Klemperer (1999) consider a generalized multilateral war

of attrition game with N prizes and N +K players where K players must exit for the game to

end. In our setting, there is only 1 prize but there are three players. Thus, their setup can be

viewed as bargaining under unanimity rule while ours as bargaining under majority rule with

a veto player.

Finally, a number of researchers have investigated the role of strategic commitments that

do not rely on incomplete information.2 Ellingsen and Miettinen (2008) study strategic com-

mitments that are both observable and revocable. They show that incompatible commitments

arise as a robust prediction. Ellingsen and Miettinen (2014) soften this prediction in a dynamic

model with commitment decay and demonstrate that the agreements are reached following

some delay. In a mutlilateral setting, Miettinen and Vanberg (2020) show that commitment

causes delay only under the unanimity rule but delay disappears under any generalized ma-

jority rule, even the most demanding one (all-but-one).

2 The Model

Consider the following model of bargaining. Players in the set N = {0, 1, 2} are deciding how

to split one unit of surplus. Player 0 must receive a share of surplus, and at most two players

can receive positive shares. We call player 0 the chair, and call player 1 and 2 competing

players. Each player i ∈ N has an exogenously given demand αi ∈ (0, 1). These demands

satisfy α0 + αi > 1 for i = 1, 2, that is, the demand of player 0 is incompatible with the

demand of any other player.

The game is played in continuous time with player i discounting future at rate ri > 0. In

each period t ≥ 0, players simultaneously choose whether to concede or continue. Players 1

and 2 (“he”) can only concede to player 0 (“she”), while player 0 choose to concede to either

of the other two players. The game ends as soon as at least one player concedes. There are a

total of 12 action profiles, with all but one having at least one player conceding and the game

ending. These action profiles can be written as: (0→ 1), (0← 1), (0↔ 1), (0→ 2), (0← 2),

(0 ↔ 2), (1 → 0 → 2), (1 → 0 ← 2), (1 ← 0 ← 2), (1 ↔ 0 ← 2), (1 → 0 ↔ 2), and (none

2For an excellent review of this literature, see Miettinen (2022).
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concedes).

Fix t ≥ 0 and consider a pair of players who can divide the surplus among themselves, i.e.,

fix i = 1, 2 and consider the pair (0, i). Suppose that no concession has been made before time

t and that j 6= i does not concede at t. If player 0 concedes to i and player i does not concede,

then player i receives his claim αi and player 0 receives the remainder of surplus 1 − αi. If

player 0 does not concede to any player and player i concedes, then player 0 gets her claim

α0 and player i gets 1 − α0. If player 0 concedes to j and player i does not concede, then

player i gets 0 and player 0 gets 1 − αj . These are base outcomes. If more than one player

concedes at t, then the outcome is chosen uniformly from the set of base outcomes determined

by concessions.

A pure strategy of player i specifies for each time t whether to concede (and to which player

if i = 0) or continue given that no player has conceded prior to time t. Since the game ends

after the first concession, all pure strategies of player i with the same earliest concession time

are payoff-equivalent. Therefore, we can index each pure strategy by the earliest concession

time, i.e., let ti be a pure strategy such that ti is the earliest time at which player i = 1, 2

concedes, and write ti =∞ if player i never concedes. Similarly, let (t0, i) be a pure strategy

of player 0 such that t0 is the earliest time at which she concedes to player i = 1, 2. Again,

(t0, i) = (∞, i) if player 0 never concedes to i.

For any pure strategy profile t = ((t0, κ), t1, t2) ∈ (R̄+×{1, 2})× R̄+× R̄+, let ui(t) denote

the payoff of player i ∈ N . Then,

u0(t) =



α0e
−r0 min{t1,t2} if t0 > min{t1, t2},

(1− ακ)e−r0t0 if t0 < min{t1, t2},

(1
2α0 + 1

2(1− ακ))e−r0t0 if t0 = min{t1, t2} < max{t1, t2},

(2
3α0 + 1

3(1− ακ))e−r0t0 if t0 = t1 = t2,

and for i = 1, 2 and j 6= i

ui(t) =



αie
−rit0 if t0 < min{t1, t2} and i = κ,

(1− α0)e−rit0 if ti < min{t0, tj},

(1
2αi + 1

2(1− α0))e−rit0 if t0 = ti < tj and i = κ,

1
2αie

−rit0 if t0 = tj < ti and i = κ,

1
2(1− α0)e−rit0 if t0 = ti < tj and i 6= κ, or t1 = t2 < t0,

(1
3αi + 1

3(1− α0))e−rit0 if t0 = t1 = t2 and i = κ,

1
3(1− α0)e−rit0 if t0 = t1 = t2 and i 6= κ,

0 if min{t0, tκ} < ti and i 6= κ.
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A mixed strategy of player i = 0, 1, 2 is a distribution over pure strategies. Denote a mixed

strategy of player i = 1, 2 by Gi : R̄+ → [0, 1], where Gi(t) is the probability that player i

concedes by time t. The probability that player i never concedes is given by 1− limt→∞Gi(t).

Notice that we do not require limt→∞Gi(t) = 1 and that Gi is weakly increasing and right-

continuous by definition.

Similarly, denote a mixed strategy of player 0 by G0 = (G0,1, G0,2) where G0,i : R̄+ → [0, 1]

and G0,i(t) denotes the probability that player 0 concedes to player i by time t. We assume

that G0,i is weakly increasing and right-continuous for each i = 1, 2, and that G0,1(t) +

G0,2(t) ≤ 1 for all t. Define G̃0(t) = G0,1(t) + G0,2(t). Then, G̃0(t) denotes the probability

that player 0 concedes by time t, and the probability that player 0 never concedes is given by

1− limt→∞ G̃0(t).

Let Gi denote the set of mixed strategies for player i = 0, 1, 2. For any (G1, G2) ∈ G1 × G2

and t ≥ 0, let U0(t, κ,G1, G2) denote the expected utility of player 0 from conceding to player

κ at time t with certainty when players 1 and 2 use mixed strategies G1 and G2 respectively.

Then,

U0(t, κ,G1, G2) =

∫∫
u0((t, κ), t1, t2)dG1(t1)dG2(t2).

Likewise, for i = 1, 2 and j 6= i, for any (G0, Gj) ∈ G0 × Gj and t ≥ 0, let Ui(t, G0, Gj) denote

the expected utility of player i from conceding at time t with certainty when the players 0 and

j use mixed strategies G0 and Gj respectively. Then,

Ui(t, G0, Gj) =

∫∫
ui((t0, κ), t, tj)dG0(t0, κ)dGj(tj).

In what follows, for any f : R+ → R, any G : R̄+ → [0, 1] non-decreasing and right-

continuous, and any s < t, let∫ t

s
f(v)dG(v) = lim

τ↑t

∫ τ

s
f(v)dG(v).

In other words, all integrals omit the mass point (if any) at the upper bound of integration.

3 Preliminaries

In this section, we define Nash equilibrium for this game and describe some of its proper-

ties. For ease of exposition, we focus on Nash equilibria, but we also argue that every Nash

equilibrium outcome of the game studied here can be supported in a subgame perfect Nash

equilibrium.

Definition 1. A mixed strategy profile (G0, G1, G2) ∈ G0 × G1 × G2 is a Nash equilibrium if

(i)

∫
U0(t, κ,G1, G2)dG0(t, κ) ≥

∫
U0(t, κ,G1, G2)dĜ0(t, κ) for all Ĝ0 ∈ G0, and
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(ii)

∫
Ui(t, G0, Gj)dGi(t) ≥

∫
Ui(t, G0, Gj)dĜi(t) for all i, j ∈ {1, 2}, i 6= j, and all Ĝi ∈ Gi.

For the rest of this section, fix a mixed strategy profile (G0, G1, G2) and let qi(t) denote the

probability that player i = 1, 2 concedes exactly at time t, q0,i(t) denote the probability that

player 0 concedes to player i exactly at time t, and q̃0(t) denote the probability that player 0

concedes exactly at time t, i.e., q̃0(t) = q0,1(t) + q0,2(t). Formally, qi(t) = Gi(t)− limτ↑tGi(τ),

and q0,i(t) = G0,i(t)−limτ↑tG0,i(τ). The probability that player i never concedes is denoted by

qi(∞), and the probability that player 0 never concedes is q0(∞). Clearly, if Gi (respectively

G0,i) is continuous, then qi(t) = 0 (respectively q0,i(t) = 0) for all t ≥ 0.

For player i ∈ {1, 2}, define T+
i = {t ∈ [0,∞] : qi(t) > 0}; and for player 0, define

T+
0,i = {t ∈ [0,∞] : q0,i(t) > 0}. In what follows, we refer to a point t ∈ T+

i (or t ∈ T+
0,i) as an

atom point in concession time for player i (or for player 0 conceding to player i respectively).

Slightly abusing notation, letGi(T ) denote the probability that player i assigns to a measur-

able set T according to a mixed strategy Gi ∈ Gi. Likewise, let G0,i(T ) denote the probability

that player 0 assigns to a measurable set T according to a measure G0,i.

Lemma 1. Let (G0, G1, G2) be a mixed strategy Nash equilibrium and fix player i ∈ {1, 2}.
For all measurable T ⊆ [0,∞], we have:

(i) if there exists s /∈ T such that Ui(s,G0, Gj) > Ui(τ,G0, Gj) for all τ ∈ T , then Gi(T ) = 0;

(ii) if there exists s /∈ T or j 6= i such that U0(s, j,G1, G2) > U0(τ, i, G1, G2) for all τ ∈ T ,

then G0,i(T ) = 0.

Lemma 1 implies that, in equilibrium, if a player concedes with a strictly positive proba-

bility at time t, then no other concession time can yield her a strictly higher utility. In other

words, every atom point in concession time must be a best response to the strategies of other

players, analogous to a well-known mixed strategy Nash equilibrium characterization for games

in which players have a continuum of actions.3 In fact, an equilibrium mixed strategy must

place zero weight on any measurable set of pure strategies (here, concession times) that are

not best responses to the strategies of other players. By Lemma 1, we can derive the following

corollary, which will be useful in characterizing equilibria with delayed agreement.

Corollary 1. Let (G0, G1, G2) be a mixed strategy Nash equilibrium and fix player i ∈ {1, 2}.
For any time s, τ1, τ2 ∈ R̄ such that τ1 < τ2, we have:

(i) if Gi is strictly increasing over (τ1, τ2), then Ui(t, G0, Gj) ≥ Ui(s,G0, Gj) for t ∈ (τ1, τ2)

almost everywhere;

(ii) if G0,i is strictly increasing over (τ1, τ2), then U0(t, i, G0, Gj) ≥ U0(s, κ,G0, Gκ̄) for t ∈
(τ1, τ2) almost everywhere, and j, κ, κ̄ ∈ {1, 2}, j 6= i, κ 6= κ̄.

3See, for example, Proposition 142.2 in Osborne (2004).
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To begin, we show that both competing players concede at time t = 0 in every pure-

strategy Nash equilibrium. To see why this is true, note first that there is always a pure-

strategy equilibrium where the competing players concede immediately and the chair never

concedes. This is an equilibrium since the chair attains the highest utility achievable, i.e., α0,

and thus has no strictly profitable deviation; and neither competing player prefers to continue

at t = 0 because 1−α0
2 > 0. Furthermore, the competing players concede immediately in every

pure-strategy Nash equilibrium ((t0, κ), t1, t2) ∈ (R̄+ × {1, 2}) × R̄+ × R̄+, as we now show.

First, since αi, α0,i < 1 for both i ∈ {1, 2}, there exists a player who eventually concedes, that

is, min{t0, t1, t2} < ∞. We denote the earliest concession time by t. Next, player 0 cannot

concede at t. If t0 = t and tj > t for player j 6= κ, then j can deviate to tj = t and get a payoff
1−α0

2 instead of 0. And if t0 = t = ti for any i ∈ {1, 2}, then player 0 can deviate to t0 > t and

get a payoff α0, which is greater than any payoff player 0 can receive by conceding at t0 = t.

Further, the game must end immediately, that is, t = 0. If t > 0, then each player i ∈ {1, 2}
has a profitable deviation to ti < t because it saves the waiting cost and guarantees the highest

possible share 1 − α0 that player i can achieve by conceding before player 0. Finally, player

1 and player 2 must concede simultaneously, that is, t1 = t2. If ti < tj , then player j has a

profitable deviation to tj = 0. It follows that in every pure-strategy Nash equilibrium, the

competing players concede at t = 0, and player 0 concedes either later or never.4 These results

give us the following Proposition.

Proposition 1 (Pure-Strategy Nash Equilibrium). There is a unique pure-strategy Nash equi-

librium outcome. In this outcome, only player 1 and player 2 concede at time t = 0. The

equilibrium payoffs are α0 for player 0 and 1
2(1− α0) for players 1 and 2.

Proposition 1 shows that there always exists an equilibrium in which the game ends at time

t = 0. Furthermore, this equilibrium is in pure strategies and the competing players are the

ones who concede immediately. However, this is not the only possible equilibrium outcome in

which the game ends immediately because there also may exist equilibria (necessarily in mixed

strategies) in which the chair concedes immediately. This type of mixed-strategy equilibrium

is characterized in part (ii)(b) of Proposition 2 below.

In what follows, we call a strategy profile an immediate-agreement equilibrium if the game

ends at time t = 0 with probability 1, otherwise we call it a delay equilibrium. Formally,

Definition 2. An equilibrium (G0, G1, G2) ∈ G0 × G1 × G2 is an immediate-agreement

equilibrium if and only if (1−G0,1(0)−G0,2(0))(1−G1(0))(1−G2(0)) = 0. An equilibrium

(G0, G1, G2) ∈ G0×G1×G2 is a delay equilibrium if and only if (1−G0,1(0)−G0,2(0))(1−
G1(0))(1−G2(0)) 6= 0.

4There is a continuum of pure-strategy Nash equilibria that differ only in the action of player 0, namely the
concession time t0 and the player to whom she concedes. An example of a pure-strategy profile that is subgame
perfect is for the competing players to concede at every time t ≥ 0 and for the chair to never concede.
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Recall that qi(t) is the probability that player i = 1, 2 concedes exactly at time t, and q̃0(t)

is the probability that player 0 concedes exactly at time t. It follows that an equilibrium

(G0, G1, G2) is a delay equilibrium if and only if, q1(0) < 1, q2(0) < 1, and q̃0(0) < 1.

We are ready to fully characterize the immediate-agreement Nash equilibrium outcomes.

The following proposition says that any immediate-agreement equilibrium outcome is generi-

cally a pure-strategy equilibrium outcome described in Proposition 1. Only when the demands

of the two competing players are equal and are sufficiently high, i.e., α1 = α2 ≥ 2(1 − α0), it

is ever possible for the chair to concede at time t = 0 with certainty.

Proposition 2 (Immediate-Agreement Nash Equilibrium).

(i) If α1 6= α2 or α1 = α2 < 2(1− α0), there is a unique immediate-agreement Nash equilib-

rium outcome. In this outcome, only player 1 and player 2 concede at time t = 0.

(ii) If α1 = α2 = α ≥ 2(1−α0), there are two types of immediate-agreement Nash equilibrium

outcomes:

(a) Only player 1 and player 2 concede at time t = 0.

(b) Only player 0 concedes at time t = 0; player 0 concedes to player 1 with probability

q0,1(0) ∈ [1−α0
α , 1 − 1−α0

α ] and to player 2 with complementary probability q0,2(0) =

1− q0,1(0).

Note that there always exists an immediate-agreement equilibrium in which both competing

players concede at the start of the game. By contrast, there need not exist an equilibrium

in which the chair concedes at the start of the game. Part (ii) of Proposition 2 gives the

necessary and sufficient conditions for such an equilibrium to exist. First, if the demands

of the competing players are not equal, there cannot exist an equilibrium in which the chair

concedes with certainty at the start. This is because if the chair is ever to concede, she would

concede to the competing player with the lower demand. Knowing this, the competing player

with the higher demand would concede immediately. Next, if the demands of the competing

players are equal and sufficiently low, then again there is an incentive for the competing players

to concede, but this time it is because the gain from waiting is not worth the risk that the

chair might concede to the other player. Finally, if the demands of the competing players are

equal and sufficiently high, then there is an equilibrium in which the chair concedes to each

competing player with a strictly positive probability. In particular, if α1 = α2 ≥ 2(1−α0), then

in any immediate-agreement equilibrium in which the chair concedes at t = 0, she must concede

to each competing player with equal probability, i.e., q0,1(0) = q0,2(0) = 1
2 . As the conflict of

interests increases, α1 = α2 > 2(1− α0), other immediate-agreement equilibria arise in which

the chair concedes to the competing players at t = 0 with unequal probabilities. Yet the gap

in concession probabilities cannot be too wide. Formally, |q0,1(0)− q0,2(0)| ≤ 1− 2(1−α0)
α .5

5Similar to Proposition 1, there is a continuum of Nash equilibria that differ only in the concession times of the
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Given α1 = α2 = α, now we explain more explicitly where the condition α ≥ 2(1 − α0)

comes from. Observe that if both of the competing players are waiting and the chair concedes

with certainty, then the expected payoff for competing player i is αq0,i(0). If instead player i

unilaterally deviates, his payoff would be 1
2(1− α0) + 1

2αq0,i(0). When the competing players

do not concede at the beginning of the game, waiting must be sufficiently profitable for each

of them compared to conceding. Thus,
∑

i∈{1,2} αq0,i(0) ≥
∑

i∈{1,2}[
1
2(1−α0) + 1

2αq0,i(0)], i.e.,

α ≥ 2(1− α0).

Note that unlike in Proposition 1 and part (i) of Proposition 2, the multiplicity of equilibria

in part (ii) of Proposition 2 is accompanied with multiple equilibrium outcomes and equilibrium

payoffs.

4 Delay Equilibria

In this section, we characterize delay equilibria, i.e., a mixed strategy equilibrium (G0, G1, G2)

with q1(0) < 1, q2(0) < 1, and q̃0(0) < 1.

We start by showing that if α1 6= α2, then it is impossible to have a delay equilibrium.

Intuitively, if αi > αj , then the chair either does not concede or concedes to player j leaving

player i with nothing. In either case, player i has an incentive to concede immediately at the

start and the game ends without any delay.

Lemma 2. If α1 6= α2, then there does not exists a delay equilibrium.

Consequently, when α1 6= α2, the characterization of equilibria is complete by Proposition

2. The rest of this section is devoted to characterizing delay equilibria when α1 = α2 = α. In

particular, we study the following five scenarios:

(i) Start: What can happen at the start of the game? (Lemma 3).

(ii) Jumps: Do two players concede with strictly positive probability at the same time? Is

it ever possible that some player concedes with strictly positive probability before the

game ends? (Lemma 4 and Lemma 5).

(iii) Suspense: How will others react if some player has no intention to concede for a period

of time? Is it ever possible that some player does not concede for a period of time before

the game ends? (Lemma 6).

(iv) End: How will others react if some player concedes with strictly positive probability at

the end of the game? Is it ever possible that some player ends the game in finite time?

(Lemma 7).

competing players. One mixed-strategy profile that is subgame-perfect is for the chair to concede with the same
probabilities described in part (ii) in every period t ≥ 0 and for the competing players to never concede.
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(v) Gradual concession: How will others react to a player who concedes gradually over time?

(Lemma 8).

After answering these questions, we characterize delay equilibrium in which both competing

players gradually concede over time in Proposition 3.

Remark 1. Note that in any delay equilibrium, we have q0,1(0)+q0,2(0) < 1. Thus there exists

a competing player i ∈ {1, 2} such that who receives payoff strictly smaller than α
2 . Consider a

delay equilibrium in which qj = q̃0 = 0. If player i unilaterally deviates to concede immediately

with certainty, then his payoff would be 1−α0. Therefore, we must further require 1−α0 <
α
2 ,

i.e., α > 2(1− α0), to support the sort of delay equilibrium wherein qj = q̃0 = 0.

4.1 Properties of Best Responses

We start by answering the questions posed above to establish the properties of the best re-

sponses of players to the strategies of other players.

4.1.1 Start

Consider the case in which some player concedes with positive probability at the start of the

game but does not concede with certainty. The following result states that the chair cannot

concede at the start of the game when one of the competing players concedes.

Lemma 3. qi(0)[q0,1(0) + q0,2(0)] = 0.

The intuition behind Lemma 3 is as follows. First consider the case when some competing

player i ∈ {1, 2} concedes at time 0 with positive probability qi(0) > 0. In this case, player

0 would rather wait for a little longer to concede than concede at time 0. That is because

for player 0, the cost of waiting for an infinitesimal amount of time is negligible whereas its

benefit discretely jumps when qi(0) > 0. Therefore, if either of the competing players concede

at time 0 with strictly positive probability, player 0 does not concede at time 0. The same

logic applies when t > 0. See Lemma 4.

So what if q̃0(0) > 0 in equilibrium? A direct implication of Lemma 3 is that: if q̃0(0) > 0,

then q1(0) = q2(0) = 0. To see this, suppose for the purpose of contradiction that qi(0) > 0

for some i ∈ {1, 2}. Then by Lemma 3, we have q̃0(0) = q0,1(0) + q0,2(0) = 0, a contradiction.

Therefore, a competing player and the chair cannot concede simultaneously at the start of the

game. Formally, we have q̃0(0)qi(0) = 0 for any i ∈ {1, 2}.
For the time being, we cannot say much about how the competing player j 6= i would react

in equilibrium if competing player i concedes with positive probability (i.e., qi(0) > 0). Player

j’s best response depends on player 0’s equilibrium strategy. If player 0 concedes to player j

shortly after the game starts, player j will not concede at the start (i.e., qj(0) = 0); however,

if player 0 only concedes to player j after a long time, player j may be indifferent between

11



conceding at the start or later (i.e., qj(0) ≥ 0). Later in Lemma 11, we will establish that in all

delay equilibria, q1(0) = q2(0) = 0, and min{q0,1(0), q0,2(0)} ≥ 1−α0
α+α0−1 max{q0,1(0), q0,2(0)}.

4.1.2 Jumps

So far we only considered the start of the game, which is special because it marks the earliest

possible concession time. Now we move on to characterizing what happens after the game

starts in any delay equilibrium. The following result is analogous to Lemma 3 but describes

what happens when player i ∈ {1, 2} concedes with a strictly positive probability at time t > 0

rather than t = 0. However, Lemma 4 takes into account the possibility that the game might

have ended before time t, something that cannot happen at the start of the game.

Lemma 4. For any t > 0, if the game has not ended by player j before time t, i.e., limτ↑tGj(τ) <

1, then qi(t)[q0,1(t) + q0,2(t)] = 0.

The message from Lemma 4 is that whenever player i ∈ {1, 2} concedes with strictly

positive probability, player 0 will not concede at the same time as long as the game has not

ended by then. The intuition behind this result is similar to Lemma 3 since for player 0,

the cost of waiting for an infinitesimal time is negligible while the benefit from it is strictly

positive. The difference between these two results is that Lemma 4 describes delay equilibrium

at t > 0 while Lemma 3 is for the start of the game.

We show that if player i concedes with positive probability at time t > 0, then the competing

player j does not have an incentive to concede at the same time.

Lemma 5. For any t > 0, if limτ↑tG0,1(τ) +G0,2(τ) < 1, then q1(t)q2(t) = 0.

The message from Lemma 5 is that whenever player i ∈ {1, 2} concedes with strictly

positive probability, player j 6= i will not concede at the same time as long as the game has not

ended by then. This result looks quite similar to Lemma 4 but the intuition behind them is

quite different. In Lemma 4, player 0 will not concede at the same time with player i because

she has an incentive to wait a little longer, while in Lemma 5, player j will not concede at the

same time with player i because he has the incentive to concede a little earlier.

4.1.3 Suspense

We study how the other players will react if some player does not move for an interval.

Lemma 6. If the strategies of competing players are constant over some interval before the

game ends, then the strategy of player 0 is constant in that interval, and vice versa. Formally,

(i) If G1(t) = G1(s) < 1, G2(t) = G2(s) < 1 for some t < s, then G0,κ(t) = G0,κ(s) for

κ = 1, 2.
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(ii) If G0,i(t) = G0,i(s), limw↑sG0,1(w) + G0,2(w) < 1 and limw↑sGj(w) < 1 for some t < s

and j ∈ {1, 2}, then Gi(t) = Gi(s) for i ∈ {1, 2} with i 6= j.

The message from Lemma 6 is that whenever players 1 and 2 do not move for some interval,

player 0 does not move during the same interval as long as the game has not ended by then.

Likewise, whenever player 0 does not move during some interval, then the other two players

do not move during that same interval. The force driving Lemma 6 is that any player would

rather concede earlier than concede within the suspense period in which (s)he is not conceded

to. This is because by conceding earlier, the player saves waiting cost and does not harm

his/her chance of being conceded to (since the opponent(s) concession choices are constant

over this suspense period).

4.1.4 End

The next result shows that if a player concedes with strictly positive probability at time t > 0,

then the game must end by time t.

Lemma 7. The game ends before the first atom point in concession time among the three

players. Formally, for any t > 0 and i, j ∈ {1, 2} such that j 6= i we have:

(i) If q0,i(t) > 0, then limτ↑tG1(τ) = 1 or limτ↑tG2(τ) = 1.

(ii) If qi(t) > 0, then limτ↑tG0,1(τ) +G0,2(τ) = 1 or limτ↑tGj(τ) = 1.

Loosely speaking, the proof is as follows. Suppose player i concedes at time t with strictly

positive probability to player j. Then j has an incentive to concede later. As such, if, to the

contrary of the statement of the lemma, the game has not ended by t, then there is a short

suspense period right before t during which player j does not move. Therefore, by Lemma 6

player i should not have moved for that period as well, which is a contradiction to i jumping

at t.

4.1.5 Gradual Concession

Consider an interval [t, s] during which at least one player concedes gradually, i.e., without

jumps or suspense. In Lemma 8, we characterize the best responses to strictly increasing

concession strategies which includes gradual concession as a special case. Note however that

as long as the game has not ended, strictly increasing concession strategies are equivalent to

gradual concession by Lemma 7.

Let H(τ) be the probability that at least one of the competing players concedes by time

τ ∈ R+:

H(τ) = G1(τ)(1−G2(τ)) +G2(τ)(1−G1(τ)) +G1(τ)G2(τ)

= G1(τ) +G2(τ)−G1(τ)G2(τ). (1)
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We show that when the chair concedes gradually, H must have a constant hazard rate on [t, s]

given by

µ =
(1− α)r0

α0 + α− 1
> 0. (2)

Similarly, the chair’s total probability of concession G̃0 must have a constant hazard rate on

[t, s] when both competing players concede gradually. We show that this hazard rate is given

by

ρ =
µ+ r1 + r2
α

1− α0
− 2

. (3)

This result puts a restriction on the demands of players by requiring that α+ 2α0 > 2, which

guarantees that the hazard rate ρ is positive.

For any τ ∈ [t, s], let λi(τ) denote the hazard rate of the concession strategy Gi of player

i ∈ {1, 2}. Formally,

λi(τ) =
gi(τ)

1−Gi(τ)
. (4)

Similarly define λ0,i(τ) as

λ0,i(τ) =
g0,i(τ)

1− G̃0(τ)
. (5)

Note that the sum of λ1 and λ2 is the hazard rate of the competing players’ aggregate

concession strategy H, and the sum of λ0,1 and λ0,2 is the hazard rate of the chair’s aggregate

concession strategy G̃0. In Lemma 8, we show that the sum of λ1 and λ2 is constant and equal

to µ when G̃0 is strictly increasing. We also show that the sum of λ0,1 and λ0,2 is constant

and equal to ρ when G1 and G2 are strictly increasing.

Lemma 8. Consider an interval [t, s] with 0 < t < s and suppose that limτ↑sG1(τ) < 1,

limτ↑sG2(τ) < 1, and limτ↑s G̃0(τ) < 1.

(i) If G̃0 is strictly increasing on [t, s], then

µ = λ1(τ) + λ2(τ) (6)

for all τ ∈ [t, s) where µ is given by (2).

(ii) If Gi is strictly increasing on [t, s] and Gj is constant on [t, s], then

λi(τ) = µ, (7)

λ0,i(τ) =
(1− α0)(ri + λ0,j(τ))

α0 + α− 1
=

1− α0

α
(ri + λ0(τ)) (8)

for all τ ∈ [t, s) where µ is given by (2).
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(iii) If G1 and G2 are both strictly increasing on [t, s], then

λi(τ) = −rj − ρ+
α

1− α0
λ0,j(τ), i = 1, 2, j 6= i (9)

for all τ ∈ [t, s) where ρ is given by (3).

By Lemma 6, G̃0 must be strictly increasing when G1 and G2 are strictly increasing.

Together with part (i) of Lemma 8, when G1 and G2 are strictly increasing, we must

have λ1(τ)+λ2(τ) = µ. By adding the two equations in part (iii) of Lemma 8 and using

the observation that λ1(τ) +λ2(τ) = µ, we obtain λ0,1(τ) +λ0,2(τ) = ρ for all τ , that is,

G̃0 has a constant hazard rate. This in turn implies that for there to be an equilibrium

in which G1 and G2 are strictly increasing, it must be the case that α + 2α0 > 2, that

is, the demands of players are sufficiently high. We already require that the demands

are incompatible in the sense that α > 1 − α0. Thus, for there to be an equilibrium

in which players 1 and 2 gradually concede, a stronger restriction α > 2(1 − α0) must

hold.6

To summarize, we have the following corollary.

Corollary 2. Consider an interval [t, s] with 0 < t < s and suppose that limτ↑sG1(τ) <

1, limτ↑sG2(τ) < 1, and limτ↑s G̃0(τ) < 1. Both G1 and G2 are strictly increasing over

the time interval [t, s] only when α > 2(1− α0). In this case, G̃0 has a constant hazard

rate ρ over [t, s), i.e., for any time τ ∈ [t, s),

1− G̃0(τ) = (1− G̃0(t))e−ρ(τ−t)

where ρ is given by (3).

4.2 Characterization of Mixed Strategy Equilibria with Delay

In this section, we characterize mixed strategy equilibria with delay. Throughout this

section, fix an equilibrium mixed strategy profile (G0,1, G0,2, G1, G2) with delay. As

before, let G̃0(t) = G0,1(t) + G0,2(t) and H(t) = G1(t) + G2(t) − G1(t)G2(t) for all

t ∈ R+.

We start by examining the possibility that no one moves in some interval by the end

of the game. Let t̂ ∈ R̄+ be the duration of the game, i.e.

t̂ = inf{t ≥ 0 : max{G̃0(t), H(t)} = 1}

6This condition is slightly stronger than the necessary condition for there to be an immediate agreement equilib-
rium in which player 0 concedes at time zero (recall part (ii) of Proposition 2) in that the inequality is strict.

15



with the convention that t̂ = ∞ if the set {t ≥ 0 : max{G̃0(t), H(t)} = 1} is empty.

Since we focus on the delay equilibrium in this section, we must have t̂ > 0.

The following lemma shows that the aggregate strategies G̃0 and H prescribe a

gradual concession from the beginning of the game, t = 0, until its end, t = t̂.

Lemma 9. Aggregate strategies G̃0 and H are strictly increasing on [0, t̂).

There two immediate implications of this lemma. First, player 0 must concede grad-

ually throughout the game. Second, at any point during the game, at least one of the

competing players must be conceding. Therefore, combined with Lemma 7, there are

only two possible cases in delay equilibria:

1. Both competing players gradually concede throughout the game, i.e., G1 and G2

are both strictly increasing over [0, t̂].

2. One and only one competing player does not concede over some interval(s), i.e.,

∃a, b ∈ [0, t̂] such that Gi(a) = Gi(b) and Gj is strictly increasing over [a, b].

In both cases, by Lemma 7, there is no atom point in any player’s strategy before the

end of the game, that is, G1, G2, G0,1 and G0,2 are all continuous over [0, t̂). We next

characterize delay equilibria in these two cases separately.

4.2.1 Both Competing Players Gradually Concede

Since G1 and G2 are strictly increasing, Lemma 6 implies that G0,1 and G0,2 are both

strictly increasing over [0, t̂). The next result shows that the probability that the game

does not end by time t is strictly positive for each t ∈ R+, that is, t̂ =∞.

Lemma 10. In any delay equilibrium when both competing players gradually concede

throughout the game, we have t̂ =∞.

We next reconsider what can happen at the start of the game. By Lemma 3, we have

already shown that player 0 and any competing player cannot simultaneously concede

at t = 0 with positive probability. The next result further establishes that no competing

player concedes at the start of the game with positive probability. It also establishes

that if player 0 ever concedes at the start of the game, she needs to concede to both

competing players, and moreover, she the probability of conceding to player 1 must be

“close” to the probability of conceding to player 2.

Lemma 11. In any delay equilibrium when both competing players gradually concede

throughout the game, we have q1(0) = q2(0) = 0 and

min{q0,1(0), q0,2(0)} ≥ 1− α0

α + α0 − 1
max{q0,1(0), q0,2(0)}.
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Finally, we are ready to fully characterize the type of delay equilibrium in which both

competing players gradually concede by the end of the game. Recall that by Lemma

2 and Corollary 2 we must have α1 = α2 = α > 2(1 − α0) for such an equilibrium

to exist. The proposition characterizes other necessary conditions in addition sufficient

conditions.

Proposition 3. 1. A Nash equilibrium in which both competing players concede through-

out the game exists only if α > 2(1− α0).

2. Given α > 2(1−α0), fix a mixed strategy profile (G0,1, G0,2, G1, G2) with q̃0(0) < 1,

q1(0) < 1 and q2(0) < 1. Let λi(t) =
G′i(t)

1−Gi(t) be the hazard rate at time t ∈ R+ for

player i ∈ {1, 2}, and let λ0,i(t) =
G′0,i(t)

1−G0,1(t)−G0,2(t)
for any t ∈ R+. The mixed strat-

egy profile (G0,1, G0,2, G1, G2) is a Nash equilibrium profile in which both competing

players concede throughout the game if and only if the following conditions hold:

(i) G0,1, G0,2, G1 and G2 are all continuous over (0,∞);

(ii) G1(0) = G2(0) = 0, and min{G0,1(0), G0,2(0)} ≥ 1−α0

α+α0−1
max{G0,1(0), G0,2(0)};

(iii) λ1(t) + λ2(t) = µ and λ1(t), λ2(t) > 0 for t ≥ 0 almost everywhere, where µ is

given by (2);

(iv) λ0,j(t) = 1−α0

α
(λi(t)+rj+ρ) for t > 0 almost everywhere and i, j ∈ {1, 2}, j 6= i,

where ρ is given by (3).

From Proposition 3, it can be seen that there are multiple equilibria in which both

competing players concede gradually throughout the game. There are two sources

of indeterminacy. First, at the start of the game, player 0’s strategy is not fully

pinned down; the only requirement is that it must satisfy min{G0,1(0), G0,2(0)} ≥
1−α0

α+α0−1
max{G0,1(0), G0,2(0)}. Second, after the start of the game, there is one degree

of freedom in nailing down λ0,1(t) λ0,2(t), λ1(t), and λ2(t). Once one of these four are

fixed, the remaining can be determined by the three equations in parts (iii) and (iv)

of Proposition 3. Of course, once the hazard rates are determined, the mixed strategy

profile (G0,1, G0,2, G1, G2) is also nailed down.

Player 0 Player i
Immediate Concession by Competing Players α0 (1− α0)/2
Immediate Concession by the Chair 1− α αq0,i(0)
Gradual Concession 1− α αq0,i(0) + (1− α0)(1− q̃0(0))

Table 1: Equilibrium Expected Payoffs

Table 1 compares players’ expected payoffs across different equilibria. Different rows

correspond to different equilibrium types. The columns correspond to players. An
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immediate observation from the table is that any delay equilibrium entails welfare loss

compared to any immediate equilibrium. When agreement is achieved immediately with

certainty, the total payoff of three players is α0+ 1−α0

2
+ 1−α0

2
= 1−α+αq0,1(0)+αq0,2(0) =

1. In contrast, welfare loss occurs when it is possible for the players to delay the

agreement. In particular, for any delay equilibrium with gradual concession, the total

payoff is decreased to 1−α+αq0,1(0)+(1−α0)(1− q̃0(0))+αq0,2(0)+(1−α0)(1− q̃0(0)) =

1− (α− 2(1− α0))(1− q̃0(0)) < 1.

As can be seen from the table, the chair strictly prefers the equilibria in which one

of the competing players concede immediately. Somewhat suprisingly however the chair

is indifferent between the gradual concession equilibria and the equilibria in which she

herself concedes immediately to one of the competing players. The reason behind this

result can be easily seen from the following two observations. First, in any gradual

concession equilibria, the chair plays a strictly mixed strategy over time [0,∞). Thus,

her equilibrium payoff equals to her payoff if she plays a pure strategy and concedes at the

start of the game, given the competing players’ equilibrium strategies. Second, neither

of the competing players concede at the start of the game in any gradual concession

equilibrium. This exactly coincides with competing players’ strategy at the start of the

game when the chair makes an immediate concession with certainty. Therefore, the

chair always gains 1 − α, no matter in an immediate-agreement equilibrium in which

the chair concedes or in a delay equilibrium in which both competing players concede

gradually.

As for competing players, among immediate-agreement equilibria they strictly prefer

any equilibrium in which the chair concedes to an equilibrium in which the competing

players concede.7 Also note that both in an immediate-agreement equilibrium in which

the chair concedes and in a gradual concession equilibrium, the probability that the

chair concedes to player i ∈ {1, 2} at the start is in the same range [1−α0

α
, 1 − 1−α0

α
].

Thus, for any immediate agreement equilibrium in which the chair concedes, there is a

gradual concession equilibrium which makes a competing player better off. Overall, as

long as α > 2(1 − α0), for any immediate-agreement equilibrium, there exists a delay

equilibrium that yields a strictly higher payoff to one of the competing players.

It follows that equilibria with delay are the most preferable equilibria for the com-

peting players whereas it is the least preferable equilibria for the chair.

**** (remark after switching eqm) Note the switching equilibrium characterized here

is a limiting case of the gradual concession equilibrium when λi goes to zero, i ∈ {1, 2}.
**** (remark after delay eqm) Now we can describe equilibria with delay by answering

7Since q0,i ≥ 1−α0

α by Proposition 2 for any i ∈ {1, 2}, we have αq0,i ≥ 1− α0 >
1−α0

2 .
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the questions at the start of Section 4 and compare these answers to those in Hendricks

et al. (1988) for the bilateral war of attrition.

1. Start:

(i) If both competing players gradually concede after the game begins, there is an

asymmetry in concession choices between player 0 and competing players at the

start of the game. Only player 0 can concede with strictly positive probability

at the start of the game — when this happens, player 0 must concede to

both competing players and the relative concession probability must fall in a

moderate range min{q0,1(0),q0,2(0)}
max{q0,1(0),q0,2(0)} ∈ [ 1−α0

α+α0−1
, 1].

(ii) If one competing player does not concede after the game begins, then this

competing player cannot concede with strictly positive probability at the start

of the game.

(iii) In contrast, for the bilateral war of attrition, either (and at most one) player

can concede with strictly positive probability at the start of the game, and the

concession probability can be chosen freely in the range [0, 1) .

2. Atom points: no atom points for all players (q0,1(t) = q0,2(t) = q1(t) = q2(t) = 0

for any t > 0). This result is the same as the bilateral case.

3. Suspense: suspense can occur for one competing player in equilibrium for three-

player war of attrition. In contrast, both players must gradually concede in any

delay equilibrium in the bilateral case.

4. End: when both competing players gradually concede throughout the game, the

game does not terminate in finite time for any delay equilibrium as in the bilateral

case.

5 Comparison to Bilateral War of Attrition

The players are symmetric in their voting power in the bilateral war of attrition between,

say player 0 and player 1, in the sense that one of them needs to concede to the other

player, and only that other player, to reach agreement. By contrast, in the three-player

war of attrition, player 0 has a veto power, and can concede to either of the competing

players. Comparison to bilateral war of attrition is not trivial because of the existence

of multiple equilibria in both cases.
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5.1 Conditions for Equilibrium

We start by comparing the conditions for the existence of different kinds of equilibria. In

the three-player war of attrition, we have seen that an immediate-agreement equilibrium

always exists (see Proposition 2), but a delay equilibrium exists only when α1 = α2 >

2(1 − α0). In addition, an immediate concession by the chair is possible only when

α1 = α2 ≥ 2(1− α0).

One implication of this difference is that an immediate-concession equilibrium in

which player 0 concedes to player 1 always exists in the bilateral war of attrition (see

Hendricks et al. (1988), Theorem 1(b)), but an additional restriction is needed in the

three-player war of attrition for the existence of an immediate-concession equilibrium

in which player 0 concedes at the beginning of the game (see Proposition 2). Another

implication is that a delay equilibrium always exists in the bilateral war of attrition (see

Hendricks et al. (1988), Theorem 2) whereas in the three-player war of attrition, an

additional condition is needed to prevent the competing players racing to the bottom

(see Lemma 2).

5.2 Concession Rate

One may wonder how the concession rates in the three-player war of attrition are com-

pared with those in the bilateral case. Again according to Hendricks et al. (1988), the

equilibrium concession rate for either player i ∈ {1, 2} in the bilateral war of attrition

is given by
(1− αi)rj

(α1 + α2 − 1)
.

Therefore, the chair’s concession rate in the bilateral war of attrition, against player i,

is (1−α0)ri
(α0+α−1)

, which is strictly smaller than her concession rate in the three-player war of

attrition ρ. Additionally, a competing player i’s concession rate in the bilateral war of

attrition is µ = (1−α)r0
(α0+α−1)

, which is strictly larger than his concession rate in the three-

player war of attrition λi = µ− λj. Overall speaking, the concession in the three-player

war of attrition is accelerated compared to the bilateral case.

5.3 Payoff

Player 0’s expected payoff in the bilateral war of attrition is given by α0q1(0) + (1 −
α1)(1−q1(0)) in any equilibrium. Now consider increasing competition by adding another

player, player 2, with whom player 0 can reach agreement but player 1 still needs player

0’s consent for an agreement. If player 2’s demand is different from player 1’s demand
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(i.e., α2 6= α1), then by Lemma 2, there is no delay equilibrium, and by Proposition

2 player 0 must receive her demand α0. Thus, when the new competing player has a

different demand than the existing competing player, player 0 is always better off.

Surprisingly, increasing competition can make the chair worse off. To see, note that

by the above arguments, this can happen only when the new competing player has the

same demand as the existing competing player and there is delay in equilibrium. In

this case, in the three-player war of attrition, the expected payoff of player 0 is always

given by 1 − α1 in any delay equilibrium (see Table 1). By contrast, in the bilateral

war of attrition, the expected payoff of player 0 exceeds 1 − α1 as long as q1(0) > 0.

The reason player 0 can be worse off in a delay equilibrium in the three-player war of

attrition is that, by Proposition 3, a delay equilibrium exists in the three-player war

of attrition only when player 0 is conceded to with zero probability at the start of the

game; whereas in bilateral war of attrition, player 0 can be conceded to with positive

probability at the start of the game.

Also note that there is inefficiency arising from concession with delay. We end

the discussion about the gradual concession equilibrium by the comparative statics

of concession rates with respect to the magnitude of conflicts of interest and play-

ers’ impatience. Recall that the aggregate concession rate of competing players is µ =

(1− α)r0/(α0 + α− 1) and the concession rate of player 0 is ρ = (µ+ r1 + r2)/( α
1−α0

− 2).

The following implications directly follow from these expressions. First, for a given de-

mand of the competing players α, a larger demand of the chair, α0, increases the conflicts

of interest. In this case, the concession rates µ and ρ are both lower. Similarly, for a

given demand of the chair α0, a larger demand by the competing players α increases

the conflicts of interests, and again the concession rates are lower. Second, µ and ρ are

strictly increasing in the chair’s impatience r0; additionally, the concession rate for the

chair ρ is strictly increasing in both competing players’ impatience r1 and r2 whereas

µ is constant in r1 and r2. Loosely speaking, these comparative statics results imply

that agreement is likely to be reached faster when the conflicts of interest are larger and

players are more impatient.

6 One Competing Player Does Not Concede In Some

Interval

We next characterize the equilibria in which one and only one competing player does

not concede over some interval(s), i.e., ∃a, b ∈ [0, t̂] such that Gi(a) = Gi(b) and Gj is
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strictly increasing over [a, b]. To start with, we describe what happens in such equilibria

at the start of the game.

Lemma 12. In any delay equilibrium in which competing player i concedes but competing

player j does not concede over (0, s) for some s ∈ (0, t̂], we have qj(0) = 0, and q0,i(0) ≥
1−α0

α+α0−1
q0,j(0).

Lemma 12 asserts that if a competing player does not concede for an interval im-

mediately after the game starts, then at the start of the game, this player does not

concede, and the chair concedes to the other competing player with a sufficiently high

probability. Compared to Lemma 11, now the other competing player can concede at

the start with strictly positive probability.

*** For comparison, the answers to the questions above in Hendricks et al. (1988)

are: (1) at most one player concedes with strictly positive probability at the start of

the game; (2) no positive atom points for both players (and if someone concedes with

strictly positive probability after the game starts, the other would end the game by that

time); (3) no suspense occurs (and if someone suspends for a while before the game

ends, the other would suspended for that period as well); (4) game does not terminate

in finite time.

Proposition 3 characterized an equilibrium with gradual concession which exists when

the demands of the competing players is sufficiently large. The next proposition shows

that under this condition, there also exists a delay equilibrium in which one competing

player never concedes with probability one.

Proposition 4. If α > 2(1 − α0), then there exists a mixed-strategy equilibrium with

delay in which one competing player does not concede with probability one, that is,

q1(0) < 1, q2(0) < 1, q̃0(0) < 1, and qj(∞) = 1 for some j = 1, 2.

Remark 2. In an equilibrium with delay in which both competing players gradually

concede, player 0’s concession rate is constant and equal to ρ throughout the game. In

contrast, in an equilibrium with delay in which one competing player does not concede

for some interval, player 0’s concession rate can be higher than ρ.

Additionally, we can specify another type of possible delay equilibria with suspense

in which two competing players take turns to concede to the chair. The following

proposition states the existence of such equilibria.

Proposition 5. If α > 2(1 − α0), then there exists a mixed-strategy equilibrium with

delay in which two completing players take turns to concede, that is, q1(0) < 1, q2(0) < 1,
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q̃0(0) < 1, and for any interval [t1, t2] with t2 > t1 ≥ 0, there exists a completing player

i = 1, 2 such that Gi(t1) = Gi(t2) and Gj(·) is strictly increasing over [t1, t2] for j 6= i.

Proof. Fix S > 0. Consider a mixed-strategy profile (G̃0, G1, G2) in which

Gi(t) =


1− e−µt if t ∈ [0, S),

1− e−µS if t ∈ [S,∞),

1 if t =∞.

Gj(t) =

0 if t ∈ [0, S),

1− e−µ(t−S) if t ∈ [S,∞].

and G̃0(t) = 1− e−ρt for t ∈ R̄+. Under this strategy profile, before time S only player 1

gradually concedes, and after time S only player 2 gradually concedes. Now we consider

player 0. By Equations A1,A2,A3, we have

U0(0, κ,G1, G2) =1− α,

U0(∞, κ,G1, G2) =
2∑
i=1

∫ ∞
0

α0e
−r0v(1−Gj(v))dGi(v)

=

∫ S

0

α0e
−r0vdGi(v) +

∫ ∞
S

α0e
−r0ve−µSdGj(v)

=α0µ

∫ S

0

e−(r0+µ)vdv + α0µ

∫ ∞
S

e−(r0+µ)vdv

=α0µ

∫ ∞
0

e−(r0+µ)vdv = α0µ
e−(r0+µ)v

r0 + µ

∣∣∣∣0
∞

=
α0µ

r0 + µ
= 1− α,

U0(t, κ,G1, G2) =(1− α)e−r0t(1−G1(t))(1−G2(t)) +
2∑
i=1

∫ t

0

α0e
−r0v(1−Gj(v))dGi(v)

=(1− α)e−r0t(1−H(t)) + α0µ
e−(r0+µ)v

r0 + µ

∣∣∣∣0
t

=(1− α)e−(r0+µ)t + (1− α)(1− e−(r0+µ)t) = 1− α.

Therefore, player 0 is indifferent about the concession time — no matter when she

concedes, her expected payoff is always 1− α.

Next consider player i. When t ∈ [0, S),

G0,i(t) = q0,i(0) +
(1− α0)(1− q̃0(0))

α

∫ t

0

(ri + λ0(τ))e−Λ0(τ)dτ.
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When t ∈ [S,∞],

G0,i(t) = q0,i(0) +
(1− α0)(1− q̃0(0))

α

∫ S

0
(ri + λ0(τ))e−Λ0(τ)dτ

+
1− q̃0(0)

α

∫ t

S
[(α+ α0 − 1)λ0(τ)− (1− α0)rj ]e

−Λ0(τ)dτ.

Thus by Equations A4,A5, A6, we have

Ui(0, G0, Gj) =(1− α0)(1− q̃0(0)) +
1− α0

2
q0,j(0) +

(1− α0 + α

2

)
q0,i(0) = 1− α0.

Ui(∞, G0, Gj) =αq0,i(0) +

∫ ∞
0

αe−riv(1−Gj(v))dG0,i(v) =

∫ ∞
0

αe−riv(1−Gj(v))dG0,i(v).

For any t ∈ (0, S),

Ui(t, G0, Gj) =αq0,i(0) +

∫ t

0

αe−riv(1−Gj(v))dG0,i(v) + (1− α0)e−rit(1− G̃0(t))(1−Gj(t))

=

∫ t

0

αe−rivdG0,i(v) + (1− α0)e−rit(1− G̃0(t))

=(1− α0)

∫ t

0

(ri + λ0(v))e−Λ0(v)−rivdv + (1− α0)e−rit(1− G̃0(t))

=(1− α0)(1− e−Λ0(t)−rit) + (1− α0)e−rit(1− G̃0(t))

=(1− α0)[1− (1− G̃0(t))e−rit] + (1− α0)e−rit(1− G̃0(t))

=1− α0 = Ui(0, G0, Gj).

For any t ∈ [S,∞),

Ui(t, G0, Gj) =αq0,i(0) +

∫ t

0
αe−riv(1−Gj(v))dG0,i(v) + (1− α0)e−rit(1− G̃0(t))(1−Gj(t))

=

∫ S

0
αe−rivdG0,i(v) +

∫ t

S
αe−riv(1−Gj(v))dG0,i(v) + (1− α0)e−rit(1− G̃0(t))e−µ(t−S)

=(1− α0)[1− (1− G̃0(S))e−riS ] + (1− α0)(1− q̃0(0))e−(ri+µ)t+µS−Λ0(t)

+(1− q̃0(0))

∫ t

S
e−riv−µ(v−S)[(α+ α0 − 1)λ0(τ)− (1− α0)rj ]e

−Λ0(v)dv.

Note that Ui(t, G0, Gj) is differentiable over (S,∞) and is continuous at t = S and
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t =∞. We take first derivative of Ui(t, G0, Gj) with respect to t and get

∂Ui(t, G0, Gj)

∂t
=(1− q̃0(0))e−rit−µ(t−S)[(α + α0 − 1)λ0(t)− (1− α0)rj]e

−Λ0(t)

− (1− α0)(1− q̃0(0))e−(ri+µ)t+µS−Λ0(t)(ri + µ+ λ0(t))

=e−rit−µ(t−S)−Λ0(t)[(α + α0 − 1)λ0(t)− (1− α0)rj − (1− α0)(ri + µ+ λ0(t))]

=(1− α0)e−rit−µ(t−S)−Λ0(t)[(
α

1− α0

− 2)λ0(t)− r1 − r2 − µ].

Note if α ≤ 2(1−α0), then
∂Ui(t,G0,Gj)

∂t
< 0, which implies the expected utility for player i

is strictly decreasing over time, a contradiction to qi(∞) > 0. For α > 2(1−α0), we can

make λ0(t) = (1−α0)(r1+r2+µ)
α−2(1−α0)

= ρ. As such,
∂Uj(t,G0,Gj)

∂t
= 0, which implies the expected

utility for player j is constant over time. Therefore, player i is indifferent about the

concession time — no matter when she concedes, her expected payoff always remains

1− α0.

Lastly consider player j. When t ∈ [0, S),

G0,j(t) = G̃0(t)−G0,i(t) = G̃0(t)− q0,i(0)− (1− α0)(1− q̃0(0))

α

∫ t

0

(ri +λ0(τ))e−Λ0(τ)dτ.

When t ∈ [S,∞],

G0,j(t) =G0,j(S) +

∫ t

S
λ0,j(τ)(1− G̃0(τ))dτ

=G̃0(S)− q0,i(0)− (1− α0)(1− q̃0(0))

α

∫ S

0
(ri + λ0(τ))e−Λ0(τ)dτ

+
(1− α0)(1− q̃0(0))

α

∫ t

S
(rj

+λ0(τ))e−Λ0(τ)dτ.

Thus by Equations A4,A5, A6, we have

Uj(0, G0, Gi) =(1− α0)(1− q̃0(0)) +
1− α0

2
q0,i(0) +

(1− α0 + α

2

)
q0,j(0) = 1− α0.

Uj(∞, G0, Gi) =αq0,j(0) +

∫ ∞
0

αe−rjv(1−Gi(v))dG0,j(v) =

∫ ∞
0

αe−rjv(1−Gi(v))dG0,j(v).
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For any t ∈ (0, S),

Uj(t, G0, Gi) =αq0,j(0) +

∫ t

0

αe−rjv(1−Gi(v))dG0,j(v) + (1− α0)e−rjt(1− G̃0(t))(1−Gi(t))

=

∫ t

0

αe−(rj+µ)vdG0,j(v) + (1− α0)e−(rj+µ)t(1− G̃0(t))

=

∫ t

0

αe−(rj+µ)v[λ0(v)e−Λ0(v) − (1− α0)

α
(ri + λ0(v))e−Λ0(v)]dv

+(1− α0)e−(rj+µ)t−Λ0(t)

=

∫ t

0

[αλ0(v)− (1− α0)(ri + λ0(v))]e−(rj+µ)v−Λ0(v)dv + (1− α0)e−(rj+µ)t−Λ0(t).

∂Uj(t, G0, Gi)

∂t
=[αλ0(t)− (1− α0)(ri + λ0(t))]e−(rj+µ)t−Λ0(t)

−(1− α0)(rj + µ+ λ0(t))e−(rj+µ)t−Λ0(t)

=[αλ0(t)− (1− α0)(ri + 2λ0(t) + rj + µ)]e−(rj+µ)t−Λ0(t)

={[α− 2(1− α0)]λ0(t)− (1− α0)(r1 + r2 + µ)}e−(rj+µ)t−Λ0(t).

Since λ0(t) = (1−α0)(r1+r2+µ)
α−2(1−α0)

= ρ, we can obtain
∂Uj(t,G0,Gj)

∂t
= 0, which implies the

expected utility for player j is constant over time (0, S). Note that Uj(t, G0, Gi) is

continuous at t = 0. Uj(t, G0, Gi) = Uj(0, G0, Gi) = 1− α0.

For any t ∈ [S,∞),

Uj(t, G0, Gi) =αq0,j(0) +

∫ t

0

αe−rjv(1−Gi(v))dG0,j(v) + (1− α0)e−rjt(1− G̃0(t))(1−Gi(t))

=αq0,j(0) +

∫ S

0

αe−rjv(1−Gi(v))dG0,j(v) +

∫ t

S

αe−rjv(1−Gi(v))dG0,j(v)

+(1− α0)e−(rj+ρ)t−µS

=1− α0 − (1− α0)e−(rj+ρ+µ)S + (1− α0)e−µS
∫ t

S

e−(rj+ρ)v(rj + ρ)dv

+(1− α0)e−(rj+ρ)t−µS

=(1− α0)[1− e−(rj+ρ+µ)S + e−µS(e−(rj+ρ)S − e−(rj+ρ)t) + e−(rj+ρ)t−µS]

=1− α0 = Uj(0, G0, Gi).

Therefore, player i is indifferent about the concession time — no matter when she

concedes, her expected payoff always remains 1− α0. �
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A Appendix

The following technical lemma is used extensively in our analysis.

Lemma A1. Fix a mixed strategy profile G = (G0, G1, G2) ∈ G0 × G1 × G2. Then, for

each (a, b) ⊆ R+ with a < b, there exists t ∈ (a, b) such that G is continuous at t.

Proof of Lemma A1. Follows immediately

from the monotonicity of each component of G and the fact that monotone functions

are continuous almost everywhere.8 �

Lemma A2. For any ε > 0, any t ≥ 0, and any j ∈ {1, 2}, there exists δ > 0 such

that:

(a) qj(t+ δ) = 0, q0,j(t+ δ) = 0;

(b) Gj(t+ δ)−Gj(t) < ε, G0,j(t+ δ)−G0,j(t) < ε;

(c) 1− e−r0δ < ε, 1− e−rjδ < ε;

(d) if t > 0, then qj(t− δ) = 0 and q0,j(t− δ) = 0;

(e) if t > 0, then Gj(t)−Gj(t− δ)− qj(t) < ε and G0,j(t)−G0,j(t− δ)− q0,j(t) < ε.

Proof of Lemma A2. Fix any ε > 0, any t, any j ∈ {1, 2}. To prove (a), (b), and

(c), first notice that by the definition of right-continuity there exists δ1 > 0 such that

Gj(t + δ) − Gj(t) < ε and G0,j(t + δ) − G0,j(t) < ε for all δ < δ1. Next, by continuity

there exists δ2 > 0 such that 1 − e−r0δ < ε for all δ < δ2. Finally, by Lemma A1 there

8See, e.g., Royden and Fitzpatrick (2010, p. 108).
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exists tε ∈ (t, t+ min{δ1, δ2}) such that qj(tε) = 0. Letting δ = tε − t, we conclude that

(a), (b), and (c) hold.

To prove (d) and (e), suppose t > 0. First, by the definitions of qj(·) and q0,j(·), there

exists δ1 > 0 such that Gj(t)−Gj(t− δ)− qj(t) < ε and G0,j(t)−G0,j(t− δ)− q0,j(t) < ε

for all δ < δ1. Next, by continuity there exists δ2 > 0 such that 1 − e−r0δ < ε for all

δ < δ2. Finally, by Lemma A1 there exists tε ∈ (t−min{δ1, δ2}, t) such that qj(tε) = 0.

Letting δ = t− tε, we conclude that (d) and (e) hold. �

A.1 Expected Payoff in a Delay Equilibrium

For any delay equilibrium, players’ expected payoffs depend on their concession time:

whether to concede at the start, concede later, or never concede.

Player 0

U0(0, κ,G1, G2) (A1)

= (1− ακ)(1− q1(0))(1− q2(0)) [neither player concedes at 0]

+
(1− ακ

3
+

2α0

3

)
q1(0)q2(0) [both concede at 0]

+
(1− ακ

2
+
α0

2

)
q1(0)(1− q2(0)) [player 1 concedes at 0]

+
(1− ακ

2
+
α0

2

)
q2(0)(1− q1(0)). [player 2 concedes at 0]
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U0(∞, κ,G1, G2) (A2)

=

∫ ∞
−∞

∫ ∞
−∞

U0(∞, κ, t1, t2)dG1(t1)dG2(t2)

= α0

[
1− (1− q1(0))(1− q2(0))

]
[at least one player concedes at 0]

+
∑
v>0

α0e
−r0vq1(v)q2(v) [both players concede at v]

+
2∑
i=1

∫ ∞
0

∫ tj

0

α0e
−r0tidGi(ti)dGj(tj) [i concedes before j concedes]

+
2∑
i=1

∫ ∞
0

α0e
−r0tiqj(∞)dGi(ti) [i concedes and j never concedes]

= α0

[
1− (1− q1(0))(1− q2(0))

]
+
∑
v>0

α0e
−r0vq1(v)q2(v)

+
2∑
i=1

∫ ∞
0

α0e
−r0v(1− qj(∞)−Gj(v))dGi(v)

+
2∑
i=1

∫ ∞
0

α0e
−r0vqj(∞)dGi(v)

= α0

[
1− (1− q1(0))(1− q2(0))

]
[at least one player concedes at 0]

+
∑
v>0

α0e
−r0vq1(v)q2(v) [both players concede at v]

+
2∑
i=1

∫ ∞
0

α0e
−r0v(1−Gj(v))dGi(v). [only i concedes at v]

To see why the third equation holds, i.e.,∫ ∞
0

∫ tj

0

α0e
−r0tidGi(ti)dGj(tj) =

∫ ∞
0

α0e
−r0v(1− qj(∞)−Gj(v))dGi(v),

30



we provide two approaches to prove:

Approach 1: Change the Order of Integration∫ ∞
0

∫ tj

0

α0e
−r0tidGi(ti)dGj(tj) =

∫ ∞
0

∫ ∞
ti

α0e
−r0tidGj(tj)dGi(ti)

=

∫ ∞
0

α0e
−r0ti(1− qj(∞)−Gj(ti))dGi(ti).

Approach 2: Integral by Parts∫ ∞
0

∫ tj

0

α0e
−r0tidGi(ti)dGj(tj) =

∫ 0

∞

∫ tj

0

α0e
−r0tidGi(ti)d(1−Gj(tj))

=

∫ tj

0

α0e
−r0tidGi(ti)(1−Gj(tj))

∣∣∣∣0
∞
−
∫ 0

∞
(1−Gj(tj))α0e

−r0tjdGi(tj)

= −
∫ ∞

0

α0e
−r0tidGi(ti)qj(∞) +

∫ ∞
0

(1−Gj(v))α0e
−r0vdGi(v)

=

∫ ∞
0

α0e
−r0v(1− qj(∞)−Gj(v))dGi(v).

For any t > 0, we have:

U0(t, κ,G1, G2) (A3)

= α0

[
1− (1− q1(0))(1− q2(0))

]
[at least one player concedes at 0]

+ (1− ακ)e−r0t(1−G1(t))(1−G2(t)) [neither concedes by t]

+
2∑
i=1

∫ t

0

α0e
−r0v(1−Gj(v))dGi(v) [only i concedes at v < t]

+
∑

0<v<t

α0e
−r0vq1(v)q2(v) [both concede at v < t]

+
2∑
i=1

(1− ακ
2

+
α0

2

)
e−r0t

[
qi(t)(1−Gj(t))

]
[only i concedes at t]

+
(1− ακ

3
+

2α0

3

)
e−r0tq1(t)q2(t). [both concede at t]
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Player i = 1, 2

Ui(0, G0, Gj) (A4)

= (1− α0) (1− q̃0(0))(1− qj(0))︸ ︷︷ ︸
neither 0 nor j concedes at 0

+
1− α0

2

[
q0,j(0)(1− qj(0))︸ ︷︷ ︸

i→ 0→ j at 0

+ (1− q̃0(0))qj(0)︸ ︷︷ ︸
i→ 0← j at 0

]
+
(1− α0

2
+
αi
2

)
q0,i(0)(1− qj(0))︸ ︷︷ ︸

i↔ 0 6← j at 0

+
(1− α0

3
+
αi
3

)
q0,i(0)qj(0)︸ ︷︷ ︸
i↔ 0← j at 0

+
1− α0

3
q0,j(0)qj(0)︸ ︷︷ ︸
i→ 0↔ j at 0

.

Ui(∞, G0, Gj) =αi q0,i(0)(1− qj(0))︸ ︷︷ ︸
j 6→ 0→ i at 0

+
αi
2
q0,i(0)qj(0)︸ ︷︷ ︸
j → 0→ i at 0

+

∫ ∞
0

αie
−riv (1−Gj(v))dG0,i(v)︸ ︷︷ ︸

j 6→ 0→ i by v

(A5)

+
∑
v>0

αi
2
e−riv q0,i(v)qj(v)︸ ︷︷ ︸

j → 0→ i by v

.

Ui(t, G0, Gj) (A6)

= αiq0,i(0)(1− qj(0)) [j 6→ 0→ i at 0]

+
αi
2
q0,i(0)qj(0) [j → 0→ i at 0]

+

∫ t

0

αie
−riv(1−Gj(v))dG0,i(v) [j 6→ 0→ i by v]

+
∑

0<v<t

αi
2
e−rivq0,i(v)qj(v) [j → 0→ i by v]

+ (1− α0)e−rit(1− G̃0(t))(1−Gj(t)) [neither 0 nor j concedes by t]

+
1− α0

2
e−ritq0,j(t)(1−Gj(t)) [i→ 0→ j at t]

+
1− α0

2
e−rit(1− G̃0(t))qj(t) [i→ 0← j at t]

+
(1− α0

2
+
αi
2

)
e−ritq0,i(t)(1−Gj(t)) [i↔ 0 6← j at t]

+
(1− α0

3
+
αi
3

)
e−ritq0,i(t)qj(t) [i↔ 0← j at t]

+
1− α0

3
e−ritq0,j(t)qj(t). [i→ 0↔ j at t]
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A.2 Omitted Proofs

Proof of Lemma 1. We only consider player i ∈ {1, 2}, the proof for player 0 is

analogous. Suppose that Gi(T ) > 0. Then, player i can profitably deviate by shifting

weight from T to s. Let a mixed strategy Ĝi ∈ Gi be such that: (1) Ĝi(B) = Gi(B) +

Gi(T ) for all measurable B ⊆ [0,∞] containing s, and (2) Ĝi(B) = Gi(B \ T ) for all

measurable B ⊆ [0,∞] not containing s. We have∫ ∞
0

Ui(t, G0, Gj)dĜi(t)

=

∫ ∞
0

Ui(t, G0, Gj)dGi(t)−
∫
T
Ui(τ,G0, Gj)dGi(τ) + Ui(s,G0, Gj)Gi(T )

>

∫ ∞
0

Ui(t, G0, Gj)dGi(t)−
∫
T
Ui(s,G0, Gj)dGi(τ) + Ui(s,G0, Gj)Gi(T )

=

∫ ∞
0

Ui(t, G0, Gj)dGi(t),

which implies that Gi is not an equilibrium strategy. �

Proof of Proposition 2. First, we establish that in any immediate-agreement equi-

librium, either q1(0) = q2(0) = 1 or q1(0), q2(0) < 1. To see this, notice that if qi(0) = 1

and qj(0) < 1, then an argument in the proof of Proposition 1 shows that player j

has a profitable deviation to an immediate concession. Moreover, Proposition 1 im-

plies that there exists a continuum of pure-strategy Nash equilibria, in all of which

q1(0) = q2(0) = 1 and q̃0(0) = q0,1(0) + q0,2(0) = 0. Therefore, there always exists a

continuum of immediate-agreement Nash equilibria in which players 1 and 2 concede at

time t = 0 with certainty and player 0 concedes later. To complete the characterization

of immediate-agreement equilibria, we only need to check if there exist equilibria with

q1(0), q2(0) < 1 and q̃0(0) = 1.

(i) Suppose first α1 6= α2 and assume without loss of generality that α1 < α2. We

claim that there does not exists an equilibrium in which q1(0), q2(0) < 1. Suppose to

the contradiction that there exists such an equilibrium, i.e. q1(0), q2(0) < 1. Since

1 − α1 > 1 − α2, we have q0,1(0) = 1. But then player 2 can profitably deviate to

conceding at t = 0 with certainty since 1−α0

2
> 0, which is a contradiction.

Suppose next α1 = α2 < 2(1 − α0), and again suppose to the contrary of the claim

that there exists an equilibrium with q1(0), q2(0) < 1. Assume without loss of generality

that q0,1(0) ≤ q0,2(0), and let γ = q0,1(0) ∈ [0, 1
2
], which implies q0,2(0) = 1 − γ. Notice

that for q1(0) < 1 to hold in equilibrium, player 1 must weakly prefer conceding at time
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t > 0 to conceding at t = 0, i.e., we must have

q2(0)
(γ

3
α1 +

1

3
(1− α0)

)
+ (1− q2(0))

(γ
2
α1 +

1

2
(1− α0)

)
≤ q2(0)

γ

2
α1 + (1− q2(0))γα1

(A7)

where the left hand side is player 1’s expected payoff if she concedes at time t = 0, and

the right hand side is his expected payoff if he concedes at time t > 0. However, since

γ ∈ [0, 1
2
] and α1 < 2(1−α0), we have γ

3
α1 + 1

3
(1−α0) > γ

2
α1 and γ

2
α1 + 1

2
(1−α0) > γα1,

a contradiction to the inequality A7.

(ii) Let α1 = α2 ≡ α ≥ 2(1 − α0). We will construct an immediate-agreement

equilibrium in which q̃0(0) = 1. Since 0 < 1 − α < α0, we can find T ∈ R+ such

that 1− α ≥ α0e
−r0T . Then, for any t1, t2 ≥ T , the following comprises an immediate-

agreement Nash equilibrium: q0,1(0) = q0,2(0) = 1
2
, q1(t1) = 1, q2(t2) = 1. Player 0 does

not have an incentive to deviate since any deviation gives her utility not greater than

α0e
−r0T which is in turn less than 1 − α. Consider a deviation by player i = 1, 2 to

conceding at time t = 0. The payoff of player i along the path is 1
2
α, and the payoff

from the deviation is 1
4
α + 1

2
(1− α0) ≤ 1

2
α, so player i will not deviate either. �

Proof of Lemma 2: Assume αi > αj. Let t̂ ≡ sup{t ≥ 0 : G1(t) < 1, G2(t) < 1} with

the convention that t̂ = 0 if the set {t ≥ 0 : G1(t) < 1, G2(t) < 1} is empty. In particu-

lar, the equilibrium is immediate-agreement if t̂ = 0. Consider a delay equilibrium, i.e.,

t̂ > 0.

Step 1: Player 0 does not concede to player i strictly before time t̂, that is, limt↑t̂0 G0,i(t) =

0. Additionally, q0,i(t̂) > 0 implies that there exists k ∈ {1, 2} such that limt↑t̂Gk(t) = 1.

Since player 0 strictly prefers to concede to player j rather than concede to player i

prior to t̂, player 0 would never concede to player i with positive probability. Formally,

for any t ∈ (0, t̂) we have

U0(t, j, G1, G2)− U0(t, i, G1, G2) =
αi − αj

2
e−r0t

[
q1(t)(1−G2(t)) + q2(t)(1−G1(t))

]
+
αi − αj

3
e−r0tq1(t)q2(t) + (αi − αj)e−r0t(1−G1(t))(1−G2(t))

≥ (αi − αj)e−r0t(1−G1(t))(1−G2(t)) > 0,

where the last inequality holds since G1(t) < 1, G2(t) < 1 by the definition of t̂.
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For t = 0, we have

U0(0, j, G1, G2)− U0(0, i, G1, G2)

=(αi − αj)(1− q1(0))(1− q2(0)) +
αi − αj

2

[
q1(0)(1− q2(0)) + q2(0)(1− q1(0))

]
+
αi − αj

3
q1(0)q2(0)

≥(αi − αj)(1− q1(0))(1− q2(0)) > 0,

where the last inequality holds since q1(0) < 1 and q2(0) < 1 for any non-degenerate

equilibrium. Therefore, by Lemma 1, limt↑t̂G0,i(t) = G0,i

(
[0, t̂)

)
= 0.

From Lemma 1, we also know that q0,i(t̂) > 0 only if U0(t̂, j, G1, G2)−U0(t̂, i, G1, G2) ≤
0, that is

0 ≥ U0(t̂, j, G1, G2)− U0(t̂, i, G1, G2)

=
αi − αj

2
e−r0 t̂

[
q1(t̂)(1−G2(t̂)) + q2(t̂)(1−G1(t̂))

]
+
αi − αj

3
e−r0 t̂q1(t̂)q2(t̂) + (αi − αj)e−r0 t̂(1−G1(t̂))(1−G2(t̂)).

Since αi > αj, there exists k ∈ {1, 2} such that Gk(t̂) = 1 and qk(t̂) = 0, that is,

limt↑t̂Gk(t) = 1.

Step 2: Player i concedes before time t̂ with certainty, that is, Gi(t̂0) = 1.

If t̂ = ∞, then Gi(t̂) = 1 holds trivially. If t̂ < ∞, suppose by contradiction that

Gi(t̂) < 1. By the definition of t̂, we have Gj(t̂) = 1. In turn, Step 1 implies that

whenever q0,i(t̂) > 0 we must also have qj(t̂) = 0, that is, q0,i(t̂)qj(t̂) = 0. Since

limt↑t̂G0,i(t) = 0 and t̂ > 0, we have q0,i(v) = G0,i(v) = 0 for all v ∈ [0, t̂). Therefore,

we have Ui(t, G0, Gj) = 0 for all t ∈ (t̂,∞]. And we also have

Ui(0, G0, Gj) = (1− α0)(1− qj(0)) +
1− α0

3
q0,j(0)qj(0) > 0

since qj(0) < 1 in any non-degenerate equilibrium. It follows that Ui(0, G0, Gj) −
Ui(t, G0, Gj) > 0 for all t ∈ (t̂,∞] and thus, by Lemma 1, Gi

(
(t̂,∞]

)
= 0, i.e.,

Gi

(
[0, t̂]

)
= Gi(t̂) = 1, which is a contradiction.

Step 3: Player i concedes at time t̂ with zero probability, that is qi(t̂) = 0.

Suppose, by contradiction, that qi(t̂) > 0. There are two distinct cases: (i) q0,i(t̂) > 0;

(ii) q0,i(t̂) = 0. If q0,i(t̂) > 0, we have Gj(t̂) = 1 and qj(t̂) = 0, and thus Ui(t̂, G0, Gj) =

0 < Ui(0, G0, Gj), similar to Step 2. But then qi(t̂) = 0 by Lemma 1, a contradiction.
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And if q0,i(t̂) = 0, then we have G0,i(t̂) = 0 by Step 1. Hence,

Ui(t̂, G0, Gj) = (1− α0)e−ri t̂(1−G0,j(t̂))(1−Gj(t̂))

+
1− α0

2
e−ri t̂

[
q0,j(t̂)(1−Gj(t̂)) + (1−G0,j(t̂))qj(t̂)

]
+

1− α0

3
e−ri t̂q0,j(t̂)qj(t̂)

≤ (1− α0)e−ri t̂
(

1− lim
s↑t̂

G0,j(s)
)(

1− lim
s↑t̂

Gj(s)
)
.

On the other hand, we can find δ > 0 sufficiently small such that qj(δ) = 0, q0,j(δ) = 0,

and thus

Ui(δ,G0, Gj) = (1− α0)e−riδ(1−G0,j(δ))(1−Gj(δ))

> (1− α0)e−ri t̂
(

1− lim
s↑t̂

G0,j(s)
)(

1− lim
s↑t̂

Gj(s)
)
.

Again, Lemma 1 implies qi(t̂0) = 0, a contradiction.

Step 4: Player i must concede at time 0 with certainty, that is, Gi(0) = 1, contradicting

t̂ > 0.

For any t ∈ (0, t̂0), and for any ζ ∈ (0, 1) there exists a sufficiently small number

δ ∈ (0, ζt) such that qj(δ) = q0,j(δ) = 0. Then, for any τ ∈ [ζt, t] and analogous to Step

3, we have

Ui(τ,G0, Gj) < Ui(δ,G0, Gj).

Therefore, by Lemma 1, Gi

(
[ζt, t]

)
= 0 for any t ∈ (0, t̂0), and any ζ ∈ (0, 1). Finally,

it follows that

1−Gi(0) = Gi

(
(0, t̂0)

)
= Gi

( ∞⋃
k=3

[
1

k
t̂0,

k − 1

k
t̂0]
)

= lim
k→∞

Gi

(
[
1

k
t̂0,

k − 1

k
t̂0]
)

= 0,

which implies that player i concedes at the start of the game with certainty. This implies

that t̂ = 0, which is a contradiction. Therefore, we must have α1 = α2 in every delay

equilibrium. �

Proof of Lemma 3. By Lemma 1, it is sufficient to show that player 0 strictly prefers

conceding to player κ ∈ {1, 2} at some time δ > 0 rather than conceding to player κ at

time 0.

Fix ε > 0. By Lemma A2, there exists δ > 0 such that for any j ∈ {1, 2}:

(i) qj(δ) = 0;
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(ii) Gj(δ)− qj(0) < ε;

(iii) 1− e−r0δ < ε.

Using the definitions in (A1) and (A3), and substituting q1(δ) = q2(δ) = 0 by (i), we

can write:

U0(δ, κ,G1, G2)− U0(0, κ,G1, G2) = α0 [1− (1− q1(0))(1− q2(0))]

+ (1− α)e−r0δ(1−G1(δ))(1−G2(δ))

+
2∑
i=1

∫ δ

0

α0e
−r0v(1−Gi(v))dGj(v) +

∑
0<v<δ

α0e
−r0vq1(v)q2(v)

− (1− α)(1− q1(0))(1− q2(0))−
(

1− α
3

+
2α0

3

)
q1(0)q2(0)

−
(

1− α
2

+
α0

2

)
[q1(0)(1− q2(0)) + q2(0)(1− q1(0))] .

Note that the expressions in the third line are non-negative, and the expression in the

second line can be expressed as (1 − α)(1 − q1(0))(1 − q2(0)) + o(ε) by conditions (ii)

and (iii). Combining this with the remaining terms, we obtain that U0(δ, κ,G1, G2) −
U0(0, κ,G1, G2) is bounded below by

α0 + α− 1

3
q1(0)q2(0) +

α0 + α− 1

2
[q1(0)(1− q2(0)) + q2(0)(1− q1(0))] + o(ε)

which is positive since α0 + α > 1, qi(0) > 0 and ε is arbitrarily small. �

Proof of Lemma 4. The proof is similar to the proof of Lemma 3. By Lemma 1, it

is sufficient to show that player 0 strictly prefers to concede to player κ ∈ {1, 2} at time

t+ δ where δ > 0 rather than concede to player κ at time t.

Fix ε > 0. By Lemma A2, there exists δ > 0 such that for any i ∈ {1, 2}:

(i) qi(t+ δ) = 0,

(ii) Gi(t+ δ)−Gi(t) < ε,

(iii) 1− e−r0δ < ε.

Using the definition in (A3) for t+ δ and t, and substituting q1(t+ δ) = q2(t+ δ) = 0
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by (i), we have:

U0(t+ δ, κ,G1, G2)− U0(t, κ,G1, G2)

= (1− α)e−r0(t+δ)(1−G1(t+ δ))(1−G2(t+ δ))− (1− α)e−r0t(1−G1(t))(1−G2(t))

+
2∑
i=1

∫ t+δ

t

α0e
−r0v(1−Gi(v))dGj(v) +

∑
t≤v<t+δ

α0e
−r0vq1(v)q2(v)

+
2∑
i=1

α0e
−r0t(1−Gi(t))qj(v) + α0e

−r0vq1(v)q2(v)

−
2∑
i=1

(
1− α

2
+
α0

2

)
e−r0t(1−Gi(t))qj(t)−

(
1− α

3
+

2α0

3

)
e−r0tq1(t)q2(t).

The two expressions in the second line are non-negative. The first expression in the first

line can be written as (1−α)e−r0t(1−G1(t))(1−G2(t))+o(ε) by (ii) and (iii). Combining

these with the remaining terms, we obtain that U0(t+ δ, κ,G1, G2)− U0(t, κ,G1, G2) is

bounded below by

2∑
i=1

α0 + α− 1

2
e−r0tqi(t)(1−Gj(t)) +

α0 + α− 1

3
e−r0tq1(t)q2(t) + o(ε).

For sufficiently small ε, this expression is stricly positive since α0 +α > 1, qi(t) > 0, and

limτ↑tGj(τ) < 1, because the latter implies that either qj(t) > 0 or Gj(t) < 1 or both.

�

Proof of Lemma 5. The proof is similar to the proofs of Lemma 3 and Lemma 4. By

Lemma 1, it is sufficient to show that player j strictly prefers to concede at an earlier

time t− δ > 0.

Fix ε > 0. By Lemma A2, there exists δ > 0 such that:

(i) 1− e−r0δ < ε,

(ii) qi(t− δ) = q0,i(t− δ) = 0,

(iii) Gi(t)−Gi(t−δ)−qi(t) < ε, and G0,κ(t)−G0,κ(t−δ)−q0,κ(t) < ε for any κ ∈ {1, 2}.

First, using the definition in (A6) for t − δ and t, and substituting qi(t − δ) =
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q0,i(t− δ) = 0 from (ii), we have:

Uj(t− δ,G0, Gi)− Uj(t, G0, Gi)

= −
∫ t

t−δ
αe−rjv(1−Gi(v))dG0,j(v)−

∑
t−δ<v<t

αj
2
e−rjvq0,j(v)qi(v)

+ (1− α0)
[
e−rj(t−δ)(1− G̃0(t− δ))(1−Gi(t− δ))− e−rjt(1− G̃0(t))(1−Gi(t))

]
− 1− α0

2
e−rjt

[
q0,i(t)(1−Gi(t)) + (1− G̃0(t))qi(t)

]
−
(1− α0

2
+
α

2

)
e−rjtq0,j(t)(1−Gi(t))−

(1− α0

3
+
α

3

)
e−rjtq0,j(t)qi(t)−

1− α0

3
e−rjtq0,i(t)qi(t).

Next, e−rjv(1−Gi(v)) ≤ 1 for all v implies that∫ t

t−δ
αe−rjv(1−Gi(v))dG0,j(v) ≤

∫ t

t−δ
αdG0,j(v) = α(G0,j(t)− q0,j(t)−G0,j(t− δ)) < αε

where the last inequality uses (iii). Therefore, for all i 6= j ∈ {1, 2} we have∫ t

t−δ
αe−rjv(1−Gi(v))dG0,j(v) = o(ε).

Also, e−rjv ≤ 1 for all v implies that

∑
t−δ<v<t

e−rjvq0,j(v)qi(v) ≤
∑

t−δ<v<t
q0,j(v)qi(v) ≤

( ∑
t−δ<v<t

√
q0,j(v)qi(v)

)2

≤
∑

t−δ<v<t
q0,j(v)

∑
t−δ<v<t

qi(v) < ε2

where the third inequality follows from the Cauchy-Schwarz inequality and the fourth

inequality uses (iii). Therefore,∑
t−δ<v<t

αj
2
e−rjvq0,j(v)qi(v) =

αj
2

∑
t−δ<v<t

e−rjvq0,j(v)qi(v) = o(ε).

Finally, (i) and (iii) imply that

e−rj(t−δ)(1− G̃0(t− δ))(1−Gi(t− δ)) = e−rjt(1− G̃0(t) + q̃0(t))(1−Gi(t) + qi(t)) + o(ε).
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Combining these results, we obtain:

Uj(t− δ,G0, Gi)− Uj(t, G0, Gi)

= o(ε) + (1− α0)e−rjt
[
(1− G̃0(t))qi(t) + (1−Gi(t))q̃0(t) + q̃0(t)qi(t)

]
− 1− α0

2
e−rjt

[
q0,i(t)(1−Gi(t)) + (1− G̃0(t))qi(t)

]
−
(1− α0

2
+
α

2

)
e−rjtq0,j(t)(1−Gi(t))−

(1− α0

3
+
α

3

)
e−rjtq0,j(t)qi(t)−

1− α0

3
e−rjtq0,i(t)qi(t).

Suppose, by contradiction, qj(t) > 0. Then limτ↑tGj(τ) < 1, and thus by Lemma 4,

we have q0,1(t) = q0,2(t) = 0 and G̃0(t) = limτ↑t G̃0(τ) < 1. Therefore,

Uj(t− δ,G0, Gi)− Uj(t, G0, Gi) =
1− α0

2
e−rjt(1− G̃0(t))qi(t) + o(ε)

For sufficiently small ε, this expression is stricly positive since α0 < 1, G̃0(t) < 1 and

qi(t) > 0 (by assumption). This contradicts Lemma 1.

�

Proof of Lemma 6: Fix player i ∈ {1, 2} and player j ∈ {1, 2} such that i 6= j. We

prove part (ii). The proof of part (i) is analogous. Fix player i ∈ {1, 2} and player

j ∈ {1, 2} such that i 6= j. Lemma A1 implies that for any ζ ∈ (t, s) there is an earlier

time δ ∈ (t, ζ) such that qj(δ) = 0 and q̃0(δ) = 0.

To begin, we show that for any time τ ∈ (ζ, s], player i strictly prefers to concede

at time δ. Fix τ ∈ (ζ, s]. Since G0,i(t) = G0,i(s), and t < δ < τ ≤ s, we have

G0,i(δ) = G0,i(τ) and q0,i(v) = q0,j(v) = 0 for any v ∈ (t, s]. Then, (A6) implies

Ui(δ,G0, Gj)− Ui(τ,G0, Gj) = (1− α0)e−riδ(1− G̃0(δ))(1−Gj(δ))

−(1− α0)e−riτ (1− G̃0(τ))(1−Gj(τ))− 1− α0

2
e−riτ (1− G̃0(τ))qj(τ)

−1− α0

2
e−riτq0,j(τ)(1−Gj(τ))− 1− α0

3
e−riτq0,j(τ)qj(τ)

≥ (1− α0)e−riδ(1− G̃0(δ))(1−Gj(δ))

−(1− α0)e−riτ (1− lim
w↑τ

G̃0(w))(1− lim
w↑τ

Gj(w))

≥ (1− α0)(e−riδ − e−riτ )(1− lim
w↑τ

G̃0(w))(1− lim
w↑τ

Gj(w))

> 0,

where 1− limw↑τ G̃0(w) = 1−G̃0(τ)+ q̃0(τ) = 1−G̃0(τ)+q0,j(τ), and 1− limw↑τ Gj(w) =

1−Gj(τ)+qj(τ). The last strict inequality holds since limw↑τ G̃0(w) ≤ limw↑s G̃0(w) < 1,
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limw↑τ Gj(w) ≤ limw↑sGj(w) < 1, α0 < 1, and e−riδ > e−riτ .

Next, by part (i) of Lemma 1, for any ζ ∈ (t, s) we haveGi(s)−Gi(ζ) = Gi((ζ, s]) = 0.

Finally we have

Gi(s)−Gi(t) = Gi((t, s]) = Gi

(
∞⋃
k=1

(
t+

1

k

(
s− t

2

)
, s

])
= lim

k→∞
Gi

((
t+

1

k

(
s− t

2

)
, s

])
= 0,

which concludes the proof. �

Proof of Lemma 7: We prove part (ii). The proof of part (i) is analogous.

The proof is by contradiction. Suppose qi(t) > 0, limτ↑tG0,1(τ) + G0,2(τ) < 1, and

limτ↑tGj(τ) < 1. Since qi(t) > 0, Lemma 4 and Lemma 5 imply qj(t) = q0,1(t) =

q0,2(t) = 0 and therefore G0,1(t) +G0,1(t) < 1 and Gj(t) < 1.

We first establish that there exists δ > 0 such that G0,1(t) = G0,1(t−δ) and G0,2(t) =

G0,2(t− δ).
Fix ε > 0. By Lemma A2, there exists δ ∈ (0, ε) such that:

(i) Gi(t + δ) − Gi(t − δ) = Gi(t + δ) − Gi(t) + qi(t) + limτ↑tGi(τ) − Gi(t − δ) <
ε
2

+ qi(t) + ε
2

= qi(t) + ε, and similarly, Gj(t+ δ)−Gj(t− δ) < qj(t) + ε = ε;

(ii) qi(τ) ∈ [0, ε
2
) for τ ∈ [t − δ, t + δ]\{t}, and qj(τ) = q0,1(τ) = q0,2(τ) ∈ [0, ε

2
) for

τ ∈ [t− δ, t+ δ];

(iii) 1− e−r0δ < ε.

Then, for any τ ∈ (t− δ, t) we have for any κ ∈ {1, 2}:

U0(t+ δ, κ,G1, G2)− U0(τ, κ,G1, G2)

=

∫ t+δ

τ

α0e
−r0v(1−G2(v))dG1(v) +

∫ t+δ

τ

α0e
−r0v(1−G1(v))dG2(v)

+(1− α)e−r0(t+δ)(1−G1(t+ δ))(1−G2(t+ δ))− (1− α)e−r0τ (1−G1(τ))(1−G2(τ)) + o(ε)

= α0e
−r0t(1−Gj(t))qi(t)

+(1− α)e−r0t(1−G1(t))(1−G2(t))− (1− α)e−r0t(1−Gi(t) + qi(t))(1−Gj(t)) + o(ε)

= (α0 + α− 1)e−r0t(1−Gj(t))qi(t) + o(ε)

> 0,

where the last inequality holds when ε is sufficiently small, qi(t) > 0, and Gj(t) < 1.

Then, Lemma 1 implies G0,κ(t) = G0,κ(t− δ).
We are now ready to show a contradiction. Since G0,κ(t− δ) = G0,κ(t) for κ ∈ {1, 2},

limτ↑tG0,1(τ) +G0,2(τ) < 1, and limτ↑tGj < 1, Lemma 6 implies that Gi(t− δ) = Gi(t),
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which contradicts qi(t) > 0.

�

Lemma A3. Let Gi be strictly increasing on [t, s] for some i ∈ {1, 2} and 0 < t < s. If

limτ↑sGj(τ) < 1 for j ∈ {1, 2}, j 6= i and limτ↑s G̃0(τ) < 1, then for almost all τ ∈ [t, s]

we have:
gj(τ)

1−Gj(τ)
= −ri −

g̃0(τ)

1− G̃0(τ)
+

α

1− α0

g0,i(τ)

1− G̃0(τ)
.

Proof. Since Gj(τ) < 1 and G̃0(τ) < 1 for all τ ∈ [t, s], Lemma 7 implies that qj(τ) =

q̃0(τ) = 0 for all τ ∈ [t, s]. Since Gi is strictly increasing on [t, s], we have Gi(τ) <

Gi(s) ≤ 1 for all t ≤ τ < s and player i must attain her maximal utility almost

everywhere on [t, s). Therefore, player i must be indifferent between conceding at times

τ and τ + dτ such that t ≤ τ < τ + dτ < s, that is, we must have:

0 = Ui(τ + dτ,G0, Gj)− Ui(τ,G0, Gj)

=

∫ τ+dτ

τ

αie
−riv(1−Gj(v))dG0,i(v)

+(1− α0)
[
e−ri(τ+dτ)(1−G0,1(τ + dτ)−G0,2(τ + dτ))(1−Gj(τ + dτ))

−e−riτ (1−G0,1(τ)−G0,2(τ))(1−Gj(τ))
]

Since Gj, G0,1, and G0,2 are monotone, they are differentiable almost everywhere on

(t, s). Denote the corresponding derivatives gj, g0,1, and g0,2. For sufficiently small

dτ > 0, we have:

0 = αe−riτ (1−Gj(τ))g0,i(τ)dτ

− (1− α0)e−riτ
[
ri(1− G̃0(τ))(1−Gj(τ)) + g̃0(τ)(1−Gj(τ)) + gj(τ)(1− G̃0(τ))

]
dτ.

It follows that

α(1−Gj(τ))g0,i(τ) = (1− α0)
[
ri(1− G̃0(τ))(1−Gj(τ)) + g̃0(τ)(1−Gj(τ)) + gj(τ)(1− G̃0(τ))

]
.

⇐⇒ gj(τ)

1−Gj(τ)
= −ri −

g̃0(τ)

1− G̃0(τ)
+

α

1− α
g0,i(τ)

1− G̃0(τ)
.

for almost all τ ∈ [t, s). �

Proof of Lemma 8: Since Gi and G0,i, i = 1, 2 are cumulative distribution functions,

they are increasing and therefore they are differentiable almost everywhere. Let gi
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denote the derivative of Gi when it exists, and let g0,i denote the derivative of G0,i when

it exists. Also, let g̃0(·) = g0,1(·) + g0,2(·).
(i) By hypothesis, no one ends the game by time s (i.e., limτ↑sG1(τ) < 1, limτ↑sG2(τ) <

1, and limτ↑s G̃0(τ) < 1). Therefore, part (ii) of Lemma 7 implies that G1 and G2 are

continuous on (0, s). Since G̃0 is strictly increasing over the interval [t, s], the chair is in-

different between conceding at time τ and conceding time τ+dτ with t ≤ τ < τ+dτ < s.

She is also indifferent between conceding to player 1 and conceding to player 2 at any

of those times since both of the competing players have the same demand. Therefore,

for all i, j ∈ {1, 2} we have

0 = U0(τ + dτ, i, G1, G2)− U0(τ, j, G1, G2)

=

∫ τ+dτ

τ

α0e
−r0v(1−G2(v))dG1(v) +

∫ τ+dτ

τ

α0e
−r0v(1−G1(v))dG2(v)

+(1− α)
[
e−r0(τ+dτ)(1−G1(τ + dτ))(1−G2(τ + dτ))− e−r0τ (1−G1(τ))(1−G2(τ))

]
.

For sufficiently small dτ > 0, the right hand side is equal to

α0e
−r0τ [(1−G2(τ))g1(τ) + (1−G1(τ))g2(τ)]dτ

− (1− α)e−r0τ
[
r0(1−G1(τ))(1−G2(τ)) + g1(τ)(1−G2(τ)) + g2(τ)(1−G1(τ))

]
dτ.

It follows that for almost all τ ∈ [t, s) we have

(1−G1(τ))g2(τ)+(1−G2(τ))g1(τ) =
(1− α)r0

α0 + α− 1
(1−G1(τ))(1−G2(τ)) = µ(1−G1(τ))(1−G2(τ)).

Dividing both sides by (1−G1(τ))(1−G2(τ)), we find

λ1(τ) + λ2(τ) = µ.

(ii) Since Gi is strictly increasing on [t, s], Lemma 6 implies that G̃0 is also strictly

increasing on [t, s]. Moreover, since Gj is constant on [t, s], we have λj(τ) = 0 for almost

all τ ∈ [t, s]. Therefore, part (i) implies that λi(τ) = µ for all τ ∈ [t, s].

From Lemma A3, we have

λj(τ) = −ri −
g̃0(τ)

1− G̃0(τ)
+

α

1− α0

g0,i(τ)

1− G̃0(τ)
.

Using the definitions of λ0,i and λ0,j, since λj(τ) = 0 on [t, s], we can rewrite the above

43



equality as

0 = −ri + λ0,i(τ) + λ0,j(τ) +
α

1− α0

λ0,i(τ).

Solving for λ0,i(τ), we find

λ0,i(τ) =
(1− α0)(ti + λ0,j(τ))

α0 + α− 1
.

(iii) Since G1 and G2 are both strictly increasing over [t, s], by Lemma A3 we have

g1(τ)

1−G1(τ)
+

g̃0(τ)

1− G̃0(τ)
= −r2 +

αg0,2(τ)

(1− α0)(1− G̃0(τ))
,

g2(τ)

1−G2(τ)
+

g̃0(τ)

1− G̃0(τ)
= −r1 +

αg0,1(τ)

(1− α0)(1− G̃0(τ))
.

Adding these equations, we obtain

g1(τ)

1−G1(τ)
+

g2(τ)

1−G2(τ)
+ 2

g̃0(τ)

1− G̃0(τ)
= −r1 − r2 +

αg̃0(τ)

(1− α0)(1− G̃0(τ))
.

Integrating both sides yields

ln(1−G1(τ)) + ln(1−G2(τ)) = (r1 + r2)τ + C2 + (
α

1− α0

− 2) ln(1− G̃0(τ)).

Taking the exponentials of both sides, we obtain

(1−G1(τ))(1−G2(τ)) = C3e
(r1+r2)τ (1− G̃0(τ))

α
1−α0

−2
.

Using the initial condition at t, we have

[1− G̃0(τ)

1− G̃0(t)

] α
1−α0

−2

=
(1−G1(τ))(1−G2(τ))

(1−G1(t))(1−G2(t))
e−(r1+r2)(τ−t).

By part (i)
1− G̃0(τ)

1− G̃0(t)
= e

−λ+r1+r2α
1−α0

−2
(τ−t)

= e−ρ(τ−t).

It follows that g̃0(τ)

1−G̃0(τ)
= ρ. Using Lemma A3 again, we obtain the desired result. �

Proof of Lemma 9: We only prove that G̃0 must be strictly increasing on [0, t̂). The

proof for H is analogous.

The proof is by contradiction. Suppose G̃0(t) = G̃0(s) for some t, s ∈ [0, t̂) with t < s.
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The definition of t̂ implies G̃0(t) = G̃0(s) < 1. This in turn implies by Lemma 6 that

H(t) = H(s). Using the definition of t̂ one more time, we must have H(t) = H(s) < 1.

Define s∗ = sup{s′ > 0 : G̃0(s′) = G̃0(t) < 1, H(s′) = H(t) < 1}. We next

show that s∗ ≤ t̂. If not, then take t̃ ∈ (t̂, s∗). Since t < t̃ < s∗, the definition of

s∗ implies G̃0(t̃) = G̃0(t) < 1 and H(t̃) = H(t) < 1. But since t̃ > t̂ we also have

max{G̃0(t̃), H(t̃)} = 1 by the definition of t̂ which is a contradiction.

Note that G̃0 and H cannot have an atom point at s∗ by Lemma 7 and the fact

that lims′↑s∗ G̃0(s′) = G̃0(t) < 1 and lims′↑s∗ H(s′) = H(t) < 1. Therefore, we have

G̃0(s∗) = G̃0(t) < 1 and H(s∗) = H(t) < 1, and s∗ < ∞. We will use these facts to

show that there exists δ > 0 such that G̃0 and H are constant on [t, s∗ + δ), which is a

contradiction of the definition of s∗.

It suffices to show that G̃0 is constant on [t, s∗ + δ), because Lemma 6 implies that

if G̃0 is constant, then H is constant as well. Since G̃0 is constant over [t, s∗], it is

turn sufficent to show that G̃0[s∗, s∗ + δ) = 0. By Lemma 1, we only need to show

that player 0 strictly prefers to concede at time t /∈ [s∗, s∗ + δ) rather than conceding

at any time τ ∈ [s∗, s∗ + δ). Fix ε > 0. By Lemma A2, there exists δ > 0 such that

H(s∗+ δ)−H(s∗) = H(s∗+ δ)−H(t) < ε. For any τ ∈ [s∗, s∗+ δ) and κ, we can write

U0(τ, κ,G1, G2)− U0(t, κ,G1, G2) = (1− α)e−r0τ (1−H(τ)))− (1− α)e−r0t(1−H(t))

+

∫ τ

t

α0e
−r0vdH(v) + o(ε)

= (1− α)(e−r0τ − e−r0t)(1−H(t)) + o(ε) < 0,

as desired. �

Proof of Lemma 10: To establish a contradiction, suppose that t̂ < ∞. First, this

implies that q̃0(t̂) > 0, or qi(t̂) > 0 for some player i ∈ {1, 2}. To see why, suppose

q̃0(t̂) = q1(t̂) = q2(t̂) = 0. Then, by the definition of t̂, either limt↑t̂ G̃0(t) = G̃0(t̂) = 1

or there must exist a player i ∈ {1, 2} such that limt↑t̂Gi(t) = Gi(t̂) = 1. There are two

cases, each leading to a contradiction.

Suppose first limt↑t̂ G̃0(t) = 1. By the definition of t̂, G1(t) < 1, G2(t) < 1, G̃0(t) < 1

for all t < t̂. Then, since G1 and G2 are strictly increasing, by Corollary 2, G̃0(t) =

1− (1− G̃0(0))e−ρt. Taking the limit as t converges to t̂, we establish contradiction as

limt↑t̂ G̃0(t) = 1− (1− G̃0(0))e−ρt̂ < 1.

Suppose now limt↑t̂Gi(t) = 1 for some i = 1, 2. This implies limt↑t̂H(t) = 1. By the

definition of t̂, G1(t) < 1, G2(t) < 1, G̃0(t) < 1 for all t < t̂. Then, since G̃0 is strictly

increasing over [0, t̂), part (i) of Lemma 8 implies H(t) = 1 − (1 − H(0))e−µt < 1 for
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any t ∈ [0, t̂). Taking the limit as t converges to t̂ and recalling that H(0) < 1, we have

limt↑t̂H(t) = 1− (1−H(0))e−µt̂ < 1, which is a contradiction.

Thus, we have shown that either q̃0(t̂) > 0 or qi(t̂) > 0 for some i ∈ {1, 2}. Then

Lemma 7 implies that limt↑t̂Gj(t) = 1 for some j ∈ {1, 2} or limt↑t̂ G̃0(t) = 1. But we

have already shown that this leads to a contradiction. It follows that t̂ =∞. �

Proof of Lemma 11: Fix competing player i = 1, 2, and let j 6= i. Since Gi is strictly

increasing, there exists t > 0 such that player i weakly prefers conceding at time t to

conceding at time 0 by Lemma 1, that is Ui(t, G0, Gj) − Ui(0, G0, Gj) ≥ 0. Note that

by Lemma 3, we have qj(0)q̃0(0) = 0. In addition, Lemma 7, Lemma 9, and Lemma 10

imply that q̃0(τ) = qj(τ) = 0 for any τ > 0. Finally, 1 − G̃0(t) = (1 − q̃0(0))e−ρt by

Lemma 8. Together with A4 and A6 these imply that Ui(t, G0, Gj) − Ui(0, G0, Gj) is

equal to

αq0,i(0)

∫ t

0

αe−riv(1−Gj(v))dG0,i(v) + (1− α0)e−rit(1− q̃0(0))e−ρt(1−Gj(t))

−(1− α0)(1− q̃0(0))(1− qj(0))− 1− α0

2
[q0,j(0) + qj(0)]− 1− α0 + α

2
q0,i(0). (A8)

By equation (9), the definition of λ0,i, and Corollary 2), we have

G0,i(t) = q0,i(0) +
(1− α0)(1− q̃0(0))

α

∫ t

0

(λj(τ) + ρ+ ri)e
−ρτdτ.

By the definition of λj, we have

1−Gj(t) = (1− qj(0))e−Λj(t)

where Λj(t) =
∫ t

0
λj(τ)dτ. Using these facts, (A8) becomes

αq0,i(0) + (1− α0)(1− q̃0(0))(1− qj(0))(1− e−(ri+ρ)t−Λj(t))

+(1− α0)(1− q̃0(0))(1− qj(0))e−(ri+ρ)t−Λj(t) − (1− α0)(1− q̃0(0))(1− qj(0))

−1− α0

2
[q0,j(0) + qj(0)]− 1− α0 + α

2
q0,i(0)

It follows (after some algebra) that the condition Ui(t, G0, Gj) − Ui(0, G0, Gj) ≥ 0 is

equivalent to the condition

α

2
q0,i(0)− 1− α0

2
[q̃0(0) + qj(0)] ≥ 0.

For this to be possible, we must have qj(0) = 0. Otherwise, qj(0) > 0 implies q̃0(0) = 0
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by Lemma 3, and then Ui(t, G0, Gj) − Ui(0, G0, Gj) = −1−α0

2
qj(0) < 0, which is a

contradiction. Therefore, qj(0) = 0 and α
2
q0,i(0) ≥ 1−α0

2
q̃0(0). Since i was arbitrary, we

have q1(0) = q2(0) = 0, and q0,i(0) ∈ [ 1−α0

α+α0−1
q0,j(0), α+α0−1

1−α0
q0,j(0)] as desired. �

Proof of Proposition 3. Necessity : (i) By Lemma 7, there are no atom points

in G0,1, G0,2, G1 and G2 over (0, t̂) after the start of the game and before the end of

the game. By Lemma 10, when both competing players gradually concede throughout

the game we must have t̂ = ∞. Therefore, G0,1, G0,2, G1 and G2 must be continuous

over (0,∞) in an equilibrium in which both competing players concede throughout the

game. (ii) Immediately follows from Lemma 11. (iii) The fact that λ1(t) + λ2(t) = µ

immediately follows from part (i) of Lemma 8. Since both competing players concede

throughout the game, we must have λ1(t), λ2(t) > 0 for t ≥ 0 almost everywhere. (iv)

Immediately follows from part (iii) of Lemma 8.

Sufficiency : By condition (i), G1 and G2 are continuous over (0,∞), and thus λ1

and λ2 are well defined over (0,∞). Additionally, by (iii), λi(t) =
G′i(t)

1−Gi(t) > 0 for i = 1, 2.

Therefore, G′1 > 0 and G′2 > 0, which implies that G1 and G2 are strictly increasing on

R̄+, i.e. both players gradually concede throughout the game.

We now establish that no player has strictly profitable deviation from the proposed

strategy profile (G0,1, G0,2, G1, G2). First consider player 0. By (A1) and condition (ii),

we have

U0(0, κ,G1, G2) = 1− α.

By (A2) and conditions (i) and (ii), we have

U0(∞, κ,G1, G2) =
2∑
i=1

∫ ∞
0

α0e
−r0v(1−Gj(v))dGi(v) = α0

∫ ∞
0

−e−r0vd(1−G1(v))(1−G2(v))

where the second inequality follows from the product rule for derivatives. Condition (iii)

gives us (1−G1(v))(1−G2(v)) = e−µv. Therefore,

U0(∞, κ,G1, G2) = α0

∫ ∞
0

e−r0vµe−µvdv = α0µ
e−(r0+µ)v

r0 + µ

∣∣∣∣0
∞

=
α0µ

r0 + µ
= 1− α

where the last equality follows from the definition of µ given in (2).

By (A3) and conditions (i) and (ii), for any t > 0 we have

U0(t, κ,G1, G2) = (1− α)e−r0t(1−G1(t))(1−G2(t)) +
2∑
i=1

∫ t

0

α0e
−r0v(1−Gj(v))dGi(v)
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Similar to above, using the product rule for derivatives, the right hand side is equal to

(1− α)e−r0t(1−G1(t))(1−G2(t)) + α0

∫ t

0

−e−r0vd(1−G1(v))(1−G2(v)).

Using the fact that (1−G1(t))(1−G2(t)) = e−µt, this is equal to

(1− α)e−(r0+µ)t + α0

∫ t

0

µe−(r0+µ)vdv = (1− α)e−(r0+µ)t + (1− α)(1− e−(r0+µ)t).

Thus, we conclude that

U0(t, κ,G1, G2) = 1− α.

for all t ≥ 0. Therefore, given that players 1 and 2 gradually concede using the proposed

mixed strategy profile (G1, G2), player 0 is indifferent about the concession time: no

matter when she concedes, her expected payoff is always 1− α.

Next we consider the competing players i = 1, 2. Similar to derivations above, by

(A4) and condition (ii), we have

Ui(0, G0, Gj) = (1− α0)(1− q̃0(0)) +
1− α0

2
q0,j(0) +

(1− α0 + α

2

)
q0,i(0).

By (A5) and conditions (i) and (ii), we have

Ui(∞, G0, Gj) = αq0,i(0) +

∫ ∞
0

αe−riv(1−Gj(v))dG0,i(v)

= αq0,i(0) +

∫ ∞
0

αe−rive−Λj(v)dG0,i(v) (A9)

where Λj(v) ≡
∫ v

0
λj(τ)dτ and the second equation follows from the definition of λj which

implies 1 − Gj(v) = (1 − qj(0))e−Λj(v) = e−Λj(v) by condition (ii) for any v ∈ (0,∞).

By the definition of λ0,i, we have G′0,i(v) = λ0,i(v)[1 − G̃0(v)]. By Corollary 2, the

right hand side is equal to λ0,i(v)(1 − q̃0(0))e−ρv. Thus using condition (iv), we obtain

G′0,i(v) = 1−α0

α
(λj(v) + ri + ρ)(1− q̃0(0))e−ρv. Plugging in (A9), we obtain

Ui(∞, G0, Gj) = αq0,i(0) + (1− α0)(1− q̃0(0))

∫ ∞
0

e−rive−Λj(v)(λj(v) + ri + ρ)e−ρvdv

= αq0,i(0) + (1− α0)(1− q̃0(0)) e−(ri+ρ)v−Λj(v)
∣∣0
∞

= αq0,i(0) + (1− α0)(1− q̃0(0))

≥ Ui(0, G0, Gj)
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where the inequality follows from condition (ii).

Finally, by (A6) and conditions (i) and (ii), for any t > 0, we have

Ui(t, G0, Gj) = αq0,i(0) +

∫ t

0

αe−riv(1−Gj(v))dG0,i(v) + (1− α0)e−rit(1− G̃0(t))(1−Gj(t))

= αq0,i(0) +

∫ t

0

αe−rive−Λj(v)G′0,i(v)dv + (1− α0)e−rit(1− q̃0(t))e−ρte−Λj(t)

= αq0,i(0) + (1− α0)(1− q̃0(0))(1− e−(ri+ρ)t−Λj(t)) + (1− α0)(1− q̃0(0))e−(ri+ρ)t−Λj(t)

= αq0,i(0) + (1− α0)(1− q̃0(0))

= Ui(∞, G0, Gj)

≥ Ui(0, G0, Gj)

where the second equation follows from 1 − Gj(v) = e−Λj(v), and the third equation

follows from G′0,i(v) = 1−α0

α
(λj(v) + ri + ρ)(1 − q̃0(0))e−ρv. Therefore, player i weakly

prefers to concede after the start of the game, and is indifferent about the concession

time after the start of the game. Thus, any (mixed) strategy that assigns zero probability

mass at t = 0, as in the proposed strategy profile, is a best response. �

Proof of Lemma 12. Fix s ∈ (0, t̂] and t ∈ (0, s). By the definition of t̂, we have

G1(t) < 1, G2(t) < 1, G̃0(t) < 1. Then by Lemma 9, H = 1− (1−G1)(1−G2) is strictly

increasing over [0, t]. Since Gj is constant over (0, t], Gi must be strictly increasing over

[0, t]. Therefore, by Corollary 1, for t ∈ (0, s) almost everywhere, player i weakly prefers

conceding at time t to conceding at time 0, i.e. Ui(t, G0, Gj) − Ui(0, G0, Gj) ≥ 0. By

(A4) and (A6), this condition can be written as

Ui(t, G0, Gj)− Ui(0, G0, Gj) = αq0,i(0) +

∫ t

0

αe−riv(1−Gj(v))dG0,i(v)

+ (1− α0)e−rit(1− G̃0(t))(1−Gj(t))

− (1− α0)(1− q̃0(0))(1− qj(0))− 1− α0

2
[q0,j(0) + qj(0)]− 1− α0 + α

2
q0,i(0)

= αq0,i(0) +

∫ t

0

αe−riv(1− qj(0))
(1− α0)(1− q̃0(0))

α
(ri + λ0(v))e−Λ0(v)dv

+ (1− α0)(1− q̃0(0))(1− qj(0))e−rit−Λ0(t)

− (1− α0)(1− q̃0(0))(1− qj(0))− 1− α0

2
[q0,j(0) + qj(0)]− 1− α0 + α

2
q0,i(0)

= αq0,i(0) + (1− α0)(1− q̃0(0))(1− qj(0))(1− e−rit−Λ0(t) + e−rit−Λ0(t))

− (1− α0)(1− q̃0(0))(1− qj(0))− 1− α0

2
[q0,j(0) + qj(0)]− 1− α0 + α

2
q0,i(0)

=
α

2
q0,i(0)− 1− α0

2
[q̃0(0) + qj(0)] ≥ 0 (A10)

49



where Λ0(v) =
∫ v

0
λ0,1(τ) + λ0,2(τ)dτ . Here, the first equation follows from q1(0)q̃0(0) =

q2(0)q̃0(0) = 0 (by Lemma 3) and q̃0(τ) = q1(τ) = q2(τ) = 0 for any τ ∈ (0, t̂) (by Lemma

7); and the second equation follows from Gj(t) = qj(0) and G′0,i(v) = λ0,i(v)[1−G̃0(v)] =
1−α0

α
(ri + λ0(v))(1− q̃0(0))e−Λ0(v) (by Equation (8)).

We now show that qj(0) = 0. Suppose, by contradiction, that qj(0) > 0. By Lemma

3, we have q̃0(0) = 0 , and then Ui(t, G0, Gj) − Ui(0, G0, Gj) = −1−α0

2
qj(0) < 0, which

gives a contradiction to qj(0) > 0 by Lemma 1. Therefore, we have qj(0) = 0. Then

(A10) gives us α
2
q0,i(0)− 1−α0

2
q̃0(0) ≥ 0, i.e., q0,i(0) ≥ 1−α0

α+α0−1
q0,j(0). �

Proof of Proposition 4. Suppose α > 2(1 − α0). We will show that any mixed-

strategy profile (G̃0, G1, G2) with following properties is an equilibrium strategy profile:

G̃0(0) = 0, and for any t ∈ R̄+, λ0(t) ≥ (1−α0)(r1+r2+µ)
α−2(1−α0)

= ρ (that is, the hazard rate for

player 0 is sufficiently large), Gi(t) = 1− e−µt, and Gj(t) = 1{t =∞}. To see that such

a strategy profile is an equilibrium strategy profile, first note that player 0 is indifferent

among different concession times. This follows because by equations (A1), (A2) and

(A3), we have

U0(0, κ,G1, G2) =1− α,

U0(∞, κ,G1, G2) =
2∑
i=1

∫ ∞
0

α0e
−r0v(1−Gj(v))dGi(v) =

∫ ∞
0

α0e
−r0vdGi(v).

=α0µ

∫ ∞
0

e−(r0+µ)vdv = α0µ
e−(r0+µ)v

r0 + µ

∣∣∣∣0
∞

=
α0µ

r0 + µ
= 1− α.

U0(t, κ,G1, G2) =(1− α)e−r0t(1−G1(t))(1−G2(t)) +
2∑
i=1

∫ t

0

α0e
−r0v(1−Gj(v))dGi(v)

=(1− α)e−r0te−µt + α0µ
e−(r0+µ)v

r0 + µ

∣∣∣∣0
t

=(1− α)e−(r0+µ)t + (1− α)(1− e−(r0+µ)t) = 1− α

for any t > 0. Therefore, the expected payoff of player 0 is 1 − α regardless of her

concession time.

Next, we consider player i. By equation (8), we have

G0,i(t) = q0,i(0) +
(1− α0)(1− q̃0(0))

α

∫ t

0

(ri + λ0(τ))e−Λ0(τ)dτ.
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Together with equations (A4), (A5), (A6), this implies that

Ui(0, G0, Gj) =(1− α0)(1− q̃0(0)) +
1− α0

2
q0,j(0) +

(1− α0 + α

2

)
q0,i(0) = 1− α0,

Ui(∞, G0, Gj) =αq0,i(0) +

∫ ∞
0

αe−riv(1−Gj(v))dG0,i(v) =

∫ ∞
0

αe−rivdG0,i(v)

=

∫ ∞
0

αe−riv
(1− α0)(1− q̃0(0))

α
(ri + λ0(v))e−Λ̃0(v)dv

=(1− α0)

∫ ∞
0

(ri + λ0(v))e−Λ̃0(v)−rivdv = 1− α0,

Ui(t, G0, Gj) =αq0,i(0) +

∫ t

0

αe−riv(1−Gj(v))dG0,i(v) + (1− α0)e−rit(1− G̃0(t))(1−Gj(t))

=

∫ t

0

αe−rivdG0,i(v) + (1− α0)e−rit(1− G̃0(t))

=(1− α0)

∫ t

0

(ri + λ0(v))e−Λ̃0(v)−rivdv + (1− α0)e−rit(1− G̃0(t))

=(1− α0)(1− e−Λ̃0(t)−rit) + (1− α0)e−rit(1− G̃0(t))

=(1− α0)[1− (1− G̃0(t))e−rit] + (1− α0)e−rit(1− G̃0(t)) = 1− α0

for any t > 0. Therefore, player i is also indifferent among different concession times:

his expected payoff is 1− α0 regardless of his concession time.

Finally, we consider player j. By equations (A4), (A5), (A6), and the fact that

G0,j(t) = G̃0(t)−G0,i(t) = G̃0(t)− q0,i(0)− (1− α0)(1− q̃0(0))

α

∫ t

0

(ri + λ0(τ))e−Λ0(τ)dτ
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we have

Uj(0, G0, Gi) =(1− α0)(1− q̃0(0)) +
1− α0

2
q0,i(0) +

(1− α0 + α

2

)
q0,j(0) = 1− α0

Uj(∞, G0, Gi) =αq0,j(0) +

∫ ∞
0

αe−rjv(1−Gi(v))dG0,j(v) =

∫ ∞
0

αe−(rj+µ)vdG0,j(v)

Uj(t, G0, Gi) =αq0,j(0) +

∫ t

0

αe−rjv(1−Gi(v))dG0,j(v) + (1− α0)e−rjt(1− G̃0(t))(1−Gi(t))

=

∫ t

0

αe−(rj+µ)vdG0,j(v) + (1− α0)e−(rj+µ)t(1− G̃0(t))

=

∫ t

0

αe−(rj+µ)v[λ0(v)e−Λ0(v) − (1− α0)

α
(ri + λ0(v))e−Λ0(v)]dv

+(1− α0)e−(rj+µ)t−Λ0(t)

=

∫ t

0

[αλ0(v)− (1− α0)(ri + λ0(v))]e−(rj+µ)v−Λ0(v)dv + (1− α0)e−(rj+µ)t−Λ0(t)

for any t > 0. Note that Uj(t, G0, Gj) is differentiable over R++ and is continuous at

t = 0 and t =∞. Differentiating Uj(t, G0, Gj) with respect to t, we obtain

∂Uj(t, G0, Gi)

∂t
=[αλ0(t)− (1− α0)(ri + λ0(t))]e−(rj+µ)t−Λ0(t)

−(1− α0)(rj + µ+ λ0(t))e−(rj+µ)t−Λ0(t)

=[αλ0(t)− (1− α0)(ri + 2λ0(t) + rj + µ)]e−(rj+µ)t−Λ0(t)

={[α− 2(1− α0)]λ0(t)− (1− α0)(r1 + r2 + µ)}e−(rj+µ)t−Λ0(t)

Since α > 2(1 − α0) and λ0(t) ≥ (1−α0)(r1+r2+µ)
α−2(1−α0)

= ρ, we have
∂Uj(t,G0,Gi)

∂t
≥ 0. This

implies that the expected utility for player j is weakly increasing over time. Therefore,

qj(∞) = 1 is a best response for player j. �
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