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Abstract

This paper studies the problem of optimally allocating treatments in the presence of
spillover effects, using information from a (quasi-)experiment. I introduce a method
that maximizes the sample analog of average social welfare when spillovers occur. I
construct semi-parametric welfare estimators with known and unknown propensity
scores and cast the optimization problem into a mixed-integer linear program, which
can be solved using off-the-shelf algorithms. I derive a strong set of guarantees on
regret, i.e., the difference between the maximum attainable welfare and the welfare
evaluated at the estimated policy. The proposed method presents attractive features for
applications: (i) it does not require network information of the target population; (ii) it
exploits heterogeneity in treatment effects for targeting individuals; (iii) it does not rely
on the correct specification of a particular structural model; and (iv) it accommodates
constraints on the policy function. An application for targeting information on social
networks illustrates the advantages of the method.
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1 Introduction

Consider a policymaker who must use a quasi-experiment, such as an existing experiment

or observational study, to design a decision rule (policy) that assigns treatments based on

observable characteristics. The main challenge is that treating an individual may generate

spillovers on her friends or neighbors. Spillover effects may, in turn, affect the design of the

optimal policy. This paper studies the problem of allocating treatments in the presence of

spillover effects to maximize welfare, using information from a quasi-experiment. Applica-

tions include welfare, cash-transfer programs, and information campaigns, among others.1

A (large) population of n individuals is connected in a single network. Treatments

generate spillovers to neighbors in the network. Researchers randomly sample ne � n

units in a (quasi)experiment and randomize treatments among sampled individuals and

their neighbors (whereas the remaining units are not necessarily in the experiment).2 They

then collect sampled individuals’ covariates, treatment assignments, outcomes, neighbors’

covariates and assignments.3 The population network is not necessarily observed. The goal

is to estimate a treatment rule to deploy on the entire population. Consider the example

of targeting information to increase insurance take-up in a region subject to environmental

disasters (Cai et al., 2015). Using variation from experiment participants sampled from a

random subset of villages in this region, we estimate whom to target in the entire region.

The first challenge for targeting is that the population network may be unobserved due

to the cost associated with collecting network data on large populations. For instance, re-

searchers may only observe neighbors’ information about the experiment participants. Col-

lecting network information from the individuals in the entire population, such as a region

or country, is often costly or infeasible.4 Motivated by this fact, I develop a method that

does not require us observe the population network. I allow for arbitrary constraints on

the policy space, such as informational constraints. A second challenge is treatment effects

heterogeneity. I leverage the assumption that spillovers occur through the number of treated

neighbors, as is often documented in applications, and allow for treatment effects hetero-

geneity in arbitrary individual characteristics (e.g., covariates and number of neighbors).5

1Some examples of relevant applications are Barrera-Osorio et al. (2011); Egger et al. (2019); Opper
(2016); Zubcsek and Sarvary (2011); Bond et al. (2012). Spillover effects have been documented in develop-
ment economics (Banerjee et al., 2013), social economics (Sobel, 2006), and medicine (Christakis and Fowler,
2010), among other settings.

2Namely, during the experimental intervention, the treatment status of the remaining units can be equal
to the baseline intervention of no treatment with probability one.

3This is possible by sampling a random subset of individuals from the population, eliciting neighbors’
information from such individuals, and collecting covariates and treatment assignments from their neighbors.

4See Breza et al. (2020) for a discussion of the cost associated with collecting network information.
5In particular, I assume potential outcomes are functions of individual and neighbors’ treatment assign-
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The proposed method, entitled Network Empirical Welfare Maximization (NEWM), es-

timates the welfare as a function of the policy using arbitrary estimators (e.g., based on

machine-learning). It then solves an exact optimization procedure over the policy space.

I interpret policy targeting as a treatment choice problem (Manski, 2004; Kitagawa and

Tetenov, 2018; Athey and Wager, 2021), here studied in the context of network interference.

I evaluate the method’s performance based on its maximum regret, that is, the difference

between the largest achievable welfare and the welfare from deploying the estimated policy.

From a theoretical perspective, this paper makes three contributions: (i) it derives the

first set of guarantees on the regret for treatment rules with spillovers; (ii) it introduces

an estimation procedure with fast convergence rates of regret6 with machine-learning (non-

parametric) estimators and networked units; and (iii) it shows that for a large class of policy

functions, the optimization problem can be written as a mixed-integer linear program, solved

using off-the-shelf optimization routines.

The analysis proceeds as follows. First, I discuss the identification of social welfare under

interference. Identification relies on the unconfoundedness of treatment assignments, and

of the sampling indicators. I then study semi-parametric estimators for the welfare and

analyze the performance of the estimated policy. I show that under regularity conditions,

the regret of the estimated policy scales at the rate 1/
√
ne, whenever the maximum degree

of the network (i.e., the number of neighbors) is uniformly bounded.7 If the maximum

degree grows with the population size, the rate also depends on the degree. Finally, I derive

maximin lower bounds that match the upper bound. Throughout the analysis, I do not

impose assumptions on the (joint) distribution of covariates.

A condition for these results to hold is that the optimization procedure achieves the in-

sample optimum. I guarantee it by casting the problem in a mixed-integer linear program. I

show that a linear representation of spillover effects in the objective function can be achieved

ments (but not neighbors’ identity), the number of neighbors, arbitrary individual characteristics that are
observable in the experiment but may not be observed on the target sample (e.g., covariates, centrality
measures, or summary statistics of neighbors’ covariates), and exogenous unobservables. This reduced form
restriction on the spillover mechanism assumes that interference is local and anonymous. Models consis-
tent with this restriction are models of exogenous and anonymous interference; see, for example, Manski
(2013). For instance, Cai et al. (2015) leverage a two-stage experimental design to show “the network effect
is driven by the diffusion of insurance knowledge” (i.e., treatment) “rather than purchase decisions” (i.e.,
outcome) (Cai et al., 2015, abstract), consistently with the model proposed in this paper. Other examples of
empirical applications using models consistent with anonymous and exogenous interference include Sinclair
et al. (2012); Duflo et al. (2011); Muralidharan et al. (2017), where for the third reference, networks can be
considered groups of classrooms with units within each classroom being fully connected. Athey et al. (2018)
provide a framework for testing local and anonymous spillovers.

6Such rates depend on the product of the rate of the estimated propensity score and conditional mean
function, extending previous results with i.i.d. data to network interference (e.g., Farrell, 2015).

7Examples of applications with a small degree include Cai et al. (2015), the Add Health Study, and
Jackson et al. (2012) among others. For theoretical models with bounded degree see De Paula et al. (2018).
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by introducing additional linear constraints and binary decision variables.

The derivations present several challenges: (i) individuals depend on neighbors’ assign-

ments that we control through contraction inequalities; (ii) statistical dependence invalidates

standard symmetrization arguments (Wainwright, 2019); and (iii) in the presence of obser-

vational studies with networks, machine-learning estimators may present non-vanishing bias

even when existing methods are employed (Chernozhukov et al., 2018). For (iii), I introduce

a novel cross-fitting algorithm for networked observations and characterize its properties.

I study the numerical properties of the method using data from Cai et al. (2015) and

design a policy that informs farmers about insurance benefits to increase insurance take-

up. The NEWM method leads to (out-of-sample) improvements in insurance take-up up

to thirty percentage points to methods that ignore network effects (Kitagawa and Tetenov,

2018; Athey and Wager, 2021). I obtain these improvements despite not using network

information in the design of the policy. Finally, I present several extensions, including

trimming when individuals present poor overlap due to a large maximum degree, different

target and sampled populations, and spillovers over the non-compliance (in the Appendix).

This paper builds on the growing literature on statistical treatment choice (Kitagawa and

Tetenov, 2018, 2019; Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2016; Armstrong

and Shen, 2015; Bhattacharya and Dupas, 2012; Hirano and Porter, 2009; Stoye, 2009, 2012;

Tetenov, 2012; Zhou et al., 2018), and classification (Elliott and Lieli, 2013; Boucheron et al.,

2005, among others). Different from previous references, here I estimate the policy when

treatments generate spillovers. This paper is the first to study the properties of targeting on

networks in the context of the empirical welfare maximization literature.

A conceptual difference from the i.i.d. setting with single and multi-valued treatments as

in Kitagawa and Tetenov (2018), Zhou et al. (2018) is that here individuals depend on neigh-

bors’ assignments, whereas treatments are individual-specific. This structure permits the

population network not to be observable, with the complexity of the function class bounded

using the maximum degree. The second difference is that individuals exhibit dependence

and arguments based on i.i.d. sampling such as symmetrization failure. Optimization differs

because individuals depend on neighbors’ treatments.

This paper connects the literature on statistical treatment choice with that on targeting

on networks. I provide an overview below and a more extensive discussion in Section 2.5.

The influence-maximization literature mostly focuses on detecting the most influential

“seeds” based on particular notions of centrality, motivated by a particular model. See Bloch

et al. (2017) for a review. Recent advances include Jackson and Storms (2018), Akbarpour

et al. (2018), Banerjee et al. (2019), Banerjee et al. (2014), Galeotti et al. (2020) in economics,

and Kempe et al. (2003), Eckles et al. (2019), among others in computer science. This paper
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differs in (i) its approach because I leverage experimental variation to construct policies that

maximize the empirical welfare (instead of policies justified by game theoretic structures);8

(ii) setup because I allow for constraints on the policy class and heterogeneity in treatment

effects, within a local interference framework. Su et al. (2019) study first-best policies without

constraints on the policy and for linear models. I do not impose such structural assumptions.

The presence of constraints (and possible infeasibility of the first-best policy) justifies the

regret analysis in the current paper. Laber et al. (2018) consider a Bayesian model whose

estimation relies on intensive Monte Carlo methods and the correct model specification.

This paper also connects to the literature on social interaction (Manski, 2013; Manresa,

2013; Auerbach, 2019), and causal inference under interference (Liu et al., 2019; Li et al.,

2019; Hudgens and Halloran, 2008; Goldsmith-Pinkham and Imbens, 2013; Sobel, 2006;

Sävje et al., 2021; Aronow and Samii, 2017). The exogenous and anonymous interference

condition is most closely related to Leung (2020). However, knowledge of treatment effects is

not sufficient to construct welfare-optimal treatment rules in the presence of either (or both)

constraints on the policy functions or treatment effects heterogeneity. Additional references

include Bhattacharya et al. (2019) and Wager and Xu (2021), who study pricing with social

interactions, through partial identification and sequential experiments, respectively. Here,

instead, I study empirical welfare maximization for individualized treatment rules. See Kline

and Tamer (2020) and Graham and De Paula (2020) for further references.9

Finally, more recent works that study targeting in new directions include Kitagawa and

Wang (2020) in the context of a parametric model of disease diffusion, Ananth (2021) in

settings with an observed network of the target population, and Viviano (2020) in the context

of sequential experiments.

The paper is organized as follows. Section 2 presents the problem setup and main con-

ditions. Estimation and theoretical analysis is contained in Section 3. Section 4 and online

Appendix B present extensions. Section 5 contains an application. Section 6 concludes. Ap-

pendix A (at the end of the main text) presents a practical guide to implement the algorithm,

online Appendix C a numerical study and online Appendix D theoretical derivations.

8Measures of centrality are typically justified by a particular game of strategic interactions (e.g., Galeotti
et al., 2020), and validated in experiments against a given benchmark policy (e.g., Banerjee et al., 2014).
Here I instead use experimental variation to directly learn the best policy from a large class.

9Further literature studying spillovers includes that on optimally allocating individuals across indepen-
depent groups (Li et al., 2019; Graham et al., 2010; Bhattacharya, 2009). This problem differs from ours
for several reasons: (i) policy functions denote group-assignment mechanisms instead of binary treatment
allocations, inducing a different definition and identification of welfare; (ii) the allocation does not allow for
constraints; and (iii) the authors assume many small independent clusters.
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2 Problem description

In this section, I introduce the notation and problem setup. Practitioners may refer to

Algorithm 1 in Appendix A for a user-friendly description of the steps of the procedure.

2.1 Setup and overview

Consider a population of n individuals connected under an adjacency matrix A. Each indi-

vidual is associated with an arbitrary vector of characteristics Zi ∈ Z and a binary indicator

Di ∈ {0, 1} indicating the treatment assignment in an experiment. Let

A ∈ An ⊆ {0, 1}n×n, Ni =
{
j ∈ {1, · · · , n}\{i} : Ai,j = 1

}
, Z = (Zi)

n
i=1, D = (Di)

n
i=1,

where An denotes the set of symmetric and unweighted adjacency matrices, Ni denotes the

friends of individual i, and |Ni| denotes the degree of i. We impose no conditions on Z.

Following Abadie et al. (2020), I define Ri ∈ {0, 1} as a random variable indicating

whether individual i’s (and neighbors’) relevant characteristics are sampled during the ex-

periment, and Rf
i = 1

{∑
k 6=iAi,kRk > 0

}
as the indicator of whether at least one neighbor

is sampled. Researchers collect[
Ri

(
Yi, Zi, Di, Ni, Zk∈Ni

, Dk∈Ni

)
, Ri

]n
i=1
, Ri

∣∣∣A,Z ∼i.i.d. Bern(ne/n), (1)

where Yi denotes the post-treatment outcome in the experiment, and ne the expected number

of sampled individuals.10 Sampled units and their neighbors (but not necessarily the other

units in the population) are assigned treatments in the experiment (Di = 1) with positive

probability. Section 2.2 presents a complete formalization.

Section 2.4 formalizes the policy-targeting exercise: once the experiment is completed,

the researcher’s goal is to design a treatment rule that a policymaker will deploy on the entire

population. I consider settings where researchers only observe a (small) subset of individuals

(ne � n), and the adjacency matrix A may remain unobserved to the researchers.

Finally, in Section 3, I estimate a policy with guarantees valid for finite (possibly large)

n and characterize convergence rates as n, ne → ∞. Convergence rates are with respect to

a sequence of data-generating processes indexed by n, each with a single network A ∈ An,

where I explicitly condition on A ∈ An, Z ∈ Zn unless otherwise specified.11

10Similar approaches to measure uncertainty in the context of statistical inference have also been adopted
by De Paula et al. (2018). This information can be obtained by sampling a random subset of individuals
from the population and then collecting information from sampled units and their neighbors. See Kolaczyk
(2009) for a discussion on sampling methods with networks.

11A special case of an asymptotic framework with a single network are settings where the network is
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2.2 Data-generating process and experiment

With interference, unit i’s outcome depends on its own and other units’ treatment. In

full generality, I can write Yi = r̃n(i,D,A, Z, εi) for some unobserved random variables εi

capturing uncertainty in potential outcomes, and unknown r̃n(·).

Assumption 2.1 (Interference). For i ∈ {1, · · · , n}, let

Yi = r
(
Di, Ti, Zi, |Ni|, εi

)
, Ti = gn

(∑
k∈Ni

Dk, Zi, |Ni|
)
, (2)

for some function r(·) unknown to the researcher, and function gn(·) : Z×Z ×Z 7→ Tn ⊆ Z,

known to the researcher, with gn(0, Zi, |Ni|) = 0 almost surely, and unobservables εi.

Under Assumption 2.1, outcomes depend on (i) the number of first-degree neighbors

(|Ni|), (ii) the number of first-degree treated neighbors (or a function of this, Ti), and (iii)

individual’s treatment status (Di), observables (Zi), and unobservables (εi). Assumption 2.1

states that interactions are anonymous (Manski, 2013), and spillovers occur within neighbors.

Heterogeneity occurs through the dependence with Zi and |Ni|. The model relates to Leung

(2020), and Athey et al. (2018) provide methods to test anonymous and local interference.

Here, r(·) is unknown and gn(·) is known and characterizes how individuals depend on

neighbors’ treatments – that is, the exposure mapping (Aronow and Samii, 2017); gn(0, ·) = 0

is without loss of generality, because r(·) also depends on (Zi, |Ni|). The function gn depends

on n because its support Tn can vary with n. For example, gn can be equal to the number

of treated neighbors Ti =
∑

k∈Ni
Dk, and the degree can grow with n. This scenario is the

most agnostic one because r is unknown and therefore equivalent to gn(·) being unknown.

Alternatively, gn(·) can be equal to a step function of the share of treated neighbors (Sinclair

et al., 2012). The size of Tn affects treatments’ overlap discussed below.

Assumption 2.2 ((Quasi)experiment). For i ∈ {1, · · · , n}, Rf
i = 1

{∑
k Ai,kRk > 0

}
, the

following holds:

(i) Di = fD

(
Zi, Ri, (1−Ri)R

f
i , εDi

)
, for εDi

|A,Z ∼i.i.d. L, with εDi
⊥
(

(εj)
n
j=1, (Rj)

n
j=1

)
,

for some function fD(.) and distribution L (known in an experiment and to be estimated

in a quasi-experiment);

(ii) P (Di = 1|Zi, Ri = 1), P (Di = 1|Zi, Ri = 0, Rf
i = 1) ∈ (γ, 1 − γ) almost surely, for

some γ ∈ (0, 1), and for all t ∈ Tn, P
(
Ti = t|Zk∈Ni

, |Ni|, Rk∈Ni
, Ri = 1

)
≥ δn almost

surely, for some δn ∈ (0, 1);

block diagonal and can be partitioned into independent components. Our framework does not require this
assumption.
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(iii) Ri|A,Z ∼i.i.d. Bern(ne/n) with ne/n = α ∈ (0, 1).

Condition (i) states the treatment is randomized in the experiment on observables Zi,

which may also contain network information, and possibly also on the indicator Ri. If indi-

viduals are not sampled in the experiment (Ri = 0), Di can also depend on whether at least

one friend is sampled (e.g., researchers collect neighbors’ information and then randomize

treatments across participants and their neighbors). Figure 1 presents an illustration.

Condition (ii) imposes positive overlap for sampled units and their friends, but not nec-

essarily for the remaining units who are not sampled and are not friends of sampled units.12

For example, the treatment of those units who do not participate in the experiment and

whose friends do not participate in the experiment can be equal to the baseline value Di = 0

almost surely, whereas it is randomized with positive probability for the experiment partic-

ipants and their friends. Here, δn denotes the overlap constant of the neighbors’ treatments

of the sampled individuals. It depends on n, because the support of the exposure mapping

Ti may vary with n. Section 2.3 imposes restrictions on δn.

Condition (iii) states that selection indicators Ri are exogenous. The expected number

of sampled individuals ne is proportional to n for expositional convenience only.13

Assumption 2.3 (Unobservables). For all i ∈ {1, · · · , n},

(A) εi ⊥ (Rj)
n
j=1

∣∣∣A,Z;

(B) εi

∣∣∣A,Z ∼ UZi,|Ni| for unknown distributions Uz,l, z ∈ Z, l ∈ Z;

(C) εi ⊥ (εj)j 6∈Ni∪{Nk,k∈Ni}

∣∣∣A,Z;

(D) E
[

supd∈{0,1},t∈Z |r(d, t, Zi, |Ni|, εi)|3
∣∣∣A,Z] ≤ Γ2, almost surely, for some unknown Γ <

∞.

Condition (A) states that the sampling does not depend on unobservables. Condition

(B) states that unobservables are identically distributed, conditional on the same individual

covariates and number of friends, and conditionally independent of A and other units’ charac-

teristics. Condition (B) implies network exogeneity, attained if, for example, two individuals

12Positive overlap in (ii) implies that for sampled units or their neighbors, they receive treatments with
positive probability. Positive overlap of individual treatments only needs to hold for those individuals who
either are selected in the experiment (Ri = 1) or who have at least one friend selected in the experiment.
Positive overlap of the neighbors’ treatments (P (Ti = t|·) > δn) only needs to hold for sampled units
(Ri = 1). Randomizing treatments among participants and their friends justifies the overlap restriction.

13All results hold if ne is not proportional to n, and instead, ne = nρ for some ρ < 1. In this case, we
would only need to replace the right-hand side O(n1/2−ξ) with O(n(1/2−ξ)ρ) in Assumption 2.4.
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form a link based on observable characteristics and exogenous unobservables.14 Condition

(B) guarantees that the individual conditional mean function in Equation (3) is the same

across units. Condition (C) states that unobservables are independent across individuals

who do not share a common neighbor, similarly to Leung (2020). Condition (C) is consis-

tent with a first-degree interference model as shown in Example 2.1. Finally, Condition (D)

is a bounded moment assumption.

Our method can accommodate scenarios where (B) and (C) fail. I will not assume

Condition (B) in settings where the individual treatment probabilities are either known or

estimated parametrically.15 In Section 4.2, I relax (C) and allow higher-order dependence.

Under Assumptions 2.2 and 2.3, let

m(d, t, z, l) = E
[
r(d, t, z, l, εi)

∣∣∣Zi = z, |Ni| = l, Ti = t,Di = d
]

en(d, t,x,u, z, l) = P
(
Di = d, Ti = t

∣∣∣Zk∈Ni
= x, Rk∈Ni

= u, Zi = z,Ri = 1, |Ni| = l
) (3)

define the conditional mean and propensity score for sampled units (Ri = 1), respectively.16

I will refer to en(·) as e(·). Finally, note that this paper does not impose any condition on

the (joint) distribution of covariates.

Example 2.1 (Two-degree dependence). Suppose that each individual is associated with

i.i.d. unobservables ηi and Yi = r̃
(
Di, Ti, Zi, |Ni|, ηi,

∑
k∈Ni

ηk

)
for some unknown function

r̃(·). Then Assumption 2.1 and 2.3 hold with εi =
(
ηi,
∑

k∈Ni
ηk

)
.

2.3 Network topology and overlap

The informativeness of the results in the next section requires restrictions on the network

density and how this interacts with the overlap constant δn. I control the network’s density

through the maximum degree. Let Nn = maxi∈{1,··· ,n} |Ni|+ 2.

Assumption 2.4 (Maximum degree). AssumeN 3/2
n log(Nn)/δn = O

(
n1/2−ξ

)
, almost surely

for some (unknown) ξ ∈ (0, 1/2].

Assumption 2.4 bounds the ratio of the maximum degree and the overlap constant and

trivially holds in networks with bounded degree.

14Network exogeneity is often explicitely stated in settings with random network formation. Examples
include Leung (2020) (see its Appendix A.3, for strategic models of interactions), and Li and Wager (2022)
for graphon models. See also Goldsmith-Pinkham and Imbens (2013) for a discussion.

15Identification in the absence of (B) relies on the correct specification of the propensity score, and on the
exogeneity of the sampling indicators. These settings are discussed in Lemma 2.1, and Theorems 3.1, 4.2.

16Assumption 2.3 (B) guarantees m(·) is identical across units, and similarly, Assumption 2.2 for en(·).
Here e(·) also depends on n because gn(·) and its support might depend on n. m(·) does not depend on n
because the marginal distribution of εi is the same for any n under Assumption 2.3 (B).
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π(Xi)

(Xi)
n
i=1 ⊆ Z

Di|Zi, Ri, R
f
i ∼ P(Zi, Ri, R

f
i )

[
(Yi, Zi, ZNi

, Di, DNi
)Ri, Ri

]n
i=1

Figure 1: Example of the experiment (left-hand-side figure) and policy targeting exercise in
Section 2.4 (right-hand-side figure). Green dots denote treated units, and pink dots denote
untreated ones. In the first step, researchers run (or observe data from) an experiment
on a (small) subset of individuals, here the black-tick unit. The treatment of such a unit
and her friends is randomized with some positive probability, whereas the treatment of the
other units can have arbitrary distributions (e.g., equal to the baseline value Di = 0 almost
surely if such units are not in the experiment). Researchers observe the vector of outcome,
treatment, neighbors, treatments, and covariates of sampled units ((Yi, Zi, ZNi

, Di, DNi
)Ri),

as well as the the identity of whom they sample (Ri). Researchers then design a treatment
allocation π(Xi) for the entire population using information Xi, a subset of Zi.

Example 2.2 (Bounded degree). Suppose that Nn ≤ c0 almost surely for a constant c0

independent of n. Then Assumption 2.4 holds with ξ = 1/2 almost surely.

Example 2.2 holds for many economic models, for instance, the ones considered in

De Paula et al. (2018). In De Paula et al. (2018), the maximum degree is bounded by

a finite constant independent of the network size. Economic applications with a bounded

degree include Cai et al. (2015), the Add Health Study, and Jackson et al. (2012).17

Importantly, Assumption 2.4 allows for unbounded degree. In the presence of a growing

degree, convergence rates in Section 3 will depend on the degree and δn.

Example 2.3 (Unbounded degree). Suppose Nn = O(n1/3), and for any n,

Ti = 1
{∑

k∈Ni
Dk/|Ni| > 1/2

}
, such that P

(
Ti = 1|Zk∈Ni

, Rk∈Ni
, |Ni|, Ri = 1

)
∈ (λ, 1− λ),

for some λ ∈ (0, 1). Then Assumption 2.4 holds for ξ < 1/2.

Remark 1 (Assumption 2.1, overlap and trimming). Additional restrictions on gn(·) (and

Ti) can improve overlap. For example, suppose that for some ordered τ1, τ2, τ3,

r(d, t, z, l, e) =


r̄1(d, z, l, e) if t/l ≤ τ1

r̄2(d, z, l, e) if τ1 < t/l ≤ τ2

r̄3(d, z, l, e) if τ2 < t/l ≤ τ3

(4)

17See https://addhealth.cpc.unc.edu/, Footnote 37, Page 1879.

10

https://addhealth.cpc.unc.edu/


for some possibly unknown functions r̄1, r̄2, r̄3. In this setting, the exposure mapping is a

step-function in the share of treated neighbors (with finite support).

Although the finite-support assumption for Ti is not necessary, Assumption 2.4 requires

that the overlap constant δn → 0 at a slower rate than 1/
√
n. Section 4.1 presents theoretical

results when Assumption 2.4 fails – that is, δn → 0 at a faster rate in n.

2.4 Policy targeting

Once the experiment is concluded, a social planner will design a treatment mechanism that

maximizes average social welfare in the entire population i ∈ {1, · · · , n}, with adjacency

matrix and covariates (A,Z), as described in Figure 1. Without loss of generality, partition

Zj =
[
Xj, X̃j

]
, for two vectors (Xj, X̃j), Xj ∈ X ⊆ Z. The policymaker observes from the

entire population

X = (Xj)
n
j=1, Xj ∈ X ,

denoting an arbitrary subset of individuals’ characteristics. Examples include census or

arbitrary network statistics when available to the policymaker. She designs a policy such

that:

(1) Individuals may be treated differently, depending on observable characteristics;

(2) The assignment mechanism must be easy to implement without requiring knowledge

of the population network A;

(3) The assignment mechanism can be subject to (economic or ethical) constraints.

I therefore consider an individualized treatment assignment π : X 7→ {0, 1}, π ∈ Πn(X) ⊆ Π,

where Πn(X) denotes the set of constraints on π, a subset of a given function class Π.18 The

map amounts to a partition of X . The policy π ∈ Πn satisfies the conditions (1), (2), and

(3). The policy can be implemented in an online fashion, and it does not require the network

of the entire population if not available. Because I impose no restrictions on Xi, individual

covariates can contain network statistics if available to the policymaker.

I define utilitarian welfare as the expected outcome once I assign treatments with policy

π(Xj) in the entire (finite) population. Under Assumption 2.1, welfare is defined as

WA,Z(π) =
1

n

n∑
i=1

E
[
r
(
π(Xi), Ti(π), Zi, |Ni|, εi

)∣∣∣A,Z] , Ti(π) = gn

( ∑
k∈Ni

π(Xk), Zi, |Ni|
)
. (5)

18Here, Πn(X) may also depend on population characteristics X, whenever researchers observe X for the
entire population (e.g., through census data). For example, in settings where X is observed, Πn may require
π ∈ Π, and the capacity constraint 1

n

∑n
i=1 π(Xi) ≤ K holds for a constant K.
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The definition of welfare implies no carryovers occur from the previous experimental inter-

vention once we deploy policy π on the population.19 I collect the assumptions below and

defer their discussion and extensions in the remarks below.

Assumption 2.5 (Experiment and targeting). The researcher observes[
Ri

(
Yi, Di, Zi, DNi

, ZNi

)
, Ri

]n
i=1

from an experiment as in Equation (1) and X = (Xi)
n
i=1

from the population, for arbitrary Xi ∈ X ⊆ Z. She then constructs a (data-dependent)

policy π̂n : X 7→ {0, 1}, π̂n ∈ Πn(X) ⊆ Π, that a policymaker implements on the entire

population i ∈ {1, · · · , n}. Here, Π is a class of pointwise measurable functions20 with finite

VC dimension VC(Π).21 Each π ∈ Π, generates welfare WA,Z(π) in Equation (5).

I refer to Πn(X) as Πn. Assumption 2.5 formalizes the discussion above and it also

imposes restrictions on the complexity of the function class Π as in previous literature (e.g.,

Kitagawa and Tetenov, 2018).22 Ideally, one would like to learn

π∗n ∈ arg max
π∈Πn

WA,Z(π). (6)

However, π∗n depends on m(·) and A, both unobserved. I replace the oracle problem in

Equation (6) with its sample analog, and compare the estimated policy to π∗n. I discuss

identification below and defer estimation to the following section.23

Lemma 2.1 (Identification). Let Assumptions 2.1, 2.2, and (A) in 2.3 hold. For any π ∈ Π

WA,Z(π) =
1

ne

n∑
i=1

E
[
RiYi

1{Ti(π) = Ti, π(Xi) = Di}
e(π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|)

∣∣∣A,Z] . (7)

Proof of Proposition 2.1. The proof is in Appendix D.3.1.

Lemma 2.1 illustrates how we can identify welfare using information from participants

and is at the basis of our approach in Section 3. Lemma 2.1 leverages information from the

19In practice, carryovers do not occur if either the policy π is deployed sufficiently far in time from
the experimental intervention or if the experiment run by researchers has a neglible effect on the entire
population. See Athey and Imbens (2018) for a discussion on the no carryovers assumption.

20 Pointwise measurability can be replaced by the measurability of each π ∈ Πn. Under lack of pointwise
measurability, the supremum over Π should be replaced by the lattice supremum as defined in Haj lasz and
Malỳ (2002), corresponding to the supremum over a countable sub-family of Π.

21The VC dimension denotes the cardinality of the largest set of points that the function π can shatter.
The VC dimension is a common measure of complexity (Devroye et al., 2013).

22Examples satisfying Assumption 2.5 include threshold-crossing rules or trees (Zhou et al., 2018).
23Identification here uses information from the propensity score. The propensity score defines the treatment

exposure probabilities in the spirit of Imbens (2000), here taking into account individual and neighbors’
assignments and covariates. I condition on neighbors’ covariates because the number of treated neighbors∑
k∈Ni

π(Xk) depends on the array of covariates Xk∈Ni
, via the policy function π.
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propensity score and exogeneity of the indicators Ri. It does not impose conditions on the

outcomes’ conditional mean functions (Assumption 2.3 (B)).

Remark 2 (Identificatiion of the propensity score). Here, e(·) can be identify because

P
(
Di = d,

∑
k∈Ni

Dk = t
∣∣∣Zk∈Ni

= x, Rk∈Ni
= u, Zi = z,Ri = 1, |Ni| = l

)

= P
(
Di = d|Zi = z,Ri = 1

) ∑
w1,··· ,wl:

∑
v wv=t

l∏
k=1

P
(
D
N

(k)
i

= wk

∣∣∣Z
N

(k)
i

= x(k), R
N

(k)
i

= u(k), R
N

(k)
i

= 1
)
.

(8)

for d ∈ {0, 1}, s ∈ Z, t ≤ l, where x(k) indicates the kth entry of x, and similarly for

u(k). The expression only depends on marginal treatment probabilities, identified from the

experiment.24 e(·) can then be written as a function of marginal treatment probabilities.25

Remark 3 (Non-reversible treatments). Welfare here is defined conditional on the adjacency

matrix and matrix of covariates, where the policy π can change the treatment of each unit

in the population. Additional restrictions on the policy space may arise in this setting, if

treatments are non-reversible (i.e., the policymaker must also treat those individuals treated

in the experiment). In this case, we should encode such constraints in the policy function,

choosing treatment rules of the form π(Xi)(1−Di) +Di (i.e., treatment is one if Di = 1 and

is π(Xi) otherwise). Our results extend to this setting as discussed in Appendix B.1.

Remark 4 (Different populations). An interesting scenario is when individuals treated by

the policymakers are drawn from a population different from the one eligible for the experi-

ment (for example, we sample individuals from a country and we would like to implement the

policy in a different country). Section 4.3 presents an extension when the target population’s

distribution is known, and Appendix B.4 when unknown.

Remark 5 (Comparison with global treatment rules). Whenever the network from the

entire population A is observed, policymakers may consider a global policy π̃i(Xi, A) that

also depends on A ∈ An. Here, network statistics should be included in Xi if observable

(e.g., measures of centrality as in Bloch et al., 2017), with policies π(Xi). In either case

optimization takes into account spillovers for the design of the best policy.

Although global assignments can be more flexible, I do not consider a global assignment

rule for the following reasons: (i) it requires collecting network data from the entire popula-

tion; and (ii) the complexity of the global function class can grow with the population size

24Note that if P (Di = 1|Zi, Ri = 0, Rfi = 1) 6= P (Di = 1|Zi, Ri = 1) (i.e., treatments of the neighbors of

experiment participants is assigned differently than treatment to participants), P (Di = 1|Zi, Ri = 0, Rfi = 1)
is identified because we observe the treatment assignments of the neighbors of sampled units.

25The reason is that P (Ti = t|·) is a sum of probabilities in Equation (8), for any gn(·) in Assumption 2.1.
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n, leading to overfitting.26 The individualized assignment avoids (i) and (ii) and accommo-

dates settings where the target population is (much) larger than the sample size, similarly

to settings considered by Manski (2004).

Remark 6 (Additional extensions). One possible extension is to let Ri depend on Zi. In

this setting, identification follows similarly, after dividing each summand in Lemma 2.1 by

P (Ri = 1|Zi). Our results follow similarly for P (Ri = 1|Zi) = α(Zi)ne/n, for α(z) ∈
(0, 1) bounded away from zero. A different extension includes spillovers over the individual

compliance, discussed in Appendix B.3. Finally, higher-order interference follows similarly

to what discussed here once we control for higher-order-degree neighbors.

2.5 Spillovers in the related literature

I pause here to compare our framework and assumptions with existing models of spillovers.

The framework I present most closely connects to the literature on causal inference under

interference, including, among others, Hudgens and Halloran (2008), Athey and Imbens

(2018), Manski (1993), and the model in Leung (2020) in particular. The model in this

paper allows for arbitrary heterogeneity in the number of friends, |Ni|, observables Zi, and the

exposure mapping Ti as a function of the number of treated friends. We can therefore achieve

semi-parametric identification of policy effects in the spirit of the literature on (augmented)

inverse probability weights (e.g., Tchetgen and VanderWeele, 2012; Aronow and Samii, 2017).

Interestingly, I do not require restrictions on observables Zi, which can be arbitrarily

dependent, and on the network A, other than restrictions on the maximum degree. This

approach is possible once I explicitly incorporate sampling uncertainty as in Abadie et al.

(2020) for policy learning. Similar restrictions on the degree are often imposed to obtain

concentration of the estimated causal effects (e.g., Sävje et al., 2021). Here, the maximum

degree restrictions together with the local interference assumption allow me also to control

the complexity of the policy function class, characterized by the direct and spillover effects(
π(Xi),

∑
k∈Ni

π(Xk)
)
, π ∈ Π.

I draw connections to the literature on information diffusion and optimal seeding. This

literature mostly studies models where informed individuals transmit information to neigh-

26For instance, for a global function class obtained via unions and intersection of kn half-planes, the VC
dimension of the function class is of order kn log(kn) (Csikós et al., 2019). For a global policy, kn (and the
VC-complexity) can grow at a fast rate in n. As a result, guarantees with a global function class can be
obtained only in settings with a small target population whose size does not grow with ne as in settings
studied by Ananth (2021). This differs from the large target population scenario considered here. In the
absence of policy constraints (Π in our notation), an alternative approach is to impose modeling assumptions
as in Kitagawa and Wang (2020), which, however, requires correct model specification. Here, we allow for
policy constraints (e.g., A is not observed) and semi-parametric identification.
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bors sequentially over multiple periods (Banerjee et al., 2013, 2014; Akbarpour et al., 2018;

Kempe et al., 2003). These references do not take into account heterogeneity (Zi in our case).

They instead study network centrality measures that are motivated by the diffusion model

considered. The current paper studies a static model with heterogeneity, with spillovers

occurring through the number of treated friends.

In particular, as noted by Banerjee et al. (2013), models of information diffusion focus on

either what Banerjee et al. (2013) defines as “information effects” (people become aware of

certain opportunities or technologies) or “endorsement effects” (people’s behavior may affect

others’ behavior), but not necessarily both (similar to what Manski 1993 defines exogenous

and endogenous spillovers). Once we interpret the outcome Yi as technology adoption,

this paper mostly focuses on information effects through the dependence of the outcome

on neighbors’ treatments (information). It can accommodate endorsement effects in those

settings where the function r(·) captures endorsement effects in a reduced form.27

Finally, a further distinction from the literature on seeding (Kempe et al., 2003; Kitagawa

and Wang, 2020; Galeotti et al., 2020) is that the current paper focuses on constrained poli-

cies, motivated by the cost of collecting network data, instead of first-best (unconstrained)

policies which would require information on the population network.

3 Network Empirical Welfare Maximization

Next, I introduce our procedure and its properties. I present results as non-asymptotic and

valid in a finite sample.

3.1 Known propensity score

Suppose first researchers know the propensity score. Define

Ii(π) = 1
{
Ti(π) = Ti, π(Xi) = Di

}
,

27An example is having two periods t ∈ {1, 2}, where the treatment consists of providing information
at time t = 1 to some individuals. At the time t = 1, individual outcomes only depend on individual
treatments Di, whereas at t = 2, diffusion occurs, and outcomes depend on the average number of friends
who adopted the technology. Let Yi,1 = Diτ + εi,1 the outcome at time t = 1 with treatment effects τ
and i.i.d. unobservables εi, and Yi,2 = f(Di, Yi,1,

∑
k∈Ni

Yk,1, |Ni|, εi,2), for some function f(·) and i.i.d.
unobservables εi,2, the outcome at time t = 2. It follows that the model presented here encompasses this
framework as a special case, where εi = (

∑
k∈Ni

εk,1, εi,1, εi,2) in Assumption 2.3 and the outcome of interest
is the end-line outcome Yi,2.
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with Ti(π) as in Equation (5). Consider the following double robust estimator (AIPW) of

welfare:

Wn(π,mc, e) =
1

ne

n∑
i=1

Ri

{
Ii(π)

ei(π)

(
Yi −mc

i (π)
)

+mc
i (π)

}
, (9)

where

mc
i(π) = mc

(
π(Xi), Ti(π), Zi, |Ni|

)
, ei(π) = e

(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)
.

The function mc denotes an arbitrary regression adjustment, possibly different from the

population conditional mean functions.28

The estimated welfare inherits double-robust properties in the spirit of Robins et al.

(1994), and Tchetgen and VanderWeele (2012), Aronow and Samii (2017), Liu et al. (2019),

who study inference with spillover effects. For known propensity scores, for any function mc,

the estimator is unbiased for WA,Z(π) (see Appendix D.3.1).

Assumption 3.1 (Regression adjustment: oracle setup). For each d ∈ {0, 1}, t ∈ Tn, let

|mc(d, t, Zi, |Ni|)| < Γ, almost surely, for a finite constant Γ < ∞, and for z ∈ Z, l ∈ Z,

mc(d, t, z, l) ⊥
(
Yi, Ri, Di

)n
i=1

∣∣∣A,Z.

Assumption 3.1 states that the regression adjustment is (i) uniformly bounded and (ii)

independent of experiment participants. An example is mc = 0, or mc estimated on an

independent population. Sections 3.2, and 4.2 study settings where (ii) fails. Let

π̂mc,e ∈ arg max
π∈Π

Wn(π,mc, e).

Theorem 3.1 (Oracle Regret). Let Assumptions 2.1, 2.2, 2.5, 3.1, and (A), (C), (D) in

2.3 hold. For a universal constant C̄ <∞, the following holds almost surely:

E
[

sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] ≤ C̄

ΓN 3/2
n

γδn

√
log(Nn)VC(Π)

ne
.

Proof of Theorem 3.1. The proof consists of three steps. First, I extend symmetrization

arguments – widely studied for independent observations (e.g., Devroye et al., 2013; Kitagawa

and Tetenov, 2018) – for network data studied here. To obtain symmetrization, I group units

into groups of conditionally independent observations. Within each group, I provide bounds

in terms of the Rademacher complexity29 of the function class obtained from the composition

28Note that mc can be arbitrary. Therefore, it does not require that the conditional mean functions are
identical across units (Assumption 2.3 (B)).

29See Definition D.5 in the Appendix for the definition of Rademacher complexity.
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of direct and spillover effects. As a second step, I bound the Rademacher complexity in each

group (i) by deriving an extension of Ledoux and Talagrand (2011)’s contraction inequality

(Lemma D.6), using (ii) Dudley’s entropy integral bound (Wainwright, 2019, Theorem 5.22),

and (iii) providing an upper bound on the covering number30 of the product of the number

of treated neighbors and individual treatment.31 Finally, as the third step, I invoke Brooks

(1941)’s theorem to control the number of groups containing conditionally independent units

using the maximum degree.

Section 3.4 presents a proof sketch, and Appendix D.2 the complete proof.

Theorem 3.1 provides a non-asymptotic upper bound on the regret, and it is the first

result of this type under network interference.

The regret bound depends on the network topology through the maximum degree Nn,

the overlap constant δn, and the (expected) sample size ne. The degree affects the regret

bound through two channels: (i) dependence between outcomes conditional on the network

and covariates and (ii) the complexity of the function class obtained by the composition of

direct and spillover effects. For (i), I leverage Assumptions 2.1, 2.2 (i), and 2.3 (C), to show

each individual observation is dependent with at most 2N 2
n many other units. For (ii), I

leverage instead Assumptions 2.1 and 2.5, to bound (ii) as a function of the VC dimension

of Π and Nn. The bound also depends on δn, which can vary with n. Intuitively, for larger

networks (and larger degrees), the probability that individuals exhibit strict overlap may get

smaller, depending on the exposure mapping considered. The bound is independent of α in

Equation (1). Theorem 3.1 does not assume Assumption 2.3 (B).

The bound shrinks to zero as ne increases, only if the maximum degree and the overlap

constant grows at an appropriate slower rate than the sample size. We formalize this below.

Corollary 1 (Convergence rate with a possibly unbounded degree). Let the Assumptions

in Theorem 3.1 hold. Suppose in addition that Assumption 2.4 holds. Then

E
[

sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] = O

(
n−ξe

)
almost surely, for ξ ∈ (0, 1/2] as defined in Assumption 2.4.

The corollary shows that the regret converges to zero at a rate that depends on the

convergence rate of the maximum degree and the number of experiment participants. For

bounded degree, the regret scales at rate 1/
√
ne.

30See Wainwright (2019) for a definition of covering numbers and Definition D.1 in the Appendix.
31Lemma D.7 presents the full argument of this second step. Lemma D.5 presents the bound on the

covering number for (iii).
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Corollary 2 (Example 2.2 cont’d). Let the Assumptions in Theorem 3.1 hold, and Nn < c′0

almost surely, for a constant c′0 independent of n. Then almost surely,

E
[

sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] = O

(
n−1/2
e

)
.

In the following theorem, I show that a sequence of data-generating processes such that

any data-dependent policy does not improve the convergence rate of π̂mc,e exists. Consis-

tently with the regret guarantees in previous theorems, I provide the lower bound conditional

on (A,Z).

Theorem 3.2 (Minimax lower bound). Let Π be the class of policies π : X 7→ {0, 1},
with finite VC dimension VC(Π), X = Rd ⊆ Z, for some finite d < ∞. Let Pn(A,Z)

the set of conditional distributions Dn(A,Z) of (Yi, Di, Ri)
n
i=1|A,Z satisfying Assumptions

2.1, 2.2, 2.3. Then for any gn(·) in Assumption 2.1, for any ne ≥ 16VC(Π), and for any

data-dependent π̂n ∈ Π, which depends on
[
Ri(Yi, Zi, Zk∈Ni

, Di, Dk∈Ni
, Ni), Ri

]n
i=1

,

sup
A∈Ao

n,Z∈Zn
sup

Dn(A,Z)∈Pn(A,Z)

δn

N 3/2
n log1/2(Nn)

EDn(A,Z)

[(
sup
π∈Π

WA,Z(π)−WA,Z(π̂n)
)∣∣∣A,Z]

≥ exp(−2
√

2)

25/2 log1/2(2)

√
VC(Π)

ne
,

where Aon ⊂ An denotes the space of symmetric unweighted adjacency matrices satisfying

Assumption 2.4, and EDn [·] denotes the expectation with respect to Dn.

Proof of 3.2. The proof follows similar steps of Devroye et al. (2013); Kitagawa and Tetenov

(2018), once I construct a sufficiently sparse adjacency matrix for the worst-case lower bound,

with two distinctions that, to my knowledge, are novel in the literature: I condition on

covariates and consider random sampling indicators. See Appendix D.2 for details.

Theorem 3.2 provides a worst-case lower bound to any data-dependent policy, holding

uniformly for any ne ≥ 16VC(Π). Theorem 3.2 establishes the minimax rate of convergence

of π̂mc,e for the known propensity score, because I rescale the left-hand side by the additional

term δn/(N 3/2
n log(Nn)), and because it matches Theorem 3.1.32 Similar to lower bounds in

the literature (Kitagawa and Tetenov, 2018), the bound is maximin over the data-generating

process, including the adjacency matrix A satisfying Assumption 2.4.33

32The main intuition is to construct a sufficiently sparse adjacency matrix in the derivation of the lower
bound.

33The lower bound also implies the same worst-case expected lower bounds when (A,Z) are drawn from
some super-population. This follows from the fact that we can always select a degenerate distribution for
(A,Z) once we look at the worst-case expected lower bound with respect to distributions of (A,Z).
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3.2 Estimated nuisance functions

Next, I derive regret guarantees when estimating the conditional mean m(·) and/or propen-

sity score e(·), as defined in Equation (3) under Assumptions 2.2, and 2.3. Define m̂, and

ê the estimated conditional mean and propensity score as in Algorithm 2 (Appendix A),

Wn(π, m̂, ê) as the welfare with the estimated nuisance functions as in Equation (27), and

π̂m̂,ê ∈ arg max
π∈Π

Wn(π, m̂, ê). (10)

I propose a modification of the cross-fitting algorithm (Chernozhukov et al., 2018) for

interference, described in detail in Algorithm 2. I construct groups of sample units that are

neither friends nor share a common friend. This information is available under the sampling

mechanism in Section 2.2, because researchers observe the set of friends of each sampled

individual. Within each group, I estimate the conditional mean function using standard

cross-fitting. I repeat the same algorithm for the propensity score, where I first estimate

the individual treatment probability and then aggregate such probabilities as in Remark 2.

Algorithm 2 presents the details and consists of a sequence of mixed-integer linear programs.

To my knowledge, Algorithm 2 is novel to the literature on interference.34 For settings

where the network presents approximately independent components (e.g., regions), I also

present a computational relaxation in Algorithm 3.35 See Appendix A for details.

To study properties of the algorithm, I assume that the estimated nuisance functions

satisfy the same bounded and overlap conditions as their population counterparts.36

Assumption 3.2 (Estimated nuisances). Assume that for each d ∈ {0, 1}, t ∈ Tn, i ∈
{1, . . . , n}, and m̂(i)(·), ê(i)(·) as in Algorithm 2, |m̂(i)(d, t, Zi, |Ni|)| < Γ almost surely, for a

finite constant Γ and ê(i)(d, t, Zk∈Ni
, Rk∈Ni

, Zi, Ri, |Ni|) ∈ (γδn, 1 − γδn), almost surely, for

γ, δn as defined in Assumption 2.2.

The rate of convergence here also depends on the product of the mean-squared error of

the estimated conditional mean function and propensity score, averaged over the population

34In the context of clustering, Chiang et al. (2019) have proposed a different algorithmic procedure for
inference with multi-way and clustered data. Their approach differs since they do not consider network
interference (and a single network).

35Algorithm 3 constructs subgraphs of the network recursively to minimize the number of individuals with
shared friends between different subgraphs. It estimates nuisance functions for unit i using information from
units in the subgraphs different from the one of unit i.

36I can replace Assumption 3.2 with uniform consistency of m̂, ê as in Athey and Wager (2021).
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covariates and number of neighbors:37

Rn(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

(
m̂(i)(d, t, Zi, |Ni|)−m(d, t, Zi, |Ni|)

)2∣∣∣A,Z,Ri = 1

]

Bn(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

( 1

ê(i)(d, t, Zk∈Ni
, Rk∈Ni

, Zi, |Ni|)
− 1

e(d, t, Zk∈Ni
, Rk∈Ni

, Zi, |Ni|)

)2∣∣∣A,Z,Ri = 1

]
,

(11)

where m̂(i), ê(i) are the estimated functions for unit i, as defined in Algorithm 2.

Theorem 3.3. Let Assumptions 2.1, 2.2, 2.3, 2.4, 2.5, 3.2 hold. Suppose that m̂, ê are

estimated as in Algorithm 2. Then

E
[

sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] = O

(
n−ξe +

√
Rn(A,Z)× Bn(A,Z)

)
.

almost surely, for ξ ∈ (0, 1
2
] as defined in Assumption 2.4.

Proof of Theorem 3.3. The proof leverages the network cross-fitting argument (Algorithm

2) combined with similar techniques used to derive Theorem 3.1. The rate n−ξe follows from

Assumption 2.4. See Appendix D.2.3 for the complete derivation.

Theorem 3.3 states that the regret bound depends on two components. The first com-

ponent depends on the convergence rate of the maximum degree, overlap constant, and

experiment size, similar to what was discussed in the presence of a known propensity score

(e.g., Corollary 1). For a bounded degree as in Example 2.2, ξ = 1/2, and ξ < 1/2 oth-

erwise. The second component depends on the estimation error of the nuisance functions,

and in particular, it depends on the product of their convergence rates, in the same spirit of

standard conditions in the i.i.d. setting (e.g., Farrell, 2015).

Remark 7 (Convergence rate of nuisance functions). Appendix B.2 shows that using Al-

gorithm 2,
√
Rn(A,Z)× Bn(A,Z) = O(N 2

nn
−(ζm+ζe)
e /δn), where n−2ζm

e , and n−2ζe
e /δ2

n are

the rate of convergence of the mean squared error of the conditional mean and propen-

sity score, respectively, on a sample of independent observations.38 As a result, whenever

N 1/2
n n

−(ζm+ζe)
e = n

−1/2
e (e.g., n−ζme = n−ζee = N−1/4

n n
−1/4
e ), it follows that

√
Rn(A,Z)× Bn(A,Z) =

O(n−ξe ).39 Convergence rates for the estimation error of order N 1/2
n n−(ζm+ζe) = n

−1/2
e imply

37Note that here I condition on Ri = 1 indicating the estimation error had unit i been sampled, since
m̂i, êi is not defined for non-sampled units.

38For example, n−ζme =
√

log(p)/ne for the lasso under conditions in Negahban et al. (2012) and fixed
sparsity, where p is the number of regressors. For the propensity score, we rescale by 1/δ2n since otherwise
the mean-square error may not be uniformly bounded as δn → 0.

39This follows because under Assumption 2.4, ξ is defined such that n−ξe = log1/2(Nn)N 3/2
n n

−1/2
e /δn.
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that the estimation error of the nuisance functions does not affect the rate of the regret

bound in Theorem 3.1 obtained in the absence of estimation error. Appendix B.2 presents

formal results.

3.3 Optimization

Next, I discuss the optimization procedure. For simplicity, consider the most agnostic case

where Ti =
∑

k∈Ni
Dk denotes the sum of treated neighbors. Similar reasoning applies to

Ti being a known function of the sum of treated neighbors. Define the estimated effect of

assigning to unit i treatment d, after treating t neighbors:

qi(d, t) =

 1{
∑

k∈Ni
Dk = t,Di = d}

e
(
d, t, Zk∈Ni

, Rk∈Ni
, Zi, |Ni|

)(Yi −mc
(
d, t, Zi, |Ni|

))
+mc

(
d, t, Zi, |Ni|

) , (12)

where I omit the dependence of qi(·) with mc and e for the sake of brevity. Second, let

Bi(π, h) = 1
{∑

k∈Ni
π(Xk) = h

}
be the indicator of whether h neighbors of individual i

have been treated under policy π. We have the following:

|Ni|∑
h=0

{(
qi(1, h)− qi(0, h)

)
π(Xi)Bi(π, h) +Bi(π, h)qi(0, h)

}
= qi

(
π(Xi),

∑
k∈Ni

π(Xk)
)
. (13)

Namely, each element in the sum is weighted by the indicator Bi(π, h), and only one of

these indicators is equal to one. I can then define variables pi, pi = π(Xi), π ∈ Πn that denote

the treatment assignment of each unit i either sampled (Ri = 1) or friend of a sampled unit

(Rf
i = 1). For example, for π(Xi) = 1{X>i β ≥ 0}, β ∈ B, similar to Florios and Skouras

(2008),
X>i β

|Ci|
< pi ≤

X>i β

|Ci|
+ 1, Ci > sup

β∈B
|X>i β|, pi ∈ {0, 1},

where pi is equal to one if X>i β is positive, and zero otherwise. The key intuition is to

introduce additional variables to write Bi(π, h) using mixed-integer linear constraints. Define

ti,h,1 = 1

{∑
k∈Ni

pk ≥ h

}
, ti,h,2 = 1

{∑
k∈Ni

pk ≤ h

}
, h ∈ {0, · · · , |Ni|}.

It follows that ti,h,1 + ti,h,2 − 1 = Bi(π, h), and that such variables admit a mixed-integer

linear program characterization. Formally, the optimization program is40

max
{ui,h},{pi},{ti,1,h,ti,2,h}

n∑
i=1

|Ni|∑
h=0

Ri

{(
qi(1, h)− qi(0, h)

)
ui,h + qi(0, h)(ti,h,1 + ti,h,2 − 1)

}
(14)

40Here, the constraint on ui,h guarantees that ui,h = pi(ti,h,1 + ti,h,2 − 1) = pi × ti,h,1 × ti,h,2 since
(ti,h,1 + ti,h,2 − 1) is equal to one if both variables are ones and zero if either of the two variables are ones
and the other is zero. The case where both variables are zero never occurs by construction.
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under the following constraints:

(A) pi = π(Xi), π ∈ Πn, ∀i : Ri = 1 or Rfi = 1

(B)
pi + ti,h,1 + ti,h,2

3
− 1 < ui,h ≤

pi + ti,h,1 + ti,h,2
3

, ui,h ∈ {0, 1} ∀h ∈ {0, · · · , |Ni|},∀i : Ri = 1

(C)
(
∑

k Ai,kpk − h)

|Ni|+ 1
< ti,h,1 ≤

(
∑

k Ai,kpk − h)

|Ni|+ 1
+ 1, ti,h,1 ∈ {0, 1}, ∀h ∈ {0, · · · , |Ni|},∀i : Ri = 1

(D)
(h−

∑
k Ai,kpk)

|Ni|+ 1
< ti,h,2 ≤

(h−
∑

k Ai,kpk)

|Ni|+ 1
+ 1, ti,h,2 ∈ {0, 1}, ∀h ∈ {0, · · · , |Ni|},∀i : Ri = 1.

(15)

The first constraint can be replaced by methods discussed in previous literature, such as

maximum scores (Florios and Skouras, 2008). By contrast, the additional constraints are due

to interference.41 Whenever units have no neighbors, the objective function is proportional

to the one discussed in Kitagawa and Tetenov (2018) under no interference. Therefore, the

formulation generalizes the MILP formulation to the case of interference.42

Theorem 3.4. Let Ti =
∑

k∈Ni
Dk. Then π̂ ∈ argmaxπ∈ΠWn(π,mc, e), if and only if it

maximizes Equation (14) with constraints in Equation (15).

The proof of Theorem 3.4 follows directly from the argument in the current section.

3.4 Derivation of Theorem 3.1: main steps

This section includes a sketch of the proof of Theorem 3.1, whereas Appendix D.2 presents

formal definitions and derivations. For the sake of brevity, in the argument below, I further

assume Yi ∈ [−Γ′,Γ′] for a finite constant Γ′ <∞; that is, the outcome is uniformly bounded.

Appendix D.2 presents derivations for unbounded outcomes. Because Πn ⊆ Π, it follows that

E
[

sup
π∈Πn

WA,Z(π)−WA,Z(π̂mc,e)
∣∣∣A,Z] ≤ 2E

[
sup
π∈Πn

∣∣∣Wn(π,mc, e)−WA,Z(π)
∣∣∣|A,Z]

≤ 2E
[

sup
π∈Π

∣∣∣Wn(π,mc, e)−WA,Z(π)
∣∣∣|A,Z] , (16)

our focus will be bounding the right-hand side of Equation (16). Define

Qi(π,A,Z) = Ri

[
Ii(π)

ei(π)

(
Yi −mc

i (π)
)

+mc
i (π)

]
,

where the dependence with e,mc is suppressed for convenience. Define Qn(π,A, Z) as the

joint distribution, of Qi, namely
(
Qi(π,A, Z)

)n
i=1

∣∣∣A,Z ∼ Qn(π,A, Z), for given π,A, Z.

41In practice, we observe that including additional (superfluous) constraints stabilizes the optimization
problem. These are

∑
h(ti,h,1 + ti,h,2 − 1) = 1 for each i and

∑
i

∑
h ui,h =

∑
i pi.

42Also, observe that the formulation differs from those provided for allocation of an individual into small
peer groups (Li et al., 2019) since the latter case does not account for the individualized treatment assign-
ments encoded in the constraints (A)-(D), and in the variables ti,h.
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Define (σi)
n
i=1 i.i.d. Rademacher random variables independent of observables and unob-

servables,43 and Eσ[·] denotes the expectation only with respect to (σi)
n
i=1, conditional on

observables and unobservables. By Lemma 2.1 E[Wn(π)|A,Z] = WA,Z(π) for all π ∈ Π.

Symmetrization with network data Next, I extend the symmetrization argument (e.g.,

Lemma 6.4.2 in Vershynin, 2018) to the context of this paper. Define(
Q′i(π,A, Z)

)n
i=1

∣∣∣A,Z ∼ Qn(π,A, Z), an independent copy of
(
Qi(π,A, Z)

)n
i=1

, conditional

on (A,Z). It follows

(16) ≤ E

[
sup
π∈Π

∣∣∣ 1

ne

n∑
i=1

[
Qi(π,A,Z)−Q′i(π,A,Z)

]∣∣∣|A,Z] (∵ Jensen’s inequality). (17)

Ideally, using standard symmetrization arguments, I would like to bound the right-hand

side in Equation (17). Unfortunately, this is not possible because of dependence. I instead

partition observations into groups of conditionally independent random variables. I then

obtain bounds that depend on the number of such groups. Let A2 be the adjacency matrix

obtained by connecting neighbors and two-degree neighbors under A. Let χn(A2) be the

smallest number of groups such that each group does not contain two units that either are

neighbors or share a common neighbor under A, and C2
n = {C2

n(g)}χn(A2)
g=1 , C2

n(g) ⊆ {1, · · · , n},
the smallest set of such groups.44 Then

E

[
sup
π∈Π

∣∣∣ 1

ne

n∑
i=1

[
Qi(π,A,Z)−Q′i(π,A,Z)

]∣∣∣|A,Z] (∵ triangular inequality)

≤
∑

g∈{1,··· ,χn(A2)}

E

sup
π∈Π

∣∣∣ 1

ne

∑
i∈C2n(g)

[
Qi(π,A,Z)−Q′i(π,A,Z)

]∣∣∣|A,Z


︸ ︷︷ ︸
(II)

.
(18)

Note thatQi equals zero if Ri = 0. Therefore, under Assumption 2.2 (i), it follows thatQi can

be written as a function of
[
Ri

(
εi, Ri, εDi

, Rf
i , Rj∈Ni

, Rf
j∈Ni

, εDj∈Ni
, Zi, |Ni|, Zk∈Ni

)]
, where

Rf
i = 1{

∑
k Ai,kRk > 0}. For each j ∈ Ni, R

f
j equals one almost surely conditional on Ri = 1.

Rf
i is instead a deterministic function of Rj∈Ni

. As a result, because Qi = 0 if Ri = 0 almost

surely, one can write Qi only as a function of
[
Ri

(
εi, Ri, εDi

, Rj∈Ni
, εDj∈Ni

, Zi, |Ni|, Zk∈Ni

)]
,

its dependence with Rf
j∈Ni

can be dropped.

Under the distributional assumptions of each of these components, it follows that Qi are

jointly independent if they are not neighbors and do not share a common neighbor conditional

43Namely, P (σi = 1) = P (σi = −1) = 1/2.
44Such a set always exists. For example, in a fully connected network, C2n = {{i}}, i ∈ {1, · · · , n}, χn(A2) =

n, where each group only contains one unit, while in a network with no connection, C2n = {{1, · · · , n}}, and
χn(A2) = 1.
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on A,Z.45 Because Qi, Q
′
i|A,Z have the same marginal distribution by construction,

(II) ≤ 2E
[
Eσ
[

sup
π∈Π

∣∣∣ 1

ne

∑
i∈C2n(g)

σiQi(π,A,Z)
∣∣∣]

︸ ︷︷ ︸
(III)

∣∣∣A,Z].

Bound on the function class complexity I control (III) with Lemma D.7. The

idea of the lemma is the following. First, note that here Qi(π, ·) depends on π through(
π(Xi),

∑
k∈Ni

π(Xk)
)

. I show that Qi(π,A, Z) is Lipschitz in
(∑

k∈Ni
π(Xk)

)
with the

Lipschitz contant proportional to Γ′

γδn
. I then leverage extensions of the Ledoux-Talagrand

contraction inequality (Lemma D.6, which extends Theorem 4.12 in Ledoux and Talagrand,

2011) to show

Eσ

sup
π∈Π

∣∣∣ 1

ne

∑
i∈C2n(g)

σiQi(π,A,Z)
∣∣∣
 ≤ C̄Γ′

γδn
Eσ

sup
π∈Π

∣∣∣ 1

ne

∑
i∈C2n(g)

Riσi

( ∑
k∈Ni

π(Xk)
)
π(Xi)

∣∣∣
 (19)

for a universal constant C̄ < ∞. Using Theorem 5.22 in Wainwright (2019), I can bound

the right-hand side in Equation (19), by an integral of the covering number of a function

class obtained from
(∑

k∈Ni
π(xk)

)
π(xi), π ∈ Π – which we can bound by a function of the

maximum degree and the VC dimension of Π (Lemma D.5) – and

√∑n
i=1Ri1{i∈C2n(g)}

ne
.

Conclusions Collecting terms, for a universal constant C̄ <∞, I show

(16) ≤ C̄ ×
χn(A2)∑
g=1

× Γ′

γδn
×
√

log(Nn)NnVC(Π)× E

[√∑n
i=1Ri1{i ∈ C2

n(g)}
ne

∣∣∣A,Z]

≤ C̄ ×
√
χn(A2)× Γ′

γδn
×
√

log(Nn)NnVC(Π)× E

[√∑n
i=1Ri
ne

∣∣∣A,Z] (∵ concavity of
√
x).

The first term
√
χn(A2) captures the dependence structure. By Brooks (1941)’s theorem,

χn(A2) ≤ 2N 2
n (see Lemma D.5). The second term captures Lipschitz-continuity of the

objective function and depends on the overlap 1/δn. The third term captures the complexity

of the function class of interest, increasing in the maximum degree. The last term captures

concentration in the sample size. Using Jensen’s inequality, E
[√∑n

i=1Ri

ne

]
≤ 1/n

1/2
e . In

Theorem 3.1, Γ replaces Γ′ under bounded moments, instead of bounded outcomes.

Remark 8 (Independence of sampling indicators). My results extend to settings where

sampling indicators are locally dependent. For instance, if indicators are dependent between

45In particular, we leverage here Assumption 2.1 (interference is local); Assumption 2.2 (i) (treatments
are conditionally independent); Assumption 2.3 (C) (unobservables are conditionally independent if two
individuals do not share a common neighbor). I relax Assumption 2.3 (C) in Section 4.
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two-degree neighbors, the proof above follows verbatim, because the sampling indicators in

the set C2
n(g), g ∈ {1, · · · , χ(A2

n)} are independent.

4 Main extensions

I discuss the main extensions here: trimming with poor overlap, higher-order dependence,

and different target and sample units. Appendix B contains additional extensions.

4.1 Trimming to control overlap

In this subsection, I provide regret bounds whenever a few units may present a large degree.

I consider the setting where Ti =
∑

k∈Ni
Dk. To guarantee overlap, I introduce the following

trimming estimator:

W tr
n (π,mc, e;κn) =

1

n

n∑
i=1

Ri

{
Ii(π)

ei(π)

(
Yi −mc

i(π)
)

1
{
|Ni| ≤ logγ(κn)

}
+mc

i(π)

}
, (20)

with ei(π),mi(π), Ii(π) as in Equation (9). Here, logγ(κn) defines the trimming constant,

as the logarithm in scale γ of a user-specific κn (with γ in Assumption 2.2). The estimator

excludes the direct effect on the largely connected nodes (with more than logγ(κn) neighbors)

but keeps information from the spillovers that such nodes generate. Define

π̂trκn ∈ arg max
π∈Πn

W tr
n (π,mc, e;κn), Pn

(
|Ni| ≥ logγ(κn)

)
=

1

n

n∑
i=1

1
{
|Ni| ≥ logγ(κn)

}
.

Theorem 4.1. Suppose that Pn

(
|Ni| ≥ logγ(κn)

)
< c, for a constant c < 1. Let Ti =∑

k∈Ni
Dk, and let Assumptions 2.1, 2.2, 2.3, 2.5, 3.1 hold. Then

E
[

sup
π∈Πn

WA,Z(π)−WA,Z(π̂trκn)
∣∣∣A,Z] = O

N 3/2
n

κn

√
log(Nn)VC(Π)

ne
+ Pn

(
|Ni| ≥ logγ(κn)

) .

Proof of Theorem 4.1. See Appendix D.2.

Theorem 4.1 shows we can improve the regret bound for a suitable choice of κn under

restrictions on the degree distribution. For instance, suppose
√
n-many individuals have

a degree that can grow in n, whereas all other units have a degree bounded by at most

logγ(κ), for a constant κ independent of n. In this case, Pn(|Ni| ≥ logγ(κ)) = O(
√

α
ne

), and
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the regret is of order O
(
N 3/2

n

κ

√
log(Nn)VC(Π)

ne

)
, independent of δn. Theorem 4.1 illustrates how

information can be leveraged from the degree distribution to improve convergence rates.

4.2 Regret with higher-order dependence

Next, I characterize regret bounds in settings where individuals can depend on friends up to

the degree of order M , where M is a finite number and unknown. To simplify exposition, I

assume the outcome is uniformly bounded.46

Assumption 4.1 (higher-order dependence and bounded outcome). Suppose that for some

unknown M ≥ 2, (A) εi ⊥ (εj)j 6∈∪Mk=1Ni,k

∣∣∣A,Z, where Ni,k denotes the set of connection of i

of degree k. Suppose in addition that (B) Yi ∈ [−Γ′,Γ′], for a positive constant Γ′ <∞.

Under Assumption 4.1, unobservables can depend on individuals of at most degree M .

Suppose M is unknown and researchers do not have information from higher-order neigh-

bors.47 Define mc : {0, 1} × Z × Z × Z 7→ [−Γ′,Γ′] for some finite Γ′ < ∞, ec(·; |Ni|) :

Z |Ni| × {0, 1}|Ni| × Z 7→ (γδn, 1 − γδn), the pseudo-true conditional mean function and

propensity score, and m̂, ê their corresponding estimators constructed arbitrarly (e.g., pool-

ing information from all sampled units). Let48

R̃n(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

(
m̂(d, t, Zi, |Ni|)−mc(d, t, Zi, |Ni|)

)2
|A,Z

]
.

B̃n(A,Z) =
1

n

n∑
i=1

E

[
sup
d,t

( 1

ec(d, t, Zk∈Ni
, Rk∈Ni

, Zi)
− 1

ê(d, t, Zk∈Ni
, Rk∈Ni

, Zi)

)2
|A,Z

] (21)

denote the mean-squared errors of the estimators obtained from all sampled units, averaged

over the population covariates and number of neighbors.

Theorem 4.2. Let Assumptions 2.1, 2.2 hold, and Conditions (A), (D) in 2.3, Assumptions

2.4, 2.5, 3.1, 3.2, 4.1 hold. Assume either (or both) (i) ec(·) = e(·), or (ii) Assumption 2.3

(B) holds and mc = m. Then, for M ≥ 2, ξ ∈ (0, 1/2] as in Assumption 2.4:

E
[

sup
π∈Πn

WA,Z(π)−WA,Z(π̂m̂,ê)
∣∣∣A,Z] = O

(
MNM/2−1

n n−ξe +
1

δn

√
max

{
R̃n(A,Z), B̃n(A,Z)

})
.

46A bounded outcome is not necessary, but it allows us to present easier-to-interpret conditions on the
estimated nuisance functions. Without bounded outcome, we would require that the second equation in (21)

is of the form 1
n

∑n
i=1 E

[
supd,t

∣∣∣( 1
ec(d,t,Zk∈Ni

,Rk∈Ni
,Zi)
− 1

ê(d,t,Zk∈Ni
,Rk∈Ni

,Zi)
)(Yi −mc(d, t, Zi, |Ni|))

∣∣∣|A,Z].
47If M was known, researchers could run Algorithm 2, with appropriate modifications that requires us to

also observe higher degree neighbors. In this case, results from Section 3 directly extend to this case, with
convergence rates that depend on M similarly to what is described below.

48Different from Theorem 3.3, we do not need to condition on Ri = 1 in Equation (21) because no
cross-fitting is used, and the estimated nuisance function is independent of i’s index.
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Proof of Theorem 4.2. See Appendix D.2.1

Theorem 4.2 provides a uniform bound on the regret, and it is double robust to correct

specification of the conditional mean and the propensity score. The theorem’s result depends

on the convergence rate of ê and m̂ to their pseudo-true value. For parametric estimators of

the conditional mean and the propensity score and bounded degree, the regret bounds scale

at rate 1/
√
ne, divided by the overlap parameter.49 For general machine-learning estimators,

the rate can be slower than the parametric one, reflecting the “cost” of the lack of knowledge

of the degree of dependence M . Here, NM/2−1
n captures higher-order dependence. Theorem

4.2 does not require that Assumption 2.3 (B) holds in settings with a correctly specified

propensity score, assuming m̂c converges to some pseudo-true value mc.

4.3 Different target and sample units

Next, I study the problem when experiment participants are not sampled from the target

population. Consider a population with n individuals, connected under adjacency matrix

A′ and with covariates matrix Z ′ (I consider n target units for expositional convenience).

Welfare on this new population is

WA′,Z′(π) =
1

n

n∑
i=1

m
(
π(Xi),

∑
k

A′i,kπ(X ′k), Z
′
i,
∑
k

A′i,k

)
, X ′i ⊆ Z ′i. (22)

Here, regret guarantees depend on assumptions on the support of (A′, Z ′). Define Sn(A,Z)

as the empirical support of Zi, Zk∈Ni
, |Ni| for given adjacency matrix (A,Z), i.e., the set of

unique values that
[
Zi, Zk∈Ni

, |Ni|
]

takes given (A,Z), and similarly Sn(A′, Z ′) for A′, Z ′.

Note |Sn(A,Z)| ≤ n because each population has n individuals. Define

L(z,x, l) =
1

n

n∑
i=1

1
{
Zi = z, Zk∈Ni

= x,
∑
k

Ai,k = l
}
,

L′(z,x, l) =
1

n

n∑
i=1

1
{
Z ′i = z, Z ′k∈N ′i

= x,
∑
k

A′i,k = l
}
,

the number of units in each population with individual covariates z, neighbors’ observables

x, and number of friends l. Estimate the empirical welfare as follows:

W̃n(π,mc, e) =
1

ne

n∑
i=1

Ri

L′
(
Zi, Zk∈Ni

, |Ni|
)

L
(
Zi, Zk∈Ni

, |Ni|
) {Ii(π)

ei(π)

(
Yi −mc

i(π)
)

+mc
i(π)

}
49We can characterize convergence rates of nuisance functions using standard arguments under local or

weak dependence (e.g. Chen and Shao, 2004).
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with Ii(π), ei(π),mc
i as in Equation (5). Here, the empirical welfare reweights observations

by the ratio of the empirical distributions in the target population and the sampled units.

Importantly, the functions L(·), L′(·) must be observed from the populations, i.e., researchers

observe the empirical distribution of the number of neighbors and neighbors’ covariates from

both populations (but not necessarily A,A′).

Lemma 4.3. Let Assumptions 2.1, 2.2, 2.3, and 3.1 hold conditional also on (A′, Z ′). Sup-

pose Sn(A′, Z ′) ⊆ Sn(A,Z). Then

E
[
W̃n(π,mc, e)

∣∣∣A,Z,A′, Z ′] = WA′,Z′(π).

Proof. See Appendix D.3.1.

Lemma 4.3 shows that we can construct unbiased estimators of welfare, assuming knowl-

edge the empirical distribution of the degree and individuals’ and neighbors’ covariates.

One important assumption is a full-support assumption, that is the support of experiment

participants must contain the support in the target sample.

Proposition 4.4. Suppose the conditions in Theorem 3.1 hold conditional also on (A′, Z ′).

Let π̂t ∈ arg maxπ∈Πn W̃n(π,mc, e). Suppose Sn(A′, Z ′) ⊆ Sn(A,Z). Then for a universal

constant C̄ <∞

E
[

sup
π∈Πn

WA′,Z′(π)−WA′,Z′(π̂
t)
∣∣∣A,Z,A′, Z ′] ≤ C̄ΓL̄A,Z,nN 3/2

n

γδn

√
log(Nn)VC(Π)

ne
,

where L̄A,Z,n = max(Zi,Zk∈Ni
,|Ni|)∈Sn(A,Z) L

′
(
Zi, Zk∈Ni

, |Ni|
)/

L
(
Zi, Zk∈Ni

, |Ni|
)

.

Proof. See Appendix D.2.5

Proposition 4.4 shows that we can achieve regret bounds which depend on the largest

ratio between the empirical distribution on the target and sampled units over the empirical

support of the individuals, and neighbors’ covariates and of the number of neighbors.

Finally, note that in some settings the functions L,L′ can be unknown. In this case, one

might want to control the expected regret, assuming that (A,Z), (A′, Z ′) are independently

drawn from a super-population. Appendix B.4 presents a discussion.

5 Empirical application

I now illustrate the proposed method using data originating from Cai et al. (2015). The

authors study the effect of an information session on farmers’ weather insurance adoption.
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Individuals are grouped into approximately 180 addresses (villages) grouped into approx-

imately 50 larger areas. According to the authors, “All rice-producing households were

invited to one of the sessions, and almost 90% of them attended. Consequently, this pro-

vided us (the authors) with a census of the population of these 185 villages. In total, 5,335

households were surveyed” (Cai et al., 2015). Before conducting the experiment, researchers

collected network data by asking each individual to indicate at most five friends (who can be

in the same or different village).50 In this application, I use information collected from those

units for which information about their post-treatment outcome and their friend’s identity is

available; in total, 4511, a subset of the population. The experiment consists of two rounds

of information sessions three days apart, each round containing two types of information

sessions (simple and intensive). Households are randomized to each round and within each

round to each type of information session. By using time variation over the two rounds, Cai

et al. (2015) show the existence of significant neighbors’ spillover effects of an intensive infor-

mation session on second-round participants’ outcomes and no endogenous spillover effects,

consistently with the model presented in this paper.51 I defer a discussion on how the model

and assumptions of this paper connect to Cai et al. (2015) to Section 5.3.

5.1 Experimental setup and estimation

In the experiment, “the effect of social networks on insurance take-up is identified by look-

ing at whether second round participants are more likely to buy insurance if they have more

friends who were invited to first round intensive sessions” (Cai et al., 2015). Specifically,

each round consists of two sessions held simultaneously. In the first round, households are

assigned to either a 20-minute session during which researchers offer details about the insur-

ance contract only (control arm, “simple” information session) or a 45-minute session that

also provides details about the expected benefits of insurance (treatment arm, “intensive”

information session). In the second round, farmers are assigned similarly to either intensive

or simple information sessions. Although the main treatment arm consists of providing in-

surance information only, researchers also considered additional arms where they provided

information about purchase decisions of other participants (“More info” in Figure 2). Here,

I follow the main analysis in Cai et al. (2015) (Table 2), and focus on providing information

on insurance benefits only, without additional information. Figure 2 illustrates the design.

I follow Cai et al. (2015) in the model specification. I estimate a model using all first-

50On average, 50% of the connections of sampled units have a different village. More than 90% of the
connections are within the same area. This is a special case of the framework considered in this paper, with
a block-diagonal network with a few independent blocks (areas).

51See Cai et al. (2015)’s abstract and Cai et al. (2015), Section C (Col 7, Table 5).
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First
round

Simple
session

Intensive
session

Second
round

Simple
session

Intensive
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Figure 2: Design in Cai et al. (2015) with household-level treatment randomization. Partici-
pants are assigned at random to first and second rounds, and within each round, to different
information sessions. Simple session denotes the control arm, where researchers provided
information about the insurance contract only. Intensive session is the main treatment arm,
where individuals are also provided with information about the benefits of insurance. “More
info” contains additional arms with information about purchase decisions, omitted in our
analysis and Cai et al. (2015)’s main analysis. Purchase decisions were made at the end of
each information session.

round participants and those second-round participants either in the control arm or in the

main (intensive) treatment arm.52 I use the linear probability model as in Cai et al. (2015)

(Table 2, Col (4)), controlling for area fixed effects, a large set of covariates, the average

number of treated neighbors, individual treatment, and the interaction between individual

and neighbors’ treatments. The model in Cai et al. (2015) assumes homogenous treatment

effects across covariates and villages. Here, I also allow for some heterogeneity in covariates

and control for interaction terms of the rice area, a coefficient capturing risk aversion and

education with individual and neighbors’ treatments. Following Cai et al. (2015), I consider

the “general network” as the main network, that is, the raw network data obtained from

surveys where an individual generates spillover effects on i if she was indicated by i as a

friend.53 I then construct welfare using a doubly-robust estimator, with ten-fold cross-fitting

52Namely, I follow Column (2)-(5) in Table 2 in Cai et al. (2015). Therefore, I consider as focal units
(Ri = 1) those units whose post-treatment outcome is observed and who are not assigned to the “More
info” treatment arm in the second-round session. As discussed in Cai et al. (2015), I can drop observations
in the “More info” treatment arms for estimating the conditional mean function because individuals in the
second-round of information sessions do not generate spillover effects by design.

53For estimation, I follow Cai et al. (2015) and consider the general network matrix where spillovers only
occur from individuals participating in the first information session to individuals in the second session (i.e.,
forcing the entries of the adjacency matrix to be zero for outgoing edges from second-round participants).
When evaluating the out-of-sample performance of the policy, I use the original “general network” as an
adjacency matrix because out-of-sample evaluations may not have the sequential structure of the experiment
(i.e., some individuals may be treated and asked to make purchase decisions some time after treatment occurs,
possibly generating spillovers also on the treated units participating in the same information session).
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as in Algorithm 3.54 The conditional mean is estimated via lasso with a small penalty (e−12)

to increase the stability of the estimator. The individual propensity score is estimated as in

Remark 2 via a penalized logistic regression with a similar small penalty and 5% trimming.

5.2 Policy evaluation

I “simulate” the following environment: researchers collect information from villages in the

first fifteen areas. They estimate the policy to treat individuals in the remaining villages.

In the remaining villages, I assume the policymaker does not have access to the network

information but only observes the farmer’s education, risk aversion, and rice area. I then

compute welfare effects out-of-sample on the villages outside the training set (first 15 areas).

I repeat the same process via three-fold cross-fitting: I use the second fifteen areas as a

training set and the remaining areas as a test set; similarly, I use the last group of areas as

a training set and the first thirty areas as a test set. Finally, I compute the average out-of-

sample improvements over the three out-of-sample evaluations. The out-of-sample evaluation

uses the double-robust score, estimated out-of-sample. This exercise mimics settings where

participants are sampled from a random subset of villages, and the treatment assigned to

the experiment participants cannot be changed after the experiment (see Remark 3).55

I contrast to the empirical welfare-maximization method that ignores welfare effects in

Athey and Wager (2021); Kitagawa and Tetenov (2018) and uses the same policy and models

of the proposed procedure for both the propensity score and conditional mean function.56

As a first exercise, I consider simple policies that use information from transformations

of two of the three covariates: education, rice area, and a coefficient capturing risk aversion.

I compute simple classification trees obtained for all possible two-out-of-three combinations

of such variables. The tree finds one optimal split over the first (continuous) variable. The

split for the second variable is constrained to be at the population median value. This

policy is simple to compute and communicate because it assigns treatments based on a few

possible sub-groups. I study out-of-sample improvements while varying the treatment cost

as 1%, 3%, 5% of the insurance take-up benefit.57 Table 1 provides welfare comparisons. We

54Algorithm 3 is a valid cross-fitting procedure in this setup. A few independent components (areas) exist
that allows the discovery of 10 disconnected subgraphs.

55In this exercise, I sample areas instead of small villages to guarantee that the out-of-sample welfare
estimates are independent of the training set, which is a desirable property for out-of-sample comparisons.
This follows from the fact that individuals exhibit almost no connections between areas but many connections
between small villages.

56I consider an AIPW estimator as in Athey and Wager (2021) that also controls for the neighbors’
treatments when estimating the conditional mean function, and uses the individual propensity score.

57These costs are comparable to the direct treatment effect that we would estimate once observations from
all villages as in Table 2, Col 2 in Cai et al. (2015) are pooled (approximately equal to 3%).
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observe welfare improvements up to approximately thirty percentage points and positive

effects uniformly across the specifications. These economically significant improvements are

obtained despite the network not being observable in the target sample.

As a second exercise, I consider a more complex policy consisting of a maximum score

that controls for education, rice area and risk aversion as follows:

π(Xi) = 1
{
β0 + Rice area× β1 + Risk aversion × β2 + Education× β3 > 0

}
. (23)

The parameters are estimated using the mixed-integer linear program in Section 3.3. Table

2 reports the average out-of-sample welfare improvement estimated via three-fold cross-

fitting. It shows out-of-sample welfare improvements up to nine percentage points. This

result illustrates the benefits of the procedure for more complex policy functions as well.

The cross-fitting procedure returns three policies estimated on independent samples.

To investigate the properties of the estimated policy, Table 2 reports the coefficients of

the estimated policy (NEWM) leading to the largest out-of-sample welfare.58 The policy

treats individuals who are more risk-averse, less educated, and with a smaller rice area. I

contrast this policy with the one that ignores network effects (EWM). The two policies are

substantially different when treating individuals with larger rice areas and risk aversion.

This difference highlights the importance of taking into account spillover effects for policy

targeting because different subgroups should be treated differently with spillover effects.

Table 1: Out-of-sample welfare improvement for a classification tree upon empirical welfare-
maximization targeting rule in Athey and Wager (2021) that does not account for network
effects in the design of the policy. Different columns denote different X variables considered
for the design of the policy. Here C denotes the cost of the treatment. The policy is a
classification tree that allows for the first covariate to be continuous and finds the best split
over the first covariate, whereas the second covariate is whether such a variable is above or
below its median value or missing.

Educ & Rice-ar Educ & Risk-av Rice-ar & Risk-av

C = 1% 0.146 0.084 0.289
C = 3% 0.159 0.093 0.201
C = 5% 0.093 0.111 0.143

58The policy with the largest out-of-sample welfare inherits the same rate of convergence of the regret as
the one estimated on the entire sample. I report the policy with the largest out-of-sample welfare in the
same spirit of standard cross-validation strategies.
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Table 2: Estimated coefficients for π(X) = 1{X>β+β0 > 0}, as a function of the rice area of
the farmer, a coefficient capturing risk aversion and education. NEWM denotes the proposed
method and EWM the double-robust empirical welfare-maximization procedure that ignores
network effects. Coefficients are normalized by β0, with estimated β0 = 1 for both NEWM
and EWM. The right-hand-side panel reports the average out-of-sample improvement of the
NEWM method over policies that ignore network effects, estimated via three folds cross-
fitting. C denotes the cost of treatment. The left-hand-side panel reports the estimated
coefficients of the policy with the largest out-of-sample welfare for C = 5%.

Rice Area Risk Aversion Educ Welfare Improvement
C = 1% 3% 5%

NEWM -0.068 0.395 -0.397 0.074 0.085 0.093
EWM -0.003 -0.041 -0.473

5.3 Assumptions and applicability of the method

This section concludes with a review of the assumptions required by the proposed procedure

and their applicability in the context of the chosen application. Assumption 2.1 states that

interference occurs through the neighbors’ treatment assignments. In the context of our ap-

plication, treatments denote (intensive) information sessions. This paper assumes potential

outcomes are (possibly heterogeneous) functions of the number of informed neighbors. As a

result, the model is best suited when information effects, as opposed to endorsement effects

(i.e., effects driven by neighbors’ purchase decisions), occur. This restriction is consistent

with findings in Cai et al. (2015), who, by leveraging the sequential structure of the ex-

periment, illustrate information effects and lack of endorsement effects. Quoting Cai et al.

(2015)’s abstract: “By varying the information available about peers’ decisions and random-

izing default options, we show that the network effect is driven by the diffusion of insurance

knowledge rather than the purchase decisions.” Insurance knowledge denotes the treatments,

and purchase decisions are the outcomes of interest, consistent with our model.

A second restriction this paper imposes is that the maximum degree is sufficiently smaller

than the sample size (Assumption 2.4). This restriction avoids overfitting and controls the

complexity of the function class of interest. Following the specification in Cai et al. (2015),

here individuals generate spillovers on those people indicated as friends, at most five of them.

This feature is common in many (but not all) economic applications, such as the Add Health

Study, Jackson et al. (2012) or De Paula et al. (2018).

The model specification of the conditional mean function in Cai et al. (2015) imposes

a lack of heterogeneity in unobserved network statistics. However, because we augment

the estimated conditional mean with the doubly robust score, the estimators also allow for
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arbitrary network heterogeneity, even if such heterogeneity is not captured in the estimated

conditional mean function. The reader may refer to Lemma 2.1 and Theorem 3.1 for details.

Finally, the sampling in Cai et al. (2015) guarantees that the welfare estimated using

information from participants is an unbiased estimator of welfare once the policy is deployed

at scale in rural China.59 The main reason is that Cai et al. (2015) independently sample

approximately 180 small villages in rural China, and, among such, they randomize treatments

at the individual level.60 This sampling induces local dependence within small villages, which

is possible to accommodate in this paper’s framework (see Remark 8).61

6 Conclusions

This paper introduced a method for estimating treatment rules under network interference.

It considers constrained environments, and accommodates policy functions that do not nec-

essarily depend on network information. The proposed methodology is valid for a large class

of networks and does not impose restrictions on covariates. I cast the optimization problem

into a mixed-integer linear program and derive guarantees on the policy regret.

The proposed method assumes anonymous and exogenous interactions. Future research

can address the case of endogenous interactions by explicitly modeling the endogenous com-

ponent, or considering weak dependence structures as in Leung (2022).

This paper estimates welfare-maximizing policies when the network information on the

target sample is not observed by directly maximizing the empirical welfare. Extending our

method by incorporating partial information on the population network is an interesting

future direction. Combining the high-dimensional estimator of the network as in Alidaee

et al. (2020) with the empirical welfare-maximization procedure is a possible approach.

Finally, the literature on influence maximization has often relied on structural models,

whereas the literature on treatment choice has focused on semiparametric estimation. This

paper opens new questions about the trade-off between structural assumptions and model-

robust estimation of policy functions. Exploring this trade-off remains an open question.

59If instead, researchers were interested in the welfare effects of implementing the policy outside rural
China (e.g., in a different country), we would need some reweighting as in Section 4.3.

60See, e.g., Figure I.2 in Cai et al. (2015).
61Similar sampling schemes can also be found in Alatas et al. (2012); Egger et al. (2019) among others,

both with approximately 600 small villages independently drawn from a large region.
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Appendix A Practical guide

This section provides details on the implementation. Algorithm 1 presents a summary.

Algorithm 1 Network Empirical Welfare Maximization

1: Sample individuals in a (quasi)experiment at random from the population of interest
(see Remark 6 for stratified sampling).

2: For each sampled individual (Ri = 1) and their friends (Rf
i = 1) in the experiment

randomize treatment assignments as in Assumption 2.2 (treatments do not need to be
randomized among the remaining units in the population).

3: Collect information
[
Ri

(
Yi, Di, Ti, Ni, Zi, Zk∈Ni

)
, Ri

]n
i=1

, denoting sampling indicators

(Ri = 1), post treatment outcome Yi, treatment assignment Di, neighbors’ treatments
Ti, arbitrary individual and neighbors’ observable characteristics Zi, Zk∈Ni

.
4: Run Algorithm 2 to estimate m̂, ê the conditional mean and propensity scores for sampled

units (Ri = 1) as defined in Equation (3).
5: Run the optimization algorithm in Section 3.3 to estimate π̂ using (arbitrary) individual

level information Xi ⊆ Zi.
6: Implement π̂ on the population of interest by collecting individual-level information

(Xi)
n
i=1 for all units in the population.

A.1 Cross-fitting: exact solution

The cross-fitting algorithm is described in Algorithm 2. It solves a sequence of mixed-integer

linear programs of the form

(K∗, G∗) =arg min
K∈Z,G∈{0,1}n×K

K such that
K∑
k=1

n∑
j=1

RiRj1{j ∈ Ii}Gj,kGi,k = 0

K∑
k=1

Gi,k = 1, ∀i ∈ {1, · · · , n},

(24)
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where Ii is defined in Equation (25) as the set of sampled units who are not friends or share a

common friend with i. Each program consists of finding a feasible solution to the constraints

in Equation (24) for given K. The program finds the smallest number of groups K∗ and

groups partition G∗ such that two sampled individuals who are friends or share a common

friend are not in the same group. Here, G∗i,k = 1 if i is assigned to group k.

To estimate the conditional mean, the algorithm performs cross-fitting with J folds within

each group, as in standard cross-fitting algorithms (Chernozhukov et al., 2018). If some of

these groups are very small (with fewer than JP̌ units, for some small finite P̌ ), Algorithm

2 does not use information from such groups. Here, P̌ is a small constant and denotes the

minimum number of observations such that the estimator is well-defined (e.g., the effective

degrees of freedom for linear regression).62 The propensity score is estimated using a similar

approach. To estimate ê(i), researchers can also use information about the treatments of the

neighbors of sampled units (Ri = 1) who have not been sampled, as described in Algorithm

2.63

A.2 (Approximate) network cross-fitting with subgraphs

Algorithm 3 presents a relaxation of network cross-fitting. It fixes K, and creates K groups

recursively. Each iteration, it constructs two groups to maximize the number of individuals

who are friends or share a common friend and are assigned to the same group. It then

repeats the same optimization within each group until we obtain K groups in total. The

algorithm constructs subgraphs by solving recursively max-cut optimization problems (see

Algorithm 4). For each unit i, Algorithm 3 then estimates the conditional mean function

using all groups except the group assigned to unit i. To estimate the propensity score, I

construct subgraphs where I maximize the number of individuals who are neighbors (but

not necessarily neighbors of neighbors) in each subgraph.64 The slackness parameter s in

Algorithm 4 guarantees subgraphs have approximately the same number of units up to s

62The presence of groups with a few units does not affect our results in Theorem 3.3, because these
results are directly expressed in terms of average convergence rates of the nuisance functions (see Appendix
D.2.3). It also does not affect the characterization of the convergence rate in Remark 7, and Appendix B.2.
Intuitively, because K∗ ≤ 2N 2

n by Brooks (1941)’s theorem, the contribution of groups with few observations
to the average estimation error is at most O(N 2

n/ne). See Appendix B.2 for details.
63This approach allows researchers to identify the propensity score if treatment probabilities for sampled

units and their neighbors differ, but it is not necessary if these probabilities are the same. With the cross-
fitting partition in Algorithm 2, due to the independence of treatments in Assumption 2.2 (i), I guarantee
that the estimated propensity score is independent of unit i’s outcome. The reason is that ê(i) is always
estimated using information from treatments different from (Di, Dk∈Ni

).
64The reason is that, due to the independence of treatments in Assumption 2.2 (i), the estimated propensity

score is independent of unit i’s outcome if it is estimated using information from treatments different from
(Di, Dk∈Ni

).
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Algorithm 2 Network Cross-Fitting: Exact Optimization

Require:
[
Ri

(
Yi, Di, Ti, Ni, Zi, Zk∈Ni

)
, Ri

]n
i=1

, finite P̌ , finite J .

1: For each i ∈ {1, · · · , n} construct

Ii =
{
j ∈ {1, · · · , n} \ {i} : Rj = 1 and j 6∈ Ni, Ni ∩Nj = ∅

}
. (25)

2: Solve Equation (24) and return K∗, G∗.
3: for k ∈ {1, · · · , K∗} do

a: Partition units {i : RiG
∗
i,k = 1}, to J folds (F j

k )Jj=1, equally sized up-to one element.

Define F
j(i)
k the fold containing unit i.

b: For i such that G∗i,kRi = 1 construct the estimator m̂(i)(·) of m(·), using

(Yv, Dv, Dk∈Nv , Zv, Nv) from units v in (F j
k )Jj=1 \F

j(i)
k . Let m̂(i)(·) = 0 if

∑
iG
∗
i,kRi ≤ JP̌ .

4: end for
5: Repeat for the propensity score: for i such that G∗i,kRi = 1 estimate the individual con-

ditional treatment probabilities using (Dv, Zv, Rv, (Dk(1 − Rk), Rk, Zk)k∈Nv) from units

v in folds (F j
k )Jj=1 \F

j(i)
k . Aggregate such probabilities to construct and estimator of e(·)

for unit i, ê(i)(·) as in Remark 2. Let 1/ê(i)(·) = 0 if
∑

iG
∗
i,kRi ≤ JP̌ .

6: Define

m̂i(π) = m̂(i)
(
π(Xi), Ti(π), Zi, |Ni|

)
, êi(π) = ê(i)

(
π(Xi), Ti(π), Zk∈Ni

, Rk∈Ni
, Zi, Ri, |Ni|

)
(26)

and

Wn(π, m̂, ê) =
1

ne

n∑
i=1

Ri

{
Ii(π)

êi(π)

(
Yi − m̂i(π)

)
− m̂i(π)

}
. (27)

return Wn(π, m̂, ê).

units (e.g., five or ten).

The rationale is the following. If the network presents K completely independent and

equally sized clusters, the algorithm will recover such clusters. In this case, unit i’s prediction

would use information from clusters except the one containing i; the predicted value for unit

i would be independent of i’s outcome, avoiding overfitting. The algorithm approximates

this setup by constructing subgraphs that minimize the number of connections between such

subgraphs.65 I recommend choosing K by leveraging prior knowledge of the data, such as

using the number of villages or regions.66 Also, note that the effective sample size only

shrinks by a factor (K − 1)/K = O(1).

65Although optimization for clusterings with networks goes beyond the scope of this paper, we note that
Leung (2021) presents an extensive discussion where clusters are not independent.

66For example, in the empirical application, units present almost all the connections within same large
areas with 47 total areas; therefore, any K ≤ 47 (e.g., K = 10) guarantees independent subgraphs.

42



Algorithm 3 Network Cross-Fitting: Approximate Optimization

Require:
[
Ri

(
Yi, Di, Ti, Ni, Zi, Zk∈Ni

)
, Ri

]n
i=1

, slackness parameter s, K folds.

1: Assign individuals into K folds by running Recursive Opt in Algorithm 4 with ñ = n,
and slackness s.

2: For i : Ri = 1, construct m̂(i)(·), the estimator of m(·) for unit i, using data in all except
i’s fold.

3: Repeat for the propensity score: run Algorithm 4 with Hi = {j ∈ {1, · · · , n} : j 6∈
Ni, Rj +

∑
k Aj,kRk > 0} in lieu of Ii. For each unit i, construct ê(i)(·), the estimator of

e(·) for unit i by: (i) estimating individual treatment probabilities with units in all folds
except the one containing i; (ii) aggregating such probabilites as in Remark 2.

4: Construct ê(i), m̂(i) and Wn(π, m̂, ê) as in Equation (27). return Wn(π, m̂, ê).

Algorithm 4 Recursive Opt

Require: input size ñ, (Ri, Ii)ñi=1, with Ii as in Equation (25), slackness parameter s, K
1: Solve

G∗ ∈ arg min
G∈{0,1}ñ×ñ

ñ∑
i=1

ñ∑
j 6=i

Gi(1−Gj)1{j ∈ Ii}RiRj Gi ∈ {0, 1}, i ∈ {1, · · · , ñ},

1

n

n∑
i=1

Gi ∈

[
1

2ñ

ñ∑
i=1

Ri − s/ñ,
1

2ñ

ñ∑
i=1

Ri + s/ñ

]
.

2: if K = 2 then
3: return G∗.
4: else
5: return[
G∗,Recursive Opt

(
ñ∑
i=1

G∗i , (Ri, Ii)G∗i =1, S
′,
K

2

)
,Recursive Opt

(
ñ−

ñ∑
i=1

G∗i , (Ri, Ii)G∗i =0, S
′,
K

2

)]
.

6: end if

Figure 3: Illustration of Algorithm 3. The algorithm finds a maximum cut (black line) in
the graph where two sampled individuals are connected if they are either friends or share a
common friend. For each individual with a given color, they estimate the propensity score
and nuisance functions using the units with the different color(s).
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