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Abstract

We show that data support time-variation in identification patterns of US monetary policy

shocks between January 1960 and May 2022. We look at the monetary policy reaction func-

tion in a form of Taylor’s rule that is potentially extended by additional indicators. In the

regime predominate before 2008, shadow interest rates react contemporaneously also to

the term spread while in the regime mainly present after 2008 this role is taken by the

money aggregate. To show that, we develop a Bayesian heteroskedastic structural vector

autoregressive model with Markov-Switching and data-driven regime-specific identifi-

cation search. This model enables regime-specific identification of structural shocks,

time-varying impulse responses, and a swift way to verify identification through het-

eroskedasticity within a regime.

Keywords: Stochastic Search Specification Selection, Identification Through
Heteroskedasticity, Stochastic Volatility, Markov-Switching
JEL classification: C11, C32, E52

1. Introduction

To disentangle unexpected changes in monetary policy from systematic behavior, re-

searchers wildly apply contemporaneous exclusion restrictions in vector autoregressive

models, especially due to their ease of use (e.g., Primiceri, 2005; Sims and Zha, 2006;

∗© 2023 Annika Camehl & Tomasz Woźniak
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Walentin, 2014; Wu and Xia, 2016; Jawadi, Sousa and Traverso, 2017). The restrictions

to identify monetary policy shocks commonly apply to the contemporaneous relation

of interest rates in the monetary policy reaction function to prices and output, similarly

stated in empirical Taylor rules. However, the targeting strategy of the Federal Reserve

to reach its dual mandate of price stability and economic output has evolved over the

last sixty years driven by changes in the monetary policy instrument, regulatory environ-

ment, or importance of the financial sector (see for an overview Boivin, Kiley and Mishkin,

2010). For instance, the monetary policy reaction function might include term spreads,

capturing the slope of the yield curve, when short term interest rates are at the zero

lower bound to acknowledge the role of stabilizing long term interest rates (Baumeister

and Benati, 2013; Liu, Mumtaz, Theodoridis and Zanetti, 2017; Feldkircher and Huber,

2018; Tillmann, 2020). Likewise, before the 1980’s change towards interest rate policy but

also through large asset purchase programs increasing money supply, monetary policy

actions can impact simultaneously interest rates and monetary aggregates (Sims and Zha,

2006; Belongia and Ireland, 2015). Hence, appropriate exclusion restrictions to identify

monetary policy shocks might change over time. However, it is standard in the literature

to rely on time-invariant identification patterns.

In this paper, we show that data strongly support time-varying identification patterns

of US monetary policy shocks. We find strong evidence for including term spreads in

the monetary policy reaction function in a regime which dominates before 2008. Here,

systematic monetary policy reacts – by adjusting short term interest rates – contemporane-

ously to changes in output, prices, and term spreads. In contrast, in the regime occurring

mainly after 2008, the systematic response of monetary policy adjusts to movements in

output, prices, and a monetary aggregate.

To reach these conclusions, we develop a Bayesian heteroskedastic structural vector

autoregressive (SVAR) model with Markov-Switching and data-driven regime-specific

identification search. Our model has two new features. First, we include Markov-

switching time variation in the matrix of contemporaneous coefficients and in a stochastic

volatility parameter. The former allows us to estimate the time-varying structural matrix
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and the latter to check whether this matrix is identified via heteroskedasticity within each

regime. Second, we add a data-driven search of regime-specific exclusion restrictions

which facilitates data-supported selection of alternative ways to identify monetary policy

shocks within each regime. We estimate our model with monthly US data from January

1960 to May 2022, including industrial production, consumer price index, shadow rate,

term spread, money, credit spread, and stock prices.

In line with empirical papers arguing for the need of time-variation in coefficients

and/or error covariance matrices (among others, Sims and Zha, 2006; Koop, León-González

and Strachan, 2009; Primiceri, 2005; Ang, Boivin, Dong and Loo-Kung, 2011; Hubrich and

Tetlow, 2015; Liu et al., 2017; Jackson, Owyang and Soques, 2018), our model, first, al-

lows for regime dependent coefficients, implemented via Markov-Switching. Relying

on changes across regimes circumvents the issue of overparameterization time-varying

parameter models easily suffer from (Sims and Zha, 2006; Sims, Waggoner and Zha,

2008). Moreover, we implement time variation in the shocks’ conditional variances mod-

elled via a stochastic volatility (SV) process which has regime-dependent volatility of the

volatility parameter. The regime-dependence of the stochastic volatility parameter offers

a swift way to verify the identification of the monetary policy reaction function through

heteroskedasticity within each regime and, thus, extending the framework proposed by

Lütkepohl, Shang, Uzeda and Woźniak (2022a). We rely on a stochastic volatility process

since, among others, Cogley and Sargent (2005), Primiceri (2005), Clark (2011), Clark

and Ravazzolo (2015), and Chan and Eisenstat (2018) advocate using the SV for mod-

elling volatility in macroeconomic time series benefiting forecasting accuracy. We use

the heteroskedastic shocks to identify the structural matrix (as in, e.g., Lütkepohl and

Woźniak, 2017; Bertsche and Braun, 2022) as then the identifying exclusion restrictions be-

come overidentifying. In consequence, these restrictions can be verified using our novel

data-driven search for regime-specific identifying exclusion restriction patterns.

The data-driven search for regime-specific exclusion restrictions is the second new

feature of our model. To facilitate the restriction search, we propose a new stochastic

search structural specification selection (S5) mechanism, as a generalization of the selec-
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tion priors introduced by George and Mcculloch (1997), George, Sun and Ni (2008) and

Koop and Korobilis (2016). Specifically, we set a multinomial prior on a state-dependent

indicator variable. This indicator determines the identifying pattern of exclusion restric-

tions imposed on the instantaneous effect matrix while the remaining parameters are

sampled. Thereby, the posterior distributions of a parameter in the structural matrix

of contemporaneous effects will show whether an exclusion restriction is supported by

the data in a respective regime. With our search mechanism, we challenge the common

assumption in the literature of time-invariant exclusion restrictions for the identification

of monetary policy shocks. Moreover, we contribute to the discussion on appropriate

exclusion restrictions to identify monetary policy shocks by including a wide range of

various patterns in our search mechanism. Thereby, we provide evidence on which of the

exclusion restrictions are supported by the data within each regime.

To the best of our knowledge, we are the first to introduce a data-driven search to

verify alternative ways of identifying the monetary policy shock within each regime.

Only few previous papers adopt regime dependent identification patterns, albeit setting

restrictions a-priori without further validation. Bacchiocchi and Fanelli (2015) impose two

identification patterns with an additive relationship between the two in an SVAR model

identified through heteroskedasticity with exogenous switches. Bacchiocchi, Castelnuovo

and Fanelli (2017) apply this approach to study the effects of monetary policy and report

differences in impulse responses during the Great Moderation compared to previous

periods. Kimura and Nakajima (2016) analyze changes in the monetary policy of Japan

identifying a monetary policy reaction function in two exogenously given regimes once

based on an interest rate rule or on a bank reserves rule.

In our model, we estimate two regimes. The first one predominates in the first part

of the sample until 2008. The second regime occurs mainly after 2008 dominating also

during the Covid-19 crisis. Within both regimes, we can verify that the monetary policy

reaction function is identified via heteroskedasticity.

We find strong support with our S5 mechanism for including the term spread in the

monetary policy reaction function of the first regime. The posterior probability of the S5
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component indicator for the restriction pattern where no exclusion restriction is set on the

term spread equals one. In this regime, output, prices, shadow interest rates, and the term

spread move simultaneously. Hence, our results support an empirical generalized Taylor

rule specification for the monetary policy reaction function in the first regime including

term spreads as well. The term spread reveals future expectations of investors and can be

used by the central bank as a timely indicator of the state of the economy (Nimark, 2008;

Rudebusch and Wu, 2008; Tillmann, 2020).

In the second regime, data select money to appear in the monetary policy reaction

function. Again, the evidence is very strong since the posterior probability of the compo-

nent indicator for those specific exclusion restriction patterns is numerically equal to one.

Importantly, we find evidence for a switch in the policy indicator in the second regime.

The estimate of a parameter on the shadow interest rates in the monetary policy reaction

function in the second regime should be considered not different from zero and this value

is included within the 90% posterior density region. This fact combined with a large and

positive estimate on the contemporaneous effect of money in the monetary policy reaction

function provides evidence that the monetary policy indicator in this regime switches to

money.

Allowing for regime-specific identification patterns through the search mechanism

has a strong impact on the persistence of the regimes. We find a much less persistent

second regime encompassing only a few sample periods in models which allow for

Markov-switching in the structural matrix but exclude the stochastic search mechanism.

Therefore, the time variation in the monetary policy reaction function is evident only

in models with the S5 and contradicted without it. These findings of our empirical

investigation are robust to changing the assumptions regarding the prior distributions

and several other features of the model specification.

In what follows, we introduce our empirical approach in Section 2, scrutinise the details

of the structural model in Section 3, provide details on the S5 mechanism in Section 4 as

well as on the priors and estimation of the remaining parameters in Section 5, describe

the regime-specific verification of identification through heteroskedasticity in Section 6,
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and report the evidence on our main findings in Section 7.

2. Time-varying identification of US monetary policy shocks

To study time variation in identification of US monetary policy shocks, we estimate

our heteroskedastic SVAR model with monthly data from January 1960 to May 2022 for

seven endogenous variables collected in vector, yt = (ipt, cpit,Rt,TSt,mt,CSt, spt)′. These

variables allow us to specify various identification patterns for monetary policy shocks

and to study the impact of unexpected monetary tightening on the economic environment,

monetary measures, and financial variables.

Firstly, we include log industrial production (ip) and log consumer price index (cpi)

as measures of real economic activity and price level respectively. We use the shadow

rate (R) by Wu and Xia (2016) as the monetary policy instrument that captures both

conventional and unconventional monetary policy actions. Since the shadow rate series

starts in January 1990, we use the federal funds rate for the preceding period.

We include a term spread (TS) measured as the 10-year treasury constant maturity

rate minus the federal funds rate. This indicator captures the slope of the yield curve.

The term spread reacts to the large asset purchase programs after the financial crisis

(Baumeister and Benati, 2013; Feldkircher and Huber, 2018; Liu et al., 2017). We use it

also as a potential policy indicator to measure unconventional monetary policy and to

check if it reacts to monetary policy shifts.

The fifth variable in the model is a monetary aggregate measure. We use log M2 money

supply (m). Similarly to the term spread, it can be seen as a monetary policy indicator

(Christiano, Eichenbaum and Evans, 1999; Leeper and Zha, 2003; Belongia and Ireland,

2015) or as a variable affected by monetary policy shocks (Sims and Zha, 2006; Hubrich

and Tetlow, 2015; Liu et al., 2017).

Finally, in order to capture financial conditions, we include a credit spread (CS) mea-

sured by Moody’s seasoned Baa corporate bond yield relative to the yield on the 10-year

treasury rate (Gilchrist and Zakrajsek, 2012; Caldara and Herbst, 2019). As the last vari-

able, we take the log of the S&P500 stock price index (sp) as a fast-moving price indicator
6



(Arias, Caldara and Rubio-Ramı́rez, 2019; Leeper and Zha, 2003). Appendix B gives

details on the data sources and transformations.

Based on this set of variables, we can specify different exclusion restrictions on con-

temporaneous relations in the monetary policy reaction function to identify monetary

policy shocks. We allow those restrictions to potentially vary across regimes. Based on

our search, we can, first, analyze whether the identification pattern of monetary policy

shocks and, hence, which variables affect the systematic response of monetary policy

changes over regimes. Second, since the theoretical and empirical literature motivates

different specifications of the monetary policy reaction function, we can shed light on

which patterns are supported by the data.

We define the following regime-specific identification patterns for monetary policy

shocks by setting restrictions on the matrix of contemporaneous effects: where ∗ indicates

Table 1: Regime-specific identification patterns of monetary policy shocks

∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ S5 S5 S5 S5

∗ ∗ ∗ ∗ 0 0 0
∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗





ipt

cpit

Rt

TSt

mt

CSt

spt


an unrestricted parameter, 0 a zero restriction, and S5 that we search for a restriction on

this element in each regime. In the search, we allow one parameter denoted by S5 at a time

to enter the interest rate equation. We relax this (allowing multiple parameters to enter at

the same time) and extend it to several equations in the sensitivity analysis. Conducting

the search within each regime, we can verify whether identification of monetary policy

shocks is time-varying. We allow the unrestricted parameters to vary across regimes as

well.

The first two rows in the matrix of contemporaneous relations given in Table 1 relate

to the production sector. Following standard assumptions, we characterize output and

prices as sluggish. These variables react with a lag to changes in all other variables.
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Thus, they appear before the monetary policy indicators in the order of variables as is

commonly the case in recursive systems (see e.g. Sims, 1986; Bernanke and Blinder, 1992;

Sims, 1992; Christiano et al., 1999; Christiano, Eichenbaum and Evans, 2005; Primiceri,

2005; Sims and Zha, 2006; Belongia and Ireland, 2015).

The third row specifies systematic monetary policy behavior with the shadow rate as

the policy indicator. We allow for a free search of identifying restrictions on the monetary

policy reaction function, fixing the first three elements. The simultaneous systematic

response of interest rates to movements in prices and output depicts a version of the stan-

dard empirical Taylor rule (Taylor, 1993). When interest rates react contemporaneously

to some of the remaining variables, the underlying monetary policy reaction function

follows a generalization of the standard Taylor rule accounting for additional variables.

Our restriction pattern in the third row embeds several generalized Taylor rule spec-

ifications. If systematic changes in interest rates depend on TSt, the fourth element in

the third row would be non-zero. Term spreads can reveal information on future ex-

pectations of participants in the bond market (Nimark, 2008; Tillmann, 2020). Moreover,

they can be used as an indicator of expectations on changes to the economic environ-

ment as Rudebusch and Wu (2008), Ang et al. (2011), and Vázquez, Marı́a-Dolores and

Londoño (2013), Hördahl, Remolona and Valente (2020), among others, report a strong

link between the yield curve and macroeconomic variables. A shift in the term spreads

can give an indication that the economy changes and the central bank should react to that

by adjusting interest rates. We also interpret such an instantaneous reaction of interest

rates to tst as in spirit of the identification strategies for monetary policy shocks used in

Baumeister and Benati (2013), Feldkircher and Huber (2018), and Liu et al. (2017). While

they assume a negative contemporaneous reaction of the term spread to an exogenous

shift in the behavior of the monetary authority, we allow term spreads to potentially enter

the monetary policy rule.

No exclusion restriction on the contemporaneous reaction to money indicates that

the central bank actions simultaneously affect shadow interest rates and money. Such

simultaneity can arise since unconventional monetary policy actions, such as quantitative
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easing, has lead to an systematic expansion of the money supply (Belongia and Ireland,

2015). Moreover, including money in the monetary policy reaction function indicates

that the central bank changes interest rates in response to changes in money since those

give an indication on the liquidity of the market. Allowing money to enter the monetary

policy reaction function contemporaneously is in line with the identification used by

Sims and Zha (2006) and Leeper and Zha (2003). They identify a monetary policy shock

by augmenting the standard Taylor rule with an indicator for money supply. Likewise,

Belongia and Ireland (2015) demonstrate that data reject excluding money supply from

the Taylor rule for their analyzed sample.

We consider that the Fed might set interest rates based on current values of the credit

spread, fifth element in the third row. The credit spread can reveal information on financial

conditions (Gilchrist and Zakrajsek, 2012; Caldara and Herbst, 2019). The central bank

could react to the signals given by movements in the credit spread regarding future

economic developments. Gilchrist and Zakrajsek (2012), for example, show that the

credit spread has predictive power for economic activity. Caldara and Herbst (2019)

argue that restricting a simultaneous effect of credit spreads leads to a mixed monetary

policy shock. The shock would be a combination of exogenous shifts in monetary policy

and a systematic response of the central bank to changes in financial conditions.

Moreover, interest rates may react contemporaneously to changes in the stock price

index. This would follow the assumption that the monetary authority reacts to fast

moving variables and thus to the information available within the month (Arias et al.,

2019; Leeper and Zha, 2003).

Examples of such generalized Taylor rules can also be found in dynamic general equi-

librium or New Keynesian models. In those theoretical models, the monetary authority

changes interest rates additionally in response to term spreads (Vázquez et al., 2013),

growth in money (Andrés, López-Salido and Vallés, 2006), or changes in credit spread

and aggregated credit (Curdia and Woodford, 2010), or stock prices (Fuhrer and Tootell,

2008; Castelnuovo and Nisticò, 2010; Lengnick and Wohltmann, 2016). Likewise, Gertler

and Karadi (2011) and Gertler and Karadi (2013) characterize monetary policy by a stan-
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dard Taylor rule in normal times but when the credit spread rises sharply they allow the

central bank to change to credit policy or large-scale asset purchases.

The fourth row represents a reaction function of the term spread. The term spread

reacts to output, prices, and interest rate immediately. In the money demand equation,

fifth row, money can react contemporaneously to output, prices, interest rate and term

spread (see for variours zero restrictions with respect to the money equation Christiano

et al., 1999; Leeper and Zha, 2003; Sims and Zha, 2006; Belongia and Ireland, 2015).

As a fast moving variable we order the credit spread second to last (Caldara and Herbst,

2019). We put the commodity price last in order, thus establishing it as an information

variable (as in, for example, Christiano et al., 1999; Sims and Zha, 2006).

3. Heteroskedastic SVARs with Markov-Switching and S5 in the Structural Matrix

In this section, we introduce our heteroskedastic SVAR model with Markov-switching

time variation in the structural matrix and search of regime-specific identification patterns.

By adding those new features we extend the model by Lütkepohl, Shang, Uzeda and

Woźniak (2022b). Before discussing the model, we introduce the following notation. Let

0N denote an N-vector of zeros, ıN a vector of ones, en.N the nth column of the identity

matrix of order N, denoted by IN. Let [X]n· denote the nth row of matrix X and [X]·n its

nth column. Unless otherwise specified, the time indicator t goes from 1 to T, the variable

and equation indicator n – from 1 to N, the Markov-switching regime indicator m – from

1 to M, and the S5 indicator kn goes from 1 to Kn.

3.1. Model specification

Consider the following reduced from vector autoregressive (VAR) model:

yt =

p∑
l=1

Alyt−l +Addt + εt (1)

where yt = (ipt, cpit,Rt,TSt,mt,CSt, spt)′ is an N = 7-vector of observed variables at time

t, Al are N × N autoregressive matrices for lag l = 1, . . . , p, dt is a d-vector collecting the
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values of deterministic terms at time t, Ad is an N×d matrix of deterministic terms’ slopes,

and εt in an N-vector of the reduced-form shocks. We can rewrite the model in equation

(1) compactly as:

yt = Axt + εt (2)

where A =
[
A1 . . . Ap Ad

]
is of dimension N × (Np + d) and xt =

[
y′t−1 . . . y′t−p d′t

]′
a (Np + d)-vector.

Our model allows for time variation in impulse responses and in identification of

structural shocks based on exclusion restrictions. To that end, we specify the following

time-varying structural equations relating the reduced- to the structural-form shocks ut:

B (st, κ(st)) εt = ut (3)

where B (st, κ(st)) denotes the time-varying N × N structural matrix. It depends on a

regime indicator st = m of a discrete Markov process with M states and on a regime-

specific collection of S5 indicators, κ(st). The latter contains equation-specific indicators,

κn(st) for all n, that for each regime select amongst Kn patterns in the exclusion restrictions

imposed on the rows of the structural matrix. The Markov process, st, is stationary,

aperiodic, and irreducible, with a M ×M transition matrix P and an N-vector of initial

values π0:

st ∼ Markov(P,π0). (4)

For simplicity, denote by Bm.k the matrix B (st, κ(st)) for given realisations of st = m and

κ(m) = (k1, . . . , kN).

Following Waggoner and Zha (2003), the exclusion restrictions on the structural matrix

are imposed by decomposing each row of the structural matrix, [Bm.k]n·, into a 1 × rn.m.kn

vector bn.m.kn , collecting the elements to be estimated, and an rn.m.kn × N matrix Vn.m.kn ,
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containing zeros and ones placing the elements of bn.m.kn at the appropriate spots:

[Bm.k]n· = bn.m.knVn.m.kn . (5)

We pre-specify the number of parameters to be estimated for every row, regime, and S5

identification pattern, rn.m.kn , as well as the form of the structural system determined by

the matrices Vn.m.kn as in Table ??.

The distinguishing feature of our model is its capacity to select structural shocks’

identification patterns which are specific to the regimes identified by the Markov process.

Such a data-based search of the identification pattern is feasible if the potential exclusion

restrictions lead to an over-identified system. Hence, using the S5 mechanism in row

n of B requires that the nth structural shock is identified within each regime absent the

potential additional restrictions we are searching for. We achieve this identification via

heteroskedasticity which we explain in Section 4.4.

The structural shocks at time t are contemporaneously and temporarily uncorrelated

and jointly conditionally normally distributed given the past observations on vector yt,

denoted by Yt−1 with zero mean and a diagonal covariance matrix:

ut | Yt−1 ∼ NT

(
0N,diag

(
σ2

t

))
(6)

where σ2
t is an N-vector of structural shocks’ conditional variances at time t.

Each of the N conditional variances, σ2
n.t, follows a non-centered Stochastic Volatility

process with regime-dependent volatility of the volatility that decomposes the conditional

variances into

σ2
n.t = exp{ωn(st)hn.t} (7)

where ωn(st) is the volatility of the volatility parameter defined as plus-minus square-

root of the conditional variance of the log-conditional variances log σ2
n.t, and hn.t is the

log-volatility of the nth structural shock at time t. This specification extends the Stochas-
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tic Volatility process by Kastner and Frühwirth-Schnatter (2014), which Lütkepohl et al.

(2022b) incorporate into an SVAR model, by the regime-dependence in the parameter

ωn(st). If ωn(m) = 0, then the nth structural shock is homoskedastic in the mth regime. Ad-

ditionally, the Markov process st drives the time variation in both B (st, κ(st)) and ωn(st).

This facilitates the assessment of identification of the structural matrix via heteroskedas-

ticity in each of the regimes.

The log-volatility follows an autoregressive process:

hn.t = ρnhn.t−1 + vn.t, and vn.t ∼ N(0, 1) (8)

with the initial value hn.0 = 0, where ρn is the autoregressive parameter and vn.t is a

standard normal innovation.

4. Stochastic Search Structural Specification Selection

This section presents our novel mechanism for the regime-specific data-driven stochastic

search of the structural matrix identification. First, we conceptualise it as a hierarchical

prior distribution. Next, we explain the estimation procedure and posterior inference on

the specification selection.

4.1. S5 for Markov-switching structural matrix

Our aim is to search for changes in the identification pattern of US monetary policy shocks

across states equation-by-equation, thereby, allowing for time-varying identification of

structural shocks. To that end, we introduce the S5 mechanism and implement it via

a new prior distribution. In this prior setup, given a fixed S5 nth equation component

indicator, κn(m) = kn, the unrestricted elements of the structural matrix’ rows are normally

distributed with zero mean and covariance matrix set to the product of a hyper-parameter

γB and an identity matrix:

b′n.m.kn
| γB, κn(m) = kn ∼ Nrn.m.kn

(
0rn.m.kn

, γBIrn.m.kn

)
. (9)
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This conditional distribution is equivalent to the normal prior assumed by Waggoner and

Zha (2003) for a time-invariant model, and it can be presented as a restricted generalised–

normal distribution proposed by Arias, Rubio-Ramı́rez and Waggoner (2018) with shape

parameter set to value N. Furthermore, (9) is combined with a multinomial prior distri-

bution over a single trial for the S5 component indicator κn(m) = kn ∈ {1, . . . ,Kn} with flat

probabilities equal to 1
Kn

:

κn(m) ∼ Multinomial
(
K−1

n ıKn

)
. (10)

This combination of the conditional zero-mean normal prior distribution for the el-

ements of the structural matrix from equation (9) with the S5 component specific iden-

tifying restrictions from equation (5), and the marginal multinomial distribution for the

S5 component indicator from equation (10), makes the S5 mechanism a multi-component

generalisation of a spike-and-slab prior by Geweke (1996). Moreover, we consider our

approach an extension of the stochastic search variable selection (George and Mcculloch,

1997; George et al., 2008) and, in particular, of the stochastic search specification selection

(Koop and Korobilis, 2016). The latter assumes a Gaussian mixture prior distribution on

a parameter vector where the mixing weights follow a Binomial prior. The normal com-

ponents differ in the covariance terms such that one component induces strong shrinkage

towards a zero mean vector while the other component allows for an unrestricted estima-

tion due to an uninformative prior. Hence, high posterior mass for or against exclusion

restrictions concern all parameters in a vector of coefficients equally, distinguishing the

specification from the variable selection. While our mechanism builds upon the idea of

a specification selection, we generalize the set prior distribution with respect to Koop

and Korobilis (2016) by allowing for multiple components and by the treatment of the

restricted component.

In our S5 prior specification, in some components, the elements of the structural matrix

might be marginally normally distributed with zero mean and variance equal to γB with

probability K−1
n , and in some other components, they are assigned a Dirac mass at value
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zero, δ0, with the same prior probability. Choosing a symmetric normal prior distribution

with probability mass around zero makes our prior specification compatible with spike-

and-slab priors. In those priors, the distribution of the unrestricted component is centred

at the restrictions from the restricted component (see Malsiner-Walli and Wagner, 2018,

for a recent review).

The relationship of our specification to the spike-and-slab prior can be best seen

by analysing the prior distribution for an (n, i)th element of the regime-specific matrix

B(m, κ(m)), denoted by [Bm]n.i, marginalised over κ(m). Such an element is restricted

to zero in KR.n components, whereas it stays unrestricted and normally distributed in

Kn − KR.n of them. Therefore, its prior distribution is a Dirac mass at value zero with

probability KR.n
Kn

, and normal with probability Kn−KR.n
Kn

:

[Bm]n.i | γB ∼
Kn − KR.n

Kn
N(0, γB) +

KR.n

Kn
δ0, (11)

which corresponds exactly to the formulation of a spike-and-slab prior.

Lastly, we set a marginal prior on the structural matrix overall level of shrinkage γB

that follows an inverted gamma 2 distribution with scale sB and shape νB:

γB ∼ IG2
(
sB, νB

)
. (12)

The hierarchical prior for the shrinkage parameter ensures flexibility of our prior distribu-

tion for the parameters of the structural matrices. Importantly, it avoids arbitrary choices

regarding the specification as the level of shrinkage is estimated within the model.

4.2. Bayesian estimation

Our novel model facilitates the estimation of the time-varying structural matrix with

regime-specific stochastic specification selection with respect to the identifying pattern of

exclusion restrictions. The prior setup combines the flexibility of a hierarchical specifica-

tion with the interpretability of the spike-and-slab prior. At the same time, it leads to an

efficient estimation procedure.
15



To estimate the parameters in the structural matrix, we use a Gibbs sampler. The full

conditional posterior distribution of the unrestricted elements of the structural matrix is

generalised-normal, proportional to

|det (Bm.k) |Tm exp

−1
2

N∑
n=1

bn.m.knVn.m.knΩ
−1
B V′n.m.kn

b′n.m.kn

 (13)

where Tm is the number of observations in regime m, such that st = m, and with scale

matrix ΩB

Ω
−1
B = γ

−1
B IN +

∑
t:st=m

(yt −Axt)(yt −Axt)′. (14)

Within each of the regimes, m, the sampling algorithm proceeds row-by-row follow-

ing the algorithm by Waggoner and Zha (2003) and is combined with sampling the S5

indicators κ(m). The rows for which the exclusion restrictions are not subject to stochastic

selection, Kn = 1, are sampled straight away from the full conditional posterior. For the

rows with the stochastic search of exclusion restrictions, we first sample Kn vectors bn.m.kn

from the full conditional posterior distribution given κn(m) = kn for all kn ∈ {1, . . . ,Kn},

then we compute the full conditional posterior probabilities of each of these S5 compo-

nents, pn.m.kn
, that are proportional to the product of the likelihood function, L(θ | YT), and

the prior distributions:

pn.m.kn
∝ L(θ | YT, κn(m) = kn)p

(
Bn.m.kn | γB, κn(m) = kn

)
p (κn(m) = kn) . (15)

The realisation of the S5 indicator is sampled from the multinomial distribution, denoted

by kn, and is returned together with the corresponding vector bn.m.kn as the draw from the

joint distribution of bn.m.κn(m) and κn(m). Finally, we sample the shrinkage hyper-parameter
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from its inverted gamma 2 full conditional posterior distribution:

γB | B(st, κ(st)), κ(st) ∼ IG2

sB +
∑

n

∑
m

bn.m.knb′n.m.kn
, νB +

∑
n

∑
m

rn.m.kn

 . (16)

4.3. Posterior inference for structural identification patterns

Having estimated a model and obtained the sample of S posterior draws, the inference

about equation-specific and cross-equation identifying restrictions is straightforward. In

order to see which set of exclusion restrictions in the nth equation is best supported by

the data estimate the marginal posterior distribution of the indicator κn(m). This involves

the estimation of each S5 component posterior probability by computing the fraction of

posterior draws for which the indicator, κn(m)(s), takes a particular value kn, for each of its

values from 1 to Kn:

P̂r [κn(m) = kn | YT] = S−1
S∑

s=1

I(κn(m)(s) = kn). (17)

One could also be interested in a conditional posterior distribution of the nth equation

specification given a particular specification of the ith row. That can be assessed by the

estimation of the following probabilities for all values kn can take:

P̂r
[
κn(m) = kn | YT, κi(m) = k∗i

]
= S−1

S∑
s=1

I

(
κn(m)(s) = kn ∧ κi(m)(s) = k∗i

)
. (18)

Finally, if a specific economic interpretation is given to a particular combination of

exclusion restrictions for the structural matrix, one can estimate the joint posterior prob-

ability of such a specification by computing the fraction of the posterior draws for which

this combination of S5 indicators holds:

P̂r
[
κ1(m) = k∗n ∧ · · · ∧ κN(m) = k∗i | YT

]
= S−1

S∑
s=1

I

(
κ1(m)(s) = kn ∧ · · · ∧ κN(m)(s) = ki

)
. (19)

The decision regarding the model specification selection is left to the investigator. They
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can decide to choose the specification that is a posteriori the most likely or accept it only if

its marginal posterior probability exceeds 50%.

4.4. Achieving over-identification of the exclusion restrictions

We do not restrict the exclusion restriction patterns to be lower-triangular structural matri-

ces. Hence, additional parameters to be estimated imply that the system is not identified

through zero restrictions. To ensure that our data-driven search of the identification pat-

terns is feasible for the nth row, the additional exclusion restrictions on [Bm.k]n· need to be

over-identifying. To achieve that, we identify the nth structural shock via heteroskedas-

ticity. Hence, we uncover the instantaneous uncorrelated structural shocks based on

changes in volatility. To that end, we model heteroskedasticity via our specific stochastic

volatility representation as given in equations (7) to (8), (similar to Lütkepohl et al., 2022b).

Alternatively, changes in the reduced form covariance can be implemented via standard

stochastic volatility processes (with no dependence on the regime as in Bertsche and

Braun, 2022), exogenous changes (Rigobon, 2003), (G)ARCH models (Normandin and

Phaneuf, 2004; Milunovich and Yang, 2013; Lütkepohl and Milunovich, 2016), Markov

switching (Lanne, Lütkepohl and Maciejowska, 2010) or smooth transitions (Lütkepohl

and Netšunajev, 2017). The additional exclusion restrictions can provide the lacking

economic labeling to the so (statistically) identified structural shocks.

Within each regime, the regime-specific reduced from unconditional covariance ma-

trix, Σε.m, can be decomposed as

Σε.m = B−1
m.k diag

(
σ2

t

)
B−1′

m.k. (20)

Within a regime we can apply the same identification result as derived by Lütkepohl et al.

(2022b) using our specific parameterization as given in equation (7). That is, the nth row

of Bm.k is identified if ωn(m) , ωk(m) ∀k ∈ {1, . . . ,N}\{n}. A structural shock is identified

through heteroskedasticity if changes in the conditional variances are non-proportional.

Note that it is crucial here that our model links the time variation in the structural matrix
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to the changes in the volatility of the volatility parameter ωn(m) via the same Markov

process.

The validity of the S5 mechanism for the nth equation depends on the identification

through heteroskedasticity of the nth structural shock within a regime. The nth structural

shock is identified through heteroskedasticity in two cases. First, the shock is identified

when this shock, and no other, is homoskedastic within a specific regime. Second, in

the presence of any other homoskedastic shock in the system, the shock is identified if

the nth structural shock is heteroskedastic in that regime. Therefore, heteroskedasticity

verification plays a central role in our setup. Subsequently, we first explain the priors and

posterior simulation for the relevant parameters and then, we discuss heteroskedasticity

testing in Section 6.

5. Prior Distributions and Posterior Sampler

In this section, we discuss the prior specification of the remaining parameters of the model

and their estimation. The objective of setting the prior distributions is to combine the

analytical feasibility of deriving an efficient Gibbs sampler. The latter is outlined as well.

5.1. Priors for conditional mean parameters

The prior distribution for the autoregressive parameters incorporates the ideas of the

Minnesota prior by Doan, Litterman and Sims (1984) combined with the estimation of

the level of prior shrinkage as inspired by Giannone, Lenza and Primiceri (2015). The

former is implemented via the construction of the prior mean and covariances, the latter

by a hierarchical prior. Moreover, it facilitates numerically fast and efficient estimation.

Each of the rows of matrix A follows independently a conditional multivariate normal

distribution with the mean set to vector mA.n =
[
e′n.N 0′N(p−1)+d

]
and the covariance γAΩA:

[A]′n· | γA ∼ NNp+d

(
m′A.n, γAΩA

)
(21)
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where γA is the shrinkage parameter common to all elements of matrix A, and ΩA is a

diagonal matrix with vector
[
p−2′
⊗ ı′N 100ı′d

]′
on the main diagonal, where p is a vector

containing a sequence of integers from 1 to p. This specification includes the shrinkage

level exponentially decaying with the increasing lag order, relatively large prior variances

for the deterministic term parameters, and the flexibility of the hierarchical prior that leads

to the estimation of the level of shrinkage. We implement the last feature by setting a

prior on the overall reduced form parameters shrinkage that follows:

γA ∼ IG2
(
sA, νA

)
. (22)

Specifying the Markov process parameters, we assume that each of the regimes lasts

a priori on average for 11 months. Hence, each of the rows of the transition probabilities

matrix P follows independently a Dirichlet distribution with unit parameters for all of the

row’s elements except for the one corresponding to the diagonal element for which the

parameter is equal to 1 + dm. To assure the prior expected regime duration of 11 months,

we set dm = 9 for M = 2 regime models, and dm = 19 for those with M = 3 regimes. The

initial probabilities π0 follow a Dirichlet distribution with unit parameters:

[P]m· ∼ Dirichlet(ıM + dmem.M), π0 ∼ Dirichlet(ıM). (23)

5.2. Priors for conditional variance parameters

The prior specification for the parameters of the Stochastic Volatility process combines

the flexibility of the specification via a hierarchical structure with the benefits regarding

the normalisation and heteroskedasticity verification following Lütkepohl et al. (2022b).

The prior distribution for the regime-specific volatility of the volatility process, ωn(st),

follows a zero-mean conditional normal distribution given the shrinkage level σ2
ω.n:

ωn(m) | σ2
ω.n ∼ N

(
0, σ2

ω.n

)
. (24)

The level of shrinkage, σ2
ω.n, follows a gamma distribution with the scale s, shape a, and
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the expected value sa:

σ2
ω.n ∼ G(s, a). (25)

This prior setup following Lütkepohl et al. (2022b) implies that the marginal prior for

ωn(m) combines extreme prior probability mass around the restriction for homoskedas-

ticity ωn(m) = 0 and fat tails. Consequently, it centres the prior probability mass of

conditional variances along value one that implies homoskedasticity. Therefore, when-

ever a shock is identified through heteroskedasticity, the signal comes entirely from data.

Finally, this prior specification facilitates Bayesian verification of homoskedasticity which

we discuss in detail in Section 6. All these properties hold given some additional assump-

tions that include |ρn| < 1, σ2
ω.n/(1 − ρ2

n) ≤ 1, and a > 0.5 (see Lütkepohl et al., 2022b).

Lastly, the prior distribution for the autoregressive parameter of the log-volatility process

is uniform over the stationarity region:

ρn ∼ U(−1, 1). (26)

5.3. Bayesian estimation

Estimation of the parameters considered in this section is implemented by the Gibbs

sampler. Our emphasis was put on the selection of the most efficient sampling techniques

that would facilitate estimation in larger systems of variables for which the dimension of

the parameter space grows rapidly. The Gibbs sampler iteration for the autoregressive

parameters, A, follows a numerically fast and efficient equation-by-equation sampler by

Chan, Koop and Yu (2022) in which the parameters are drawn from a multivariate normal

distribution. The autoregressive overall shrinkage level is sampled from the inverted

gamma 2 full conditional posterior distribution.

The rows of the transition probabilities matrix, P, and the initial state probabilities

vector, π0, are all sampled from independent M-variate Dirichlet full conditional posterior

distributions as in Frühwirth-Schnatter (2006). The sampling procedure for the Markov
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process realisations follows the forward-filtering backward-sampling algorithm proposed

by Chib (1996).

Estimation of the Stochastic Volatility process via Gibbs sampler is possible thanks

to the auxiliary mixture by Omori, Chib, Shephard and Nakajima (2007a), simulation

smoother and precision sampler as presented by McCausland, Miller and Pelletier (2011).

Finally, efficient estimation when heteroskedasticity is uncertain requires the implemen-

tation of the ancillarity-sufficiency interweaving strategy by Kastner and Frühwirth-

Schnatter (2014).

The computer code for the Gibbs sampler is provided for R (R Core Team, 2021) in

package bsvarTVPs that is available in a public repository.1 Excellent computational

speed of the algorithms is obtained by the application of frontier econometric techniques

and compiled code written in C++ using the R packages Rcpp by Eddelbuettel, François,

Allaire, Ushey, Kou, Russel, Chambers and Bates (2011), RcppArmadillo by Eddelbuettel

and Sanderson (2014), and bsvars by Woźniak (2022).

6. Assessment of heteroskedasticity within regimes

Our model specification explicitly binds the time variation in the structural matrix with the

volatility of the volatility parameterωn(st). They both depend on the same Markov process

st and, thus, change the regime simultaneously. This design facilitates the verification of

the hypothesis of within-regime homoskedasticity of each of the shocks represented by

the restriction:

ωn(m) = 0. (27)

If this restriction holds then the nth structural shock is homoskedastic in the mth regime,

which should be verified for all equations and regimes.

As shown by Lütkepohl et al. (2022b) in a time-invariant heteroskedastic model, veri-

fying the restriction of zero volatility of the volatility is a useful tool for making statements

1Access the bsvarTVPs package at https://github.com/donotdespair/bsvarTVPs
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regarding the identification of structural shocks. In that setting, detecting a homoskedas-

tic shock, in the presence of another homoskedastic shock, violates the condition of

non-proportional changes in conditional variances providing the identification. Conse-

quently, both such shocks are not identified through heteroskedasticity. More generally, at

most one homoskedastic shock is allowed for the whole structural matrix to be identified.

Importantly, the reliability of the regime-specific S5 of the parameters in this equation

relies on identification via heteroskedasticity within the regimes. In our setup, with

simultaneous regime changes in the structural matrix and the volatility of the volatility

parameter, verifying restrictions from equation (27) allows us to validate the S5 for the nth

equation.

To that end, we use the Savage-Dickey Density Ratio by Verdinelli and Wasserman

(1995). It is the ratio of the marginal posterior density to the marginal prior density

ordinates both evaluated at the restriction:

SDDRn.m =
p (ωn(m) = 0 | YT)

p (ωn(m) = 0)
. (28)

The SDDR is interpreted as the Bayes factor for two models: one with homoskedastic and

another heteroskedastic shock in the mth regime. Its value greater than 1 implies a higher

concentration of the posterior than of the prior probability mass around the restriction

and provides evidence in favour of homoskedasticity. On the contrary, its value of less

than 1 and greater than zero indicates heteroskedasticity of the shock in that regime.

Our prior setup for the verified parameter closely follows that by Lütkepohl et al.

(2022b) which shrinks the prior probability mass strongly towards the restriction and

assures that the prior density function is bounded and heavy-tailed at once. All these

features make the verification of the restriction using the SDDR feasible, numerically

fast, reliable, and less dependent on the arbitrary prior choices than the heteroskedas-

ticity testing approach proposed by Chan (2018). Note that to date, there does not exist

a comprehensive time-varying identification through heteroskedasticity approach, nor

does regime-specific heteroskedasticity testing.
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The numerator and denominator of the SDDR are computed by numerical integration

using the estimator by Gelfand and Smith (1990). The corresponding conditional prior and

full conditional posterior distributions of ωn.m are known up to their densities provided

by Lütkepohl et al. (2022b). The computations for the numerator need to be expanded by

conditioning on the realisations of the Markov process in the regime-specific case. Those

for the denominator remain unchanged.

7. What data say about time-variation in monetary policy shock identification

Figure 1: Regime probabilities of the Markov process
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Note: Figure shows the estimated regime probabilities of the first regime (light color) in the top subplot
and of the second regime (dark color) in the bottom subplot.

We estimate our model with two regimes.2 Figure 1 shows the regime probabilities

2The computations for this paper were performed at the Spartan HPC-Cloud Hybrid (see Meade,
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over time for the two regimes. Regime one is very persistent in the first part of the sample

until early 1990s and predominates until 2008. The second regime prevails during the

financial and Covid-19 crisis.

Figure 2: Histograms of the regime-specific stochastic volatility parameters ωn
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Note: Figure shows the regime-specific volatility of the volatility parametersωn(m) for m = 1, 2 (in columns)
for all variables (in rows).

Within both regimes, we can verify identification via heteroskedasticity for the mon-

etary policy reaction function. Figure 2 plots regime-specific volatility of the volatility

parameters ωn(m) for m = 1, 2 (in columns) for all variables (in rows). We find clear

evidence for heteroskedasticity within regimes for the monetary policy reaction func-

tion visualized by the bi-modality of the posterior distribution. Hence, the restriction

Lafayette, Sauter and Tosello, 2017) at the University of Melbourne and at the Dutch national e-infrastructure
Lisa Compute Cluster (see Lisa SURFSARA).
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search for regime-specific identification pattern in the monetary policy reaction function

is possible.

Figure 3: Posterior probabilities of the S5 mechanism in the monetary policy reaction function
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Note: Figure shows the posterior probabilities of κn(m) for identification pattern in the monetary policy
reaction function for regime one (light color) and regime two (dark color).

Next, Figure 3 gives the posterior probabilities of the S5 mechanism for the five possible

options in the shadow rate equation. That is, shadow rates depend contemporaneously

on (“R”) only output and prices, (“TS”) these two and term spread, (“m”) these two

and money, (“CS”) these two and credit spread, and (“sp”) these two and stock prices.

For the first regime, we find strong data support for the inclusion of term spread. The

posterior probability of κ2(m = 1) – S5 component indicator for the restriction pattern

where no restriction is placed on the term spread – is one. Hence, monetary policy reacts

simultaneously to changes in the term spread signaling changes in the expectations on
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future economic developments in regime one.

Several papers argue that term spreads are a target of unconventional monetary policy

as long term interest rates are the main transmission channel of the large asset purchase

programs (Baumeister and Benati, 2013; Liu et al., 2017; Feldkircher and Huber, 2018;

Tillmann, 2020). The monetary authority can target term spreads via the portfolio balance

channel; increased asset purchases decrease the supply of long-term securities and lower

long-term yields. Gagnon, Raskin, Remache and Sack (2011), Krishnamurthy and Vissing-

Jorgensen (2011), and D’Amico and King (2013), among others, provide evidence that the

large asset purchase programs during the zero lower bound period affect long-term yields.

Our results extend those findings by showing that the monetary policy reaction function

of the Fed accounts for the information revealed by term spreads even before the start of

unconventional monetary policy since the first regime occurs mainly already before 2008.

Table 2: Posterior means of regime-specific contemporaneous parameters in the monetary policy reaction
function

ip cpi R TS m CS sp
TR regime 1 9.98 -64.78 3.10 3.58 0.00 0 0
sd 7.13 24.07 0.16 0.16 0.00 0 0
lower 2.86 -88.67 2.92 3.41 0.00 0 0
upper 16.98 -40.88 3.25 3.74 0.00 0 0
TR regime 2 -5.87 22.25 1.26 0.00 233.60 0 0
sd 8.82 25.31 0.87 0.00 21.01 0 0
lower -13.70 -1.27 0.45 0.00 212.86 0 0
upper 3.57 48.52 1.91 0.00 254.01 0 0

Note: Table gives the posterior means of the contemporaneous parameters in the monetary policy reaction
function (in columns) for regime one (in row TR regime 1) and two (in row TR regime 2) together with the
estimated standard deviation (sd) and the lower and upper bound of the highest density interval.

Contemporaneously, we find evidence for a positive relation between the terms spread

and interest rates in regime one. The posterior mean of the contemporaneous coefficient

on term spreads in the monetary reaction function is positive with strong evidence that it

is different from zero, shown in Table 2.

In the second regime, the monetary authority responds simultaneously to changes
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in the monetary aggregate. The posterior value of κ4(m = 2) – S5 component indicator

for the restriction pattern where no restriction is placed on money – is one, dark colored

bar in Figure 3. The posterior mean of the coefficient of the monetary aggregate in the

monetary policy reaction function is positive and different from zero. Notably, our results

provide evidence that the shadow rate coefficient is not different from zero. That points

into the direction that the monetary policy indicator switches in the second regime to the

monetary aggregate.

Our findings are in line with Belongia and Ireland (2015) supporting that after 2008

monetary policy actions lead to changes in the monetary aggregates. While the Fed

officially targeted money supply before 1982, Belongia and Ireland (2015) argue that

unconventional monetary policy can be seen as attempts to increase money growth.

Similar to the strong support of data for money in the monetary policy rule in the second

regime, the authors show that excluding a monetary measure from the interest rate rule is

rejected by the data in the sample from mid 1960s to 2013. Following a similar argument,

Kimura and Nakajima (2016) distinguish between a conventional and unconventional

monetary policy shock by setting a zero restriction on bank reserves in the interest rate

equation (conventional monetary policy) or having a zero restriction on the interest rate

in the bank reserves demand equation (unconventional monetary policy). In both cases,

the corresponding opposite element is non-zero.

7.1. Alternative Patterns in the Restriction Search

We further investigate the role of the term spread by applying our S5 mechanism to

the monetary policy reaction function and also to the term spread rule. Here, we search

for a zero restriction on the simultaneous response of terms spreads to changes in interest

rates, S5 element in the fourth row in the structural matrix given in Table 3.

A potential zero restriction on the contemporaneous reaction of the shadow interest

rate in the fourth row is motivated by the zero lower bound period. Baumeister and

Benati (2013), Feldkircher and Huber (2018), and Liu et al. (2017) use sign restrictions to

identify a term spread shock, as a measure of an unconventional monetary policy shock,
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Table 3: Regime-specific identification patterns of monetary policy and term spread shocks

∗ 0 0 0 0 0 0
∗ ∗ 0 0 0 0 0
∗ ∗ ∗ S5 S5 S5 S5

∗ ∗ S5
∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗
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Figure 4: Posterior probabilities of the S5 mechanism in the monetary policy reaction function and term
spread equation
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Note: Figure shows the posterior probabilities of κn(m) for identification pattern in the monetary policy
reaction function (top subplot) and term spread equation (bottom subplot) for regime one (light color) and
regime two (dark color). For the term spread equation, “R” gives the posterior indicator for the restriction
pattern where no restriction is placed on shadow rates and “zero on R” where an exclusion restriction is
placed on shadow rates.
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but combine it with a single zero restriction on the short-term interest rate reaction. Thus,

when short term rates reach the zero lower bound, the term spread reacts no longer to

such zero interest rates.

Allowing for data-driven restriction search in the term spread equation does not

change the posterior probabilities for including term spreads in the monetary policy

reaction function in regime one and for the monetary aggregate in regime 2, first plot in

Figure 4. Data do not support a zero restriction on shadow interest rates in the term spread

equation in both regimes. The posterior probability for including shadow interest rates,

denoted by “R” in Figure 4, is one in the first regime and very close to one in the second

regime and, thus, the probabilities for an exclusion restriction, labeled by “zero on R”, are

zero. Since we include shadow rates in our model which also move to negative values in

the zero lower bond period, support for a zero restriction on the interest rates is less likely.

Hence, the term spreads reacts to movements in the shadow rate contemporaneously.

7.2. Robustness analysis

We further investigate the role of the term spread. To that end, we estimate a model

without the term spread. In that model the credit spread takes over the role of the term

spread. The posterior probabilities of including the credit spread in the monetary policy

reaction function is above 80% in the first regime, while money is selected to be included

in the second regime, panel (a) in Figure 1. Similarly to the term spread, the credit

spread can also signal changes in the economic environments. Hence, it seems that the

central bank reacts to early signals on economic developments in the first regime. Next,

we estimate a model including long term interest rates (LR) instead of the term spread.

We find support of around 80% probability to include credit spreads in the monetary

policy reaction function in the first regime and above 10% probability to include long

term interest rates, panel (b) in Figure 1. The results for the second regime are somehow

mixed with highest posterior probability for the monetary aggregate, followed by long

term interest rates, and then by credit spreads.

Furthermore, if we exclude the restriction search but allow for Markov-switching
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Figure 5: Posterior probabilities of the S5 mechanism in the monetary policy reaction function for models
excluding term spreads
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Note: Figure shows the posterior probabilities of κn(m) for identification pattern in the monetary policy
reaction function for different models for regime one (light color) and regime two (dark color). The first
model does not include the term spread, the second model includes long term interest rates instead of term
spreads.

in the matrix of contemporaneous coefficients we find a less persistent second regime.

This second regime is based on only a low number of observations. Hence, allowing

for time-varying identification of the monetary policy reaction function is crucial to find

regime-dependence in the empirical Taylor rule specification.

Moreover, varying the degree of shrinkage in the prior distributions of autoregressive

and contemporaneous parameters does not change the finding of including the term

spread in the monetary policy reaction function in the first regime.

8. Conclusions

We propose a Bayesian heteroskedastic structural vector autoregressive model with

Markov-Switching and data-driven regime-specific identification search. Our model has

as new features Markov-switching time-variation in the structural matrix of contempora-

neous effects and in a stochastic volatility parameter as well as a data-supported search of

regime-specific exclusion restriction patterns. Those new features allow us to study time-

variation in monetary policy identification and provide new insights into which exclusion
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restrictions are supported by the data. We facilitate the search through a new stochastic

search structural specification selection mechanism which generalizes selection priors and

is feasible by identifying the monetary policy reaction function via heteroskedastic resid-

uals. With our new model we can challenge the common assumption of time-invariant

identification of monetary policy shocks.

Our findings show that data support time-variation in US monetary policy shock iden-

tification. We find strong evidence for including the term spread in the monetary policy

reaction function in the first regime predominating before 2008. In the second regime

mainly occurring after 2008, the monetary authority reacts simultaneously to changes in

shadow rates and in a monetary aggregate. Hence, our results support regime-specific

empirical generalized Taylor rule specifications to model the systematic component of

monetary policy.
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Lütkepohl, H., Netšunajev, A., 2017. Structural vector autoregressions with smooth transition in variances.

35

http://dx.doi.org/10.1080/07350015.2018.1429278
http://dx.doi.org/https://doi.org/10.1016/j.csda.2013.01.002
http://arxiv.org/abs/https://doi.org/10.1080/07350015.2017.1350186


Journal of Economic Dynamics and Control 84, 43–57.
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Lütkepohl, H., Shang, F., Uzeda, L., Woźniak, T., 2022b. Partial identification of heteroskedastic structural

vars: Theory and bayesian inference.
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Appendix A. Gibbs sampler for Autoregressive and Stochastic Volatility Parameters

Estimation of the structural matrix, the associated S5 component, and the corresponding

prior shrinkage parameter was presented in Section 4.2. In this appendix, we scrutinise the

estimation procedure for the remaining parameters including the autoregressive matrix

and its prior shrinkage parameter, and the components of the Stochastic Volatility model.

The assumptions regarding the distribution of residuals and the prior distribution of the

parameters of the model result in a convenient and efficient Gibbs sampler that performs

excellently in terms of efficiency, mixing, and computational speed even for larger systems

of variables.

Sampling autoregressive parameters

We follow Chan et al. (2022) and sample the autoregressive parameters of the A matrix

row-by-row, where the nth row is denoted by [A]n·. Denote by An=0 the A matrix with

its nth row set to zeros. To derive the sampler for the row of the autoregressive matrix,

rewrite the structural form equation (3) in an equivalent form as:

B (st, κ(st))
(
yt −An=0xt

)
=
(
[B (st, κ(st))]·n ⊗ x′t

)
[A]′n· + εt (A.1)

Define an n × 1 vector zn
t = B (st, κ(st))

(
yt −An=0xt

)
and an N × (Np + d) matrix Zn

t =(
[B (st, κ(st))]·n ⊗ x′t

)
and rewrite equation (A.1) as:

zn
t = Zn

t [A]′n· + εt, (A.2)

where the structural shocks follow the normal distribution defined in equation (6). This

form of a model combined with the conditionally normal prior distribution results in the
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multivariate normal full conditional posterior distribution for the rows of A given by:

[A]′n· | YT,An=0,B (st, κ(st)) ,σ2
1, . . .σ

2
T, γA ∼ NNp+d

(
ΩA.nm′A.n,ΩA.n

)
(A.3)

Ω
−1
A.n = γ

−1
A Ω

−1
A +
∑

t

Zn′
t diag

(
σ2

t

)−1
Zn

t (A.4)

m′A.n = γ
−1
A Ω

−1
A m′A.n +

∑
t

Zn′
t diag

(
σ2

t

)−1
zn

t (A.5)

The sampler maintains all the computational advantages that Chan et al. (2022) enumer-

ates. The overall autoregressive shrinkage hyper-parameter is sampled from its inverted

gamma 2 full conditional posterior distribution:

γA | A ∼ IG2

sA +
∑

n

(
[A]n· −mA.n

)
Ω−1

A

(
[A]n· −mA.n

)′
, νA +N(Np + d)

 (A.6)

Sampling stochastic volatility parameters

Gibbs sampler for the parameters of the SV processes results from our prior assumptions

described in Section 5.2 and the assumption regarding the normality of the structural

shocks in equation (6). It is facilitated using the auxiliary mixture sampler proposed by

Omori, Chib, Shephard and Nakajima (2007b).

Specify the nth structural shock as:

un.t = exp
{1

2
ωn(st)hn.t

}
zn.t, (A.7)

where zn.t is a standard normal innovation. Transform this equation by squaring and

taking the logarithm of both sides obtaining:

ũn.t = ωn(st)hn.t + z̃n.t, (A.8)

where ũn.t = log u2
n.t and z̃n.t = log z2

n.t. The distribution of z̃n.t is logχ2
1. This non-

standard distribution is approximated precisely by a mixture of ten normal distributions

defined by Omori et al. (2007b). Applying the auxiliary mixture technique makes the
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linear equation (A.8) conditionally normal given the mixture component indicators, which

greatly simplifies the sampling algorithm. This mixture of normals is specified by qn.t =

1, . . . , 10 – the mixture component indicator for the nth equation at time t, the normal

component probability πqn.t , mean µqn.t , and variance σ2
qn.t

. The latter three parameters are

fixed and given in Omori et al. (2007b), while qn.t augments the parameter space and is

estimated. Its prior distribution is multinomial with probabilities πqn.t .

Define T×1 vectors: hn =
[
hn.1 . . . hn.T

]′
collecting the log-volatilities, qn =

[
qn.1 . . . qn.T

]′
collecting the realizations of qn.t for all t,µqn

=
[
µqn.1 . . . µqn.T

]′
, andσ2

qn
=
[
σ2

qn.1
. . . σ2

qn.T

]′
collecting the nth equation auxiliary mixture means and variances, Ũn =

[
ũn.1 . . . ũn.T

]′
,

and ωn =
[
ωn(s1) . . . ωn(sT)

]′
collecting the volatility of the volatility parameters ac-

cording to their current time assignment based on the sampled realizations of the Markov

process. Whenever a subscript on these vectors is extended by the Markov process’

regime indicator m it means that the vector contains only the Tm observations for t such

that st = m, e.g., Ũn.m. Finally, define a T × T matrix Hρn with ones on the main diagonal,

value −ρn on the first subdiagonal, and zeros elsewhere, and a Tm × Tm matrix Hρn.m with

rows and columns selected according to the Markov state allocations such that st = m.

Sampling latent volatilities hn proceeds independently for each n from the following

T-variate normal distribution parameterized following Chan and Jeliazkov (2009) in terms

of its precision matrix V
−1
hn

and location vector hn as:

hn | YT, sn,qn,B,A,ωn, ρn ∼ NT

(
Vhnhn,Vhn

)
(A.9)

V
−1
hn
= diag

(
ω2

n

)
diag

(
σ−2

qn

)
+H′ρn

Hρn (A.10)

hn = diag (ωn) diag
(
σ−2

qn

) (
ũn − µqn

)
(A.11)

The distinguishing feature of the precision matrix is that it is tridiagonal which greatly

improves the speed of generating random numbers from this full conditional posterior

distribution if only the appropriate simulation smoother proposed by McCausland et al.

(2011) is implemented.
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The regime-dependent volatility of the volatility parameters that are essential for the

assessment of identification of the SVAR models, ωn(m), are sampled independently from

the following normal distribution:

ωn(m) | Ym, sn.m, sn.m,hn.m, σ
2
ωn
∼ N

(
vωn.mωn.m, vωn.m

)
(A.12)

v−1
ωn.m
= h′n.m diag

(
σ−2

qn.m

)
hn.m + σ

−2
ωn

(A.13)

ωn = h′n.m diag
(
σ−2

qn.m

) (
ũn.m − µqn.m

)
(A.14)

The autoregressive parameters of the SV equations are sampled independently from

the following truncated normal distribution:

ρn | YT,hn ∼ N


T−1∑

t=0

h2
n.t


−1  T∑

t=1

hn.thn.t−1

 ,
T−1∑

t=0

h2
n.t


−1I (|ρn| < 1

)
. (A.15)

using the algorithm proposed by Robert (1995).

The prior variances of parametersωn(m), σ2
ωn

, are a posteriori independent and sampled

from the following generalized inverse Gaussian full conditional posterior distribution:

σ2
ωn
| YT, ωn(1), . . . , ωn(M) ∼ GIG

MA −
1
2
,
∑

m

ω2
n(m),

2
S

 (A.16)

The auxiliary mixture indicators qn.t are each sampled independently from a multino-

mial distribution with the probabilities proportional to the product of the prior probabil-

ities πqn.t and the conditional likelihood function.

Finally, proceed to the ancillarity-sufficiency interweaving sampler proposed by Kast-

ner and Frühwirth-Schnatter (2014). They show that sampling directly the parameters

of the centered SV model leads to an efficient sampler if data is heteroskedastic, but it

leads to substantial inefficiencies if data is homoskedastic. On the other hand, sampling

directly parameters of the non-centered SV parameterization leads to efficient sampling

for homoskedastic data but not for heteroskedastic series. The solution offering the op-
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timal strategy when the heteroskedasticity is uncertain, and to be verified, is to apply

ancillarity-sufficiency interweaving step in the Gibbs sampler. Our implementation pro-

ceeds as follows: Having sampled random vector hn and parameters ωn(m), compute

the parameters of the centered parameterization h̃n.t = ωn(m)hn.t and σ2
υn
= ω2

n(m). Then,

sample σ2
υn.m from the generalised inverse Gaussian full conditional posterior distribution:

σ2
υn.m | Ym, h̃n.m, σ

2
ωn
∼ GIG

(
−

Tm − 1
2
, h̃′n.mH′ρn.mHρn.mh̃n.m, σ

−2
ωn

)
(A.17)

using the algorithm introduced by Hörmann and Leydold (2014). Resample ρn using

the full conditional posterior distribution from equation (A.15) where the vector hn is

replaced by h̃n. Finally, compute ωn(m) = ±
√
σ2
υn.m and hn.t =

1
ωn(m) h̃n.t and return them as

the MCMC draws for these parameters.

Appendix B. Data

ip log industrial production (INDPRO), Total Index, Index 2017=100, Seasonally
Adjusted, FRED database

cpi log consumer price index (CPALTT01USM661S), Total All Items, Index 2015=100,
Seasonally Adjusted, FRED database

R shadow rates of Wu and Xia (2016) and before January 1990 federal funds rate
(DFF), FRED database

TS ts = rL − r, 10-year Treasury constant maturity rate minus federal funds rate
(T10YFFM), FRED database

m log M2 (M2SL), Billions of Dollars, Seasonally Adjusted, FRED database
CS Moody’s seasoned Baa corporate bond yield relative to yield on 10-year treasury

constant maturity (BAA10YM), FRED database
sp log S&P500 stock price index, monthly average of closing price, yahoo finance
LR long-term 10-year government bond yields (IRLTLT01USM156N), FRED database
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