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ABSTRACT. This paper presents determinacy bounds on monetary policy derived in the

frequency domain. These bounds confirm results for standard Calvo sticky price New

Keynesian models obtained in the time domain, but provide bounds for models like those

under sticky information previously unobtainable. We find that the restrictions are

independent of parameters outside the monetary policy rule and more restrictive than

sticky price bounds. These results provide conservative restrictions on monetary policy

rules for policy makers in the absence of model certainty.
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1. INTRODUCTION

We implement the sticky information model of Mankiw and Reis (2002) in the frequency

domain which enables it to be expressed in a fully recursive manner. To our knowledge,

this is the first to do so and enables us to characterize its stability properties, closing a

gap in the literature. Specifically we examine the consequences for New Keynesian policy

recommendations in the form of determinacy bounds on the monetary authority’s policy

rule and show that the Taylor principle, a more than one-for-one response of the nominal

interest rate in response to inflation, holds in a stricter sense than in the standard sticky

price framework.

The sticky information posits a vertical long-run Phillips curve, even out of equilibrium,

whereas the sticky-price model, in contrast, imposes a systematic relationship between

E-mail address: meyer-gohde@econ.uni-frankfurt.de, tzaawakr@its.uni-frankfurt.de.

Date: February 28, 2023.
We are grateful to ... Any and all errors are entirely our own. This research was supported by the DFG

through grant nr. 465469938 “Numerical diagnostics and improvements for the solution of linear dynamic

macroeconomic models”.
1

mailto:meyer-gohde@econ.uni-frankfurt.de
mailto:tzaawakr@its.uni-frankfurt.de


2 SI AND THE TP

inflation and output, stable even in the long run.1 This systematic relationship widens

the parameter spaces of monetary policy’s Taylor rule associated with unique equilibria

under sticky prices with, for example, a reaction of the nominal interest rate to the output

gap serving as a substitute for a reaction to inflation and allowing the (direct) response to

inflation to be less than one while still adhering to the Taylor principle. Woodford (2003,

pp. 254–255), “... indeed, a large enough [response to] either [the output gap or inflation]

suffices to guarantee determinacy.”2 As is shown here, the long-run verticality of Mankiw

and Reis’s (2002) sticky-information Phillips curve precludes such a substitutability and

the bounds for determinacy depend only on the reaction of monetary policy to nominal

variables.

Solving linear rational expectation (LRE) models means to replace agents’ “expectations”

with the mathematical counterpart. The challenge thereby is that the assumption of

rational expectations leads to the necessity of finding a fixed point of the reduced model

which matches the agents’ forecasts of the model. One method to do so is to partition

the system into stable and unstable dynamics of the model (see Klein, 2000; Söderlind,

1999; Sims, 2001) and then pin down the initial conditions. However, as LRE models often

feature multiple equilibria they attain determinacy only for certain parameter values

(see Blanchard and Kahn, 1980). Nonetheless, these solution methods are only applicable

for a certain class of linear models. Applying these methods to models featuring lagged

expectations would require the system to specifically include the lagged expectation as

additional state variables. This is very inconvenient for a model that features a potentially

infinite sum of lagged expectations of variables as it would make models unnecessary

large and lagged expectations would need to be truncated giving rise to possibly inaccurate

solutions (Andres et al., 2005). Another method to solve LRE models is the method of

undetermined coefficients (Taylor, 1986). Here the solution to the model is presented in

terms of the state variables. Meyer-Gohde (2010) eliminates the state-space expansion

and truncation requirement of lagged LRE models by extending the method proposed by

Taylor (1986) with the Generalized Schur Decomposition.

However, these methods are usually presented in the time-domain and miss useful

model insights and frequency implications. Working in the frequency domain allows the

researcher to examine a models’ performance over different frequencies. Watson (1993)

1See, e.g., Woodford (2003, p. 254) or Galí (2008, p. 78).
2Emphasis in the original.
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stresses the importance of model spectra as “informative diagnostics” and Diebold et al.

(1998) assess the performance of models based on estimated spectral density functions.

Further, the advantage of solving macroeconomic models in the frequency domain is that

these methods are not model-specific which makes them applicable to a wide range of

economic models.

Our paper adds to two strands of literature. First, it adds to the literature on sticky

information in macroeconomic models which has large supporting evidence in explaining

inflation dynamics and agents’ information inattention (Mankiw and Reis, 2002; Branch,

2007; Gomes, 2009; Mertens and Nason, 2020; Angeletos et al., 2021; Bellemare et al.,

2020; Jang, 2020; Bouchaud et al., 2019; Link et al., 2023; Reis, 2022; Dupor et al., 2010;

Bürgi and Ortiz, 2022; Coibion and Gorodnichenko, 2015; Andrade and Le Bihan, 2013;

Cornand and Hubert, 2022; Korenok, 2008; Chou et al., 2023; Link et al., 2023; Reis,

2020; Eggertsson and Garga, 2019, amongst others). However, methods which have been

proposed to solve that model numerically (see Menz and Vogel, 2009; Meyer-Gohde, 2010;

Reis, 2009; Trabandt, 2007) are either inefficient or only consider a finite number of

lagged expectations and therefore miss useful insights.

Further, this paper contributes to the debate on optimal monetary policy. Specifically,

it studies the effectiveness of the Taylor rule in the sticky price model and shows the

effectiveness of alternative monetary policy rule specifications with a smaller emphasis

on inflation targeting which recently has received new attention (e.g. Sumner, 2014;

Beckworth and Hendrickson, 2020; Sims, 2013; Cúrdia et al., 2015; Garín et al., 2016;

Cúrdia et al., 2011; Lyu et al., 2023; Levrero, 2023; Boehm and House, 2019; Billi, 2020;

Svensson, 2020; Budianto et al., 2023) and clarifies some misconceptions on Taylor rules

in the sticky price model.

This paper is structured as follows. In Section 2 we first introduce the solution of

economic models in frequency domain following Whiteman (1983). Next, section 3 provides

frequency domain representations of the sticky price and sticky information Phillips

curves and shows how the latter can be expressed recursively in the frequency domain.

In Section 4 we address the existence and uniqueness conditions under a standard Taylor

rule via the frequency domain approach for both the sticky price and information models.

Afterwards, Section 5 analyzes the implications of alternative monetary policy rules in

the sticky information model. Lastly we conclude.
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2. EXISTENCE AND UNIQUENESS: A FREQUENCY DOMAIN PERSPECTIVE

In this section we review the approach of Whiteman (1983) that we will use and

extend to establish determinacy results for the sticky-information model in later sections.

Whiteman (1983) assumes that exogenous driving processes are mean zero, linearly

regular covariance stationary stochastic processes with known Wold representations,

expectations are computed using the Wiener-Kolmogorov formulas, and solutions will be

sought in the space spanned by time-independent square-summable linear combinations

of the process fundamental for the driving process.

Let εt be this fundamental process, then solutions are of the form yt = ∑∞
j=0 yjεt− j

with
∑∞

j=0 y2
j < ∞. The Wiener-Kolmogorov prediction formula gives us E t [yt+n] =

E t

[∑∞
j=0 yjεt− j+n

]
=∑∞

j=0 yj+nεt− j. Following, e.g., Sargent (1987, ch. XI) the Riesz-Fischer

Theorem gives an equivalence (a one-to-one and onto transformation) between the space

of squared summable sequences
∑∞

j=0 y2
j <∞ and the space of analytic functions in unit

disk y(z) corresponding to the z-transform of the sequence, y(z)=∑∞
j=0 yj z j.

The Wiener-Kolmogorov prediction formula of “plussing” gives the frequency domain

version

Z {E t[xt+1]}= [
X (z)

z
]+ = 1

z
(X (z)− X (0)) (1)

where + is the annihilation operator, see Sargent (1987) and Hamilton (1994).

We briefly demonstrate the requirement of analyticity of the z-transform in the fre-

quency domain in relation to known requirements in the time domain in order to establish

intuition. Consider first an autoregressive process of order 1, an AR(1) process:

yt = ρyt−1 +εt, εt ∼WN(0,σ2)

which can be rewritten as

yt =
∞∑
j=0

L j yjεt.

The AR(1) process in the frequency domain is given by applying the z-transform:

y(z) = ρy(z)+1

y(z) = (1−ρz)−1

ε(z) is analytic inside unit disk, y(z) analytic inside the unite disk if |ρ| < 1 and deter-

mines the solution to the autoregressive process.
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Now consider a forward-looking process:

yt = αE t yt+1 +εt

where by the forecast can be rewritten in terms of deviations from the driving process:

E t yt+1 = yt+1 − y0εt+1 = 1
L

(
∞∑
j=0

L j yj − y0)εt

In the frequency domain the forward-looking process is described by:

y(z) = α
1
z

(y(z)− y0)+1

To determine a solution we solve for y(z):

(1− z
1
α

)y(z) = y0 − z
α

y(z) = (1− 1
α

z)−1(y0 − z
α

)

whereby y0 is not determined yet. If |α| < 1, then for z =α there is a removable singularity

inside the unit disk and we can solve for a boundary condition on y0:

lim
z→∞(1− z

1
α

)y(z) = 0 ⇒ y0 = 1

This gives the solution to our process in the frequency domain as

y(z) = 1− z
α

1− z
α

= 1.

In the time domain the equivalent unique stationary solution is given by:

yt = εt

Finally, consider a backward and forward looking process:

aE t yt+1 +byt + cyt−1 +εt = 0

The process can be presented in the frequency domain as:

a
1
z

(y(z)− y0)+by(z)+ czy(z)+1 = 0

Rearranging allows us to determine the solution to this model:

a(y(z)− y0)+bzy(z)+ cz2 y(z)+ z = 0

(a+bz+ z2)y(z) = ay0 − z

(a−a(λ1 +λ2)z+aλ1λ2z2)y(z) = ay0 − z

(1−λ1z)(1−λ2z)y(z) = y0 − z
a
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which again depends on the initial condition on y0. Consider now the following possible

conditions to determine if a solution is unique or not: If |λ1|, |λ2| < 1, y0 is not uniquely

determined and if |λ1|, |λ2| > 1, y0 is also not uniquely determined. If however, |λ2| < 1<
|λ1|, the boundary condition on y0 is given by:

lim
z→∞(1−λ1z)(1−λ2z)y(z)= 0= y0 − 1

λ1a
⇒ y0 = 1

λ1a

which then determines the unique solution for the process on y(z):

y(z)= 1
1−λ1z

1
1−λ2z

1
a

(
1
λ1

− z
)

= 1
1−λ2z

1
λ1a

= 1
λ1a

1
1−λ2z

The solution stated in the time domain would give us:

yt = λ2 yt−1 + 1
λ1a

εt

giving us the famed Blanchard and Kahn (1980) conditions. Hence, deriving the conditions

in either time or frequency domain doesn’t alter the model in itself but allows to determine

unique solutions and boundary conditions which were previously unobtained eventually.

3. PHILLIPS CURVES IN THE FREQUENCY DOMAIN

In this section, we review two Phillips curves and present their frequency domain

equivalents. While this merely provides an alternative representation for the canonical

sticky price Phillips curve, we show that the frequency domain provides a more funda-

mental perspective on the sticky information Phillips curve. In contrast to the sticky price

Phillips curve, whose infinite regress of forward-looking price setting behavior can be

represented recursively in the time domain, the sticky information Phillips curve has an

infinite regress of price plans or lagged expectations that cannot be expressed recursively

in the time domain, precluding the application of standard DSGE techniques to assess

determinacy. We prove in the following, however, that the sticky information Phillips

curve does have a recursive representation in the frequency domain, which will enable

the application of the techniques reviewed in the previous section.

We begin with the standard New Keynesian (NK) sticky-price Phillips curve with Calvo

(1983)-style overlapping contracts. Up to first order, in log-deviations and abstracting

from exogenous driving processes, the Phillips Curve is given by3

πt =βE tπt+1 +κyt (2)

3See, eg., Woodford (2003, p. 246) or Galí (2008, p. 49).



SI AND THE TP 7

where yt is the output gap, πt inflation. Expressing this in the frequency domain, gives

the following representation of the NKPC

π(z)=β
1
z

(π(z)−π0)+κy(z) (3)

Sticky information models implement probabilistic contracts of predetermined prices in

the vein of Fischer (1977) with the Calvo (1983) mechanism.4 Mankiw and Reis’s (2002)

version, the sticky-information model, yields the following aggregate supply equation

πt = 1−λ
λ

ξyt + (1−λ)
∞∑

i=0
λiE t−i−1 [πt +ξ (yt − yt−1)] (4)

where yt is the output gap, πt inflation, ξ> 0 measures the degree of strategic complemen-

tarities, and 0< 1−λ< 1 is the probability of an information update. The infinite regress

of lagged expectations precludes a recursive representation in the time domain.

Whiteman (1983) calls lagged expectations (E t−i [xt] , i > 0) “withholding equations”

and the Wiener-Kolmogorov prediction formula (1) provides the representation

Z {E t−i[xt]}= zi[
X (z)

zi ]+ = X (z)−
i∑

j=0
X j(0)z j (5)

where X j(0) is the j′th derivative of X (z) evaluated at the origin. These withholding

equations by themselves are not sufficient to solve models like those involving the sticky

information Phillips curve (4), as they involve an infinite number of withholding equations.
5

Using (5), the sticky information Phillips curve (4) can be expressed as

π(z)= 1−λ
λ

ξy(z)+ (1−λ)
∞∑

i=0
λi

[
π(z)−

i∑
j=0

π j(0)z j +ξ(1− z)

(
y(z)−

i∑
j=0

y j(0)z j

)]
(6)

4See Bénassy (2002, Ch. 10), Mankiw and Reis (2002), and Devereux and Yetman (2003).
5Tan and Walker (2015, p. 99) claim that their method can be “easily adapted” to models like the

sticky information model using withholding equations by “replacing E t with E t− j for any finite j.” This is

misleading or incomplete, as the sticky information model involves lagged information that reaches back

past any finite j.
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The infinite sums in (6) can be resolved by noting that:

∞∑
i=0

λi

[
x(z)−

i∑
j=0

x j z j

]
= 1

1−λ x(z)−
∞∑

i=0
λi

i∑
j=0

x j z j (7)

= 1
1−λ x(z)−

∞∑
j=0

∞∑
i= j

x j z jλi (8)

= 1
1−λ x(z)−

∞∑
j=0

∞∑
i=0

λix j z jλ j (9)

= 1
1−λ x(z)−

∞∑
j=0

1
1−λλ

ix j z jλ j (10)

= 1
1−λ (x(z)− x(λz)) (11)

Further, in the time domain we can derive a recursive representation of the lagged

expectations of the endogenous variables in (4) as:

(1−λ)
∞∑

i=0
λiE t−i−1[xt], xt =

( ∞∑
j=0

x j z j

)
εt (12)

= (1−λ)
(
E t−1[xt]+λE t−2[xt]+λ2E t−3[xt]+ ...

)
(13)

Applying the Wiener-Kolmogorov prediction formula to the lagged expectations (5), equa-

tion (13) gives the frequency domain representation as:

(1−λ)
(
x(z)− x0 +λ(x(z)− x0 − zx1)+λ2(x(z)− x0 − zx1 − z2x2)+ ...

)
= (1−λ)

(
x(z)+λx(z)+λ2x(z)+ ...− x0 −λx0 −λ2x0...−λzx1 −λ2zx1...−λ2zx2...

)
= (1−λ)((1+λ+λ2 + ...)x(z)− (1+λ+λ2 + ...)x0 −λz(1+λ+λ2 + ...)x1

−λ2z2(1+λ+λ2 + ...)x2 − ...)

= (1−λ)
(

1
1−λ x(z)− 1

1−λ x0 − λz
1−λ x1 − λ2z2

1−λ x2 − ...
)

= x(z)−
∞∑
j=0

λi z jx j = x(z)− x(λz)

Hence, the lagged expectations in (13) can be transformed from the time into the frequency

domain as:

(1−λ)
∞∑
j=0

λiE t−i−1[xt−1]= (1−λ)
(

z
1−λ x(z)− λz

1−λ x0 − (λz)2

1−λ x1 − ...
)
= zx(z)−λzx(λz)

The original sticky information Phillips from curve in the time domain based on (13) is

given by:

πt = ξ
1−λ
λ

yt + (1−λ)
∞∑
j=0

λ jE t− j−1[πt +ξ(yt − yt−1)] (14)
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Applying the z-transform we get the following representation of the Phillips curve (14):

π(z) = ξ(
1−λ
λ

y(z)+π(z)−π(λz)+ξ(1− z)y(z)−ξ(1−λz)y(λz)

0 = ξ(
1−λ
λ

+1)y(z)−π(z)−ξzy(z)−ξ(1−λz)y(λz)

= ξ(
ξ

λ
z)y(z)=π(λz)+ξ(1−λz)y(λz)

ξ(1−λz)y(z) = λπ(zλ)+ξλ(1−λz)y(λz)

yielding the representation of the Phillips curve of the sticky information in the frequency

domain

ξ

(
1
λ
− z

)
y(z)=π(λz)+ξ(1−λz)y(λz) (15)

which can now be used to determine uniqueness and boundary conditions for the sticky

information model derived in the frequency domain.

4. EXISTENCE AND UNIQUENESS FOR STICKY INFORMATION

To assess the bounds on monetary policy, we will close the model using one of the two

supply equations above with an IS equation

yt = E t yt+1 −σRt +σE tπt+1 (16)

where Rt the nominal interest rate and monetary policy described by the following interest

rate rule

Rt =φππt +φy yt (17)

Substituting the monetary policy rule and expressing it in the frequency domain gives

(1+σφy)zy(z)+σφπzπ(z)= y(z)− y0 +σ(π(z)−π0) (18)

Notice that we are abstracting from shocks and these equations (along with either of the

supply curves from the previous section) are entirely homogenous. Thus one solution, the

fundamental solution is zero at all frequencies - an inability to rule out nonzero solutions

is tantamount to not being able to rule out stable sunspot solutions - i.e. non-uniqueness

or indeterminacy.

First, consider the standard sticky-price model. Hence,the model with (3)

π(z)=β
1
z

(π(z)−π0)+κy(z) (19)
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can be summarized in a matrix system as−β 0

σ 1

π(z)

y(z)

=
 −1 κ

σφπ 1+σφy

 z

π(z)

y(z)

+
−β 0

σ 1

π0

y0


or equivalently,

(I2 − zA)

π(z)

y(z)

=
π0

y0

 (20)

where A =
 1

β
−κ
β

σ(φπ− 1
β

) 1+ σ
β
κ+σφy

 is the matrix of coefficients. We summarize the

condition for determinacy in the following

Theorem 1 (Sticky Price Determinacy). The sticky price model, given by (18), (3), with

the Taylor rule (17), has a unique, stable equilibrium if and only if

φπ > 1− 1−β
κ

φy

Proof. See the following �

To solve the system of equations in (20) we first, need to linearize the matrix A and

then, using Klein’s (2000) method, determine the boundary conditions for π0 and y0.

Define ρ i=eig(A). Iff ρ i, i = 1,2 there are two removable singularities. Decompose matrix

A into its eigenvalues, and its eigenvector-matrix V as

A =V

λ1 0

0 λ2

V−1 =VΛV−1 (21)

Following Klein (2000) we definew(z)

u(z)

=V−1

π(z)

y(z)

 for z = 0,1,2 . . . (22)

Substituting into our equation system (20) gives

(
I2 − zVΛV−1)V

w(z)

u(z)

=V

w0

u0


which can be rewritten and redefined as

(I2 − zΛ)

w(z)

u(z)

=
w0

u0

 (23)
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Given our matrix of eigenvalues we can split the matrix system into two independent

equations:

(1− zρ1)w(z) = w0 (24)

(1− zρ2)u(z) = u0 (25)

If both eigenvalues, |λ1| and |λ2| > 1, we can eliminate the singularity as:

lim
z→1/λ1

(1− zλ1)w(z)= 0

and

lim
z→1/λ2

(1− zλ2)u(z)= 0

pinning down the two conditions w0 = 0 and u0 = 0. From our definition (22) and equation

(23) we can therefore deduce π0

y0

=V

0

0

=
0

0


The boundary conditions to our NKM are:

π0 = 0, y0 = 0 (26)

The Schur-Cohn criteria can be applied to ascertain whether both eigenvalues, λ1 and

λ2, indeed do lie outside the unit circle. These criteria, expressed in terms of A are

|det(A)| > 1 and |tr(A)| < 1+det(A). As

det(A)= 1
β

(1+σφy +κσφπ)> 1

trA = 1
β
+ σκ

β
+1+σφy > 1

The condition |det(A)| > 1 necessarily holds and |tr(A)| < 1+det(A) holds if

1< 1−β
κ

φy +φπ

Hence determinacy in the sticky price model demands

1< 1−β
κ

φy +φπ

Turning to the sticky information model that was presented in the previous section, is

given in the frequency domain by the Phillips curve (15)

ξ

λ
y(z)= zξy(z)+π(λz)+ξ(1−λz)y(λz) (27)
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and the IS curve equation with the interest rate rule (17)

(1+σφy)zy(z)+σφπzπ(z)= y(z)− y0 +σ(π(z)−π0) (28)

We can summarize the determinacy in the following

Theorem 2 (Sticky Information Determinacy). The sticky information model, given by

(18), (30), with the Taylor rule (17), has a unique, stable equilibrium if and only if

φπ > 1

Proof. See the following �

At frequency zero, z = 0, define y(0)= y0, π(0)=π0, the Phillips curve (15) is determined

by

ξ
1−λ
λ

y0 =π0 (29)

which yields one initial condition. The remaining condition must follow from the system

given by the Phillips curve (15)

ξ

λ
y(z)= zξy(z)+π(λz)+ξ(1−λz)y(λz) (30)

and the IS curve equation with the interest rate rule (17)

(1+σφy)zy(z)+σφπzπ(z)= y(z)− y0 +σ(π(z)−π0) (31)

The matrix system is determined by (29), (30) and (31) as

π(z)

y(z)

=
φπ 1+σφy−λ

σ

0 λ

 z

π(z)

y(z)

+
1−λ

λ
ξ+ 1

σ

0

 y0 +
− λ

σξ
−λ
σ

(1−λz)
λ
ξ

λ(1−λz)

π(λz)

y(λz)



If [π(λz), y(λz)]′ are analytic functions ∀ |z| < 1, then [π(z), y(z)]′ are analytic functions

∀ |z| < 1
λ

and as 0 < λ < 1 for |z| < 1. Similar to (20) the system of equations can be

expressed as

(I2 − zA)

π(z)

y(z)

=
1−λ

λ
ξ

0

 y0 +
− λ

σξ
−λ
σ

(1−λz)
λ
ξ

λ(1−λz)

π(λz)

y(λz)


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where A =
φπ 1+σφy−λ

σ

0 λ

. The eigenvalues of matrix A are ρ1 =φπ,ρ2 =λ. The lineariza-

tion of A = VΛV−1 where Λ is the matrix of eigenvalues. Following Klein (2000) the

system can be decomposed into w(z)

u(z)

=V−1

π(z)

y(z)

 (32)

where V =
1 1+σφy−λ

σ(λ−φπ)

0 1

 is the matrix of eigenvectors and V−1 =
1 −1+σφy−λ

σ(λ−φπ) .

0 1

 its

inverse.

At frequency z = 0, the system of equations can be expressed as

(I2−zΛ)

w(z)

u(z)

=
1−λ

λ
ξ+ 1

σ

0

u0+
−λ

ξ
( 1
σ
+v12) −λ

ξ
( 1
σ
+v12)(ξ+v12)(1− ξλ

ξ+v12
z)

λ
ξ

λ
ξ
( 1
σ
+v12)(1− ξλ

ξ+v12
z)

w(λz)

u(λz)


(33)

The first equation is given by

(1−zφπ)w(z)=
(
1−λ
λ

ξ+ 1
σ

)
u0−λ

ξ

(
1
σ
+u12

)
w(λz)−λ

ξ

(
1
σ
+v12

)
(ξ+v12)

(
1− λξ

ξ+v12
z
)

u(λz).

(34)

Iff φπ > 1, there is a removable singularity to provide the additional initial condition

lim
z→ 1

φπ

(1− zφπ)w(z)= 0 (35)

which can be used together with (34):(
1−λ
λ

ξ+ 1
σ

)
u0 = λ

ξ

(
1
σ
+v12

)(
w

(
λ

φπ

)
+ (ξ+v12)

(
1− λξ

ξ+v12

1
φπ

)
u

(
λ

φπ

))
.

Thus, the system of equations becomesw(z)

u(z)

=
(1−φπz)−1(1−λ

λ
ξ+ 1

σ
)

0

u0

+
−λ

ξ
( 1
σ
+v12)((1−φπz)−1) −λ

ξ
( 1
σ
+v12)(ξ+v12)(1− λξ

ξ+v12
z(1−φπz)−1

λ
ξ
((1−φπz)−1) λ

ξ
(ξ+v12)(1− λξ

ξ+v12
z(1−λz)−1

w(λz)

u(λz)



or equivalently, w(z)

u(z)

= B(z)u0 + A(z)

w(λz)

u(λz)


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Table 1 summarizes the results, namely that the Taylor principle, a more than one

for one response of the nominal interest rate, is necessary in a strict sense for the sticky

information model. In contrast, the sticky price model posits that a sufficiently strong

reaction to real conditions, here the output gap, can substitute for a reaction to inflation.

Taylor Rule

Rt =φππt Rt =φππt +φy yt

Sticky Price φπ > 1 1−β
κ
φy +φπ > 1

Sticky Info φπ > 1 φπ > 1

TABLE 1. Determinacy Bounds on Monetary Policy

5. EXTENSIONS

Here we examine a more general form of the Taylor rule to capture different forms of

interest rate rules. Consider the following general Taylor rule

Rt = ρRRt−1 + (1−ρR)
[
φπ(αππt + (1−απ)E tπt+1)+φy(αy yt + (1−αy)∆yt)

]
(36)

0≥ ρR < 1 allows for interest rate smoothing, απ allows the rule to capture both contem-

poraneous (απ = 1) as well as future (απ = 0) interest rate targeting, and απ enables us to

examine output gap level (απ = 1) as well as output gap growth (απ = 0) targeting.

Theorem 3 (Sticky Information Determinacy and the General Taylor Rule). The sticky

information model, given by (18), (30), with the general Taylor rule (36), has a unique,

stable equilibrium if and only if∣∣∣∣ ρR
(
1−φπαπ

)+φπαπ
1− (

1−ρR
)
φπ (1−απ)

∣∣∣∣> 1

Proof. See the appendix. �

6. CONCLUSION

This paper has proposed a solution to the sticky information model of Mankiw and Reis

(2002) by formulating it in the frequency domain and applying the z-transform proposed

by Whiteman (1983). By doing so we bypass the need of expanding the model’s state

space or solving for an infinite sequence of undetermined MA(∞) coefficients, which is

the standard approach to solve models with lagged expectations in the time domain,
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see, e.g., Mankiw and Reis (2002) and Meyer-Gohde (2010). The transformed model can

then be solved with the methods of Klein (2000) and Whiteman (1983). Without the

transformation of the model into the frequency domain, the conditions on monetary policy

rules to ensure determinacy cannot be obtained for the sticky information model and

therefore important implications for the stabilization of the economy are missed.

We also show that the solution derived in frequency domain is not model-specific and

can be applied to a wide range on macroeconomic models. It therefore complements the

solution methods on LRE models and proposes a well-suited alternative. It thereby adds

to the ongoing research on solving macroeconomic models in the frequency domain and to

the implementation of information frictions in economic models.
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APPENDIX

6.1. Additional results go here

Following Mankiw and Reis (2002) Section 3, consider alternatively

∆mt =πt + yt − yt−1 (A1)

where the money growth evolves according to an AR(1) process:

∆mt = ρ∆mt−1 +εt (A2)

The frequency domain representation is:

∆m(z)= 1
1−ρz

(A3)

The sticky information Phillips curve is given by

ζ(1−λz)y(z)=λπ(λz)+ζλ(1−λz)y(λz) (A4)

The frequency representation of (A1) is

∆m(z)=π(z)+ (1− z)y(z)

which can be rearranged to:

π(z)=−(1− z)y(z)+∆m(z)

Combining these equations gives

ζ(1−λz)y(z) = λ(−(1−λz)y(λz)+∆m(λz)+ζλ(1−λz)y(λz)

ζ(1−λz)y(z) = λ(ζ−1)(1−λz)y(λz)+∆m(λz)

Rearranging:

y(z) = λ
ζ−1
ζ

y(λz)+ 1
ζ

λ

ζ

1
1−λz

∆m(λz) (A5)

A recursion in y(z), y(λz), ... gives:

y(z) = λ

ζ

(
1

1−λz
∆m(λz)+λζ−1

ζ

1
1−λ2z

∆m(λ2z)+ ...
)

= λ

ζ

( ∞∑
i=0

(λ
ζ−1
ζ

)i 1
1−λi+1z

∆m(λi+1z)+ lim
i→∞

(λ
ζ−1
ζ

)i y(λi z)

)

If |λ ζ−1
ζ
| < 1 and |λ(1− 1

ζ
| < 1

y(0) = λ
ζ−1
ζ

y(0)+ λ

ζ
∆m(0)

where the derivative of y(λz) evaluated at the frequency z is

∂y(λz)
∂z

=λy′(λz) ,
∂ j y(λz)
∂z j =λ j y j(λz)

and:

yj = λ j+1 ζ−1
ζ

yj + λ

ζ

(
∂

∂z
(

1
1−λz

∆m(λz))
)
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Then from (A5)

(1−λz)y(z)=λ
ζ−1
ζ

(1−λz)y(λz)+ λ

ζ
∆m(λz)

Equivalently to fire, the first order derivative of (1−λz)y(z) is given by

∂(1−λz)y(z)
∂z

= −λy(z)+ (1−λz)y1(z)

The second order derivative

∂2(1−λz)y(z)
∂z

= −λy1(z)−λy1(z)+ (1−λz2)y2(z)

= −2λy1(z)+ (1−λz)y2(z)

Moreover, the j’th derivative evaluated at frequency z j is

1
j!
∂ j(1−λz)y(z)

∂z j =− jλy j−1(z)+ (1−λz)y j(z)

which evaluated at the origin is:

∂ j y(z)
∂z j |z=0 = yj − j!λyj−1 + j!yj
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