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ABSTRACT. We study the role of information in first-price auctions with selective entry.
In this model, bidders do not know their actual values before deciding to enter and only
observe imperfect signals. We use a semiparametric copula-based model to identify and es-
timate the information effects. More informative signals are favorable to the seller because
the value distribution for entering bidders is more stochastically dominant. However, due
to the entry cost, the equilibrium effect of more informative signals may in fact reduce en-
try and reduce the seller’s expected revenue. We estimate the model using data on Texas
Department of Transportation (TDoT) procurement auctions and find that there is an opti-
mal level of signals’ informativeness and TDoT should prefer well (although not perfectly)
informed bidders.
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1. Introduction

Entry is a core and fundamental issue in industrial organization and has been exten-
sively studied in various markets. In the context of auction design, it entails addressing
an interesting observation from markets - some potential bidders chose not to bid even
though they have previously indicated their interests. Much research effort attributed the
insufficient participation to costly entry. Yet little is known whether at all and how the
quality and accuracy of the information a bidder possesses before entering an auction
may play a role in the auction outcomes. This work fills this gap in the literature.
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For our purpose, we build our analysis on the selective model of entry for first-price
auctions studied in Marmer, Shneyerov, and Xu (2013) (MSX hereafter) and Gentry and
Li (2014); Chen, Gentry, Li, and Lu (2020). In this framework, a risk-averse bidder first
receives a free private signal on the auctioned object’s value, based on which she decides
on whether to enter. Entry is costly, signals are imperfectly informative, and only after
incurring the entry cost, the bidder learns her true private value of the object and submits
a sealed bid. In the equilibrium, only bidders with sufficiently favorable signals above a
certain cutoff will enter. At the time of bidding, the bidder only knows the number of
potential bidders and her valuation; she does not know the number of entering or active
bidders or their bids.

The signals in this model are informative in the sense that they are correlated with
the valuations. We extend MSX by focusing on signals’ informativeness and its effects on
entry and the seller’s expected revenue.

The econometrician observes many independent auctions with all submitted bids and
the number of potential bidders in each auction. Data may also contain additional vari-
ables capturing observed auction-specific heterogeneity. The entry cost is unknown, and
signals are unobserved. As a result, the joint distribution of signals and values is uniden-
tified nonparametrically.

Our analytical approach is based on the parametrization of the affiliation between
bidders’ signals and their valuations to capture how well bidders are informed before
making their entry decisions. Specifically, we assume a parametric copula with a single
parameter that connects the marginal distributions of signals and values with their joint
distribution; the marginal distributions are treated nonparametrically. The copula’s pa-
rameter naturally captures the informativeness of signals, which allows us to study the
effect of bidders’ informedness on entry and the seller’s expected revenue.

A priori, it is unclear whether the seller would always prefer more informed bidders
or less informed bidders. On the one hand, under more informative signals, entering
bidders have a more stochastically dominant value distribution, which benefits the seller
by increasing her expected revenue. We refer to this as the “information effect”. On the
other hand, more informative signals change entry by raising or lowering the equilibrium
entry cutoff for signals. We refer to this as the “cutoff effect”, and its direction is ambigu-
ous. As a result, more informative signals may result in a lower expected revenue for the
seller if the cutoff effect works in the opposite direction from the information effect and
dominates the latter.

For example, when signals are sufficiently uninformative, and the entry cost is low, one
can expect close to full entry with a high expected revenue for the seller. However, even
with a low entry cost, when signals are informative enough many bidders may choose
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not to enter if they draw low signals. This can substantially reduce the seller’s expected
revenue. On the other hand, when the entry cost is high and, as a result, the probability of
entry is low, more informative signals may improve the seller’s revenue by affecting which
bidders participate in the bidding stage. Such considerations become policy-relevant
when the seller can affect signals’ informativeness, for example, by reducing or increasing
the signals’ variance through information releases.

Our empirical approach is semiparametric. First, following Guerre, Perrigne, and
Vuong (2000) and Marmer, Shneyerov, and Xu (2013), we nonparametrically identify
and estimate the CDF of values conditional on entry and the number of potential bid-
ders. In the next step, we estimate the copula’s parameter by matching the estimated
CDF of values conditional on entry with that implied by the model, the number of po-
tential bidders, and observed entry probabilities. Given the copula parameter, we can
identify and estimate the marginal distribution of values and the entry cost. Once the
model’s fundamentals are estimated, we can perform counterfactuals such as changing
the signals’ informativeness by varying the copula’s parameter and estimating the corre-
sponding changes in the seller’s revenue.

We applied our methodology to the lawn-mowing jobs in Texas Department of Trans-
portation (TDoT) highway procurement auctions studied in Li and Zheng (2009). It is
natural to focus on the rank correlation between values and signals in this context. Given
a parametric copula family with a single parameter, there is a one-to-one correspondence
between the Spearman rank correlation coefficient and the copula’s parameter. We found
the rank correlation between signals and valuations varies with the number of potential
bidders. Moreover, this relationship is not monotonic. The correlation is the weakest with
about 0.371 for the auctions with 11-14 potential bidders. The signals are most informa-
tive with the correlation being 0.85 for the auctions with 15-17 potential bidders. The
entry cost is about 5% of engineer’s estimate for auctions with 6-14 potential bidders.
However, this cost comes down to 3% for the auctions with 15-17 potential bidders.

We find that in all cases, the seller’s expected revenue is maximized when the rank
correlation between values and signals is around 0.9. Hence, in the case of highway
maintenance procurement auctions, TDoT should prefer well but not perfectly informed
bidders.

We also study if TDoT could achieve the same outcome by offering entry cost subsi-
dies to encourage entry instead of trying to change the level of bidders’ informedness.
In our counterfactual experiments, we find that the required subsidy is substantial and
may erase any benefits from increased participation. It appears that reducing bidders’
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uncertainty about the cost and complexity of TDoT projects is a more effective chan-
nel. Bidders’ uncertainty can be plausibly reduced by releasing more information on past
contracts and their actual costs.

Our paper contributes to the growing literature on entry in auctions. Li and Zheng
(2009) found that a larger number of potential bidders does not necessarily benefits the
seller as it may reduce entry in the equilibrium. Marmer, Shneyerov, and Xu (2013) de-
veloped nonparametric tests for distinguishing between different models of entry that are
nested under the selective entry model. Xu (2013) proposed a procedure for estimation
of the entry cost when signals are perfectly informative.1 Gentry and Li (2014) studied
nonparametric set identification of the selective entry model. Chen, Gentry, Li, and Lu
(2020) consider the identification of the selective entry model with risk-averse bidders.
They also develop a copula-based approach in the model’s context. Our paper adds to
the literature by investigating the role of the bidder’s informedness.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3
presents our empirical approach, and Section 4 covers our empirical results.

2. Selective entry model

2.1. The basic model

There are N ≥ 2 risk-neutral potential bidders in an auction. Bidders draw values V
and signals S from the joint distribution F (v, s). The draws (V, S) are independent across
the bidders and remain private. At the entry stage, the potential bidders observe their
signals, but not their values. A potential bidder can learn her value and become an active
bidder after paying the entry cost κ. Only active bidders participate in the bidding stage.

The following assumption describes the model’s fundamentals and combines Assump-
tions 1–2 in Marmer, Shneyerov, and Xu (2013) (MSX hereafter).

Assumption 2.1.
(i) The joint CDF F (·, ·) is absolutely continuous with a density f(·, ·) and has support

[vl, vu]× [sl, su].
(ii) The marginal CDF of signals, FS(·) is absolutely continuous with a density fS(·).

The density fS(·) is bounded from above and away from zero on its support [sl, su].
(iii) The following conditional distribution exists:

FV |S(v | s) = Pr(V ≤ v | S = s), (2.1)

and has a density fV |S(· | s) on the support [vl, vu] for s ∈ [sl, su].

1When signals are perfectly informative, the selective model of entry reduces to that of Samuelson (1985).
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(iv) The family of conditional distributions {FV |S(· | s), s ∈ [sl, su]} satisfies a sto-
chastic dominance relationship:

FV |S(v | s1) ≥ FV |S(v | s2) for s1 ≤ s2 and all v. (2.2)

(v) There is a binding reserve price vl ≤ r ≤ vu.

Assumption 2.1(iv) is the key of the model - signals are informative about valuations.
MSX called it “good news”: a more favorable signal S is associated with a higher value
V . Therefore, in equilibrium, the bidders all adopt a cut-off strategy at the entry stage -
they will participate in bidding and become active bidders when

S ≥ s̄, (2.3)

where S = s̄ defines the marginal entrant expecting zero profit from entry. We use p(s̄, r)
to denote the probability of entry and bidding given the threshold s̄ and the reserve price
r.

Let F ∗(v | s̄, r) be the distribution of values conditional on entry and bidding. For an
active bidder with V = v, the probability of winning is denoted by Λ(v | s̄)N−1, where
Λ(· | s̄) is

Λ(v | s̄) = 1− p(s̄, r) + p(s̄, r)F ∗(v | s̄, r) (2.4)

= FS(s̄) +

∫ su

s̄

FV |S(v | s)fS(s)ds. (2.5)

The function Λ(v | s̄) captures two events: the rival does not bid; and, if the rival bids,
she draws a value less than v. The function Λ(v | s̄) is independent of the reserve price r,
as the effect of r cancels out between the two terms.

From the results in MSX, the bidding strategy for an active bidder is given by

B(v | s̄, r) = v −
∫ v

r

(
Λ(u | s̄)
Λ(v | s̄)

)N−1

du for v > r, (2.6)

andB(v | s̄, r) = 0 for v ≤ r. The expression follows the same format as in the equilibrium
bidding strategy for standard first-price auctions without the entry stage, see e.g. Krishna
(2010, page 16). The only difference is that the function Λ is replaced by the CDF
of valuations in the standard case. Note that equation (2.6) further implies that the
expected payment by an active bidder with V = v > r is given by

P (v | s̄, r) = vΛ(v | s̄)N−1 −
∫ v

r

Λ(u | s̄)N−1du. (2.7)
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In equilibrium, the marginal entrant with S = s̄ must earn zero expected profit:

Π(s̄, κ) =

∫ vu

r

(
vΛ(v | s̄)N−1 − P (v | s̄, r)

)
fV |S(v | s̄)dv − κ. (2.8)

Hence, the entry threshold s̄ is determined by

Π(s̄, κ) = 0. (2.9)

2.2. Signal informativeness

This work develops from MSX and introduces a new channel that will affect the auc-
tion outcomes - the correlation between signals and values. To this end, we use a semi-
parametric approach and model the joint distribution of values and signals by a single-
parameter family of copulas. The copula’s parameter captures the strength of the rela-
tionship between values and signals, which we refer to as signal informativeness. The
following assumption parametrizes the dependence between values and signals.

Assumption 2.2.
(i) The joint CDF of the values and the signals satisfies F (v, s) = C(FV (v), FS(s), θ0)

for some θ0 ∈ Θ ⊂ R, where C(·, ·, θ) is a known function up to the value of the
parameter θ ∈ Θ.

(ii) ∂C(x, y, θ)/∂θ ≥ 0 for all x, y ∈ [0, 1] and all θ ∈ Θ.
(iii) C2(x, y; θ) = ∂C(x, y; θ)/∂y exists for all x, y ∈ [0, 1] and all θ ∈ Θ.
(iv) C22(x, y; θ) = ∂2C(x, y; θ)/∂y2 ≤ 0.
(v) ∂C2(x, y, θ)/∂θ exists for all x, y ∈ [0, 1] and all θ ∈ Θ.

The family of copulas {C(·, ·, θ) : θ ∈ Θ} is positively ordered by Assumption 2.2 (ii):
for all x, y ∈ [0, 1] and θ1 ≤ θ2,

C(x, y, θ1) ≤ C(x, y, θ2).

There are many families that satisfy the positive ordering assumption including the Gauss-
ian copula and important members of the class of Archimedean copulas such as Ali-
Mikhail-Haq, Clayton, Frank, Gumbel, and Joe. For all these copulas, a higher value of θ
corresponds to a stronger association between values and signals, measured by statistics
such as Kendall’s τ or Spearman’s ρ (Nelsen, 2007, Chapter 5). Hence, in our auction con-
text, the positive ordering assumption ensures higher values of θ imply more informative
signals.

The positive ordering has an important implication for the distribution of values condi-
tional on entry. Let Pθ(·) denote the probability function implied by C(·, ·, θ), FV (·), and
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FS(·). Under positive ordering, we have that for θ1 ≤ θ2, all s̄ and all v ∈ [vl, vu],

Pθ1(V ≤ v | S ≥ s̄) ≥ Pθ2(V ≤ v | S ≥ s̄), (2.10)

i.e. the distribution of values conditional on entry is more stochastically dominant for a
higher value of the copula parameter θ, i.e. for more informative signals.

Parts (iii) - (v) of Assumption 2.2 are relevant in our model because of the following
property from copula:

FV |S(v | s̄) = C2(FV (v), FS(s̄); θ0).

The concavity assumption of the copula function with respect to its second argument is
consistent with the “good news” condition in Assumption 2.1(iv).

It is also worth noting that for more informative signals, the conditional distribution
of values given S = s is more concentrated around v = s. Hence, there is no first-order
stochastic dominance relationship between the conditional CDFs of values given S = s

corresponding to θ1 ≤ θ2, i.e. the CDFs have a crossing at v = s.

2.3. Signals’ informativeness and the seller’s expected revenue

In this section, we present our main analytical results and introduce the information
and cutoff effects of changes in the signals’ informativeness on the seller’s expected rev-
enue. The following proposition shows that the seller’s expected revenue can be ex-
pressed in terms of the Λ(v | s̄) function.

Proposition 2.1. Under Assumption 2.1, the equilibrium expected revenue of the seller given
the entry threshold s̄ is

R(s̄, θ0) = vu − rΛ(r | s̄)N −N
∫ vu

r

(
1− N − 1

N
Λ(v | s̄)

)
Λ(v | s̄)N−1dv. (2.11)

where
Λ(v | s̄) = FS(s̄) + FV (v)− C (FV (v), FS(s̄); θ0)

Since we are focusing on the information channel, the reservation price r plays no
fundamental role in our analysis. Hence, in what follows we assume no reserve price, i.e.
r = vl unless mentioned otherwise. In this case, rΛ(r | s̄)N = vlFS(s̄)N .

Suppose first that that vl = 0. In this case, the effect of changes in θ on the seller’s
expected revenue works through Λ(v|s̄). Let us denote the marginal changes on R and Λ

by either policy tool as R′ and Λ′, respectively. We have

R′(s̄, θ0) = −N(N − 1)

∫ vu

vl

(1− Λ(v | s̄)) Λ(v | s̄)N−2Λ′(v | s̄)dv. (2.12)

That is, the impact on revenues is of the opposite sign than the marginal changes on Λ.
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A change in signal informativeness has two effects on Λ:

dΛ(k, θ0)

dθ0

=
∂Λ

∂θ0︸︷︷︸
information effect

+
∂Λ

∂FS(s̄)
· ∂FS(s̄)

∂θ0︸ ︷︷ ︸
cutoff effect

The first effect is a direct one: as the signal becomes more informative, it has an imme-
diate implication on the bidder’s winning probability. We refer to this as the information
effect. However, there is another indirect effect. When the potential entrants’ signals
become more informative, it further changes the entry cutoff for bidding, therefore the
marginal participant is different in the equilibrium. Such a cutoff effect will also have an
impact on the seller’s expected revenue.

We next explain how the cutoff effect makes it unclear whether the seller should always
prefer more informative or less informative signals. Indeed, it is straightforward to see
how the information effect benefits the seller. For all v ∈ [vl, vu],

∂Λ

∂θ0

= −∂C(FV (v), FS(s̄), ; θ0)

∂θ0

< 0.

Hence, if there is only a direct effect, the seller would like to make the signal as infor-
mative as possible in order to maximize the expected revenue. This is rather intuitive.
When only the information effect is at work, the entry is unaffected, and the pool of ac-
tive bidders is fixed. The positive ordering assumption implies that these bidders tend to
have higher values when the signals become more informative. Therefore, the seller now
faces the bidders from a better distribution in the sense of stochastic dominance. This in
turn translates into a higher auction revenue for the seller.

However, the presence of the cutoff effect complicates the situation. First, we note the
following lemma.

Lemma 2.1. Under Assumption 2.1,

∂Λ(v | s̄)
∂s̄

= fS(s̄)(1− FV |S(v | s̄)) ≥ 0. (2.13)

According to the lemma, the seller would like to encourage entry by lowering the
cutoff s̄ in general. This term in the cutoff effect already has a different sign than the
information effect. What makes it even more intriguing is the response of the equilibrium
cutoff s̄ to changes in θ is undetermined. To see this, recall the entry cutoff in equilibrium
is determined by the following equation:

Π(κ, s̄; θ0) =

∫ vu

vl

[1− C2(FV (v), FS(s̄); θ0)] Λ(v|s̄)N−1dv − κ = 0.
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Thus,
∂FS(s̄)

∂θ0

= − ∂Π(k, s̄; θ0)/∂θ0

∂Π(k, s̄; θ0)/∂FS(s̄)
.

Assumption 2.2(iv) and the equation (4.4) are jointly sufficient to pin down the sign of
the marginal effect ∂Π(k, s̄; θ0)/∂FS(s̄), which is always positive. However, the sign of
∂Π(k, s̄; θ0)/∂θ0 is ambiguous, because the auction model does not restrict how the con-
ditional distribution of values given s changes with respect to the signal informativeness.
More informative signals only make the distribution of values conditional on S = s more
concentrated around v = s. Hence, ∂C2(FV (v),FS(s̄);θ0)

∂θ0
is left undetermined.

Relaxing the vl = 0 assumption does not change the picture substantially as the cutoff
effect is undetermined.

2.4. Illustration with a numerical example

In this section, we illustrate the information and cutoff effects using numerical exam-
ples. We use the Gaussian copula and Uniform(0, 1) marginals for the values and signals.
There is no reserve price. We consider two levels of entry cost: low (κ = 0.015) and high
(κ = 0.150). We also consider markets with different numbers of potential bidders: few
(N = 4) and many (N = 10). The figures in the Appendix provide detailed descriptions
of the two effects under different scenarios. Table 1 provides a summary.

TABLE 1. The information and cutoff effects on the seller’s expected revenues

Entry Cost N Information Effect cutoff Effect Dominating Effect Informativeness

κ = 0.150
N=4 + − information θ ↑
N=10 + − information θ ↑

κ = 0.015
N=4 + − cutoff θ ↓
N=10 + − non-monotonic min(θ) = 0.4

The information effects on revenues are positive as expected in all the four markets we
consider. The cutoff effects are all negative, which means the entry cutoffs in equilibrium
always increase with the signal informativeness in our specification. Since the two effects
work in opposite directions, the next question is which of the two dominates.

When the entry cost is high (k = 0.150) entry is low regardless of the number of
potential bidders: the entry cost acts as a selection mechanism resulting in few active
bidders. In this scenario, the information effect dominates resulting in higher expected
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revenue for the seller. (One can see the relative magnitudes of the two effects in Figure ??
in the Appendix.) Thus, in situations with a high entry cost, the seller is likely to benefit
from more informative signals.

In the case of a low entry cost (k = 0.015), one also has to take into account the number
of potential bidders. In the small market with N = 4, the cutoff effect is more responsive
to an increase in signals’ informativeness than the information one. Overall, the more
informative signals will reduce the seller’s expected revenue. Thus, with few potential
bidders and a low entry cost, the seller would prefer uninformed bidders. The intuition
is that when the entry cost is low and there are few potential bidders, one can have full
entry when signals are uninformative. However, under more informative signals, there is
a higher probability of non-entry, which results in very few active bidders.

The situation is more complicated in the large market with N = 10: the cutoff effect
dominates when θ < 0.4, while the information effect is dominant for θ > 0.4. One
can see from Figure ?? that there is a high degree of participation under uninformative
signals, but bidders are less likely to enter for higher values of θ. Nevertheless, because
the number of potential bidders is large, there will be sufficiently many active bidders for
the information effect to dominate. As a result, the effect of the signal’s informativeness
on the seller’s expected revenue is non-monotone.

While one can describe the general tendencies of the two effects and how they depend
on the entry cost and the number of potential bidders, in practice the overall effect is
undetermined and depends on additional factors such as the marginal distribution of
values. Hence, practical recommendations to sellers depend on specific applications.

3. Methodology

3.1. Semi-parametric identification

Part (i) of Assumption 2.2 parametrizes the dependence between values and signals.
Note that the marginal distributions of signals and values remain nonparametric. Since
signals are unobserved, one cannot expect nonparametric identification of their marginal
CDF FS(·). Moreover, with a parametric copula family, one cannot impose a normaliza-
tion such as a uniform distribution of signals. However, since

FV |S(v | s̄) = C2(FV (v), FS(s̄); θ0),

the marginal distribution of signals only plays a role through the probability of non-entry
FS(s̄), which can be treated as an unknown parameter. The knowledge of the CDF FS(·)
in general is not a must for our analysis.
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3.1.1. Identification of the primitives. The starting point of our semi-parametric ap-
proach is similar to that outlined in GL, see footnote 18 therein, where they outline
semi-parametric identification of the marginal distribution of bidders’ values using a
parametric specification of the copula function in the setting with no reserve price and
with uniformly distributed signals. Note that with a parametrically specified copula, one
cannot treat the assumption of uniformly distributed signals as a simple normalization.
Nevertheless, parametric assumptions on the marginal distribution of signals are not re-
quired. This is possible because the marginal distribution of signals appears only in the
probability of drawing a signal above the threshold, i.e. the probability of entry. We also
note below that the semi-parametric identification approach can accommodate a binding
reserve price, and the probability of entry can be identified together with the marginal
distributions of values in the presence of a binding reserve price.

We assume that the econometrician observes data on L independent auctions, and the
data generating process satisfies the following assumption.

Assumption 3.1.
(a) (Vil, Sil) and Nl are independent.
(b) {(Vil, Sil) : i = 1, . . . , Nl; l = 1, . . . , L} are independent across the auctions and

the bidders. {Nl : l = 1, . . . , L} are independent across the auctions.
(c) The unknown entry cost κ > 0 is constant across the auctions.
(d) The reserve price r ≥ vl is constant across the auctions.

The entry threshold for signals in auction l is determined by equation (2.9) with N =

Nl:
s̄l = s̄(Nl). (3.1)

Hence, there is variation in s̄ across the auctions due to variation in the number of po-
tential bidders Nl. The variation can be exploited for the purpose of identification.

When there is a binding reserve price, one has to distinguish between the events of
entry and bidding:

Entry: Sil ≥ s̄(Nl), (3.2)

Bidding: Sil ≥ s̄(Nl) and Vil ≥ r. (3.3)

Bidders that submitted bids above the reserve price are active bidders. The econome-
trician observes submitted bids and the number of potential bidders {(Bil, Nl) : i =

1, . . . , Nl; l = 1, . . . , L}, where Bil = 0 for non-active bidders with Vil < r or Sil < s̄(Nl).
Using only data for active bidders, the conditional CDF and PDF of bids conditional on
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bidding can be estimated using standard nonparametric techniques. Similarly, since non-
active status is observed, the econometrician can estimate the probability of bidding

p(s̄(N), r) = Pr(Sil > s̄(N), Vil > r). (3.4)

Note that the event of entry without bidding, Sil ≥ s̄(Nl) but Vil < r, is in general not
directly observable. Hence, the probability of entry, 1 − FS(s̄(N)) cannot be estimated
directly from data as a proportion of bidders who paid the entry cost but did not bid
when the reserve price is binding. Note further that due to the semi-parametric copula
specification, the probability of entry plays a central role in identification.

From the results in MSX, the values conditional on bidding, i.e. conditional on Vil > r

and Sil > s̄(Nl), are identified from the conditional distribution of the bids and the
probability of bidding. Let ξ(b | N) denote the inverse bidding strategy in an auction
with N potential bidders. By Proposition 3 in MSX,

ξ(b | N) = b+
1

N − 1

(
G(b | N)

g(b | N)
+

1− p(s̄(N), r)

p(s̄(N), r)

1

g(b | N)

)
, for b ≥ r, (3.5)

where G(· | N) is the CDF of the distribution of bids of active bidders in auctions with
N potential bidders, g(· | N) is the corresponding PDF. The values of active bidders are
identified as

Vil = ξ(Bil | Nl), for Vil ≥ r, Sil ≥ s̄(Nl). (3.6)

Using the identified values for the active bidders, the econometrician can now estimate
the CDF of values conditional on bidding: for v ≥ r,

F ∗(v | s̄(Nl), r), (3.7)

which can now be treated as known for the purpose of identification for all v ≥ r.
Following the approach of GL and correcting for the presence of the reserve price r and

the unknown distribution of signals FS, we can express F ∗(v | s̄, r) as

p(s̄, r)F ∗(v | s̄, r) =

∫ su

s̄

(C2(FV (v), FS(s); θ0)− C2(FV (r), FS(s); θ0)) dFS(s)

= FV (v)− C(FV (v), FS(s̄); θ0)− (FV (r)− C(FV (r), FS(s̄); θ0)) ,(3.8)

where we used the properties FS(su) = 1 and C(FV (v), 1) = FV (v), and (??). Note that
for every v ≥ r, the expression on the left-hand side of (3.8) can be estimated from the
data, which forms the basis of identification of the unknown terms on the right-hand
side. The expression depends on the probability of non-entry FS(s̄) (which cannot be
directly estimated from the data) and the probability of bidding p(s̄, r). However the two
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probabilities are related by

FS(s̄(N)) = 1− p(s̄(N), r)− (FV (r)− C(FV (r), FS(s̄(N)); θ0)) , (3.9)

which allows us to write

p(s̄(N), r)F ∗(v | s̄(N), r) = FV (v)− C(FV (v), FS(s̄(N)); θ0)

−1 + p(s̄(N), r) + FS(s̄(N)). (3.10)

The model’s primitives can now be identified from the system of equations in (3.9)–
(3.10): for a given v ≥ r, the system has 2 × |N | equations with |N | + 3 unknowns:
FS(s̄(N)) for N ∈ N , FV (v), FV (r) and θ0. Hence, without imposing any further restric-
tions, the model’s primitives can be identified if |N | ≥ 3. In the absence of the reserve
price, FS(s̄(N)) can be estimated directly from the data as the probability of non-entry
and |N | = 2 is sufficient for identification.

The concavity of C(y, ·; θ) assumed in Assumption 3.1?? allows one to invert equation
(3.9) to obtain unique expressions FS(s̄(N)) = ψN(FV (r), θ0), where the ψN function
is known. Similarly using the concavity of C(·, y; θ), one can invert (3.10) to obtain
unique expressions FS(s̄(N)) = ϕN(FV (v), θ0) with a known function ϕN . By setting
ψN(FV (r), θ0) = ϕN(FV (v), θ0), one obtains |N | equations with three unknowns: FV (v),
FV (r) and θ0.

More equations can be added by using the cross v’s restrictions. Consider the system in
(3.9)–(3.10) for v ∈ v1, . . . , vM with all vj ≥ r. In this case, the system has (M + 1)× |N |
restrictions with M + |N |+ 2 unknowns. The extra restrictions can be used, for example,
to test the parametric specification of the copula.

3.1.2. Identification of counterfactuals. The practitioner can be interested in several
counterfactual experiments: changes in the entry cost κ or introduction of entry fees,
changes in the informativeness of the signals, and their effects on the seller’s expected
revenue. Since the seller’s expected revenue is determined by the function Λ(v | s̄)
and the probability of bidding p(s̄, r), one can construct their counterfactual versions to
perform counterfactual experiments.

Using the semi-parametric copula assumption in Assumption ?? and (2.5), the function
Λ(v | s̄) can now be conveniently written as

Λ(v | s̄) = FS(s̄) +

∫ su

s̄

C2(FV (v), FS(s); θ0)dFS(s) = FS(s̄) + FV (v)− C(FV (v), FS(s̄); θ0).

(3.11)
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3.2. Estimation

In this section, we focus on the case with no reserve price. Write pN = 1−FS(s̄N). The
following equation is the basis for the estimation:

pN · F ∗(v | s̄N) = C̃(FV (v), 1− pN , θ0), (3.12)

where we define
C̃(u, v, θ) = u− C(u, v, θ).

Further, let C̃−1(·, v, θ) denote the inverse function of C̃(·, v, θ). Now, the model’s restric-
tion can be written as

FV (v) = C̃−1(pN · F ∗(v | s̄N), 1− pN , θ0),

and it holds for all v ∈ [vl, vu] and N ∈ N .
Let F̂ ∗(· | s̄N) and p̂N denote the estimators of F ∗(· | s̄N) and pN respectively. For

a given θ and N , the implied CDF FV (v) is C̃−1(p̂N · F̂ ∗(v | s̄N), 1 − p̂N , θ). Since the
distribution of values is independent ofN , we can use the average to estimate the implied
CDF FV (v):

F̂V (v | θ) =
1

|N |
∑
N∈N

C̃−1(p̂N · F̂ ∗(v | s̄N), 1− p̂N , θ).

We can now estimate θ by solving

θ̂ = arg min
θ

∫ v

v

(
C̃−1(p̂N · F̂ ∗(v | s̄N), 1− p̂N , θ)− F̂V (v | θ)

)2

w(v)dv, (3.13)

where w(·) is a weight function chosen by the econometrician, and v, v are chosen so that
vl ≤ v < v ≤ vu. The CDF of values FV (·) then can be estimated as

F̂V (v) = F̂V (v | θ̂).

The optimization problem in (3.13) is one-dimensional and can be solved fast.
Once θ̂ and F̂ (·) are computed, we can proceed to the estimation of the entry cost and

the seller’s expected revenue. To estimate the entry cost κ, we can use

κ̂(N) =

∫ vu

vl

(1− C2(F̂V (v), F̂S(s̄N), θ̂))Λ̂(v | F̂S(s̄N))N−1dv,

where
Λ̂(v | F̂S(s̄N)) = F̂S(s̄N) + F̂V (v)− C(F̂V (v), F̂S(s̄), θ̂).

We can estimate the seller’s expected revenue by

R̂(N) = vu −N
∫ vu

vl

(
1− N − 1

N
Λ̂(v | F̂S(s̄N))

)
Λ̂(v | F̂S(s̄N))N−1dv.
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4. Empirical Application

4.1. Data

In this section, we revisit the application in Li and Zheng (2009) Li and Zheng (2009)
while focusing on the role of the signals’ informativeness. We are interested in estimating
the signals’ informativeness and its optimal level that maximizes the seller’s revenue, or
in this case, minimizes procurement costs.

The dataset has 540 auctions of “mowing highway right-of-way” maintenance jobs held
by Texas Department of Transportation (TDoT) between January 2001 and December
2003. The data contain information not only on the submitted bids and bidder’s identi-
ties but also on the project characteristics. The latter includes the engineer’s estimates,
contract length (the number of working days), number of items in the bidding proposal,
the acreage of full-width mowing, whether it is a state job, and whether the job is on an
interstate highway. Li and Zheng (2009) provides a detailed description of the dataset.

Next, we describe the timeline and the information flow of an auction in this appli-
cation. TDoT first announces the project 3-6 weeks before the letting date. The adver-
tisement includes a brief summary regarding the project - location, expected completion
time, and engineer’s estimate. Interested bidders have to request project plans and bid-
ding proposal documents from TDoT no later than 21 days prior to letting. These doc-
uments provide some specific information about the project such as the item schedule
etc. TDoT maintains and publishes the list of planholders for any project prior to the
bid submission deadline. A planholder submits her bid in a sealed envelope by the bid
opening time, if she chooses to do so.

From the viewpoint of a typical bidder, her involvement in the auction evolves as fol-
lows. She first comes to know the project under auction from an advertisement and
makes a request for the bidding plan from TDoT. By doing so, the bidder becomes a po-
tential bidder for the project. At this stage, she has a rough idea of how costly the project
could be from reading both the advertisement and bidding documents. We assume that
from this step the bidder receives a “signal” regarding her valuation of the project as the
information can be obtained free of charge. The randomness of signals across bidders
can come from their different abilities to interpret job complexity, flexibility in planning,
and capacity constraints from the backlog of existing workload.

Once the bidder believes the project is worth further exploring, ie, her signal is suf-
ficiently favorable, she will decide to learn more about the project and prepare for the
bidding. By choosing to enter the auction, the bidder becomes an actual bidder. Only
these bidders will incur the cost κ to update the information at hand and learn their
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(A) Probability of Entry (B) Average Engineer’s Estimates

FIGURE 1. Entry Probability and Average Project Size by Number of Poten-
tial Bidders

“valuations” for the project. In practice, this entry cost should entail examining the job
complexity on the site, coordinating with suppliers, allocating human resources, updating
the budget plan, and any other efforts spent towards the bid preparation and submission
process.

Figure 1 shows two data patterns relevant to our study. First, not all the potential bid-
ders chose to submit a bid. The probabilities of entry are shown in sub-figure (A). Indeed,
except for auctions with three potential bidders, only less than a 50% of planholders sub-
mit bids. This probability declines with auctions attracting more potential interest from
bidders.

Second, the project sizes also decrease along with the number of potential bidders. The
sub-figure (B) plots the pattern of average engineer’s estimates in this application. This
seems to suggest that auctions with more potential bidders are associated with smaller
and possibly easier jobs to accomplish. Hence, one can expect some variation in signals’
informativeness with the number of potential bidders.

4.2. Estimation and Results

To account for observed heterogeneity, we follow the homogenization approach in
Haile, Hong, and Shum (2003). Let X` denote a collection of observed auction-specific
characteristics in auction `. We assume the valuation for bidder i in auction ` follows is
given by

Vi,` = g(X`) · V ∗i,` (4.1)

where V ∗i,` is bidder i’s idiosyncratic value. The function g(·) shifts the mean of the dis-
tribution of bidders’ idiosyncratic values. As in Haile, Hong, and Shum (2003), we also
assume X and V ∗ are independent. Consequently, one can show that this structure in
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(4.1) is preserved after imposing the equilibrium bidding strategy b(·).

b(Vi,` | s̄N`
) = g(X`) · b(V ∗i,` | s̄N`

) (4.2)

We follow the common practice in this literature and use the logarithm of bids and other
observed variables in our data analysis.

We first regress all observed bids on the covariates X` and a set of dummy variables for
each value of N. The sum of each residual and the corresponding intercept estimate pro-
vides an estimate of each homogenized bid. These estimated bids are what bidders would
have submitted in the equilibrium in a generic N -bidder auction with no heterogeneity.

Following Li and Zheng (2009), we first include several auction-specific characteristics
into X: the engineer’s estimates, number of working days, acreage of full-width mowing,
number of items, whether it is a state job, and whether it is on an interstate highway.
However, we found that all covariates other than the engineer’s estimates were statisti-
cally insignificant and their contributions to R2 were marginal. Therefore, we use only
the engineer’s estimates to account for the auction heterogeneity.2 In this case, (4.2)
becomes

log(Bi,`) = β1 log(EngEst`) + log(B∗i,`)

where the homogenized bid B∗ includes both the intercept estimate for N and the resid-
ual. The estimated parameter β1 is 0.998 with a 95% confidence interval at (0.985, 1.012).
We thus decided to normalize bids simply as follows:

B∗i,` =
Bi,`

EngEst`
.

Hence, the valuations and bids in our analysis should be interpreted as fractions of their
corresponding engineer’s estimates.

To adjust for the low-bid procurement auctions, we transform homogenized bids as

B̃∗i,` = max{B∗i,`} −B∗i,`

where the max is taken over all i, `, N . In other words, we find the maximum in our bid
sample as the upper bound and compute, for each bid, its distance to the upper bound.
This effectively transforms low-bid auctions into high-bid auctions. The max{B∗i,`} in our
sample is 3.1. We work with the sample of transformed bids {B̃∗i,`} for our subsequent
empirical analysis.

Since the distributions of values conditional on entry must be nonparametrically esti-
mated for each number of potential bidders, we exclude N ’s with fewer than 50 actual
bids. As a result, our sample includes auctions with N ∈ {6, 7, .., 16, 17}.
2A similar observation was made with Michigan highway procurement data in Xu (2013) as well.
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It is plausible to expect that the information content of signals varies with N . Therefore
we consider three groups of N ’s: 6–10, 11–14, and 15–17. The groupings were deter-
mined to satisfy the following criteria: the estimated value of θ is not on the boundary,
and the algorithm returns reasonable estimates for CDF FV , i.e., the lower and upper
bounds of the distribution function approach to zero and one, respectively.

TABLE 2. The estimated copula parameter θ̂, its corresponding Spearman
correlation ρ̂, and the estimated entry cost κ̂ for different numbers of po-
tential bidders

number of potential bidders θ̂ ρ̂ κ̂

6 - 10 3.859 0.543 0.0557
(3.115, 4.462) (0.462, 0.600) (0.0472, 0.0669)

11 - 14 2.390 0.371 0.0579
(2.010, 2.754) (0.318, 0.419) (0.0521, 0.0641)

15 - 17 9.683 0.853 0.0294
(9.598, 9.714) (0.851, 0.854) (0.0214, 0.0403)

Note: The 95% nonparametric percentile bootstrap confidence intervals are in paren-
theses.

We estimate the model using the Frank copula; the results are reported in Table 2.
We report the estimates of θ for each group and their corresponding estimated Spearman
rank correlation coefficients ρ. It is interesting to observe that the signals’ informativeness
does not correlate with the number of potential bidders in a monotone fashion. The
signals are least informative for auctions with N = 11 − 14 with ρ̂ = 0.371, and they
are most informative for N = 15 − 17 with ρ̂ = 0.853; in auctions with N = 6 − −10,
ρ̂ = 0.543.

We estimate the entry cost κ for each N in the sample and reported the average of the
costs for each group of auctions in Table 2. The entry cost varies between 3-6%. While
the estimated entry cost demonstrates a non-monotone relationship with the number of
potential bidders, overall it tends to be lower for larger N ’s.

4.3. Counterfactual experiments: Optimizing the seller’s expected rev-
enue

In this section, we discuss our counterfactual experiments and estimate the optimal
levels of signal informativeness in terms of the Spearman rank correlation ρ∗ that max-
imize the seller’s expected revenue. We consider N = 10, 14, 17 (one from each group).
The results are reported in Table 3.
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FIGURE 2. Estimated Entry Costs

TABLE 3. The estimated optimal signal informativeness in terms of the
Spearman correlation ρ̂∗, corresponding revenue increase, estimated equiv-
alent entry cost κ̂∗, and total expected entry subsidy

number of potential bidders ρ∗ revenue increase κ∗ subsidy

10 0.86 0.0185 0.0474 0.0257
(0.78, 0.92) (0.0057, 0.0423) (0.0423, 0.0541) (0.0069, 0.0608)

14 0.91 0.0651 0.0357 0.0946
(0.88, 0.93) (0.0472, 0.0838) (0.0323, 0.0415) (0.0613, 0.1247)

17 0.92 0.0024 0.0283 0.0038
(0.87, 0.93) (0.0001, 0.005) (0.0213, 0.0382) (0.0002, 0.0077)

Note: The 95% nonparametric percentile bootstrap confidence intervals are in parentheses.

The estimates of ρ∗ range from 0.86 for N = 10 to 0.92 for N = 17. This suggests that
TDoT should prefer well-informed bidders. This is consistent with our previous argu-
ments that in auctions with many potential bidders, there will be sufficiently many active
bidders for the seller to profit from the information effect. Nevertheless, the relation-
ship between ρ and the seller’s expected revenue is non-monotone: while well-informed
bidders are preferred by the auctioneer, they should not be perfectly informed.

We further computed the resulting expected revenue increase by changing ρ from its
estimates in the data to the estimated ρ∗. Since the estimated ρ is very close to the optimal
for N = 17, we do not observe noticeable improvements. However, in the case of N = 10

and N = 14, we see improvements equal to 1.85 and 6.51 percent of the engineer’s
estimates respectively. The improvements are most significant for N = 14 because they
come from the largest change of the signals’ informativeness.
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We plotted the relations between the seller’s expected revenue and Spearman rank
correlation coefficient ρ in Figure 3, where plots (A) -(C) are for N = 10, 14, 17, respec-
tively. There is a concave relation for the three auctions, that is, the seller’s revenue first
increases with the signal’s informativeness, and then decreases after reaching the peak at
ρ∗. The results indicate that the seller’s benefits from changing the signal’s informative-
ness increase with the distance between ρ and ρ∗.

We plotted the probability of non-entry for N=14 in figure (D) in Figure 3. It shows
that the cut-off signal s̄ increases with the Spearman rank correlation ρ. Hence the es-
timated cutoff effect on the seller’s expected revenue is always negative. Therefore, in
this application, the information effect and cutoff effect work against each other. When
signals are not sufficiently informative, the information effect dominates, and more in-
formative signals improve the seller’s expected revenue. However, after the peak at ρ∗,
the cutoff effect takes over, and more information hurts the seller’s expected revenue.

4.4. Changing the entry cost

An alternative mechanism to changing the signal’s informativeness is for the seller to
subsidize entry. In this section, we estimate the cost of this approach. More specifically,
we estimate the subsidy required to achieve the same seller’s expected revenue as that
for the optimal signal’s informativeness level.

To this end, we first discuss how the seller’s expected revenue reacts to changes in the
entry cost. For any level of the entry cost κ, equation (2.9) defines the entry threshold s̄
and thus the marginal participant:

s̄ = ψ(κ). (4.3)

MSX showed that the function ψ(·) is monotone increasing and one-to-one in the range
where 0 < p(s̄) < 1. Hence, we can analyze the changes in s̄ in order to see the effect of
changing the entry cost κ.

Recall from Lemma 2.1 that
∂Λ(v | s̄)

∂s̄
= fS(s̄)(1− FV |S(v | s̄)) ≥ 0. (4.4)

Equation (2.12) then implies:
∂R(s̄, θ0)

∂s̄
≤ 0. (4.5)

An increase in s̄ has two opposite effects on Λ(v | s̄): the positive effect fS(s̄) and the
negative effect −fS(s̄)FV |S(v | s̄). The positive effect comes directly from the non-entry
event: An active bidder with the signal S substantially above s̄ faces fewer competitors
at the bidding stage under a larger entry threshold. The negative effect is due to the
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good news condition in Assumption 2.1(iv): the values V and signals S are positively
associated in the sense of the stochastic dominance relationship FV |S(v | s̄1) ≥ FV |S(v | s̄2)

for s̄1 ≤ s̄2 and all v. However, the magnitude of the cutoff effect depends on the CDF
FV |S(v | s̄) ≤ 1, and as a result, the positive effect of s̄ on Λ(v | s̄) is stronger.

Lemma 2.1 shows the stochastic dominance relationship for Λ(v | s̄) is the opposite of
that for FV |S(v | s̄):

Λ(v | s̄1) ≤ Λ(v | s̄2) for all s̄1 ≤ s̄2 and all v. (4.6)

Since the bidders do not observe each other’s entry decisions, the equilibrium bidding
function is determined by Λ(v | s̄) instead of FV |S(v | s̄). An increase in the entry thresh-
old s̄ leads to less aggressive bidding by the active bidders:

∂B(v | s̄)
∂s̄

≤ 0.

The effect of changes in the entry threshold s̄ on the seller’s revenue is unambiguous:
a higher entry threshold results in fewer active bidders and less aggressive bidding. As a
result, when everything else is equal, a higher entry threshold results in a lower revenue
for the seller.

We now discuss equivalent changes in the entry cost required to attain the same seller’s
expected revenue as that under the optimal signals’ informativeness. We use κ∗ to denote
the equivalent entry cost. Table 3 reports the results.

The estimated equivalent entry costs are 4.7%, 3.6%, and 2.8% of the engineer’s es-
timates for N = 10, 14, 17, respectively. The numbers are all below the estimated entry
costs in the data, which indicates that the seller can attain the information-optimal ex-
pected revenue by subsidizing entry. The column of Table 3 shows the total expected
subsidy. In each case, we find that the required subsidy exceeds the benefits. Hence,
entry-cost subsidies are not a viable option in our application.

To see the magnitude of potential benefits and costs, consider for example a typical
auction with N = 14. The average engineer’s estimate for such auctions is $155,259 USD.
By making signals more informative, for example by releasing more detailed information
and reducing the signals’ variance, TDoT could increase its expected revenue by up to
$10,103 USD. The total entry subsidy required to attain the same expected revenue is
$14,682 USD and exceeds the potential benefits.
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(A) N=10 (B) N=14

(C) N=17 (D) N=14

FIGURE 3. Seller’s revenues with Spearman’s rank

FIGURE 4. Equivalent Changes in κ for Optimal Revenues, N=14
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Appendix A. Proofs

Proof of Proposition 2.1. The seller’s expected revenue is

R(s̄, r) = N

∫ su

s̄

∫ vu

r

P (v | s̄, r)fV |S(v | s)dvfS(s)ds (A.1)

= N

∫ vu

r

P (v | s̄, r)
(∫ su

s̄

fV |S(v | s)fS(s)ds

)
dv (A.2)

= p(s̄, r)N

∫ vu

r

P (v | s̄, r)f ∗(v | s̄, r)dv, (A.3)

where
f ∗(v | s̄, r) =

1

p(s̄, r)

∫ su

s̄

fV |S(v | s)fS(s)ds (A.4)

is the PDF of values conditional on entry and bidding. By the definition of Λ in (2.4),

λ(v | s̄) =
∂Λ(v | s̄)

∂v
= p(s̄, r)f ∗(v | s̄), (A.5)

and by (2.7), R(s̄, r) becomes

N

∫ vu

r

(
vΛ(v | s̄)N−1 −

∫ v

r

Λ(u | s̄)N−1du

)
λ(v | s̄)dv (A.6)

= N

∫ vu

r

vΛ(v | s̄)N−1λ(v | s̄)dv −N
∫ vu

r

(∫ v

r

Λ(u | s̄)N−1du

)
dΛ(v | s̄) (A.7)

= N

∫ vu

r

vΛ(v | s̄)N−1λ(v | s̄)dv −N
∫ vu

r

Λ(v | s̄)N−1dv +N

∫ vu

r

Λ(v | s̄)Ndv(A.8)

=

∫ vu

r

vdΛ(v | s̄)N +N

∫ vu

r

(Λ(v | s̄)− 1) Λ(v | s̄)N−1dv (A.9)

= vu − rΛ(r | s̄)N +

∫ vu

r

(
(N − 1)Λ(v | s̄)N −NΛ(v | s̄)N−1

)
dv, (A.10)

where the results hold by integration by parts and because Λ(vu | s̄) = 1.
�
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FIGURE 5. The number of potential bidders N = 4: The probability of non-
entry and the seller’s total revenue as a function of the informativeness
parameter θ for different values of the entry cost k: dashed lines for k =
0.015, and solid lines for k = 0.150

Appendix B. Appendix: Numerical Examples

First, consider an auction with a relatively small number of potential bidders: N = 4.
Figure 5 plots the probability of non-entry and the seller’s total revenue as functions of the
informativeness parameter θ. in the case of a low entry cost, there is full entry when the
signals are almost uninformative. This is also the case that results in the largest revenue
for the seller. Increasing the signals’ informativeness starts affecting the probability of
non-entry at around θ ≈ 0.3. The probability of non-entry increases from 0.0 to 0.3.
Increasing the informativeness of the signals raises the entry threshold and negatively
affects the seller’s revenue.

In the case of a high entry cost, increased informativeness of the signals also increases
the entry threshold, however, it happens to a lesser extent: the probability of non-entry
increases from just under 0.5 to just over 0.6. At the same time and unlike in the low-cost
case, the seller’s revenue increases with the signals’ informativeness.

To understand the difference between the low and high entry cost k cases when the
number of potential bidders is small (N = 4), we break down the total marginal effect
of θ on the seller’s revenue into the information and cutoff effects. Figure 6(A) shows
that in both cases and as expected, the direct information effect is positive. On the other
hand, the indirect cutoff effect is negative for the low entry cost case, and positive for the
high entry cost case. Moreover, in the case of a low entry cost the cutoff effect dominates
the information effect resulting in a total negative marginal effect on the seller’s revenue.
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FIGURE 6. The number of potential bidders N = 4: A decomposition of the
total marginal effect of signals’ informativeness θ on the seller’s revenue
into the information and cutoff effects for different values of the entry cost
k: dashed lines for k = 0.015, and solid lines for k = 0.150

To understand these patterns, note that in the low entry cost case, there is a full entry
and no selection when signals are not informative enough. Note that in this case, a signal
provides little to no information about the true value, and even potential bidders with low
signals can expect to win the auction with a reasonable probability. When θ increases and
signals become sufficiently informative, potential bidders with low signals stop entering
as now such the signals predict with enough accuracy that they are unlikely to win. The
negative cutoff effect is stronger than the positive direct effect, and as a result, the seller’s
revenue decreases.

Note that in the case of a high entry cost, entry is already highly selective even when
signals are uninformative: the probability of non-entry is close to 50% for the near-zero
values of θ. Changing signals’ informativeness leads only to small increases in the prob-
ability of non-entry, and while the cutoff effect is negative, its magnitude is smaller than
that of the positive direct effect. Figure 6(C) shows that the positive direct information
effect dominates when the entry cost is high.
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FIGURE 7. The number of potential bidders N = 10: The probability of
non-entry and the seller’s total revenue as a function of the informativeness
parameter θ for different values of the entry cost k: dashed lines for k =
0.015, and solid lines for k = 0.150

Overall, Figure 5(A) indicates that when the number of potential bidders is relatively
small, from the seller’s perspective it is preferred to have a low entry cost and uninfor-
mative signals.

Figures 7 and 8 plot the same functions for auctions with a larger number of potential
bidders: N = 10. There is no full entry even when the entry cost is low (k = 0.015),
and signals are non-informative: FS(s̄) ≈ 0.30 for θ ≈ 0.0. Also, in the case with a
low entry cost, the magnitudes of the positive information effect and the negative cutoff
effects are very similar. The total marginal effect switches from negative to positive at
θ ≈ 0.4, as shown in Figure 8(C). As a result, the effect of the signals’ informativeness on
the seller’s revenue is now non-monotone, as shown in Figure 7(B): the seller’s revenue
is decreasing for θ < 0.4, and it is increasing for θ > 0.4. Hence, small changes in the
signals’ informativeness can have opposite effects depending on θ.

Moreover, Figure 7(B) shows that from the seller’s perspective, having a low entry cost
and as informative signals as possible are preferable. However, the latter result depends
on the marginal distribution of values. For example, when the marginal distribution
of values is Negative Squared, the seller’s revenue is maximized when signals are least
informative.



INFORMED ENTRY IN FIRST-PRICE AUCTIONS 27

0.2 0.4 0.6 0.8

0.14

0.16

0.18

0.20

0.22

0.24

0.26

(A) Information effect (marginal, direct)

0.2 0.4 0.6 0.8

-0.18

-0.15

-0.12

-0.09

-0.06

(B) cutoff effect (marginal, indirect)

(C) Total marginal effect

FIGURE 8. The number of potential bidders N = 10: A decomposition of
the total marginal effect of signals’ informativeness θ on the seller’s revenue
into the information and cutoff effects for different values of the entry cost
k: dashed lines for k = 0.015, and solid lines for k = 0.150
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