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Abstract

This paper investigates the role of supply chain unobservability in generating
endogenously fragile production networks. In a simple production game, in which
firms need to multisource to hedge against suppliers’ risk under unobservability,
firms underdiversify vis-à-vis the social optimum. The unobservability of suppliers’
relations is the driver behind this. In production networks where upstream risk is
highly correlated and supplier relationships are not observable, the marginal risk
reduction of adding an additional supplier is low, because this additional supplier’s
risk is likely to be correlated to that of existing suppliers. This channel reduces firm
incentives to diversify, which gives rise to inefficiently fragile production networks.
By solving the social planner problem, I show that, if the risk reduction experi-

enced downstream resulting from upstream diversification were to be internalised by
upstream firms, endogenous production networks would be resilient to most levels
of risk. Despite its stylised form, the model identifies the trade-off firms face when
diversifying risk and isolates the mechanism that aggregates these decisions into a
production network. Furthermore, it maps the conditions of the trade-off, such as
expected profits of the firm or the pairing costs, to the properties of the production
network.
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In August 2020, hurricane Laura hit one of the world’s largest petrochemical districts,
in the U.S. states of Louisiana and Texas. As polymer producers in the area were forced
to halt production, up to 15% of the country’s PE and PP producers were unable to
source polymer inputs, which in turn caused shortages across the economy. This episode
illustrates how correlation in suppliers’ risk, in this case due to spatial proximity, can
have yield sizeable downstream shutdowns and, hence, firms need to account for it in
making sourcing decisions. Yet, the structure of the supply chain is often opaque: firms
do not observe sourcing relations beyond their immediate suppliers (Williams et al.,
2013). In face of this opacity, how do producers make sourcing decisions? And, should
we expect these sourcing decisions to yield robust production networks?

In this paper, I study the role of supply chain opacity in determining firms’ sourcing
decisions and, in turn, the consequences on the resilience of the production network. A
widespread approach to mitigate risk is to diversify it by multisourcing. This practice
consists of procuring the same inputs from multiple suppliers, sometimes redundantly
(Zhao and Freeman, 2019). Yet, when deciding how many suppliers from which to source,
a firm faces decreasing marginal benefits in risk reduction, because each additional sup-
plier’s failure to deliver is increasingly likely to be correlated with that of the existing
ones. In the presence of marginal costs of sourcing, for example, contractual costs or
higher prices, the uncertainty behind the correlation of a firm’s potential suppliers might
induce it to diversify risk less than socially optimal. The wedge between endogenous firm
decisions and social optimality arises because downstream firms would be willing to com-
pensate their suppliers for increased diversification of inputs. This underdiversification
can generate aggregate fragility in production networks. To understand the relationship
between the opacity of the supply chain, firms’ diversification decisions, and production
network fragility, I study the properties of a stylised production game. In the equilib-
rium of the game, unobserved correlation among suppliers generates fragility via two
channels. First, it directly introduces endogenous correlation in downstream firms’ risk,
which amplifies through the production network. This increases the probability of cas-
cading failures, in which the entire production network is unable to produce. Second,
it indirectly affects firms’ decisions by reducing the expected marginal gain from adding
a source of input goods. The latter channel leads to firms diversifying increasingly less,
such that small shocks in the production of basal goods can generate cascading failures
downstream.

The role that production networks play in determining economic outcomes has been long
recognised. As far back as Leontief (1936), economists have studied how networks in
production can act as aggregators of firm level activity. Following a foundational paper
by Hulten (1978), which showed that the first order impact of a productivity shock to an
industry is independent of the production network structure, macroeconomics has since
de-emphasised this role (Baqaee and Farhi, 2019, p. 2). However, more recently, Baqaee
and Farhi (2019) illustrated how the structure of the production network can aggregate
micro shocks via second order effects.(1) Furthermore, the degree of competition in an

(1)These results build on a vast literature Gabaix, 2011; Acemoglu et al., 2012; Carvalho et al., 2016;
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industry also interacts with the production network to aggregate shocks, which can lead
to cascading failures (Baqaee, 2018). Once established that production networks play a
central role in aggregating shocks, two natural questions arise. First, which networks can
we expect to observe, given that firm endogenously and strategically choose suppliers?
Second, are these endogenous network formations responsible for the growth or fragility
that large economies display? These questions fuelled a number of recent papers studying
endogenous production network formation. Focusing on growth, Acemoglu and Azar
(2020) show that endogenous production networks can be a channel through which firms’
increased productivity lowers costs throughout the supply chain and allows for sustained
economic growth. In parallel, a vast literature dealt with studying the role of endogenous
production networks and firm incentives in determining fragile or resilient economies.
Erol and Vohra (2014) showed that in networks with strategic link formation, systemic
endogenous fragility arises if the shocks experienced by firms are correlated. Later
work, by Amelkin and Vohra (2020), shows that uncertainty in the time of production
is crucial in determining whether production networks in equilibrium are sparse, hence
fragile. Finally, Elliott et al. (2022) illustrate how complexity in the production process
can also be a key driver of endogenous fragility in production networks. (2)

In this paper, I aim to study endogenous fragility in the presence of supply chain un-
observability. Kopytov et al. (2021) studied the effect of uncertainty in endogenous
production network formation on firms’ productivity and business cycles. They find
that higher uncertainty can lead to lower economic growth. In contrast, in this paper
I study the role of uncertainty in generating endogenous fragility to cascading failures
using a more stylised production network model, akin to that studied by Elliott et al.
(2022). In line with the existing literature, in the model small idiosyncratic shocks can be
massively amplified. The degree of amplification depends on the equilibrium behaviour
of firms. This phenomenon holds true in vertical economies producing simple goods.
The novel theoretical contribution of this paper is to extend the analysis of production
network formation to an opaque environment in which firms aim to minimise risk while
accounting for correlation between suppliers. To do so, I develop a tractable analytical
framework that describes the propagation of idiosyncratic shocks through the supply
chain when firms take sourcing decisions endogenously in an imperfect information en-
vironment. The model describes the evolution of risk through the supply chain as a
dynamical system over the depth of the production network. Finally, I show that the
model can be seen as an extension of the one developed by Elliott et al. (2022) for large,
but finite, supply chains.

Baqaee and Farhi, 2019; Carvalho and Tahbaz-Salehi, 2019
(2)The literature on production networks is vast and it is unfortunately impossible to give a fair overview

in this introduction. For a more comprehensive review of the literature I refer the reader to Carvalho
and Tahbaz-Salehi (2019) and Amelkin and Vohra (2020)
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1. Production Environment

Consider a vertical economy producing K + 1 goods (as displayed in Figure 1), indexed
by k ∈ [K] := {0, 1, . . .K}. Each firm produces a single good and each good is produced
by m firms. Good k requires only good k − 1 as input. I often refer to the set of firms
producing a good k as layer k.

. . .

0

1

K − 1

K

Figure 1: K-layers vertical economy

Each firm picks a set of suppliers in the previous layer.
Establishing a relation with a supplier has a fixed cost
κ. If no supplier is able to deliver the input good, then
the firm is not “functional”, and hence not able to
deliver downstream. I assume that being functional
yields an exogenous payoff π. This assumption can
be relaxed by introducing a market structure to en-
dogenise π, but this does not change the main model
mechanics. Finally, I assume that firms know the
structure of the economy but do not observe the re-
alised supplier relationship in upstream layers. The
only source of risk in the model is a non-necessarily idiosyncratic probability µ0 that
basal firms in the zeroth layer are not able to carry out production.

A firm is identified by a tuple (k, i), where k ∈ [K] is its good or layer and i ∈ [m] is the
firm index. Each firm picks suppliers from which to source its input good among the pro-
ducer of the previous layer. Let Sk,i ⊆ {k−1}×[m] be this set of suppliers. For example, a
possible supplier realisation of the network presented in Figure 1 can be seen in Figure 2.

S1,0 S1,2

SK,1 SK,3

. . .

Figure 2: Supply chain realisation

The firm (k, i) is then able to produce if at least one
of its suppliers is able to deliver. Letting Fk be the
functional firms in layer k we can say that (k, i) ∈ Fk

if and only if Fk−1 ∩ Sk,i is not empty. Then, the
probability that the firm is functioning can be written
as

pk,i := P
(
i ∈ Fk

)
= 1− P

(
Fk−1 ∩ Sk,i = ∅

)
. (1)

Before moving on with the model solution, it is useful
to discuss the assumptions presented in this section.
Clearly, the production game is highly stylised: first, firms do not adjust prices but
only quantities, such that failure to produce only arises in the case that no input is
sourced; second, they are able to obtain profits by simply producing, such that π is
exogenous and constant; third, they face fixed costs when establishing relations, such
that κ is constant. There are both theoretical and empirical aspect motivating this
choice. Theoretically, a simpler model allows us to isolate the interplay between the
variables of interest: correlation in the risk of suppliers, supply chain opacity, and the
endogenous production network fragility. Introducing these aspects into a richer model
such as the one proposed by Elliott et al. (2022) or Kopytov et al. (2021) can render
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the analysis intractable and prevent isolation of the desired causal mechanisms. In this
sense, the model should not be seen as an alternative approach to the one adopted by
these authors but rather a complementary one. Empirically, there is strong evidence
that firms, first, when faced with supply chain shocks, adjust quantities rather than
prices in the short run (di Giovanni and Levchenko, 2010; Macchiavello and Morjaria,
2015; Jiang et al., 2022; Lafrogne-Joussier et al., 2022) and, second, that production
shutdowns can be extremely costly (Tan and Kramer, 1997; Hameed and Khan, 2014).
These two aspects of supply chain disruptions are well captured by the model.

2. Firm Problem

We can now examine and solve the multisourcing problem faced by firms. I derive an
analytical expression that describes the risk propagation in the supply chain when firms’
sourcing decisions are endogenous. The problem of the firm (k, i) is to maximise the
expected payoff, which, using equation (1), we can write as

(
1− P

(
Fk−1 ∩ Sk,i = ∅

))
π − κ |Sk,i| , (2)

by picking a set of suppliers from those producing the previous good Sk,i ⊆ {k−1}× [m].
To model supply chain uncertainty, I assume firms cannot observe the supplier decisions
of the firms producing the necessary input good before making their supplier decision.
Nevertheless, firms know the position they occupy within the supply chain k and the
number of firms in each layerm. Given this information, firms can derive the distribution
of risk in each layer of the production network and make sourcing decisions based on
it. This solution criterion captures the fact that firms, despite not knowing exactly
the correlation of risk among producers of their input goods, have some information to
estimate their suppliers’ risk and make sourcing decisions. In particular, a firm producing
good k can, first, infer the distribution of the number Fk−1 := |Fk−1| of functioning firms
in the previous layer; second, select the optimal number sk,i = |Sk,i| of firms from which
to source its input good; third, pick sk,i suppliers with equal probability. The randomness
in this last step of the firms’ choices arises since all potential suppliers producing good
k−1 are ex-ante equal. Hence, each firm in layer k might pick a different set of suppliers,
that is, Sk,i is not necessarily equal to Sk,j for some i and j, but they do pick the same
number, sk, of suppliers, that is

sk,i = sk for all i. (3)

If two firms (k, i) and (k, j) pick two sets of suppliers Sk,i and Sk,j with equal |Sk,i| =
|Sk,j | = sk, the probability that each of the firms is functional, pk,i and pk,j , is a realiza-
tion drawn from the same distribution. We can characterise this distribution by looking
at the proportion of possible realisations in which, given a random set of suppliers Sk,i
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and a random set of functioning firms Fk−1, there is overlap between them. This quan-
tity only depends on the sizes sk and Fk−1 of the two sets. Let P (sk, Fk−1;m) := pk,i be
the probability of the two sets overlapping, then

1− P
(
Sk,i ∩ Fk−1 = ∅

)
= P (sk, Fk−1;m) = 1−

non-overlapping
configurations︷ ︸︸ ︷(
m− sk
Fk−1

) / (
m

Fk−1

)
︸ ︷︷ ︸
all possible

configurations

. (4)

This function is identical for all firms in layer k, and depends on the layer size m both
indirectly, via the support of Fk−1 ∈ [m], and directly. Furthermore, the number of
functioning firms among the producers of an input good Fk−1 is a random variable,
hence the probability of functioning P (sk, Fk−1;m), conditional on a sourcing decision
sk, is a random variable too. We can now make a claim regarding the distribution of
P (sk, Fk−1;m) and its relationship with that of Fk−1. First, I introduce the two key
distributions we work with.

Definition 1. A random variable Y is said to follow a BetaPower distribution, with
mean 1 − µ, overdispersion ρ, and power s if it can be written as Y = Xs where X
follows a Beta distribution with mean µ and overdispersion ρ.

Definition 2. If the probability of functioning of a firm producing good k follows

P (sk, Fk−1) ∼ BetaPower(1− µk−1, ρk−1, sk), (5)

then the number of functioning firms in the same layer follows a compounded distribution

Fk | P (sk, Fk−1) = p ∼ Bin(m, p). (6)

which we call BetaBinPower and denote as

Fk ∼ BetaBinPower(m, 1− µk−1, ρk−1, sk). (7)

Second we can link the distribution of functioning firms between the two layers Fk−1

and Fk.

Proposition 1. If the number of functioning firms in layer k − 1, Fk−1, follows a
BetaBinPower distribution, then the probability of functioning of a firm producing good
k, P (sk, Fk−1;m), converges to a BetaPower distribution as m → ∞.

The proof of can be found in Appendix B.2. This, combined with the Definitions 1 and
2 implies the distribution of functioning firms in the whole production network.
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Corollary 1.1. In the large m limit, if for some layer or good k the number of function-
ing firms Fk follows a BetaBinPower distribution, then, in all downstream layers l > k,
the number of functioning firms Fl follows a BetaBinPower distribution.

Corollary 1.1 asserts that the distribution of functioning firms will remain in the same
distribution family as risk amplifies through the production network. This is a powerful
result. It allows us to describe risk propagation by mapping the parameters µk and ρk
through the layers. Furthermore, a firm can compute µk and ρk and get all the infor-
mation required to determine its optimal sourcing decision sk. The only missing piece
is the distribution of functioning firms in the basal layer. As mentioned in the previous
section, we assume that basal firms fail with a not necessarily independent probability
µ0. We can model this by assuming that F0 follows itself a BetaBin distribution with
parameters µ0 and ρ0.

Assumption 1. The number of functioning firms producing the basal good follows a

F0 ∼ BetaBin(m, 1− µ0, ρ0), (8)

for some initial condition µ0, ρ0 ∈ (0, 1). This generalises the case of idiosyncratic risk
in the basal layer which can be retrieved by taking

lim
ρ0→0

F0 ∼ Bin(m, 1− µ0). (9)

It is useful at this point to give an interpretation of µk and ρk, in the context of our
model. The parameter µk is the fraction of firms that are expected not to deliver.
Hence, I hereafter refer to µk as risk. The parameter ρk tracks the degree of correlation
in the risk of the firms operating in layer k. If ρk → 0, then firms’ risk is independent,
Pk concentrates at 1 − µk (solid line, Figure 3), and Fk degenerates into a binomial
distribution. On the contrary, if ρk → 1 then firms’ risk is perfectly correlated, Pk

concentrates at 0 and 1 (dashed line, Figure 3), and either no firm is able to operate
Fk = 0, with probability µk, or all are able to operate Fk = m, with probability 1− µk.
Since ρk controls the probability of tail events, I hereafter refer to it as overdispersion
or suppliers’ risk correlation.
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Figure 3: Cumulative distribution function for P ∼ Beta(µ = 1/2, ρ)

3. Dynamics of Risk and Overdispersion

As argued above, the system is fully described by the evolution of the distribution of
functioning firms {Fk}∞k=0 through the layers, and these two are entirely determined by
the evolution of the parameters µk and ρk. Thus, we seek a function G that maps the
parameters of the distribution of the number of functioning firms from one layer to the
next given a number of sources,

(µk+1, ρk+1) = G(µk, ρk; sk+1). (10)

Propositions 2 and 3 below specify this law of motion. For the derivation see Appendix
C.

Proposition 2. Risk µk amplifies through the production network following the law of
motion
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µk+1 = G1(µk, ρk, sk+1) =

{(
µk

1−ρk
ρk

)sk+1
/(

1−ρk
ρk

)sk+1

if ρ > 0

µ
sk+1

k if ρk = 0
, (11)

where xs := x(x− 1) . . . (x− s+ 1) is the falling factorial.

Corollary 2.1. The map s 7→ G1(µ, ρ, s)−µ is monotonically decreasing in s. Namely,
as the number of sources increases, risk decreases.

Equation (11) captures the decreasing marginal benefit attained by firms when adding a
further source. The relative marginal reduction in risk of attained by the n-th supplier
is

G1(µ, ρ, n− 1)−G1(µ, ρ, n)

G1(µ, ρ, n− 1)
= (1− µ)

/(
1 + n

ρ

1− ρ

)
. (12)

As the number of suppliers n increases, the relative reduction in risk experienced by a
downstream firm decreases, as its suppliers are increasingly likely to share inputs sources.
For higher levels of suppliers’ correlation ρ, this effect is exacerbated (see Figure 4). But,
if there suppliers are not correlated, ρ, adding a supplier adds
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Figure 4: The marginal decrease in risk experienced by a firm adding an n-th supplier, in a low (solid)
and a high (dash) supplier correlation environments.

Proposition 3. Overdispersion ρ amplifies following the law of motion

ρk+1 = G2(µk, ρk, sk+1)

=


(
µk

1−ρk
ρk

+2sk+1

)2sk+1

/(
1−ρk
ρk

+2sk+1

)2sk+1−µ2
k+1

µk+1

(
1−µk+1

) if ρk > 0

0 if ρk = 0

,
(13)

where µk+1 := G1(µk, ρk, sk+1).

Equation (13) controls the evolution of suppliers’ correlation and overdispersion in the
production network. Figure 5 illustrates the evolution of suppliers’ correlation G2, when
firms multisource (solid line) and single sourcing (dashed line). If the suppliers in layer k
are weakly correlated, multisourcing dampens the propagation of overdispersion. But, if
upstream correlation is high, multisourcing exacerbates overdispersion. This mechanism
anticipates an asymmetry between the firms’ incentives and the social optimum: a firm
which does not internalise the correlation between its own risk and that of its competitors
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will not invest sufficiently in diversification and will hence allow overdispersion. This
type of externality is more extensively explored below, in Section 6.

Figure 5: Suppliers’ correlation ρk evolution for multisourcing sk = 5 and single sourcing sk = 1

The dynamical system G = (G1, G2) fully describes the propagation of risk in the pro-
duction network, given a sequence of sourcing decisions of firms {sk}Kk=0. Before looking
at competitive sourcing and social optimum sourcing {sk}Kk=0, it is useful to establish
some properties of the dynamical system and give their economic interpretation.

Corollary 3.1. If all firms pick a single supplier s = 1, every non degenerate level of
risk and overdispersion µ, ρ ∈ (0, 1) is a fixed point of the risk dynamics, that is,

(µ, ρ) = G(µ, ρ, 1). (14)

Proof. This follows immediately from the definition of G. It states that an industry
in which firms single source shares the same fate as the industry supplying its input
goods.

Corollary 3.2. If firms do not single source, that is s > 1, the only fixed points are the
degenerate points (µ, ρ) in which risk is fully diversified, (0, 0), or in which all firms fail
to operate, (1, 0).
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Proof. Proof of corollary 3.2 follows from the definition of G1 (equation 11). Notice
that for non degenerate values of µ and ρ and non-single sourcing s ̸= 1, risk is never
constant, G1(µ, ρ, s) ̸= µ if µ ∈ (0, 1).

These results (2.1, 3.1, and 3.2) together highlight how the production network must
converge to either a finite stable distribution of functioning firms or to a degenerate
distribution in which all or no firms fail. In the next section we will see that the economic
environment and endogenous choices of the firms play a crucial role in determining which
of these scenarios arises.

4. Firm Optimal Diversification and Competitive Equilibrium

Now that we have characterised risk and overdispersion dynamics G, we can derive the
optimal firms’ sourcing strategies and describe how these interact with risk propagation.
In this section, I will first analyse a limit case in which suppliers’ risk is not correlated
(ρ = 0), in which analytical derivations and interpretation are more straight forward,
before turning towards the general framework (ρ > 0).

4.1. A Special Case: No Correlation Risk

The dynamical system without supplier correlation can be retrieved by evaluating the
function G at ρ = 0,

G(µ, 0, s) = (µs, 0). (15)

Studying the dynamical system without supplier correlation, given by the one-dimensional
map gs(µ) := G1(µ, 0, s), allows us to derive properties that can be later generalised to
the non-degenerate dynamicsG with ρ > 0. Under optimal firm sourcing, risk’s evolution
equation is

µk+1 = g(µk) = − κ/π

log(µk)
. (16)

Proposition 4. If relative sourcing costs are too high, κ/π > −1/e, firms have no
incentives to diversify risk and the supply chain fails to produce µk → 1. I will refer to
this as the no-production regime.

Proposition 5. In a production regime, if the basal risk is smaller than the relative
pairing costs,

µ0 < µc := κ/π, (17)

the production network convergence to a stable distribution of risk, µk < 1 for all k.
Otherwise, firms fail to diversify the basal risk and eventually, for some k, firms will fail
with probability µk = 1.
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To make sense of Propositions 4 and 5, we can plot the function g (Figure 6). If profits
π are larger than pairing costs κ, then there exists a critical risk level µc below which
firms diversify risk and downstream firms are able to produce, µk < 1 for all k. In this
low relative cost parameter region the system has two steady states, a low risk stable
steady state (indicated by a black dot in Figure 6) and a high risk unstable steady
state (indicated by a white dot). The stability condition of the fixed points (equation
17) immediately highlights the qualitative difference between them. At the stable fixed
point the expected loss in profits, µπ, is smaller than the marginal diversification cost.
Hence, it is optimal for the firms to respond to an increase in risk, µ, by diversifying.
On the other hand, at the unstable fixed point, the expected loss in profits is not worth
recuperating. Hence the optimal response to an increase in risk is to cease production.
Furthermore, the figure highlights how, for sufficiently high levels of relative costs, di-
versifying is never optimal. In this case, arbitrarily small levels of risk in the basal layer
will amplify and the downstream risk will be such that no firm operates in equilibrium.

Figure 6: The function g for high (dashed) and low (solid) relative costs, κ/π.
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4.2. Introducing correlation risk

4.2.1. Optimal Firm Sourcing

We can now extend the analysis to the case in which suppliers’ risk is correlated. Consider
the problem of a firm in layer k, that is, given a level of risk and overdispersion in the
previous layer (µk−1, ρk−1), to choose a number of suppliers sk ∈ [m] to maximise profits.
The profit Πk : R≥0 → R of a firm in layer k + 1 is

Πk+1(s) =
(
1−G1(µk, ρk, s)

)
π − κ s. (18)

Then the optimal sourcing decision is

sk+1(µk, ρk) = arg max
s∈{0,1,...m}

Πk+1(s). (19)

Solving the integer problem (19) analytically is not trivial. Yet, we can relate the
properties of the optimal sourcing strategy sk+1 to the difference between the relative
marginal cost of pairing and the marginal risk reduction

∆Πk+1(s) :=
1

π

∂Πk+1(s)

∂s
= κ/π︸︷︷︸

relative pairing costs

− −∂G1

∂s
(µk, ρk, s)︸ ︷︷ ︸

marginal risk reduction

. (20)

This quantity captures the incentive a firm has to increase diversification at a given
diversification level s.

Proposition 6. The profit function Πk+1 is strictly concave in the number of sources s.

Given Proposition 6, we can establish two properties of the optimal sourcing strategy
sk+1.

Corollary 6.1. If ∆Πk+1(s) = 0 at s, then |sk+1 − s| < 1. That is, firms multisource
as long as relative pairing costs are smaller than the marginal risk reduction.ß

Corollary 6.2. If ∆Πk+1(s) = 0 at s < 1, then sk+1 = 1. That is, if relative pairing
costs are sufficiently high, firms choose to single source.

Proposition 6 and Corollaries 6.1, 6.2 are proven in Appendix (C.3). These give us
a number of insights. First, firms will add number of input sources as long as the
relative cost of doing so κ/π is larger than the marginal reduction in risk they can
expect ∂G1/∂s. Figure 7 illustrates the optimal sourcing strategy of firms sk, when
facing suppliers’ risk µk and overdispersion ρk. This optimal sourcing function extends
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previous results from the literature by accounting for supplier correlation ρk. Namely,
consistently with previous literature and the no-overdispersion case analysed above there
exist a critical level of risk µc above which firms are better off not producing and stop
sourcing goods, that is, if µk > µc for some k then sk+1(µk, ρk) = 0. Yet, given a level of
risk in the previous layer µk, an increase in correlation among suppliers in the previous
layer ρk disincentivises firms’ diversification (i.e. moving upwards in the contour plot).
In Section 5, I show how this new channel can lead to underdiversification and represents
a new form of externality that upstream producers impose on downstream firms.

Figure 7: Contour plot of sk+1(µk, ρk) and π = 20κ.

4.2.2. Risk and Overdispersion Dynamics with Firms’ Optimal Diversification

Now that I have characterised the optimal sourcing strategy of firms, in this section I
look at the dynamics of risk this implies,

(µk+1, ρk+1) = G(µk, ρk, sk(µk, ρk)︸ ︷︷ ︸
optimal sourcing

). (21)

This system is analysed by, first, deriving an implicit equation for the steady state levels
of risk and overdispersion. Second, I compute numerically the downstream levels of
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risks implied by each basal condition, µ0 and ρ0. Finally, implications are derived about
sensitivity to basal conditions of cascading failures.

Definition 3. A stable downstream distribution is defined by a constant level of risk µ̄
and overdispersion ρ̄, such that, after a certain layer k, the distribution of failing firms
is stable, namely (µk, ρk) = (µ̄, ρ̄) for all k ≥ k.

Corollaries 3.1 and 3.2 require that a distribution of failure among suppliers is stable if
and only if downstream firms single source when facing it, namely sk(µ̄, ρ̄) = 1. This
condition allows us to derive boundaries on the set of downstream stable distributions
(µ̄, ρ̄) (see Appendix C.5 for derivation).

Proposition 7. A downstream stable distribution (ρ̄, µ̄) satisfies

ρ̄ > 1− κ/π

µ̄(1− µ̄)
(22)

and
µ̄ < 1− κ

π
= µc. (23)

The latter condition (23) is not surprising. For a non-degenerate equilibrium, the risk
experienced by firms needs to be below the critical level µc. The former (22) determines
which levels of suppliers’ correlation µ̄ are compatible with a given level of suppliers’ risk
ρ̄ in equilibrium. As equilibrium risk µ̄ increase, optimal diversification imposes higher
levels of correlation on the production network. After µ̄ = 1/2, this effect reverses, and
correlation starts decreasing. This effect is more pronounced, the higher the relative
sourcing costs are. These results are graphically illustrated in Figure 8. I plot, for
each basal level of risk and overdispersion (µ0, ρ0), the downstream risk µ̄, in the case
of high (8a) and low (8b) relative costs. These dynamics can be traced back to the
firms’ choices. Faced with higher level of correlation, firms employ higher levels of
multisourcing. This exacerbates downstream correlation, which reduces downstream
sourcing incentives. Hence, the downstream levels of risk are higher. This observation
has powerful implications: correlation in suppliers’ risk increases equilibrium supply
chain risk by distorting the incentives of firms to diversify.
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(a) High relative costs, π = 8κ (b) Low relative costs, π = 20κ

Figure 8: Level curves of the downstream level of risk µk for a given basal distribution (µ0, ρ0).

5. Social Planner Problem

To establish a benchmark to which one can compare the competitive equilibrium analysed
in the previous section, I now solve the model from the perspective of a social planner.
The social planner faces the trade-off of, on the one hand, minimising the number of
firms expected to fail, and, on the other, minimising the number of sourcing relations,
which have fixed cost for the firm. We can write the expected welfare as a function of the
sequence of suppliers Sk,i by averaging the individual firms’ expected payoffs, namely,

W (S1,1,S1,1, . . .Sk,i, . . .SK,m) :=
1

mK

(K,m)∑
(k,i)=(1,0)

(
1− P

(
Fk−1 ∩ Sk,i = ∅

))
π − κ |Sk,i| .

(24)

Maximising the function W with respect to the sequence {Sk,i}(k,i) ⊆ [m]mK requires
the social planner to dictate to each firm which suppliers to source from. This requires a
lot of regulatory power and information hidden from the firm. A less demanding social
planner problem is the one in which the planner is only able to coerce the firm into
picking a given number of suppliers and the firm is free to pick which suppliers to source
from. We can write this constrained social planner problem in the “language” of our
model as maximising

Wc(s1, s2, . . . , sK) :=
1

K

K∑
k=1

(
1−G1(µk−1, ρk−1, sk)

)
π − κ sk, (25)

with respect to the sequence of number of sources in each layer, (s1, s2, . . . , sK) ∈ [m]K .

By solving the unconstrained problem, I show that for a risk-neutral social planner
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(as described by 24 and 25) the two formulations yield the same solution. This result
follows only if the social planner is exclusively concerned with the expected number
of firms functioning and not with the probability of extreme events, in which a large
number of firms is unable to produce. In what follows, I solve the latter case and then
refine the solution to introduce a selection criterion based on the risk of tail events.

The only source of risk in the model is represented by the shutdowns experienced by firms
in the basal layer with probability µ0. This implies that the risk faced by a firm depends
only on how many firms in the first layer it is connected to by any path. Namely, if n
basal firms are involved in a firm’s production, its risk is 1 − µn

0 . This further imposes
a lower bound of µm

0 on the risk experienced by a firm. Hence, to find the welfare
maximising sequence of suppliers, we can first look for the most edge parsimonious way
to achieve a given level of risk µn

0 , such that

pk,i = P
(
Fk−1 ∩ Sk,i = ∅

)
≡ µn

0 for all (k, i), (26)

and then find the optimum n.

Definition 4. Let min-max(n) be the class of networks in which all firms in layer 1
have n suppliers and thereafter, each firm, is connect to only one supplier. That is any
sequence Sk,i ⊆ [m] such that

sk = |Sk,i| =

{
n if k = 1,

1 otherwise.
(27)

Proposition 8. The min-max(n) networks are the networks with fewest edges that
achieve µn

0 risk.

Proof. The proof can be best illustrated graphically. Consider Figure (9). If the planner
wants to achieve risk µn

0 in layer k, any further branching (right) from the min-max(n)
network (left), requires at least an additional link to close the branching, hence it has
strictly more edges than the min-max(n) network. Furthermore, note that if a firm in
layer k is connected, the marginal benefit of connecting it π(1 − µn

0 ) must have been
bigger than the marginal cost κ. This implies that it must be profitable to connect a
firm in layer k+1, since both marginal benefit and cost are equal. Namely, sk = 1 implies
sk+1 = 1, for k ≥ 2. This allows us to exclude “truncated” min-max(n) networks.
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k − 2 edges

n edges

k − 2 edges

n edges

Figure 9: Two production networks that achieve risk µn. On the left a min-max(n) network and on
the right a deviation where a supplier relationship has been moved from the first to second
layer (thick black line).

Now that we know that min-max(n) are the most edge parsimonious networks that
achieve risk µn

0 , we can look for the optimal n. Conditional on using a min-max(n)
network, we write the welfare function (24) as a function of n,

Wmm(n) := W (min-max(n)) =
1

K

first layer︷ ︸︸ ︷(
π (1− µn)− κn

)
+
K − 1

K

downstream layers︷ ︸︸ ︷(
π (1− µn)− κ

)
= π(1− µn)− n+K − 1

K
κ

(28)

Proposition 9. Let

n∗ :=

⌊
log(κ/π)− log(K)− log(1− µ0)

log(µ0)

⌋
∈ [m]. (29)

If Wmm(n∗) < 0, then the social optimum is achieved by the empty production network,
Sk,i = ∅ for all firms (k, i).

If Wmm(n∗) > 0, then the social optimum is achieved by a min-max(n∗) network.

Proof. The optimal number of basal firms involved in production

n∗ = arg max
n∈[m]

Wmm(n) (30)

must be such that adding a new supplier yields a lower payoff Wmm(n∗+1)−Wmm(n∗) <
0. Furthermore, welfare must be positive, since shutting down production and not estab-
lishing any connection yields a payoff of zero, W (∅) = 0. This immediately determines
n∗.
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The fact that the min-max network is socially optimal is quite intuitive: the optimal way
to mitigate risk is to diversify as close as possible to the source of risk in the production
network (i.e. layer k = 1) and keep the risk constant thereafter. This intuition relates
closely to the idea that in network games with negative spillovers (risk) a planner should
target low eigenvector centrality nodes (basal firms) (Galeotti et al., 2017). The number
of sources the social planner mandates in the first layer n∗ is increasing in the basal risk
µ and decreasing in the marginal cost κ/π (as seen in Figure 10).

Figure 10: The socially optimal number of sources in the first layer, given different levels of basal risk
and cost ratios. The color bar is in logarithmic scale.

6. Welfare Analysis

Now that we have derived the difference in sourcing strategies employed endogenously
by the firms and by the social planner, we can study the differences these bring in
terms of outcomes for the production network, and derive policy implications from these.
Particularly, in this section, I analyse the gain in social welfare the social planner achieves
with respect to the competitive equilibrium.

First, by definition, the social planner solution maximises expected welfare, hence it
achieves higher welfare than the competitive equilibrium. Yet, a natural question is:
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under which basal conditions, µ0 and ρ0, is the welfare gain maximised, and what sourc-
ing decision the planner makes allow her to achieve it? In Figure 11 I plot the welfare
gain for different basal conditions (µ0, ρ0). The gain is maximised in parameters regions
(area enclosed by the level curve 0.7 in 11) for which the competitive equilibrium is
unstable. This suggests that the social planner is able to diversify higher levels of risk
and correlation than the firms acting competitively. This occurs because firms do not
internalise, when making their sourcing decision, the increase in risk downstream firms
suffer. Another insight into the mechanism by which the social planner achieves first
best, can be derived by focusing on the welfare gain achieved in the stable competitive
region (under the sk = 1 curve, in Figure 11). Particularly, notice that for higher levels
of suppliers’ correlation (i.e., higher ρ), the welfare gain of the social planner is higher.
This is because, even a risk neutral social planner, unlike the firms, incorporates into
its optimisation problem the overdispersion (ρ) and is hence able to minimise suppliers’
correlation, which affects downstream risk (µ).

Figure 11: Contour plot of the gain in welfare achieved by the social planner, given a basal condition
(µ0, ρ0).

These two channels highlight the inherent fragility of the competitive equilibrium of
the production game. First, as well established in the literature, when faced with a
simple sourcing problem, firms tend to organise critically and the production network
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is susceptible to cascading failures as a consequence of small shocks in risk. Second,
the unobservability of the production network introduces a high probability of tail risk
and exacerbates the fragility of the production network, which is a novel feature of the
model presented in this paper. The social planner solution shows that such fragility arises
endogenously, due to the firm sourcing decision, and does not follow as a feature of the
structure of the production network. Particularly, downstream externalities imposed by
the firms’ sourcing decision have to be addressed to move the competitive equilibrium
towards the first best.

7. Conclusion

Risk diversification is a crucial determinant of firms’ sourcing strategies. In this paper,
I show that firms endogenously under-diversify risk when they have incomplete infor-
mation about upstream sourcing relations. I do so by deriving an analytical solution
to a simple production game in which firms’ sole objective is to minimise the risk of
failing to source input goods. Despite its simple structure, the game identifies an im-
portant externality firms impose on the production network when making sourcing deci-
sions: upstream multisourcing introduces correlation in firms’ risk, which disincentivises
multisourcing downstream. This externality exacerbates the risk of fragile production
networks. Furthermore, I show that a risk neutral social planner can not only design
production networks that mitigate fully this externality, but, unexpectedly, can do so
with the same information as the firms. Particularly, it is sufficient for the planner
to enforce a sourcing strategy on firms that does not depend on the realisation of the
production network. Such a result no longer holds true for a risk averse social planner.
A remarkable consequence of this result is that, in principle, it is possible to design
a transfer mechanism that allows downstream firms to compensate upstream firms to
internalise such externality.

As mentioned before, the approach presented here is just one of the many points of view
that can be taken when studying endogenous production network and imperfect infor-
mation (others being that of cite). Simple production games can be helpful in isolating
mechanisms, but it is often equally, if not more, valuable to embed such mechanisms
into more comprehensive and complex models and study how they interact with each
other. In this spirit, it would be of great interest to develop a general equilibrium model
with endogenous production network with growth and risk diversification motives. In
addition, the social planner solution presented here serve as a natural steppingstone for
the study of insurance or taxation schemes to mitigate production network externalities.
How can we make funds flow upstream in the supply chain to incentives or disincen-
tives diversification? Can such a transfer mechanism be setup without knowledge of the
production network structure? The result presented in this paper suggest that this is
possible.
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A. Notation and Distributions

To study firms’ decision in an opaque production network, I assume firms reason prob-
abilistically about what is, at the core, a combinatorial problem. To talk about such a
problem, it is useful to introduce some notation and distributions that play a central
role in describing the reasoning and decisions of firms.

For a real number x and a positive integer n, I denote the rising factorial as

xn := x(x+ 1)(x+ 2) . . . (x+ n− 1)︸ ︷︷ ︸
n terms

. (31)

and the falling factorial

xn := x(x− 1)(x− 2) . . . (x− (n+ 1))︸ ︷︷ ︸
n terms

. (32)

Abusing notation, I often extend this function to non-integer exponents n by using the
gamma function Γ, such that

xn :=
Γ(x+ n)

Γ(x)
. (33)

Two distributions that arise naturally in combinatorial problems and in the framework
presented below are the beta and beta-binomial distributions. The former, which I
denote Beta(α, β), has two positive parameters. In this paper, I use a more convenient
parametrisation, namely, I write

Beta(1− µ, ρ), where

µ =
β

α+ β
and ρ =

1

1 + α+ β
.

(34)

This distribution is used here to model uncertainty around the value of a probability dis-
tribution of a binomial process. Consequently, we can define a beta-binomial distribution
as a compounded binomial distribution with a beta distributed probability parameter.
Namely, by letting X ∼ Bin(m, p), where m ∈ N and p ∼ Beta(1 − µ, ρ), we can write
X ∼ BetaBin(m, 1− µ, ρ). The random variable X takes values in [m] := {0, 1, . . . ,m}.
Informally, one can think of X as a distribution with fatter tails, vis-à-vis a simple
binomial, induced by the added uncertainty around the probability parameter p. For
example, consider the limit case where µ = 1/2 and ρ = 1/3. In this case, p is uniformly
distributed on the interval [0, 1]. Then, X is uniformly distributed on [m]. On the other
hand, if ρ = 0, then X follows a binomial distribution with p = 1/2. The first two
moments of the beta-binomial distribution can be written as

E[F ] = m(1− µ) and Var[F ] = mµ(1− µ)(1 + (m− 1)ρ). (35)



If ρ = 0, the beta-binomial degenerates into a binomial distribution, hence ρ can be
interpreted as an “overdispersion” vis-à-vis the binomial distribution. The probability
mass function of the beta-binomial distribution is

fF (k) =

(
m

k

)
B(k + α,m− k + β)

B(α, β)
(36)

where B is the beta function. The moment generating function of the beta-binomial is

MF (t) = E
[
etF
]
= 2F 1(−m,α, α+β; 1−et) =

m∑
n=0

(−1)n
(
m

n

)
B(α+ n, β)

B(α, β)
(1−et). (37)

Consider a r.v. Pk ∼ Beta(1 − µk, ρk), for some parameters (µk, ρk) and a r.v. defined
conditionally on a realisation pk of Pk as(

Fk | Pk = pk
)
∼ Bin(m, pk). (38)

Then it unconditionally follows a beta-binomial distribution,

Fk ∼ BetaBin(m, 1− µk, ρk), (39)

with mean
E [Fk] = mE [Pk] = m(1− µk) (40)

and variance
Var [Fk] = mµk(1− µk)

(
1 + (m− 1)ρk

)
. (41)

Note that Fk “inherits” its parameters from P .

B. Omitted Proofs

B.1. The Normalised Beta-Binomial Converges To A Beta Distribution

Proposition 10. Take a r.v. Fm ∼ BetaBin(m,α, β) and let the normalised beta-
binomial be Rm := Fm/m. Then

Rm
d−→ R ∼ Beta(α, β) as m → ∞. (42)

Proof. The idea of the proof is to show that the moment generating function of Rm

converges pointwise to that of a beta distribution. This implies that the sequence Rm

converges in distribution to a beta, since the latter is determined by its moments (The-
orem 30.2 in Billingsley, 1995). The moment generating function of Rm can be written
in terms of that of Fm as



MRm(t) = E
[
etRm

]
= E

[
e(t/m)F

]
= MFm(t/m)

= 2F 1(−m,α, α+ β; 1− et/m).

(43)

We seek to prove that this converges pointwise to

MR(t) = 1F 1(α, α+ β, t). (44)

Consider the Taylor series of

1− et/m = − t

m
−

∞∑
k=2

tk

mk k!
. (45)

This and the fact that 2F 1 is continuous in the radius |t| < m, allows us to write

lim
m→∞

MRm(t) = lim
m→∞ 2F 1(−m,α, α+ β; 1− et/m)

= lim
m→∞ 2F 1(−m,α, α+ β;−t/m)

= lim
m→∞

∞∑
n=0

α(n)

(α+ β)(n)
tn

(−m)(n)

(−m)n
.

(46)

Consider the last term in the summand

(−m)(n)

(−m)n
=

(−m)(−m+ 1)(−m+ 2) . . . (−m+ n− 1)

(−1)nmn

=
(−1)nmn + o((−m)m−1)

(−1)nmn

m→∞−−−−→ 1.

(47)

Hence

lim
m→∞

MRm(t) = lim
m→∞

∞∑
n=0

α(n)

(α+ β)(n)
tn

(−m)(n)

(−m)n
=

∞∑
n=0

α(n)

(α+ β)(n)
tn = MR(t) (48)

such that Rm
d−→ R.



B.2. Proof of mapping between Fk−1 and Fk for large m

B.2.1. Definitions of distribution

We first characterise the two distribution we need (Definitions 5 and 6).

Definition 5. A random variable P follows a BetaPower(α, β, s) distribution if it can
be written as P = Xs where X ∼ Beta(α, β).

Proposition 11. The density of P is

h(p) =
p

α
s
−1(1− p1/s)β−1

sB(α, β)
. (49)

Proof. The proof follows from letting g(p) = ps, noticing that g(X) = P , and using the
chain rule to show that

h(p) = fX(g−1(p))

∣∣∣∣ ddpg−1(p)

∣∣∣∣ (50)

.

Corollary 11.1. If P follows a BetaBinPower distribution, then 1−P follows a BetaBinPower
distribution.

Proof. This follows from the symmetry between h(p) and h(1− p).

Definition 6. A random variable Fk follows a BetaBinPower(m,α, β, s) distribution if,
given a P ∼ BetaPower(α, β, s),(

Fk|P = p
)
∼ Bin(m, p). (51)

In other words, Fk is a count of the number of successful trials if the probability of success
is sampled at each trial from a BetaBinPower distribution.

B.2.2. Objective

I seek to prove that, for countably infinite number of firmsm, if Fk−1 follows BetaBinPower
distribution, then Fk follows a BetaPower distribution. The strategy is quite straight
forward. The number of downstream functioning firms follows

(
Fk|P (s, Fk−1) = p

)
∼ Bin(m, p) (52)

Abusing notation, we can redefine P to be a function of Rm := Fm/m, particularly,



1− P (s,Rm) =

(
m (1−Rm)

)
(s)(

m
)
(s)

. (53)

By considering only the leading term in the falling factorial we have

lim
m→∞

1− P (s,Rm) = (1−R)s. (54)

The number of functioning suppliers is a random variable Fk−1 that takes value in
[m] := {0, 1, 2 . . .m}. A firm picks s ∈ [m] suppliers, based on the expectation of
E
[
Fk−1

]
. Writing the proportion of firms functioning as Rm := Fm/m, probability of

functioning of the downstream firm is

P (s, Fk−1) = 1−

(
m(1−Rm)

)
(s)(

m
)
(s)

m→∞−−−−→ 1− (1−R)s (55)

where R = limm→∞Rm.

Hence, combining definition 6 and equation (55), if we manage to prove that R ∼
BetaBinPower we are done, since reflecting about 1/2 and exponentiating preserves the
distributional family. The strategy is to simply prove that the probability mass function
of Rm converges to a probability density function of the BetaBinPower family.

B.2.3. Ingredients

The main building blocks of the proof are two definitions involving the beta function (7
and 8) and a result due to Laplace 12.

Proposition 12. Let g be a twice continuously differentiable on the interval [0, 1], on
which it attains a unique maximum, x0. Furthermore, let h be a positive function. Then

lim
m→∞

√
2π

m|g′′(x0)|h(x0)e
mg(x0)∫ 1

0 h(x)emg(x)dx
= 1 (56)

Definition 7. The beta function is defined as

B(α+ 1, β + 1) =

∫ 1

0
pα(1− p)βdp. (57)

Definition 8. For an integer m and r = k/m for some integer k, we can use definition
7 to write

(
m

mr

)
=

(
(m+ 1)

∫ 1

0
pmr(1− p)m(1−r)dp

)−1

. (58)



B.2.4. Main Result

We are all set.

Proposition 13. If F ∼ BetaBinPower(m,α, β, s) distribution, then

R = lim
m→∞

F/m ∼ BetaPower(α, β, s). (59)

Proof. First we can define the probability mass function of Rm

fm(x) =

∫ 1
0 h(p) pmx(1− p)m(1−x)dp

(m+ 1)
∫ 1
0 ymx(1− y)m(1−x)dy

(60)

where I rewrote the binomial coefficient as 8 and where h is the density of the BetaPower
distribution (11). Consider an r ∈ [0, 1]. Define δε(r) to be all the numbers in the support
of fm with distance at most ε from r,

δε(r) =
{
x ∈ supp(fm) : |x− r| < ε

}
(61)

.

Then we can define the probability density function of R as

f(r) = lim
ε→0

lim
m→∞

∑
x∈δε(r) fm(x)

2ε

= lim
ε→0

1

2ε
lim

m→∞

∑
x∈δε(r)

∫ 1
0 h(p) pmx(1− p)m(1−x)dp

(m+ 1)
∫ 1
0 ymx(1− y)m(1−x)dy

(62)

I will tackle this limit by using the Laplace’s method (12). First, we can rewrite the
numerator

∫ 1

0
h(p) pmx(1− p)m(1−x)dp =

∫ 1

0
h(p)em(x log p+(1−x) log(1−p))dp, (63)

s and notice that the function p 7→ x log p+ (1− x) log(1− p) is uniquely maximised at
x and has second derivative −1/x(1− x) at the optimum. Proposition (12) implies that
the the term in (63) has the same behaviour as

h(x) xmx(1− x)m(1−x)

√
2π

m
x(1− x) as m → ∞. (64)

A similar exercise allows us to establish that

lim
m→∞

∫ 1
0 ymx(1− y)m(1−x)dy

xmx(1− x)m(1−x)
√

2π
m x(1− x)

= 1. (65)



Now we can relate the two limits by picking ε = 1/
√
m+ 1 such that we can rewrite the

probability density function of R (62) as

f(r) = lim
m→∞

√
m+ 1

m+ 1

∑
x∈δ√m+1(r)

h(x) = h(r). (66)

C. Derivations

C.1. Risk mapping, G1

We can derive analytically the mapping µk = G1(µk−1, ρk−1, sk). The first moment of
Pk(sk, Fk−1) implies that

µk = 1− E
[
Pk(sk, Fk−1)

]
=

E
[
(m− Fk−1)(sk)

]
(m)(sk)

. (67)

Fk−1 ∼ BetaBin(m, 1− µk−1, ρk−1) implies

(m− Fk−1) ∼ BetaBin(m,µk−1, ρk−1). (68)

and that E
[
(m−Fk−1)

sk
]
is the factorial moment of a beta-binomial distribution, which

has a known analytical form

E
[
(m− Fk−1)

sk
]
= msk

B
(
µk−1

1−ρk−1

ρk−1
+ sk, (1− µk−1)

1−ρk−1

ρk−1

)
B
(
µk−1

1−ρk−1

ρk−1
, (1− µk−1)

1−ρk−1

ρk−1

) , (69)

we can write

G1(µk−1, ρk−1, sk) =
B
(
µk−1

1−ρk−1

ρk−1
+ sk, (1− µk−1)

1−ρk−1

ρk−1

)
B
(
µk−1

1−ρk−1

ρk−1
, (1− µk−1)

1−ρk−1

ρk−1

) . (70)

where B(x, y) is the beta function. If sk ∈ [m], we can write

G1(µk−1, ρk−1, sk) =

(
µk−1

1−ρk−1

ρk−1

)sk
(
1−ρk−1

ρk−1

)sk (71)

Furthermore, it is easy to see that



lim
ρk−1→0

G1(µk−1, ρk−1, sk) = µsk
k−1 (72)

which is the limit case we expect if there is no correlation among suppliers and, hence,
F follows a binomial distribution.

C.2. Overdispersion mapping, G2

Unfortunately, we are not as lucky with the mapping for ρk = G2(µk−1, ρk−1, sk). The
first link we can make is using the definition of Var[Pk(sk, Fk−1)] to see that

ρk =
Var[Pk(sk, Fk−1)]

µk (1− µk)
. (73)

where

Var[Pk(sk, Fk−1)] = E[Pk(sk, Fk−1)
2]− E[Pk(sk, Fk−1)]

2︸ ︷︷ ︸
(1−µk)

2

. (74)

Using the definition of Pk we can write

E
[
Pk(sk, Fk−1)

2
]
= E

[
1− 2

(m− Fk−1)(sk)

(m)(sk)
+

(
(m− Fk−1)(sk)

(m)s

)2
]

= 1− 2 µk + E

[(
(m− Fk−1)(sk)

(m)s

)2
]
.

(75)

We can derive an analytical expression for this if m is sufficiently large. In particular,
let Rm = Fk−1/m we can rewrite the last term as

E

[(
(m(1−Rm))(sk)

(m)(sk)

)2
]
= E

[
m2(1−Rm)2(m(1−Rm)− 1)2 . . . (m(1−Rm)− sk + 1)2

m2(m− 1)2 . . . (m− sk + 1)2

]
= E

[
m2sk(1−Rm)2sk + o(m2sk−1)

m2sk + o(m2sk−1)

]
m→∞−−−−→ E

[
(1−R)2sk

]
(76)

where R = limm→∞Rm. As shown in B.2, R ∼ Beta(1 − µk, ρk), such that (1 − R) ∼
Beta(µk, ρk), we can write the 2s-th moment of 1−R as

E[(1−R)2sk ] =
d2skM1−R

dt2sk

∣∣∣∣
t=0

(77)



hence, for large m,

E
[
p(s,Rm)2

]
≂ 1− 2 µk +

d2sk 1F 1

dt2sk

∣∣∣∣
(β,α+β,0)

= 1− 2 µk +
β(β + 1) . . . (β + 2sk − 1)

(α+ β)(α+ β + 1) . . . (α+ β + 2sk − 1)

re-parametrising, = 1− 2 µk +B

(
1− ρk
ρk

, 2sk

)/
B

(
µk

1− ρk
ρk

, 2sk

) (78)

where we have used d
dt 1F 1(a; b; t) =

a
b 1F 1(a+1; b+1; t) and 1F 1(·, ·, 0) = 1. This implies

that, for large m and letting µk = G1(µk−1, ρk−1, sk), we can write the overdispersion
mapping as

G2(µk−1, ρk−1, sk) =
B
(
1−ρk
ρk

, 2sk

)/
B
(
µk

1−ρk
ρk

, 2sk

)
− (µk)

2

µk(1− µk)
(79)

As a sanity check, we can do the same exercises as above (71) and compute the limit as
ρk−1 → 0. We know already that limρk−1→0 µk = µsk

k−1. We are left to compute

lim
ρk−1→0

B
(
1−ρk−1

ρk−1
, 2sk

)
B
(
µk−1

1−ρk−1

ρk−1
, 2sk

) = lim
ρk−1→0

(
µk−1

1−ρk−1

ρk−1
+ 2sk

)2sk
(
1−ρk−1

ρk−1
+ 2sk

)2sk = µ2sk
k−1. (80)

Then, as expected

lim
ρk−1→0

G2(µk−1, ρk−1, sk) = 0. (81)

C.3. Proof of proximity between G and G̃

First, I prove corollary 6.1

Proof. Let s̄ be such that Π(s̄) = Π(s̄ + 1). Since Π admits a maximum and is strictly
concave, s̄ is guaranteed to exist and be unique. This implies that

sk ∈ [s̄, s̄+ 1] ∩
{
⌈s̃k⌉ , ⌊s̃k⌋

}
(82)

This condition implies that |sk − s̃k| < 1.

Second, I prove corollary 6.2



Proof. This follows again from Equation 82. In particular, if s̃k > 1, then

sk ≥ inf
{
[s̄, s̄+ 1] ∩

{
⌈s̃k⌉ , ⌊s̃k⌋

}}
≥ inf

{
⌈s̃k⌉ , ⌊s̃k⌋

}
= ⌊s̃k⌋ ≥ 1. (83)

The analogous procedure can be done with s̃k < 1.

C.4. One-dimensional system

The agents’ first order condition implies that

µs̃ log(µ) = κ/π. (84)

This immediately allows to see that g̃(µ) = − κ/π
log(µ) . The stability of a steady state µ̄

can be derived by

1 >
∂g̃

∂µ

∣∣∣∣
µ̄

>
κ/π

log(µ̄)2µ̄

>
κ/π

µ̄
, by using µ̄ log(µ̄) = −κ

π
,

µ̄π > κ

(85)

C.5. Boundaries of Stable Locus

Consider the profit function

Πk+1 : N0 → R,

Πk+1(s) =
(
1−G1(µk, ρk, s)

)
π − κ s.

(86)

We seek to find the boundaries of the set

S = {(µ, ρ) ∈ [0, 1]2 : sk+1(µ, ρ) = 1}. (87)

Given that sk+1 = argmaxs∈[m]Πk+1(s), the boundaries between the loci with diversifi-
cation s and s+1 are such that the agent is indifferent between Πk+1(s) and Πk+1(s+1).



This gives us a condition

0 = Πk+1(s+ 1)−Πk+1(s)

=
(
G1(µk, ρk, s)−G1(µk, ρk, s+ 1)

)
π − κ

κ

π
= G1(µk, ρk, s)(1− µk)

(
1−ρ
ρ

1−ρ
ρ + s

)
.

(88)

If we seek to find the boundary between s = 0 and s+ 1 = 1, we obtain µk = 1− κ/π.
Otherwise, if we seek the boundary between s = 1 and s+ 1 = 2 we obtain

ρk = 1− κ/π

µk(1− µk)
. (89)


	Production Environment
	Firm Problem
	Dynamics of Risk and Overdispersion
	Firm Optimal Diversification and Competitive Equilibrium
	A Special Case: No Correlation Risk
	Introducing correlation risk
	Optimal Firm Sourcing
	Risk and Overdispersion Dynamics with Firms' Optimal Diversification


	Social Planner Problem
	Welfare Analysis
	Conclusion
	Notation and Distributions
	Omitted Proofs
	The Normalised Beta-Binomial Converges To A Beta Distribution
	From distribution to probability
	Definitions of distribution
	Objective
	Ingredients
	Main Result


	Derivations
	Risk mapping
	Overdispersion mapping
	Proof of proximity between integer and non-integer system
	One-dimensional system
	Boundaries of Stable Locus


