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Abstract

I show that emissions from a common energy source lead to decreased productivity and growth. The
rapid increase in population in India from the 1990s through the 2010s led to the rapid construction of
new coal power plants throughout the country. Using this roll-out combined with random changes in wind
direction, I document negative effects of pollution from coal power plants on agricultural productivity
throughout the country. Results suggest this decrease may be driven by a decline in labor allocation of
the oldest half of my sample, who greatly decrease labor allocated to both farm and non-farm employment
when exposed to pollution. These impacts spill over into aggregate economic growth, as well; nightlight
growth is slower following years of higher exposure to pollution.
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1 Introduction

Coal is one of the most common energy sources throughout the world. In 2021, energy generation from coal
reached an all-time high,' driven in part by rapid population growth and rising energy prices. India is no
exception to these trends. From 1990 to 2010, India’s population grew by more than 40 percent.> This
population growth led to a large increase in demand for power. While natural gas has become a popular
alternative in much of the world, the Indian government met much of the increased demand through the
construction of coal power plants. During those same two decades, power generation from all coal units of at
least 30 megawatts in the country increased by almost 140 percent, from 42.4 gigawatts to more than 100
gigawatts.® There are no doubt positive effects from this increase in power generation; for example, electricity
may lead to economic and productivity growth (Dinkelman 2011; Kline and Moretti 2014; Rud 2012; Van
de Walle et al. 2017), though electrification alone may not be a sufficient condition (K. Lee, Miguel, and
Wolfram 2020).

These improvements do not come without downsides, however, especially when it comes to power derived
from coal. Pollutants from coal contribute to climate change and the phase out of coal energy is therefore a
major climate goal (IEA 2022). Emissions from the production and burning of coal are also directly harmful
to health and the environment, including pollutants like sulfur dioxide, nitrogen oxides, and mercury, to
name but a few.? While the use of coal had been declining, recent events — including Russia’s invasion of

Ukraine — have led to an increase in the demand for coal.’

I study the effects of emissions from coal power plants on agricultural productivity, labor allocation, and
economic growth in India. Previous work has suggested that there may be harmful direct effects of air
pollution (Heck et al. 1982; Marshall et al. 1997) and water pollution (Reddy and Behera 2006) on agricultural
productivity, including work showing that gold mines — which release large amounts of pollutants into the
surrounding environment — lead to lower agricultural productivity in Ghana (Aragén and Rud 2016). These
effects can work through the well known effects on human health and productivity, but also directly through
land productivity. Black carbon in soot, for example, can directly affect solar radiation reaching plants on the
surface (Ramanathan and Carmichael 2008; Burney and Ramanathan 2014). Relative to previous work in
economics, this paper tackles the broader case of coal plants, which are a leading source of power throughout

the world. I show that air pollution from these plants can lead to lower agricultural productivity and even
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decreased economic growth.

Identifying the causal effects of pollution is difficult. For starters, the construction of coal plants is likely to
be endogenous, though the relationship between construction and economic conditions is not a priori clear.
On the one hand, governments may locate new plants in fast-growing areas, while on the other hand, they
may decide the exact location of plants based on the political power of local citizens (Kopas et al. 2020). In
the case of the data used here, coal plants are constructed in areas with higher population and higher literacy
(Table 1). In terms of agriculture, higher productivity predicts more coal plants in a given year as well as the
construction of a coal plant over the next decade, indicating possible bias when estimating OLS regressions of

agricultural productivity on pollution levels.

To identify the effects of air pollution on agricultural productivity, I instead combine the roll out of coal plants
in India with plausibly exogenous changes in wind direction — in a similar spirit to Deryugina et al. (2019) —
to measure the effects of pollution from coal plants on key development outcomes. I first plot the location
of coal plants in India by year. Using a village-level shapefile, I identify all villages that are located within
30km of a coal plant at any time during the sample period, which comprises the 1990s to the 2010s, with
differences depending on data availability. To measure exposure to emissions from coal plants, I calculate the
direction from each coal plant to all villages within 30km. Using daily wind data and these spatial variables,
I create an identifier separately for each of the one-hundred-thousand-plus villages for whether a given village
is located downwind from a coal plant on any given day. I then aggregate this exposure variable based on the
desired analysis; for agricultural productivity, for example, I create an exposure variable measuring the total
number of exposure days in the five-month agricultural season, separately for the main monsoon season and
the smaller winter season. Consistent with expectations, wind direction is a strong predictor of particulate
matter at the monthly level. More days being located downwind from a coal power plant leads to higher

average concentrations of particulate matter 2.5.

Using newly available estimates of India-wide agricultural (land) productivity, results show that the total
number of days of being downwind from a coal power plant has a negative effect on overall agricultural
productivity. Just a single additional day of being downwind from a coal power plant leads to a decrease in
predicted yields of 0.3 percent. The within-village absolute deviation of wind exposure is around eight days,
meaning that median changes in wind direction are responsible for fluctuations in agricultural productivity
of around 2.4 percent, with changes of more than five percent from season to season being common. Using
wind direction as an instrument for particulate matter, an increase of PM 2.5 by one microgram per cubic
meter leads to an even larger decrease in agricultural productivity, at around 20 percent. This IV strategy is

similar to that in Deryugina et al. (2019), though they use general “high-pollution” wind directions while



I concentrate only on wind directions from the location of a coal power plant. The IV estimates indicate
that the effect of pollution is more negative than naive OLS estimates indicate, which is consistent with the
evidence on the construction of coal plants; higher levels of pollution are correlated with higher levels of

agricultural productivity and economic growth, a relationship that the IV strategy adjusts downwards.

These effects are apparently concentrated in villages that do not experience the most extreme exposure to
pollution; villages with higher maximum exposure experience effects only around 10 percent as large as
villages with lower maximum exposure. Additional heterogeneity analysis shows that, despite the results
with respect to the maximum, the effects are increasing in mean exposure. I also show that the effects are
largest in villages with the highest initial agricultural productivity and that pollution and rainfall shocks are
compounding; higher exposure along with less rainfall increases the negative effect of either shock individually.
As weather shocks become more common across the globe, the rise of pollution in India may be particularly

problematic for farmers.

Robustness checks show that this effect is concentrated in the years after the construction of the power plant,
which helps decrease concerns around endogeneity since, conditional on the village fixed effect and weather
(rainfall and temperature), wind direction across years and seasons is exogenous. Additionally, leads for wind

direction do not predict current agricultural productivity, again supporting the identifying assumptions.

While I am not able to explicitly test effects on land productivity, I look at how adults allocate labor over the
last seven days using the National Sample Survey and creating a district-level exposure measure based on the
timing of the survey for each household. An additional day of wind over the previous week decreases overall
labor allocation by 0.027 days. However, the overall results show stark heterogeneity based on age; the older
half of the sample greatly decreases labor allocation in response to pollution exposure while the younger half
increases overall labor allocation. Older adults decrease labor allocation to both farm and non-farm labor,
while younger adults increase labor allocated to farm labor. This is suggestive evidence of productivity effects
being driven by the health and productivity effects on individuals, since older adults are more susceptible to
pollution and they also greatly decrease non-farm employment, which presumably will no suffer any possible
direct effects of pollution on productivity. The preponderance of results seems to indicate that effects on

labor are the most likely mechanism.

The final set of results explores whether there are impacts of pollution on aggregate economic development.
Using nightlights, I show that lagged wind — i.e. pollution exposure in the prior year — has a negative impact
on economic development as proxied by nightlights. Going from the 25th percentile to the 75th percentile of

wind exposure is synonymous with a decrease in the growth of nightlights within a village by around 0.7



percent. While this is a relatively small magnitude, it is worth noting that there are more than 100,000 villages
in this sample. While the effect for a single village might be small, the overall, aggregate effect on growth
is quite substantial. To put this number in perspective, Castell6-Climent, Chaudhary, and Mukhopadhyay
(2018) argue that a standard-deviation increase in the share of adults with a university education leads to 12
percent higher nightlights in India, while Storeygard (2016) shows that a four-fold increase in oil prices over
six years leads to seven percent lower nightlights at a distance of around 500km from the nearest large port
in sub-Saharan Africa. In other words, the 0.7 percent change in nightlights is quite large given this is annual

variation.

This paper contributes to several strands of literature. First, we already have evidence of effects of pollution
on different forms of labor activity. For example, general levels of pollution decrease productivity of call
center works in China (Chang et al. 2019), lead people to perform worse on cognitive functions (Ebenstein,
Lavy, and Roth 2016; Wen and Burke 2022), and also lead to lower levels of farm labor productivity in
California, driven by changes in ozone concentration (Graff Zivin and Neidell 2012). Also in China, He,
Liu, and Salvo (2019) find small but significant negative effects of pollution on manufacturing productivity,
while Chen, Oliva, and Zhang (2022) show pollution leads to labor out migration. Perhaps relevant to my
labor allocation results, Hanna and Oliva (2015) show that decreases in pollution lead to increases in labor
allocation, while I show the same relationship among the oldest cohort. The papers most related to this
one are Aragén and Rud (2016), who show that gold mines in Ghana have substantial negative impacts
on agricultural productivity in the surrounding areas, and Burney and Ramanathan (2014), who model
the effects of climate change and pollutants on agricultural productivity in India. This paper differs in two
important ways. First, I explore effects of pollution from coal plants, which are much more ubiquitous than
gold mines across the world. Second, I use a different identification strategy from either paper, relying on

wind blowing pollution from coal plants.

I also contribute to the more general literature on the effects of pollution on health. Pollution has substantial
negative effects on health in both developing and developed countries (Arceo, Hanna, and Oliva 2016) and we
have known of these negative effects for many years (Brunekreef and Holgate 2002; Kampa and Castanas
2008; Pope III and Dockery 2006). Currie et al. (2014) review the literature on the health effects of pollution
during adolescence; we have robust evidence of pollution exposure leading to increases in infant mortality,
including in developing countries (Heft-Neal et al. 2018, 2019). Since these effects are often driven by heart
and lung disease and asthma (Kampa and Castanas 2008), this my explain the labor allocation effects I

identify in this paper.

The rest of the paper is organized as follows. I first discuss data and methodology. I break this section



up into subsection 2.1, which covers the multiple sources of data used in this paper; subsection 2.2, which
discusses the empirical strategy and validates the wind direction variable using data on particulate matter. 1

present the main results in section 3 before concluding in section 4.

2 Data and methods

In this section, I describe the different data sources and the identification strategy. I also spend time validating
the use of wind direction as a proxy for particulate matter as well as looking at the correlates of construction

of coal power plants.

2.1 Data

The main goal of this paper is to examine whether exposure to emissions from coal plants affects agricultural
productivity, labor allocation, and economic growth. I use several sources of data, which I describe here and

in Table Al in the appendix.

The first set of data lists the location of coal plant across the globe. This data comes from Global Energy
Monitor® and lists all units generating at least 30 megawatts of electricity. The data on coal plants includes
the year of opening (and, if applicable, the year of retirement), the GPS (latitude/longitude) location of
each plant, and the amount of power produced by the units at each plant. For this paper, I do not use the

information on the capacity of the plant.

Figure 1 displays the location of coal plants in India for two specific years: 1990 and 2010. There is a clear
increase in the prevalence of coal plants across the country over the two decades. Additionally, the overall
capacity from coal plants increased from 42.4 gigawatts to 100.4 gigawatts, an increase of 136.6 percent in
just 20 years. This increase is driven both by the roll out of new plants as well as the construction of new

units at existing plants, the latter of which is not shown in Figure 1.

The second dataset includes agricultural productivity for both the monsoon and winter seasons, from 2002
to 2018. To match other data, I only use the data up to 2013. This data comes from Gangopadhyay et al.
(2022) and estimates land productivity (i.e. yield, in tons per hectare) for the major crops in India, using
satellite-derived data. While there is a wealth of literature on measurement error in land (Desiere and Jolliffe
2018; Abay et al. 2022), the authors use a static cropland mask for the productivity estimates. This means

that any measurement error will be constant across time and subsumed by the village fixed effects. While the

Sglobalenergymonitor.org/projects /global-coal-plant-tracker/



Figure 1: Coal plants in India from 1990 to 2010
Figure A: 1990 Figure B: 2010

Note: The top figure shows the location of coal plants in 1990. The bottom figure shows the location of coal plants in 2010.

measure of output is also noisy, the use of satellite-derived data and a static cropland mask reduces concerns
about measurement error being responsible for the results below. The authors define the monsoon season
as June to October and the winter season as November to March. I keep these definitions when matching
across data below. This data is also publicly available from Nature’s data-sharing website.” Since the main
regressions below use village fixed effects, any differences in cropping patterns across areas should not bias

estimates on changes, as long as these patterns do not change markedly in response to pollution.

The agricultural productivity data is available as raster files with a resolution of 500m. To aggregate this
data up to a useful administrative unit, I use village-level shapefiles provided by Asher et al. (2021) and
publicly available on the SHRUG platform.® I aggregate the agricultural productivity data to the village
level by extracting mean productivity for each feature in the shapefile. I do this separately for each season —

monsoon and winter — and each year, from 2002 to 2013.

To measure exposure to pollution from coal plants, I first locate all village centroids located within 30km from
a coal plant in a given year. I choose 30km due to previous research on the effects of (air) pollution (Aragén
and Rud 2016; Bencko and Symon 1977; Li and Gibson 2014). I then calculate the direction from coal plants

to all village centroids within that 30km radius. To define exposure, I then pull daily wind direction data

75pringernat ure.figshare.com
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from the National Center for Atmospheric Research.” For each day, I document whether the wind is blowing
towards each village centroid.'® I then temporally aggregate this daily data depending on the temporal
definition of the corresponding outcome. For example, agricultural productivity is defined across five months
(e.g. the monsoon season is from June to October) so I count the total days a given village is exposed to wind

blowing from any coal plant within 30km during those five months.

The top panel in Figure 2 is an example wind direction raster. The raster shows wind direction for the entirety
of India on January 1st, 2010, as well as the location of coal power plants on that date. The prevailing winds
on the date differ across the country and, though not shown in the figure, across days. This means that the
overall exposure for a given area to coal plant emissions changes across time. I also pull data on particulate
matter to help validate this proxy for exposure. This data comes from Hammer et al. (2020) and I also

aggregate this to the village using the same method detailed above.

To help understand some of the mechanisms driving the relationship between exposure to emissions and
agricultural productivity, I also include household survey data. Unfortunately, [ am not aware of any publicly
available survey data that covers multiple years and has identifiers below the district level. For example, the
ARIS-REDS data'? includes GPS identifiers for one year, but that only allows GPS matching for a total of
two years: 1999 and 2007/2008. The DHS, on the other hand, only has state-level identifiers (except for the
newest two waves) and is also not a labor survey. Instead, I use the National Sample Survey (NSS) from the

Ministry of Statistics and Programme Implementation.

The NSS is a nationally representative survey that was conducted every couple of years until relatively
recently. Many rounds of the NSS also included a module on employment that asked about labor allocation
over the previous seven days. I use the 61st, 62nd, 64th, 66th, and 68th rounds of the NSS, all of which
include the employment module. The publicly available data also includes the date of survey, which allows

me to match pollution exposure to the exact day of the survey.

The biggest issue with using the NSS is that it includes only district-level identifiers. The main exposure
variables, on the other hand, are defined at a lower level of aggregation, at the village. I choose to aggregate
this village-level exposure to the district level as shown in the second panel of Figure 2 — the district is a
randomly selected district in the data, Guna district in Madhya Pradesh. I use the area overlap of the villages
with the district to define a weighted average of exposure for the district at a given time. I calculate the area

of overlap for each village and the district as well as the overall area of the district and use these variables to

9climatedataguide.ucar.edu/
101 define “towards” as within five degrees to help take into account that I am using village centroids, using the x and y
components of wind speed.
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Figure 2: Wind direction and aggregation examples (2010-01-01)
Figure A: Wind direction

wind direction
(degrees)
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Figure B: Aggregation to district
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Note: The top figure shows the average wind direction on January 1st, 2010, with zero degrees indicating north. The points are
the location of coal plants on that date. The bottom figure shows the distribution of pollution exposure in a specific district
Guna district in Madhya Pradesh - on the same date.



define weights for individual villages. Any part of the district that does not overlap with one of the villages —

the white area in Figure 2 — does not have any exposure and, as such, receives a value of zero for exposure.

Finally, I use nightlights as a measure of economic growth (Henderson, Storeygard, and Weil 2012). I also
take this data directly from SHRUG and Asher et al. (2021). This covers 1992 through 2013. Some of the
older data may not be ideal (Gibson et al. 2021), but this is the only way to document changes in economic
growth at a more disaggregated level and at a regular basis. Although satellite imagery is an attractive

alternative (Burke et al. 2021), high-resolution satellite imagery does not go back to the early 1990s.

2.2 Identification

To calculate the effects of exposure to pollution on different outcomes, I rely on fixed effects and the differential
exposure driven by plausibly exogenous wind direction, conditional on total rainfall and average temperature.

The regression is of the form

Yir = oq + 7y + Bwindy, + draing + Ytemp; + £4q, (1)

where y;, is outcome y for unit 7 at time ¢, o is a geographic fixed effects, v, is time fixed effects, wind,, is
exposure to pollution — defined using wind direction — rain;, is total rainfall during the season, and temp;, is
average temperature during the season. Although I use ¢ and ¢ as subscripts for the fixed effects, note that
these change depending on the unit of analysis and the outcome. I explicitly state the level of fixed effects in

the tables and results below.

Identification relies on changes in wind direction across time for the same geographic units. In other words,
conditional on the fixed effects and weather, I assume changes in wind direction are as good as random and
uncorrelated with the outcome — e.g. agricultural productivity — except through exposure to pollution. One
major threat to identification is that the building of a coal plant could lead to a spurious correlation between
the exposure variable and the outcome. Specifically, since exposure is defined as zero prior to the building of
a coal plant, the exposure variable itself might be endogenous even though wind direction is not. To help
allay these concerns, I estimate additional regressions restricting the sample to only time periods after which
a given location has a coal plant. I also present results using leads to show that future wind direction does

not seem to predict current outcomes.

The inclusion of rainfall and temperature is meant to reduce concerns that wind direction may not affect

agricultural productivity but, instead, be correlated with it through changes in weather. For example,
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Table 1: Local characteristics and the construction of coal plants

1991 census 2001 census
1991 2001 2001 2011

pop (log) 0.068*** 0.0003 0.009*** 0.002%**
(0.0002) (0.0002) (0.0003) (0.0002)

literacy (prop) 0.127%%* -0.005%** 0.043%** 0.030%**
(0.002) (0.001) (0.002) (0.002)

has paved road -0.036%** 0.003*** -0.008%** -2.68e-7
(0.0008) (0.0004) (0.0008) (0.0006)

ag productivity 0.033%** 0.005%**
(0.0005) (0.0004)

sub-sample all no plant all no plant
observations 490,882 447,288 516,798 476,517

Note: Robust standard errors are in parentheses. The outcome in the first column
is whether the village is within 30km of a coal plant in 1991. The second column is
whether a village in 1991 will have a coal plant in 2001, conditional on not having
one in 1991. The last two columns are similarly defined, except using 2001 and 2011
as the years. * p<0.10 ** p<0.05 *** p<0.01

prevailing winds from one direction may be associated with dry weather, while winds from another direction
may be more likely to carry moisture and rain. It is not a priori clear how this would bias the estimates with
respect to pollution and coal plants, however. The differences in weather patterns is very context specific and
can differ even for villages located near one another. Nonetheless, adding rainfall and temperature should

alleviate some of these concerns.

A large question looms with respect to identification: what are the characteristics of areas near the construction
of new coal plants? While I examine the identifying assumptions in a panel context below, I begin with this
static question here. Table 1 presents four separate regressions. The first two columns use 1991 census data —
downloaded from SHRUG — and the second two columns use 2001 census data, all at the village level. The
first column presents results from regressing a dummy for whether there is a coal plant within 30km in 1991
on several census variables. Villages with higher populations and higher literacy in 1991 are more likely to be

near a coal plant at the time. Interestingly, however, they are less likely to have a paved road.

The second column keeps the 1991 census data but changes the outcome variable to a dummy for whether
there will be a coal plant constructed within 30km before 2001. This column restricts the sample to only
villages that do not already have a coal plant within 30km in 1991. Population is no longer a significant

predictor while the coefficients on literacy and the presence of a paved road have flipped.

The last two columns are particularly relevant to the current results. They present similar results to those in

the first two columns, but use the 2001 census data and a dummy for the presence of a coal plant in 2001 and
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Table 2: Wind direction and particulate matter

1998-2015 2002-2013
(1) (2) (3) (4)

wind 0.045%** 0.014%** 0.063*** 0.015%*%*

(0.004) (0.001) (0.005) (0.002)
fixed effects:
village Yes Yes Yes Yes
month Yes No Yes No
district-month No Yes No Yes
observations 22,345,092 22,345,092 14,896,728 14,896,728

Note: Standard errors are in parentheses and are clustered at the village level. * p<0.10
** p<0.05 *** p<0.01

2011 in columns three and four, respectively. Importantly, I include agricultural productivity in the monsoon
season of 2002 — the earliest year available — as an additional predictor. In 2001, agricultural productivity is a
strong predictor for the presence of a coal plant. Moreover, it is also a significant predictor of the construction
of a coal plant between 2001 and 2011 (column four). Given that the coefficient is positive, this indicates
that coal plants are more likely to be built in areas with higher agricultural productivity. In other words,
any selection in the overall location of coal plants would bias against finding negative effects of pollution
on agricultural productivity. However, note that this is not the same as looking at wind direction, though

comparing the OLS and IV results below leads to the same conclusion regarding selection.

It is worth taking the time to validate the use of wind direction as a measure of exposure to pollution.
Consider the data used for the regressions presented in Table 2. The outcome variable is particulate matter —
specifically, PMs 5, which is particulate matter no larger than 2.5 micrometers in diameter — which comes
from Hammer et al. (2020). PM 5 is one of the harmful byproducts from coal plants, along with sulfur
dioxide, different types of nitrogen oxides, and mercury.’> This data is available at the monthly level, so in

Table 2, I aggregate wind exposure to the monthly level, as well.

Both the particulate matter data and the wind data is at the village level, which means the regressions in
Table 2 are at the village level. As such, the geographic fixed effects are village fixed effects and the temporal
fixed effects are month fixed effects. Since the exposure variable is at the village level and we follow villages
over time, the standard errors are also clustered at the village level. In columns two and four, I switch the
month fixed effects for district-month fixed effects, which considers only villages in the same district in the

same month.

In addition to serving as an example, Table 2 also helps validate the use of wind direction as a proxy for

12ywww.epa.gov/airmarkets /power-plants-and-neighboring-communities
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exposure to pollution. The first two columns include all available years of data while the last two columns
restrict estimation only to the years for which the agricultural productivity regressions are estimated. Across
all four columns, the story is the same: when the wind is blowing in the direction of a village from a coal plant
within 30 kilometers, estimated PMs 5 is substantially higher. The regressions indicate that one additional
day of wind in the direction of the village increases mean PM, 5 for the month by between 0.01 and 0.06
pg/m®.

To put these numbers into perspective, the World Health Organization’s updated guidelines are that average
annual exposure should not exceed 15 pg/m®. For the month, an increase at the midpoint of the estimated
range is equal to an increase of 0.2 percent of the maximum recommended mean concentration from the
WHO. This is just a single day of wind in the direction of a village. Since this includes all villages located
within 30km of a coal plant, this is evidence that wind direction can have serious repercussions on the health

of hundreds of millions of people in India.

3 Results

This section presents the main results of this paper. I present three sets of results: one set looking at
agricultural productivity, another looking at labor allocation, and a final set looking at nightlights, which are

a proxy for economic development. I go through each of these in turn.

3.1 Agricultural productivity

I first present results for agricultural productivity. The outcome of all the regressions in this section is the
log of agricultural land productivity, which is defined as tons per hectare. The first set of results are in Table
3. The unit of analysis is the vilalge-year-season — from 2002 to 2013 — the geographic fixed effect is the
village-season, and the temporal fixed effect is the year. The exposure variable is defined for the entire season.
Since Gangopadhyay et al. (2022) define both the monsoon (kharif) season and the winter (rabi) season as
five months long, I do as well, using the same five months as the authors. This implies that the exposure

variable ranges from zero to slightly more than 150.

The first column presents the most simple results, with only the wind exposure variable and the fixed effects.
The second column adds a rainfall — defined as the total rainfall in the season — and average temperature
variable, the addition of which is motivated by the fact that changes in wind direction could be correlated

with changes in weather. However, the coefficient on the wind exposure variable is completely unchanged by
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Table 3: Wind direction and agricultural productivity

all monsoon winter
(1) (2) (3) (4) (5)
wind -0.003%** -0.003%** -0.0007*** -0.002%** -0.004%**
(0.0002) (0.0002) (9.24e-5) (0.0002) (0.0003)
rain (z) 0.029%** 0.008*** 0.075%** 0.006***
(0.0004) (0.001) (0.002) (0.0005)
mean temp (10s) -0.0004%** -0.007*** -0.002%** -0.008%**
(5.53e-5) (0.0004) (0.0001) (9.83e-5)
fixed effects:
village-season Yes Yes Yes No No
year Yes Yes No Yes Yes
district-year-season No No Yes No No
village No No No Yes Yes
observations 2,387,417 2,371,221 2,371,221 1,256,951 1,114,270

Note: Standard errors are in parentheses and are clustered at the village level. The outcome in
all regressions is estimated agricultural yield, defined as tons per hectare. * p<0.10 ** p<0.05 ***
p<0.01

the addition of the two weather variables, indicating that weather may not be as worrisome of a confounder
as thought. The direction of the weather coefficients is also consistent with expectations; higher rainfall is

good for agricultural productivity while higher temperature is not.

Column three adds district-by-year-by-season fixed effects as an additional robustness checks. This addition
decreases the magnitude of the exposure variable but it remains negative and significant. However, part of
this may be due to the fact that the new fixed effects soak up much of the variation in the exposure variable,
as shown in Figure 2. The last two columns separate the effects into the monsoon season and the winter
season, but the overall effect is roughly similar, though rainfall has a larger effect in the monsoon season than

the winter season, which is unsurprising given the winter season is driven by irrigation in many areas.

To put the size of the coefficient in context, it is worth digging a little deeper into the exposure variable.
The mean within-village absolute deviation in wind exposure is approximately 8.06 days, meaning that the
average change in agricultural productivity from year-to-year due to nothing but changes in wind patterns
carrying particulate matter is around 2.4 percent relative to the mean. This implies that swings in agricultural
productivity — due to wind direction — of more than five percent are probably quite common, since the

absolute deviation includes deviations below and above the mean.

Of course, it is not wind, per se, that we are interested in. Instead, we are actually interested in better
understanding the effects of exposure to pollution on agricultural productivity. Table 4 presents the same

regressions as Table 77, with a key difference: instead of wind exposure, it uses average concentration of
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Table 4: Particulate matter (PM 2.5) and agricultural productivity
all monsoon winter
(1) (2) (3) (4) (5)
particulate matter 0.0000 0.0005%** -0.0004%** 0.002%** 0.0004***
(PM 2.5, '000s) (0.0000) (3.17e-5) (5.72e-5) (9.87e-5) (3.7e-5)
rain (z) 0.030%** 0.008*** 0.075%** 0.007***
(0.0004) (0.001) (0.002) (0.0005)
mean temp (10s) -0.0003%** -0.007*** -0.002%** -0.008%**
(5.63e-5) (0.0004) (0.0001) (9.79¢-5)
fixed effects:
village-season Yes Yes Yes No No
year Yes Yes No Yes Yes
district-year-season No No Yes No No
village No No No Yes Yes
observations 2,387,417 2,371,221 2,371,221 1,256,951 1,114,270

Note: Standard errors are in parentheses and are clustered at the village level. The outcome in
all regressions is estimated agricultural yield, defined as tons per hectare. * p<0.10 ** p<0.05 ***
p<0.01

PMa 5 — from Hammer et al. (2020) — during the season as the key explanatory variable. I rescale particulate
matter by dividing by one thousand to help with presentation of the coefficients. Several interesting patterns
emerge. In the first column we see no relationship between particulate matter and agricultural productivity,
while there is actually a positive relationship in columns two, four, and five. There is a small, negative

relationship between pollution and productivity in column three.

Recall, however, the results from above: coal plants were placed in places with higher average agricultural
productivity. This means that the simple regressions in 4 might actually be biased upwards: although
pollution might negatively affect productivity, pollution is higher in more productive areas due to the
endogenous placement of coal plants in the study areas. To recover the actual effect of pollution, we need an
instrument. If, conditional on the fixed effects and weather variables, wind direction is exogenous and only
affects agricultural productivity through pollution — which seems reasonable since it is hard to imagine what

other variables it might affect — then it is a valid instrument for pollution.

I present the IV results in Table 5, with the second-stage results in the top panel and the first-stage results in
the bottom panel. The first-stage results make clear how strong of an instrument wind is; the t-statistic in
column one, for example, is almost 48 while it is still well above 10 in column three, which translates to a
first-stage F-statistic of 195, meeting even the higher bar for the first-stage F-test argued for by D. S. Lee
et al. (2022). Also note that the coefficients are quite different from those in Table 2 because the unit of

analysis in Table 5 is the season, while in Table 2 the unit of analysis is the month.
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Table 5: Pollution and agricultural productivity, IV estimates

all monsoon winter
(1) (2) (3) (4) (5)
particulate matter -0.021%** -0.024%** -0.032*%** -0.012%** -0.035%**
(PM 2.5) (0.001) (0.002) (0.005) (0.001) (0.003)
rain (z) -0.011%** -4.24e-5 0.078%** -0.042%**
(0.003) (0.002) (0.002) (0.004)
mean temp (10s) -0.005%** -0.007*** -0.002%** -0.008%**
(0.0003) (0.0004) (0.0001) (0.0001)
fixed effects:
village-season Yes Yes Yes No No
year Yes Yes No Yes Yes
district-year-season No No Yes No No
village No No No Yes Yes
observations 2,387,417 2,371,221 2,371,221 1,256,951 1,114,270
first stage:
wind 0.145%** 0.111%** 0.022%** 0.157*** 0.105%**
(0.002) (0.002) (0.002) (0.002) (0.004)
rain (z) -1.68%+* -0.239%** 0.225%** =137+
(0.011) (0.017) (0.015) (0.010)
mean temp (10s) -0.192%** 0.002 -0.021%** -0.007%**
(0.0009) (0.004) (0.001) (0.002)

Note: Standard errors are in parentheses and are clustered at the village level. The outcome in
all regressions is estimated agricultural yield, defined as tons per hectare. * p<0.10 ** p<0.05 ***
p<0.01

The second-stage results first indicate that PMs 5 is a very strong predictor of agricultural productivity.
The smallest coefficient — that for the monsoon season in column (4) — and the mean absolute deviation
for PMs 5 point to a change in agricultural productivity of around 23 percent, which is much higher than
the wind results documented above. This makes sense, of course, since the IV is essentially scaling up the
effects of wind. The comparison of the results to those in the previous table also confirm the concerns around
endogenous placement of coal plants. The coefficients in Table 5 are always more negative than those in
Table 4, and sometimes substantially so. In other words, the simple regression of agricultural productivity on
pollution results in coefficients on pollution that are upwards biased, since coal plants are placed in more
productive areas. The IV strategy corrects this bias and leads to a robust, negative relationship between

pollution and agricultural productivity.

Having established that exposure to pollution has a negative effect on agricultural productivity, I now move
to heterogeneity in these effects. Table 6 presents four different analyses: effects of exposure by maximum
exposure, multiplicative effects of shocks, the possibility of non-linearities, and the differential effects of

exposure based on initial agricultural productivity.
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Table 6: Heterogeneity in the effects of pollution on productivity

>p(50) <=p(50) all
(1) (2) (3) (4) (5)
wind -0.003%** -0.033%** -0.004%** 0.0006 0.000
(0.0002) (0.002) (0.0003) (0.0005) (0.001)
rain (z) 0.028*** 0.032%** 0.028*** 0.028*** 0.028***
(0.0006) (0.0005) (0.0004) (0.0004) (0.0004)
mean temp (10s) -0.001%** 0.0006%** -0.0004*** -0.0004*** -0.0004%**
(7.66e-5) (7.9¢-5) (5.55€-5) (5.56¢-5) (5.49¢-5)
wind x rain 0.0005***
(6.74e-5)
wind squared -0.0002%**
(3.58e-5)
wind x starting -0.001%*
yield
(0.0006)
fixed effects:
village-season Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes
observations 1,112,082 1,259,139 2,371,221 2,371,221 2,367,248

Note: Standard errors are in parentheses and are clustered at the village level. The outcome in all
regressions is estimated agricultural yield, defined as tons per hectare. The first two columns split
the sample based on the *maximum* observed exposure. * p<0.10 ** p<0.05 *** p<0.01

The first two columns split the sample based on maximum exposure; villages with maximum exposure above
the median are included in column (1) while those below the median are in column (2). Interestingly, the
largest effects are seen on villages in the lower half of the distribution. Apparently, smaller maximum effects
lead to larger overall effects of pollution exposure on agricultural productivity. In other words, it is not the
places where wind is most likely to blow from a coal plant that experience the largest decrease in productivity

in response to an additional day of wind-driven pollution.

Column three looks add the possible multiplicative effects of rainfall shocks and pollution shocks on agricultural
productivity. In previous tables, rainfall always entered the regression positively — as we would expect —
indicating that higher rainfall in a given season leads to higher agricultural productivity. However, an
interesting question is whether rainfall and pollution shocks might interact. The positive coefficient on the
interaction term between days of wind and rainfall during the agricultural season indicates that there is
a multiplicative effect of shocks; when wind days are higher (bad) and rainfall is lower (bad), the overall
negative effects are even worse than when just one shock happens. Considering that climate change is leading
to more variable rainfall and more negative rainfall shocks, these results are potentially worrisome, especially

for smallholders.

Column four adds a quadratic in wind to see if the negative effects of pollution on agricultural productivity
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are increase or decreasing in wind. In column four, the coefficient on the linear term is 0.0006 while the
coefficient on the quadratic term is -0.0002, meaning that the effect of wind is decreasing for any days of
wind over three The negative coefficient also indicates that this negative effect is consistently decreasing,
meaning the effect gets worse as average wind days gets higher. Note that this is somewhat different from the
regressions in the first two columns, which split the sample by the mazimum days of wind observed in the

sample, not the mean.

In the final column I add to the regression an interaction between wind and initial agricultural productivity
(defined in 2002, the first year observed in the productivity data). The linear term drops out of the regression
since it is invariant within villages, leaving just the interaction term. The negative coefficient on the interaction
term of -0.001 indicates that the effect of pollution is more negative in areas where agricultural productivity is
higher. Note that agricultural productivity is defined in logs, so this can be interpreted as a percentage effect,
not a level effect. Apparently, wind-driven pollution is particularly detrimental to agricultural productivity

in the most productive places.

3.2 Robustness checks

I present two separate robustness checks in the appendix. The first set of analyses attempts to separate the
possible endogenous location of coal plants from outcomes. Specifically, prior to the opening of a new coal
plant in an area, all villages receive a zero for wind. This means that, even if wind direction is exogenous, the

opening of the coal plant could lead to correlations between the error term and the wind variable.

Although the results with district-year-season help mitigate this concern, Table A2 in the appendix checks
this possibility in a different way. Specifically, I restrict the sample to only village-years after the introduction
of a coal plant. This drops any pre-plant-opening observations — all of which are mechanically zeros for wind —
to prevent endogeneity due to the opening. The coefficients in Table A2 show that the overall effects are

essentially unchanged, with just a small change in coefficient magnitude (driven mostly by rounding).

The second robustness check includes leads for wind to see if they predict current year productivity. I present
these results in A3. The second column includes district-year-season fixed effects, while the first does not.
The results make clear the importance of including trends or district-year fixed effects. In the first column,
leads seem to predict productivity. However, this relationship disappears in the second column, indicating

that the previous results with district-year fixed effects are likely the most reliable.

18



Table 7: Wind direction and labor allocation

all all self wage farm non-farm

wind -0.021 -0.027* 0.008 -0.034%* 0.035* -0.061**
(0.015) (0.015) (0.017) (0.016) (0.019) (0.025)

controls No Yes Yes Yes Yes Yes
fixed effects:
district Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
varying slopes:
year (by district) Yes Yes Yes Yes Yes Yes
observations 899,045 898,856 898,856 898,856 898,856 898,856

Note: Standard errors are in parentheses and are clustered at the district level. Control vari-
ables include female, age, age squared, and (years of) education. The outcome in each regression
is days worked in the previous seven days. * p<0.10 ** p<0.05 *** p<0.01

3.3 Labor allocation

The previous set of results show a consistent negative effect of wind-driven pollution on agricultural pro-
ductivity. A key question is the mechanism through which this happens; is this driven by changes in labor
allocation/productivity or by changes in land productivity? While I cannot definitely prove the mechanism, I
can shed some light on possibilities by looking at labor allocation decisions. Since these shocks generally

happen after initial planting decisions, it seems unlikely that changes in land allocation could drive the results.

Table 7 presents results for labor allocation over the last seven days using the National Sample Survey and
the methodology described above. Since the labor recall is for seven days, labor allocation ranges from zero
to seven, as does the wind variable. Recall that the data is at the district level, not the village level. However,
it is also more temporally disaggregated, with rolling interviews throughout the year-long survey. Figure
Al in the appendix shows this temporal distribution across the five waves of the survey. Since I can no
longer include district-by-month fixed effects, I instead opt for district-level trends to help take into account

aggregate temporal changes in outcomes.

There are some interesting results in Table 7. The first two columns show a marginally significant decrease in
overall labor allocation (where “labor” is defined as non-domestic self and wage employment). The third and
fourth columns show that this overall decrease is predominantly from wage employment, not self employment.
An additional day of wind over the last seven decreases wage employment by 0.034 days in the district. Mean
wage employment is 1.458 days, meaning one day of wind decreases wage employment by 2.3 percent of the
mean. Since much of the district is not covered by “treated” villages, this is actually a rather substantive

effect on the villages involved.
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Table 8: Wind direction and labor allocation, heterogeneity by age

all self wage farm non-farm
wind 0.061***  0.096%** -0.034 0.068*** -0.006
(0.023) (0.022) (0.024) (0.020) (0.030)
wind times age>=38 -0.207FFF  .0.207¥**  -0.0001 -0.078%FF  .(.129%**
(0.037) (0.033) (0.040) (0.020) (0.030)
controls Yes Yes Yes Yes Yes
fixed effects:
district Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes
varying slopes:
year (by district) Yes Yes Yes Yes Yes
observations 898,856 898,856 898,856 898,856 898,856

Note: Standard errors are in parentheses and are clustered at the district level. Control
variables include female, age, age squared, and (years of) education. The outcome in each
regression is days worked in the previous seven days. * p<0.10 ** p<0.05 *** p<0.01

The last two columns split the effects by sector, into farm and non-farm employment. Although agricultural
(land) productivity decreases when wind blows in the direction of villages, overall labor allocation to farm
labor actually goes up, by around 4.5 percent of the mean of 0.784 days. Non-farm labor, on the other hand,
goes down, by around 2.4 percent of the mean of 2.527 days.

There are two possible explanations for this pattern of results. First, it could be that land productivity goes
down, leading farmers to increase their farm labor allocation in an attempt to compensate for the decreased
productivity. A second possibility is that pollution does not affect land productivity at all, at least not
directly. In this scenario, the worsening air quality could lead to decreased labor productivity, meaning that

“effective labor” essentially decreases when pollution is higher.

Table A4 and Table A5 in the appendix disaggregate these effects into the monsoon and winter seasons.
Apparently, the entirety of the effect is driven by changes in labor allocation during the monsoon season. The

dynamics across seasons apparently lead to large differences in the effects of pollution on labor allocation.

One way to provide suggestive evidence of mechanisms is to explore heterogeneity in the effects. Previous
research has shown larger effects of pollution on the health of the oldest (Deryugina et al. 2019). The labor
sample includes all adults between 15 and 60 years of age. To look at heterogeneity by age, I present an
additional set of results interacting the wind variable with an indicator for whether an individual is over 37
years of age.'® These results are in Table 8, which otherwise presents the same specifications in the last five

columns as 7.

Table 8 presents a very clear set of results: the effects are always larger (more negative) for older adults.

13This splits the sample into two equal bins of age: those who are 15-37 and those who are 38-60.

20



Particularly interestingly, we now see that the mean-zero effect on self employment in the previous table
is driven by two stark contrasts: a large increase for the younger group and a large decrease for the older
group. For the youngest group, this increase appears in farm labor, indicating likely increases in farm
self-employment. The oldest, on the other hand, have large decreases in both farm and non-farm labor, with

larger decreases in the latter.

To put some of these changes in context, an additional day of exposure to pollution from wind increases
self-employment for the younger half of the sample by around six percent of the mean and increases farm
employment for the younger half by almost 10 percent of the mean. For the older half, on the other hand, an
additional day of exposure decreases self-employment and non-farm employment by around five percent of

their means.

While speculative, one possible explanation for this pattern is a decrease in labor productivity. While the
youngest may be able to readjust and increase their overall self-employment labor allocation, perhaps the
oldest cannot due to, for example, health effects of pollution, which are well documented (Bentayeb et al.
2012; Pope III 2000).'* We see decreases in overall agricultural productivity, despite an increase in overall
farm labor. We also see decreases in non-farm employment, indicating that individuals are reallocating labor

from the non-farm sector to the farm sector.

It is worth noting that the larger negative effects for older adults is more consistent with a labor story than a
land story; it is hard to imagine these patterns emerging if the only effects were through land productivity
changes. The overall decrease in non-farm employment is more compatible with a labor health/productivity
story, though with general equilibrium effects in agriculture spillover over into the non-farm sector, this need

not necessarily be the case.

In addition, Table A6 in the appendix presents one additional set of results to support a labor story. Changes
in land productivity should be relatively fixed in a short period of time. For example, if we focus on just
a single month in a single district, the overall effects driven by changes in land productivity should be
constant even though pollution may have differential effects throughout the month on labor productivity,
which responds more immediately to changes in ar quality. Table A6 changes the specification to include
district-by-year-by-month fixed effects. In other words, the results compare people in the same district in the
same month, but who may have differential exposure to pollution simply because they were interviewed at a

slightly different time.

The overall pattern of results stays the same when we shift the focus. Overall labor allocation increases

1Much of the literature also suggests the youngest are at significant risk of mortality and morbidities. However, given my focus
on labor allocation, I only discuss older adults here.
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Table 9: Wind direction and nightlight growth

(1) (2)

wind (lagged) -0.080%** -0.083%**
(0.015) (0.015)

rain (z, lagged) -0.035%**

(0.002)

fixed effects:

village Yes Yes

year Yes Yes

varying slopes:

year (by village) Yes Yes

observations 2,146,715 2,146,715

Note: Standard errors are in parentheses and are
clustered at the village level. The outcome in all re-
gressions is logged nightlights. * p<0.10 ** p<0.05
¥ p<0.01

for the youngest, but decreases for the oldest, and this is driven completely by self employment. There
are decreases in both farm and non-farm employment for the oldest, while the youngest show increases in
non-farm employment, but not farm employment — which is a change from the previous results. The overall
story remains the same, however, which is further evidence of effects being driven primarily through changes

in labor allocation and productivity.

Finally, Table A7 in the appendix shows that there are no significant changes in daily wages, though the
overall direction of wage changes would be ambiguous, anyway. While reduced productivity might lead to

lower wages, decreased labor supply could also put upward pressure on wages.

3.4 Nightlights

Pollution leads to lower agricultural productivity as well as changes in labor allocation. This leads to an
obvious question: might higher levels of pollution also directly affect economic growth? To explore this
question, I look at changes in nightlights relative to changes in pollution. It seems reasonable to think that
pollution might affect nightlights with a lag, so I include the lag of pollution rather than contemporaneous

pollution.

I present these results in Table 9. To help simplify the coefficients, I recode wind to be the proportion of
days in the year that a given village experiences wind in their direction, from a coal plant. Mean wind in this
new specification is 0.066, indicating that a village in the sample experiences wind in its direction on around

6.6 percent of days, or 24 days of the year.
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We see a strong, negative relationship between pollution (lagged wind) and nightlights. Going from the
25th percentile to the 75th percentile of wind exposure is synonymous with a decrease in the growth of
nightlights within a village by around 0.7 percent. While this is a relatively small magnitude, it is worth
noting that there are more than 100,000 villages in this sample. While the effect for a single village might
be small, the overall, aggregate effect on growth is quite substantial. To put this number in perspective,
Castell6-Climent, Chaudhary, and Mukhopadhyay (2018) argue that a standard-deviation increase in the
share of adults with a university education leads to 12 percent higher nightlights in India, while Storeygard
(2016) shows that a four-fold increase in oil prices over six years leads to seven percent lower nightlights at a
distance of around 500km from the nearest large port in sub-Saharan Africa. In other words, the 0.7 percent

change in nightlights is quite large given this is annual variation.

4 Conclusion

The rapid growth of coal power plants has also led to increases in emissions from the burning of coal. In this
paper, [ show some of the negative effects associated with this burning: decreased agricultural productivity. I
find clear indications that pollution from coal plants leads to lower agricultural productivity. Importantly, I
use exogenous changes in wind direction to measure exposure to pollution and show that these effects are

robust to a range of alternative specifications.

Results indicate that these effects may be driven by changes in labor allocation patterns. In addition, the
negative labor effects are concentrated in older adults, which is consistent with previous research on the effects
of pollution on health in adults. Despite this, I am unable to rule out direct effects on land productivity with

the data available.

Finally, these negative effects are also seen in aggregate economic development, with pollution leading to
decreases in the growth of nightlights. These effects, though small for an individual village, are quite large in

overall terms, indicating that pollution from coal plants can have effects on overall economic development.

These results, of course, do not address possible positive effects of the building of additional power plants,
which can lead to increased electricity access. As such, the main conclusion is that the location of new power
generation facilities may be particularly important for multiple aspects of economic activity, not just health

and mortality.
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Appendix A

Table Al: Data sources

source

geographic coverage

temporal coverage

shapefile Asher et al. (2021) India

coal plants Global Energy Monitor global yearly
wind NCAR global daily
pollution Hammer et al. (2020) global monthly
agriculture Angopadhyay et al. (2022) global two seasons /year
nightlights Asher et al. (2021) India yearly
weather TerraClimate global monthly

Global Energy Monitor: globalenergymonitor.org/projects/global-coal-plant-tracker. NCAR:
climatedataguide.ucar.edu/. TerraClimate: www.climatologylab.org/terraclimate.html
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Table A2: Wind direction and agricultural productivity, post-coal plant only

all monsoon winter
(1) (2) (3) (4) (5)
wind -0.003%** -0.002%** -0.0006*** -0.002%** -0.003%**
(0.0002) (0.0002) (9.56e-5) (0.0002) (0.0003)
rain (z) 0.018%** 0.008*** 0.061%** 0.003***
(0.0005) (0.001) (0.002) (0.0005)
mean temp (10s) 0.0008*** -0.005%** 0.005%** -0.008%**
(5.28e-5) (0.0004) (0.0001) (0.0001)
fixed effects:
village-season Yes Yes Yes No No
year Yes Yes No Yes Yes
district-year-season No No Yes No No
village No No No Yes Yes
observations 1,886,956 1,872,177 1,872,177 996,509 875,668

Note: Standard errors are in parentheses and are clustered at the village level. The sample is
restricted to village-years after a coal plant was built near the village. The outcome in all regressions
estimated agricultural yield (tons per hectare). * p<0.10 ** p<0.05 *** p<0.01
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Note: The histogram shows the distribution of survey dates for the four waves of the National Sample Survey (NSS) for the five

waves used in this paper.

Table A3: Agricultural productivity and pollution leads

(1) (2)
wind (lag) 0.004*** 0.0005
(0.0007) (0.0003)
wind -0.002%** -0.0006***
(0.0004) (0.0002)
wind (lead) -0.004*** 0.0000
(0.0001) (0.0000)
rain (z) 0.022%** 0.006%**
(0.0004) (0.001)
mean temp (10s) 0.0005%** -0.007%**
(6.04e-5) (0.0004)
fixed effects:
village-season Yes Yes
year Yes No
district-year-season No Yes
observations 1,976,205 1,976,205

Note: Standard errors are in parentheses and are
clustered at the village level. The outcome in all
regressions estimated agricultural yield (tons per
hectare). * p<0.10 ** p<0.05 *** p<0.01

Figure Al: Timing of household surveys for the National Sample Survey
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date
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Table A4: Wind direction and labor allocation, monsoon season only

all all self wage farm non-farm

wind -0.021 -0.033 0.038 -0.071%* 0.072** -0.105%*
(0.028) (0.029) (0.034) (0.033) (0.036) (0.046)

controls No Yes Yes Yes Yes Yes
fixed effects:
district Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
varying slopes:
year (by district) Yes Yes Yes Yes Yes Yes
observations 359,652 359,576 359,576 359,576 359,576 359,576

Note: Standard errors are in parentheses and are clustered at the district level. Control variables
include female, age, age squared, and (years of) education. * p<0.10 ** p<0.05 *** p<0.01
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Table A5: Wind direction and labor allocation, winter season only

all all self wage farm non-farm

wind 0.003 0.002 0.011 -0.009 0.024 -0.022

(0.029) (0.026) (0.028) (0.025) (0.034) (0.039)
controls No Yes Yes Yes Yes Yes
fixed effects:
district Yes Yes Yes Yes Yes Yes
year Yes Yes Yes Yes Yes Yes
varying slopes:
year (by district) Yes Yes Yes Yes Yes Yes
observations 375,956 375,883 375,883 375,883 375,883 375,883

Note: Standard errors are in parentheses and are clustered at the district level. Control vari-
ables include female, age, age squared, and (years of) education. The outcome in each regression
is days worked in the previous seven days. * p<0.10 ** p<0.05 *** p<0.01
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Table A6: Wind direction and labor allocation, heterogeneity by age

all self wage farm non-farm

wind 0.100%**  0.117%%* -0.018 0.026 0.074%**

(0.027) (0.029) (0.026) (0.024) (0.028)
wind times age>=38 -0.203%*FF  .0.201%** -0.002 -0.070%*F*F  .0.133%**

(0.037) (0.032) (0.039) (0.018) (0.031)
controls Yes Yes Yes Yes Yes
fixed effects:
district-year-month Yes Yes Yes Yes Yes
observations 898,856 898,856 898,856 898,856 898,856

Note: Standard errors are in parentheses and are clustered at the district level. Control
variables include female, age, age squared, and (years of) education. The outcome in each
regression is days worked in the previous seven days. * p<0.10 ** p<0.05 *** p<0.01
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Table A7: Wind direction and wages

farm non-farm all

wind 0.037 0.010 0.009
(0.031) (0.010) (0.011)

controls Yes Yes Yes

fixed effects:

district Yes Yes Yes

year Yes Yes Yes

varying slopes:

year (by district) Yes Yes Yes

observations 16,534 149,973 133,526

Note: Standard errors are in parentheses and are clus-
tered at the district level. Control variables include female,
age, age squared, and (years of) education. The outcome
in each regression is the daily wage (log Rs per day). *
p<0.10 ** p<0.05 ¥** p<0.01
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