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Abstract

This paper examines the approximability of infinite games using finite discretiza-
tions. We identify simple conditions that guarantee that limits of approximate
mutual best responses, aka approximable equilibria, do not depend on the par-
ticular way the infinite game is discretized. We show that these conditions are
satisfied in many common infinite games, such as Bertrand competition, war of
attrition, or auctions. We relate our results to those obtained for limit equilibria,
approximate equilibria, or solutions for some sharing rule.
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1 Introduction

The representation of strategic choices as continuous variables, such as payments, con-
sumption, or effort, has been a common practice in economic theory. These modeling
choices have proven to be a valuable tool for economists in exploring a vast array of
economic settings, including pricing in monopolistic or oligopolistic markets, equilibria
in auctions, signaling in labor markets, and moral hazard in firms.

While modeling variables as real numbers has numerous advantages, it also raises
several challenges. Firstly, unlike finite games, infinite games may not possess a Nash
equilibrium, requiring specific assumptions regarding the action space and payoff func-
tion to guarantee self-enforcing strategic behavior. Secondly, it is not always evident
whether an equilibrium, if one exists, is the limit of equilibria of a sequence of finite
games. This can be a critical issue when the continuum is used as a modeling conve-
nience to study a setting with a fine but finite set of choices (e.g., payments). Thirdly,
the dependence of the set of limit equilibria on the specific discretization of the game
is often unclear, especially when actions are multi-dimensional or multiple players have
infinite action spaces. This is of concern as one would not want the numerically ob-
tained equilibria to be dependent on the specific discretization or the parameters used
in the model.

In this paper, we delve into the approximability of infinite games using finite games.
Specifically, we outline clear conditions that ensure the existence of limiting behavior
that is the result of (almost) mutual best responses, regardless of how the infinite
game is approximated by finite versions. Under these conditions, our predictions are
not dependent on the specifics of the choice discretization or the numerical analysis
method used. The main departure from the literature (discussed below) is the focus on
robustness to all discretizations of the game.

We consider an infinite game in normal form, denoted by G≡(Si,ui)i∈I , where
each player’s action space Si is a compact metric space. We define a discretization of
this infinite game as a sequence of finite games whose action sets converge, under the
Hausdorff distance, to the action set of the infinite game. Standard topology results
imply the existence of a discretization in any game (even when the action space is
infinite-dimensional). We show that for any strategy profile, there exists a sequence of
the finite games’ strategy profiles that converges weakly to it.
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We define an approximable equilibrium for a given discretization as a strategy profile
that is the limit of ε-equilibria of the finite games, where ε→0 along the sequence. Our
first result establishes the existence of an approximable equilibrium for some discretiza-
tion. We also provide examples of games with discretizations without a corresponding
approximable equilibrium or strategy-payoff pairs which are approximable equilibria for
some discretizations but not others.

We then investigate games where the set of approximable equilibria is independent
of how they are discretized, which we call approximable games. The existence of an
approximable equilibrium for some discretization implies that approximable games do
feature behavior that can be approached by almost-optimal mutual behavior regardless
of how the game is discretized. Conversely, in an approximable game, behavior that is
the limit of almost-optimal mutual behavior under one discretization is also the limit
of almost-optimal mutual behavior under any discretization. The main goal of our
analysis is to provide simple and easy-to-verify conditions for approximability.

Our first result establishes two jointly-sufficient conditions for approximability. The
first condition requires that any strategy profile and its corresponding payoff vector
can be approximated under any discretization. The second condition requires that if a
player can profitably deviate from a converging sequence of strategy profiles, then she
can profitably deviate under any discretization and sequence of strategy profiles with
the same limit. We call games satisfying these two conditions best-reply-secure (BRS)
approximable games; hence a BRS-approximable game is also approximable.

We provide different characterizations of approximable equilibria in BRS-approxi-
mable games. We first show that a Nash equilibrium is an approximable equilibrium.
We then show that the set of approximable equilibria of G coincides with the set of
limits of ε-equilibria along any sequence of (finite or infinite games) approaching G as
ε→0. We finally show that the approximable equilibria are solutions for some sharing
rule and argue that, in most games, the set of approximable equilibria is independent
of used the sharing rule.

We provide numerous examples illustrating the ease of use of our analysis. In
particular, we show the approximability of a large class of discontinuous games, such as
auctions, war of attrition, or Bertrand competition. We also analyze one-player games
and show that, while some discontinuities may make the game not approximable, there
is often a way to enhance the action space to make the game approximable.
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The rest of the paper is organized as follows. After the literature review, Section
2 introduces the notation and the concepts of discretization and approximable equilib-
rium. Section 3 introduces approximable and BRS-approximable games and shows that
all BRS-approximable games are approximable. It also provides sufficient conditions
for BRS-approximability. In Section 4, we illustrate the analysis through numerous
examples and show the approximability of a large class of discontinuous games. In Sec-
tion 5, we provide different characterizations of approximable equilibria and relate these
findings to previous literature. Finally, Section 6 discusses the results and concludes.
Appendix A contains the omitted proofs, while Appendix B provides a short review of
basic topological concepts and additional results on the convergence of strategy profiles.

1.1 Literature review

Existence of Nash equilibria: An important body of the literature studies conditions
that permit extending Nash (1950)’s existence result to infinite games (see Reny, 2020,
for a recent review). Fan (1952) and Glecksberg (1952) proved that compactness and
metrizability of the action space and continuity of the payoff function guarantee the
existence of Nash equilibria. Subsequent work has been devoted to finding more general
conditions for existence, examples including Dasgupta and Maskin (1986a,b), Simon
(1987), Reny (1999), or Prokopovych (2011). A related line of work has been further
devoted to finding conditions for the existence of Nash equilibria which are the limit of
(epsilon) equilibria along some discretization of the game. Examples include Dasgupta
and Maskin (1986a), Simon and Stinchcombe (1995), De Castro (2011), Balder (2011),
Carmona (2011, 2013), Reny (2011), and Bich and Laraki (2017). We instead focus our
analysis on obtaining conditions for the existence of limit behavior (which may not be
a Nash equilibrium of the infinite game) that is approximately optimal for all sequences
of close-by finite versions of the game. As we will see, such conditions are reminiscent
to Reny’s concept of better-reply security; we discuss the connection in Section 5.

Approximability of equilibria: Fudenberg and Levine (1986) made an important
step toward assessing the approximability of equilibria in infinite games. They did so
by constructing a metric where payoff functions are uniformly continuous. They showed
that, when finite approximations under this metric exist, ε-equilibria of the infinite game
coincide with the limits of ε-equilibria of the finite games. Harris, Stinchcombe, and
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Zame (2005) showed that only when the game is nearly compact and continuous, there
are finite approximations under the previous metric. Stinchcombe (2005) studied games
that are not nearly compact and continuous and defined and proved the existence of
finitistic equilibria. The relation of these papers to ours is discussed in detail in Section
6.1. In there, we argue that our approach is more intuitive and simpler to use, as the
conditions for the existence and approximability are easier to verify. Also, our approach
permits discretizing the action space instead of the space of mixed strategies.

Alternative equilibrium concepts: An alternative to address the problem of the
existence of Nash equilibria in infinite games has been proposing other equilibrium con-
cepts. Simon and Zame (1990) incorporated sharing rules as part of the equilibrium
concept. We show that, in BRS-approximable games, approximable equilibria are so-
lutions for some sharing rule; hence, their equilibrium concept can be used to obtain
approximable equilibria(see Section 5.3). Simon and Stinchcombe (1995) defined and
compared different equilibrium refinements for normal-form games. In particular, they
introduced limit-of-finite perfect equilibria as limits of εn-perfect equilibria for some
discretization, for some εn→0, and they proved their existence in games with contin-
uous payoffs. While their equilibrium concept is close to our concept of approximable
equilibrium, our use of εn-perfect equilibria implies the existence of approximable equi-
libria in any game (see Section 2.2 for further discussion). Overall, the focus of their
analysis and the nature of their results are different from ours: While their objective is
to explore and compare various equilibrium refinements for infinite normal-form games,
our focus is on determining general conditions for the existence of equilibria which are
limits of εn-equilibria for all discretizations of the game.

2 Discretizations and approximable equilibria

In this section, we introduce infinite games, discretizations, and approximable equilibria.
Throughout, we will use some standard results on weak convergence and compactness.
The reader may check Section B.1 for a quick refresh.

We begin with the definition of a normal-form game with finitely many players but
with potentially infinite action space.

Definition 2.1. A game is G≡(Si,ui)i∈I where I is a finite set of players, S≡×i∈ISi,
where each Si is a compact metric space, and each ui :S→R is bounded.
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From now on, we fix an infinite game G. We use the sup-norm distance in S, that
is, d(s,s′)=maxi∈I di(si, s′i), where di is the metric on Si. Under this distance, S is a
compact metric space. We let Σi≡∆(Si) be the set of (mixed) strategies of player i, and
Σ≡×i∈IΣi be the set of (mixed) strategy profiles. Recall that Σi and Σ are compact
metric spaces under the weak distance. As it is custom in the analysis of games, we will
sometimes use an action si∈Si to denote the strategy assigning probability one to this
action. For a given strategy profile σ∈Σ, we let ui(σ)≡Es̃[ui(s̃)|σ]. An ε-equilibrium
is a strategy profile σ such that ui(σ)≥ui(si,σ−i)−ε for all i∈I and si∈Si. A Nash
equilibrium is a 0-equilibrium.

2.1 Discretizations

We aim to study sequences of finite games approaching G. We do so by discretizing the
action space for each player, and then considering a sequence of finite versions of G.

Definition 2.2. A discretization of Si is a sequence (Si,n)n of finite subsets of Si
converging to Si.1 A discretization (of G) is a sequence of finite games (Gn)n, with
Gn≡(Si,n,ui)i∈I for all n, where each (Si,n)n is a discretization of Si.

A discretization is a sequence of finite games with action spaces converging to their
infinite counterparts. Given that we are considering potentially large (and infinite-
dimensional) action spaces, one may wonder whether there is a discretization of G. It
turns out that, as the following result establishes, our assumption that the action space
S is metric and compact is enough to guarantee that G can be discretized.

Lemma 2.1. Any game G has a discretization.

Proof. By Proposition B.1, Si is complete and totally bounded for each i∈I. Hence,
for each n∈N, there is a cover of Si containing finitely many sets, all of diameter lower
than 1/n. We let Si,n be a finite set of elements of Si, each belonging to a different set
of the partition. It then follows that, for each s∈S, there is a sequence (si,n)n∈(Si,n)n
with si,n→si. Hence, for all s∈S there is a sequence (sn)n∈(Sn)n with sn→s, which
concludes the proof.

1We use the usual Hausdorff distance between sets. We then have that Si,n→Si if and only if, for all
si∈Si, there is a sequence (si,n)n∈(Si,n)n such that si,n→si.
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In the arguments below, when a discretization (Gn)n is fixed, Si,n and Sn will sig-
nify the set of player i’s actions and the set of action profiles, respectively, of the
corresponding n-th finite game. Also, for each n, we will use Σn to denote the set of
strategy profiles in Σ with support in Sn.2

Notation for sequences and sets of sequences

Since our definitions and arguments will often involve sequences, it will be useful to
use the following notation. For a given set X (e.g., S, Si, Σ,...), we will use XN to
denote the set of sequences in X. We will use both (xn)n and xN to denote a generic
element of XN. A discretization of Si will be denoted both as (Si,n)n and Si,N (note
that Si,N⊂SN

i ), and the corresponding sets of sequences of strategy profiles both (Σi,n)n
and Σi,N. Consistently, we will use GN to denote a discretization of G.

2.2 Approximable equilibria

In this section, we provide additional notation for the set of strategy profiles, define
approximable equilibria, and provide a preliminary existence result.

For given σ∈Σ and σN∈ΣN, we will use σn→σ to denote that σN weakly converges
to σ.3 It is not difficult to see that, for each discretization GN, we have Σn→Σ as
n→∞, that is, for each strategy profile σ∈Σ, there exists a sequence σN∈ΣN such that
σn→σ (see Proposition B.3). As usual, we will use u :S→RI to denote the function
s 7→(ui(s))i∈I .

Definition 2.3. We say that σ∈Σ is an approximable equilibrium for a discretization
GN if there are two sequences σN∈ΣN and εN→0 such that σn→σ and for each n, σn
is an εn-equilibrium of Gn. We say that σ∈Σ is an approximable equilibrium if it is an
approximable equilibrium for some discretization.

Note that our definition of approximable equilibrium for a given discretization GN

requires that there is a sequence of strategy profiles σN∈ΣN where players play asymp-

2Without risk of confusion, we abuse notation by letting Σn denote both the set ×i∈I∆(Sn,i) with the
set of elements of ×i∈I∆(Si) with support on ×i∈ISn,i.

3Recall that a sequence σN∈ΣN weakly converges to σ∈Σ if for any bounded continuous function
f :S→R we have Es̃[f(s̃)|σn]→Es̃[f(s̃)|σ] or, equivalently, if dΣ(σ,σn)→0, where dΣ is the weak
distance defined in Appendix B.
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totic mutual best responses, and also that the corresponding payoffs converge. See
Section 3.3 for a dicussion on an alternative definition where convergence is only re-
quired for strategy profiles. See Remark 2.1 and Section 4.1 for comparison with Simon
and Stinchcombe (1995)’s concept of limit-of-finite perfect equilibrium. See also Section
6.1 for a discussion of the relationship between our approach and those in Fudenberg
and Levine (1986), Harris, Stinchcombe, and Zame (2005), and Stinchcombe (2005).

Existence of approximable equilibria for some discretization

Nash (1950) showed that all finite games have a Nash equilibrium. We use this result
to prove the following lemma, which establishes that all games have an approximable
equilibrium for some discretization.

Lemma 2.2. An approximable equilibrium for some discretization exists.

Proof. By Prokhorov’s theorem (see Proposition B.2 and Corollary B.1), Σ is a compact
metric space (with the weak distance) and so is sequentially compact. Fix a discretiza-
tion GN. Let σN∈ΣN be such that σn is a Nash equilibrium of Gn for each n. Then,
σN has a subsequence σkN satisfying that σkn→σ for some σ∈Σ. As a result, σ is an
approximable equilibrium for the discretization GkN .

While Lemma 2.2 ensures the existence of an approximable equilibrium for some
discretization, it does not guarantee that all discretizations have some approximable
equilibrium. There are games and discretizations without an approximable equilib-
rium. Consider, for example, a one-player game with S=[0,1], with u(s)=s when s

is rational and u(s)=−s otherwise. In this case, there is no approximable equilibrium
for a discretization where each Sn only contains rational numbers when n is odd and
irrational numbers when n is even.

Remark 2.1. Simon and Stinchcombe (1995) define limit-of-finite (lof) perfect equilibria
as limits of εn-perfect equilibria along some discretization and sequence εn→0. (Recall
that εn-perfect equilibria are full-support strategy profiles assigning a probability at
most εn to actions that are not best responses, see Myerson, 1978.) While we believe
that limit-of-finite perfect equilibria coincide with approximable equilibria (for some
discretization), the result that the set of approximable equilibria is independent of the
discretizations for approximable games does not extend to lof perfect equilibria, even
when u is continuous (see Example 4.1).
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3 Approximable and BRS-approximable games

In this section, we introduce the concepts of approximable and BRS-approximable
games and we show that they are immune to some of the approximability concerns
posed in the Introduction. We will then provide weaker but easier-to-verify conditions,
which will be used in Section 4 to show that many games of interest are both approxi-
mable and BRS-approximable.

We then begin with an important concept.

Definition 3.1. We say that G is approximable if the set of approximable equilibria is
independent of the discretization.

Approximable games have two important properties. First, any approximable equi-
librium for a discretization is an approximable equilibrium for all discretizations. Hence,
it suffices to compute the set approximable equilibria for a given discretization to obtain
the set of approximable equilibria. Second, as an immediate corollary of Lemma 2.2,
an approximable equilibrium exists for all discretizations. That is, an approximable
game contains behavior where players play asymptotic best responses to each other’s
behavior independently of the discretization of the game. Hence, approximable games
are immune to many concerns that approximations through a sequence of finite versions
of it may raise (see the Introduction).

3.1 BRS-approximable games

We now introduce two conditions each σ∈Σ may satisfy or not, and we define BRS-
approximable games as those games that satisfy them. We then show that all BRS-ap-
proximable games are approximable.

The first condition, denoted (APPσ), holds if, for any discretization, there is a
sequence approaching σ with corresponding payoffs approaching u(σ) (recall a strategy
profile σ can always be approached in through in any discretization).

(APPσ) For any discretization GN there is some σN∈ΣN with (σn,u(σn))→(σ,u(σ)).

The second condition holds if a player i can asymptotically benefit from deviating
from a sequence of strategy profiles converging to σ with payoffs converging to some v∈
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RI , then a profitable deviation exists under any sequence of strategy profiles converging
to σ with payoffs converging to v∈RI and discretization of i’s action space. We will
see in Section 5 that this property is related to Reny (1999)’s condition of better-reply
security, so we will denote this property (BRSσ).

(BRSσ) If σN, σ̂N∈ΣN are such that (σn,u(σn)),(σ̂n,u(σ̂n))→(σ,v) for some v∈RI , and
there are i∈I and si,N∈SN

i with limsupn→∞ui(si,n,σ−i,n)>vi, then, for any dis-
cretization GN, there are ı̂∈I and ŝı̂,N∈Sı̂,N with limsupn→∞uı̂(ŝı̂,n, σ̂−ı̂,n)>vı̂.

We see (APPσ) and (BRSσ) as natural requirements which hold in many games of
economic interest. Section 3.2 provides results that simplify proving that (APPσ) and
(BRSσ) hold for all σ∈Σ. Section 4 shows that, indeed, (APPσ) and (BRSσ) hold for
all strategy profiles in many relevant games. We also illustrate when these conditions
may fail, and we provide procedures to enhance the action space when they do not.

Definition of BRS-approximable equilibria and main result

We now define BRS-approximable games and prove that they are approximable.

Definition 3.2. G is BRS-approximable if (APPσ) and (BRSσ) hold for all σ∈Σ.

Theorem 3.1. If G is BRS-approximable, then it is approximable.

Proof. We first show the following useful lemma:

Lemma 3.1. If (APPσ) holds for all σ∈Σ and there is some σN∈ΣN with (σn,u(σn))→
(σ,v) then, for all discretizations GN, there is σ̂N∈ΣN with (σ̂n,u(σ̂n))→(σ,v).

Proof. Let σN∈ΣN be such that (σn,u(σn))→(σ,v). Fix some discretization GN. Fix
some n∈N. By (APPσn), there is some sequence σ̂n,N∈ΣN such that (σ̂n,n̂,u(σ̂n,n̂))→
(σ,v) as n̂→∞. We now use a (standard) diagonal argument to show that there exists
some sequence n̂N such that (σn,n̂n ,u(σn,n̂n))→(σ,v); hence σ̂n≡σn,n̂n will be our desired
sequence. We then define n̂N by setting n̂0 =0 and, for each n∈N, we let n̂n be the
smallest natural larger than n̂n−1 satisfying that4

d((σ̂n,n̂,u(σ̂n,n̂)),(σn,u(σn)))<1/n for all n̂≥ n̂n .

It is then clear that (σ̂n,n̂n ,u(σ̂n,n̂n))→(σ,v) as n→∞.
4The distance between two pairs (σ,v),(σ̂, v̂)∈Σ×RI is max{dΣ(σ, σ̂),maxi∈I |vi− v̂i|} (recall that dΣ

is the weak distance defined in Appendix B).
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Take a discretization GN and let σ be an approximable equilibrium of GN. Let
εN∈RN

++ and σN∈ΣN be such that εn→0, σn is an εn-equilibrium of Gn for all n, and
σn→σ. Take another discretization ĜN. We want to show that σ is an approximable
equilibrium of ĜN.

Let v∈RI be such that u(σkn)→v for some stricly increasing kN∈NN. By Lemma
3.1, there is some sequence σ̂N∈ Σ̂N such that (σ̂n,u(σ̂n))→(σ,v). We now verify that
there exists ε̂N∈RN

++ converging to 0 such that σ̂n is an ε̂n-equilibrium of Ĝn for all n∈N.
Assume, for the sake of contradiction, that there is no such sequence. There must then
bes a player i∈I and a sequence ŝi,N∈ Ŝi,N such that limsupn→∞ui(ŝi,n, σ̂−i,n)>vi. By
(BRSσ), there is a player ı̂∈I and sequence sı̂,N∈Sı̂,N such that limsupn→∞uı̂(sı̂,n,σı̂,n)>
vı̂. This contradicts that σn is an εn-equilibrium for all n and εn→0.

Remark 3.1. In Condition (BRSσ), σN and σ̂N are sequences of strategy profiles with
potentially infinite support. It is easy to see that Theorem 3.1 holds under the weaker
condition that requires the condition to hold for σN∈ΣN and σ̂N∈ Σ̂N, for some dis-
cretizations GN and ĜN. The reasons we choose a stronger sufficient condition are
that (1) in most games, they are equally difficult to show that they hold, and (2) the
stronger condition permits establishing clear results relating approximable equilibria
Nash equilibria, approximate equilibria, and better reply security (see Section 5).

Continuous games

A corollary from the previous result is that games with continuous payoffs are BRS-ap-
proximable, and hence their sets of Nash and limit equilibria coincide. It is also easy to
see that (APPσ) when u is continuous at σ; so, to prove BRS-approximability, (APPσ)
only needs to be checked at points where u is discontinuous.

Corollary 3.1. If u is continuous at σ, then (APPσ) holds. If u is continuous, then G
is BRS-approximable, and its sets of Nash and approximable equilibria coincide.

3.2 Sufficient conditions for BRS-approximability

In this section, we provide results that make proving the BRS-approximability (and
hence the approximability) of a game simpler in practice. In Section 4, we illustrate
their use through some examples, and we provide an additional result showing the
approximability of a large class of discontinuous infinite games.
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A simpler sufficient condition for (APPσ)

The first result establishes that to prove that (APPσ), it is sufficient to prove that it
holds for a much smaller subset of strategy profiles.

Proposition 3.1. Assume there is some i∈I such that (APP(si,σ−i)) holds for all si∈Si
and σ−i∈Σ−i with finite support. Then, (APPσ) holds for all σ∈Σ.

Proposition 3.1 simplifies proving that (APPσ) holds for all σ, as showing the ap-
proximability of (σ,u(σ)) tends to be easier when σi∈Si and σ−i has finite support.
Example 4.5 illustrates why Proposition 3.1 cannot be further generalized to only ver-
ifying that (APPs) holds for all s∈S.

A simpler sufficient condition for (BRSσ)

We continue by defining another property that each σ∈Σ may or may not satisfy.

(BRS′σ,i) For all σN, σ̂N∈ΣN with σn, σ̂n→σ, and all GN, there is ŝi,N∈Si,N such that
limsupn→∞ui(ŝi,n, σ̂−i,n)≥ limsupn→∞ui(σn).

The following result establishes that checking (BRS′σ,i) in a convenient subset of
strategy profiles is enough to prove that (BRSσ) holds for all σ.

Proposition 3.2. If (BRS′σ,i) holds for all i∈I and σ∈Si×Σ−i, then (BRSσ) holds
for all σ∈Σ.

Proposition 3.2 is useful for verifying that (BRSσ) holds for all σ∈Σ. Indeed, as
we shall see, many games of interest (e.g, Bertrand competition, auctions, or war of
attrition) are such that, for each σ∈Si×Σ−i, it is easy to compute the maximum
securable payoff player i can achieve,

ui(σ) = sup
{

lim sup
n→∞

ui(σn)
∣∣∣σN∈ΣN with σn→σ

}
. (3.1)

Furthermore, when si is interior of Si, it is often the case that for any given σ−i,n→σ and
Si,N, there is some si,N∈Si,N such that limn→∞ui(si,n,σ−i,n) = ui(σ). Together, these
observations can be used to show that (BRS′(si,σ−i),i) holds for all i∈I and (si,σ−i)∈
Si×Σ−i whenever si∈Si is interior, and proving (BRS′(si,σ−i),i) holds when si is not
interior is typically straightforward.
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3.3 Discussion

In this section, we discuss the concepts of approximable equilibrium and approximable
game, and present some corollaries to Theorem 3.1.

Approximable equilibrium pairs

Some authors use equilibrium concepts containing both a strategy profile and a payoff
vector (e.g., Bich and Laraki, 2017). In this section, we briefly discuss how this approach
can be used in our analysis.

Definition 3.3. We say that (σ,v)∈Σ×RI is an approximable equilibrium pair for a
discretization GN if there are two sequences σN∈ΣN and εN→0 such that (σn,u(σn))→
(σ,v) and for each n, σn is an εn-equilibrium of Gn.

For every approximable equilibrium σ∈Σ, there is some v∈RI such that (σ,v) is an
approximable equilibrium pair for some discretization, but it maybe that no guarantee
that there is some v′∈RI such that (σ,v′) is an approximable equilibrium pair for all
discretizations (see Example 4.5). In this later case, approximable equilibrium may seem
unnatural, as the payoff profiles along sequences of ε-equilibria converging to σ may be
rather different across different discretizations, hence providing a sense of fragility to
the predictions. The following result states that, in BRS-approximable games, the two
equilibrium concepts are equivalent.

Corollary 3.2. Assume G is BRS-approximable. Then, (σ,v) is an equilibrium pair
for some discretization, then it is an equilibrium pair for all discretizations.

Sequences of Nash equilibria

Some previous work (see the literature review) has studied conditions for Nash equilibria
to be limits of Nash equilibria along some discretization, which are often quite restrictive
(see Sections 5 and 6 for some discussions). It can be anticipated that the conditions
for Nash equilibria to be the limit of Nash equilibria along all discretizations.5 Instead,
focussing on limits of sequences of εn-equilibria for some εn→0 guarantees the existence
of approximable equilibria for some discretization (recall Lemma 2.2) and also provides

5Continuity of u, for example, is not sufficient, as it can be seen in Example 4.1.
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simple conditions to ensure that the set of approximable equilibria is independent of
the discretizations (Theorem 3.1), which are written in terms of weak convergence of
strategy profiles. The following result establishes that, under some conditions, both
approaches coincide.6

Corollary 3.3. If G is approximable and has a unique approximable equilibrium, then
any sequence of Nash equilibria along some discretization converges to σ.

Approximable sets

We now argue that sets that can be approximated through a discretization are not
relevant to determine the set of approximable equilibria of the game.

We say that a set of actions S ′≡×i∈IS ′i⊂S is approximable if there is a discretization
GN such that Sn∩S ′=∅ for all n∈N. The following is a corollary of Theorem 3.1.

Corollary 3.4. Fix S and I, and assume u, û :S→RI differ only on an approximable
set. Then, if both (Si,ui)i∈I and (Si, ûi)i∈I are approximable, their sets of approximable
equilibria coincide.

An important implication of Corollary 3.4 is that, when the set of discontinuity
points of u is approximable, then the value of u at such points is irrelevant to determine
the set of approximable equilibrium of the game, as long as the game is approximable.
This is the case in many games of important economic relevance. For example, in a
Bertrand game (see Examples 4.6 and 4.7), u is discontinuous at a price profile s only
if it satisfies that si=sı̂ for some i, ı̂∈I. It is then easy to construct discretizations
where Si,n∩Sı̂,n=∅ for all n∈N and i, ı̂∈I with i 6= ı̂. Hence, the tie-breaking rule used
to determine the outcome when two of the actions coincide is irrelevant to determine
the set of approximable equilibria.

Restricted discretizations

Theorem 3.1 provides sufficient conditions ensuring that the set of approximable equi-
libria is the same for all possible discretizations. In some applications, nevertheless, it

6Coincide in the sense that if there is an outcome of approximable equilibria, this is the limit of all
sequences of Nash equilibria. Nevertheless, as Example 4.2 shows, the limit strategy profile may not
be a Nash equilibrium.
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may be reasonable to restrict attention to a smaller set of discretizations. For example,
it may be natural to require that the bids available to each bidder in an auction are
the same; hence one may want to consider only discretizations GN where Si,n=Sı̂,n for
all n∈N and i, ı̂∈I. One can further restrict attention to evenly spaced discretizations
(where the increments are interpreted as the smallest monetary unit). We now briefly
discuss how such a possibility may be incorporated into our analysis.

Let G be the set of all discretizations of G and Ĝ ⊂G be a set of discretizations. We
say that G is Ĝ-approximable if all discretizations in Ĝ have the same set of approx-
imable equilibria. Note that (G-)approximable games are Ĝ-approximable for all sets
Ĝ ⊂G. We can then define (APPĜσ) like (APPσ) but instead requiring approximability
for only discretizations in Ĝ. Similarly, we can define (BRSĜσ) like (BRSσ) but instead
requiring that the discretization is in Ĝ. Note that (APPĜσ) and (BRSĜσ) are weaker
than (APPσ) and (BRSσ), respectively, as they only impose conditions to a subset of
discretizations. Using the same arguments as before, we now have the following result.

Corollary 3.5. Fix some set of discretizations Ĝ ⊂G. Then, if (APPĜσ) and (BRSĜσ)
hold for all σ∈Σ, G is Ĝ-approximable.

Corollary 3.5 indicates that most of our analysis can be generalized to only allow a
small set of discretizations. Still, most relevant games are BRS-approximable, they are
also Ĝ-BRS-approximable.

4 Examples

In this section, we use different examples to illustrate the previous concepts and results
and show the approximability of some commonly-used infinite games. Examples in
Sections 4.1 and 4.2 are of little economic relevance, but they are illustrative of some
of the difficulties of finding conditions that are not restrictive that guarantee approx-
imability. We illustrate in Section 4.3 how our conditions can be used to show the
approximability of important infinite games with discontinuous payoffs.

4.1 Illustrative one-player games

We first provide some examples and discussions on the BRS-approximability (and ap-
proximability) of one-player games, where a single player takes an action s∈S and
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obtains a corresponding payoff u(s)∈R. As we shall afterward see, such examples and
discussions are also useful for multi-player games.

Before presenting the examples, we provide two useful observations. First, by Propo-
sition 3.1 implies that, in one-player games, (APPσ) holds for all σ∈Σ if and only if
it holds for all pure strategies. Second, Lemma 3.1 implies that for one-player games,
when (BRSσ) holds for all σ∈Σ whenever (APPσ) holds for all σ∈Σ. Then, by Corol-
lary 3.1, proving the BRS-approximability of a one-player game reduces to proving that
(APPs) holds for all pure strategies s∈S where u is discontinuous.

Example 4.1. Continuous payoff

Consider a one-player game with S=[0,1] and u(s)=(s−1/2)2, depicted in Figure 1(a).
Since u is continuous, the game is approximable (by Corollary 3.1). It is easy to see
that the set of approximable equilibria of this game is ∆({0,1}).

We now use this example to illustrate the advantage of using limits of εn-equilibria
in our definition of approximable equilibrium (Definition 3.3) instead of using εn-perfect
equilibria as in the definition of lof perfect equilibria by Simon and Stinchcombe (1995)
(recall Remark 2.1). We do so by constructing a discretization with no lof perfect
equilibria. Such discretization is given by

Sn =


{1/n,2/n, ...,1−1/n,1} if n is even,

{0,1/n, ...,1−2/n,1−1/n} if n is odd.

Since, for each n, s∗n≡(1+(−1)n)/2 is the only maximizer of u on Sn, any εn-perfect
equilibrium of Gn assigns probability at least 1−εn to s∗n; hence, there is no lof perfect
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equilibrium for this discretization. In particular, this implies that there are discretiza-
tions with no convergent sequences of Nash equilibria.

Example 4.2. Jump discontinuities

Consider a one-player game with S=[0,1] and u as depicted in Figure 1(b). We now
argue that even though u features a “jump discontinuity” at s=1/2, the game is BRS-
approximable. Indeed, since u is continuous at all s 6=1/2, Proposition 3.1 implies that
(APPs) holds for all s 6=1/2. See that, since u(1/2)∈ [u((1/2)−),u((1/2)+)], there is
some α∈ [0,1] such that u(1/2)=αu((1/2)−)+(1−α)u((1/2)+). It is also clear that,
for any discretization, one can take a strictly increasing sequence s↑n↗1/2 and a strictly
decreasing sequence s↓n↘1/2 so that

u(α◦s↑n+(1−α)◦s↓n)→ αu((1/2)−)+(1−α)u((1/2)+) = u(1/2) .

Since, by Proposition 3.1, (APPs) holds for all pure strategies s∈S, the above obser-
vation implies that the game is approximable. The only approximable equilibrium pair
is (1/2,u((1/2)−)) (note that, nonetheless, 1/2 is not a Nash equilibrium).

Games with jump discontinuities where payoffs can be approximated by a convex
combination of close-by payoffs tend to be BRS-approximable. This occurs in many
games of interest, where some “splitting rule” is used when players choose the same ac-
tion. Examples include auctions, Bertrand competition, or war of attrition (see Section
4.3). When instead payoffs at discontinuous action profiles can not be approximated
by convex combinations of close-by payoffs (e.g., under removable discontinuities, see
the next example and Example 4.5), approximability typically fails.

Example 4.3. Removable discontinuities

Consider a one-player game with S=[0,1] and u as depicted in Figure 1(c). Note
that u features a “removable discontinuity” at s=1/2, which makes the game not ap-
proximable. Indeed, (APP1/2) (where 1/2 is the distribution assigning probability one
to s=1/2) does not hold, because the payoff u(1/2) cannot be approximated via the
discretization ({1/n, ...,1−1/n,1})n.

Stinchcombe (2005) argues using a similar example (see his Example 2.2, where the
removable discontinuity is at s=0) that “the unique continuous selection [á la Simon
and Zame (1990)] fails to capture the crucial strategic aspect of s=0, player 1’s ability
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to guarantee her/himself a payoff of 2” and uses that to defend that “finitistic equilibria
capture s=0 being available to player 1.” While, in our example, s=1/2 is an approx-
imable equilibrium for some discretizations (e.g., ({0,1/(2n), ...,1−1/(2n),1})n), we
argued before it is not an approximable equilibrium for other discretizations. There is,
nevertheless, a simple way to enhance the action space to obtain an equivalent game
that is approximable. Consider the game (Ŝ, û) defined by Ŝ≡ [0,1]∪{2} and

û(ŝ)≡


u(ŝ) if ŝ∈ [0,1]\{1/2},

u((1/2)−) if ŝ=1/2,

u(1/2) if ŝ=2,

for all ŝ∈ Ŝ. Note that û is continuous on Ŝ, hence now the game is approximable. In
the new game, the unique approximable equilibrium assigns probability one to action
2. The enhancement of the action space (by adding the new action 2) incorporates that
the payoff from choosing 2 (or 0 in the original game) is significantly different from
that of choosing any other action. While this procedure can also be applied to games
with more than one player (e.g., in Stinchcombe’s example), it may not be applicable in
some games. For example, in games with multiple players, the place of the removable
discontinuity may depend on the actions of the other players.

It is finally worth stating an intuitive corollary to Theorem 3.1, which holds for
games with any number of players. It states that games with removable discontinuities
that “jump down” are approximable as long as (BRS′σ,i) holds for all i and σ.

Corollary 4.1. Assume that, for any discretization GN and σ∈Σ (1) there is some
σN∈ΣN with σn→σ and liminfn→∞ui(σn)≥ui(σ) for all i∈I, and (2) (BRS′σ,i) holds.
Then, G is approximable.

4.2 Illustrative two-player games

In this section, we provide two examples of multiplayer games which are not approxima-
ble. The first example illustrates that (BRSσ) may fail for strategy profiles σ satisfying
that that set of best responses of one player vanishes as the other players’ strategy
approach σ−i. The second example illustrates that (APPσ) may fail when there are
actions si∈Si such that u is discontinous at multiple elements of {si}×S−i. As the
previous examples, they will be illustrative of the difficulties that proving approxima-
bility may pose.
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Example 4.4. The largest-number-wins game

We now study a classical example of a discontinuous game. In this game, two players
(i.e., I≡{1,2}) simultaneously choose a number in [0,1]. If the choice of a player is
the largest number below 1 between the two choices, she obtains a payoff of 1, if the
choices coincide, she obtains 1/2, and she obtains 0 otherwise. Hence, the payoff for
each player i, depicted in Figure 2(a), is

ui(si, s−i) =


1 if si>s−i,

1/2 if s−i=si,

0 otherwise.

We argue that this game is not BRS-approximable. To see that, consider the sequences
of pure strategy profiles σN =(1−4/n,1−3/n)n∈SN and σ̂N =(1−4/n,1−1/n)n∈SN,
both converging to (1,1) and with corresponding payoffs converging to (1,0). Note that
the sequence s1,N≡(1−2/n)n∈SN

1 satisfies

lim sup
n→∞

u1(s1,n,σ2,n)=1>0 .

Consider the discretization

S1,n={0,2/n,4/n, ...,2−2/n,2} .

Note that, for all sequences ŝ1,N∈S1,N, we have limn→∞u1(ŝ1,n, σ̂2,n)=0; hence, (BRS(1,1))
does not hold.
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Note that (APPσ) holds for all σ. Hence, the lack of BRS-approximability of the
largest-number-wins game arises from the fact that the set of best responses of player
2 shrinks as player 1 chooses a larger number (and the other way around). Hence,
while there are strategy profiles converging to s=(1,1) where player 2 obtains a payoff
1 along the sequence, player 2 cannot obtain such payoff when player 1 chooses, for
each n, a number higher than the highest value available to player 2 in Σ2,N.

As noted in Section 3.3, the strategy profile σ=(1,1) is the limit of εn-equilibria
for all discretizations. Nevertheless, as we have shown, these equilibria may look quite
different depending on the discretization considered, so the largest-number-wins game
does not have any approximable equilibrium pair. Under some discretizations, player
1 obtains 1 along all εn-equilibria, while she obtains 0 along all εn-equilibria of some
other discretizations.

Example 4.5. Counterexample to Proposition 3.1 with only pure strategies

In this example, we illustrate why Proposition 3.1 cannot be generalized to the state-
ment “If (APPs) holds for all s∈S, then (APPσ) holds for all σ∈Σ.” Such a result
would be intuitive because, ultimately, elements of Σ are distributions over S, so it
seems natural that if u(s) can be approached through any discretization for all s∈S,
then u(σ) should be approachable through any discretization for all σ∈Σ. To see why
this is not the case, consider a two-player game where I={1,2} and S1 =S2 =[0,1].
The payoff function, depicted in Figure 2(b), is given by

u(s1, s2) =


(1,0) if (s1−1/2)(s2−1/2)≥0,

(0,1) if (s1−1/2)(s2−1/2)<0,

It is clear that (APPs) holds for all s∈S. Consider now the strategy profile σ≡
(1/2,1/2◦0+1/2◦1), with corresponding payoff u(σ)=(1,0). Define

S1,n=S2,n={−1,−1+1/(2n+1), ...,1−1/(2n+1),1}

for all n∈N. It is clear that each Si,N is a discretization of Si and that 1/2 /∈Si,n for all
n and i. Assume, for the sake of contradiction, there is a sequence σN∈ΣN such that
(σn,u(σn))→(σ,u(σ)). Since 1/2 /∈Si,n for all n and i, we have

u1(σn) = σ1,n([0,1/2))σ2,n([0,1/2)) + σ1,n((1/2,0])σ2,n((1/2,0]) .
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Weak convergence of σ2,n to σ2 requires that σ2,n([0,1/2)) and σ2,n((1/2,1]) tend to 1/2
and 1/2, respectively. We then have u1(σn)→1/2. This contradicts that u(σn)→u(σ)=
(1,0); hence, (APPσ) does not hold. Intuitively, when s1 =1/2, player 1’s payoff is 1
when player 2 plays according to 1/2◦0 + 1/2◦1. For all other values s1, nevertheless,
player 1 obtains 1/2. This type of discontinuity, discussed in more detail above (recall
Example 4.3), makes the game not BRS-approximable.

If one insists on the prominence of actions s1 =s2 =1/2, one can expand the game to
remove the removable discontinuity using the technique discussed above. For example,
we can let Ŝ1≡ Ŝ2≡ [0,1]∪{2} and define

û(s1, s2)≡


(1,0) if (s1−1/2)(s2−1/2)>0 or 2∈{s1, s1},

(0,1) if (s1−1/2)(s2−1/2)<0 and 2 /∈{s1, s1},

(1/2,1/2) otherwise.

Now, by playing action 2, each player can “induce” the payoff (1,0) (as could do by
playing 1/2 in the original game). It follows that (Ŝi, ûi)i∈I is now BRS-approximable.

4.3 Approximability in multiplayer games

We now show that even though many games of interest feature payoffs with a similar
set of discontinuity points than the largest-number-wins game discussed before, they
are approximable. Most of these results arise from the following proposition.

Proposition 4.1. Assume that, for all i∈I, we can write Si as S1
i ×S2

i , where S1
i =

[0,1]. Assume also that, for each i∈S and s∈S, we have7

ui(s) = u1
i (s)+

Is1
i
=maxı̂∈I s

1
ı̂

|{ı̂|s1
ı̂ =maxı̂′∈I s1

ı̂′}|
u2
i (s) , (4.1)

where u1
i ,u

2
i : S→R are continuous. Then, (APPσ) holds for all σ∈Σ. Assume that,

additionally, for each si∈Si, either u2
i (si, s−i)≥0 or u2

i (si, s−i)≤0 for all s−i∈S−i sat-
isfying maxı̂∈I s1

ı̂ =s1
i , and also

u2
i (s)≤0 when s1

i =max
ı̂ 6=i

s1
ı̂ =1 and u2

i (s)≥0 when s1
i =max

ı̂ 6=i
s1
ı̂ =0 . (4.2)

Then, (BRSσ) holds for all σ∈Σ.

7For a predicate P , we have IP =1 if P is true and IP =1 if P is false.
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We provide an intuition for the proof of Proposition 4.1 in Example 4.6. Proposition
4.1 is general enough to imply the approximability of the most common discontinuous
infinite games, and it can be generalized in several directions (e.g., more general tie-
breaking rule or allowing different S1

i across players).

Example 4.6. Bertrand competition between two sellers

Consider a Bertrand game between two buyers, I≡{1,2}, with corresponding valua-
tions v1,v2∈(0,1].8 We assume that supply is inelastic (see next example for the general
case). We assume buyers set prices in S1 =S2 =[0,1]. Player i’s payoff is given for a
price profile s by equation (4.1) with

u1
i (s)=0 and u2

i (s)=vi−si .

Given that the conditions of Proposition 4.1 are satisfied, the game is approximable.
We now provide an intuition why this is the case. We first fix some (s1,σ2)∈S1×Σ2,
and we will prove that both (APP(s1,σ2)) and (BRS(s1,σ2)) hold. By Propositions 3.1
and 3.2, and by the fact that an analogous argument can be made for strategy profiles
in Σ1×S2, we will conclude that the game is BRS-approximable, and hence it is ap-
proximable. We note that u(s1,σ2) is equal to∫

[0,1]\{s1}
u(s1, s̃1)σ2(ds̃2)+σ2({s1})(1

2 (v1−s1,0) + 1
2 (0,v2−s1)) ,

and also that

lim
s′1↗s1

u(s′1,σ2) =
∫

[0,1]\{s1}
u(s1, s̃2)σ2(ds̃2)+σ2({s1})(v1−s1,0) ,

lim
s′1↘s1

u(s′1,σ2) =
∫

[0,1]\{s1}
u(s1, s̃2)σ2(ds̃2)+σ2({s1})(0,v2−s1) .

Assume first s1 /∈{0,1}. It is then not difficult to see that, for each σ2,N∈ΣN
2 with

σ2,n→σ2, discretization S1,N, and σ1,N∈Σ1,N with σ1,n→s1, we have that if the limit of
u(σn) as n→∞ exists, then there is some α∈ [0,1] with

u(σn) →
∫

[0,1]\{s1}
u(s1, s̃2)σ2(ds̃2)+α (v1−s1,0)+(1−α)u(0,v2−s1) . (4.3)

8We study Bertrand competition between buyers instead of between sellers so that the highest price
obtains the gooda and we can apply Proposition 4.1 directly. A straightforward renormaliation allows
obtaining the same result for the case with two competing sellers.
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Conversely, for each α∈ [0,1], σ2,N∈ΣN
2 with σ2,n→σ2, and discretization S1,N, there is

a sequence σ1,N∈Σ1,N with σ1,n→s1 such that equation (4.3) holds. Intuitively, for a
given sequence σ2,N with σ2,n→σ2 and S1,N, one can choose two sequences s−1,N, s−1,N∈S1,N

converging to s1 from below and above, respectively, at a slow rate so that

lim
n→∞

u(s−1,n,σ2,n) = lim
s′1↗s1

u(s′1,σ2) and lim
n→∞

u(s+
1,n,σ2,n) = lim

s′1↘s1
u(s′1,σ2) .

For each α∈ [0,1], we can then define σ1,n≡α◦s−1,n+(1−α)◦s+
1,n, so equation (4.3)

holds. From these observations, it follows that both (APP(s1,σ2)) and (BRS(s1,σ2)) hold.

Consider now the case s1 =1. This case has the potential to be problematic for the
same reasons that made the largest-number-wins game not BRS-approximable. Indeed,
we can use the sequences considered in the analysis of the largest-number-wins game
above to show that, while there are sequences σN∈ΣN with σn→(1,1) with u1(σn)→
v1−1, there are partitions S1,N such that there is no s1,N∈S1,N with u1(s1,n,σ2,n)→
v1−1. Nevertheless, differently from the largest-number-wins game, player 1’s inability
to choose a higher action than player 2 along the sequence does not hurt him: by the
previous argument, it is easy to see that, independently of S1,N, there is a sequence
σ1,N∈S1,N slowly converging toward 1 that gives player 1 a limit payoff of 0>v1−1.
We can then use a similar argument to the one for the case s1∈(0,1) to show that
(APP(s1,σ2)) and (BRS(s1,σ2)) hold when s1 =1. A similar argument also works for
s1 =0.9

Example 4.7. Bertrand competition between more than two sellers, with
entry decisions and general demand

Consider now a Bertrand game between |I|≥2 buyers. Now, we assume that the action
space of each seller i is [0,1]∪{−1}, where si=−1 signifies that buyer i does not enter
the market, while si∈ [0,1] is interpreted as the price buyer i sets if she enters the
market at cost ci. Again, buyer i’s valuation is vi. Buyer i’s payoff is then given by
equation (4.1) with

u1
i (s) = Isi∈[0,1]−c1 and u2

i (s)=Isi∈[0,1]Q(si)(vi−si) ,

9Condition (4.2) ensures that the same logic can be applied in the more general case. When, for
example, s1

i =maxı̂6=i s
1
ı̂ =1, player i benefits by setting an action slightly below 1, as such an action

eliminates the second term on the right side of (4.1), making him weakly better off because u2
i (s)≤0.
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Auction u1
i (s) u2

i (s)
First price 0 vi−si
Second price 0 vi−maxı̂ 6=i sı̂
All pay −si vi

Table 1

whereQ : [0,1]→ [0,1] is a decreasing right-continuous function interpreted as the supply.

Given that the conditions of Proposition 4.1 are satisfied, the game is approximable.
The intuition is analogous to the proof for the simple two-buyer model with inelastic
supply. Intuitively, the role of σ2 is replaced by the distribution of the largest price
offered by buyer 1’s opponents. The addition of the choice of entering or not the
market also does not affect the arguments.

Example 4.8. Auctions

Consider now an auction of a single indivisible good with N bidders. Each bidder
i values the good at vi∈(0,1] and chooses a bid si∈ [0,1]. The object is allocated
uniformly among the bidders with the highest bid. It is easy to see that for all standard
auction formats (first price, second price, and all pay), bidder i’s payoff is given by
Equation (4.1), where the different u1

i and u2
i are provided in Table 1. It is also easy to

see that the conditions of Proposition 4.1 are satisfied; hence all standard auctions are
approximable.

Example 4.9. War of attrition

We now consider a game of war of attrition between two players, i∈{1,2}, each with
discount rate ri. For simpliity, we normalize the action space so that each player
chooses si∈ [0,1], which is interpreted as choosing to stop at time ti∈ [0,+∞] satisfying
si=1−e−ti . The payoff from an action profile s is given by equation (4.1) with

u1
i (s)=eri log(1−si)R1

i and u2
i (s)=eri log(1−s−i)R2

i −eri log(1−si)R1
i .

with R2
i >R1

i >0. That is, player i obtains e−ri tiR1
i when ti<t−i, e−ri t−iR2

i when
ti>t−i, and half of each when ti= t−i. Given that the conditions of Proposition 4.1 are
satisfied, the game is approximable. This result can be generalize to allow for more
players, random exogenous exit times, time-dependent rewards, etc.
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5 Characterizations of approximable equilibria

In this section, we provide different characterizations of approximable equilibria in ap-
proximable games. We first generalize the concept of discretization and approximable
equilibrium to allowing sequences of games with infinite action spaces. We then show
that Nash equilibria are approximable equilibria, that approximable equilibria coincide
with limits of ε-equilibria as ε→0, and that we characterize approximable equilibrium
in terms of a local incentive compatibility condition.

5.1 Fully-approximable equilibria

We say that Si,N is an approximation of Si if Si,n→Si (under the Hausdorff metric) and,
for each n, Si,n⊂Si. We say that GN≡((Si,n,ui)i∈I)n is an approximation of G if, for
each i∈I, the Si,N is an approximation of Si. We say that σ∈Σ is a fully-approximable
equilibrium for an approximation GN if there are σN∈ΣN and εN→0 such that σn→σ

and for each n, σn is an εn-equilibrium of Gn. We say that G is fully-approximable if
the set of fully-approximable equilibria is the same for all of the approximations.

We use (APPfull
σ ) and (BRSfull

σ ) to denote the properties analogous to (APPσ) and
(BRSσ) allowingGN in them to be approximations instead of discretizations. If (APPfull

σ )
and (BRSfull

σ ) hold for all σ, we say that G is BRS-fully-approximable. Analogous argu-
ments to those in the proof of Theorem 3.1 show that if G is BRS-fully-approximable
then it is fully-approximable. We now further show that discretizations are sufficient
to characterize BRS-full-approximability.

Theorem 5.1. G is BRS-approximable if and only if it is BRS-fully-approximable.

As indicated in Section 3.3, that BRS-full-approximability implies BRS-approxima-
bility follows from the fact that (APPσ) and (BRSσ) are easier to satisfy than (APPfull

σ )
and (BRSfull

σ ), respectively. The reverse direction follows from the fact that all approx-
imations contain a discretization. As we will now see, Theorem 5.1 implies that, if G
is BRS-approximable, Nash equilibria are approximable equilibria, and approximable
equilibria are approximate equilibria and are solutions for some sharing rule.

5.2 Relationship to Nash equilibria

A first implication from Theorem 5.1 is that Nash equilibria are approximable equilibria.
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Corollary 5.1. Assume G is BRS-approximable. Then, σ is a Nash equilibrium if and
only if (σ,u(σ)) is an approximable equilibrium pair.

BRS-approximability is then sufficient for Nash equilibria te be approximable through
almost-optimal behavior in finite games. Intuitively, if there is a player who can prof-
itably deviate from a given strategy profile σ, then (BRSσ) guarantees that she can
benefit from deviating from a close-by strategy profile in any close-by finite game. Con-
versely, if a player can profitably deviate in a convergent sequence of strategy profiles,
she can also profitably deviate from the limit strategy profile.

Remark 5.1. When, for a discretization GN, there is a sequence σN∈ΣN with σn→σ

where each σn is a Nash equilibrium of Gn, we have that σ is an approximable equilib-
rium. It is nonetheless not true that all approximable equilibria can be approximated
by Nash equilibria of some discretization, not even in BRS-approximable games. To see
that, consider a one-player game with Ŝ=[0,1]∪{2} and payoff given by Figure 1(b)
when s∈ [0,1] and u(2) = u((1/2)−). It is easy to prove that this game is approxima-
ble (see Section 4.1 for analogous arguments), and its set of approximable equilibria is
∆({1/2,2}). Nevertheless, any discretization GN has the property that any sequence
σN∈ΣN where each σn is a Nash equilibrium of Gn converges to 2. Still, we believe
that s=1/2 (or mixings between 1/2 and 2) is also a plausible prediction since for
any ε>0, there is some û with ‖û−u‖<ε (under the sup-norm) such that the unique
Nash/approximable equilibrium of (Ŝ, û) is ε-close to s=1/2 (under the weak distance).

5.3 Relationship to approximate equilibria

Because the constant sequence (G)n is an approximation of G, it follows from Theorem
5.1 that, in BRS-approximable games, the set of approximable equilibria coincides with
the set of approximate equilibria, that is, the set of limits of ε-equilibria (of G) as ε→0.

Corollary 5.2. If G is BRS-approximable, then σ is an approximable equilibrium if
and only it is an approximate equilibrium.

Corollary 5.2 is useful in that it permits characterizing approximable equilibria
without using discretizations. Furthermore, as we will now see, it permits showing that
approximable equilibria are solutions for some sharing rule.
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Relationship to Simon and Zame (1990). Given a game G, one can define a
corresponding game with endogenous sharing rules by first defining the correspondence

U(s)=co({v∈RI |(s,v)∈Γ}) where Γ≡{(s,u(s))|s∈S}.

A sharing rule is a function û : S→RI such that û(s)∈U(s) for all s∈S. A solution for a
sharing rule û is a Nash equilibrium of the game 〈I,S, û〉. Simon and Zame (1990) show
that all games with an endogenous sharing rule have a solution. The following corollary
follows from Bich and Laraki (2017)’s result showing that approximate equilibria are
solutions for some sharing rule.

Corollary 5.3. If G is BRS-approximable, an approximable equilibrium is a solution
for some sharing rule.

Corollary 5.3 establishes the candidates for approximable equilibria are solutions for
some sharing rules, which do not require considering sequences of strategy profiles or
discretizations. Such a necessary condition is nevertheless not sufficient. The reason
is, in part, that, as Stinchcombe (2005) points out, “It allows for profitable deviations
and introduces spurious correlation between players’ choices”. See Example 4.5 for an
example of a non-BRS-approximable game with a Nash equilibrium (which is also a
solution for some sharing rule) that is not an approximable equilibrium.

5.4 Securable payoffs

For the final characterization of approximable equilibria, we define the vector of secur-
able payoffs for each pair (σ,v), denoted u(σ|v), as

ui(σ|v)≡ inf
σN∈ΣN|(σn,u(σn))→(σ,v)

sup
si,N∈SN

i

lim sup
n→∞

ui(si,n,σ−i,n) for all i∈I,

and ui(σ|v)=−∞ if there is no σN∈ΣN with (σn,u(σn))→(σ,v). That is, ui(σ|v) is the
lowest limit payoff that player i can secure from deviating from a sequence of strategy
profiles and payoff vectors converging to (σ,v). Note that while ui(σ|v) is defined using
sequences of strategy profiles, its definition does not involve discretizations of G. The
following proposition shows that (σ,v) is an approximable equilibrium pair if and only
if each player i obtains ui(σ|v).

Proposition 5.1. If G is BRS-approximable, (σ,v) is an approximable equilibrium pair
if and only if u(σ|v)=v.
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Relationship to better-reply secure. Proposition 5.1 is reminiscent of Reny (1999)’s
condition named “better-reply secure”, which is used (together with other conditions)
to ensure the existence of Nash equilibria in infinite games with discontinuous payoffs.

Reny (1999) says that player i can secure a payoff vi∈R at s∈S if there is s̃i such
that ui(s̃i, s′−i)≥vi for all s′−i in some neighborhood of s−i. He then says that G is better-
reply secure if whenever (s∗,u∗) is in the closure of the graph of its vector payoff function
and s∗ is not a Nash equilibrium, some player can secure a payoff strictly above u∗i at s∗.
He shows, among other results, that if the game is better-reply secure and quasiconcave,
it admits a Nash equilibrium in pure strategies.10 For non-quasiconcave games, this
result is usually applied to the mixed extension of the game (since each Σi is convex
and ui :Σi×{σ−i}→R is quasiconcave for all σ−i∈Σ−i). Nevertheless, showing better-
reply security may be difficult in those games, since verifying the required condition
in a neighborhood of the opponent’s strategy profile (using the distance dΣ defined in
Appendix B) may difficult because Σ infinite-dimensional.

An important step in the proof of Proposition 5.1 shows that (BRSσ) implies that
any player i can achieve her securable payoff ui(σ|v) across any sequence converging to
(σ,v); that is, for any σN∈ΣN with (σn,u(σn))→(σ,v), we have

lim sup
n→∞

sup
si,N∈SN

i

ui(si,n,σ−i,n) = ui(σ|v) .

It then follows from (BRSσ) that, similarly to Reny’s condition, if u(σ|v)>v, then (σ,v)
is not an approximable equilibrium pair since, for all strategy profiles close to σ with
payoff close to v, some player i can secure a payoff strictly higher than vi.

Even though the uses of better-reply security and BRS-approximability are used
for different purposes (showing the existence of Nash equilibria versus showing approx-
imability), it is perhaps insightful to compare them. We first note that Theorem 3.1
holds when (BRSσ) is replaced by a property similar to better-reply secure, namely “If
v is such that (σ,v) is not an approximable equilibrium pair for some discretization
then, for any discretization GN and σN∈ΣN with (σn,u(σn))→(σ,v), there is some i∈I
and si,N∈Si,N such that limsupn→∞ui(si,n,σ−i,n)>vi.” Like better-reply secure, this
formulation only requires showing the property for non-approximable equilibria. Still,
we perceive (BRSσ) as easier to use, especially using the simplification provided by
Proposition 3.2.

10G is quasi-concave if each Si is convex and ui(·,s−i) :Si→R is quasiconcave.
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6 Discussion and conclusion

6.1 Discretizations with the “most difference it can make to

anyone” metric

In this section, we compare our approach and results with those in Fudenberg and
Levine (1986), Harris, Stinchcombe, and Zame (2005), and Stinchcombe (2005).

Fudenberg and Levine (1986) studied discretizations of infinite normal-form
games. Instead of using the inherent metric in the action spaces (they also do not
assume they are compact), they defined the distance between any two σi,σ′i∈Σi as11

dFL(σi,σ′i) = sup
σ−i∈Σ−i

max
ı̂∈I

∣∣∣uı̂(σi,σ−i)−uı̂(σ′i,σ−i)∣∣∣ .
As they point out, the main advantage of using this distance is that the “product
topology from dFL is the coarsest product uniformity such that the ui are uniformly
continuous” (their Proposition 3.5). Their definition of discretization (or approxima-
tion) coincides with ours, but using dFL. Their main result (their Proposition 3.2) states
that if GN approximates G (under dFL), then the limit of any converging sequence of
εn-equilibria of each Gn for some εN→ε is an ε-equilibrium of G, and also that if σ is
an ε-equilibrium of G and σn→ σ, then there is a sequence εN→ε of such that each σn
is an εn-equilibrium of Gn.

Harris, Stinchcombe, and Zame (2005) show that a discretization of S exists
(under dFL) if and only if the game is nearly compact and continuous, that is, if it
can be understood as a game played on strategy spaces that are dense subsets of the
strategy spaces of larger compact games (under dFL) with jointly continuous payoffs.

Stinchcombe (2005) studies games that are not nearly compact and continuous.
He says (his Section 2.3) that Si,N converges to Si if for all finite S ′i⊂Si, for all sufficiently
large n, S ′i⊂Si,n. Note that if Si,N converges to Si (under Stinchcombe’s definition) then
either Si is discrete or Si,n is infinite (and has the same cardinality of Si) for n is large
enough. That is, if, for example, Si has the cardinality of the continuum (or higher),
a sequence of finite sets cannot converge to Si. He then says that σ is a finitistic

11As Fudenberg and Levine note, dFL is not a metric because dFL(σi,σ′i) may be 0 for strategically
equivalent pairs of strategies σi and σ′i (in fact, dFL is a pseudometric). Harris, Stinchcombe, and
Zame (2005) call this pseudometric the “most difference it can make to anyone.”
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equilibrium (see his Definition 2.2) if there is some GN converging to G, σN converging
to σ (under the dFL distance), and εN converging to 0, such that σn is an εn-equilibrium
of Gn for all n. Similar to our Lemma 2.2 and Corollary 5.3, he shows that all games
have a finitistic equilibrium and, if each Si is a compact Hausdorff space, then every
finitistic equilibria is a solution for some sharing rule.

Comparison: The continuity of payoff functions under dFL eases the theoretical analy-
sis (in a similar way that, by our Corollary 3.1, G is approximablewhen u is continuous).
Still, we believe our approach offers numerous advantages with respect to theirs. First,
our distance is defined independently for each Si. This permits easily assessing whether
S is compact, because many games have well-known action sets with corresponding
inherent distances, such as real intervals (e.g., in pricing games) or sets of bounded
functions (e.g., in auctions). In contrast, assessing the compactness of S under dFL is
difficult in general. In fact, proving that S is dFL-compact is, in general, difficult, and
hence the existence of discretization of S is not guaranteed, as well as the existence of
approximable equilibria (proving that a game is nearly compact and continuous is dif-
ficult in general). Second, dFL may be neither easy to compute nor intuitive. Instead,
inherent distances provide an intuitive idea of proximity for real variables (e.g., prices,
effort, signals, or types) or even function-valued variables (e.g., bidding in auctions),
which is independent of the other aspects of the game; if Si⊂Rk for some k∈N, close
(far away) actions under any inherent distance may be far away (close) in the dLP dis-
tance. For example, in the largest-number-wins game described above, dFL(s1, s

′
1)=1

for all s1, s
′
1∈(0,1) with s1 6=s′1. In the Bertrand game described above, the distance

between s1, s
′
1∈ [c1,1] with s1 6=s′1 is

dFL(s1, s
′
1)=max{s1, s

′
1}−c1 .

As a result, neither of these two games is compact under dFL.12 Third, the papers
above focus on pure strategies, while our analysis allows for studying mixed strategies.
Of course, mixed strategies are actions of the mixed strategy extension of the game.
Nevertheless, while working with the mixed strategy extension is elegant, discretizing
of the set of mixed strategies seems rather unnatural.

12Fudenberg and Levine (1986) provide some results using the inherent topology. They show, for
example, that if Sn approximates S (under dFL), then the limit of a sequence of sets of ε-best
responses to a sequence sN∈SN converging to some s coincides with the set of ε-best responses to
s∈S.
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6.2 Conclusions

The use of infinite games to model strategic interactions is prevalent in economics.
While working with infinite action spaces is technically convenient, doing so raises a
number of concerns. This paper’s main contribution is to obtain simple conditions that
permit addressing two important concerns: the approximability of optimal behavior
and the independence of the approximation used for numerical analysis.

Overall, our work contributes to the study of the approximability of infinite normal-
form games. Under our conditions, predictions are independent of how the game is
discretized, and hence robust to possible approximability concerns. In the follow-up
paper Dilmé (2023), we use similar techniques to study the approximability of infinite
extensive-form games.13
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A Omitted proofs

Proof of Corollary 3.1

Proof. Assume first that u is continuous at σ∈Σ. To prove that (APPσ) holds, fix a
discretization GN. By Proposition B.3, there is a sequence σN∈ΣN with σn→σ. By
continuity of u, we have that (σn,u(σn))→(σ,u(σ)), hence (APPσ) holds.

We now assume now u is continuous and we prove that G is approximable. Fix some
σ∈Σ. By the previous argument, (APPσ) holds. To prove that (BRSσ) holds, consider
two sequences σN, σ̂N∈ΣN with (σn,u(σn))→(σ,v) and (σ̂n,u(σ̂n))→(σ,v), for some
v∈RI , and assume there is some si,N∈SN

i with limsupn→∞ui(si,n,σ−i,n)>vi. Note
that, by continuity, v=u(σ). There is then a strictly increasing sequence of indexes
n̂N∈NN such that si,n̂N converges to some si∈Si and

(si,n̂n ,σ−i,n̂n ,u(si,n̂n ,σ−i,n̂n))→(si,σ−i,u(si,σ−i)) ,

where ui(si,σ−i)>ui(σ). Fix then some discretization GN, and a sequence in ŝi,N∈Si,N
with ŝi,n→si. By continuity, we have that

(ŝi,n, σ̂−i,n,u(ŝi,n, σ̂−i,n))→(si,σ−i,u(si,σ−i)) .

The result then holds because ui(si,σ−i)>ui(σ).

We now assume that u is continuous and prove that sets of Nash and approximable
equilibria coincide. Let first σ∈Σ be a Nash equilibrium, GN be a discretization, and
σN∈ΣN be such that σn→σ. Assume, for the sake of contradiction, that there are some
i∈I and a sequence si,N∈Si,N such that limsupn→∞ui(si,n,σ−i,n)>ui(σ). By (BRSσ),
there is a player ı̂∈I and sequence sı̂,N∈Sı̂,N such that limsupn→∞uı̂(sı̂,n,σ−ı̂)>ui(σ),
which contradicts that σ is a Nash equilibrium. Assume now that σ∈Σ is an approx-
imable equilibrium for a discretization GN, and let σN∈ΣN be such that σn→σ and
each σn is an εn-equilibrium of Gn for some εN→0. If there were some i∈I and si∈Si
such that ui(si,σ−i)>ui(σ), then (BRSσ) would imply that there is some si,N∈Si,N
such that limsupn→∞ui(si,n,σ−i,n)>ui(σ), which would contradict that each σn is an
εn-equilibrium of Gn and εn→0. Hence, σ is a Nash equilibrium.
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Proof of Proposition 3.1

Proof. Assume there is some i∈I such that (APPσ) holds for all σ satisfying that
σi∈Si and σ−i has finite support. Fix some σ∈Σ satisfying that σi∈Si and σ−i has
finite support, and also fix some discretization GN. By Proposition B.4, there is a
discretization ĜN and some σ̂N∈ Σ̂N with (σ̂n,u(σ̂n))→(σ,u(σ)). Fix some n̂∈N. By
our initial assumption, and since σ̂n̂,−i has finite support, we have that for each ŝi∈ Ŝi,n̂,
there is a sequence σŝin̂,N∈ΣN such that

(σŝin̂,n,u(σŝin̂,n))→ ((ŝi, σ̂n̂,−i),u(ŝi, σ̂n̂,−i))) as n→∞.

We then define

σn̂,n ≡
∑

ŝi∈Ŝi,n̂

σ̂i,n̂({ŝi})σŝin̂,n ∈ Σn .

It is then clear that

(σn̂,n,u(σn̂,n))→ (σ̂n̂,u(σ̂n̂)) as n→∞ .

Because (σ̂n̂,u(σ̂n̂))→(σ,u(σ)) as n̂→∞, a standard diagonal argument (similar to that
in the proof of Lemma 3.1) implies that there exists an sequence of indexes n̂N such
that n̂n→∞, σn̂n,n∈Σn for all n, and also (σn̂n,n,u(σn̂n,n))→(σ,u(σ)), so the proof is
complete.

Proof of Proposition 3.2

Proof. Fix σ∈Σ and assume that (BRS′σ,i) holds for all i∈I and σ∈Si×Σ−i. Take
some σN, σ̂N∈ΣN such that (σn,u(σn))→(σ,v) and (σ̂n,u(σ̂n))→(σ,v), for some v∈
RI . Assume also there is i∈I and si,N∈SN

i with limsupn→∞ui(si,n,σ−i,n)>vi. Note
that there is a sequence of indexes kN such that si,kN converges to some si∈Si and
limsupn→∞ui(si,kn ,σ−i,kn)>vi. Fix some discretization GN. Using that (BRS′(si,σ−i),i)
holds by assumption, there is some sequence ŝi,N∈Si,N with

lim sup
n→∞

ui(ŝi,n, σ̂−i,n)≥ lim sup
n→∞

ui(si,kn ,σ−i,kn) .

Then, limsupn→∞ui(ŝi,n, σ̂−i,n)>vi, so (BRSσ) holds.
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Proof of Corollary 3.2

Proof. The “if” part of the statement is trivial. To prove the “only if” part, assume (σ,v)
is an approximable equilibrium pair for some discretization GN, and let σN∈ΣN be such
that each σn is a εn-equilibrium Gn, for some εN→0. Fix another discretization ĜN.
Lemma 3.1 implies that there is some σ̂N∈ Σ̂N such that (σ̂n,v(σ̂n))→(σ,v). Assume,
for the sake of contradiction, that there is no sequence ε̂N→ 0 such that each σ̂n is
a ε̂n-equilibrium of Gn. This implies that there is a player i∈I and ŝi,N∈ Ŝi,N such
that limsupn→∞ui(ŝi,n, σ̂−i,n)>vi. By (BRSσ) we have that there is a player ı̂ and a
sequence sı̂,N∈Sı̂,N such that limsupn→∞uı̂(sı̂,n,σ−ı̂,n)>vı̂, but this contradicts that σn
is a εn-equilibrium Gn and εN→0.

Proof of Corollary 3.3

Proof. Assume that there is a unique an approximable equilibrium σ∈Σ. Fix a dis-
cretization GN. Let σN∈ΣN be a sequence of Nash equilibria. We show that we must
have σn→σ. To see this note that, otherwise, there would be some σ′ 6=σ and a strictly
increasing sequence kN⊂NN with σkn→σ′. Nonetheless, this would imply that σ′ is an
approximable equilibrium of GkN , contradicting our original assumption about σ.

Proof of Corollary 3.4

Proof. Fix S and I, and assume u, û :S→RI differ only on an approximable set. As-
sume also that both (Si,ui)i∈I and (Si, ûi)i∈I are approximable. Let GN be such that
Sn∩S ′=∅ for all n∈N. Since the set of approximable equilibria for GN is the same for
both (Si,ui)i∈I and (Si, ûi)i∈I , and since both are approximable, we have that the set
of approximable equilibria of these games coincide.

Proof of Corollary 3.5

Proof. The proof of Theorem 3.1 can be easily modified to prove this result.

Proof of Corollary 4.1

Proof. The proof of Theorem 3.1 can be easily modified to prove this result.
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Proof of Proposition 4.1

Proof. The proof is divided into 2 parts.

Part 1. Assume first that the first conditions (in the first two sentences) of the state-
ment hold. To ease notation, we assume that Si=[0,1] for all i∈I, that is, S2

i =∅ (the
arguments when S2

i 6=∅ are analogous because of the continuity assumptions on u1
i and

u2
i ). Take some σ∈Σ with finite support. Let S ′=×i∈IS ′i be the support of σ. We fix a

discretizationGN. Our aim is to find a sequence σN∈ΣN such that (σn,u(σn))→(σ,u(σ))
and then apply Proposition 3.1 to show that (APPσ) holds for all σ∈Σ.

The complication for the proof is that may be such that players do not have common
actions, that is, it may be that Si,n∩Sı̂,n=∅ for some i, ı̂∈I and n∈N. In this case, i
and ı̂ cannot “draw”, so the “allocation probability’ (the term in front of u2

i in equation
(4.1)) has to be reproduced by independent randomizations of each player over close-by
actions. We overcome this difficulty using the following sequence of strategy profiles:

1. Let ∆ be the minimum distance between two actions of the same player, that is,

∆≡min
i∈I

min
s′
i
∈S′

i

min
s′′
i
∈S′

i
\{s′

i
}
|s′i−s′′i | .

For each x∈ [0,1], let Bε(x) be an interval of length ε in [0,1] containing x. Note
that, for each ε∈(0,∆/2), we have that Bε(s′i)∩Bε(s′′i )=∅ for all s′i, s′′i ∈S ′i with
s′i 6=s′′i . We define σε∈Σ by defining, for each player i∈I and x∈ [0,1],

σεi ([0,x))≡
∑
s′
i
∈S′

i

σi({s′i})
µ(Bε(s′i) ∩ [0,x))

ε
,

where µ is the usual Lebesgue measure. Essentially, σεi is a distribution which is 0
everywhere except for the neighborhoods {Bε(s′i)|s′i∈S ′i}. In these neighborhoods,
it is uniform, and the probability of a neighborhood Bε(s′i) is σi({s′i}). Hence,
for a sequence εN∈RN

++ with εn→0, we have σεn→σ. It is easy to see that σε

reproduces the allocation probabilities under σ. For example, if there is an action
s′i∈S ′i such that s′i∈S ′ı̂ for all players ı̂ in some set ı̂⊂I\{i}, then the probability
under σε that si>sı̂ for all ı̂∈ ı̂ conditional on all players in {i}∪ ı̂ choosing an
action in Bε(s′i) is 1/(1+ |̂ı|). Furthermore, σε is a continuous distribution, so the
probability that si=sı̂ is 0.

2. We now fix some sequence εN∈RN
++ with εn→0. For all n̂∈N, we let σn̂,N∈ΣN be

such that σn̂,n→σεn̂ , which exists by Proposition B.3. Following a usual diagonal
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argument, and using that u1 and u2 are conintuous functions, it follows that there
is a strictly increasing sequence n̂N∈NN such that (σn̂n,n,u(σn̂n,n))→(σ,u(σ)).
Since, by construction, each σn̂n,n belongs to Σn, the proof of Part 1 is concluded.

Part 2. Assume now that all conditions in the statement of Proposition 4.1 hold.
As before, to ease notation, we assume that Si=[0,1] for all i∈I, that is, S2

i =∅.
We will use Proposition 3.2 to show that (BRSσ) holds for all σ. Take then some
i∈I and (si,σ−i)∈Si×Σ−i. Take also some σN, σ̂N∈ΣN with σn, σ̂n→σ and some Si,N.
We want to show that there is some ŝi,N∈Si,N such that limsupn→∞ui(ŝi,n, σ̂−i,n)≥
limsupn→∞ui(σn). The argument then is analogous to that in Example 4.6. Indeed, it
is easy to see that limsupn→∞ui(σn) is not larger than∫

S−i

(
u1
i (si, s̃−i)+Isi>maxı̂ 6=i s̃ı̂ u

2
i (si, s̃−i) + Isi=maxı̂ 6=i s̃ı̂ max{0,u2

i (si, s̃−i)}
)
σ−i(ds̃−i) .

Then, as argued in Exercise 4.6, if u2
i (si, s−i)≥ 0 for all s−i∈S−i satisfying maxı̂∈I s1

ı̂ =
s1
i , there is a slowly decreasing sequence ŝi,N∈Si,N so that limsupn→∞ui(ŝi,n, σ̂−i,n) tends
to the expression above, while if u2

i (si, s−i)≤ 0 for all s−i∈S−i satisfying maxı̂∈I s1
ı̂ =s1

i ,
there is a slowly increasing sequence ŝi,N∈Si,N so that limsupn→∞ui(ŝi,n, σ̂−i,n) tends
to the expression above. The proof is then concluded.

Proof of Theorem 5.1

Proof. It is clear that if G is BRS-fully-approximable then it is BRS-approximable. As-
sume then that G is BRS-approximable. Note that, for any approximation GN, there is
a discretization ĜN such that Ĝn⊂Gn for all n∈N. Then, it is clear that if (APPσ) holds
then (APPσ) holds as well. Now, take σN, σ̂N∈ΣN such that (σn,u(σn)),(σ̂n,u(σ̂n))→
(σ,v) for some v∈RI , and assume there are i∈I and si,N∈SN

i with limsupn→∞ui(si,n,σ−i,n)>
vi. Fix some approximation GN, and let ĜN be such that Ĝn⊂Gn for all n∈N. By
(BRSσ), we have that there are some ı̂∈I and ŝı̂,N∈ Ŝı̂,N with limsupn→∞uı̂(ŝı̂,n, σ̂−ı̂,n)>
vı̂. Since ŝı̂,N∈Sı̂,N, we have that (BRSσ) holds.

Proof of Corollary 5.1

Proof. Part 1: Assume σ is Nash equilibrium. Since (G)n is an approximation of G,
we have that (σ,u(σ)) is an fully-approximable equilibrium pair, and hence an fully-ap-
proximable equilibrium pair.
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Part 2: Assume (σ,u(σ)) is an approximable equilibrium and let GN be a discretization.
Let σN∈ΣN be such that, for each n, σn is an εn-equilibrium of Gn for some εn→0.
Assume, for the sake of contradiction, that σ is not a Nash equilibrium. Let i∈I
and si∈Si be such that ui(si,σ−i)>ui(σ). By (BRSσ), that there are some ı̂∈I and
ŝı̂,N∈ Ŝı̂,N such that limsupn→∞uı̂(ŝı̂,n,σ−ı̂,n)>uı̂(σ), but this contradicts that, for each
n, σn is an εn-equilibrium of Gn and εn→0.

Proof of Corollary 5.2

Proof. “If” part: Assume σ is an approximate equilibrium. Since (G)n is an ap-
proximation of G, we have that σ is an fully-approximable equilibrium, and hence an
approximable equilibrium.

“Only if” part: Assume (σ,v) is an approximable equilibrium. Fix some discretization
GN. Let σN∈ΣN satisfying that (σn,u(σn))→(σ,v) and there is some sequence εN→0
such that, for each n, σn is an εn-equilibrium of Gn. Assume, for the sake of contra-
diction, that there is no ε̂N satisfying that ε̂n→0 and, for all n, σn is an ε̂n-equilibrium
of G. This implies that there is some player i∈I and a sequence ŝi,N∈SN

i such that
limsupn→∞ui(ŝi,n, σ̂−i,n)>vi. By (BRSσ), that there are some ı̂∈I and ŝı̂,N∈ Ŝı̂,N such
that limsupn→∞uı̂(ŝı̂,n, σ̂−ı̂,n)>vı̂, contradicting that there is some sequence εN→0 such
that, for each n, σn is an εn-equilibrium of Gn.

Proof of Proposition 5.1

Proof. Part 1: We begin with a useful lemma.

Lemma A.1. If (BRSfull
σ ) holds for all σ∈Σ then, for all (σ,v)∈Σ×RI and all σN∈ΣN

with (σn,u(σn))→(σ,v), we have

lim sup
n→∞

sup
si,n∈Si

ui(si,n,σ−i,n)=ui(σ|v) for all i∈I. (A.1)

Proof. Assume, for the sake of contradiction, that the statement of the lemma is false.
Let i∈I and σN∈ΣN with (σn,u(σn))→(σ,v) be such that equation (A.1) holds with
“<” instead of “=”. There is then some σ̂N∈ΣN with (σ̂n,u(σ̂n))→(σ,v) such that

lim
n→∞

sup
ŝi,n∈Si

ui(ŝi,n, σ̂−i,n)> lim
n→∞

sup
si,n∈Si

ui(si,n,σ−i,n) .
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By (BRSfull
σ ) we have that there is a sequence si,N∈SN

i such that

lim sup
n→∞

ui(si,n,σ−i,n)≥ lim
n→∞

sup
ŝi,n∈Si

ui(ŝi,n, σ̂−i,n) .

But this is a clear a contradiction.

Let (σ,v) be such that u(σ,v)=v and let GN be a discretization. Since u(σ,v)>−∞,
there is some sequence σN∈ΣN such that (σn,u(σn))→(σ,v). By Lemma 3.1, there is a
sequence σ̂N∈ΣN with (σn,u(σn))→(σ,v). Given that u(σ,v)=v, it follows that there
is a sequence εN with εn→0 such that each σ̂n is an εn-equilibrium of Gn. Hence (σ,v)
is an approximable equilibrium pair, and σ is an approximable equilibrium.

Part 2: Let (σ,v) be an approximable equilibrium pair, GN a discretization, and σN∈ΣN

be such that each σn is an εn-equilibrium of Gn and (σn,u(σn))→(σ,v), for some εn→0.
We assume, for the sake of contradiction, that ui(σ|v)>vi for some i∈I (note that it
can not be that ui(σ|v)<vi). By Lemma A.1, there is some sequence si,N∈SN

i such that
limsupn→∞ui(si,n,σ−i,n)>vi. By (BRSσ), that there are some ı̂∈I and ŝı̂,N∈ Ŝı̂,N such
that limsupn→∞uı̂(ŝı̂,n,σ−ı̂,n)>uı̂(σ), contradicting that each σn is an εn-equilibrium of
Gn and (σn,u(σn))→(σ,v) and εn→0.
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B Results on convergence

In this section, we summarize the topological results that are useful for studying the
approximability of infinite games. They can be found in many standard texbooks, such
as Billingsley (2013). We also present our findings on the approximability of strategy
profiles.

B.1 Weak convergence and sequential compactness

We now briefly review standard results on compactness of metric spaces and weak
convergence. We write them for the action space of a player in a game, Si, endowed
with an inherent distance, di.

Let (Si,di) be a metric space. We say that (Si,di) is compact if every open cover
of Si has a finite subcover. We say that (Si,di) is sequentially compact if any sequence
in SN

i has a subsequence converging to a set. We say that (Si,di) totally bounded (or
precompact) if, for every ε>0, Si can be covered by finitely many subsets that each
have diameter smaller than ε.

Proposition B.1. (Si,di) is compact if and only if it is sequentially compact. Also,
(Si,di) is sequentially compact if and only if it is complete and totally bounded.

Let Cb(Si) denote the set of all functions from Si to R that are both continuous and
bounded. Let Σi the set of Borel probability measures on X. We say that σi,N∈ΣN

i

converges weakly to σ∈Σi, denoted σi,n→σi, if

∫
fdσi,n→

∫
fdσ as σ→∞ for all f ∈Cb(Si) . (B.1)

A standard result states that the σi,n→σi if and only if (B.1) holds for all bounded
and uniformly continuous functions.

We now define the weak (or Prokhorov’s) distance between σi,σ′i∈Σi,

dΣi(σi,σ′i)≡ inf
{
α>0

∣∣∣σi(A)≤σ′i(Aα)+α and σ′i(A)≤σi(Aα)+α ∀A∈B(Si)
}
, .

where, for each α>0 and S∈B(Si), we have

Aα≡{si∈Si |d(si,A)<α} if A 6=∅, ∅α :=∅ for all α>0 .
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Proposition B.2. Assume (Si,di) is compact. Then, (Σi,dΣi) is compact metric space.
Furthermore, for all σi,N∈ΣN

i and σi∈Σi, we have that dΣi(σi,n,σi)→0 if and only if
σi,n→σi.14

For the analysis of games, it is sometimes useful to rely on the compactness of
Σ≡×i∈IΣi, where I is finite and each Σi is the set of Borel probability distributions
on some compact metric space (Si,di). We define dΣ as

dΣ(σ,σ′)≡max
i∈I

dΣi(σi,σ′i) for all σ,σ′∈Σ .

We now provide a corollary of Proposition B.2.

Corollary B.1. (Σ,dΣ) is a compact metric space.

Proof. It is clear that dΣ is a metric on Σ. To prove that Σ is compact, consider a
sequence σN∈ΣN. We argue that it has a convergent subsequence. By the compactness
of each Σi, we have that there is a strictly increasing sequence of indexes kN such
that each σi,kN converges weakly to some σi∈Σi. Trivially, σ≡(σi)i∈I is an element
of Σ. Also, since dΣi(σi,n,σi)→0 for all i∈I, we have dΣ(σn,σ)→0, hence the result
holds.

B.2 Approximability of strategy profiles

In this section, we provide two technical results. The first establishes that for each
discretization GN and strategy profile σ∈Σ, there is a sequence σN∈ΣN with σn→σ.
The second result establishes that for all σ∈Σ, there is a discretization GN and a
sequence σN∈ΣN with (σn,u(σn))→(σ,u(σ)).

Proposition B.3. Fix a discretization GN. For each σ∈Σ, there is a sequence σN∈ΣN

such that σn→σ.

Proof. We divide this proof into three parts.

Part 1: Definition of σiN. Let GN be a discretization. Fix some i∈I. For each
n∈N, it is convenient to denote player i’s actions as Si,n={si,n,ji |ji∈Ji,n}, where Ji,n=

14While the implication “dΣi(σi,n,σi)→0 implies σi,n→σi” holds regardless the compactness of Si, the
implication “σi,n→σi implies dΣi(σi,n,σi)→0” requires compactness of Si. (Note that this second
implication is often stated for separable spaces, but all compact metric spaces are separable.)
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{1, ..., |Ji,n|} is a finite set of indexes. By Proposition B.1 there is a sequence εN∈RN
++

strictly decreasing towards 0 such that, for each n, the set of balls {Bi,εn(si,n,ji)|j∈Ji,n}
cover Si (where Bi,εn(si,n,ji)≡{si∈Si|di(si, si,n,ji)<εn}). We use this cover to define
the following partition of Si for each n:

1. B′i,n,1 =Bεn(si,n,1).

2. B′i,n,2 =Bεn(si,n,2)\B′i,n,1.

3. B′i,n,3 =Bεn(si,n,3)\ ∪2
j=1 B

′
i,n,2.

4. ....

Note that {B′n,ji |ji∈Jn,i} is a partition of Si. We let σi,n be the strategy for player i
defined by assigning, to each S ′i⊂Si, the probability

σii,n(S ′i)≡
∑

ji∈Ji,n
σi(B′i,n,ji)Isi,n,ji

∈S′
i
.

We let σin ≡ (σii,n,σ−i).

Part 2: Proof that σin→σ. To prove that σin→σ, we fix an absolutely continuous
and bounded function f :S→R, hence satisfying that for each δ>0 there is some n
such that, for all s∈S, if f(Bεn(s))⊂Bδ(f(s)). Note that∫

B′
i,n,ji

×S−i

f(si,n,ji , s−i)σ(ds) =
∫
B′

i,n,ji
×S−i

f(si,n,ji , s−i)σin(ds)

=
∫
B′

i,n,ji
×S−i

f(s)σin(ds) .

Since |f(si, s−i)−f(si,n,ji , s−i)|<δεn for all si∈B′i,n,ji , we have that∣∣∣∣∣
∫
B′

i,n,ji
×S−i

f(s)σ(ds)−
∫
B′

i,n,ji
×S−i

f(si,n,ji , s−i)σin(ds)
∣∣∣∣∣< σ(B′i,n,ji×S−i)δεn ,

where we used that σ(B′i,n,ji×S−i)=σin(B′i,n,ji×S−i). Hence, we have that∣∣∣∣∣
∫
S
f(s)σ(ds)−

∫
S
f(s)σin(ds)

∣∣∣∣∣
=

∑
ji∈Ji,n

∣∣∣∣∣
∫
B′

i,n,ji
×S−i

f(s)σ(ds)−
∫
B′

i,n,ji
×S−i

f(si,n,ji , s−i)σin(ds)
∣∣∣∣∣

<
∑

ji∈Ji,n
σ(B′i,n,ji×S−i)δεn

= δ .
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This proves that limn→∞
∫
f dσin=

∫
f dσ for all uniformly continuous functions; hence,

σin→σ.

Part 3: Conclusion of the proof. Part 2 proves that when only Si is discretized, we
have that there is a sequence σin→σ. We can now take some player ı̂ 6= i and define σi,̂ın
as before replacing σ by σin. We let σi,̂ın ≡ (σii,n,σ

i,̂ı
ı̂,n,σ−i,̂ı), where σ−i,̂ı is the components

of σ different from i and ı̂. A similar argument of Part 1.2 proves that

lim
n→∞

∫
f dσ ı̂in = lim

n→∞

∫
f dσin=

∫
f dσ

for all f absolutely continuous. Hence, σi,̂ın →σ. Proceeding iteratively over the players
in I we obtain that σIn→σ.

Proposition B.4. For each σ∈Σ, there is a discretization GN and σN∈ΣN such that
(σn,u(σn))→(σ,u(σ)).

Proof. Fix σ∈Σ. We will construct the discretization by discretizing each Si in order.
To do so, for this proof, we index the players so that I≡{1, ..., |I|}. We divide the
proof into four parts.

Part 1: Partition of u(S). Recall that u(S) is a bounded set of RI . This implies
that, for each n∈N, there is a cover of u(S) composed of sets of diameter lower than
1/n. We denote one such cover by {B′′n,k|k∈Kn}, where Kn is some finite set, and we
let vn,k be an element of B′′n,k for each k. Note that if v∈B′′n,k then d(v,vn,k)≤εn (where
d(v,v′)≡maxi∈I |vi−v′i| for all v,v′∈RI).

Part 2: Partition of S1. Fix some n. Since S1 is metric and compact, there is a
partition of S1 satisfying that each element of the partition has a diameter at most
equal to 1/n. We let {B′i,n,j1|j1 =1, ...,J1,n} denote such partition.

Part 3: Definition and convergence of σ1
n. We define, for each j1∈J1,n and k∈Kn,

B̂1,n,j1,k ≡B′1,n,j1∩{s1∈S1 |u(s1,σ−1)∈B′′n,k} ⊂ S1 .

It is clear that {B̂i,n,j1,k |j1∈J1 and k∈K} is a cover of S1. For each j1 and k, we let
s1,j1,k,n be an element of B̂i,n,ji,k. Now, now define

σ1
1,n(S ′1)≡

∑
j1∈J1,n

∑
k∈K

σ1(B̂1,n,j1,k)Is1,n,j1,k∈S
′
1
.
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We define σ1
n = (σ1

1,n,σ−i). It is then easy to see, proceeding as in the proof of Theorem
B.4, that (σ{1}n ,u(σ1

n))→ (σ,u(σ)).

Part 4: Recursive definition and convergence of σin. The proof proceeds by
iterating over the players. Indeed, proceeding as in Parts 2 and 3, now for player 2,
it follows that for each n there is a discretization S2,N and corresponding sequence
σ2,N∈S2,N such that

((σ2,n′ ,σ
1
−2,n),u(σ2,n′ ,σ

1
−2,n))→(σ1

n,u(σ1
n))

as n′→∞. A standard diagonal argument shows that there is some discretization S2,N

and sequence σ2
2,N∈Σ2,N such that, defining σ2

n≡(σ2
2,n,σ

1
−2,n) for all n, we have that

(σ2
n,u(σ2

n))→ (σ,u(σ)). The same procedure can be applied to all players until |I|, so
the corresponding partition is SN and the desired sequence is σ|I|N ∈ΣN.
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