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Abstract
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1 Introduction

Decomposition methods have been widely used to understand the sources of differences

between the outcomes of two groups. Following the seminal works by Oaxaca (1973)

and Blinder (1973), mean differences between two groups have been attributed to either

differences in mean covariates (endowments effect/composition component) or differences

in the slope parameters (coefficients effect/structural component). Subsequently, several

methods have been proposed to account for differences between other features of the distribution,

such as the unconditional quantiles. These decompositions typically rely on the ignorability

assumption (selection on observables).

However, individuals present in the decomposition often constitute a self-selected sample.

This requires accounting for it to estimate the structural parameters using sample selection

methods. Moreover, the decomposition of a feature of the outcomes between two groups

could depend on differences the unobservables that depend on the amount of self-selection

and participation for each group. This is the case if one considers the distribution of actual

outcomes rather than the distribution of potential outcomes that would be observed if

everyone participated.

Additionally, sample selection raises the question of which population is the target of the

analysis: participants or the entire population. In the first case, the comparison is between

those individuals with non-zero outcomes. E.g., one could be interested in understanding the

differences in labor earnings of two groups of employed workers. However, it can be argued

that including non-participants provides a more comprehensive comparison. This would

amount to include unemployed workers and those out of the labor force in the analysis.

This paper makes the following contributions. First, I propose several decompositions

according to the target population and the distributional feature of interest. Specifically,

I consider decompositions for participants and the entire population for actual outcomes.

Second, I propose two ancillary decompositions of the propensity score and the average

value of the unobservable variable that affects the outcome, which is interpreted as ability.

Third, I estimate the functionals that are used in the decomposition using the Quantile

2



Regression with Selection (QRS) estimator proposed by Arellano and Bonhomme (2017). I

show the asymptotic properties of the estimated components of the decomposition, as well

as how to carry uniformly valid inference. Fourth, I obtain new estimates of the evolution

of the gender wage gap, finding that the unobserved ability of female workers has increased

more than that of males. This, together with the fall in the gender participation gap have

been two major factors in reducing the gender wage gap.

In the absence of self-selection, individual actual and potential outcomes coincide. In

contrast, actual outcomes equal zero for non-participants when there is self-selection. Hence,

there are two potentially relevant target populations to consider: just participants, who have

a non-zero outcome, and the entire population, which also includes non-participants. The

decomposition for both populations are related and, depending on the context, either could

be more appropriate to analyze. I consider both of them, highlighting their differences and

similarities in a general framework and under some simplifying assumptions. Furthermore,

because differences in the unobservables can account for differences in the actual outcomes,

the type of decompositions presented here differ from those that focus on the potential

outcomes when every individual is assumed to participate.

Under ignorability, differences in outcomes can be split into differences in covariates

and differences in the returns to the covariates. However, when there is sample selection

on unobservables, there are two additional components that can explain the differences

between the two groups. The first one is the selection component, which reflects how, caeteris

paribus, the unobserved characteristics of a group may be more or less positively selected

relative to those of the other group. The other one is the participation component, which

reflects differences in outcomes that can be attributed to the differences in the participation

rates between the two groups. This extends the decomposition into three components in a

triangular model with a binary treatment considered in Pereda-Fernández (2022).

Most decompositions in a cross-sectional data setting have imposed no selection on

unobservables.1 This problem has been highlighted, e.g., by Kunze (2008) or Huber (2015).
1There exist works that explicitly account for time-invariant unobservables in a panel data setting. See

Fortin et al. (2011) and references therein for further details.
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Some exceptions include Neuman and Oaxaca (2003, 2004) and Mora (2008), who used the

Heckit correction to obtain their estimates corrected for selection, or Cukrowska-Torzewska

and Lovasz (2016), who used a multinomial correction model. More recently, Huber et al.

(2020) used mediation analysis tools to decompose the mean gap with sample selection

under the assumption that the effect of the unobservables is homogeneous (e.g., if the model

is additively separable).

A common feature of these works is that they are only concerned with decompositions

of mean differences. In contrast, the focus gradually expanded to analyze other features,

including unconditional distributions. The latter are particularly relevant, as many statistics

of interest can be expressed as a function of it. Regarding estimation, there exists a wide

menu of available methods, including those based on quantile regression (Machado and Mata,

2005; Melly, 2006; Chernozhukov et al., 2013), on distribution regression Chernozhukov et al.

(2013), and on reweighting (DiNardo et al., 1996; Firpo et al., 2018). A thorough review of

the advantages and disadvantages of each method is found in Fortin et al. (2011).

A decomposition into four components has previously been considered by Chernozhukov

et al. (2019), who also used it in a sample selection framework with a distributional regression

estimator. The main difference with respect to the one considered in this paper regards the

structural functions employed to model the outcomes. In their paper, they use bivariate

Gaussian distributions to model the sample selection locally, whereas the approach in this

paper is to model the unobservables with a copula globally. This allows to interpret the

unobservables as the conditional ranks in the distribution of potential outcomes. Moreover,

it is straightforward to relate differences in the value of these unobservables between the two

groups to differences in the copula, the propensity score and the distribution of covariates,

which may be of independent interest for the researcher.

Other related works are Maasoumi and Wang (2017) and Maasoumi and Wang (2019).

In the first one they estimate the differences between functions of the distributions of the

two groups for the selected sample and they bound the differences for the entire population.

In the second one they analyze the evolution of the gender wage gap in the US using the
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estimator proposed by Arellano and Bonhomme (2017), including a decomposition of the

gap between the two distributions of potential wages for the entire population. There are

some differences relative to these two papers. First, I consider differences between the actual

distributions and relate them to the different primitives of the model. Second, I consider

four different sources of variability, which can help explain which are the determinants of

the gap. The latter can be a problem not just if sample selection is ignored, but also if one

analyzes the distributions of potential outcomes ignoring participation.

For estimation purposes, I consider a nonseparable model with a univariate unobservable

variable in the outcome equation, which naturally points at quantile regression methods. The

QRS estimator can estimate the structural function that relates potential wages to covariates

and unobservables and the copula that captures the amount of self-selection. This, together

with an estimator of the propensity score and the sample distribution of covariates are all

the ingredients needed to estimate the different components of the decomposition. Moreover,

I discuss under which simplifying assumptions other alternative estimators can be used.

The decomposition methods have been applied to a wide variety of topics, including test

scores gaps between genders (Sohn, 2008), schools (Krieg and Storer, 2006) or countries

(McEwan and Marshall, 2004), differences in students’ enrollment (Borooah and Iyer, 2005),

differences in health insurance coverage between different demographic groups (Bustamante

et al., 2009), or gender differences in smoking behavior (Bauer et al., 2007). However,

most decomposition studies revolved around wage gaps between genders Kunze (2008), race

(Barsky et al., 2002), unionization status (Card, 1996), or public-private employees (Depalo

and Pereda-Fernández, 2020).

I apply the methods presented in this paper to decompose the gender wage gap. I

revisit the estimates by Maasoumi and Wang (2019), which are based on the Current

Population Survey for the period 1976-2013. I perform several decompositions, considering

different population targets (actual earnings for participants and the full population, as well

as potential outcomes for the full population) and several statistics (mean, unconditional

distributions and generalized entropy indices). I find that considering just employed workers
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understates the wage gap relative to consider the entire population. However, the gender gap

has substantially diminished over the period considered in both cases. The main contributing

factors for this reduction are the increase in female participation, and the increase in the

average value of both observed and unobserved characteristics of employed females.

The rest of the paper is organized as follows: Section 2 presents the model and the main

functions of interest. The decompositions of interest are presented in Section 3, including

particular cases of interest that are nested in the more general model. Section 4 describes the

estimation of the decompositions for the general model, describing its asymptotic properties

and showing how to conduct inference. In Section 5 I discuss several particular cases,

suggesting other feasible methods under such simplifying assumptions. Section 6 revisits

the estimates of the evolution of the gender wage gap, and Section 7 concludes.

2 The Model

Consider the following selection model:

Y = gD (X,U)S (1)

S = 1 (πD (Z) − V > 0) (2)

where Y denotes the continuous outcome of interest, X a set of predetermined covariates,

Z ≡ (Z1, X
′) is composed of the instrument Z1 and the predetermined covariates, S is a

binary indicator for participation, D is an observed variable that denotes the group to which

the individuals of the population can belong, and U and V are two unobservable random

variables. Equations 1-2 conform a sample selection model that allows for a broad class of

differences between individuals of different groups. For expositional simplicity, we focus on

the leading binary case, i.e., D = 0, 1.2

This system can be used to model several economic phenomena, such as labor wages,
2This framework is reminiscent of those considered for the study of the marginal treatment effect (MTE;

Björklund and Moffitt, 1987). Such framework can be rationalized by a generalized Roy model with imperfect
information (Pereda-Fernández, 2022).
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denoted by Y . These could be different for people belonging to different demographic

groups, like gender (D). Equation 2 reflects the fact that only employed workers (S = 1)

have a wage. These are modeled by Equation 1, and they depend on their observed and

unobserved characteristics, respectively given by X and U . The latter, together with V are

the unobservables of the model, which can be interpreted as the ability of the worker and

the unobserved propensity to be unemployed, respectively.3

Following Heckman and Vytlacil (2005), the distribution of V can be normalized to be

uniformly distributed on the unit interval. This is convenient, as πd can now be interpreted

as the propensity score.4 Moreover, if the same normalization is applied to the distribution

of U , Equation 1 uses the Skorohod representation, allowing us to interpret gd (x, u) as the

structural quantile function (SQF). These normalizations offer two advantages: the joint

distribution of the unobservables conditional on D = d and X = x, denoted by Cd,x (u, v) ≡

P (U ≤ u, V ≤ v|D = d,X = x), can be interpreted as a copula and, by taking the inverse of

the SQF with respect to U , one obtains the conditional distribution of potential outcomes

if all were participants.5

The copula also conveys some important information for the policy maker regarding some

counterfactual scenarios. It captures the amount of self-selection on unobservables, linking

the participation decision to the outcome. Negative amounts of correlation are associated

with positive selection of individuals into participation. Consequently, the more negative

the amount of correlation, the lower the potential outcomes of non-participants relative to

participants.
3One could also consider work intensity as an additional dependent variable in the model. E.g., one could

consider weekly hours or worked weeks, as in Fernández-Val et al. (2022). Such extensions could also be
considered by appropriately modeling the unobservable variables, possibly adding some extra ones. Such
comprehensive models could be informative about features that are not captured by a simpler model, at the
cost of making them computationally more complicated. Their study is left for future work.

4Note that the propensity score is sensitive to the instrument used. Therefore, using different instruments
would lead to different results. See, e.g., Mogstad et al. (2021) for further details on the interpretation of
treatment effects in with multiple instruments, a framework related to the one considered in this paper.

5This constitutes a conceptual difference relative to Chernozhukov et al. (2019). They model the relation
between the outcome variable and the participation decision using a bivariate model that is observationally
equivalent. However, it is not possible to interpret the distribution of the unobservables as a copula with
their representation. Hence, the interpretation of their unobservables is less clear, as they are locally defined.
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To show that these normalizations are without loss of generality, consider an alternative

data generating process determined by functions g̃D and π̃D, as well as the distribution of

the unobservables F̃Ũ ,Ṽ |D,X . Their observational equivalence is established by Lemma 1:

Lemma 1. Let Y = g̃D

(
X, Ũ

)
S and S = 1

(
π̃D (Z) − Ṽ > 0

)
, where the distribution of

the unobservables is given by F̃Ũ ,Ṽ |D,X

(
Ũ , Ṽ |D,X

)
, with marginal distributions F̃Ũ |D,X and

F̃Ṽ |D,X , that may depend non-trivially on X. Then, there exist gD, πD such that the model

given by Equations 1-2, where U |D,X ∼ U [0, 1] and V |D,X ∼ U [0, 1], generates the same

distribution of (Y, S,D,Z).

The identification conditions are listed in Arellano and Bonhomme (2017).6 Apart from

some standard assumptions (exclusion restriction, continuous outcomes, propensity score

strictly within the unit interval and a well-defined continuous copula for the unobservables),

they require either identification at infinity, or a continuous instrument and that the copula

be real analytic with respect to its second argument.7 One could relax the latter by

imposing a parametric assumption, a possibility considered in Appendix C. Additionally,

these assumptions can be relaxed if the copula is homogeneous with respect to the covariates

and one uses variation in the covariates as a source of exogenous variation.

3 Decompositions

Decompositions typically vary according to the distributional feature that is decomposed,

such as the difference of the means or of the unconditional quantiles. Sample selection

introduces two additional margins of choice regarding which decomposition to make. First,

because only a fraction of the population participates, one could consider a decomposition
6Note that the identification is based on instrumental variables, rather than on a control function

approach. A similar model was considered using control functions was considered by Fernández-Val et al.
(2022). The two models are non-nested, and in particular Fernández-Val et al. (2022) works under the
assumption that the unobservables of Z, including X. This contrasts with the assumptions in Arellano and
Bonhomme (2017), which allows for non-trivial dependence between the unobservables and X. A comparison
of the conditions required for identification with instrumental variables and control functions is provided,
e.g., by Heckman and Vytlacil (2007).

7The set of assumptions required for identification by Chernozhukov et al. (2019) is different, though they
are related. They provide a comparison of both sets of assumptions in their paper.
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for participants or for the entire population, assigning a value of zero for non-participants.

Second, the distribution of the unobservables for participants and non-participants differ,

making the distributions of actual and potential outcomes differ, too. The focus here is on

actual outcomes of both participants and the full population.

3.1 Primitives of the Decompositions

The decomposition of the outcomes for either participants or the entire population requires

to account for the following primitive functions: the SQF, gd (x, u), the propensity score,

πd (z), the marginal distribution of the covariates, F d
Z (z), and the conditional copula of

the unobservables, Cd,x (u, v), for d = 0, 1. This contrasts with decompositions of potential

outcomes, which account for selection only to estimate the structural parameters, and then

base the decomposition on the SQF and the propensity score.

The leading feature that is decomposed is the mean outcome. This requires assigning a

value to the counterfactual mean outcome for the population of interest when a combination

of the distribution of the covariates or the estimated structural functions are changed to

match those of the other group. Following the previous discussion, the mean outcome for

participants with the distribution of the observables of group h, the SQF of group k, the

copula of group l and the propensity score of group m is given by

E
[
Y hklm|S = 1

]
≡

�
Z

� 1

0
gk (x, u) dGl,x (u, πm (z)) dF h

Z (z) (3)

where Gd,x (u, v) ≡ P (U ≤ u|D = d,X = x, V ≤ v) = Cd,x(u,v)
v

denotes the copula conditional

on participation. This is the channel through which the unobservables affect the mean

outcome. Similarly, the counterfactual value for the entire population is given by

E
[
Y hklm

]
≡

�
Z

� 1

0
gk (x, u) dCl,x (u, πm (z)) dF h

Z (z) (4)

More generally, one can obtain equivalent expressions for the distributions for each group,
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that constitute the building blocks for other functionals of interest, notably unconditional

quantiles. The unconditional cumulative distribution functions for participants and the

entire population are respectively given by

F hklm
Y |S=1 (y) ≡

�
Z

� 1

0
1 (gk (x, u) ≤ y) dGl,x (u, πm (z)) dF h

Z (z) (5)

F hklm
Y (y) ≡

�
Z

[� 1

0
1 (gk (x, u) ≤ y) dCl,x (u, πm (z)) + (1 − πm (z))

]
dF h

Z (z) (6)

Consequently, the unconditional quantile functions are given by8

Qhklm
Y |S=1 (τ) ≡ inf

{
y : τ ≤ F hklm

Y |S=1 (y)
}

(7)

Qhklm
Y (τ) ≡ inf

{
y : τ ≤ F hklm

Y (y)
}

(8)

3.2 Main Decompositions

The decomposition in a sample selection model is more intricate than in the regular one.

To see this, note that the covariates can have an impact on the final outcome through three

different channels. First, they affect the distribution of potential outcomes through the SQF,

the only channel present when there is no sample selection. Second, they affect the propensity

to participate, making some individuals more likely to participate. Third, they affect the

amount of self-selection through the distribution of the unobservables, which is indexed by

x in general. In other words, some characteristics may display some correlation with the

unobservables, either reinforcing or mitigating the differences between the two groups.

Consequently, to better assess how the covariates affect the propensity score and the

selection on unobservables channels, it is useful to report two ancillary decompositions,

presented in Section 3.3. Moreover, the decomposition is path dependent. I present one of

the possible orders for the decomposition of mean differences for participants and describe
8Note that if Y is continuous and there is no bunching at any particular value, Equation 7 equals the

inverse of the cumulative distribution function, but the same is not true for Equation 8, which has a mass
point at Y = 0.
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each component in turn.9

Note that, by definition, E [Y |D = 1, S = 1] = E [Y 1111|S = 1] and E [Y |D = 0, S = 1] =

E [Y 0000|S = 1]. The difference between these two can be decomposed as:

E [Y |D = 1, S = 1] − E [Y |D = 0, S = 1] = E
[
Y 1111|S = 1

]
− E

[
Y 0111|S = 1

]
︸ ︷︷ ︸

endowments component

+ E
[
Y 0111|S = 1

]
− E

[
Y 0011|S = 1

]
︸ ︷︷ ︸

coefficients component

+ E
[
Y 0011|S = 1

]
− E

[
Y 0001|S = 1

]
︸ ︷︷ ︸

selection component

+ E
[
Y 0001|S = 1

]
− E

[
Y 0000|S = 1

]
︸ ︷︷ ︸

participation component

(9)

Equation 9 decomposes the mean difference between the two groups into four components.

The first two are those present in decompositions under the ignorability assumption. The

endowments component captures how differences in the covariates between the two groups

lead to differences in mean outcomes. The other term present in this type of decompositions

is the coefficients component. It reflects how differences in the SQF between the two groups

are related to differences in mean outcomes, which may be partly driven by discrimination.

For example, in the Oaxaca-Blinder decomposition, this term equals the difference in the

OLS coefficients between the two groups, scaled by the average covariates of one of them.

The remaining two terms arise in a sample selection framework. The participation

component has the easiest interpretation, as it relates differences in the probability of

participating for both groups to differences in mean outcomes. To get some intuition, assume

that more able individuals (i.e, those with high U) are also more prone to participate (i.e.,

low V ). Then, as the propensity score increases from zero to one, the average ability of

participants gets smaller towards its mean value, reducing the mean wage for participants.

The selection component links differences in the amount of self-selection into participation
9Specifically, there are a total of 24 decompositions, and the size of each component may vary in each of

them. See Fortin et al. (2011) for further details on the limits of path dependent decompositions.
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to differences in mean outcomes. The interpretation is slightly different from that of the

participation component, as it affects the distribution of the unobservables without affecting

the participation. Therefore, caeteris paribus, the higher the level of selection, the higher

the average ability of participants and, consequently, the higher their mean outcome.

Note that because of the linearity of the expectation operator, each component can be

written in terms of the difference of the primitive functions. For instance, the coefficients

component can be written as

E
[
Y 0111|S = 1

]
− E

[
Y 0011|S = 1

]
=

�
Z

� 1

0
(g1 (x, u) − g0 (x, u)) dG1,x (u, π1 (z)) dF 0

Z (z)

This convenient property does not generally hold, and in particular for the decomposition

of the unconditional quantiles. Moreover, in some particular cases, the expression for some

components can be simplified, as shown in Section 5. The decomposition for the entire

population is analogous to the one for participants:

E [Y |D = 1] − E [Y |D = 0] = E
[
Y 1111

]
− E

[
Y 0111

]
︸ ︷︷ ︸

endowments component

+E
[
Y 0111

]
− E

[
Y 0011

]
︸ ︷︷ ︸

coefficients component

+ E
[
Y 0011

]
− E

[
Y 0001

]
︸ ︷︷ ︸

selection component

+E
[
Y 0001

]
− E

[
Y 0000

]
︸ ︷︷ ︸

participation component

(10)

The interpretation of the different components is similar, with one notable difference:

because the outcome for non-participants equals zero by definition, the mean outcome for the

entire population is the mean outcome for participants multiplied by the propensity score.

Therefore, the endowments and participation components operate through two channels:

first, by changing the proportion of participants; second, by affecting the average outcome

of participants. In contrast, the coefficients and selection components operate exclusively

through the second channel.

The last two considered decompositions are those of the unconditional quantiles of the

outcome for both target populations.10 They consist of the same four components as the
10Additional decompositions can be constructed analogously. E.g., if one is interested in differences
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mean decompositions, although there are some important differences. From a mathematical

standpoint, the unconditional quantile function is not a linear operator. Therefore, their

expressions are more convoluted even under some simplifying assumptions. From a policy

perspective, they are more informative, as they allow to assess which segments of the

population present the largest differences. This makes them particularly relevant in cases in

which the differences are of opposite signs for different quantiles of the distribution.

Formally, the decomposition of the unconditional quantile distribution for participants

at quantile τ equals

QY |D=1,S=1 (τ) −QY |D=0,S=1 (τ) = Q1111
Y |S=1 (τ) −Q0111

Y |S=1 (τ)︸ ︷︷ ︸
endowments component

+Q0111
Y |S=1 (τ) −Q0011

Y |S=1 (τ)︸ ︷︷ ︸
coefficients component

+Q0011
Y |S=1 (τ) −Q0001

Y |S=1 (τ)︸ ︷︷ ︸
selection component

+Q0001
Y |S=1 (τ) −Q0000

Y |S=1 (τ)︸ ︷︷ ︸
participation component

(11)

while the decomposition of the unconditional quantile distribution for the entire population

at quantile τ is given by

QY |D=1 (τ) −QY |D=0 (τ) = Q1111
Y (τ) −Q0111

Y (τ)︸ ︷︷ ︸
endowments component

+Q0111
Y (τ) −Q0011

Y (τ)︸ ︷︷ ︸
coefficients component

+Q0011
Y (τ) −Q0001

Y (τ)︸ ︷︷ ︸
selection component

+Q0001
Y (τ) −Q0000

Y (τ)︸ ︷︷ ︸
participation component

(12)

3.3 Ancillary Decompositions

The previous discussion highlighted the multiple channels through which the covariates

can affect the final outcome in a sample selection framework. To better assess their role,

researchers could perform two additional decompositions of the propensity score for the entire

population and the average value of the unobservables for participants. These decompositions

in inequality, one could construct equivalent counterfactual values for the Gini index and apply the
decomposition. As long as the statistic of interest can be expressed in terms of the same primitives of
the model, and under some regularity conditions, they will be well-behaved. See, e.g., Chernozhukov et al.
(2013) for further details.
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could be presented alongside the main decomposition, complementing the analysis.11

The first one is the participation decomposition. This is a regular means decomposition

without selection using the propensity score as the dependent variable. As such, differences in

the propensity score would be split into the usual endowments and coefficients components.

The second one is the self-selection decomposition. This is more reminiscent to the

decompositions of the mean outcomes. To see this, note that the average value of U for

participants with the distribution of the observables of group h, the copula of group l and

the propensity score of group m is given by

E
[
Uhlm|S = 1

]
≡

�
Z

� 1

0
udGl,x (u, πm (z)) dF h

Z (z) (13)

Then, the difference of this statistic between the two groups can be decomposed as:

E [U |D = 1, S = 1] − E [U |D = 0, S = 1] = E
[
U111|S = 1

]
− E

[
U011|S = 1

]
︸ ︷︷ ︸

endowments component

+ E
[
U011|S = 1

]
− E

[
U001|S = 1

]
︸ ︷︷ ︸

selection component

+ E
[
U001|S = 1

]
− E

[
U000|S = 1

]
︸ ︷︷ ︸

participation component

(14)

Similarly to the main decompositions, the endowments component captures differences

in the copula and the propensity score due to differences in the covariates. On the other

hand, the selection and participation components capture differences in the unobserved

ability between the two groups due to differences in the copula and the propensity score,

respectively.
11It is worth stressing that, because the variable that is decomposed is not the main outcome, the

components of the ancillary decompositions are not comparable to those of the main decompositions,
although they are related to each other.
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4 Estimation

For expositional convenience, I present the estimators of the decompositions for participants.

The estimators of the decomposition for the entire population are similarly constructed using

the analogy principle. Their exact expressions and their asymptotic properties are presented

in Appendix D. Throughout the entire section, the following assumptions are maintained:

Assumption 1. (Yi, Si, Di, Z
′
i)

′ are iid for i = 1, ..., n, defined on the probability space

(Ω,F ,P) and take values in a compact set.

Assumption 2. The sample size for the d-th group is non-decreasing in n, such that n/nd →

pd ∈ [0,∞) ∀d as n → ∞.

Assumption 3. Let πd (Z) ≡ πd (Z; γd), with dim (γd) < ∞. πd (Z; γd) is continuously

differentiable with respect to γd. Moreover, there exists an asymptotically linear estimator

γ̂ ≡ (γ̂′
0, γ̂

′
1)

′ that admits the following representation: γ̂ − γ = −B−1 1
nd

∑n
i=1 rd (si, zi; γ) +

oP

(
1√
n

)
.

Assumption 4. Y has conditional density that is bounded from above and away from zero,

a.s. on a compact set Y. The density is given by fY |S=1,D,Z (y) for D = 0, 1.

Assumption 1 states the sampling process of the data. Assumption 2 further restricts

it to ensure that the number of individuals in each group converges to a fixed proportion

with respect to the sample size. The propensity score is required to satisfy some mild

regularity conditions given by Assumption 3. It ensures that its asymptotic distribution is

well-behaved, and it is satisfied by many estimation methods, such as maximum likelihood.

Finally, Assumption 4 ensures that the dependent variable has a finite conditional density

for the entirety of its support.
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4.1 Main Decompositions

Let υℓ (z, τ, η, f) ≡
(
gk (x, τ) , cl,x (τ, η) , πm (z) ,

�
Z fdF

h
Z

)
be the vector that contains the

structural functions, where ℓ ≡ (h, k, l,m) is used to keep notation compact.12 This vector

contains the four relevant components to compute the effects of decompositions 9-12. Its

estimator, υ̂ℓ, needs to satisfy the following condition:

Condition 1. The estimator of the components of the decomposition for the general model,

υ̂ℓ (z, τ, η, f), satisfies the law
√
n (υ̂ℓ (z, τ, η, f) − υℓ (z, τ, η, f)) ⇒ Zυℓ

(z, τ, η, f) for all ℓ,

where Zυℓ
(z, τ, η, f) is a zero-mean Gaussian process.

I proceed to derive the asymptotic distribution of the components of the decomposition

for an estimator that satisfies Condition 1. Next, I present an adaptation of the estimator

proposed by Arellano and Bonhomme (2017) and verify that it satisfies this condition.

Moreover, I discuss how to implement it, as well as how to conduct inference.

Given υ̂ℓ (z, τ, η, f), the counterfactual mean outcome is estimated as:

Ê
[
Y ℓ|S = 1

]
= 1
nh

n∑
i=1

� 1−ε

ε

ĝk (xi, u) dĜl,x (u, π̂m (zi)) 1 (di = h) (15)

where nh ≡ ∑n
i=1 1 (di = h) is the number of workers in group h = 0, 1. Each of the effects is

computed as Ê
[
Y ℓ|S = 1

]
− Ê

[
Y ℓ′ |S = 1

]
for the appropriate choice of ℓ, ℓ′. Similarly, the

estimator of the unconditional distribution equals:

Q̂ℓ
Y |S=1 (τ) = inf

{
y : τ ≤ F̂ ℓ

Y |S=1 (y)
}

(16)

where F̂ ℓ
Y |S=1 (y) = 1

nh

∑n
i=1

[
ε+

� 1−ε

ε
1 (ĝk (xi, u) ≤ y) dĜl,x (u, π̂m (zi))

]
1 (di = h).

To keep notation compact, denote the difference between two counterfactual values of a

statistic indexed by ℓ and ℓ′ by ∆ℓ,ℓ′ (·). The asymptotic distribution of the components of the

means and unconditional quantile decomposition are established in the following theorem:
12Strictly speaking, the last component of this vector is not of the structural functions, which would be

F h
Z . However, the former is more convenient to derive the asymptotic theory, so I refer to υℓ as the vector

of structural functions.
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Theorem 1. Let the estimator υ̂ℓ (z, τ, η) satisfy Condition 1. Under Assumptions 1-4, the

following hold for all (ℓ, ℓ′):

√
n∆ℓ,ℓ′ (Ê [Y |S = 1] − E [Y |S = 1]

)
⇒ Z∆ℓℓ′ Y |S=1

where Z∆ℓℓ′ Y |S=1 is a zero-mean Gaussian random variable, defined in Appendix A, and

√
n∆ℓ,ℓ′ (

Q̂Y |S=1 (τ) −QY |S=1 (τ)
)

⇒ ZQ|S=1,ℓℓ′ (τ)

where ZQ|S=1,ℓℓ′ (τ) is a zero-mean Gaussian process, defined in Appendix A.

The estimator proposed by Arellano and Bonhomme (2017), which I adapt it to account

for different groups, satisfies Condition 1. To derive the asymptotic distribution of the

estimator, I work with the following assumptions:

Assumption 5. gd (x, τ) = x′βd (τ) for d = 0, 1, where βd is continuous and such that

gd (x, τ) is increasing in its last argument.

Assumption 6. Cd,x (u, v) ≡ Cd,x (u, v; θd), with dim (θd) < ∞ for d = 0, 1. Cd,x (u, v; θd)

is uniformly continuous and differentiable with respect to its arguments a.e. Its density,

cd,x (u, v; θd), is well-defined and finite.

Assumption 7. Let β (τ) ≡
(
β1 (τ)′ , β0 (τ)′

)′
and θ ≡ (θ′

1, θ
′
0)

′. ∀τ ∈ T ,
(
β (τ)′ , θ′, γ′

)′
∈

intB × Θ × Γ, where B × Θ × Γ is compact and convex, and T = [ε, 1 − ε], for some constant

ε that is used to avoid the estimation of extreme quantiles.

Assumption 8. Matrices of derivatives of the moments Jβd (τ), J̃βd (τ), Jγd (τ), J̃γd (τ),

Jθd (τ), J̃θd (τ) for d = 0, 1, as defined in Appendix A, are continuous and have full rank,

uniformly over B × Θ × Γ × T and d = 0, 1.

Assumption 9. Denote the support of πd (Z) conditional on X = x by Pd,x. ∀x ∈ X and

d = 0, 1, Pd,x ∈ [0, 1] is an open interval.
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Assumption 5 is made for convenience. Despite restricting the shape of the distribution

of Y , it does not force conditional quantile curves to be parallel to each other for different

values of the covariates. Moreover, it does not suffer from the curse of dimensionality as other

more flexible alternatives, such as the partially linear model (Lee, 2003). Assumption 6 is

also imposed for practical reasons, and it allows to use the most common parametric copulas,

such as the Clayton, the Gaussian, or a Bernstein copula of a fixed order.13 Importantly, it

allows the copula to be dependent on the covariates. Assumption 7 is a regularity condition

and Assumption 8 ensures that the moments needed to derive the asymptotic distribution

of the estimator have full rank. Lastly, Assumption 9 ensures that the participation decision

is not deterministic for any individual.

The following steps describe how to compute the estimator, and how to implement it to

obtain an estimate of the decompositions:

1. Estimate the propensity score by π̂d (zi) ≡ πd (zi, γ̂d).

2. Fix a value of t ∈ Θ. For d = 0, 1 and τ ∈ T , compute β̂d (τ ; t) as

β̂d (τ ; t) ≡ arg min
b∈B

n∑
i=1

1 (di = d) siρGd,x(τ,π̂d(zi);t) (yi − x′
ib) (17)

where ρu (x) ≡ xu1 (x ≥ 0) − (1 − u)x1 (x < 0) denotes the check function.

3. Estimate the copula parameters for d = 0, 1 by minimizing over t ∈ Θ:

θ̂d ≡ arg min
t∈Θ

∥∥∥∥∥
n∑

i=1

� 1−ε

ε

1 (di = d) siφ (τ, zi)
[
1
(
yi ≤ x′

iβ̂d (τ ; t)
)

−Gd,x (τ, π̂ (zi) ; t)
]
dτ

∥∥∥∥∥
(18)

where φ (τ, zi) is an instrument function.14

13Note that Assumption 6 does not provide a way to select the most appropriate copula given some data.
This could be done, e.g., by choosing the copula that minimizes the criterion function given in Equation 18
whenever the candidate copulas have the same number of parameters. Alternatively, it could be selected
using cross validation as in Pereda-Fernández (2022).

14E.g., a polynomial of the propensity score (Arellano and Bonhomme, 2017).
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4. The slope parameters are obtained by β̂d (τ) ≡ β̂d

(
τ ; θ̂d

)
for d = 0, 1.

5. The SQF and the copula are respectively given by ĝd (x, τ) = x′β̂d (τ) and Ĉd,x (τ, π) =

Cd,x

(
τ, π; θ̂d

)
.

Step 1 is standard and can be done, e.g., by logit or probit. Step 2 is a rotated quantile

regression conditional on a particular value of the copula. Note that in practice one needs

to set a grid of values of τ , such as τ = {0.01, ..., 0.99}. The third step is computationally

expensive, as it involves the minimization over a non-convex space. The most common

parametric copulas depend on few parameters, so that a grid search may be feasible. For

Bernstein copulas, one can use the algorithm proposed in Pereda-Fernández (2022). The last

two steps are immediate, and they yield the slope parameters, which are those estimated in

step 2 for the value of the copula estimated in step 3, the SQF and the copula.

The following theorem establishes the uniform asymptotic distribution of the Arellano

and Bonhomme (2017) estimator:

Theorem 2. Let ϑ̂d (τ) ≡
(
β̂d (τ)′ , θ̂′

d, γ̂
′
d

)′
. Under Assumptions 1-9, their joint asymptotic

distribution is given by
√
n
(
ϑ̂d (τ) − ϑd (τ)

)
⇒ Zϑd

(τ), where Zϑd
(τ) is a zero-mean Gaussian

process with covariance function Σϑd
(τ, τ ′), where:

Σϑd
(τ, τ ′) = √

pdpd′Hd (τ) ΣRd
(τ, τ ′)Hd′ (τ ′)′

Hd (τ) = F I
d (τ)

Cd (τ) +
(
I −

� 1−ε

ε

Dd (u)F I
d (u) du

)−1 � 1−ε

ε

Dd (u)F I
d (u)Cd (u) du


ΣRd

(τ, τ ′) = E
[
ZRd

(τ)ZRd′ (τ ′)′]

and functions Cd (τ), Dd (τ), F I
d (τ) and ZRd

(τ) are defined in Appendix A.

It only remains to verify that it satisfies Condition 1. This is done in the following

corollary:

Corollary 1. Let ĝd (x, τ) = x′β̂d (τ), ĉd,x (τ, η) = cd,x

(
τ, η; θ̂d

)
, π̂d (z) = πd (z; γ̂d) and

F̂ d
Z (z) = 1

nd

∑n
i=1 1 (di = d) 1 (Zi ≤ z). They satisfy Condition 1.
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4.2 Inference

The expressions of the asymptotic variance of the different estimators are complex and

depend on several density functions. Therefore, using resampling methods to obtain standard

errors is preferable to obtaining closed-form expressions. In this paper I consider the weighted

bootstrap (Ma and Kosorok, 2005). The following assumption defines the weights used to

obtain all the bootstrap estimates:

Assumption 10. Let Wi be an iid sample of positive weights, such that E (Wi) = 1,

V ar (Wi) = ω0 > 0 and is independent of (Yi, Di, Si, Z
′
i)

′ for i = 1, ..., n.

For the Arellano and Bonhomme (2017) estimator, the weighted bootstrap is implemented

as follows:

• For each repetition j = 1, ..., J , draw the weights wi,j for i = 1, ..., n that satisfy

Assumption 10.

• Estimate the propensity score using the weights for each observation. Denote the

estimate by π̂∗
d,j (zi) ≡ πd

(
zi, γ̂

∗
d,j

)
.

• Estimate the slope and copula parameters by adding the weights to Equations 17-18:

β̂∗
d,j (τ ; t) ≡ arg min

b∈B

n∑
i=1

wi,j1 (di = d) siρGd,x(τ,π̂∗
d,j

(zi);t) (yi − x′
ib)

θ̂∗
d,j ≡ arg min

t∈Θ

∥∥∥∥∥
n∑

i=1

� 1−ε

ε

wi,j1 (di = d) siφ (τ, zi)
[
1
(
yi ≤ x′

iβ̂
∗
d,j (τ ; t)

)
−Gd,x

(
τ, π̂∗

d,j (zi) ; t
)]
dτ

∥∥∥∥∥
β̂∗

d,j (τ) ≡ β̂∗
d,j

(
τ ; θ̂∗

d,j

)

• Estimate the counterfactual mean outcomes and unconditional distributions as:

Ê∗
[
Y ℓ

j |S = 1
]

= 1
nh

n∑
i=1

wi,j

� 1−ε

ε

ĝ∗
k,j (xi, u) dĜ∗

l,x,j

(
u, π̂∗

m,j (zi)
)

1 (di = h)

F̂ ℓ,∗
Yj |S=1 (y) = 1

nh

n∑
i=1

wi,j

[
ε+

� 1−ε

ε

1
(
ĝ∗

k,j (xi, u) ≤ y
)
dĜl,x,j

(
u, π̂∗

m,j (zi)
)]

1 (di = h)
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where ĝ∗
d,j (x, u) ≡ x′β̂∗

d,j (u) and Ĝ∗
d,x,j (u, π) ≡ Gd,x

(
u, π; θ̂∗

d,j

)
.

• The remaining counterfactual unconditional quantile function and the components

of the decomposition are computed as described in the text. They are denoted by

Q̂ℓ,∗
Yj |S=1 (τ), ∆ℓ,ℓ′Ê∗ [Yj|S = 1], and ∆ℓ,ℓ′

Q̂∗
Yj |S=1 (τ).

• Once all J estimates have been obtained, estimate the variance of each of the statistics

as q0.75(τ)−q0.25(τ)
z0.75−z0.25

, where zp is the p-th quantile of the standard normal distribution, and

qp (τ) is the p-th quantile of the distribution of the statistic, for j = 1, ..., J .

This bootstrap estimator of the variance is based on the one presented in Chernozhukov

et al. (2013). Even though it is possible to use the variance of the estimator across repetitions

of the bootstrap to obtain the standard errors, it would require additional conditions for it

to be valid (Kato, 2011). This estimator only requires that the bootstrap converges in

distribution to the asymptotic distribution of the sample estimator, which is established in

the following theorem:

Theorem 3. Under Assumptions 1-10, the weighted bootstrap estimators are denoted by

ϑ̂∗
d,j (τ), ∆ℓ,ℓ′Ê∗ [Yj|S = 1], and ∆ℓ,ℓ′

Q̂∗
Yj |S=1 (τ). They consistently estimate the limiting laws

of ϑ̂d (τ), ∆ℓ,ℓ′Ê [Y |S = 1], and ∆ℓ,ℓ′
Q̂Y |S=1 (τ). Moreover,

√
n

ω0

(
ϑ̂∗

d,j (τ) − ϑ̂d (τ)
)

⇒ Zϑd
(τ)√

n

ω0

(
∆ℓ,ℓ′Ê∗ [Yj|S = 1] − ∆ℓ,ℓ′Ê [Y |S = 1]

)
⇒ Z∆ℓℓ′ Y |S=1√

n

ω0

(
∆ℓ,ℓ′

Q̂∗
Yj |S=1 (τ) − ∆ℓ,ℓ′

Q̂Y |S=1 (τ)
)

⇒ ZQ|S=1,ℓℓ′ (τ)

On top of providing uniform confidence bands for the functionals of interest and the

intermediate functions, the weighted bootstrap can be used to carry out uniform inference

using, e.g., a Kolmogorov-Smirnov test to any of the components of the decomposition of

the unconditional quantiles. For example, one could test the null hypothesis that one of the
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components equals a specific value, ∆ℓ,ℓ′
QY |S=1 (τ). The test statistic would be given by

KSn = sup
τ∈T

√
nΣ̂Q|S=1,ℓℓ′ (τ)−1/2

∣∣∣∆ℓ,ℓ′ (
Q̂Y |S=1 (τ) −QY |S=1 (τ)

)∣∣∣
where Σ̂Q|S=1,ℓℓ′ (τ) is an estimator of the asymptotic variance of ∆ℓ,ℓ′

Q̂Y |S=1 (τ), such as

the one proposed in the weighted bootstrap algorithm. The critical value c1−α would be

1 − α quantile of the distribution of the bootstrapped of the KSn statistic. Similar uniform

confidence bands can be constructed for other functionals of interest.

4.3 Ancillary Decompositions

The ancillary decompositions are also based on the vector υℓ (z, τ, η, f). The counterfactual

values of the mean propensity score and the mean value of the unobservables are given by

Ê
[
πℓ|S = 1

]
= 1
nh

n∑
i=1

π̂m (zi) 1 (di = h) (19)

Ê
[
U ℓ|S = 1

]
= 1
nh

n∑
i=1

� 1−ε

ε

udĜl,x (u, π̂m (zi)) 1 (di = h) (20)

The asymptotic distribution of the components of the two ancillary distributions is

established in the following theorem:

Theorem 4. Let the estimator υ̂ℓ (z, τ, η) satisfy Condition 1. Under Assumptions 1-4, the

following hold for all (ℓ, ℓ′):

√
n∆ℓ,ℓ′ (Ê [π|S = 1] − E [π|S = 1]

)
⇒ Z∆ℓℓ′ π|S=1

√
n∆ℓ,ℓ′ (Ê [U |S = 1] − E [U |S = 1]

)
⇒ Z∆ℓℓ′ U |S=1

where Z∆ℓℓ′ π|S=1 and Z∆ℓℓ′ U |S=1 are zero-mean Gaussian random variables.
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5 Particular Cases

Several particular cases are nested by the general model. I discuss how the different estimands

change and which methods can be used to estimation them.

5.1 Additively separable unobserved term

An interesting case arises when Y =
(
gD (X) + Ũ

)
S, where Ũ = QU |D,X (U) denotes the

conditional quantile function of the uniformly distributed random variable U . For example,

if the additive error term Ũ is homoskedastic and normally distributed, then QU |D,X (U) =

Φ−1 (U), where Φ (·) is the standard normal cdf. Importantly, as long as gj (x) contains an

intercept, E(Ũ) = 0. This case yields a substantial simplification to the expected outcome:

E
[
Y hklm|S = 1

]
=

�
Z

� 1

0

[
gk (x) +QU |k,x (u)

]
dGl,x (u, πm (z)) dF h

Z (z)

=
�

X
gk (x) dF h

X (x) +
�

Z

� 1

0
QU |k,x (u) dGl,x (u, πm (z)) dF h

Z (z)

where F h
X (x) is the cdf of X for group h = 0, 1 and X its support. Similarly,

E
[
Y hklm

]
=

�
X
gk (x) πm (z) dF h

Z (z) +
�

Z

� 1

0
QU |k,x (u) dCl,x (u, πm (z)) dF h

Z (z)

Both means can be split into two terms. One depends exclusively on the separable

term gd (x) and the distribution of the covariates, without the instrument. The other

depends on the copula, the propensity score and the distribution of the covariates including

the instrument, but not on gd (x). Such a simplification follows from the linearity of the

expectation operator, which does not hold for the unconditional quantiles. Note also that

a change in the covariates results in a parallel shift of the conditional distribution function,

without affecting its shape, limiting the amount of heterogeneity that the model can display.

The estimation of the SQF is simplified because it is comprised of the sum of a potentially

nonlinear term that depends exclusively on the covariates, and the unobserved ability. Thus,

it is possible to estimate gd (x) nonparametrically. For example, Das et al. (2003) proposes
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a two-step series estimator which, in the first step nonparametrically regresses the selection

variable on the covariates and the instruments, and in the second step it nonparametrically

regresses the outcome variable on the covariates and the correction term.

5.2 Linear model

A particular case of the previous one appears when gd (x, u) = x′βd + ũ, where again

ũ = Qu|d,x (u). This assumption slightly simplifies the expression of the first term of the

mean outcome relative to the additively separable unobserved term model. Specifically,
�

X gk (x) dF h
X (x) = Eh (X)′ βk, where Eh stands for the expectation with respect to F h

X .

Another two-step estimator that can be used in this case is the one proposed by Newey

(2009). This is similar to Das et al. (2003), with the main difference being the fact that the

regression in the second step is linear in the covariates whilst keeping the power series on

the correction term. Other alternative estimators based on stronger parametric assumptions

are those proposed, e.g., by Heckman (1976, 1979); Lee (1983).15

5.3 No self-selection

Usually, it is assumed that the ability of participants is unrelated to their participation

decision. Mathematically, the copula is independent: Cd,x (u, v) = uv and Gd,x (u, v) = u.

This assumption implies that, conditional on participation, there are no differences in the

distribution of ability between the members of both groups, so the selection component

vanishes in all decompositions. Moreover, the outcome value of participants is comparable

to the potential value of non-participants. Hence, absence of self-selection also implies that

the participation component vanishes in the decompositions for participants (Equations 9

and 11). This can be seen in Equations 3 and 5, as the statistics of interest depend on

the propensity score exclusively through the copula. However, the same simplification

does not apply to the decompositions for the entire population, as both the mean and the

unconditional quantiles directly depend on the propensity score.
15See Vella (1998) for a review of these and other estimators for data with sample selection.
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The combination of this assumption with the additively linear unobserved term yields

another meaningful simplification, as both the participation and selection components equal

zero. To see this, note that

� 1

0
QU |k,x (u) dGl,x (u, πm (z)) =

� 1

0
QU |k,x (u) du = 0

where the second equality follows by construction.

In this case the estimation of the copula is superfluous: because the distribution of

the unobserved ability is the same for participants and non-participants, there is no need to

account for sample selection in the estimation of the SQF. This opens the possibility of using

methods that are consistent under exogeneity. For example, one can use quantile regression

and then apply the decomposition proposed by Machado and Mata (2005), distributional

regression and follow Chernozhukov et al. (2013), or one could use reweighting methods, such

as DiNardo et al. (1996) or Firpo et al. (2018).16 Additionally, if the linearity assumption

is combined with either no self-selection or all participants, the resulting model can be

estimated by OLS. Regardless, the decompositions for the entire population still depend on

the propensity score.

5.4 All participants

A particular case of the previous one takes place when every considered individual is a

participant. In this case, the propensity score equals one for all individuals, so Si = 1 for

all i = 1, ..., N . As a consequence, the participation component vanishes. Also, because

Cd,x (u, 1) = Gd,x (u, 1) = u, the selection component also disappears. Moreover, because

there are no non-participants, the decomposition for participants and non-participants are

the same. Additionally, under linearity the decomposition becomes the Oaxaca-Blinder

decomposition.
16A detailed comparison of the advantages and disadvantages of these methods is provided by Fortin et al.

(2011). Furthermore, Leorato and Peracchi (2015) compares quantile and distributional regression.
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6 Evolution of the Gender Wage Gap

I study the evolution of the gender gap between earnings distributions using the Current

Population Survey (CPS) dataset. I extend the analysis in Maasoumi and Wang (2019)

by decomposing several features of the distribution of actual earnings for employed workers

and the entire population. In addition, I do the two ancillary decompositions regarding

differences in participation and self-selection between men and women.

To preserve the comparability to Maasoumi and Wang (2019), the sample covers the

1976-2013 period, and the regressions are done on a year-by-year basis, abstracting from any

dynamics. I restrict the analysis to individuals between 18 and 64 years old, who work for

wages and salary, do not live in group quarters and worked at least for 20 weeks and 25

hours per week in the previous year.17 Like them, I estimate the propensity score using the

probit estimator. I use the same regressors they used, i.e., a third degree polynomial of age,

four levels of education, four regional dummies, marital status, an indicator for white race,

and the interactions between age and the other listed covariates, plus another variable they

did not use: the number of children.

The dependent variable is mean log hourly wages.18 The specification for the QRS

estimator uses the same set of variables (except for the interactions between age and the

remaining covariates), the same instrument (number of children below 5 years old) and

two parametric copulas: the Frank and the Gaussian copulas.19 However, there are some

slight differences along several dimensions: I include the regressor number of children, the

quantile grid, the propensity score, and the objective function used to estimate the copula.20

17Note that this analysis excludes part-time workers, seasonal workers, self-employed, or the total number
of hours worked (which affects the intensive margin). Despite this, the gaps considered in this paper are
relevant for a large fraction of the working age population, and the elements analyzed could also be relevant
for the analysis of a more comprehensive gender gap that accounts for the aforementioned factors. Such
analysis is beyond the scope of this paper.

18As in Maasoumi and Wang (2019), it is computed as the logarithm of the total wage and salary income
divided by the number of week and hours worked during the previous year and adjusted for inflation using
the 1999 consumer price index adjustment factor.

19A discussion of the validity of the exclusion restriction is provided in Maasoumi and Wang (2019). They
acknowledge that the instrument may be stronger for women than for men, as well as for earlier years than
for the latter. In addition, it may be stronger for married workers than for those who are not.

20For precision, the quantile grid I used for the estimation is (0.01, 0.02, ..., 0.99), while the one used
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Additionally, I also allow for more flexible specifications that separately estimate the main

equation according to race (white vs non-white), level of education (college vs less than

college) and marital status (married vs non-married), which are reported in Section 6.5,

and the estimates using the same specification as in Maasoumi and Wang (2019), which are

reported in Appendix E.21

6.1 Evolution of Participation

To analyze the evolution of the gender earnings gap, I begin by analyzing the evolution

of labor market participation for both genders. Table 1 reports the average estimated

propensity score by gender for the entire period. There has been a marked catch-up between

female and male participation: in 1976, female participation was roughly one third, steadily

increasing to over one half in the early 2000s, to fall slightly in the aftermath of the financial

crisis. Meanwhile, male participation has been more stable: it has been equal to around two

thirds until the financial crisis, falling to about 60% afterwards.

Consequently, the gender participation gap has more than halved during the period,

from 33% to 14% (Table 2). Its decomposition shows that almost the entirety of the gap is

explained by the coefficients components. In words, there has been a structural increase in

female participation into employment for women unrelated to gender differences in covariates.

On the other hand, the endowments component has been either statistically not significant

or slightly negative for most of the period. Indeed, only between 1987 and 1989 was this

component positive and significant. Hence, the catch up in college education rates for female

workers has not contributed to an increased participation in the labor force relative to men.

by Maasoumi and Wang (2019) was (0.3, 0.4, ..., 0.7); I use the propensity score as the instrument
φ (u, z) = π̂ (z) as suggested in Arellano and Bonhomme (2017), whereas Maasoumi and Wang (2019)
use φ (u, z) =

√
u (1 − u)π̂ (z), which puts less weight on values that are further away from the median; the

objective function equals Equation 18, while the objective function used by Maasoumi and Wang (2019)
is 1

N

∑N
i=1
∑J

j=1

(
φ (τj , zi)

(
1
(

yi ≤ x′
iβ̂ (τj)

)
− G

(
τj , π̂ (zi) ; θ̂

)))
; the implemented quantile regression

estimates from Stata in Maasoumi and Wang (2019) were in some cases numerically slightly worse than
the ones in Matlab, i.e., the value of the check function was smaller for the latter. See Appendix E for
further details.

21For completeness, I also report the results of the decompositions of potential outcomes and the estimates
of the general entropy measures considered by Maasoumi and Wang (2019) in Appendix E.
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Table 1: Average propensity to work by gender
Year Male Female Year Male Female
1976 68.0 35.0 1995 66.7 48.0
1977 68.6 36.1 1996 67.2 49.1
1978 68.6 37.5 1997 67.1 49.7
1979 69.8 39.2 1998 67.7 50.3
1980 69.1 40.7 1999 68.7 51.1
1981 67.6 40.4 2000 68.8 52.0
1982 64.8 38.7 2001 69.2 52.5
1983 61.6 37.9 2002 68.3 51.5
1984 61.4 39.0 2003 66.3 50.3
1985 63.1 40.8 2004 65.2 49.5
1986 64.4 41.7 2005 65.3 49.3
1987 64.7 42.6 2006 65.7 50.0
1988 66.6 46.0 2007 66.3 50.4
1989 67.0 46.8 2008 65.8 50.9
1990 68.8 47.7 2009 64.0 49.8
1991 67.8 47.6 2010 59.8 47.7
1992 66.7 47.8 2011 59.2 46.8
1993 65.6 47.4 2012 60.1 46.7
1994 65.5 47.2 2013 60.8 46.9

Notes: average estimated propensity score by year and
gender; coefficients scaled by 100.
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Table 2: Participation decomposition
Year Total EC CC Year Total EC CC
1976 33.0*** -0.6*** 33.7*** 1995 18.7*** -0.4** 19.1***
1977 32.5*** -0.7*** 33.2*** 1996 18.0*** -0.2 18.3***
1978 31.1*** -0.6*** 31.7*** 1997 17.4*** -0.2 17.6***
1979 30.7*** -0.5*** 31.2*** 1998 17.4*** -0.3 17.7***
1980 28.4*** -0.4** 28.8*** 1999 17.6*** -0.1 17.7***
1981 27.2*** -0.1 27.3*** 2000 16.8*** 0.0 16.8***
1982 26.1*** -0.1 26.2*** 2001 16.7*** 0.0 16.8***
1983 23.7*** 0.0 23.8*** 2002 16.8*** -0.2** 17.0***
1984 22.5*** 0.0 22.5*** 2003 15.9*** -0.2 16.1***
1985 22.3*** 0.0 22.3*** 2004 15.7*** -0.4*** 16.1***
1986 22.6*** 0.1 22.5*** 2005 16.1*** -0.3** 16.3***
1987 22.1*** 0.3** 21.8*** 2006 15.7*** -0.2 15.9***
1988 20.6*** 0.3* 20.3*** 2007 15.8*** -0.4*** 16.2***
1989 20.3*** 0.3** 20.0*** 2008 14.9*** -0.4*** 15.4***
1990 21.1*** 0.1 21.0*** 2009 14.2*** -0.7*** 15.0***
1991 20.2*** -0.3** 20.5*** 2010 12.1*** -0.8*** 12.9***
1992 18.9*** -0.2 19.0*** 2011 12.4*** -0.8*** 13.3***
1993 18.2*** -0.2 18.4*** 2012 13.4*** -0.8*** 14.2***
1994 18.3*** -0.2 18.5*** 2013 13.9*** -1.0*** 14.8***

Notes: Total, EC and CC respectively denote total difference, endowments component
and coefficients component; coefficients scaled by 100; *, ** and ** respectively denote
statistical significance at the 90%, 95% and 99% confidence level.
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6.2 Evolution of Self-Selection

The second feature of interest is the evolution of differences in self selection, which depends

mainly on the estimated copula. Because the values for different copulas are not directly

comparable, I report the Kendall’s τ correlation coefficients.22 Table 3 reports the baseline

estimates for each year and gender, both with the Frank and the Gaussian copulas. These

coefficients indicate that the amount of selection into employment has steadily increased for

female workers: until the early 80s, there used to be negative selection that turned positive

afterwards.23 On the other hand, the amount of selection for male workers has fluctuated

more over time, being either above or below that of females depending on the year. The

results are very similar with both copulas, which suggests that the choice of the parametric

copula is of secondary importance. To assess the sensitivity of these results to the model

used, I report in Table 28 in Appendix F a comparison of the correlation coefficients with

those of the Heckman 2-stage estimator (Heckman, 1979). The findings show that the copula

estimated by both models are very similar throughout the entire period.

A more informative way to understand these estimates is to compare the average value of

the unobservable u across genders and periods. This is shown in Table 4 and Figure 1.

For the entire period considered, the average value of u for full-time employed females

steadily increased from slightly above 40 to around 60. The average value for employed

males has slightly increased over time. However, it displayed much more fluctuation over

time, attaining its maximum value of about 57 in 2010. In other words, along with the

increase in participation, there has been an increase in the amount of self-selection into

employment for women. Hence, potential earnings of non-employed women are lower than

actual earnings of those employed, given the same observed characteristics.

The average selection difference between male and female workers has consequently

become negative, decreasing by about 11.3 percentage points, although it also reflects the

oscillation of the estimates for males. The participation components experienced a decrease
22Unlike to the more common Spearman’s ρ correlation coefficient, Kendall’s τ is invariant to the

distribution of the marginals.
23Recall that a negative (positive) coefficient implies positive (negative) selection into employment.
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Table 3: Kendall’s τ correlation coefficients
Frank copula Gaussian copula

Year Male Female Male Female
1976 0.26*** 0.14*** 0.26*** 0.13***
1977 0.15* 0.09** 0.13 0.08**
1978 0.19** -0.01 0.23*** -0.01
1979 0.23*** -0.02 0.21* -0.02
1980 0.22*** 0.00 0.24*** 0.01
1981 0.19** 0.01 0.19** 0.01
1982 0.13* -0.03 0.13 -0.04
1983 0.02 -0.10** -0.05 -0.09**
1984 -0.10 0.02 -0.15* 0.02
1985 0.06 -0.05 0.10 -0.05
1986 0.08 -0.12*** 0.08 -0.10***
1987 0.08 -0.19*** 0.12* -0.18***
1988 -0.07 -0.11*** -0.09 -0.10***
1989 -0.12 -0.10** -0.17* -0.10*
1990 -0.14* -0.22*** -0.09 -0.22***
1991 -0.08 -0.11** -0.09 -0.10**
1992 -0.09 -0.12*** -0.11 -0.12***
1993 -0.30*** -0.13*** -0.31*** -0.14***
1994 -0.27*** -0.17*** -0.24*** -0.17***
1995 -0.28*** -0.21*** -0.34*** -0.22***
1996 0.03 -0.22*** 0.04 -0.21***
1997 -0.03 -0.20*** -0.01 -0.21***
1998 -0.30*** -0.21*** -0.27*** -0.21***
1999 0.04 -0.23*** -0.06 -0.22***
2000 0.05 -0.14** 0.07 -0.15**
2001 0.12** -0.11** 0.13* -0.13***
2002 0.03 -0.13** 0.03 -0.14***
2003 0.03 -0.24*** 0.04 -0.25***
2004 0.07 -0.22*** 0.04 -0.22***
2005 0.08 -0.22*** 0.07 -0.22***
2006 0.26*** -0.17*** 0.30*** -0.17**
2007 0.06 -0.28*** 0.08 -0.30***
2008 0.11 -0.31*** 0.10 -0.33***
2009 -0.12 -0.26*** -0.15 -0.26***
2010 -0.29*** -0.27*** -0.34*** -0.28***
2011 -0.04 -0.33*** -0.10 -0.33***
2012 -0.29*** -0.29*** -0.33*** -0.29***
2013 0.05 -0.25*** 0.01 -0.26***

Notes: Kendall’s τ correlation coefficients of the copula
estimates by year and gender; *, ** and ** respectively
denote statistical significance at the 90%, 95% and 99%
confidence level.

31



Table 4: Mean value of u for participants
Frank copula Gaussian copula Frank copula Gaussian copula

Year Male Female Male Female Year Male Female Male Female
1976 43.9 43.0 44.0 43.8 1995 56.0 57.3 57.0 57.0
1977 46.3 45.5 46.8 45.9 1996 48.9 57.3 48.7 56.6
1978 45.3 50.1 44.8 49.8 1997 50.1 56.5 49.8 56.3
1979 44.7 50.3 45.3 50.3 1998 56.2 56.9 55.3 56.4
1980 44.8 49.5 44.6 49.2 1999 48.7 57.3 50.8 56.5
1981 45.3 49.0 45.4 49.0 2000 48.4 54.3 48.0 54.1
1982 46.2 50.9 46.4 51.1 2001 46.9 53.1 46.9 53.5
1983 49.0 54.0 50.8 53.2 2002 48.8 53.9 48.8 54.0
1984 52.3 48.7 53.3 48.7 2003 48.7 57.8 48.6 57.5
1985 47.8 51.6 47.2 51.5 2004 47.8 57.3 48.6 56.7
1986 47.6 54.2 47.7 53.5 2005 47.5 57.3 47.9 56.8
1987 47.4 57.0 46.8 56.3 2006 43.4 55.4 42.9 54.9
1988 51.2 53.6 51.5 52.9 2007 48.0 59.2 47.8 59.2
1989 52.3 53.1 53.2 52.9 2008 46.9 60.0 47.3 59.8
1990 52.6 57.5 51.4 57.1 2009 52.6 58.4 53.2 57.8
1991 51.4 53.5 51.4 53.0 2010 57.6 59.2 58.5 58.8
1992 51.6 53.7 51.9 53.5 2011 50.6 61.4 52.1 60.7
1993 56.8 54.5 56.6 54.4 2012 57.5 60.1 58.0 59.5
1994 56.0 55.7 55.0 55.5 2013 48.1 58.6 49.3 58.5

Notes: coefficients scaled by 100.

Figure 1: Mean value of u for participants
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Notes: the solid blue line denotes the estimate with the Frank copula for all participants; the dashed red
line denotes the estimate with the Gaussian copula for all participants; coefficients scaled by 100.
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of about 6 percentage points, roughly half of the difference. Hence, even if the amount of

self-selection (copula) had been the same for both genders, the increase of female employment

rates contributed to the increase in average unobserved ability, setting a gap relative to male

workers. On the other hand, the selection component is slightly less precisely estimated and

it displays an unstable evolution. This is a direct consequence of the oscillating behavior of

the male copula estimates. Regardless, the long term trend also points at an increase of the

gap in favor of employed women. Lastly, because the baseline estimates are homogeneous

with respect to the covariates, the endowments component is negligible.24

Table 5: Self-selection decomposition (Frank copula)
Year Total EC SC PC Year Total EC SC PC
1976 0.8 -0.1*** -2.4 3.4*** 1995 -1.2 0.1** 1.5 -2.8***
1977 0.8 -0.1* -1.2 2.1** 1996 -8.4*** 0.0 -5.6*** -2.8***
1978 -4.8** -0.1** -4.4** -0.3 1997 -6.5*** 0.0* -4.0** -2.4***
1979 -5.6** -0.1*** -5.1*** -0.4 1998 -0.8 0.1 1.8 -2.6***
1980 -4.7* -0.1*** -4.7*** 0.0 1999 -8.6*** 0.0 -5.8*** -2.8***
1981 -3.7* 0.0 -3.9** 0.2 2000 -5.9** 0.0 -4.2** -1.7**
1982 -4.7** 0.0 -4.1* -0.6 2001 -6.3*** 0.0 -5.0*** -1.3**
1983 -5.0** 0.0 -3.3* -1.7** 2002 -5.1** 0.0 -3.5* -1.5**
1984 3.6 0.0 3.3 0.3 2003 -9.1*** 0.0 -6.4*** -2.7***
1985 -3.8 0.0 -3.0** -0.8 2004 -9.5*** 0.0 -7.0*** -2.5***
1986 -6.6*** 0.0 -4.8*** -1.8*** 2005 -9.8*** 0.0 -7.3*** -2.5***
1987 -9.5*** 0.0 -6.8 -2.8*** 2006 -11.9*** 0.0 -10.0*** -1.9***
1988 -2.5 0.0 -0.9 -1.5*** 2007 -11.2*** 0.0 -8.1*** -3.2***
1989 -0.8 0.0 0.6 -1.3* 2008 -13.1*** 0.0 -9.8*** -3.3***
1990 -4.9*** 0.0 -1.7 -3.2*** 2009 -5.8** 0.1 -3.2 -2.6***
1991 -2.1 0.0 -0.6 -1.6** 2010 -1.7 0.2*** 0.6 -2.4***
1992 -2.1 0.0 -0.6 -1.5*** 2011 -10.8*** 0.0 -7.9*** -2.9***
1993 2.3 0.0 4.0* -1.7*** 2012 -2.6 0.2*** 0.0 -2.8***
1994 0.3 0.0 2.4 -2.2*** 2013 -10.5*** 0.0 -8.0*** -2.5***

Notes: Total, EC, SC and PC respectively denote total difference, endowments component, selection
component and participation component; coefficients scaled by 100; *, ** and ** respectively denote
statistical significance at the 90%, 95% and 99% confidence level.

24Note that it is not exactly zero because there is variation in the copula because of differences in the
propensity score, deriving themselves from differences in the distribution of Z between genders.
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6.3 Evolution of Labor Earnings

Next consider the distributions of actual earnings for participants and the entire population

by gender. Specifically, I report their means and the value of their 10th, 25th, 50th, 75th

and 90th percentiles in Tables 6-7.25 The actual earnings distribution for participants shows

a small decrease in mean earnings for male workers and a slightly larger increase for mean

female earnings.

This catch-up, however, masks an increase in the inequality within each gender, as

interquantile ranges (IQR) increased both for male and female distributions: the 90-10 IQR

increased from 132 to 170 percentage points for men, and from 112 to 158 for women;

the 75-25 IQR similarly increased from 69 to 89 and 60 to 82 percentage points for male

and female workers, respectively. Still, the evolution has been quite heterogeneous across

the distributions of earnings. For male workers earnings followed a long term decrease for

percentiles below the 75th, and a steady increase for those at the top of the distribution; for

female workers there has been a gain for those above the 25th percentile, more pronounced

at the top. Despite this catch-up, there is still a gap in favor of men at all quantiles.

By construction, earnings at any given quantile are smaller on the distribution for the

full population than on that for participants, resulting in a smaller mean for both genders.

Nonetheless, including non-participants increases the earnings gap. Following the increase

in female labor participation, this distribution has steadily increased for females, reducing

the gap relative to males by a bigger fraction than for the distribution of participants. On

the other hand, mean earnings for males have oscillated across time following the changes

in participation and average earnings for participants. Note that the fall in the male

participation rate in the last years of the sample has been starker than that of females,

prompting a decrease in mean earnings for both genders, along with a decrease of the gap.
25The estimates of the decompositions of mean earnings with the Heckman 2-stage estimator are very

similar to those found with the QRS estimator. These are shown in Figures 14-15 in Appendix F.
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Table 6: Actual earnings distributions for participants by gender (Frank copula)
Male Female

Year Mean P10 P25 P50 P75 P90 Mean P10 P25 P50 P75 P90
1976 2.72 2.03 2.40 2.77 3.09 3.36 2.29 1.74 2.00 2.30 2.60 2.86
1977 2.73 2.03 2.40 2.78 3.10 3.37 2.32 1.77 2.03 2.33 2.62 2.88
1978 2.74 2.03 2.40 2.78 3.12 3.38 2.31 1.76 2.02 2.33 2.63 2.89
1979 2.75 2.05 2.40 2.79 3.13 3.39 2.33 1.78 2.04 2.33 2.63 2.90
1980 2.73 2.03 2.40 2.78 3.12 3.38 2.32 1.78 2.04 2.32 2.62 2.89
1981 2.68 1.97 2.34 2.73 3.07 3.34 2.29 1.74 2.00 2.29 2.59 2.87
1982 2.67 1.95 2.31 2.71 3.06 3.34 2.27 1.72 1.98 2.28 2.59 2.86
1983 2.65 1.91 2.28 2.70 3.07 3.36 2.28 1.70 1.98 2.29 2.60 2.88
1984 2.65 1.90 2.28 2.70 3.07 3.37 2.30 1.70 1.99 2.31 2.63 2.91
1985 2.66 1.88 2.28 2.71 3.08 3.38 2.31 1.69 1.98 2.32 2.65 2.94
1986 2.66 1.88 2.28 2.71 3.09 3.39 2.32 1.69 1.99 2.33 2.67 2.97
1987 2.68 1.89 2.29 2.73 3.11 3.42 2.34 1.70 2.01 2.36 2.71 3.02
1988 2.68 1.89 2.29 2.72 3.11 3.42 2.35 1.69 2.02 2.38 2.72 3.03
1989 2.68 1.90 2.30 2.73 3.11 3.42 2.36 1.69 2.02 2.38 2.73 3.04
1990 2.67 1.89 2.29 2.71 3.10 3.43 2.37 1.69 2.03 2.39 2.74 3.06
1991 2.64 1.86 2.25 2.67 3.07 3.40 2.36 1.69 2.01 2.38 2.74 3.05
1992 2.63 1.84 2.23 2.67 3.06 3.39 2.36 1.69 2.00 2.38 2.74 3.06
1993 2.62 1.83 2.22 2.66 3.06 3.40 2.37 1.69 2.01 2.39 2.75 3.07
1994 2.60 1.80 2.19 2.64 3.04 3.39 2.36 1.66 2.00 2.38 2.75 3.08
1995 2.60 1.80 2.20 2.64 3.05 3.41 2.36 1.65 1.99 2.38 2.76 3.10
1996 2.61 1.80 2.19 2.63 3.04 3.39 2.36 1.65 1.99 2.37 2.76 3.10
1997 2.61 1.82 2.20 2.63 3.04 3.39 2.37 1.66 2.00 2.38 2.76 3.11
1998 2.63 1.84 2.23 2.66 3.06 3.43 2.39 1.70 2.02 2.40 2.78 3.11
1999 2.67 1.87 2.26 2.68 3.08 3.45 2.41 1.71 2.04 2.43 2.81 3.15
2000 2.68 1.87 2.26 2.69 3.10 3.48 2.43 1.71 2.05 2.44 2.83 3.17
2001 2.70 1.90 2.27 2.70 3.11 3.51 2.45 1.74 2.08 2.47 2.85 3.19
2002 2.70 1.90 2.28 2.70 3.11 3.52 2.47 1.75 2.09 2.48 2.86 3.22
2003 2.70 1.90 2.28 2.70 3.12 3.52 2.48 1.77 2.10 2.49 2.88 3.24
2004 2.69 1.88 2.26 2.69 3.12 3.51 2.49 1.76 2.11 2.50 2.88 3.25
2005 2.68 1.88 2.25 2.68 3.11 3.51 2.47 1.75 2.10 2.49 2.88 3.25
2006 2.68 1.88 2.24 2.67 3.10 3.50 2.46 1.72 2.08 2.47 2.86 3.23
2007 2.67 1.87 2.24 2.67 3.10 3.51 2.47 1.73 2.08 2.48 2.89 3.27
2008 2.68 1.88 2.25 2.67 3.10 3.50 2.48 1.75 2.10 2.50 2.89 3.27
2009 2.66 1.85 2.23 2.66 3.10 3.52 2.46 1.73 2.08 2.47 2.88 3.25
2010 2.68 1.87 2.25 2.68 3.11 3.53 2.48 1.73 2.09 2.49 2.90 3.28
2011 2.66 1.85 2.22 2.67 3.10 3.51 2.47 1.72 2.07 2.48 2.89 3.29
2012 2.64 1.82 2.20 2.65 3.10 3.52 2.46 1.71 2.06 2.47 2.87 3.27
2013 2.64 1.80 2.19 2.64 3.09 3.50 2.46 1.70 2.06 2.47 2.88 3.28

35



Table 7: Actual earnings distributions for the full population by gender (Frank copula)
Male Female

Year Mean P10 P25 P50 P75 P90 Mean P10 P25 P50 P75 P90
1976 1.88 0.00 0.00 2.50 2.97 3.28 0.81 0.00 0.00 0.00 2.09 2.60
1977 1.90 0.00 0.00 2.51 2.99 3.29 0.84 0.00 0.00 0.00 2.13 2.62
1978 1.91 0.00 0.00 2.50 3.00 3.31 0.87 0.00 0.00 0.00 2.16 2.64
1979 1.94 0.00 0.00 2.52 3.01 3.32 0.92 0.00 0.00 0.00 2.20 2.65
1980 1.91 0.00 0.00 2.50 3.00 3.30 0.95 0.00 0.00 0.00 2.23 2.66
1981 1.84 0.00 0.00 2.42 2.94 3.26 0.93 0.00 0.00 0.00 2.19 2.63
1982 1.76 0.00 0.00 2.34 2.91 3.25 0.89 0.00 0.00 0.00 2.15 2.61
1983 1.67 0.00 0.00 2.24 2.88 3.25 0.87 0.00 0.00 0.00 2.14 2.63
1984 1.66 0.00 0.00 2.23 2.89 3.26 0.91 0.00 0.00 0.00 2.19 2.67
1985 1.70 0.00 0.00 2.27 2.90 3.27 0.95 0.00 0.00 0.00 2.23 2.71
1986 1.74 0.00 0.00 2.30 2.92 3.28 0.98 0.00 0.00 0.00 2.26 2.74
1987 1.76 0.00 0.00 2.32 2.94 3.31 1.01 0.00 0.00 0.00 2.30 2.79
1988 1.81 0.00 0.00 2.35 2.95 3.32 1.10 0.00 0.00 0.00 2.37 2.82
1989 1.82 0.00 0.00 2.36 2.95 3.32 1.12 0.00 0.00 0.00 2.39 2.84
1990 1.85 0.00 0.00 2.38 2.95 3.32 1.14 0.00 0.00 0.00 2.41 2.86
1991 1.81 0.00 0.00 2.33 2.91 3.29 1.14 0.00 0.00 0.00 2.40 2.85
1992 1.77 0.00 0.00 2.29 2.89 3.28 1.15 0.00 0.00 0.00 2.40 2.86
1993 1.74 0.00 0.00 2.26 2.88 3.27 1.15 0.00 0.00 0.00 2.42 2.87
1994 1.72 0.00 0.00 2.23 2.86 3.27 1.14 0.00 0.00 0.00 2.41 2.87
1995 1.76 0.00 0.00 2.26 2.87 3.28 1.15 0.00 0.00 0.00 2.41 2.89
1996 1.78 0.00 0.00 2.27 2.87 3.27 1.18 0.00 0.00 0.00 2.42 2.89
1997 1.78 0.00 0.00 2.28 2.87 3.27 1.20 0.00 0.00 0.00 2.44 2.90
1998 1.80 0.00 0.00 2.31 2.89 3.30 1.22 0.00 0.00 1.16 2.46 2.92
1999 1.86 0.00 0.00 2.36 2.93 3.33 1.25 0.00 0.00 1.38 2.50 2.95
2000 1.87 0.00 0.00 2.37 2.94 3.36 1.28 0.00 0.00 1.51 2.53 2.98
2001 1.89 0.00 0.00 2.38 2.95 3.38 1.31 0.00 0.00 1.58 2.55 3.00
2002 1.87 0.00 0.00 2.37 2.95 3.39 1.29 0.00 0.00 1.49 2.55 3.01
2003 1.82 0.00 0.00 2.33 2.94 3.39 1.27 0.00 0.00 1.24 2.55 3.02
2004 1.78 0.00 0.00 2.30 2.93 3.37 1.25 0.00 0.00 0.00 2.55 3.02
2005 1.78 0.00 0.00 2.29 2.92 3.37 1.24 0.00 0.00 0.00 2.54 3.02
2006 1.79 0.00 0.00 2.28 2.91 3.37 1.25 0.00 0.00 0.85 2.54 3.01
2007 1.80 0.00 0.00 2.29 2.92 3.38 1.27 0.00 0.00 1.22 2.55 3.04
2008 1.79 0.00 0.00 2.29 2.92 3.37 1.29 0.00 0.00 1.38 2.57 3.05
2009 1.74 0.00 0.00 2.25 2.90 3.37 1.25 0.00 0.00 0.00 2.54 3.03
2010 1.64 0.00 0.00 2.15 2.89 3.37 1.21 0.00 0.00 0.00 2.54 3.05
2011 1.62 0.00 0.00 2.11 2.87 3.36 1.19 0.00 0.00 0.00 2.53 3.04
2012 1.63 0.00 0.00 2.13 2.87 3.36 1.18 0.00 0.00 0.00 2.51 3.02
2013 1.65 0.00 0.00 2.13 2.86 3.35 1.19 0.00 0.00 0.00 2.51 3.03
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6.4 Main Decompositions

Tables 8-9 report the decompositions of the mean earnings gap for the two populations

considered. The mean gap for participants has more than halved during the period: from

over 40% gender gap for workers, it was equal to 18%. Out of the four components, the

largest one in every period has been the coefficients component. Its size displays some yearly

variation driven by the fluctuation of the slope and copula parameters for male workers.

Analogously, the selection component also displays an erratic behavior, which is again a

consequence of the estimates of the copula for males. The sign of this component is often

negative, and when it is positive it is not significant at the 95% confidence level. Moreover,

it displays a slightly downward trend, thus increasingly helping in the reduction of the mean

gap (by 14 percentage points in the last year of analysis). This contrasts with the coefficients

component, which does not exhibit a clear trend.26

The dynamics of the remaining two components has been more stable: they were initially

positive, and they eventually became negative, therefore reducing the mean gender gap.

Moreover, the magnitude of these two components has been more modest than that of the

other two: the endowments components changed from 1 to -4 percentage points, whereas

the participation component experienced a more pronounced fall (from 4 to -4 percentage

points).

The gap for the entire population has followed a similar trend, steadily decreasing to less

than a half of the gap in 1976. Specifically, from a gap of over 100%, it fell to less than

50%. However, its magnitude has always been larger, owing to the gender participation

gap. Indeed, the participation component constitutes the lion share of the gap, and its

reduction has been responsible for the majority of the reduction of the gap: from an initial

81 percentage points, it fell to 33. The remaining three components display a similar behavior
26The erratic behavior of these two components could be linked to the strength of the instrument, which

is weaker for male workers. To see this, note that the autocorrelation of the total gap is 0.99. Out of the
four components, it is also large for the endowments (0.99) and participation components (0.79), whereas for
the coefficients and selection components are significantly smaller: 0.47 and 0.37, respectively. However, the
autocorrelation of the sum of these two components is equal to 0.93. Therefore, it is plausible that the lack
of strength of the instrument may be responsible for the large variations in the size of these two components
even in consecutive years.
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Table 8: Mean decomposition, actual earnings for participants (Frank copula)
Year Total EC CC SC PC
1976 0.43*** 0.01*** 0.40*** -0.03 0.04***
1977 0.41*** 0.01** 0.39*** -0.02 0.03**
1978 0.42*** 0.01*** 0.47*** -0.06** 0.00
1979 0.42*** 0.01*** 0.48*** -0.07*** -0.01
1980 0.41*** 0.01** 0.47*** -0.06*** 0.00
1981 0.40*** 0.00 0.44*** -0.05** 0.00
1982 0.40*** 0.01** 0.46*** -0.05* -0.01
1983 0.38*** 0.01** 0.44*** -0.04* -0.02**
1984 0.35*** 0.01** 0.30*** 0.04 0.00
1985 0.35*** 0.01*** 0.40*** -0.04 -0.01
1986 0.34*** 0.01*** 0.43*** -0.07** -0.03***
1987 0.33*** 0.01** 0.47*** -0.10*** -0.04***
1988 0.32*** 0.01*** 0.35*** -0.01 -0.02***
1989 0.32*** 0.01*** 0.32*** 0.01 -0.02*
1990 0.30*** 0.01*** 0.37*** -0.03 -0.05***
1991 0.28*** 0.00 0.31*** -0.01 -0.02**
1992 0.26*** 0.00 0.29*** -0.01 -0.02***
1993 0.25*** 0.00 0.21*** 0.06* -0.03***
1994 0.23*** 0.00 0.23*** 0.04 -0.03***
1995 0.24*** 0.00 0.27*** 0.02 -0.05***
1996 0.25*** 0.00 0.39*** -0.09*** -0.05***
1997 0.25*** -0.01** 0.36*** -0.06** -0.04***
1998 0.24*** -0.01*** 0.27*** 0.03 -0.04***
1999 0.26*** -0.01** 0.40*** -0.09*** -0.05***
2000 0.25*** -0.01** 0.35*** -0.07** -0.03**
2001 0.24*** -0.01*** 0.35*** -0.08*** -0.02**
2002 0.23*** -0.01*** 0.32*** -0.06* -0.02**
2003 0.22*** -0.02*** 0.38*** -0.10*** -0.04***
2004 0.20*** -0.02*** 0.38*** -0.12*** -0.04***
2005 0.21*** -0.02*** 0.40*** -0.12*** -0.04***
2006 0.22*** -0.03*** 0.44*** -0.16*** -0.03**
2007 0.20*** -0.03*** 0.43*** -0.14*** -0.06***
2008 0.19*** -0.03*** 0.45*** -0.17*** -0.06***
2009 0.20*** -0.04*** 0.33*** -0.05 -0.04***
2010 0.19*** -0.04*** 0.26*** 0.01 -0.04***
2011 0.19*** -0.04*** 0.42*** -0.14*** -0.05***
2012 0.19*** -0.03*** 0.27*** 0.00 -0.05***
2013 0.18*** -0.04*** 0.40*** -0.14*** -0.04***

Notes: Total, EC, CC, SC and PC respectively denote total difference,
endowments component, coefficients component, selection component
and participation component; *, ** and ** respectively denote
statistical significance at the 90%, 95% and 99% confidence level.
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to the one found in the decomposition of actual earnings for participants, although their size

is slightly scaled down.

The same decompositions are performed for the unconditional distributions. I present

the estimates for a number of years (1976, 1984, 1992, 2000, 2007, 2013) in Figures 2-3.

Additionally, I report the estimates for several quantiles in Tables 29-38 in Appendix F.

Figure 2 shows the evolution of the gap for the entire quantile process. Several changes

have taken place. First, the gap increases monotonically with the quantiles of the distribution

in every year, with the exception of the extreme top quantiles. Second, there has been a

generalized reduction at all quantiles and, the decrease in the gap in absolute value has also

been larger for higher quantiles. Namely, the gap at the 10th percentile fell from 29% to

10%, whereas the gap at the 90th percentile decreased from 49% to 22%. As it was the case

for the mean decomposition, the coefficients component has been the largest one for almost

every quantile and every year. In contrast, the selection component has been relatively

flat across quantiles, although it again displayed great variation across years, switching sign

several times.

Regarding the participation and endowments components, their behavior is quite similar:

their magnitude is smaller than that of the other two components, they initially were positive

for the majority of the distribution and had a mild upward slope, and they have progressively

flattened out, becoming negative and therefore reducing the gender gap. Moreover, their

magnitude is similar to that of the decomposition of the mean.

The distributional gap for the entire population has an unconventional shape, as it

displays a thick spike for a large part of the distribution. Its width equals the difference

in the participation rates between men and women, and its height equals earnings of male

workers from the left tail of their gender distribution. Therefore, the width of this spike has

progressively diminished over time with the reduction of the participation gap. However, it

still remains the main factor of difference between the two distributions. Second, since the

fraction of non-participants is positive for both men and women, the lower tail of the gap

equals zero, as workers of both genders on that tail do not have any labor earnings.
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Table 9: Mean decomposition, actual earnings for the full population (Frank copula)
Year Total EC CC SC PC
1976 1.07*** 0.00 0.29*** -0.02 0.81***
1977 1.06*** -0.01 0.28*** -0.01 0.79***
1978 1.03*** 0.00 0.34*** -0.03** 0.73***
1979 1.03*** 0.00 0.35*** -0.04*** 0.72***
1980 0.96*** 0.00 0.33*** -0.04** 0.67***
1981 0.91*** 0.01 0.31*** -0.03** 0.63***
1982 0.87*** 0.01 0.30*** -0.03 0.59***
1983 0.79*** 0.01* 0.28*** -0.02 0.53***
1984 0.75*** 0.01** 0.20*** 0.02 0.52***
1985 0.75*** 0.01** 0.26*** -0.02 0.50***
1986 0.76*** 0.01** 0.28*** -0.04** 0.50***
1987 0.75*** 0.02** 0.31*** -0.06*** 0.48***
1988 0.71*** 0.02** 0.24*** -0.01 0.46***
1989 0.69*** 0.02*** 0.22*** 0.01 0.45***
1990 0.71*** 0.01** 0.26*** -0.02 0.46***
1991 0.67*** 0.00 0.21*** -0.01 0.46***
1992 0.62*** 0.00 0.20*** -0.01 0.43***
1993 0.59*** 0.00 0.15*** 0.03* 0.41***
1994 0.59*** 0.00 0.16*** 0.02 0.41***
1995 0.61*** -0.01 0.18*** 0.01 0.41***
1996 0.60*** -0.01 0.26*** -0.05*** 0.40***
1997 0.58*** -0.01 0.24*** -0.04** 0.39***
1998 0.58*** -0.01** 0.19*** 0.02 0.39***
1999 0.61*** 0.00 0.28*** -0.05*** 0.39***
2000 0.59*** 0.00 0.24*** -0.04** 0.39***
2001 0.58*** -0.01* 0.24*** -0.05*** 0.39***
2002 0.58*** -0.01*** 0.23*** -0.03* 0.40***
2003 0.55*** -0.01*** 0.26*** -0.06*** 0.37***
2004 0.53*** -0.02*** 0.25*** -0.06*** 0.37***
2005 0.54*** -0.02*** 0.26*** -0.07*** 0.37***
2006 0.53*** -0.02*** 0.28*** -0.09*** 0.36***
2007 0.53*** -0.03*** 0.29*** -0.08*** 0.36***
2008 0.51*** -0.03*** 0.30*** -0.10*** 0.34***
2009 0.49*** -0.04*** 0.22*** -0.03 0.34***
2010 0.43*** -0.04*** 0.17*** 0.00 0.30***
2011 0.43*** -0.04*** 0.25*** -0.07*** 0.29***
2012 0.45*** -0.04*** 0.18*** 0.00 0.31***
2013 0.46*** -0.05*** 0.25*** -0.07*** 0.33***

Notes: Total, EC, CC, SC and PC respectively denote total
difference, endowments component, coefficients component, selection
component and participation component; *, ** and ** respectively
denote statistical significance at the 90%, 95% and 99% confidence
level.
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Figure 2: Unconditional quantiles decompositions, actual earnings for participants (Frank
copula)
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Notes: the solid thick blue line denotes the total gap between male and female workers; the solid thin red
line denotes the endowments component; the dashed thin green line denotes the coefficients component;
the dotted thin orange line denotes the selection component; the dashed-dotted thin cyan line denotes the
participation component.
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Additionally, the participation component has a decreasing shape after the end of the

spike, reflecting a shifting in the distribution between male and female worker. To see this,

denote by τf the quantile at which women earnings becomes positive, i.e., τf = 1−E [πf (Z)].

Men above τf represent those above a certain level of earnings, which would be equivalent

to comparing the distribution of earnings of employed women at a given quantile to the

distribution of employed men of a higher quantile.

The other three components have a similar shape to the one found in the decomposition

for participants, although their size is somewhat smaller. Consequently, the coefficients

component is the second largest one, remaining an important determinant of the gap. Finally,

the endowments component and selection components are flatter, relatively small, but they

have become negative over time reducing the gap at all quantiles.

These results are related to the findings in Olivetti and Petrongolo (2008). In their

cross-country comparison, they found that countries with the highest participation gaps

tended to have lower wage gaps for participants. However, their estimated gaps accounting

for self-selection showed that gaps increased much more in countries with larger participation

gaps. This is captured by the participation component in the decomposition of the wage

gap: for a given level of self-selection, narrowing the participation gap would make the

participation component shrink to zero. However, this does not eliminate the impact of

self-selection on unobservables, as differences in the amount of self-selection could be due to

differences in the copula. Indeed, the estimates in this paper showed how, as participation

gaps decreased over the considered period, the intensity of self-selection increased much more

for women. Therefore, a more comprehensive cross-country analysis could account for this

factor to explain how differences in self-selection intensity have determined different wage

gaps in different countries.

6.5 Heterogeneous copulas

One potentially strong assumption regards the fact that the baseline copulas used in the

estimation are homogeneous across the covariates. This limits any selection differences across
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Figure 3: Unconditional quantiles decompositions, actual earnings for participants (Gaussian
copula)
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Notes: the solid thick blue line denotes the total gap between male and female workers; the solid thin red
line denotes the endowments component; the dashed thin green line denotes the coefficients component;
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participation component.
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some of these characteristics to the propensity score channel. To address this issue, I repeat

the estimation separately for three different categories: race (white vs non-white), education

level (college graduates vs. less than college) and marital status (married vs unmarried).

Some of the estimates are slightly sensitive to the heterogeneous copulas. The mean value

of unobserved ability (Figure 4, top panel) is most similar when one obtains the estimates

by race. However, it has been in general larger for white males relative to the baseline

estimates, although the estimates are more volatile. In contrast, the estimates for non-white

males show a smaller value than the baseline for almost the entire period. In contrast, the

estimates for white females show a more stable evolution of the average value of unobserved

ability, whereas for non-white female workers, the evolution has been positive, very closely

to the baseline estimates.

A more evident difference relative to the baseline case appears in the estimates split

by education level (Figure 4, central panel), showing a great divide in the average level of

unobserved ability between those with a college degree and those without. For the first

group, this level has been higher and relatively stable, whereas for the latter it has been

lower and decreasing steadily since the mid-nineties. The same divide can be observed

for female workers although the average level of unobserved ability steadily increased for

college-educated women, and has remained stable for lower-educated female workers.

Finally, if one allows the copula to be different for married and unmarried workers

(Figure 4, bottom panel), we find the largest differences for women: in particular, unmarried

female workers tend to have a much higher level of unobserved ability, although the gap

with married women has decreased in the last two decades. In contrast, the estimates for

men are much similar to the baseline ones. The main difference corresponds to the period

beginning in the late nineties, in which the average level of unobserved ability for married

male workers is smaller.

Despite these differences in the amount of self-selection, the mean earnings gap for

participants remains largely unaltered in these specifications (Figure 5). However, the

decompositions do vary slightly. The most noticeable differences relative to the baseline
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Figure 4: Mean value of u for participants
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estimates arise in the coefficients and selection components. In particular, the coefficients

components is generally larger for the estimates with heterogeneous copulas by race and

marital status, and smaller for the estimates that are heterogeneous by education level.

On the other hand, the coefficients and selection components almost cancel each other out

entirely. This reinforces the hypothesis that the instrument is weak for male workers. The

only exception is the model with heterogeneous copula by marital status, for which the the

participation components is more negative during the entire period, i.e., in favor of female

workers.

7 Conclusion

In this paper I have introduced a new way to decompose differences in outcomes between two

groups when there is self-selection into participation. In particular, rather than considering

the decomposition of potential outcomes for the entire population, I decompose differences

in actual outcomes for both participants and the entire population. These differences are

decomposed into four components: endowments, coefficients, participation and selection.

Moreover, I propose to provide two additional ancillary decompositions regarding differences

in participation and self-selection.

I apply this methodology to analyze the labor earnings gap between males and females.

I find that increases in female labor market participation and improvements in self-selection

that led to an increase in unobserved ability for females have been responsible for a large share

of the fall of the gap. Moreover, considering the gap for participants greatly underestimates

the gap for the entire population, due to the still existing gender participation gap.
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A Mathematical proofs

A.1 Proof of Lemma 1

For d = 0, 1, let V = F̃V |d,X

(
Ṽ |d,X

)
. By definition, V ∼ U (0, 1). Moreover, Ṽ < π̃d (Z) ⇔

F̃V |d,X

(
Ṽ |d,X

)
< F̃V |d,X (π̃d (Z) |d,X) ≡ πd (Z). Hence, F̃V |S,X = FV |S,X .

Similarly, let U = F̃U |d,X

(
Ũ |d,X

)
, which is also uniformly distributed on the unit

interval. It follows that Y = g̃d

(
X, Ũ

)
S = g̃d

(
X, F̃−1

U |d,X (U |d,X)
)
S ≡ gd (X,U)S. The

joint distribution of
(
Ũ , Ṽ

)
can be written as

P
(
Ũ ≤ τ, Ṽ ≤ π̃d (z) |Z = z

)
= P

(
F̃−1

U |d,x (U |d, x) ≤ τ, F̃−1
V |d,x (V |d, x) ≤ π̃d (z) |Z = z

)
= P

(
U ≤ F̃U |d,x (τ |x) , V ≤ πd (z) |Z = z

)
= Cd,x

(
F̃U |d,x (τ |d, x) , πd (z)

)

where the first equality follows by the invertibility of Ũ and Ṽ , the second one by the first

result of the lemma, and the third one by definition of the copula.

Define G̃d,x (τ, πd (z)) ≡ P
(
Ũ ≤ τ |S = 1, Z = z

)
. It can be expressed as

G̃d,x (τ, π̃d (z)) ≡
P
(
Ũ ≤ τ, Ṽ ≤ π̃d (z) |Z = z

)
P
(
Ṽ ≤ π̃d (z) |Z = z

)
=

P
(
F̃−1

U |d,x (U1|d, x) ≤ τ, F̃−1
V |d,x (V |d, x) ≤ π̃d (z) |Z = z

)
P
(
F̃−1

V |d,x (V |d, x) ≤ π̃d (z)
∣∣∣Z = z)

=
Cd,x

(
F̃U |d,x (τ |d, x) , πd (z)

)
πd (z) = Gd,x

(
F̃U |d,x (τ |x) , πd (z)

)
(21)
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Then, the distribution of Y , conditional on S = 1 and Z = z equals

P (Y ≤ y|S = 1, Z = z) =
�

1 (g̃d (x, ũ) ≤ y) dG̃d,x (ũ, π̃d (z))

=
�

1 (g̃d (x, ũ) ≤ y) dGd,x

(
F̃U |d,x (ũ|x) , πd (z)

)
=

�
1
(
g̃d

(
x, F̃−1

U |d,x (u)
)

≤ y
)
dGd,x (u, πd (z))

=
�

1 (gd (x, u) ≤ y) dGd,x (u, πd (z))

where the second equality follows by Equation 21, the third one by the invertibility of Ũ ,

and the fourth one by the definition of g̃d, completing the proof.

A.2 Proof of Theorem 1

By the functional delta method,

√
n
(
Ê
[
Y ℓ|S = 1

]
− E

[
Y ℓ|S = 1

])
=

√
n

�
Z

� 1−ε

ε

(ĝk (x, τ) − gk (x, τ)) dGl,x (τ |πm (z)) sdF h
Z (z)

+
√
n

�
Z

� 1−ε

ε

gk (x, τ) d
(
Ĝl,x (τ |πm (z)) −Gl,x (τ |πm (z))

)
sdF h

Z (z)

+
√
n

�
Z

� 1−ε

ε

gk (x, τ) d (∇πGl,x (τ |πm (z))) (π̂m (z) − πm (z)) sdF h
Z (z)

+
√
n

�
Z

� 1−ε

ε

gk (x, τ) dGl,x (τ |πm (z)) sd
(
F̂ h

Z (z) − F h
Z (z)

)
+ oP (1)

⇒
�

Z

� 1−ε

ε

Zgk
(τ, x) dGl,x (τ |πm (z)) dF h

Z (z)

+
�

Z

� 1−ε

ε

gk (x, τ) 1
πm (z)Zcl

(τ, πm (z)) dτdF h
Z (z)

+
�

Z

� 1−ε

ε

gk (x, τ) d (∇πGl,x (τ |πm (z)))Zπm (z) dF h
Z (z)

+ √
phZZh

(� 1−ε

ε

gk (·, τ) dGl,x (τ |π (·))
)

≡ ZY ℓ|S=1
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where ∇πGd,x (τ |π) is the Hadamard derivative of Gd,x (τ |π) with respect to π. Apply the

functional delta method once more to obtain

√
n∆ℓ,ℓ′ (Ê [Y |S = 1] − E [Y |S = 1]

)
⇒ ZY ℓ|S=1 − ZY ℓ′ |S=1 ≡ Z∆ℓℓ′ Y |S=1

To show the asymptotic distribution of ∆ℓ,ℓ′
Q̂Y |S=1 (τ), I firstly show some intermediate

steps. First, note that we can write

F̂ ℓ
Y |S=1 (y|z) = 1

nh

n∑
i=1

[
ε+

� 1−ε

ε

1 (ĝk (xi, u) ≤ y) dĜl,x (u, π̂m (zi))
]

1 (di = h)

=
�

Z
ε+

� 1−ε

ε

1
(
x′β̂k (u) ≤ y

) ĉl,x (u, π̂m (z))
π̂m (z) dudF̂ h

Z (z) ≡
�

Z
F̂ ℓ

Y |Z,S=1 (y|z) dF̂Zm (z)

Next, consider the joint asymptotic distribution of
(
F̂ ℓ

Y |Z,S=1 (y|z) ,
�

Z fdF̂Zm (z)
)
. The

following expansion holds:

√
n
(
F̂ ℓ

Y |Z,S=1 (y|z) − F ℓ
Y |Z,S=1 (y|z)

)
=

√
n

� 1−ε

ε

(
1
(
x′β̂k (τ) ≤ y

)
− 1 (x′βk (τ) ≤ y)

) cl,x (τ, πm (z))
πm (z) dτ

+
√
n

� 1−ε

ε

1 (x′βk (τ) ≤ y) 1
πm (z) (ĉl,x (τ, πm (z)) − cl,x (τ, πm (z))) dτ

+
√
n

� 1−ε

ε

1 (x′βk (τ) ≤ y) ∇πcl,x (u, πm (z))πm (z) − cl,x (τ, πm (z))
πm (z)2 (π̂m (z) − πm (z)) dτ + oP (1)

where ∇πcd,x (u, π) denotes the Hadamard derivative of cd,x (u, π) with respect to its second

argument. Define ũd (x, y) ≡ {min u : x′βd (u) ≤ y}. By Lemma 3, the mapping ν : Dν ⊂

ℓ∞ (U)dx → ℓ∞ (YX Π), defined as b → ε +
� 1−ε

ε
1 (x′b (u) ≤ y) dGd,x (u, π) is Hadamard

differentiable at b (·) = βd (·) tangentially to C (U)dx , with derivative

Dh (y|x) = −fY |Z,S=1 (y|z) 1
πd (z)cd,x (Cd,x (ũd (x, y) , πd (z)) , πd (z))x′h

(
FY |Z,S=1 (y|z) |z

)
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Hence, it follows that

√
n
(
F̂ ℓ

Y |Z,S=1 (y|z) − F ℓ
Y |Z,S=1 (y|z)

)
⇒

− fY |Z,S=1 (y|z) 1
πm (z)cl,x (Cl,x (ũk (x, y) , πm (z)) , πm (z))x′Zβk

(
FY |Z,S=1 (y|z)

)
+
� 1−ε

ε

1 (x′βk (τ) ≤ y) 1
πm (z)Zcl

(τ, πm (z)) dτ

+
� 1−ε

ε

1 (x′βk (τ) ≤ y) πm (z) ∇πcl,x (u, πm (z)) − cl,x (τ, πm (z))
πm (z)2 Zπm (z) dτ

≡ ZF ℓ
Y |Z,S=1 (y, z)

in ℓ∞ (YZ). Therefore,

√
n

F̂ ℓ
Y |Z,S=1 (y|z) − F ℓ

Y |Z,S=1 (y|z)
�

Z fd
(
F̂ h

Z (z) − F h
Z (z)

)
 ⇒

ZF ℓ
Y |X,S=1 (y, z)

√
phZZh

(f)



in ℓ∞ (YZF).

The next step is to show the asymptotic distribution of the estimator of the unconditional

distribution F̂ ℓ
Y |S=1 (y). By the functional delta method,

√
n
(
F̂ ℓ

Y |S=1 (y) − F ℓ
Y |S=1 (y)

)
=

√
n

�
Z

(
F̂ ℓ

Y |Z,S=1 (y|z) − F ℓ
Y |Z,S=1 (y|z)

)
dF h

Z (z)

+
√
n

�
Z
F ℓ

Y |Z,S=1 (y|z) d
(
F̂ h

Z (z) − F h
Z (z)

)
⇒

�
Z
ZF ℓ

Y |Z,S=1 (y|z) dF h
Z (z) + √

phZZh

(
F ℓ

Y |Z,S=1 (y|z)
)

≡ ZF ℓ
Y |S=1

(y)

uniformly in ℓ∞ (Y).

The next step is to show the asymptotic distribution of Q̂ℓ
Y |S=1 (τ). By the functional
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delta method,

√
n
(
Q̂ℓ

Y |S=1 (τ) −Qℓ
Y |S=1 (τ)

)
= −

√
n
(
F̂ ℓ

Y |S=1

(
Qℓ

Y |S=1 (τ)
)

− F ℓ
Y |S=1

(
Qℓ

Y |S=1 (τ)
))

f ℓ
Y |S=1

(
Qℓ

Y |S=1 (τ)
) + oP (1)

⇒ −
ZF ℓ

Y |S=1

(
Qℓ

Y |S=1 (τ)
)

f ℓ
Y |S=1

(
Qℓ

Y |S=1 (τ)
)

≡ ZQℓ
Y |S=1

(τ)

jointly in ℓ ∈ D4, where I have used the Hadamard differentiability of the quantile operator

(Chernozhukov et al., 2010). τ → Qℓ
Y |S=1 (τ) is a.s. uniformly continuous by Assumption 4,

and together with the a.s. uniform continuity of ZF ℓ
Y |S=1

(y), it follows that ZQℓ
Y |S=1

(τ) is a.s.

uniformly continuous with respect to τ .

Finally, note that

∆ℓ,ℓ′ (
Q̂Y |S=1 (τ) −QY |S=1 (τ)

)
= Q̂ℓ

Y |S=1 (τ) −Qℓ
Y |S=1 (τ) −

(
Q̂ℓ′

Y |S=1 (τ) −Qℓ′

Y |S=1 (τ)
)

Therefore,
√
n∆ℓ,ℓ′

(
Q̂Y |S=1 (τ) −QY |S=1 (τ)

)
⇒ ZQℓ

Y |S=1
(τ)−ZQℓ′

Y |S=1
(τ) ≡ ZQ|S=1,ℓℓ′ (τ),

finishing the proof.

A.3 Proof of Theorem 2

Let W ≡ (Y, S,D,Z). Moreover, define

rd (W,β, θ, γ, τ) ≡


1 (D = d)SXζGd,x(τ,π(Z;γ),θd) (Y −X ′βd)

� 1
0 1 (D = d)Sφ (u, Z) ζGd,x(τ,π(Z;γ),θd) (Y −X ′βd) du

sd (S,Z; γ)



56



qd (W,β, θ, γ, τ) ≡


1 (D = d)SXρGd,x(τ,π(Z;γ),θd) (Y −X ′βd)

1 (D = d)S
� 1

0 φ (u, Z) ρGd,x(τ,π(Z;γ),θd) (Y −X ′βd) du

sd (S,Z; γ)



f 7→ En [f (W )] ≡ 1
n

∑n
i=1 f (W ), f 7→ Gn [f (W )] ≡ 1√

n

∑n
i=1 f (W )−E (f (W )), Qd,n (β, θ, γ, τ) ≡

En [qd (W,β, θ, γ, τ)], andQd (β, θ, γ, τ) ≡ E [qd (W,β, θ, γ, τ)], where ρτ (u) ≡ (τ − 1 (u < 0))u,

ζτ (u) ≡ (1 (u < 0) − τ), ϵd (τ) ≡ Y −X ′βd (τ), and ϵ̂d (τ) ≡ Y −X ′β̂d (τ).

First I show the consistency of the estimator. By Assumptions 3 to 6, Qd (β, θ, γ, τ) is

continuous over B×Θ×Γ×T . By Lemma 6, sup(β,θ,γ,τ)∈B×Θ×Γ×T ∥Qd,n (β, θ, γ, τ) −Qd (β, θ, γ, τ)∥ P→

0, uniformly in D. Thus, by Lemma 5, supτ∈T

∥∥∥ϑ̂d (τ) − ϑd (τ)
∥∥∥ P→ 0, uniformly in D.

Next, I show its asymptotic distribution. By Theorem 3 in Koenker and Bassett (1978),

it is possible to show that

O

(
1√
n

)
=

√
nEn

[
1 (D = d)SXζGd,x(τ,π(Z;γ̂),θ̂d) (ϵ̂d (τ))

]

By Lemma 6 and Assumption 8, the following expansion holds in ℓ∞ (T ):

O

(
1√
n

)
= Gn

[
1 (D = d)SXζGd,x(τ,π(Z;γ̂);θ̂d) (ϵ̂d (τ))

]
+

√
nE

[
1 (D = d)SXζGd,x(τ,π(Z;γ̂);θ̂d) (ϵ̂d (τ))

]

= Gn

[
1 (D = d)SXζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
+ oP (1)

+
√
nE

[
1 (D = d)SXζGd,x(τ,π(Z;γ̂);θ̂d) (ϵ̂d (τ))

]
= Gn

[
1 (D = d)SXζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
+ Jβd (τ)

√
n
(
β̂d (τ) − βd (τ)

)
− Jγd (τ)

√
n (γ̂ − γ) − Jθd (τ)

√
n
(
θ̂d − θd

)
+ oP (1)

where

Jβd (τ) ≡
∂E

[
1 (D = d)SXζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
∂βd
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Jγd (τ) ≡ −
∂E

[
1 (D = d)SXζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
∂γ

Jθd (τ) ≡ −
∂E

[
1 (D = d)SXζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
∂θd

Rearranging and solving for
√
n
(
β̂d (τ) − βd (τ)

)
,

√
n
(
β̂d (τ) − βd (τ)

)
= −Jβd (τ)−1

{
Gn

[
1 (D = d)SXζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
−Jγd (τ)

√
n (γ̂ − γ) − Jθd (τ)

√
n
(
θ̂d − θd

)}
+ oP (1) (22)

in ℓ∞ (T ).

Using Theorem 3 in Koenker and Bassett (1978) again, it is possible to show that

O

(
1√
n

)
=

√
nEn

[� 1−ε

ε

1 (D = d)Sφ (u, Z) ζGd,x(u,π(Z;γ̂);θ̂d) (ϵ̂d (u)) du
]

By Lemma 6 and Assumption 8, the following expansion holds:

O

(
1√
n

)
= Gn

[� 1−ε

ε

1 (D = d)Sφ (u, Z) ζGd,x(u,π(Z;γ̂);θ̂d) (ϵ̂d (u)) du
]

+
√
n

� 1−ε

ε

E
[
1 (D = d)Sφ (u, Z) ζGd,x(u,π(Z;γ̂);θ̂d) (ϵ̂d (u))

]
du

= Gn

[� 1−ε

ε

1 (D = d)Sφ (u, Z) ζGd,x(u,π(Z;γ);θd) (ϵd (u)) du
]

+ oP (1)

+
√
n

� 1−ε

ε

E
[
1 (D = d)Sφ (u, Z) ζGd,x(u,π(Z;γ̂);θ̂d) (ϵ̂d (u))

]
du

= Gn

[� 1−ε

ε

1 (D = d)Sφ (u, Z) ζGd,x(u,π(Z;γ);θd) (ϵd (u)) du
]

+
√
n

� 1−ε

ε

J̃βd (u)
(
β̂d (u) − βd (u)

)
du−

√
n

� 1−ε

ε

J̃θd (u) du
(
θ̂d − θd

)
−

√
n

� 1−ε

ε

J̃γd (u) du (γ̂ − γ) + oP (1)
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where

J̃βd (τ) ≡
∂E

[
1 (D = d)Sφ (τ, Z) ζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
∂βd

J̃γd (τ) ≡ −
∂E

[
1 (D = d)Sφ (τ, Z) ζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
∂γ

J̃θd (τ) ≡ −
∂E

[
1 (D = d)Sφ (τ, Z) ζGd,x(τ,π(Z;γ);θd) (ϵd (τ))

]
∂θd

Rearranging and solving for
√
n
(
θ̂d − θd

)
,

√
n
(
θ̂d − θd

)
=
[� 1−ε

ε

J̃θd (u) du
]−1 {

Gn

[� 1−ε

ε

1 (D = d)Sφ (u, Z) ζGd,x(u,π(Z;γ);θd) (ϵd (u)) du
]

+
√
n

� 1−ε

ε

J̃βd (u)
(
β̂d (u) − βd (u)

)
du−

√
n

� 1−ε

ε

J̃γd (u) du (γ̂ − γ)
}

+ oP (1)

(23)

Now define

Ad (τ) ≡ ϑ̂d (τ) − ϑd (τ)

Cd (τ) ≡


−Jβd (τ)−1 0 0

0
[� 1−ε

ε
J̃θd (u) du

]−1
0

0 0 −B−1
d


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Dd (τ) ≡


0 0 0[� 1−ε

ε
J̃θd (u) du

]−1
J̃βd (τ) 0 −

[� 1−ε

ε
J̃θd (u) du

]−1
J̃γd (τ)

0 0 0



Fd (τ) ≡


0 Jβd (τ)−1 Jθd (τ) Jβd (τ)−1 Jγd (τ)

0 0 0

0 0 0



ψd (τ) ≡ rd (W,β (τ) , θ, γ, τ)

Combining Equations 22 to 23 yields

Ad (τ) = Fd (τ)Ad (τ) +
� 1−ε

ε

Dd (u)Ad (u) du+ Cd (τ) 1√
n
Gnψd (τ) + oP

(
1√
n

)
(24)

in ℓ∞ (T ). Equation 24 is a particular case of a Fredholm integral equation of the second

kind. The solution to this type of equations is a Liouville-Neumann series. By Lemma 4,

the solution to this equation is given by:

√
nAd (τ) = F I

d (τ)
(
I −

� 1−ε

ε

Dd (u)F I
d (u) du

)−1 � 1−ε

ε

Dd (u)F I
d (u)Cd (u)Gnψd (u) du

+ F I
d (τ)Cd (τ)Gnψd (τ) + oP (1) (25)

in ℓ∞ (T ), where F I
d (τ) ≡ (I − Fd (τ))−1 = I + Fd (τ). Using the Functional Delta Method

and Lemmas 2 and 5, it follows that
√
n
(
ϑ̂d (τ) − ϑd (τ)

)
⇒ √

pdHd (τ)ZRd
(τ) ≡ Zϑd

(τ), a

zero-mean Gaussian process with covariance Σϑd
(τ, τ ′) = √

pdpd′Hd (τ) ΣRd
(τ, τ ′)Hd (τ).
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A.4 Proof of Corollary 1

The first step is to show the asymptotic distribution of the first three components of(
ĝk (x, τ) , ĉl,x (τ |π) , π̂m (z) ,

�
Z fdF̂

h
Z

)
. By Theorem 2 and the functional delta method,

√
n ((ĝk (x, τ) , ĉl,x (τ, η) , π̂m (z)) − (gk (x, τ) , cl,x (τ, η) , πm (z))) ⇒ Jυℓ

(z, τ, η)Zϑℓ
(τ)

where

Jυℓ
(z, τ, η) =


x′ 0 0

0 ∇θl
cl,x (τ, η; θl) 0

0 0 ∇γmπm (z; γm)



and I have also used the fact that the mapping b → x′b (u) is linear and therefore Hadamard

differentiable at b (·) = βd (·), where the derivative equals Dh (τ, x) = x′h (τ, x). By Lemma

E.4 in Chernozhukov et al. (2013), √
nh

�
Z fd

(
F̂ h

Z − F h
Z

)
⇒ ZZh

(f).27 Taking these together

yields
√
n (υ̂ℓ (z, τ, η, f) − υℓ (z, τ, η, f)) ⇒ Zυℓ

(z, τ, η, f), where

Zυℓ
(z, τ, η, f) ≡



Zgk
(τ, x)

Zcl
(τ, πm (z))

Zπm (z)
√
phZZh

(f)


=

Jυℓ
(z, τ, η)Zϑℓ

(τ)
√
phZZh

(f)



A.5 Proof of Theorem 3

First, I show the distribution of ϑ∗
d (τ). Using the same arguments used in Theorem 2 and

Assumption 10, it follows that

√
n
(
ϑ̂∗

d (τ) − ϑd (τ)
)

= F I
d (τ)

(
I −

� 1−ε

ε

Dd (u)F I
d (u) du

)−1 � 1−ε

ε

Dd (u)F I
d (u)Cd (u)G∗

nψd (u) du

+ F I
d (τ)Cd (τ)G∗

nψd (τ) + oP (1) (26)

27Recall that F̂ h
Z (z) = 1

nh

∑n
i=1 1 (zi ≤ z) 1 (di = h), so that

√
n
�

Z fd
(

F̂ h
Z − F h

Z

)
⇒ √

phZZh
(f).
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where f 7→ G∗
n [f (W )] ≡ 1√

n

∑n
i=1 wif (W )−E (f (W )). Therefore,

√
n
(
ϑ̂∗

d − ϑd

)
⇒ Z∗

ϑd
(τ) ≡

√
ω0Zϑd

(τ), a zero-mean Gaussian process with covariance ω0Σϑd
(τ, τ ′).

Now substract Equation 25 from Equation 26 to get

√
n
(
ϑ̂∗

d (τ) − ϑ̂d (τ)
)

= F I
d (τ)

(
I −

� 1−ε

ε

Dd (u)F I
d (u) du

)−1 � 1−ε

ε

Dd (u)F I
d (u)Cd (u) 1√

n

n∑
i

(wi − 1)ψd (u) du

+ F I
d (τ)Cd (τ) 1√

n

n∑
i

(wi − 1)ψd (τ) + oP (1) (27)

By Assumption 10, it follows that
√

n
ω0

(
ϑ̂∗

d (τ) − ϑ̂d (τ)
)

⇒ Zϑd
(τ). By the functional

delta method, Theorem 1, and the previous result, it is straightforward to show that:

√
n

ω0

(
∆ℓ,ℓ′Ê∗ [Y |S = 1] − ∆ℓ,ℓ′E [Y |S = 1]

)
⇒ Z∆ℓℓ′ Y |S=1√

n

ω0

(
∆ℓ,ℓ′Ê∗ [Y |S = 1] − ∆ℓ,ℓ′Ê [Y |S = 1]

)
⇒ Z∆ℓℓ′ Y |S=1√

n

ω0

(
∆ℓ,ℓ′

Q̂∗
Y |S=1 (τ) − ∆ℓ,ℓ′

QY |S=1 (τ)
)

⇒ ZQ|S=1,ℓℓ′ (τ)√
n

ω0

(
∆ℓ,ℓ′

Q̂∗
Y |S=1 (τ) − ∆ℓ,ℓ′

Q̂Y |S=1 (τ)
)

⇒ ZQ|S=1,ℓℓ′ (τ)

A.6 Proof of Theorem 4

By the functional delta method,

√
n
(
Ê
[
πℓ|S = 1

]
− E

[
πℓ|S = 1

])
=

√
n

�
Z

(π̂m (z) − πm (z)) dF h
Z (z) + oP (1)

⇒
�

Z
Zπm (z) dF h

Z (z)

Using the functional delta method once more, it follows that

√
n∆ℓ,ℓ′ (Ê [π|S = 1] − E [π|S = 1]

)
⇒ Zπℓ|S=1 − Zπℓ′ |S=1 ≡ Z∆ℓℓ′ π|S=1
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finishing the proof of the first part of the Theorem.

For the second part, again by the functional delta method,

√
n
(
Ê
[
U ℓ|S = 1

]
− E

[
U ℓ|S = 1

])
=

√
n

�
Z

� 1−ε

ε

τd
(
Ĝl,x (τ |πm (z)) −Gl,x (τ |πm (z))

)
dF h

Z (z)

+
√
n

�
Z

� 1−ε

ε

τd (∇πGl,x (τ |πm (z))) (π̂m (z) − πm (z)) dF h
Z (z)

+
√
n

�
Z

� 1−ε

ε

τdGl,x (τ |πm (z)) d
(
F̂ h

Z (z) − F h
Z (z)

)
+ oP (1)

⇒
�

Z

� 1−ε

ε

τ
1

πm (z)Zcl
(τ, πm (z)) dτdF h

Z (z)

+
�

Z

� 1−ε

ε

τd (∇πGl,x (τ |πm (z)))Zπm (z) dF h
Z (z)

+ √
phZZh

(� 1−ε

ε

τdGl,x (τ |π (·))
)

≡ ZUℓ|S=1

Applying the functional delta method again,

√
n∆ℓ,ℓ′ (Ê [U |S = 1] − E [U |S = 1]

)
⇒ ZUℓ|S=1 − ZUℓ′ |S=1 ≡ Z∆ℓℓ′ U |S=1

which finishes the proof.

B Auxiliary Lemmas

B.1 Hadamard Derivatives

Lemma 2. Define κ (u) ≡
� 1

0 λ (u) ν (u) du and κ (u;ht) ≡
� 1

0 λ (u) (ν (u) + tht (u)) du. As

t → 0,

Dht (t) = 1
t

(κ (u;ht) − κ (u)) → Dh
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where Dh ≡
� 1

0 λ (u)h (u) du. The convergence holds uniformly in any compact subset of T

for any ht : ∥ht − h∥∞ → 0, where ht ∈ ℓ∞ (T ) and h ∈ C (T ).

Proof.

Dht (ht) =
� 1

0 λ (u) (ν (u) + tht (u)) du−
� 1

0 λ (u) ν (u) du
t

= 1
t

� 1

0
λ (u) tht (u) du → Dh

Lemma 3. Define FY |Z,S=1 (y|z, ht) ≡
� 1

0 1 (gd (x, u) + tht (u|z) ≤ y) 1
π(z)cd,x (u, π (z)) du.

Under Assumption 6, as t → 0,

Dht (y|z, ht) = 1
t

[
FY |Z,S=1 (y|z, ht) − FY |Z,S=1 (y|z)

]
→ Dh (y|z)

where Dh (y|z) ≡ −fY |Z,S=1 (y|z) 1
πd(z)cd,x

(
Cd,x

(
g−1

d (x, y) , πd (z)
)
, πd (z)

)
h
(
FY |Z,S=1 (y|z) |z

)
.

The convergence holds uniformly in any compact subset of UZ for any ht : ∥ht − h∥∞ → 0,

ht ∈ ℓ∞ (UZ) and h ∈ C (UZ).

Proof. This proof is partly based on the proof to Proposition 2 in Chernozhukov et al. (2010).

For any δ > 0∃ϵ > 0: for u ∈ Bϵ

(
FY |Z,S=1 (y|z)

)
and for small enough t ≥ 0

1 (gd (x, u) + tht (u|z) ≤ y) ≤ 1
(
gd (x, u) + t

(
h
(
FY |Z,S=1 (y|z) |z

)
− δ

)
≤ y

)

whereas ∀u /∈ Bϵ

(
FY |Z,S=1 (y|z)

)

1 (gd (x, u) + tht (u|z) ≤ y) ≤ 1 (gd (x, u) ≤ y)
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Therefore, for small enough t ≥ 0

1
t

[� 1

0
1 (gd (x, u) + tht (u|z) ≤ y) cd,x (u, πd (z))

πd (z) du−
� 1

0
1 (gd (x, u) ≤ y) cd,x (u, πd (z))

πd (z) du

]

(28)

≤ 1
t

�
Bϵ(FY |Z,S=1(y|z))

[1 (gd (x, u) + tht (u|z) ≤ y) − 1 (gd (x, u) ≤ y)] cd,x (u, πd (z))
πd (z) du (29)

which by the change of variable ỹ = gd

(
x,C−1

d,x (u, πd (z))
)
, where C−1

d,x (u, πd (z)) denotes the

inverse of Cd,x (u, πd (z)) with respect to its first argument, is equal to

1
t

�
J∩[y,y−t(h(FY |Z,S=1(y|z)|z)−δ)]

cd,x

(
Cd,x

(
g−1

d (x, ỹ) , πd (z)
)
, πd (z)

)
∣∣∣∇ugd

(
x,Cd,x

(
g−1

d (x, ỹ) , πd (z) ,
))∣∣∣ πd (z)

dỹ

where g−1
d (x, y) denotes the inverse of gd (x, u) with respect to its second argument and J is

the image of Bϵ

(
FY |Z,S=1 (y|z)

)
under u 7→ gd

(
x,C−1

d,x (u, πd (z))
)
. The change of variables

is possible because gd

(
x,C−1

d,x (u, πd (z))
)

is a bijection between Bϵ

(
FY |Z,S=1 (y|z)

)
and J .

Fix ϵ > 0 for t → 0. Then, we have that J ∩
[
y, y − t

(
h
(
FY |Z,S=1 (y|z) |z

)
− δ

)]
=[

y, y − t
(
h
(
FY |Z,S=1 (y|z) |z

)
− δ

)]
and

cd,x

(
Cd,x

(
g−1

d (x, ỹ) , πd (z)
)
, πd (z)

)
∣∣∣∇ugd

(
x,Cd,x

(
g−1

d (x, ỹ) , πd (z)
))∣∣∣ πd (z)

→
cd,x

(
FY |Z,S=1 (y|z) , πd (z)

)
∣∣∣∇ugd

(
x, FY |Z,S=1 (y|z)

)∣∣∣ πd (z)

as Cd,x

(
g−1

d (x, ỹ) , πd (z)
)

→ FY |Z,S=1 (y|z). Thus, Equation 29 is no greater than

[
−h

(
FY |Z,S=1 (y|z) |z

)
− δ

]
cd,x

(
FY |Z,S=1 (y|z) , πd (z)

)
∣∣∣∇ugd

(
x, FY |Z,S=1 (y|z)

)∣∣∣ πd (z)
+ o (1)
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By a similar argument,

[
−h

(
FY |Z,S=1 (y|z) |z

)
+ δ

]
cd,x

(
FY |Z,S=1 (y|z) , πd (z)

)
∣∣∣∇ugd

(
x, FY |Z,S=1 (y|z)

)∣∣∣ πd (z)
) + o (1)

bounds Equation 28 from below. Since δ > 0 can be made arbitrarily small, the desired

result follows.

To show that the result holds uniformly in (y, z) ∈ K, a compact subset of YZ, we use

Lemma B.4 in Chernozhukov et al. (2013). Take a sequence (yt, zt) in K that converges

to (y, z) ∈ K. Then, the preceding argument applies to this sequence, since the function
cd,x(FY |Z,S=1(y|z),πd(z))

|∇ugd(x,FY |Z,S=1(y|z))|πd(z)
is uniformly continuous on K. This result follows by the assumed

continuity of h (u|x), FY |Z,S=1 (y|z),
∣∣∣∇ugd

(
x, FY |Z,S=1 (y|z)

)∣∣∣ in both their arguments, of

cd,x (u, πd (z)), Cd,x (u, πd (z)) and gd (x, u) in u, as well as the compactness of K.

B.2 Solution to the Fredholm Integral Equation

Lemma 4. Let L (τ) = M1 (τ)L (τ) + M2 (τ) +
� 1

0 M3 (u)L (u) du be a Fredholm integral

equation of the second kind. Moreover, define M̃2 (τ) ≡ (I −M1 (τ))−1 M2 (τ) and M̃3 (τ) ≡

M3 (τ) (I −M1 (τ))−1. Let

(i) I −M1 (τ) is invertible ∀τ ∈ [0, 1]

(ii) limn→∞
[� 1

0 M̃3 (u) du
]n

= 0

Under (i)-(ii), the solution to this equation is given by

L (τ) = M̃2 (τ) + (I −M1 (τ))−1
(
I −

� 1

0
M̃3 (u) du

)−1 � 1

0
M̃3 (u)M2 (u) du
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Proof.

L (τ) = M1 (τ)L (τ) +M2 (τ) +
� 1

0
M3 (u)L (u) du

= M̃2 (τ) + (I −M1 (τ))−1
� 1

0
M3 (u)L (u) du

= M̃2 (τ) + (I −M1 (τ))−1
∞∑

n=0

[� 1

0
M̃3 (u) du

]n � 1

0
M̃3 (u)M2 (u) du

+ lim
n→∞

(I −M1 (τ))−1
[� 1

0
M̃3 (u) du

]n � 1

0
M3 (u)L (u) du

= M̃2 (τ) + (I −M1 (τ))−1
(
I −

� 1

0
M̃3 (u) du

)−1 � 1

0
M̃3 (u)M2 (u) du

where the second equality follows by (i), the third one by iteratively substituting L (u)

inside the integral, and the fourth one by (ii) and the following result: define S ≡ ∑∞
n=0 C

n,

and A, B and C be square matrices. Then, ASB − ACSB = A (I − C)SB = AB. If

I − C is invertible, then S = (I − C)−1. Premultiply both sides of the equation by A and

postmultiply them by B to obtain the desired result.

B.3 Argmax Process

Lemma 5. (Chernozhukov and Hansen, 2006) Suppose that uniformly in π in a compact set

Π and for a compact set K (i) Zn (π) is s.t. Qn (Zn (π) |π) ≥ supz∈K Qn (z|π) − ϵn, ϵ ↘ 0;

Zn (π) ∈ K wp → 1, (ii) Z∞ (π) ≡ arg supz∈K Q∞ (z|π) is a uniquely defined continuous

process in ℓ∞ (Π), (iii) Qn (τ |τ) p→ Q∞ (τ |τ) in ℓ∞ (K × Π), where Q∞ (τ |τ) is continuous.

Then Zn (τ) = Z∞ (τ) + oP (1) in ℓ∞ (Π)

Proof. See Chernozhukov and Hansen (2006).

B.4 Stochastic Expansion

Lemma 6. Under Assumptions 1-8, the following statements hold uniformly over d ∈ D:

1. sup(β,θ,γ,τ)∈B×Θ×Γ×T |En [qd (W,β, θ, γ, τ)] − E [qd (W,β, θ, γ, τ)]| = oP (1)
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2. Gnrd (W,β (τ) , θ, γ, τ) ⇒ ZRd
(τ) in ℓ∞ (T ), where ZRd

(τ) is a zero-mean Gaussian

process with covariance ΣRd
(τ, τ ′) defined below in the proof. Moreover, for any ϑ̂d (τ)

such that sup(τ,d)∈T ×D

∥∥∥ϑ̂d (τ) − ϑd (τ)
∥∥∥ = oP (1), the following holds:

sup
τ∈T

∥∥∥Gnrd

(
W, β̂ (τ) , θ̂, γ̂, τ

)
− Gnrd (W,β (τ) , θ, γ, τ)

∥∥∥ = oP (1)

Proof. Let F be the class of uniformly smooth functions in z with the uniform smoothness

order ω > dim(s,z)
2 and ∥f (τ ′, z) − f (τ, z)∥ < K (τ − τ ′)a forK > 0, a > 0, ∀ (z, τ, τ ′) ∀f ∈ F .

The bracketing number of F , by Corollary 2.7.4 in van der Vaart and Wellner (1996) satisfies

logN[·] (ϵ,F , L2 (P )) = O
(
ϵ− dim(z)

ω

)
= O

(
ϵ−2−δ

)

for some δ < 0. Therefore, F is Donsker with a constant envelope. By Corollary 2.7.4, the

bracketing number of

Dd ≡ {βd 7→ X ′βd, βd ∈ Bd}

satisfies

logN[·] (ϵ,Dd, L2 (P )) = O
(
ϵ− dim(s,x)

ω

)
= O

(
ϵ−2−δ′)

for some δ′ < 0 and d = 0, 1. Since the indicator function is bounded and monotone, and

the density functions fY |d,Z (y|z) are bounded by Assumption 4, the bracketing number of

Ed ≡ {βd 7→ 1 (Y < X ′βd) , βd ∈ Bd}

satisfies

logN[·] (ϵ, Ed, L2 (P )) = O
(
ϵ−2−δ′)
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Since Ed has a constant envelope, it is Donsker. Now consider the function Gd,x. By

Assumptions 6 and 9, the mean value theorem can be applied to show

∥Gd,x (τ, π (z, γ) ; θd) −Gd,x (τ ′, π (z, γ) ; θd)∥ = ∥τ − τ ′∥
∥∥∥∥∥ ∂∂τ Gd,x (τ ′′, π (z, γ) ; θd)

∥∥∥∥∥
for some τ ′′ between τ and τ ′. By Assumptions 6 and 9, the second term is bounded ∀z, τ ′′, d,

so it follows that Gd,x ∈ F .28 Let T ≡ {τ 7→ τ} and define

Hd ≡ {h = (β, θ, γ, τ) 7→ rd (W,β, θ, γ, τ) , (β, θ, γ) ∈ B × Θ × Γ}

The first subvector of Hd is Ed ×F −T ×F , the second subvector is Ed ×F −T ×F , and

the third subvector is F . Since Hd is Lipschitz over (T ,F , Ed), it follows that it is Donsker

by Theorem 2.10.6 in van der Vaart and Wellner (1996). Define

hd ≡ (β, θ, γ, τ) 7→ Gnrd (W,β, θ, γ, τ)

hd is Donsker in ℓ∞ (H). Consider the process

τ 7→ Gnrd (W,β, θ, γ, τ)

By the uniform Hölder continuity of τ 7→ (τ, β (τ)) in τ with respect to the supremum

norm, it is also Donsker in ℓ∞ (T ) for all d = 0, 1. This, together with Assumption 2 implies

Gnrd (W,β (τ) , θ, γ, τ) ⇒ √
pdZRd

(τ)

28To see this, notice that both ∂
∂τ Cd,x (τ, π) ∈ [0, 1] and πd (τ) ∈ [0, 1]. Hence, it suffices to show that

limπ→1
∂

∂τ Gd,x (τ, π) = limπ→1 Cd,x (τ, π) < ∞, where I have used L’Hôpital rule. Since the derivative is
bounded by Assumption 6, the result follows.
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with covariate function

ΣRd
(τ, τ ′) ≡ E

[
ZRd

(τ)ZRd′ (τ ′)′] =


Σ11

Rdd′ (τ, τ ′) Σ12
Rd′ (τ ′)′ 0

Σ12
Rd

(τ) Σ22
Rdd′ 0

0 0 Σ33
Rdd′



where

Σ11
Rdd′ (τ, τ ′) = E [S (Gd,X,τ ∧Gd′,X,τ ′ −Gd,X,τGd,X,τ ′)XX ′]

Σ12
Rd

(τ) = E
[
S

� 1

0
Xφ (u, Z)′ [Gd,X,τ ∧Gd′,X,u −Gd,X,τGd′,X,u] du

]

Σ22
Rdd′ = E

[� 1

0

� 1

0
φ (u, Z)φ (v, Z)′ [Gd,X,u ∧Gd′,X,v −Gd,X,uGd′,X,v] dvdu

]

Σ33
Rdd′ = E

[
sd (S, Z; γ) sd′ (S,Z; γ)′

]

where ∧ denotes the minimum between two variables, and Gd,X,τ ≡ Gd,X (τ, π (Z) ; θd).

Define ξ as the L2 (P ) pseudometric on Hd:

ξ
(
h̃d, hd

)
≡
√
E
∥∥∥rd

(
W, β̃, θ̃, γ̃, τ̃

)
− rd (W,β, θ, γ, τ)

∥∥∥2

Define δn ≡ supτ∈T ξ
(
h̃d (τ) , hd (τ)

)∣∣∣
h̃d(τ)=ĥd(τ)

. Since ϑ̂d (τ) p→ ϑd (τ) uniformly in τ for

all d = 0, 1, by Assumption 4, δn
p→ 0. Therefore, as δn

p→ 0,

sup
τ∈T

∥∥∥Gnrd

(
W, β̂, θ̂, γ̂, τ

)
− Gnrd (W,β, θ, γ, τ)

∥∥∥
≤ sup

ξ(h̃d,hd)≤δn

h̃d,hd∈Hd

∥∥∥Gnrd

(
W, β̂, θ̂, γ̂, τ

)
− Gnrd (W,β, θ, γ, τ)

∥∥∥ = oP (1)
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by stochastic equicontinuity of hd 7→ Gnrd (W,β, θ, γ, τ). Because the number of total groups

is finite, this proves claim 2. To prove claim 1, define

Ad ≡ {(β, θ, γ, τ) 7→ qd (W,β, θ, γ, τ)}

By Assumption 1, Ad is bounded, and it is also uniformly Lipschitz over B×Θ×Γ×T , so

by Theorem 2.10.6 in van der Vaart and Wellner (1996), Ad is Donsker. Hence, the following

ULLN holds:

sup
hd∈Hd

|Enqd (W,β, θ, γ, τ) − Eqd (W,β, θ, γ, τ)| p→ 0

which gives

sup
(β,θ,γ,τ)∈B×Θ×Γ×T

|Enqd (W,β, θ, γ, τ) − Eqd (W,β, θ, γ, τ)| p→ 0

Using the fact that the number of total groups is finite, it implies claim 1.

C Identification under a Parametric Assumption

Consider the following assumptions:

Assumption 11. (U, V ) is jointly statistically independent of Z1 given X = x.

Assumption 12. The bivariate distribution of (U, V ) given X = x is absolutely continuous

with respect to the Lebesgue measure, with standard uniform marginals and rectangular

support. Denote its cumulative distribution function as Cd,x (u, v).

Assumption 13. The conditional cdf FY ∗|X (y|x) and its inverse are strictly increasing. In

addition, Cd,x (u, v) is strictly increasing in u.

Assumption 14. πd (Z) ≡ P (S = 1|D = d, Z) > 0 with probability 1.
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Assumptions 11-14 are Assumptions A1-A4 from Arellano and Bonhomme (2017). They

are not enough to identify the SQF and the copula, but they can be used to put some

restrictions on the conditional copula, as they show in Lemma 1. Specifically, their Equation

6 can be written using this paper’s notation as:

FY |D=d,Z,S=1
(
F−1

Y |D=d,Z,S=1 (τ |z′) |z
)

= Gd,x

(
G−1

d,x (τ, πd (z′)) , πd (z)
)

(30)

where FY |D=d,Z,S=1 (τ |z) is the cdf of Y , conditional on D = d, Z = z, and S = 1. Point

identification is achieved when they assume either enough variation in the instrument such

that one can use an identification at infinity argument, or that the copula is real analytic

and the instrument displays some continuous variation. A feasible alternative would be to

impose the following parametric assumption:

Assumption 15. The copula Cd,x (τ, π) is known up to a scalar parameter θd,x ∈ Θd,x, for

d = 0, 1 and ∀x ∈ X . Cd,x : (0, 1)2 → (0, 1) is uniformly continuous and twice continuously

differentiable in its arguments and in θd,x a.e. Moreover, for any θ1 < θ2, Cd,x (τ, π; θ2) is

strictly more stochastically increasing in joint distribution than Cd,x (τ, π; θ1).

The identification under this assumption is established by the following proposition:

Proposition 1. Let Assumptions 11 to 15 hold, and x ∈ X . Then, for d = 0, 1, the functions

(τ, π) → Gd,x (τ, π) and τ → gd (x, τ) are globally identified.

Proof. The proof is split in parts. First, I show the local identification of θd,x, followed by

its global identification, and I conclude by showing the identification of the SQF.

Define the functions Md,x (τ, θd,x) ≡ Gd,x

(
G−1

d,x (τ, πd (z′) ; θd,x) , πd (z) ; θd,x

)
and ϕd,x (τ) ≡

FY |D=d.Z,S=1
(
F−1

Y |D=d,Z,S=1 (τ |z′) |z
)
. By Equation 30, Md,x (τ, θd,x) = ϕd,x (τ), ∀x ∈ X , d =

0, 1. Taking the derivative with respect to the copula parameter for a generic value of θ, and

dropping the (d, x) subscript from the functions M and ϕ and d from the propensity score
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for notational simplicity, yields

∇θM (τ, θ) = ∇θG
(
G−1 (τ, π (z′) ; θ) , π (z) ; θ

)
− ∇uG

(
G−1 (τ, π (z′) ; θ) , π (z) ; θ

) ∇θG (G−1 (τ, π (z′) ; θ) , π (z′) ; θ)
∇uG (G−1 (τ, π (z′) ; θ) , π (z′) ; θ) (31)

Because M (τ, θ) holds for any τ ∈ (0, 1), there is an continuum of moments that pin

down the parameter θ. Instead, consider a finite number of values of τ , given by {τ1, ..., τT }.

Local identification holds when the matrix that collects the Jacobian for all values in this

set is of full rank, as required by Theorem 6 in Rothenberg (1971). Because it is a scalar

parameter, full rank is attained if ∇θM (τ, θ) ̸= 0 for any of the values of τ , i.e.,

∇θG (G−1 (τ, π (z′) ; θ) , π (z) ; θ)
∇uG (G−1 (τ, π (z′) ; θ) , π (z) ; θ) − ∇θG (G−1 (τ, π (z′) ; θ) , π (z′) ; θ)

∇uG (G−1 (τ, π (z′) ; θ) , π (z′) ; θ) ̸= 0 (32)

Let τ ′ ≡ G−1 (τ, π (z′) ; θ) ⇔ τ = G (τ ′, π (z′) ; θ). Then, Equation 32 can be rewritten as

∇θG (τ ′, π (z) ; θ)
∇uG (τ ′, π (z) ; θ) − ∇θG (τ ′, π (z′) ; θ)

∇uG (τ ′, π (z′) ; θ) ̸= 0 (33)

By the definition of the conditional copula, ∇θG (τ, π; θ)/∇uG (τ, π; θ) = ∇θC (τ, π; θ)/∇uC (τ, π; θ),

so Equation 33 is equivalent to

∇θC (τ ′, π (z) ; θ)
∇uC (τ ′, π (z) ; θ) − ∇θC (τ ′, π (z′) ; θ)

∇uC (τ ′, π (z′) ; θ) ̸= 0 (34)

This is equivalent to the first equation in Condition 4.7 in Han and Vytlacil (2017).

By Lemma 4.1 in Han and Vytlacil (2017), under Assumption 15, if the copula Gd,x (τ, π)

satisfies Assumption 6 in Han and Vytlacil (2017), then Equation 34 is strictly decreasing

in the second argument of the copula. If π (z) ̸= π (z′), i.e., if the instrument does not

come from a degenerate distribution, then the copula parameter θd,x is locally identifiable

by Proposition 4.1 in Han and Vytlacil (2017).

For global identification, I begin by showing that it is possible to apply Lemma 4.2 in
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Han and Vytlacil (2017) on a restricted parameter space, extending it subsequently to the

entire parameter space. Note that Equation 31 can be rewritten as

∇θM (τ, θ) = ∇uG (τ ′, π (z) ; θ)
[

∇θG (τ ′, π (z) ; θ)
∇uG (τ ′, π (z) ; θ) − ∇θG (τ ′, π (z′) ; θ)

∇uG (τ ′, π (z′) ; θ)

]

where τ ′ ≡ G−1 (τ, π (z′) ; θ). By Lemma 4.1 in Han and Vytlacil (2017), the term in brackets

is positive when π (z) < π (z′). Moreover, ∇uG (τ, π; θ) = 1
π
∇uC (τ, π; θ) > 0. Therefore,

the Jacobian ∇θM (τ, θ) is positive semidefinite if π (z) < π (z′) and negative semidefinite if

π (z) > π (z′). In addition, it has full rank for any θ as long as π (z) ̸= π (z′).

Let Θc ⊆ Θ be a bounded open space with half spaces Θc1 ≡ {θ ∈ Θc : π (z) < π (z′)},

and Θc2 ≡ {θ ∈ Θc : π (z) > π (z′)}, which are simply connected. Define ϕc1 (τ) = M (τ,Θc1)

and ϕc2 (τ) = M (τ,Θc2), and let M |Θc1
: Θc1 → ϕc1 and M |Θc2

: Θc2 → ϕc2 be the function

M (τ, ·) on its restricted domains.

Because M |Θc1
(τ, ·) and M |Θc2

(τ, ·) are continuous, the pre-image of a closed set under

M |Θc1
(τ, ·) and M |Θc2

(τ, ·) is closed. Because Θc1 and Θc2 are bounded, the pre-image of a

bounded set is bounded. Thus, M |Θc1
(τ, ·) and M |Θc2

(τ, ·) are proper.

Because Θc1 and Θc2 are simply connected, M |Θc1
(τ, ·) and M |Θc2

(τ, ·) are continuous on

Θc1 and Θc2 , respectively, and the Jacobian ∇θM (τ, ·) is positive semidefinite and negative

semidefinite on Θc1 and Θc2 , respectively, it follows that ϕc1 and ϕc2 are simply connected.

Also, ∇θM (τ, ·) has full rank over Θc1 and Θc2 . Thus, by Lemma 4.2 in Han and Vytlacil

(2017), ϕ (τ) = M (τ, θ) has a unique solution on Θc1 and Θc2 , respectively. Because there

exist M |−1
Θc1

(τ, ·) ∈ Θc1 for ϕ ∈ ϕc1 and M |−1
Θc2

(τ, ·) ∈ Θc2 for ϕ ∈ ϕc2 , θ is globally identified.

Now let Θ1 ≡ {θ ∈ Θ : π (z) < π (z′)} and Θ2 ≡ {θ ∈ Θ : π (z) > π (z′)} be two simply

connected, possibly unbounded spaces. Θ1 and Θ2 can be represented as a countable union

of bounded open simply connected sets. E.g., Θj = ∪∞
i=1Θji, where Θji is a sequence of

bounded open simply connected sets in Θj such that Θj1 ⊂ Θj2 ⊂ ... ⊂ Θj for j = 1, 2.

Let ϕji (τ) ≡ M (τ,Θji) for i = 1, 2, ... and j = 1, 2. Then, ϕj (τ) = M (τ,Θj) =

M (τ,∪∞
i=1Θji) = ∪∞

i=1M (τ,Θij) = ∪∞
i=1ϕij (τ), and ϕj1 ⊂ ϕj2 ⊂ ... ⊂ ϕj. Then, for any
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given ϕ ∈ ϕj, ∃q : ϕ ∈ ϕji∀i ≥ q, so M |−1
Θcj

(τ, ϕ) ∈ Θji∀i ≥ q, and therefore M−1 (τ, ϕ) =

M |−1
∪∞

i=qΘji
(τ, ϕ) ∈ ∪∞

i=qΘji = Θj. Because M−1 (τ, ϕ) is the unique solution on Θj, it is the

unique solution of the full system with τ = {τ1, ..., τT }. Thus, θ is globally identified in Θj.

To show the identification of the SQF, note that by Equation 30, FY |D=d,Z,S=1 (gd (x, τ) |z) =

Gd,x (τ, π (z) ; θd,x). Therefore, one can solve for gd for d = 0, 1, and express it in terms of

either observed or identified functions: gd (x, τ) = F−1
Y |D=d,Z,S=1 (Gd,x (τ, π (z) ; θd,x)).

D Additional Theoretical Results

The estimators of Equations 4, 6 and 8 are given by

Ê
[
Y ℓ
]

= 1
ñh

n∑
i=1

� 1−ε

ε

ĝk (xi, u) dĈl,x (u, π̂m (zi)) 1 (di = h)

F̂ ℓ
Y (y) = 1

ñh

n∑
i=1

[
ε+

� 1−ε

ε

1 (ĝk (xi, u) ≤ y) dĈl,x (u, π̂m (zi)) + (1 − πm (zi))
]

1 (di = h)

Q̂ℓ
Y (τ) = inf

{
y : τ ≤ F̂ ℓ

Y (y)
}

where ñh = ∑n
i=1 1 (di = h). Under the same condition required for Theorem 1 to hold, these

estimators are consistent and asymptotically Gaussian:

Theorem 5. Let the estimator υ̂ℓ (z, τ, η) satisfy Condition 1. Under Assumptions 1-4, the

following hold for all (ℓ, ℓ′):

√
n∆ℓ,ℓ′ (Ê [Y ] − E [Y ]

)
⇒ Z∆ℓℓ′ Y

where Z∆ℓℓ′ Y is a zero-mean Gaussian random variable, and

√
n∆ℓ,ℓ′ (

Q̂Y (τ) −QY (τ)
)

⇒ ZQ,ℓℓ′ (τ)

where ZQ,ℓℓ′ (τ) is a zero-mean Gaussian process.
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Proof. Using the same argument used in Theorem 1, it is straightforward to show that

√
n∆ℓ,ℓ′ (Ê [Y ] − E [Y ]

)
⇒ ZY ℓ − ZY ℓ′ ≡ Z∆ℓℓ′ Y

where

Z∆ℓℓ′ Y =
�

Z

� 1−ε

ε

Zgk
(τ, x) dCl,x (τ |πm (z)) dF h

Z (z)

+
�

Z

� 1−ε

ε

gk (x, τ)Zcl
(τ, πm (z)) dτdF h

Z (z)

+
�

Z

� 1−ε

ε

gk (x, τ) d (∇πCl,x (τ |πm (z)))Zπm (z) dF h
Z (z)

+ √
phZZh

(� 1−ε

ε

gk (·, τ) dCl,x (τ |π (·))
)

Similarly,

√
n∆ℓ,ℓ′ (

Q̂Y (τ) −QY (τ)
)

⇒ ZQℓ
Y

(τ) − ZQℓ′
Y

(τ) ≡ ZQ,ℓℓ′ (τ)

where

ZQℓ
Y

(τ) = −
ZF ℓ

Y

(
Qℓ

Y (τ)
)

f ℓ
Y

(
Qℓ

Y (τ)
)

ZF ℓ
Y

(y) =
�

Z

(
F̂ ℓ

Y |Z (y|z) − F ℓ
Y |Z (y|z)

)
dF h

Z (z) +
�

Z
F ℓ

Y |Z (y|z) d
(
F̂ h

Z (z) − F h
Z (z)

)
⇒

�
Z
ZF ℓ

Y |X (y|z) dF h
Z (z) + √

phZZh

(
F ℓ

Y |Z (y|z)
)

ZF ℓ
Y |Z (y, z) = −fY |Z (y|z) 1

πm (z)cl,x (Cl,x (ũk (x, y) , πm (z)) , πm (z))x′Zβk

(
FY |Z (y|z)

)
+
� 1−ε

ε

1 (x′βk (τ) ≤ y)Zcl
(τ, πm (z)) dτ

+
[� 1−ε

ε

1 (x′βk (τ) ≤ y) ∇πcl,x (u, πm (z)) dτ − 1
]
Zπm (z)

and an analog version of Lemma 3 for the distribution of the entire population, i.e., FY |Z (y|z),

is applied.
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E Additional Results

E.1 Potential Outcomes for the Entire Population

Table 10 reports the potential earnings for the full population. Because the selection into

employment was negative in the early years of the sample and turned positive afterwards,

this distribution tends to be above the distribution of actual earnings for participants at

the beginning of the period, and below it towards the end. This is most evident for the

distributions of females. The different interquantile range measures (10-90th percentiles,

25-75th percentiles) are of a similar magnitude to those found in Table 6.

The decomposition of mean potential earnings for the entire population is reported in

Table 11. The gap displays an erratic behavior, driven by the coefficients component, that is

more variable than for the two main decompositions. Hence, this gap is more sensitive to the

QRS estimates, which may be less robust if the instrument used is weak for men. Regardless,

the endowments component switches sign over time, thus helping reduce the gender gap.

As it was the case for the mean, the decomposition of the unconditional distributions

of potential earnings for the entire population are quite similar to those found for actual

earnings for participants (Figure 6; Tables 12-16). Regarding its components, the coefficients

component is dominant. On the other hand, the endowments component has a slightly

increasing shape and is much smaller in magnitude. In the early years it was negative for

the left tail and positive for the majority of the distribution, and it has progressively become

more negative throughout the entire distribution, now contributing the the reduction of the

gap.
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Table 10: Potential earnings distributions for the full population by gender (Frank copula)
Male Female

Year Mean P10 P25 P50 P75 P90 Mean P10 P25 P50 P75 P90
1976 2.80 2.11 2.48 2.84 3.15 3.40 2.38 1.80 2.08 2.39 2.68 2.92
1977 2.77 2.06 2.44 2.81 3.13 3.38 2.37 1.80 2.07 2.37 2.67 2.91
1978 2.80 2.08 2.46 2.83 3.16 3.41 2.31 1.72 2.00 2.31 2.61 2.86
1979 2.82 2.10 2.47 2.85 3.18 3.43 2.31 1.74 2.02 2.31 2.61 2.87
1980 2.80 2.09 2.46 2.84 3.16 3.42 2.32 1.76 2.02 2.31 2.61 2.87
1981 2.75 2.02 2.40 2.78 3.11 3.37 2.29 1.73 2.00 2.29 2.58 2.85
1982 2.72 1.98 2.36 2.75 3.09 3.36 2.25 1.67 1.94 2.24 2.55 2.82
1983 2.66 1.89 2.27 2.69 3.06 3.34 2.22 1.61 1.89 2.21 2.53 2.80
1984 2.61 1.80 2.21 2.64 3.02 3.31 2.31 1.68 1.98 2.31 2.63 2.90
1985 2.68 1.88 2.29 2.72 3.09 3.37 2.28 1.63 1.93 2.27 2.61 2.89
1986 2.69 1.88 2.29 2.72 3.10 3.38 2.25 1.59 1.90 2.24 2.59 2.89
1987 2.71 1.90 2.31 2.74 3.12 3.42 2.23 1.53 1.86 2.22 2.59 2.90
1988 2.65 1.81 2.24 2.68 3.07 3.37 2.29 1.58 1.92 2.30 2.65 2.95
1989 2.63 1.80 2.22 2.66 3.05 3.36 2.31 1.60 1.93 2.30 2.66 2.97
1990 2.62 1.78 2.20 2.64 3.04 3.36 2.24 1.49 1.84 2.23 2.61 2.94
1991 2.61 1.78 2.19 2.63 3.03 3.35 2.30 1.59 1.92 2.30 2.66 2.97
1992 2.59 1.75 2.17 2.61 3.02 3.33 2.30 1.59 1.91 2.29 2.66 2.98
1993 2.49 1.60 2.03 2.51 2.94 3.28 2.29 1.57 1.90 2.29 2.67 2.98
1994 2.48 1.60 2.03 2.50 2.94 3.28 2.26 1.52 1.86 2.26 2.65 2.97
1995 2.49 1.59 2.02 2.50 2.94 3.29 2.23 1.47 1.81 2.22 2.63 2.97
1996 2.62 1.78 2.18 2.62 3.03 3.37 2.23 1.46 1.81 2.22 2.62 2.97
1997 2.60 1.77 2.17 2.61 3.01 3.35 2.26 1.50 1.83 2.24 2.64 2.99
1998 2.51 1.63 2.05 2.52 2.95 3.31 2.27 1.52 1.86 2.26 2.65 2.99
1999 2.68 1.85 2.26 2.68 3.08 3.43 2.29 1.52 1.86 2.27 2.68 3.02
2000 2.70 1.86 2.27 2.70 3.10 3.46 2.35 1.59 1.94 2.34 2.74 3.08
2001 2.74 1.92 2.30 2.73 3.13 3.52 2.40 1.64 1.99 2.39 2.77 3.11
2002 2.71 1.88 2.27 2.69 3.10 3.49 2.40 1.64 1.99 2.39 2.77 3.12
2003 2.71 1.88 2.27 2.70 3.11 3.49 2.34 1.56 1.91 2.33 2.74 3.09
2004 2.72 1.88 2.28 2.71 3.12 3.51 2.36 1.57 1.93 2.34 2.75 3.10
2005 2.72 1.88 2.27 2.70 3.12 3.51 2.34 1.55 1.91 2.33 2.75 3.10
2006 2.79 1.95 2.33 2.76 3.19 3.59 2.37 1.58 1.94 2.35 2.76 3.11
2007 2.70 1.87 2.25 2.68 3.11 3.50 2.30 1.48 1.84 2.29 2.72 3.10
2008 2.72 1.89 2.28 2.70 3.13 3.51 2.30 1.48 1.85 2.29 2.72 3.09
2009 2.61 1.73 2.15 2.59 3.03 3.43 2.31 1.49 1.87 2.30 2.72 3.09
2010 2.53 1.61 2.03 2.51 2.97 3.39 2.32 1.49 1.86 2.30 2.73 3.12
2011 2.64 1.79 2.18 2.63 3.07 3.46 2.26 1.39 1.79 2.24 2.70 3.08
2012 2.49 1.56 1.99 2.48 2.96 3.38 2.27 1.44 1.81 2.25 2.69 3.08
2013 2.66 1.79 2.20 2.64 3.09 3.48 2.30 1.46 1.84 2.28 2.72 3.11
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Table 11: Mean decomposition, potential earnings for the full population (Frank copula)
Year Total EC CC Year Total EC CC
1976 0.43 0.01 0.41 1995 0.25 0.00 0.25
1977 0.40 0.01 0.39 1996 0.39 0.00 0.39
1978 0.49 0.01 0.48 1997 0.35 -0.01 0.36
1979 0.50 0.01 0.49 1998 0.24 -0.01 0.25
1980 0.48 0.01 0.48 1999 0.40 -0.01 0.40
1981 0.45 0.00 0.45 2000 0.34 -0.01 0.35
1982 0.47 0.01 0.46 2001 0.35 -0.01 0.36
1983 0.45 0.01 0.44 2002 0.31 -0.01 0.32
1984 0.30 0.01 0.29 2003 0.37 -0.02 0.38
1985 0.41 0.01 0.40 2004 0.36 -0.02 0.39
1986 0.44 0.01 0.43 2005 0.37 -0.02 0.40
1987 0.48 0.01 0.47 2006 0.42 -0.03 0.45
1988 0.36 0.01 0.35 2007 0.40 -0.03 0.43
1989 0.33 0.01 0.32 2008 0.42 -0.03 0.45
1990 0.38 0.01 0.37 2009 0.29 -0.04 0.33
1991 0.31 0.00 0.30 2010 0.21 -0.04 0.25
1992 0.29 0.00 0.29 2011 0.38 -0.04 0.42
1993 0.20 0.00 0.19 2012 0.22 -0.04 0.26
1994 0.22 0.00 0.22 2013 0.36 -0.04 0.40

Notes: Total, EC and CC respectively denote total difference,
endowments component and coefficients component.
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Figure 6: Unconditional quantiles decompositions, potential earnings for the full population
(Frank copula)
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Notes: the solid thick blue line denotes the total gap between male and female workers; the solid thin red
line denotes the endowments component; the dashed green line denotes the coefficients component.
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Table 12: 10th percentile decomposition, potential earnings for the full population (Frank
copula)

Year Total EC CC Year Total EC CC
1976 0.31 -0.01 0.32 1995 0.12 -0.03 0.15
1977 0.26 -0.01 0.27 1996 0.32 -0.03 0.34
1978 0.35 -0.01 0.36 1997 0.27 -0.03 0.30
1979 0.36 0.00 0.36 1998 0.10 -0.03 0.13
1980 0.33 -0.01 0.34 1999 0.34 -0.03 0.36
1981 0.29 -0.01 0.31 2000 0.27 -0.03 0.29
1982 0.31 -0.01 0.32 2001 0.28 -0.03 0.31
1983 0.28 -0.02 0.30 2002 0.24 -0.03 0.27
1984 0.12 -0.02 0.14 2003 0.31 -0.04 0.35
1985 0.25 -0.02 0.27 2004 0.31 -0.04 0.35
1986 0.29 -0.01 0.31 2005 0.33 -0.04 0.37
1987 0.37 -0.02 0.38 2006 0.36 -0.04 0.41
1988 0.23 -0.02 0.25 2007 0.39 -0.04 0.43
1989 0.20 -0.01 0.21 2008 0.42 -0.05 0.46
1990 0.30 -0.01 0.31 2009 0.24 -0.05 0.29
1991 0.19 -0.02 0.21 2010 0.12 -0.05 0.17
1992 0.16 -0.02 0.18 2011 0.40 -0.05 0.45
1993 0.03 -0.02 0.05 2012 0.12 -0.05 0.17
1994 0.08 -0.03 0.11 2013 0.34 -0.05 0.38

Notes: Total, EC and CC respectively denote total difference,
endowments component and coefficients component.
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Table 13: 25th percentile decomposition, potential earnings for the full population (Frank
copula)

Year Total EC CC Year Total EC CC
1976 0.40 0.00 0.40 1995 0.21 -0.02 0.24
1977 0.36 0.00 0.37 1996 0.37 -0.02 0.39
1978 0.45 0.00 0.45 1997 0.34 -0.02 0.36
1979 0.45 0.00 0.45 1998 0.19 -0.03 0.22
1980 0.44 0.00 0.44 1999 0.40 -0.02 0.42
1981 0.40 -0.01 0.41 2000 0.32 -0.02 0.35
1982 0.41 0.00 0.42 2001 0.31 -0.03 0.34
1983 0.38 -0.01 0.39 2002 0.28 -0.03 0.30
1984 0.22 -0.01 0.23 2003 0.36 -0.03 0.39
1985 0.36 -0.01 0.36 2004 0.35 -0.04 0.39
1986 0.40 -0.01 0.40 2005 0.36 -0.04 0.40
1987 0.45 -0.01 0.46 2006 0.39 -0.04 0.43
1988 0.31 0.00 0.32 2007 0.40 -0.05 0.45
1989 0.28 0.00 0.29 2008 0.43 -0.05 0.47
1990 0.36 -0.01 0.36 2009 0.28 -0.05 0.33
1991 0.26 -0.01 0.28 2010 0.17 -0.05 0.22
1992 0.26 -0.01 0.27 2011 0.39 -0.05 0.43
1993 0.13 -0.01 0.14 2012 0.18 -0.05 0.23
1994 0.16 -0.02 0.18 2013 0.36 -0.05 0.41

Notes: Total, EC and CC respectively denote total difference,
endowments component and coefficients component.
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Table 14: 50th percentile decomposition, potential earnings for the full population (Frank
copula)

Year Total EC CC Year Total EC CC
1976 0.45 0.01 0.44 1995 0.28 0.00 0.28
1977 0.44 0.01 0.43 1996 0.40 -0.01 0.41
1978 0.53 0.01 0.52 1997 0.37 -0.01 0.37
1979 0.54 0.01 0.53 1998 0.26 -0.01 0.27
1980 0.53 0.01 0.52 1999 0.41 -0.01 0.42
1981 0.50 0.00 0.49 2000 0.35 -0.01 0.36
1982 0.51 0.00 0.51 2001 0.34 -0.02 0.35
1983 0.48 0.00 0.48 2002 0.31 -0.01 0.32
1984 0.33 0.01 0.32 2003 0.37 -0.02 0.39
1985 0.44 0.01 0.44 2004 0.36 -0.03 0.39
1986 0.48 0.01 0.47 2005 0.37 -0.03 0.40
1987 0.53 0.01 0.52 2006 0.41 -0.03 0.44
1988 0.38 0.01 0.37 2007 0.39 -0.04 0.43
1989 0.36 0.01 0.35 2008 0.42 -0.04 0.45
1990 0.41 0.01 0.40 2009 0.30 -0.04 0.34
1991 0.33 0.00 0.33 2010 0.21 -0.04 0.25
1992 0.32 0.00 0.32 2011 0.38 -0.04 0.43
1993 0.22 0.00 0.22 2012 0.23 -0.04 0.27
1994 0.24 0.00 0.24 2013 0.36 -0.04 0.41

Notes: Total, EC and CC respectively denote total difference,
endowments component and coefficients component.
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Table 15: 75th percentile decomposition, potential earnings for the full population (Frank
copula)

Year Total EC CC Year Total EC CC
1976 0.47 0.02 0.45 1995 0.31 0.02 0.29
1977 0.46 0.02 0.45 1996 0.41 0.01 0.40
1978 0.55 0.02 0.53 1997 0.37 0.01 0.37
1979 0.57 0.02 0.55 1998 0.30 0.00 0.29
1980 0.56 0.02 0.54 1999 0.40 0.01 0.39
1981 0.53 0.01 0.52 2000 0.36 0.00 0.36
1982 0.54 0.02 0.53 2001 0.36 0.00 0.36
1983 0.53 0.02 0.51 2002 0.33 0.00 0.33
1984 0.39 0.02 0.37 2003 0.37 0.00 0.38
1985 0.48 0.02 0.46 2004 0.37 -0.01 0.38
1986 0.51 0.02 0.49 2005 0.38 -0.01 0.39
1987 0.53 0.02 0.51 2006 0.43 -0.02 0.45
1988 0.43 0.03 0.40 2007 0.39 -0.02 0.41
1989 0.39 0.02 0.36 2008 0.41 -0.02 0.44
1990 0.43 0.03 0.40 2009 0.31 -0.03 0.34
1991 0.36 0.02 0.35 2010 0.25 -0.03 0.28
1992 0.35 0.02 0.33 2011 0.37 -0.03 0.40
1993 0.28 0.02 0.26 2012 0.27 -0.03 0.30
1994 0.29 0.02 0.27 2013 0.37 -0.03 0.40

Notes: Total, EC and CC respectively denote total difference,
endowments component and coefficients component.
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Table 16: 90th percentile decomposition, potential earnings for the full population (Frank
copula)

Year Total EC CC Year Total EC CC
1976 0.48 0.03 0.45 1995 0.32 0.03 0.29
1977 0.47 0.03 0.44 1996 0.40 0.02 0.38
1978 0.55 0.03 0.52 1997 0.37 0.02 0.35
1979 0.57 0.03 0.54 1998 0.32 0.01 0.30
1980 0.55 0.03 0.52 1999 0.40 0.02 0.38
1981 0.52 0.02 0.50 2000 0.38 0.02 0.37
1982 0.54 0.03 0.51 2001 0.41 0.01 0.40
1983 0.54 0.03 0.50 2002 0.37 0.01 0.36
1984 0.42 0.03 0.38 2003 0.40 0.01 0.39
1985 0.48 0.04 0.45 2004 0.40 0.00 0.40
1986 0.49 0.04 0.46 2005 0.41 0.00 0.41
1987 0.51 0.04 0.48 2006 0.48 0.00 0.48
1988 0.42 0.04 0.39 2007 0.41 -0.01 0.42
1989 0.39 0.04 0.36 2008 0.41 -0.01 0.43
1990 0.42 0.04 0.38 2009 0.34 -0.02 0.36
1991 0.38 0.03 0.35 2010 0.27 -0.02 0.30
1992 0.36 0.03 0.32 2011 0.38 -0.02 0.40
1993 0.30 0.03 0.27 2012 0.29 -0.02 0.32
1994 0.31 0.03 0.28 2013 0.38 -0.02 0.40

Notes: Total, EC and CC respectively denote total difference,
endowments component and coefficients component.
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E.2 Generalized Entropy Measures of the Gap

I report the generalized entropy measures recommended by Maasoumi and Wang (2019) for

the three populations considered. For the sake of brevity, I only comment the normalization

of the Bhattacharya-Matusita-Hellinger measure, denoted by Sρ, and the normalized and

symmetrized Kullback-Leibler-Theil measure, denoted by Theil.

Table 17 shows the estimates of these measures for the distributions of actual earnings

for participants, and both of them experience a steady decrease over time, suggesting an

important convergence between the distributions of both genders. These results are similar

if one considers the entire population (Table 18), with two main differences: the values of

these measures are larger when one considers the entire population, and the reduction of the

measures has also been more pronounced. The explanation for these differences lies in the

large reduction of the participation rates between genders.

Finally, the behavior of the generalized entropy measures is also more volatile for the

potential outcomes than for the actual outcomes. Regardless, the long-term trend is a

marked decrease, pointing at a reduction in earnings differences between men and women.
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Table 17: Generalized entropy measures of the gap, actual earnings for participants (Frank
copula)
Year Sρ Theil k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5 k = 0.6 k = 0.7 k = 0.8 k = 0.9
1976 13.5 129.5 8.4 13.2 17.5 21.9 26.9 32.9 40.7 52.7 75.3
1977 12.3 109.4 7.3 11.8 15.8 20.0 24.6 30.0 36.9 47.2 65.8
1978 10.8 51.3 4.8 9.1 13.3 17.5 21.8 26.2 31.1 36.5 43.1
1979 10.9 49.8 4.7 9.1 13.3 17.5 21.8 26.3 31.1 36.4 42.7
1980 10.5 45.7 4.4 8.7 12.8 16.9 21.1 25.4 29.9 34.7 39.9
1981 10.1 60.5 4.9 8.8 12.5 16.3 20.2 24.4 29.2 35.2 44.0
1982 9.7 49.8 4.5 8.4 12.1 15.8 19.6 23.7 28.2 33.5 40.5
1983 8.5 41.0 4.1 7.6 10.9 14.2 17.7 21.3 25.4 30.3 37.3
1984 7.8 49.1 4.1 7.2 10.0 13.0 16.0 19.4 23.4 28.7 37.3
1985 7.1 35.8 3.4 6.2 8.9 11.7 14.5 17.5 20.9 24.9 30.5
1986 6.3 28.1 3.1 5.6 8.2 10.7 13.3 16.1 19.1 22.5 27.5
1987 5.7 23.7 3.0 5.3 7.7 10.0 12.5 15.1 17.9 21.3 26.8
1988 5.3 23.4 2.9 5.1 7.3 9.5 11.8 14.2 17.0 20.4 26.0
1989 5.1 22.8 2.9 5.0 7.1 9.2 11.4 13.8 16.5 20.0 25.9
1990 4.4 19.2 2.9 4.8 6.7 8.6 10.7 13.0 15.6 19.1 25.9
1991 3.8 15.8 2.1 3.7 5.3 7.0 8.6 10.4 12.4 15.0 19.3
1992 3.4 14.2 2.0 3.5 5.0 6.5 8.0 9.7 11.6 14.0 18.3
1993 3.1 13.0 2.3 3.6 5.0 6.5 8.0 9.7 11.7 14.5 20.3
1994 2.7 11.1 2.1 3.3 4.5 5.8 7.2 8.7 10.6 13.2 18.9
1995 2.6 10.5 2.2 3.4 4.6 5.9 7.2 8.8 10.7 13.5 19.8
1996 2.4 9.7 2.2 3.3 4.4 5.6 6.9 8.4 10.3 13.0 19.4
1997 2.3 9.2 2.2 3.2 4.4 5.5 6.8 8.3 10.2 13.0 19.6
1998 2.4 9.7 2.7 3.9 5.2 6.5 8.0 9.7 12.0 15.7 24.7
1999 2.3 9.5 2.3 3.4 4.6 5.8 7.1 8.7 10.7 13.7 20.9
2000 2.1 8.6 2.3 3.3 4.4 5.5 6.8 8.3 10.3 13.3 20.6
2001 1.9 7.6 2.3 3.3 4.3 5.3 6.6 8.0 9.9 13.0 20.8
2002 1.7 6.8 2.5 3.3 4.3 5.3 6.6 8.0 10.0 13.4 22.1
2003 1.6 6.4 2.6 3.4 4.4 5.4 6.6 8.1 10.2 13.8 23.1
2004 1.5 5.9 2.4 3.2 4.1 5.0 6.1 7.5 9.5 12.8 21.5
2005 1.5 5.9 2.3 3.1 4.0 5.0 6.1 7.5 9.4 12.6 21.1
2006 1.5 6.0 2.0 2.8 3.6 4.5 5.5 6.7 8.4 11.1 18.2
2007 1.3 5.2 2.5 3.3 4.1 5.0 6.1 7.5 9.5 13.0 22.4
2008 1.4 5.8 2.4 3.1 4.0 4.9 6.0 7.3 9.3 12.6 21.4
2009 1.3 5.2 2.6 3.4 4.3 5.2 6.4 7.9 10.0 13.7 23.8
2010 1.1 4.6 3.0 3.8 4.7 5.7 6.9 8.6 10.9 15.3 27.4
2011 1.3 5.5 2.7 3.4 4.3 5.3 6.4 7.9 10.0 13.8 24.0
2012 1.1 4.3 3.0 3.8 4.6 5.6 6.8 8.5 10.8 15.2 27.4
2013 1.1 4.3 2.3 3.0 3.7 4.6 5.6 6.8 8.7 12.0 21.0
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Table 18: Generalized entropy measures of the gap, actual earnings for the full population
(Frank copula)
Year Sρ Theil k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5 k = 0.6 k = 0.7 k = 0.8 k = 0.9
1976 11.3 50.2 5.3 9.9 14.4 18.9 23.5 28.3 33.6 39.7 47.7
1977 11.0 51.1 5.3 9.8 14.2 18.5 23.0 27.8 33.1 39.3 48.1
1978 10.9 52.3 5.4 9.9 14.2 18.5 23.0 27.7 33.1 39.5 48.9
1979 10.9 51.2 5.3 9.8 14.1 18.4 22.8 27.6 32.9 39.2 48.1
1980 10.0 45.6 4.9 9.0 13.0 17.0 21.1 25.4 30.2 35.9 43.9
1981 9.2 43.5 4.5 8.3 11.9 15.6 19.4 23.4 27.8 33.1 40.8
1982 8.5 43.2 4.5 7.9 11.3 14.6 18.1 21.9 26.3 31.7 40.1
1983 7.1 34.0 3.8 6.7 9.6 12.4 15.4 18.6 22.3 26.9 34.2
1984 6.2 27.9 3.3 5.9 8.4 10.9 13.6 16.4 19.6 23.5 29.8
1985 6.1 29.9 3.4 5.9 8.4 10.9 13.5 16.3 19.5 23.6 30.6
1986 5.8 25.8 3.2 5.7 8.1 10.5 13.0 15.8 18.8 22.6 28.9
1987 5.4 22.7 3.1 5.3 7.6 9.9 12.3 14.9 17.7 21.4 27.6
1988 5.0 21.7 3.0 5.1 7.2 9.3 11.6 14.0 16.8 20.3 26.8
1989 4.7 20.9 2.9 4.9 6.9 9.0 11.1 13.5 16.2 19.7 26.3
1990 4.6 19.9 2.9 4.9 6.9 9.0 11.1 13.4 16.1 19.7 26.5
1991 4.1 16.9 2.5 4.3 6.0 7.8 9.7 11.7 14.1 17.1 22.8
1992 3.6 14.7 2.3 3.9 5.4 7.0 8.7 10.5 12.6 15.4 20.8
1993 3.2 13.4 2.2 3.7 5.1 6.6 8.1 9.8 11.9 14.6 20.2
1994 3.1 12.5 2.2 3.5 4.9 6.3 7.8 9.4 11.4 14.0 19.5
1995 3.1 12.6 2.2 3.6 5.0 6.4 7.9 9.6 11.6 14.4 20.2
1996 2.9 11.8 2.4 3.7 5.1 6.5 8.0 9.7 11.8 14.9 21.7
1997 2.7 11.1 2.4 3.6 4.9 6.3 7.8 9.4 11.5 14.6 21.5
1998 2.8 11.3 2.6 3.9 5.2 6.6 8.2 10.0 12.2 15.6 23.3
1999 2.8 11.5 2.6 3.9 5.2 6.7 8.2 10.0 12.2 15.6 23.2
2000 2.6 10.5 2.6 3.9 5.2 6.5 8.0 9.8 12.0 15.5 23.7
2001 2.4 9.9 2.7 3.9 5.2 6.6 8.1 9.8 12.1 15.8 24.7
2002 2.3 9.4 2.8 3.9 5.1 6.5 7.9 9.7 12.0 15.7 24.9
2003 2.1 8.5 2.6 3.7 4.8 6.0 7.4 9.0 11.2 14.7 23.5
2004 2.0 8.0 2.5 3.5 4.5 5.7 7.0 8.5 10.6 13.9 22.2
2005 2.0 8.1 2.5 3.5 4.5 5.7 7.0 8.5 10.6 13.9 22.2
2006 1.9 7.7 2.4 3.3 4.4 5.5 6.7 8.2 10.2 13.4 21.4
2007 1.9 7.6 2.5 3.5 4.5 5.7 6.9 8.5 10.6 14.0 22.7
2008 1.8 7.2 2.4 3.3 4.3 5.3 6.5 8.0 10.0 13.2 21.5
2009 1.7 6.8 2.4 3.3 4.3 5.3 6.5 7.9 9.9 13.2 21.8
2010 1.3 5.2 2.3 3.1 3.9 4.8 5.8 7.2 9.1 12.3 21.0
2011 1.3 5.4 2.2 2.9 3.7 4.6 5.6 6.9 8.6 11.6 19.5
2012 1.4 5.6 2.4 3.1 4.0 4.9 6.0 7.4 9.3 12.6 21.3
2013 1.4 5.8 2.2 3.0 3.8 4.8 5.8 7.2 9.0 12.0 20.1
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Table 19: Generalized entropy measures of the gap, potential earnings for the full population
(Frank copula)
Year Sρ Theil k = 0.1 k = 0.2 k = 0.3 k = 0.4 k = 0.5 k = 0.6 k = 0.7 k = 0.8 k = 0.9
1976 11.2 49.5 5.0 9.5 13.9 18.4 22.8 27.5 32.5 38.1 44.8
1977 10.5 50.6 4.8 9.0 13.1 17.2 21.4 25.8 30.6 36.0 43.1
1978 14.0 69.0 6.5 12.1 17.5 22.9 28.4 34.3 40.8 48.3 58.1
1979 14.6 71.3 6.7 12.5 18.2 23.8 29.6 35.7 42.4 50.2 60.1
1980 13.9 64.3 6.1 11.7 17.1 22.5 28.0 33.7 39.9 46.8 55.2
1981 12.4 59.9 5.5 10.4 15.2 19.9 24.7 29.8 35.4 41.6 49.3
1982 12.5 65.4 5.9 10.8 15.6 20.4 25.3 30.6 36.4 43.4 52.8
1983 10.6 50.4 4.8 9.0 13.1 17.2 21.4 25.8 30.5 36.0 42.9
1984 5.9 26.8 2.6 5.0 7.3 9.6 11.9 14.3 16.9 19.8 23.4
1985 8.6 43.3 4.1 7.5 10.9 14.2 17.7 21.3 25.4 30.1 36.7
1986 9.0 39.9 4.0 7.7 11.2 14.8 18.4 22.2 26.2 30.6 36.3
1987 9.5 40.3 4.3 8.1 11.9 15.7 19.6 23.6 27.8 32.5 38.3
1988 6.0 26.2 2.7 5.2 7.6 10.0 12.4 14.9 17.6 20.7 24.7
1989 5.1 22.8 2.4 4.5 6.5 8.6 10.6 12.8 15.2 17.9 21.6
1990 5.8 24.8 2.6 5.0 7.3 9.6 12.0 14.4 17.0 19.9 23.7
1991 4.3 17.8 1.9 3.7 5.4 7.1 8.8 10.6 12.5 14.6 17.3
1992 3.9 16.1 1.8 3.3 4.9 6.5 8.1 9.8 11.5 13.4 15.8
1993 2.4 10.0 1.1 2.1 3.0 4.0 5.0 6.0 7.1 8.3 9.8
1994 2.4 10.0 1.1 2.1 3.1 4.0 5.0 6.1 7.1 8.3 9.8
1995 2.6 10.6 1.2 2.2 3.3 4.3 5.4 6.5 7.7 8.9 10.7
1996 5.0 20.4 2.7 4.8 6.9 9.0 11.2 13.5 16.1 19.2 24.6
1997 4.1 16.9 2.4 4.1 5.9 7.7 9.5 11.5 13.7 16.5 21.4
1998 2.4 9.6 1.6 2.6 3.7 4.7 5.9 7.1 8.5 10.5 14.4
1999 5.1 20.8 3.0 5.1 7.3 9.5 11.8 14.3 17.1 20.6 27.0
2000 3.8 15.6 2.8 4.4 6.2 7.9 9.8 11.9 14.4 17.7 24.8
2001 3.7 14.9 3.1 4.8 6.5 8.3 10.3 12.5 15.2 19.3 28.3
2002 3.0 12.1 2.7 4.1 5.5 7.1 8.7 10.6 12.9 16.4 24.6
2003 4.1 16.8 3.1 4.9 6.8 8.7 10.7 13.0 15.8 19.6 27.6
2004 4.0 16.6 3.1 4.9 6.7 8.6 10.6 12.9 15.6 19.4 27.5
2005 4.2 17.2 3.1 5.0 6.9 8.9 11.0 13.3 16.1 20.0 28.2
2006 5.0 20.7 4.0 6.2 8.6 11.0 13.5 16.4 20.0 25.0 36.0
2007 4.6 19.0 3.3 5.3 7.4 9.5 11.8 14.3 17.2 21.3 29.7
2008 5.4 23.6 3.6 5.9 8.3 10.7 13.2 16.0 19.3 23.8 32.6
2009 2.5 10.2 2.1 3.3 4.5 5.7 7.0 8.5 10.4 13.1 19.2
2010 1.3 5.1 1.6 2.2 2.9 3.6 4.4 5.4 6.7 8.8 14.0
2011 4.4 19.8 3.0 4.9 6.8 8.7 10.8 13.1 15.8 19.5 27.0
2012 1.4 5.6 1.6 2.3 3.0 3.8 4.6 5.7 7.0 9.1 14.4
2013 3.7 15.3 2.9 4.5 6.2 8.0 9.9 12.0 14.6 18.2 25.9
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E.3 Specification as in Maasoumi and Wang (2019)

The main specification difference relative to Maasoumi and Wang (2019) is the inclusion of

the covariate number of children in the quantile regressions. Tables 20-26 show the estimates

when this variable is not included. Relative to the baseline specification, the distributions

of actual earnings for participants are almost unaltered for both genders. However, the

decomposition presents some differences. Specifically, the coefficients components has been

between 0.05 and 0.15 points larger than in the baseline specification, presenting some

volatility across time. In contrast, the selection and participation components are smaller.

The former accounts to about two thirds of the magnitude of the change in the coefficients

component, whereas the latter accounts for approximately the remaining third. Finally, the

endowments component has remained almost unaltered.

90



Table 20: Actual earnings distributions for participants by gender (Frank copula)
Male Female

Year Mean P10 P25 P50 P75 P90 Mean P10 P25 P50 P75 P90
1976 2.72 2.03 2.40 2.77 3.09 3.35 2.31 1.76 2.01 2.31 2.61 2.87
1977 2.73 2.03 2.40 2.78 3.10 3.37 2.33 1.79 2.04 2.33 2.63 2.89
1978 2.73 2.03 2.40 2.78 3.12 3.38 2.33 1.78 2.04 2.33 2.64 2.90
1979 2.75 2.05 2.40 2.79 3.13 3.39 2.34 1.80 2.05 2.34 2.64 2.91
1980 2.73 2.03 2.39 2.78 3.12 3.38 2.33 1.80 2.05 2.33 2.63 2.90
1981 2.68 1.97 2.34 2.73 3.07 3.34 2.30 1.76 2.01 2.30 2.60 2.87
1982 2.67 1.95 2.31 2.71 3.06 3.34 2.28 1.73 1.99 2.28 2.59 2.87
1983 2.65 1.91 2.28 2.70 3.07 3.36 2.29 1.72 1.99 2.29 2.61 2.89
1984 2.65 1.90 2.28 2.70 3.07 3.38 2.31 1.71 1.99 2.32 2.64 2.92
1985 2.66 1.88 2.28 2.71 3.08 3.38 2.32 1.70 1.99 2.33 2.66 2.94
1986 2.66 1.88 2.28 2.71 3.09 3.39 2.33 1.70 2.00 2.34 2.68 2.97
1987 2.68 1.89 2.29 2.73 3.11 3.42 2.36 1.71 2.02 2.37 2.72 3.02
1988 2.68 1.89 2.29 2.72 3.11 3.42 2.37 1.70 2.03 2.38 2.73 3.03
1989 2.68 1.90 2.30 2.73 3.11 3.43 2.37 1.71 2.02 2.38 2.74 3.04
1990 2.67 1.89 2.29 2.71 3.10 3.43 2.37 1.70 2.03 2.39 2.75 3.06
1991 2.64 1.86 2.25 2.67 3.07 3.40 2.37 1.71 2.02 2.38 2.74 3.05
1992 2.62 1.83 2.23 2.67 3.06 3.39 2.37 1.70 2.01 2.38 2.74 3.06
1993 2.62 1.83 2.22 2.66 3.06 3.39 2.38 1.70 2.01 2.39 2.76 3.07
1994 2.60 1.80 2.19 2.64 3.04 3.39 2.37 1.67 2.01 2.39 2.76 3.08
1995 2.60 1.80 2.20 2.64 3.05 3.41 2.37 1.66 1.99 2.38 2.76 3.10
1996 2.61 1.80 2.19 2.63 3.04 3.39 2.36 1.65 1.99 2.37 2.76 3.10
1997 2.61 1.82 2.20 2.63 3.04 3.39 2.37 1.67 2.00 2.38 2.77 3.11
1998 2.63 1.84 2.23 2.66 3.06 3.43 2.40 1.71 2.02 2.41 2.78 3.11
1999 2.67 1.87 2.26 2.68 3.08 3.45 2.42 1.72 2.04 2.43 2.81 3.15
2000 2.68 1.87 2.26 2.69 3.10 3.48 2.44 1.72 2.06 2.45 2.83 3.17
2001 2.70 1.90 2.27 2.70 3.11 3.51 2.46 1.75 2.08 2.47 2.85 3.19
2002 2.70 1.90 2.28 2.70 3.11 3.52 2.48 1.76 2.10 2.48 2.86 3.21
2003 2.70 1.90 2.28 2.70 3.12 3.52 2.49 1.77 2.11 2.49 2.88 3.23
2004 2.69 1.88 2.26 2.69 3.12 3.51 2.49 1.77 2.11 2.50 2.89 3.25
2005 2.68 1.88 2.25 2.69 3.11 3.51 2.48 1.75 2.10 2.49 2.88 3.24
2006 2.68 1.88 2.24 2.67 3.10 3.50 2.47 1.73 2.08 2.47 2.86 3.23
2007 2.67 1.87 2.24 2.67 3.10 3.51 2.48 1.73 2.08 2.48 2.89 3.27
2008 2.68 1.88 2.25 2.67 3.10 3.50 2.49 1.76 2.10 2.50 2.89 3.26
2009 2.66 1.85 2.23 2.66 3.10 3.52 2.47 1.73 2.08 2.47 2.88 3.25
2010 2.67 1.87 2.25 2.68 3.12 3.54 2.48 1.74 2.09 2.49 2.89 3.28
2011 2.66 1.85 2.22 2.67 3.10 3.51 2.47 1.72 2.07 2.48 2.89 3.28
2012 2.64 1.82 2.20 2.65 3.10 3.52 2.46 1.71 2.06 2.47 2.87 3.27
2013 2.64 1.80 2.19 2.64 3.09 3.50 2.46 1.70 2.06 2.47 2.88 3.27
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Table 21: Mean decomposition, actual earnings distributions for participants by gender
(Frank copula)

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.41 0.01 0.32 0.00 0.08 1995 0.24 0.00 0.18 0.07 -0.02
1977 0.40 0.01 0.30 0.02 0.07 1996 0.24 0.00 0.29 -0.03 -0.02
1978 0.40 0.01 0.36 -0.01 0.04 1997 0.24 0.00 0.27 -0.01 -0.01
1979 0.41 0.01 0.38 -0.02 0.03 1998 0.23 -0.01 0.14 0.11 -0.01
1980 0.40 0.01 0.37 -0.02 0.04 1999 0.25 0.00 0.25 0.01 0.00
1981 0.38 0.00 0.35 -0.01 0.04 2000 0.24 -0.01 0.24 0.00 0.01
1982 0.39 0.01 0.34 0.01 0.03 2001 0.23 -0.01 0.25 -0.02 0.01
1983 0.36 0.01 0.30 0.04 0.02 2002 0.22 -0.01 0.20 0.02 0.01
1984 0.34 0.01 0.18 0.12 0.04 2003 0.21 -0.01 0.28 -0.04 -0.02
1985 0.34 0.01 0.29 0.01 0.02 2004 0.20 -0.02 0.29 -0.06 -0.02
1986 0.33 0.01 0.30 0.00 0.01 2005 0.20 -0.02 0.30 -0.06 -0.02
1987 0.32 0.01 0.35 -0.04 0.00 2006 0.21 -0.02 0.34 -0.10 0.00
1988 0.31 0.01 0.21 0.07 0.02 2007 0.20 -0.03 0.33 -0.08 -0.03
1989 0.31 0.01 0.19 0.09 0.01 2008 0.19 -0.03 0.31 -0.07 -0.02
1990 0.30 0.01 0.28 0.02 -0.01 2009 0.19 -0.03 0.27 -0.02 -0.02
1991 0.27 0.01 0.19 0.05 0.01 2010 0.19 -0.03 0.17 0.08 -0.02
1992 0.25 0.01 0.19 0.05 0.01 2011 0.19 -0.03 0.33 -0.08 -0.03
1993 0.24 0.00 0.13 0.10 0.00 2012 0.18 -0.03 0.20 0.04 -0.03
1994 0.23 0.00 0.16 0.07 -0.01 2013 0.18 -0.03 0.33 -0.10 -0.03

Notes: Total, EC and CC respectively denote total difference, endowments component and
coefficients component.
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Table 22: 10th percentile decomposition, actual earnings for participants(Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.27 -0.01 0.22 0.00 0.06 1995 0.15 -0.02 0.09 0.10 -0.02
1977 0.24 -0.01 0.19 0.02 0.05 1996 0.15 -0.02 0.21 -0.03 -0.01
1978 0.25 -0.01 0.23 -0.01 0.04 1997 0.16 -0.02 0.21 -0.01 -0.01
1979 0.25 -0.01 0.24 -0.01 0.03 1998 0.13 -0.03 0.02 0.15 -0.01
1980 0.23 -0.01 0.22 -0.01 0.03 1999 0.15 -0.02 0.18 0.01 -0.01
1981 0.21 -0.01 0.21 -0.01 0.03 2000 0.16 -0.02 0.18 -0.01 0.01
1982 0.22 -0.01 0.19 0.01 0.03 2001 0.15 -0.03 0.19 -0.02 0.01
1983 0.19 -0.01 0.15 0.05 0.01 2002 0.14 -0.03 0.13 0.03 0.01
1984 0.19 -0.01 0.04 0.14 0.03 2003 0.13 -0.03 0.22 -0.04 -0.02
1985 0.18 -0.01 0.16 0.01 0.02 2004 0.11 -0.04 0.24 -0.07 -0.02
1986 0.17 -0.01 0.18 0.00 0.01 2005 0.13 -0.04 0.25 -0.07 -0.02
1987 0.18 -0.02 0.24 -0.05 0.00 2006 0.14 -0.04 0.28 -0.10 0.00
1988 0.19 -0.01 0.09 0.09 0.02 2007 0.14 -0.04 0.30 -0.09 -0.03
1989 0.20 -0.01 0.07 0.12 0.01 2008 0.12 -0.04 0.27 -0.09 -0.02
1990 0.19 -0.01 0.19 0.03 -0.02 2009 0.12 -0.05 0.22 -0.03 -0.03
1991 0.15 -0.02 0.09 0.07 0.01 2010 0.13 -0.04 0.07 0.13 -0.02
1992 0.13 -0.02 0.08 0.06 0.01 2011 0.12 -0.04 0.31 -0.11 -0.03
1993 0.13 -0.02 0.01 0.14 0.00 2012 0.11 -0.04 0.12 0.07 -0.04
1994 0.13 -0.02 0.05 0.10 -0.01 2013 0.10 -0.04 0.29 -0.13 -0.03

Notes: Total, EC and CC respectively denote total difference, endowments component and coefficients
component.
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Table 23: 25th percentile decomposition, actual earnings for participants(Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.38 0.00 0.30 0.00 0.08 1995 0.21 -0.02 0.15 0.10 -0.02
1977 0.36 0.00 0.28 0.02 0.06 1996 0.20 -0.02 0.27 -0.03 -0.02
1978 0.36 0.00 0.33 -0.01 0.04 1997 0.20 -0.02 0.25 -0.01 -0.02
1979 0.35 0.00 0.33 -0.02 0.03 1998 0.21 -0.02 0.09 0.15 -0.01
1980 0.35 0.00 0.33 -0.02 0.04 1999 0.22 -0.02 0.23 0.01 -0.01
1981 0.33 -0.01 0.31 -0.01 0.04 2000 0.21 -0.02 0.22 -0.01 0.01
1982 0.33 0.00 0.29 0.01 0.03 2001 0.19 -0.02 0.22 -0.02 0.01
1983 0.30 -0.01 0.24 0.05 0.02 2002 0.18 -0.02 0.17 0.03 0.01
1984 0.29 0.00 0.11 0.14 0.04 2003 0.17 -0.03 0.26 -0.04 -0.02
1985 0.29 0.00 0.25 0.02 0.03 2004 0.15 -0.04 0.27 -0.07 -0.02
1986 0.28 0.00 0.27 0.00 0.01 2005 0.16 -0.04 0.28 -0.07 -0.02
1987 0.27 -0.01 0.32 -0.04 0.00 2006 0.16 -0.04 0.31 -0.11 0.00
1988 0.26 0.00 0.16 0.09 0.02 2007 0.16 -0.04 0.32 -0.09 -0.03
1989 0.28 0.00 0.14 0.12 0.02 2008 0.14 -0.04 0.29 -0.08 -0.02
1990 0.25 0.00 0.25 0.03 -0.02 2009 0.15 -0.05 0.25 -0.03 -0.03
1991 0.22 -0.01 0.16 0.07 0.01 2010 0.16 -0.04 0.12 0.11 -0.03
1992 0.22 -0.01 0.16 0.06 0.01 2011 0.15 -0.04 0.32 -0.09 -0.04
1993 0.21 -0.01 0.09 0.13 0.00 2012 0.15 -0.04 0.17 0.06 -0.04
1994 0.19 -0.02 0.12 0.09 -0.01 2013 0.13 -0.04 0.32 -0.12 -0.03

Notes: Total, EC and CC respectively denote total difference, endowments component and coefficients
component.
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Table 24: 50th percentile decomposition, actual earnings for participants(Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.46 0.01 0.34 0.00 0.09 1995 0.26 0.00 0.20 0.08 -0.02
1977 0.44 0.01 0.34 0.02 0.08 1996 0.25 0.00 0.30 -0.03 -0.02
1978 0.45 0.01 0.40 -0.01 0.05 1997 0.25 -0.01 0.29 -0.01 -0.02
1979 0.45 0.01 0.42 -0.02 0.04 1998 0.25 -0.01 0.15 0.11 -0.01
1980 0.45 0.01 0.41 -0.02 0.05 1999 0.25 -0.01 0.26 0.01 -0.01
1981 0.43 0.01 0.40 -0.01 0.05 2000 0.25 -0.01 0.25 0.00 0.01
1982 0.43 0.01 0.38 0.01 0.04 2001 0.23 -0.01 0.25 -0.02 0.01
1983 0.40 0.01 0.33 0.05 0.02 2002 0.22 -0.01 0.20 0.03 0.01
1984 0.38 0.01 0.20 0.13 0.04 2003 0.21 -0.02 0.28 -0.04 -0.02
1985 0.38 0.01 0.33 0.02 0.03 2004 0.19 -0.02 0.30 -0.06 -0.02
1986 0.37 0.01 0.35 0.00 0.01 2005 0.20 -0.02 0.30 -0.06 -0.02
1987 0.36 0.01 0.40 -0.05 0.00 2006 0.20 -0.03 0.34 -0.11 0.00
1988 0.34 0.01 0.23 0.08 0.02 2007 0.19 -0.03 0.33 -0.09 -0.03
1989 0.34 0.01 0.21 0.10 0.02 2008 0.18 -0.04 0.31 -0.07 -0.02
1990 0.32 0.01 0.30 0.02 -0.02 2009 0.19 -0.04 0.28 -0.03 -0.03
1991 0.29 0.00 0.22 0.06 0.01 2010 0.19 -0.04 0.18 0.08 -0.03
1992 0.29 0.01 0.22 0.06 0.01 2011 0.18 -0.04 0.33 -0.08 -0.03
1993 0.27 0.00 0.15 0.11 0.00 2012 0.18 -0.03 0.21 0.05 -0.04
1994 0.25 0.00 0.18 0.08 -0.01 2013 0.17 -0.04 0.34 -0.10 -0.03

Notes: Total, EC and CC respectively denote total difference, endowments component and
coefficients component.
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Table 25: 75th percentile decomposition, actual earnings for participants(Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.48 0.02 0.35 0.00 0.10 1995 0.29 0.02 0.23 0.06 -0.02
1977 0.47 0.02 0.36 0.02 0.08 1996 0.28 0.01 0.31 -0.03 -0.02
1978 0.48 0.02 0.42 -0.01 0.05 1997 0.27 0.01 0.29 -0.01 -0.02
1979 0.49 0.02 0.45 -0.02 0.04 1998 0.28 0.01 0.19 0.09 -0.01
1980 0.49 0.02 0.44 -0.02 0.05 1999 0.27 0.01 0.26 0.01 0.00
1981 0.48 0.02 0.43 -0.02 0.05 2000 0.28 0.01 0.27 0.00 0.01
1982 0.47 0.02 0.40 0.01 0.04 2001 0.26 0.00 0.27 -0.02 0.01
1983 0.46 0.02 0.38 0.04 0.02 2002 0.26 0.00 0.22 0.02 0.01
1984 0.44 0.02 0.26 0.11 0.04 2003 0.24 0.00 0.29 -0.03 -0.02
1985 0.42 0.02 0.36 0.02 0.03 2004 0.23 -0.01 0.31 -0.05 -0.02
1986 0.41 0.03 0.37 0.00 0.01 2005 0.22 -0.01 0.31 -0.05 -0.02
1987 0.39 0.03 0.41 -0.04 0.00 2006 0.24 -0.01 0.36 -0.11 0.00
1988 0.39 0.03 0.28 0.07 0.02 2007 0.21 -0.02 0.34 -0.08 -0.02
1989 0.37 0.02 0.25 0.08 0.02 2008 0.21 -0.02 0.32 -0.07 -0.02
1990 0.35 0.03 0.32 0.02 -0.01 2009 0.22 -0.03 0.29 -0.02 -0.03
1991 0.33 0.02 0.25 0.05 0.01 2010 0.22 -0.03 0.21 0.06 -0.03
1992 0.32 0.02 0.25 0.05 0.01 2011 0.21 -0.03 0.34 -0.07 -0.03
1993 0.30 0.02 0.20 0.09 0.00 2012 0.22 -0.03 0.25 0.03 -0.04
1994 0.29 0.02 0.22 0.06 -0.01 2013 0.21 -0.03 0.35 -0.09 -0.03

Notes: Total, EC and CC respectively denote total difference, endowments component and
coefficients component.
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Table 26: 90th percentile decomposition, actual earnings for participants(Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.49 0.04 0.36 0.00 0.09 1995 0.31 0.03 0.24 0.05 -0.02
1977 0.48 0.03 0.36 0.02 0.07 1996 0.30 0.02 0.31 -0.02 -0.01
1978 0.48 0.03 0.42 -0.01 0.05 1997 0.29 0.02 0.29 -0.01 -0.01
1979 0.49 0.03 0.44 -0.02 0.03 1998 0.32 0.02 0.23 0.07 0.00
1980 0.48 0.03 0.43 -0.02 0.04 1999 0.30 0.02 0.28 0.01 0.00
1981 0.47 0.03 0.41 -0.02 0.05 2000 0.31 0.02 0.29 0.00 0.01
1982 0.47 0.03 0.40 0.01 0.03 2001 0.32 0.02 0.31 -0.02 0.01
1983 0.47 0.04 0.38 0.04 0.02 2002 0.31 0.01 0.26 0.02 0.01
1984 0.46 0.04 0.28 0.10 0.04 2003 0.29 0.01 0.32 -0.03 -0.02
1985 0.44 0.04 0.36 0.01 0.02 2004 0.27 0.00 0.34 -0.06 -0.02
1986 0.41 0.04 0.36 0.00 0.01 2005 0.27 0.00 0.34 -0.05 -0.02
1987 0.40 0.04 0.40 -0.04 0.00 2006 0.27 0.00 0.40 -0.12 0.00
1988 0.39 0.04 0.28 0.06 0.01 2007 0.25 -0.01 0.36 -0.07 -0.03
1989 0.39 0.04 0.27 0.07 0.01 2008 0.24 -0.01 0.33 -0.07 -0.02
1990 0.36 0.04 0.32 0.01 -0.01 2009 0.27 -0.01 0.32 -0.02 -0.02
1991 0.35 0.03 0.26 0.05 0.01 2010 0.26 -0.02 0.25 0.05 -0.03
1992 0.33 0.03 0.25 0.04 0.01 2011 0.23 -0.02 0.35 -0.06 -0.03
1993 0.32 0.04 0.21 0.07 0.00 2012 0.26 -0.02 0.28 0.03 -0.03
1994 0.31 0.03 0.24 0.05 -0.01 2013 0.23 -0.02 0.36 -0.09 -0.03

Notes: Total, EC and CC respectively denote total difference, endowments component and
coefficients component.
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E.4 Stata vs Matlab estimates

The QRS estimates presented in this paper differ from those in Maasoumi and Wang (2019).

As mentioned in Section 6, this is partly due to some differences in the implementation of

the estimator. However, an important factor to explain the differences in the results is the

worse performance of Stata relative to Matlab.29 To see this, consider the estimation of

the QRS estimates using the exact specification and implementation used by Maasoumi and

Wang (2019) in both statistical packages.

Both sets of estimates of the Frank copula for both genders are shown in Figure 7. The

original estimates are slightly smaller in general, which means that the estimated amount of

self-selection is slightly more positive.

Figure 7: Frank copula parameter estimates: Matlab vs Stata
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Notes: the solid thick blue lines denote the Matlab estimates and the dashed red lines denote the Stata
estimates.

To understand why the two sets of estimates are different, let us focus on the estimates for

male workers in 1976. These estimates minimize the value of the criterion function defined in

Equation 18, which in turn depend on the estimates β̂d (τ ; t) given by Equation 17. Fix the
29Specifically, the Stata estimates are obtained with the codes available at https://www.journals.

uchicago.edu/doi/suppl/10.1086/701788/suppl_file/2012616data.zip, which are based on the Stata
package qreg, while the Matlab estimates are obtained using the rq.m code available at http://www.econ.
uiuc.edu/~roger/research/rq/rq.m.
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value of the Frank copula to be the first one considered in the estimation grid: t = −42.889.

The minimized values of Equation 17 for the quantiles used in the estimation of θd for both

sets of estimates are shown in Table 27. These are larger for the Stata estimates than for the

Matlab ones. As such, when the slope parameter estimates are plugged into Equation 18, this

is different for the estimates with both statistical packages. As a consequence, the estimates

of the copula parameters are different.

Table 27: Minimized value of check function
τ

0.3 0.4 0.5 0.6 0.7
Matlab estimates 1216.086 2044.821 2672.171 3051.696 3090.995
Stata estimates 1216.519 2045.354 2673.005 3052.189 3091.509

Notes: male sample, year 1976, Frank copula with t = −42.889.

One final aspect regards the computational time required to obtain the estimates with

each statistical package. Whereas those in Stata are obtained using the simplex method,

the Matlab estimates are based on the interior point method, which are substantially faster

(Portnoy and Koenker, 1997; Chernozhukov et al., 2022). Therefore, this allows to obtain

a larger set of estimates, including more flexible models, such as those with heterogeneous

copulas.
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F Additional Tables and Figures

Table 28: Kendall’s τ correlation coefficients for the Gaussian copula
QRS H2S QRS H2S

Year Male Female Male Female Year Male Female Male Female
1976 0.26 0.13 0.31 0.10 1995 -0.34 -0.22 -0.28 -0.22
1977 0.13 0.08 0.17 0.07 1996 0.04 -0.21 0.06 -0.22
1978 0.23 -0.01 0.24 -0.02 1997 -0.01 -0.21 -0.10 -0.17
1979 0.21 -0.02 0.22 -0.02 1998 -0.27 -0.21 -0.34 -0.23
1980 0.24 0.01 0.22 -0.01 1999 -0.06 -0.22 -0.01 -0.26
1981 0.19 0.01 0.22 0.02 2000 0.07 -0.15 0.06 -0.10
1982 0.13 -0.04 0.14 -0.02 2001 0.13 -0.13 0.13 -0.14
1983 -0.05 -0.09 -0.01 -0.10 2002 0.03 -0.14 -0.01 -0.11
1984 -0.15 0.02 -0.08 0.01 2003 0.04 -0.25 0.02 -0.23
1985 0.10 -0.05 0.09 -0.05 2004 0.04 -0.22 0.03 -0.21
1986 0.08 -0.10 0.10 -0.10 2005 0.07 -0.22 0.08 -0.25
1987 0.12 -0.18 0.06 -0.19 2006 0.30 -0.17 0.19 -0.18
1988 -0.09 -0.10 -0.04 -0.10 2007 0.08 -0.30 0.03 -0.28
1989 -0.17 -0.10 -0.12 -0.03 2008 0.10 -0.33 0.06 -0.37
1990 -0.09 -0.22 -0.09 -0.22 2009 -0.15 -0.26 -0.14 -0.26
1991 -0.09 -0.10 -0.07 -0.11 2010 -0.34 -0.28 -0.23 -0.25
1992 -0.11 -0.12 -0.07 -0.10 2011 -0.10 -0.33 -0.10 -0.34
1993 -0.31 -0.14 -0.22 -0.13 2012 -0.33 -0.29 -0.32 -0.36
1994 -0.24 -0.17 -0.24 -0.19 2013 0.01 -0.26 -0.05 -0.31

Notes: Kendall’s τ correlation coefficients of the copula estimates by year and gender. QRS and
H2S respectively denote the estimates of the quantile regression with selection and Heckman
2-stage estimators.
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Table 29: 10th percentile decomposition, actual earnings for participants (Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.29 -0.01 0.30 -0.03 0.04 1995 0.16 -0.03 0.20 0.04 -0.05
1977 0.26 -0.02 0.26 -0.02 0.02 1996 0.16 -0.03 0.34 -0.11 -0.05
1978 0.27 -0.01 0.35 -0.06 0.00 1997 0.17 -0.03 0.31 -0.08 -0.04
1979 0.27 -0.01 0.35 -0.07 -0.01 1998 0.14 -0.03 0.18 0.04 -0.05
1980 0.25 -0.01 0.32 -0.06 0.00 1999 0.17 -0.03 0.37 -0.12 -0.05
1981 0.23 -0.02 0.29 -0.05 0.00 2000 0.16 -0.03 0.30 -0.08 -0.03
1982 0.23 -0.01 0.31 -0.06 -0.01 2001 0.16 -0.03 0.31 -0.09 -0.02
1983 0.21 -0.02 0.30 -0.05 -0.02 2002 0.14 -0.03 0.27 -0.07 -0.03
1984 0.21 -0.02 0.16 0.06 0.00 2003 0.13 -0.03 0.35 -0.13 -0.05
1985 0.20 -0.02 0.27 -0.05 -0.01 2004 0.12 -0.04 0.35 -0.14 -0.05
1986 0.18 -0.02 0.31 -0.08 -0.03 2005 0.13 -0.04 0.37 -0.15 -0.05
1987 0.19 -0.02 0.38 -0.12 -0.05 2006 0.15 -0.04 0.40 -0.17 -0.03
1988 0.20 -0.01 0.26 -0.02 -0.03 2007 0.14 -0.04 0.43 -0.18 -0.07
1989 0.21 -0.01 0.23 0.01 -0.02 2008 0.12 -0.05 0.46 -0.21 -0.08
1990 0.20 -0.01 0.32 -0.04 -0.07 2009 0.12 -0.05 0.31 -0.08 -0.05
1991 0.16 -0.02 0.22 -0.01 -0.03 2010 0.14 -0.05 0.21 0.01 -0.04
1992 0.15 -0.02 0.20 -0.01 -0.03 2011 0.13 -0.05 0.45 -0.21 -0.07
1993 0.14 -0.02 0.11 0.09 -0.03 2012 0.11 -0.04 0.21 0.00 -0.06
1994 0.14 -0.03 0.15 0.05 -0.04 2013 0.10 -0.05 0.38 -0.19 -0.05

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 30: 25th percentile decomposition, actual earnings for participants (Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.39 0.00 0.38 -0.03 0.04 1995 0.21 -0.02 0.26 0.03 -0.06
1977 0.37 -0.01 0.36 -0.02 0.03 1996 0.20 -0.02 0.39 -0.11 -0.06
1978 0.37 0.00 0.44 -0.06 0.00 1997 0.21 -0.02 0.36 -0.08 -0.05
1979 0.36 0.00 0.43 -0.07 -0.01 1998 0.21 -0.03 0.25 0.04 -0.05
1980 0.36 -0.01 0.42 -0.06 0.00 1999 0.22 -0.02 0.42 -0.12 -0.06
1981 0.34 -0.01 0.39 -0.05 0.00 2000 0.21 -0.02 0.35 -0.08 -0.03
1982 0.34 -0.01 0.41 -0.06 -0.01 2001 0.19 -0.03 0.34 -0.09 -0.02
1983 0.31 -0.01 0.39 -0.05 -0.03 2002 0.18 -0.02 0.31 -0.07 -0.03
1984 0.29 -0.01 0.24 0.05 0.00 2003 0.17 -0.03 0.39 -0.13 -0.06
1985 0.29 -0.01 0.36 -0.05 -0.01 2004 0.15 -0.04 0.39 -0.14 -0.05
1986 0.29 -0.01 0.40 -0.08 -0.03 2005 0.16 -0.04 0.40 -0.15 -0.05
1987 0.28 -0.01 0.46 -0.12 -0.05 2006 0.16 -0.04 0.43 -0.19 -0.04
1988 0.27 0.00 0.32 -0.02 -0.03 2007 0.16 -0.04 0.45 -0.18 -0.07
1989 0.28 0.00 0.30 0.01 -0.02 2008 0.15 -0.05 0.47 -0.21 -0.07
1990 0.26 -0.01 0.37 -0.04 -0.07 2009 0.16 -0.05 0.33 -0.07 -0.05
1991 0.23 -0.01 0.28 -0.01 -0.03 2010 0.16 -0.05 0.25 0.01 -0.05
1992 0.23 -0.01 0.28 -0.01 -0.03 2011 0.15 -0.05 0.43 -0.17 -0.06
1993 0.21 -0.01 0.18 0.08 -0.03 2012 0.15 -0.05 0.25 0.00 -0.06
1994 0.19 -0.02 0.20 0.05 -0.04 2013 0.13 -0.05 0.41 -0.17 -0.05

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 31: 50th percentile decomposition, actual earnings for participants (Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.47 0.01 0.44 -0.03 0.05 1995 0.26 0.00 0.29 0.03 -0.05
1977 0.45 0.01 0.43 -0.02 0.03 1996 0.26 -0.01 0.41 -0.10 -0.05
1978 0.46 0.01 0.52 -0.06 0.00 1997 0.25 -0.01 0.38 -0.07 -0.05
1979 0.46 0.01 0.53 -0.07 -0.01 1998 0.25 -0.01 0.28 0.03 -0.05
1980 0.46 0.01 0.52 -0.06 0.00 1999 0.25 -0.01 0.42 -0.10 -0.05
1981 0.44 0.00 0.49 -0.05 0.00 2000 0.25 -0.01 0.36 -0.07 -0.03
1982 0.44 0.01 0.50 -0.06 -0.01 2001 0.23 -0.01 0.35 -0.08 -0.02
1983 0.41 0.00 0.48 -0.05 -0.03 2002 0.22 -0.01 0.32 -0.06 -0.03
1984 0.39 0.01 0.33 0.05 0.00 2003 0.21 -0.02 0.39 -0.11 -0.05
1985 0.39 0.01 0.44 -0.05 -0.01 2004 0.19 -0.03 0.39 -0.13 -0.05
1986 0.37 0.01 0.47 -0.08 -0.03 2005 0.20 -0.03 0.40 -0.13 -0.05
1987 0.36 0.01 0.52 -0.12 -0.05 2006 0.20 -0.03 0.44 -0.18 -0.03
1988 0.34 0.01 0.37 -0.01 -0.03 2007 0.19 -0.04 0.43 -0.15 -0.06
1989 0.35 0.01 0.35 0.01 -0.02 2008 0.18 -0.04 0.45 -0.18 -0.06
1990 0.32 0.01 0.40 -0.03 -0.06 2009 0.19 -0.04 0.34 -0.06 -0.05
1991 0.30 0.00 0.33 -0.01 -0.03 2010 0.19 -0.04 0.27 0.01 -0.04
1992 0.29 0.00 0.32 -0.01 -0.03 2011 0.18 -0.04 0.42 -0.14 -0.06
1993 0.27 0.00 0.24 0.06 -0.03 2012 0.18 -0.04 0.28 0.00 -0.06
1994 0.25 0.00 0.25 0.04 -0.04 2013 0.17 -0.04 0.41 -0.15 -0.05

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 32: 75th percentile decomposition, actual earnings for participants (Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.49 0.02 0.45 -0.04 0.05 1995 0.29 0.02 0.30 0.02 -0.04
1977 0.48 0.02 0.45 -0.02 0.03 1996 0.28 0.01 0.40 -0.08 -0.04
1978 0.49 0.02 0.53 -0.06 0.00 1997 0.28 0.01 0.36 -0.06 -0.04
1979 0.50 0.02 0.56 -0.07 -0.01 1998 0.28 0.00 0.29 0.02 -0.04
1980 0.50 0.02 0.55 -0.07 0.00 1999 0.27 0.01 0.39 -0.08 -0.04
1981 0.48 0.01 0.52 -0.06 0.00 2000 0.27 0.00 0.36 -0.06 -0.03
1982 0.48 0.02 0.53 -0.06 -0.01 2001 0.26 0.00 0.36 -0.08 -0.02
1983 0.46 0.02 0.51 -0.04 -0.02 2002 0.26 0.00 0.33 -0.05 -0.02
1984 0.44 0.02 0.37 0.04 0.00 2003 0.24 0.00 0.38 -0.09 -0.04
1985 0.43 0.02 0.46 -0.04 -0.01 2004 0.23 -0.01 0.38 -0.10 -0.04
1986 0.41 0.02 0.49 -0.07 -0.03 2005 0.23 -0.01 0.39 -0.11 -0.04
1987 0.40 0.02 0.51 -0.10 -0.04 2006 0.24 -0.02 0.44 -0.16 -0.03
1988 0.39 0.03 0.40 -0.01 -0.02 2007 0.21 -0.02 0.41 -0.12 -0.05
1989 0.37 0.02 0.36 0.01 -0.02 2008 0.21 -0.03 0.44 -0.15 -0.05
1990 0.36 0.02 0.40 -0.02 -0.05 2009 0.22 -0.03 0.34 -0.04 -0.04
1991 0.33 0.02 0.35 -0.01 -0.02 2010 0.22 -0.03 0.28 0.01 -0.04
1992 0.32 0.02 0.33 -0.01 -0.02 2011 0.21 -0.03 0.40 -0.11 -0.05
1993 0.31 0.02 0.27 0.05 -0.02 2012 0.22 -0.03 0.30 0.00 -0.05
1994 0.29 0.02 0.28 0.03 -0.03 2013 0.21 -0.03 0.40 -0.12 -0.04

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 33: 90th percentile decomposition, actual earnings for participants (Frank copula)
Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.49 0.03 0.45 -0.04 0.04 1995 0.31 0.03 0.30 0.01 -0.04
1977 0.49 0.03 0.44 -0.02 0.03 1996 0.29 0.02 0.38 -0.07 -0.04
1978 0.49 0.03 0.52 -0.06 0.00 1997 0.29 0.02 0.35 -0.05 -0.03
1979 0.49 0.03 0.54 -0.08 -0.01 1998 0.31 0.02 0.31 0.02 -0.03
1980 0.49 0.03 0.53 -0.07 0.00 1999 0.29 0.02 0.38 -0.07 -0.04
1981 0.47 0.03 0.50 -0.06 0.00 2000 0.31 0.02 0.37 -0.06 -0.02
1982 0.48 0.03 0.51 -0.05 -0.01 2001 0.32 0.02 0.39 -0.07 -0.02
1983 0.48 0.04 0.50 -0.04 -0.02 2002 0.30 0.01 0.36 -0.05 -0.02
1984 0.46 0.04 0.38 0.04 0.00 2003 0.28 0.01 0.39 -0.08 -0.04
1985 0.44 0.04 0.45 -0.04 -0.01 2004 0.27 0.00 0.40 -0.10 -0.04
1986 0.41 0.04 0.46 -0.06 -0.02 2005 0.27 0.00 0.41 -0.10 -0.04
1987 0.40 0.04 0.48 -0.08 -0.04 2006 0.27 0.00 0.47 -0.17 -0.03
1988 0.39 0.04 0.38 -0.01 -0.02 2007 0.25 -0.01 0.42 -0.11 -0.05
1989 0.39 0.04 0.36 0.01 -0.02 2008 0.23 -0.01 0.43 -0.14 -0.05
1990 0.36 0.04 0.38 -0.02 -0.04 2009 0.27 -0.01 0.36 -0.04 -0.04
1991 0.35 0.03 0.35 -0.01 -0.02 2010 0.25 -0.02 0.30 0.01 -0.04
1992 0.33 0.03 0.32 -0.01 -0.02 2011 0.23 -0.02 0.39 -0.10 -0.05
1993 0.32 0.04 0.27 0.04 -0.02 2012 0.25 -0.02 0.31 0.00 -0.05
1994 0.31 0.03 0.28 0.02 -0.03 2013 0.22 -0.02 0.40 -0.11 -0.04

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 34: 10th percentile decomposition, actual earnings for the full population (Frank
copula)

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.00 0.00 0.00 0.00 0.00 1995 0.00 0.00 0.00 0.00 0.00
1977 0.00 0.00 0.00 0.00 0.00 1996 0.00 0.00 0.00 0.00 0.00
1978 0.00 0.00 0.00 0.00 0.00 1997 0.00 0.00 0.00 0.00 0.00
1979 0.00 0.00 0.00 0.00 0.00 1998 0.00 0.00 0.00 0.00 0.00
1980 0.00 0.00 0.00 0.00 0.00 1999 0.00 0.00 0.00 0.00 0.00
1981 0.00 0.00 0.00 0.00 0.00 2000 0.00 0.00 0.00 0.00 0.00
1982 0.00 0.00 0.00 0.00 0.00 2001 0.00 0.00 0.00 0.00 0.00
1983 0.00 0.00 0.00 0.00 0.00 2002 0.00 0.00 0.00 0.00 0.00
1984 0.00 0.00 0.00 0.00 0.00 2003 0.00 0.00 0.00 0.00 0.00
1985 0.00 0.00 0.00 0.00 0.00 2004 0.00 0.00 0.00 0.00 0.00
1986 0.00 0.00 0.00 0.00 0.00 2005 0.00 0.00 0.00 0.00 0.00
1987 0.00 0.00 0.00 0.00 0.00 2006 0.00 0.00 0.00 0.00 0.00
1988 0.00 0.00 0.00 0.00 0.00 2007 0.00 0.00 0.00 0.00 0.00
1989 0.00 0.00 0.00 0.00 0.00 2008 0.00 0.00 0.00 0.00 0.00
1990 0.00 0.00 0.00 0.00 0.00 2009 0.00 0.00 0.00 0.00 0.00
1991 0.00 0.00 0.00 0.00 0.00 2010 0.00 0.00 0.00 0.00 0.00
1992 0.00 0.00 0.00 0.00 0.00 2011 0.00 0.00 0.00 0.00 0.00
1993 0.00 0.00 0.00 0.00 0.00 2012 0.00 0.00 0.00 0.00 0.00
1994 0.00 0.00 0.00 0.00 0.00 2013 0.00 0.00 0.00 0.00 0.00

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 35: 25th percentile decomposition, actual earnings for the full population (Frank
copula)

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.00 0.00 0.00 0.00 0.00 1995 0.00 0.00 0.00 0.00 0.00
1977 0.00 0.00 0.00 0.00 0.00 1996 0.00 0.00 0.00 0.00 0.00
1978 0.00 0.00 0.00 0.00 0.00 1997 0.00 0.00 0.00 0.00 0.00
1979 0.00 0.00 0.00 0.00 0.00 1998 0.00 0.00 0.00 0.00 0.00
1980 0.00 0.00 0.00 0.00 0.00 1999 0.00 0.00 0.00 0.00 0.00
1981 0.00 0.00 0.00 0.00 0.00 2000 0.00 0.00 0.00 0.00 0.00
1982 0.00 0.00 0.00 0.00 0.00 2001 0.00 0.00 0.00 0.00 0.00
1983 0.00 0.00 0.00 0.00 0.00 2002 0.00 0.00 0.00 0.00 0.00
1984 0.00 0.00 0.00 0.00 0.00 2003 0.00 0.00 0.00 0.00 0.00
1985 0.00 0.00 0.00 0.00 0.00 2004 0.00 0.00 0.00 0.00 0.00
1986 0.00 0.00 0.00 0.00 0.00 2005 0.00 0.00 0.00 0.00 0.00
1987 0.00 0.00 0.00 0.00 0.00 2006 0.00 0.00 0.00 0.00 0.00
1988 0.00 0.00 0.00 0.00 0.00 2007 0.00 0.00 0.00 0.00 0.00
1989 0.00 0.00 0.00 0.00 0.00 2008 0.00 0.00 0.00 0.00 0.00
1990 0.00 0.00 0.00 0.00 0.00 2009 0.00 0.00 0.00 0.00 0.00
1991 0.00 0.00 0.00 0.00 0.00 2010 0.00 0.00 0.00 0.00 0.00
1992 0.00 0.00 0.00 0.00 0.00 2011 0.00 0.00 0.00 0.00 0.00
1993 0.00 0.00 0.00 0.00 0.00 2012 0.00 0.00 0.00 0.00 0.00
1994 0.00 0.00 0.00 0.00 0.00 2013 0.00 0.00 0.00 0.00 0.00

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 36: 50th percentile decomposition, actual earnings for the full population (Frank
copula)

Year Total EC CC SC PC Year Total EC CC SC PC
1976 2.50 0.00 0.42 -0.03 2.11 1995 2.26 -0.02 0.28 0.03 1.97
1977 2.51 0.00 0.40 -0.02 2.12 1996 2.27 -0.02 0.40 -0.10 1.98
1978 2.50 0.00 0.48 -0.05 2.07 1997 2.28 -0.02 0.37 -0.07 2.00
1979 2.52 0.00 0.48 -0.06 2.10 1998 1.15 -0.03 0.28 0.03 0.87
1980 2.50 0.00 0.46 -0.05 2.09 1999 0.98 -0.02 0.43 -0.10 0.68
1981 2.42 0.00 0.43 -0.05 2.04 2000 0.86 -0.02 0.36 -0.07 0.58
1982 2.34 0.00 0.42 -0.05 1.96 2001 0.80 -0.02 0.34 -0.08 0.56
1983 2.24 0.00 0.40 -0.05 1.89 2002 0.88 -0.02 0.32 -0.06 0.64
1984 2.23 0.00 0.26 0.05 1.92 2003 1.09 -0.03 0.40 -0.12 0.84
1985 2.27 0.01 0.37 -0.04 1.93 2004 2.30 -0.04 0.39 -0.13 2.07
1986 2.30 0.01 0.41 -0.07 1.95 2005 2.29 -0.04 0.41 -0.14 2.06
1987 2.32 0.01 0.47 -0.11 1.95 2006 1.43 -0.04 0.42 -0.16 1.21
1988 2.35 0.01 0.34 -0.02 2.01 2007 1.07 -0.05 0.45 -0.16 0.83
1989 2.36 0.01 0.32 0.01 2.02 2008 0.91 -0.06 0.48 -0.19 0.68
1990 2.38 0.00 0.39 -0.03 2.02 2009 2.25 -0.06 0.34 -0.06 2.03
1991 2.33 -0.01 0.31 -0.01 2.04 2010 2.15 -0.07 0.25 0.01 1.96
1992 2.29 -0.01 0.30 -0.01 2.01 2011 2.11 -0.07 0.43 -0.16 1.92
1993 2.26 -0.01 0.21 0.07 2.00 2012 2.13 -0.07 0.27 0.00 1.93
1994 2.23 -0.02 0.23 0.04 1.98 2013 2.13 -0.07 0.41 -0.15 1.95

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 37: 75th percentile decomposition, actual earnings for the full population (Frank
copula)

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.89 0.02 0.45 -0.03 0.44 1995 0.46 0.01 0.30 0.02 0.14
1977 0.86 0.02 0.45 -0.02 0.40 1996 0.45 0.00 0.40 -0.08 0.12
1978 0.84 0.02 0.54 -0.06 0.33 1997 0.43 0.00 0.37 -0.05 0.12
1979 0.81 0.02 0.56 -0.07 0.30 1998 0.43 0.00 0.30 0.02 0.11
1980 0.77 0.02 0.55 -0.06 0.26 1999 0.43 0.00 0.40 -0.08 0.11
1981 0.75 0.02 0.52 -0.05 0.27 2000 0.42 0.00 0.36 -0.06 0.12
1982 0.76 0.02 0.52 -0.05 0.27 2001 0.40 0.00 0.35 -0.07 0.13
1983 0.74 0.02 0.51 -0.04 0.26 2002 0.40 -0.01 0.33 -0.05 0.12
1984 0.70 0.02 0.37 0.04 0.27 2003 0.38 -0.01 0.38 -0.09 0.11
1985 0.67 0.02 0.46 -0.04 0.23 2004 0.37 -0.02 0.38 -0.10 0.11
1986 0.66 0.02 0.49 -0.07 0.21 2005 0.38 -0.02 0.39 -0.11 0.12
1987 0.64 0.03 0.52 -0.10 0.19 2006 0.37 -0.02 0.43 -0.15 0.12
1988 0.58 0.03 0.40 -0.01 0.17 2007 0.36 -0.03 0.42 -0.12 0.10
1989 0.56 0.02 0.36 0.01 0.16 2008 0.34 -0.03 0.44 -0.15 0.08
1990 0.54 0.02 0.40 -0.02 0.14 2009 0.36 -0.04 0.34 -0.05 0.10
1991 0.51 0.01 0.35 -0.01 0.16 2010 0.35 -0.04 0.28 0.01 0.10
1992 0.49 0.01 0.33 -0.01 0.15 2011 0.35 -0.04 0.41 -0.12 0.10
1993 0.46 0.01 0.26 0.05 0.14 2012 0.36 -0.04 0.30 0.00 0.10
1994 0.46 0.01 0.27 0.03 0.14 2013 0.36 -0.04 0.40 -0.12 0.11

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 38: 90th percentile decomposition, actual earnings for the full population (Frank
copula)

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.68 0.03 0.45 -0.03 0.23 1995 0.39 0.03 0.29 0.01 0.06
1977 0.67 0.03 0.44 -0.01 0.21 1996 0.38 0.02 0.37 -0.06 0.06
1978 0.67 0.03 0.53 -0.06 0.17 1997 0.37 0.01 0.34 -0.05 0.06
1979 0.67 0.03 0.55 -0.07 0.16 1998 0.38 0.01 0.30 0.02 0.05
1980 0.64 0.03 0.53 -0.06 0.15 1999 0.38 0.02 0.38 -0.07 0.05
1981 0.63 0.03 0.51 -0.05 0.15 2000 0.38 0.01 0.35 -0.05 0.06
1982 0.63 0.03 0.52 -0.05 0.14 2001 0.38 0.01 0.37 -0.07 0.07
1983 0.62 0.03 0.51 -0.04 0.11 2002 0.38 0.01 0.35 -0.05 0.07
1984 0.58 0.04 0.38 0.04 0.13 2003 0.37 0.00 0.39 -0.08 0.05
1985 0.56 0.04 0.45 -0.04 0.11 2004 0.35 0.00 0.39 -0.09 0.06
1986 0.54 0.04 0.46 -0.06 0.10 2005 0.35 -0.01 0.39 -0.09 0.05
1987 0.52 0.04 0.48 -0.08 0.08 2006 0.35 -0.01 0.45 -0.15 0.06
1988 0.50 0.04 0.39 -0.01 0.08 2007 0.34 -0.02 0.41 -0.10 0.05
1989 0.47 0.03 0.35 0.01 0.08 2008 0.32 -0.02 0.43 -0.13 0.04
1990 0.46 0.04 0.38 -0.02 0.06 2009 0.35 -0.02 0.36 -0.04 0.05
1991 0.44 0.03 0.34 -0.01 0.08 2010 0.32 -0.03 0.30 0.01 0.05
1992 0.41 0.03 0.32 -0.01 0.07 2011 0.32 -0.02 0.40 -0.09 0.04
1993 0.40 0.03 0.27 0.04 0.06 2012 0.34 -0.02 0.32 0.00 0.05
1994 0.39 0.03 0.28 0.02 0.06 2013 0.32 -0.03 0.40 -0.10 0.05

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Figure 8: Actual earnings distributions for male participants
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Notes: the solid thick blue line denotes the estimate with the Frank copula for all individuals; the solid thin
red line denotes the estimate with the Gaussian copula for all individuals; the dashed green line denotes the
estimate with the Frank copula, heterogeneous across race; the dotted orange line denotes the estimate with
the Frank copula, heterogeneous across education level; the dashed-dotted cyan line denotes the estimate
with the Frank copula, heterogeneous across marital status.

111



Figure 9: Actual earnings distributions for the full male population
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Notes: the solid thick blue line denotes the estimate with the Frank copula for all individuals; the solid thin
red line denotes the estimate with the Gaussian copula for all individuals; the dashed green line denotes the
estimate with the Frank copula, heterogeneous across race; the dotted orange line denotes the estimate with
the Frank copula, heterogeneous across education level; the dashed-dotted cyan line denotes the estimate
with the Frank copula, heterogeneous across marital status.
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Figure 10: Potential earnings distributions for the full male population
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Notes: the solid thick blue line denotes the estimate with the Frank copula for all individuals; the solid thin
red line denotes the estimate with the Gaussian copula for all individuals; the dashed green line denotes the
estimate with the Frank copula, heterogeneous across race; the dotted orange line denotes the estimate with
the Frank copula, heterogeneous across education level; the dashed-dotted cyan line denotes the estimate
with the Frank copula, heterogeneous across marital status.
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Figure 11: Actual earnings distributions for female participants
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Notes: the solid thick blue line denotes the estimate with the Frank copula for all individuals; the solid thin
red line denotes the estimate with the Gaussian copula for all individuals; the dashed green line denotes the
estimate with the Frank copula, heterogeneous across race; the dotted orange line denotes the estimate with
the Frank copula, heterogeneous across education level; the dashed-dotted cyan line denotes the estimate
with the Frank copula, heterogeneous across marital status.
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Figure 12: Actual earnings distributions for the full female population
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Notes: the solid thick blue line denotes the estimate with the Frank copula for all individuals; the solid thin
red line denotes the estimate with the Gaussian copula for all individuals; the dashed green line denotes the
estimate with the Frank copula, heterogeneous across race; the dotted orange line denotes the estimate with
the Frank copula, heterogeneous across education level; the dashed-dotted cyan line denotes the estimate
with the Frank copula, heterogeneous across marital status.
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Figure 13: Potential earnings distributions for the full female population
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Notes: the solid thick blue line denotes the estimate with the Frank copula for all individuals; the solid thin
red line denotes the estimate with the Gaussian copula for all individuals; the dashed green line denotes the
estimate with the Frank copula, heterogeneous across race; the dotted orange line denotes the estimate with
the Frank copula, heterogeneous across education level; the dashed-dotted cyan line denotes the estimate
with the Frank copula, heterogeneous across marital status.
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Table 39: Self-selection decomposition (Gaussian copula)
Year Total EC SC PC Year Total EC SC PC
1976 0.2 -0.1 -2.7 3.1 1995 0.0 0.1 2.6 -2.6
1977 0.9 -0.1 -0.9 1.9 1996 -7.9 0.0 -5.5 -2.4
1978 -4.9 -0.1 -4.7 -0.1 1997 -6.5 0.0 -4.3 -2.3
1979 -5.0 -0.1 -4.5 -0.4 1998 -1.1 0.0 1.2 -2.3
1980 -4.6 -0.1 -4.7 0.1 1999 -5.7 0.0 -3.3 -2.4
1981 -3.6 0.0 -3.8 0.2 2000 -6.1 0.0 -4.6 -1.5
1982 -4.7 0.0 -4.0 -0.7 2001 -6.6 0.0 -5.3 -1.3
1983 -2.4 0.0 -1.0 -1.5 2002 -5.1 0.0 -3.7 -1.5
1984 4.6 0.0 4.3 0.3 2003 -8.8 0.0 -6.4 -2.4
1985 -4.4 0.0 -3.6 -0.8 2004 -8.1 0.0 -5.9 -2.2
1986 -5.8 0.0 -4.2 -1.5 2005 -8.9 0.0 -6.7 -2.2
1987 -9.5 0.0 -7.0 -2.6 2006 -12.1 0.0 -10.4 -1.6
1988 -1.4 0.0 -0.1 -1.3 2007 -11.4 0.0 -8.4 -3.0
1989 0.3 0.0 1.6 -1.2 2008 -12.5 0.0 -9.4 -3.0
1990 -5.7 0.0 -2.8 -2.9 2009 -4.6 0.1 -2.3 -2.3
1991 -1.6 0.0 -0.3 -1.3 2010 -0.4 0.2 1.6 -2.2
1992 -1.5 0.0 -0.1 -1.4 2011 -8.6 0.0 -6.0 -2.6
1993 2.2 0.0 3.8 -1.7 2012 -1.5 0.2 0.9 -2.5
1994 -0.5 0.0 1.5 -2.0 2013 -9.2 0.0 -6.8 -2.4

Notes: Total, EC, SC and PC respectively denote total difference, endowments
component, selection component and participation component.
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Table 40: Actual earnings distributions for participants by gender (Gaussian copula)
Male Female

Year Mean P10 P25 P50 P75 P90 Mean P10 P25 P50 P75 P90
1976 2.72 2.03 2.40 2.77 3.09 3.35 2.30 1.74 2.00 2.30 2.60 2.86
1977 2.73 2.03 2.40 2.78 3.10 3.37 2.32 1.77 2.03 2.33 2.62 2.88
1978 2.74 2.03 2.40 2.78 3.12 3.38 2.31 1.76 2.02 2.33 2.63 2.89
1979 2.75 2.05 2.40 2.79 3.13 3.39 2.33 1.78 2.04 2.33 2.63 2.90
1980 2.73 2.03 2.40 2.78 3.12 3.38 2.32 1.78 2.04 2.32 2.62 2.89
1981 2.69 1.97 2.34 2.73 3.07 3.34 2.29 1.74 2.00 2.29 2.59 2.87
1982 2.67 1.95 2.31 2.71 3.06 3.34 2.27 1.72 1.98 2.28 2.59 2.86
1983 2.65 1.91 2.28 2.70 3.07 3.36 2.28 1.71 1.98 2.29 2.60 2.88
1984 2.65 1.90 2.28 2.70 3.07 3.38 2.30 1.70 1.99 2.31 2.63 2.91
1985 2.66 1.88 2.28 2.71 3.08 3.38 2.31 1.69 1.99 2.32 2.65 2.94
1986 2.66 1.88 2.28 2.71 3.09 3.39 2.32 1.69 1.99 2.33 2.67 2.97
1987 2.68 1.89 2.29 2.73 3.11 3.42 2.34 1.70 2.01 2.36 2.71 3.02
1988 2.68 1.89 2.29 2.72 3.11 3.42 2.35 1.69 2.02 2.38 2.72 3.03
1989 2.68 1.90 2.30 2.73 3.11 3.43 2.36 1.70 2.02 2.38 2.73 3.04
1990 2.67 1.89 2.29 2.71 3.10 3.42 2.36 1.69 2.03 2.39 2.74 3.06
1991 2.64 1.86 2.25 2.67 3.07 3.40 2.36 1.69 2.01 2.38 2.74 3.05
1992 2.62 1.83 2.23 2.67 3.06 3.39 2.36 1.69 2.01 2.38 2.74 3.06
1993 2.62 1.83 2.23 2.66 3.06 3.40 2.37 1.69 2.01 2.39 2.75 3.07
1994 2.59 1.80 2.19 2.64 3.04 3.39 2.36 1.66 2.00 2.38 2.75 3.08
1995 2.60 1.81 2.20 2.64 3.05 3.41 2.36 1.65 1.99 2.38 2.76 3.10
1996 2.61 1.80 2.19 2.63 3.04 3.39 2.35 1.65 1.99 2.37 2.76 3.10
1997 2.61 1.82 2.20 2.63 3.04 3.39 2.37 1.66 2.00 2.38 2.76 3.11
1998 2.63 1.84 2.23 2.66 3.06 3.43 2.39 1.70 2.02 2.40 2.78 3.12
1999 2.66 1.87 2.26 2.68 3.08 3.45 2.41 1.71 2.04 2.43 2.81 3.16
2000 2.68 1.87 2.26 2.69 3.10 3.48 2.43 1.71 2.05 2.44 2.83 3.17
2001 2.70 1.90 2.27 2.70 3.11 3.51 2.45 1.74 2.08 2.47 2.85 3.20
2002 2.70 1.90 2.28 2.70 3.11 3.52 2.47 1.76 2.09 2.48 2.86 3.22
2003 2.70 1.90 2.28 2.70 3.12 3.52 2.48 1.77 2.10 2.49 2.88 3.24
2004 2.69 1.88 2.26 2.69 3.12 3.51 2.48 1.76 2.11 2.50 2.88 3.25
2005 2.68 1.88 2.25 2.68 3.11 3.51 2.47 1.75 2.10 2.49 2.88 3.25
2006 2.68 1.88 2.24 2.67 3.10 3.50 2.46 1.73 2.08 2.47 2.86 3.23
2007 2.68 1.87 2.24 2.67 3.10 3.51 2.47 1.73 2.08 2.48 2.89 3.27
2008 2.68 1.88 2.25 2.67 3.10 3.50 2.48 1.76 2.10 2.50 2.89 3.28
2009 2.66 1.85 2.23 2.66 3.10 3.52 2.46 1.73 2.08 2.48 2.88 3.26
2010 2.67 1.87 2.25 2.68 3.12 3.54 2.48 1.73 2.09 2.49 2.90 3.29
2011 2.66 1.85 2.22 2.67 3.11 3.52 2.47 1.72 2.07 2.49 2.89 3.30
2012 2.64 1.82 2.21 2.65 3.10 3.53 2.45 1.71 2.06 2.47 2.88 3.28
2013 2.64 1.80 2.19 2.64 3.09 3.50 2.45 1.70 2.06 2.47 2.88 3.28
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Table 41: Actual earnings distributions for the full population by gender (Gaussian copula)
Male Female

Year Mean P10 P25 P50 P75 P90 Mean P10 P25 P50 P75 P90
1976 1.89 0.00 0.00 2.50 2.97 3.28 0.81 0.00 0.00 0.00 2.09 2.60
1977 1.90 0.00 0.00 2.51 2.99 3.29 0.85 0.00 0.00 0.00 2.13 2.62
1978 1.91 0.00 0.00 2.50 3.00 3.31 0.87 0.00 0.00 0.00 2.16 2.64
1979 1.94 0.00 0.00 2.52 3.01 3.32 0.92 0.00 0.00 0.00 2.20 2.65
1980 1.92 0.00 0.00 2.50 3.00 3.30 0.95 0.00 0.00 0.00 2.23 2.66
1981 1.84 0.00 0.00 2.42 2.94 3.26 0.93 0.00 0.00 0.00 2.19 2.63
1982 1.76 0.00 0.00 2.34 2.91 3.25 0.89 0.00 0.00 0.00 2.15 2.61
1983 1.66 0.00 0.00 2.24 2.88 3.25 0.87 0.00 0.00 0.00 2.14 2.63
1984 1.66 0.00 0.00 2.23 2.89 3.26 0.91 0.00 0.00 0.00 2.19 2.67
1985 1.71 0.00 0.00 2.27 2.90 3.27 0.95 0.00 0.00 0.00 2.23 2.71
1986 1.74 0.00 0.00 2.30 2.92 3.28 0.98 0.00 0.00 0.00 2.26 2.74
1987 1.76 0.00 0.00 2.32 2.94 3.31 1.01 0.00 0.00 0.00 2.30 2.79
1988 1.80 0.00 0.00 2.35 2.95 3.32 1.10 0.00 0.00 0.00 2.37 2.82
1989 1.81 0.00 0.00 2.36 2.95 3.32 1.12 0.00 0.00 0.00 2.39 2.84
1990 1.85 0.00 0.00 2.38 2.94 3.32 1.14 0.00 0.00 0.00 2.41 2.86
1991 1.81 0.00 0.00 2.33 2.91 3.29 1.14 0.00 0.00 0.00 2.40 2.85
1992 1.77 0.00 0.00 2.29 2.89 3.28 1.15 0.00 0.00 0.00 2.40 2.86
1993 1.74 0.00 0.00 2.26 2.88 3.27 1.14 0.00 0.00 0.00 2.42 2.87
1994 1.72 0.00 0.00 2.23 2.86 3.27 1.13 0.00 0.00 0.00 2.41 2.87
1995 1.76 0.00 0.00 2.26 2.87 3.29 1.15 0.00 0.00 0.00 2.41 2.89
1996 1.78 0.00 0.00 2.27 2.87 3.27 1.18 0.00 0.00 0.00 2.42 2.89
1997 1.78 0.00 0.00 2.28 2.87 3.27 1.19 0.00 0.00 0.00 2.44 2.90
1998 1.80 0.00 0.00 2.31 2.89 3.30 1.22 0.00 0.00 1.15 2.46 2.92
1999 1.86 0.00 0.00 2.36 2.93 3.33 1.25 0.00 0.00 1.38 2.50 2.95
2000 1.87 0.00 0.00 2.37 2.94 3.36 1.28 0.00 0.00 1.51 2.53 2.98
2001 1.89 0.00 0.00 2.38 2.95 3.38 1.31 0.00 0.00 1.58 2.55 3.00
2002 1.87 0.00 0.00 2.37 2.95 3.39 1.29 0.00 0.00 1.49 2.55 3.01
2003 1.82 0.00 0.00 2.33 2.94 3.39 1.26 0.00 0.00 1.23 2.55 3.02
2004 1.78 0.00 0.00 2.30 2.93 3.38 1.25 0.00 0.00 0.00 2.55 3.02
2005 1.78 0.00 0.00 2.29 2.92 3.37 1.24 0.00 0.00 0.00 2.54 3.03
2006 1.79 0.00 0.00 2.28 2.91 3.37 1.25 0.00 0.00 0.86 2.54 3.01
2007 1.80 0.00 0.00 2.29 2.92 3.38 1.26 0.00 0.00 1.21 2.55 3.04
2008 1.79 0.00 0.00 2.29 2.92 3.37 1.28 0.00 0.00 1.38 2.57 3.05
2009 1.74 0.00 0.00 2.25 2.90 3.37 1.25 0.00 0.00 0.00 2.54 3.03
2010 1.63 0.00 0.00 2.15 2.89 3.37 1.21 0.00 0.00 0.00 2.54 3.05
2011 1.62 0.00 0.00 2.11 2.87 3.36 1.18 0.00 0.00 0.00 2.53 3.04
2012 1.63 0.00 0.00 2.13 2.87 3.37 1.18 0.00 0.00 0.00 2.51 3.02
2013 1.65 0.00 0.00 2.13 2.86 3.35 1.18 0.00 0.00 0.00 2.51 3.03

119



Table 42: Potential earnings distributions for the full population by gender (Gaussian copula)
Male Female

Year Mean P10 P25 P50 P75 P90 Mean P10 P25 P50 P75 P90
1976 2.81 2.11 2.48 2.84 3.15 3.42 2.37 1.80 2.07 2.37 2.67 2.92
1977 2.77 2.05 2.43 2.80 3.12 3.38 2.37 1.80 2.07 2.37 2.66 2.91
1978 2.81 2.09 2.47 2.84 3.17 3.43 2.31 1.73 2.01 2.31 2.61 2.87
1979 2.81 2.10 2.46 2.85 3.18 3.44 2.31 1.74 2.02 2.31 2.61 2.87
1980 2.81 2.09 2.47 2.85 3.17 3.43 2.32 1.76 2.03 2.32 2.61 2.87
1981 2.75 2.02 2.40 2.78 3.12 3.38 2.29 1.73 2.00 2.29 2.58 2.85
1982 2.72 1.98 2.36 2.75 3.09 3.37 2.25 1.66 1.94 2.24 2.55 2.82
1983 2.63 1.85 2.24 2.66 3.03 3.32 2.22 1.61 1.90 2.22 2.53 2.81
1984 2.59 1.77 2.18 2.62 3.01 3.30 2.31 1.68 1.98 2.31 2.63 2.90
1985 2.70 1.90 2.30 2.73 3.10 3.39 2.28 1.62 1.93 2.27 2.61 2.89
1986 2.69 1.88 2.29 2.72 3.10 3.39 2.26 1.59 1.91 2.26 2.60 2.89
1987 2.72 1.91 2.32 2.76 3.13 3.43 2.23 1.52 1.86 2.23 2.59 2.90
1988 2.64 1.80 2.23 2.67 3.07 3.37 2.30 1.59 1.93 2.31 2.66 2.95
1989 2.61 1.76 2.19 2.64 3.04 3.35 2.30 1.60 1.93 2.31 2.67 2.96
1990 2.64 1.81 2.22 2.66 3.06 3.37 2.24 1.47 1.84 2.24 2.62 2.93
1991 2.60 1.77 2.18 2.62 3.02 3.34 2.30 1.59 1.93 2.30 2.67 2.97
1992 2.58 1.74 2.16 2.61 3.01 3.33 2.30 1.58 1.91 2.29 2.67 2.97
1993 2.48 1.58 2.02 2.51 2.94 3.28 2.29 1.55 1.90 2.29 2.67 2.98
1994 2.49 1.61 2.04 2.52 2.95 3.28 2.26 1.50 1.86 2.26 2.64 2.97
1995 2.46 1.53 1.98 2.48 2.93 3.28 2.23 1.44 1.81 2.22 2.63 2.96
1996 2.62 1.79 2.19 2.63 3.04 3.37 2.23 1.45 1.82 2.23 2.63 2.97
1997 2.61 1.78 2.17 2.61 3.02 3.35 2.25 1.48 1.83 2.25 2.64 2.98
1998 2.52 1.63 2.06 2.53 2.96 3.31 2.27 1.51 1.86 2.26 2.66 2.99
1999 2.64 1.80 2.21 2.64 3.04 3.39 2.29 1.51 1.87 2.29 2.68 3.02
2000 2.71 1.87 2.27 2.70 3.11 3.47 2.35 1.58 1.94 2.35 2.74 3.07
2001 2.75 1.92 2.31 2.73 3.14 3.53 2.39 1.62 1.98 2.38 2.77 3.10
2002 2.71 1.88 2.27 2.69 3.10 3.49 2.39 1.62 1.98 2.38 2.77 3.11
2003 2.72 1.88 2.27 2.70 3.11 3.50 2.34 1.54 1.91 2.33 2.74 3.09
2004 2.71 1.86 2.26 2.69 3.11 3.49 2.36 1.55 1.93 2.35 2.76 3.10
2005 2.71 1.88 2.27 2.70 3.12 3.51 2.34 1.54 1.91 2.34 2.75 3.10
2006 2.81 1.96 2.34 2.78 3.22 3.64 2.37 1.57 1.94 2.36 2.76 3.11
2007 2.71 1.87 2.25 2.69 3.11 3.51 2.29 1.43 1.83 2.28 2.72 3.08
2008 2.72 1.89 2.27 2.70 3.12 3.51 2.29 1.43 1.84 2.29 2.71 3.09
2009 2.59 1.70 2.13 2.58 3.02 3.42 2.31 1.47 1.88 2.30 2.73 3.09
2010 2.49 1.53 1.99 2.49 2.96 3.37 2.31 1.46 1.86 2.30 2.73 3.11
2011 2.61 1.74 2.15 2.60 3.04 3.44 2.26 1.35 1.79 2.26 2.70 3.08
2012 2.47 1.51 1.96 2.46 2.95 3.37 2.27 1.41 1.81 2.26 2.70 3.08
2013 2.64 1.77 2.17 2.62 3.07 3.46 2.29 1.42 1.83 2.28 2.71 3.10
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Table 43: Self-selection decomposition, heterogeneous copula by race
Year Total EC SC PC Year Total EC SC PC
1976 1.3 -0.2 -2.6 4.1 1995 -1.9 0.0 1.1 -3.0
1977 -2.3 -0.2 -4.2 2.1 1996 -10.4 -0.2 -7.1 -3.0
1978 -8.9 -0.5 -9.0 0.6 1997 -10.0 -0.4 -6.6 -3.0
1979 -6.8 -0.4 -6.3 -0.1 1998 -4.5 -0.3 -1.5 -2.7
1980 -5.0 -0.5 -5.2 0.7 1999 -11.7 0.0 -8.7 -3.0
1981 -5.6 -0.1 -6.0 0.5 2000 -9.2 -0.1 -7.3 -1.8
1982 -8.1 -0.3 -7.4 -0.4 2001 -9.7 -0.1 -8.2 -1.4
1983 -9.3 -0.3 -7.7 -1.4 2002 -7.8 -0.2 -6.2 -1.5
1984 -2.9 0.0 -3.6 0.7 2003 -13.9 -0.2 -11.0 -2.7
1985 -7.7 -0.3 -6.3 -1.1 2004 -10.7 0.0 -8.3 -2.4
1986 -10.4 -0.1 -8.2 -2.1 2005 -12.4 -0.2 -9.8 -2.3
1987 -15.0 0.2 -12.5 -2.8 2006 -13.6 -0.1 -11.6 -1.8
1988 -7.7 0.1 -6.2 -1.6 2007 -13.6 -0.2 -10.3 -3.1
1989 -5.1 0.1 -3.7 -1.5 2008 -15.2 -0.3 -11.7 -3.3
1990 -8.4 -0.2 -4.5 -3.7 2009 -9.1 -0.1 -6.3 -2.7
1991 -4.4 -0.2 -2.5 -1.7 2010 -2.8 0.0 -0.4 -2.4
1992 -5.7 0.0 -3.8 -1.9 2011 -11.7 -0.2 -8.6 -2.9
1993 -2.6 0.2 -0.7 -2.0 2012 -8.1 -0.1 -5.2 -2.8
1994 -4.4 -0.3 -1.6 -2.5 2013 -13.8 -0.2 -10.8 -2.8

Notes: Total, EC, SC and PC respectively denote total difference, endowments
component, selection component and participation component; coefficients
scaled by 100.
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Table 44: Self-selection decomposition, heterogeneous copula by education
Year Total EC SC PC Year Total EC SC PC
1976 6.2 0.5 1.5 4.3 1995 0.6 0.4 1.7 -1.5
1977 4.4 0.6 0.9 2.8 1996 -5.4 0.1 -4.3 -1.3
1978 3.0 0.5 1.3 1.2 1997 -3.6 0.3 -2.8 -1.1
1979 2.3 0.3 0.9 1.1 1998 -1.0 0.3 0.0 -1.3
1980 2.8 0.5 1.2 1.1 1999 -2.4 0.3 -2.0 -0.7
1981 0.4 0.7 -0.9 0.6 2000 -1.2 0.3 -1.3 -0.2
1982 0.4 0.7 -0.7 0.4 2001 -2.6 0.2 -2.2 -0.6
1983 -0.6 0.8 -0.7 -0.8 2002 0.3 0.2 0.3 -0.2
1984 7.6 0.6 5.8 1.2 2003 -6.9 0.1 -5.2 -1.7
1985 -0.4 0.8 -1.2 0.1 2004 -4.6 0.0 -3.6 -1.0
1986 -2.9 0.8 -2.8 -0.9 2005 -5.7 0.0 -4.5 -1.2
1987 -6.0 0.5 -4.4 -2.1 2006 -4.0 -0.1 -3.8 -0.1
1988 -0.3 0.4 0.1 -0.8 2007 -4.6 -0.1 -3.3 -1.2
1989 2.4 0.5 2.6 -0.6 2008 -7.0 -0.3 -5.2 -1.6
1990 -1.4 0.4 0.4 -2.2 2009 -6.4 -0.3 -4.9 -1.2
1991 0.6 0.5 0.6 -0.6 2010 -2.3 -0.4 -1.8 -0.2
1992 1.9 0.5 1.9 -0.6 2011 -8.2 -0.4 -6.3 -1.4
1993 2.2 0.4 2.5 -0.7 2012 -0.5 -0.3 0.3 -0.5
1994 3.0 0.4 3.0 -0.4 2013 -8.6 -0.5 -7.1 -1.1

Notes: Total, EC, SC and PC respectively denote total difference,
endowments component, selection component and participation component;
coefficients scaled by 100.
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Table 45: Self-selection decomposition, heterogeneous copula by marital status
Year Total EC SC PC Year Total EC SC PC
1976 -8.4 -0.2 -6.3 -2.0 1995 -4.2 0.0 0.4 -4.7
1977 -8.4 -0.1 -5.0 -3.2 1996 -15.9 0.0 -11.6 -4.2
1978 -10.1 -0.1 -6.2 -3.8 1997 -10.1 0.0 -5.6 -4.5
1979 -12.2 -0.1 -7.5 -4.6 1998 -6.2 0.0 -1.9 -4.3
1980 -11.7 -0.1 -7.9 -3.7 1999 -11.9 0.0 -8.2 -3.7
1981 -6.9 0.0 -3.7 -3.2 2000 -8.9 0.0 -5.8 -3.1
1982 -7.0 0.0 -3.6 -3.4 2001 -7.4 0.0 -4.4 -3.0
1983 -7.3 0.0 -2.8 -4.5 2002 -5.9 0.0 -2.8 -3.1
1984 -3.2 0.0 0.4 -3.6 2003 -13.1 0.0 -9.3 -3.8
1985 -10.0 0.0 -5.4 -4.5 2004 -10.0 -0.2 -5.9 -3.9
1986 -10.8 0.0 -5.9 -4.9 2005 -10.9 0.0 -6.4 -4.5
1987 -13.0 0.0 -8.4 -4.7 2006 -12.4 -0.1 -8.4 -4.0
1988 -1.6 0.0 1.8 -3.3 2007 -14.8 -0.1 -10.3 -4.5
1989 -0.9 0.0 2.5 -3.4 2008 -14.1 -0.2 -10.0 -4.0
1990 -10.6 0.0 -5.5 -5.1 2009 -11.6 -0.1 -8.3 -3.2
1991 -8.0 0.0 -4.7 -3.3 2010 -10.6 -0.3 -7.1 -3.2
1992 -8.4 0.0 -4.8 -3.6 2011 -15.3 -0.3 -11.7 -3.3
1993 -5.4 0.0 -1.1 -4.3 2012 -0.3 0.2 3.5 -4.0
1994 -1.6 0.0 2.5 -4.1 2013 -11.8 -0.3 -7.7 -3.7

Notes: Total, EC, SC and PC respectively denote total difference, endowments
component, selection component and participation component; coefficients
scaled by 100.
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Table 46: Mean decomposition, actual earnings for participants, heterogeneous copula by
race

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.43 0.01 0.40 -0.04 0.05 1995 0.24 0.00 0.28 0.02 -0.05
1977 0.41 0.01 0.43 -0.05 0.03 1996 0.25 0.00 0.42 -0.12 -0.05
1978 0.43 0.01 0.52 -0.11 0.01 1997 0.25 -0.01 0.41 -0.11 -0.05
1979 0.42 0.01 0.50 -0.08 0.00 1998 0.25 -0.01 0.32 -0.02 -0.04
1980 0.42 0.01 0.47 -0.07 0.01 1999 0.26 0.00 0.45 -0.14 -0.05
1981 0.40 0.00 0.47 -0.08 0.01 2000 0.25 -0.01 0.40 -0.12 -0.03
1982 0.40 0.01 0.50 -0.10 -0.01 2001 0.25 -0.01 0.41 -0.13 -0.02
1983 0.38 0.01 0.50 -0.10 -0.02 2002 0.23 -0.01 0.37 -0.10 -0.02
1984 0.36 0.01 0.39 -0.05 0.01 2003 0.22 -0.01 0.46 -0.18 -0.05
1985 0.36 0.01 0.45 -0.09 -0.02 2004 0.20 -0.02 0.40 -0.14 -0.04
1986 0.35 0.01 0.48 -0.12 -0.03 2005 0.21 -0.02 0.44 -0.16 -0.04
1987 0.34 0.01 0.56 -0.19 -0.04 2006 0.22 -0.03 0.46 -0.19 -0.03
1988 0.33 0.01 0.43 -0.09 -0.02 2007 0.20 -0.03 0.47 -0.18 -0.05
1989 0.32 0.01 0.39 -0.06 -0.02 2008 0.20 -0.03 0.49 -0.20 -0.06
1990 0.31 0.01 0.43 -0.07 -0.06 2009 0.20 -0.04 0.39 -0.11 -0.05
1991 0.28 0.00 0.34 -0.04 -0.03 2010 0.19 -0.04 0.28 -0.01 -0.04
1992 0.27 0.01 0.35 -0.06 -0.03 2011 0.19 -0.04 0.44 -0.16 -0.05
1993 0.25 0.00 0.29 -0.01 -0.03 2012 0.19 -0.03 0.36 -0.09 -0.05
1994 0.24 0.00 0.30 -0.03 -0.04 2013 0.18 -0.04 0.46 -0.19 -0.05

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 47: Mean decomposition, actual earnings for participants, heterogeneous copula by
education

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.43 0.01 0.34 0.02 0.06 1995 0.24 0.00 0.23 0.03 -0.02
1977 0.41 0.01 0.35 0.01 0.04 1996 0.25 0.00 0.34 -0.07 -0.02
1978 0.42 0.01 0.37 0.02 0.02 1997 0.24 -0.01 0.31 -0.04 -0.02
1979 0.42 0.01 0.38 0.01 0.01 1998 0.24 -0.01 0.27 0.00 -0.02
1980 0.41 0.01 0.37 0.02 0.01 1999 0.25 0.00 0.30 -0.03 -0.01
1981 0.39 0.01 0.39 -0.01 0.01 2000 0.24 0.00 0.27 -0.02 -0.01
1982 0.40 0.01 0.39 -0.01 0.00 2001 0.24 -0.01 0.29 -0.03 -0.01
1983 0.38 0.01 0.38 -0.01 -0.01 2002 0.22 -0.01 0.23 0.01 0.00
1984 0.35 0.01 0.25 0.08 0.02 2003 0.22 -0.01 0.34 -0.08 -0.03
1985 0.35 0.01 0.35 -0.02 0.00 2004 0.20 -0.02 0.29 -0.05 -0.02
1986 0.34 0.01 0.38 -0.04 -0.01 2005 0.21 -0.02 0.32 -0.07 -0.02
1987 0.33 0.01 0.42 -0.06 -0.03 2006 0.21 -0.02 0.30 -0.06 -0.01
1988 0.32 0.01 0.32 0.00 -0.01 2007 0.20 -0.03 0.30 -0.05 -0.03
1989 0.32 0.01 0.28 0.04 -0.01 2008 0.19 -0.03 0.32 -0.08 -0.03
1990 0.30 0.01 0.32 0.01 -0.03 2009 0.20 -0.03 0.33 -0.08 -0.03
1991 0.27 0.01 0.27 0.01 -0.01 2010 0.19 -0.03 0.26 -0.03 -0.01
1992 0.26 0.01 0.23 0.03 -0.01 2011 0.19 -0.03 0.35 -0.09 -0.03
1993 0.25 0.01 0.21 0.04 -0.01 2012 0.18 -0.03 0.24 0.00 -0.02
1994 0.23 0.00 0.19 0.05 -0.01 2013 0.18 -0.04 0.36 -0.12 -0.03

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Table 48: Mean decomposition, actual earnings for participants, heterogeneous copula by
marital status

Year Total EC CC SC PC Year Total EC CC SC PC
1976 0.44 0.01 0.53 -0.08 -0.03 1995 0.24 0.00 0.33 0.00 -0.08
1977 0.41 0.00 0.52 -0.07 -0.04 1996 0.26 -0.01 0.54 -0.20 -0.07
1978 0.42 0.00 0.56 -0.09 -0.05 1997 0.25 0.00 0.44 -0.10 -0.09
1979 0.42 0.01 0.59 -0.10 -0.07 1998 0.24 -0.01 0.36 -0.03 -0.08
1980 0.42 0.01 0.57 -0.11 -0.05 1999 0.26 -0.01 0.46 -0.13 -0.06
1981 0.40 0.00 0.49 -0.05 -0.04 2000 0.25 -0.01 0.40 -0.09 -0.05
1982 0.40 0.00 0.50 -0.05 -0.05 2001 0.24 -0.01 0.37 -0.07 -0.05
1983 0.38 0.00 0.50 -0.04 -0.07 2002 0.23 -0.01 0.34 -0.05 -0.05
1984 0.36 0.00 0.41 0.00 -0.05 2003 0.22 -0.01 0.46 -0.16 -0.07
1985 0.36 0.00 0.52 -0.09 -0.08 2004 0.20 -0.02 0.39 -0.10 -0.07
1986 0.34 0.01 0.52 -0.09 -0.08 2005 0.21 -0.02 0.44 -0.12 -0.09
1987 0.34 0.00 0.55 -0.13 -0.08 2006 0.22 -0.03 0.46 -0.14 -0.07
1988 0.32 0.00 0.34 0.03 -0.05 2007 0.20 -0.03 0.51 -0.18 -0.09
1989 0.32 0.01 0.33 0.03 -0.06 2008 0.19 -0.03 0.47 -0.16 -0.07
1990 0.31 0.01 0.48 -0.09 -0.09 2009 0.20 -0.04 0.43 -0.14 -0.06
1991 0.28 0.00 0.40 -0.07 -0.05 2010 0.20 -0.04 0.41 -0.11 -0.06
1992 0.27 0.00 0.41 -0.08 -0.06 2011 0.20 -0.04 0.49 -0.19 -0.06
1993 0.25 0.00 0.36 -0.03 -0.08 2012 0.18 -0.04 0.25 0.04 -0.08
1994 0.23 0.00 0.27 0.04 -0.07 2013 0.18 -0.04 0.42 -0.13 -0.07

Notes: Total, EC, CC, SC and PC respectively denote total difference, endowments component,
coefficients component, selection component and participation component.
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Figure 14: Actual earnings decomposition for participants
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Notes: QRS and H2S stand for Quantile Regression with Selection and Heckman 2-Stage estimators; the
solid thick blue line denotes the total gap between male and female workers; the solid thin red line denotes
the endowments component; the dashed green line denotes the coefficients component; the dotted orange
line denotes the selection component; the dashed-dotted cyan line denotes the participation component.
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Figure 15: Actual earnings decomposition for the entire population
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Notes: QRS and H2S stand for Quantile Regression with Selection and Heckman 2-Stage estimators; the
solid thick blue line denotes the total gap between male and female workers; the solid thin red line denotes
the endowments component; the dashed green line denotes the coefficients component; the dotted orange
line denotes the selection component; the dashed-dotted cyan line denotes the participation component.
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Figure 16: Unconditional quantiles decompositions, actual earnings for participants,
heterogeneous copula by race
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Notes: the solid thick blue line denotes the total gap between male and female workers; the solid thin
red line denotes the endowments component; the dashed green line denotes the coefficients component; the
dotted orange line denotes the selection component; the dashed-dotted cyan line denotes the participation
component.
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Figure 17: Unconditional quantiles decompositions, actual earnings for participants,
heterogeneous copula by education
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Notes: the solid thick blue line denotes the total gap between male and female workers; the solid thin
red line denotes the endowments component; the dashed green line denotes the coefficients component; the
dotted orange line denotes the selection component; the dashed-dotted cyan line denotes the participation
component.
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Figure 18: Unconditional quantiles decompositions, actual earnings for participants,
heterogeneous copula by marital status
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Notes: the solid thick blue line denotes the total gap between male and female workers; the solid thin
red line denotes the endowments component; the dashed green line denotes the coefficients component; the
dotted orange line denotes the selection component; the dashed-dotted cyan line denotes the participation
component.
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