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Abstract
When searching for employment, workers take different job characteristics
into account. We study an environment where unemployed workers search
for jobs with different effort requirements in a labor market characterized by
directed search. In equilibrium, firms are more likely to post vacancies for
high-effort jobs, as these are more profitable. Hence, low-effort jobs are hard
to come across. The optimal unemployment contract prescribes that the gov-
ernment should distort effort downwards through positive marginal tax rates
on labor earnings, even when non-distortionary taxation is available. This
result transpires both for the case of observable and, for GHH-CARA prefer-
ences, hidden savings.
Keywords: Unemployment Insurance; Directed Search; Intensive Margin; Hidden
Savings.
JEL Codes: H21; J64.

1 Introduction

Unemployment insurance programs must strike a balance between the provision
of insurance and the disincentives for working. Previous literature has addressed
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its optimal design by focusing on the extensive margin of labor supply — Hopen-
hayn and Nicolini (1997); Shimer and Werning (2007, 2008). This line of work has
emphasized how insurance provision reduces the incentives for searching for jobs
and accepting offers. But different jobs may require different levels of effort from
workers. When searching for employment, workers can take these different job
characteristics into account.

In this paper, we study the problem of a government that offers optimal un-
employment insurance financed with income taxes in a dynamic environment fea-
turing directed search. We innovate by taking into account the intensive margin
of labor supply. By allowing for intensive margin adjustments, firms may expand
the supply of vacancies by requiring agents to increase their output conditional on
landing a job. From the worker’s perspective, they can reduce the expected un-
employment spell if they look for jobs that require more effort for the same level
of earnings. An alternative interpretation is via the notion of equalizing differ-
ences.1 What makes these non-pecuniary dimensions important for our analysis
is that these adjustments in work conditions are neither observed nor controlled
by the planner.

We characterize the optimum for general separable preferences when the plan-
ner controls the agent’s savings. At the optimum, there is a positive wedge at the
intensive margin of effort. This result materializes even though the planner can
use non-distortionary instruments and there is no distributive motive. The logic
is as follows. The planner observes earnings but neither effort nor the non-wage
characteristics of a job. Hence, if an agent decides to deviate, they will do so by
searching for a job that requires less effort but which they have a lower probability
of finding. Then, conditional on landing the job, they will have a higher marginal
willingness to work than someone who follows the strategy prescribed by the
planner. Distorting effort downwards has second-order utility costs for equilib-
rium choices but first-order costs for one who deviates, as a deviator enjoys more

1In the real world, workers may adjust their search not only by becoming more selective with
regard to wages but also with respect to how much effort they must exert once employed and the
quality of their prospective work environment, neither of which is within the reach of policy. These
equalizing differences surveyed by Rosen (1987) have been shown to be quantitatively important
in recent work by Mas and Pallais (2017); Sorkin (2018); Hall and Mueller (2018).
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leisure and attributes a lower marginal value to it. This relaxes incentive con-
straints and lowers the cost of providing insurance. Unemployment benefits and
net earnings decline with the length of the unemployment spell. The repeated
moral hazard nature of the problem implies that, at the optimum, the stochastic
process governing consumption satisfies the inverse Euler Equation. In the long
run, unemployment benefits converge to zero.

To implement the optimal allocation described above, the planner must control
the agent’s savings, which may not be possible in practice. We take the possibility
of hidden savings and borrowing in perfect capital markets into account. For this
case, we restrict our analysis to preferences of the Greenwood et al. (1988) type
specialized to the case of Constant Absolute Risk Aversion, henceforth CARA-
GHH preferences. The optimal allocation can be implemented by a simple sta-
tionary contract: an upfront unemployment installment, constant gross earnings,
and taxes when the agent finds a job. The pattern of declining consumption in
both employment and unemployment is achieved by the worker’s (dis)savings
along the unemployment spell. In this hidden-savings case too, a positive wedge
on the intensive margin characterizes the optimum.

The rest of the paper is organized as follows. After a brief literature review,
in Section 2, we describe the environment and offer a one-period account of the
forces explaining our findings. We derive the properties of an optimal system un-
der the assumption that the planner controls agents’ savings in Section 3 and use
Section 4 to do the same for the case of hidden savings. In Section 5 we assess the
quantitative relevance of our theoretical results and offer a conclusion in Section
6.

Literature Review

The modern treatment of unemployment insurance program design has its roots
in Shavel and Weiss (1979) and found its first canonical treatment in Hopenhayn
and Nicolini (1997). We contribute by focusing on directed search and by intro-
ducing the possibility of selecting jobs according to their effort requirements. Ace-
moglu and Shimer (1999) consider a general equilibrium model of directed search
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with risk aversion. The static version of our model generalizes theirs by consider-
ing the possibility of adjusting the effort requirements of different jobs. Moreover,
while their focus is on the general equilibrium aspects of unemployment insur-
ance, we concentrate on the planner’s solution to the optimal policy.

Shimer and Werning (2007, 2008) evaluate the consequences of allowing agents
to borrow and save in perfect capital markets using McCall’s (1970) model of se-
quential job search. Under CARA preferences, a policy comprised of a constant
benefit during unemployment, a constant tax during employment, and free access
to a riskless asset is optimal. In our directed search environment with the possibil-
ity of intensive margin adjustments in the amount of effort once employed, simple
stationary policies are also optimal under CARA. We add to the prescription by
proving the optimality of distorting effort downwards.

A strand of the literature investigates redistributive policies in the presence of
labor market frictions. Golosov et al. (2013) consider the redistribution of residual
income. Under directed search, the optimal redistribution of residual income can
be attained with positive unemployment benefits and an increasing and regres-
sive income tax schedule. As in our framework, a positive wedge obtains despite
workers being homogeneous, albeit for a different reason. Kroft et al. (2020) focus
on finding sufficient statistics for the optimal combination of income taxes and
unemployment benefits but do not consider intensive margin adjustments as we
do. da Costa et al. (2021) study optimal distributive policies in the presence of
labor market frictions. While they focus on intensive margin choices, their model
is static and focused on the interaction between distributive motives and unem-
ployment insurance design. Here, we abstract from redistribution and focus on
the dynamics of insurance when contracts are not observed and there is scope for
adjustments in the intensive margin.

2 Environment

Time runs for t = 0, 1, ..., and is discounted by β ∈ (0, 1). Preferences are separable
across time, states, and between consumption, c, and effort, n. The flow utility
generated by (c, n) is given by U(c, n) = ϕ(c) − η(n), with ϕ′,−ϕ′′, η′, η′′ > 0,
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satisfying the Inada conditions limc↓0 ϕ
′ (c) = ∞ and limn↓0 η

′ (n) = 0. One unit
of effort, n, produces one unit of the consumption good, c, the price of which is
normalized to one.

The economy starts with the worker in an unemployment state. A job of-
fer is a contract specifying how much effort, n, the worker must make if hired
and their earnings, y. A labor contract, consisting of the pair (n, y), defines a
(sub)market. The probability, p, of receiving a job offer in any market depends
on the market tightness, with the implied relationship captured by the function
% : [0, 1] → [0,∞). This function associates an employment probability, p, to the
vacancy-to-workers ratio that generates it. That is, with some abuse in notation,
let p(λ) denote the probability that an agent gets an offer when the workers-to-
vacancy ratio is λ. If λ : [0, 1] → [0,∞) is its inverse, then, for all p, define %
by %(p) := 1/λ(p). As in usual directed search specifications, we assume that %
is strictly increasing, twice differentiable, strictly convex, and satisfies %(0) = 0,

limp↑1 %(p) = ∞. This implies that %(p)/p is strictly increasing and assume that
φ =limp↓0%(p)/p > 0.

The following assumption states that a worker who receives a sufficiently low
constant lump-sum payment c > 0 in every period would look for a job with a
positive probability if labor was not taxed:

ϕ (c) < max
ye

ϕ (c+ ye)− η (φ+ ye) .

This assumption always holds, for instance, when limc↓0 ϕ (c) = −∞.
To model a firm’s hiring decision, normalize the cost of posting a vacancy to

κ/(1 − β). An unemployed worker who applies for a job at time t receives the
answer at the beginning of the same period, before collecting unemployment in-
surance.

We study the cost minimization of a government that must guarantee a life-
time utility, W0, to the worker. When offering insurance to the agent, the planner
faces informational restrictions. First, the planner does not know whether the
agent received a job offer and rejected it or whether no offer materialized. Second,
conditional on the worker finding a job, the planner does not know the type of
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contract offered to the agent. More precisely, the planner observes earnings, y,
but not effort n. Whereas the first source of informational asymmetry has been
extensively studied, the second one is novel. To highlight its role, we first present
a one-period version of our economy in which the heuristics for our main findings
are simpler to convey.

2.1 A one-period economy

Consider a simplified version of our model in which an agent lives for a single
period split into two sub-periods. In the first sub-period, the agent decides in
which sub-market to search, i.e., they choose p. If they find a job, they earn ye in
exchange for producing ye+κ%(p)/p. If not, they are entitled to an unemployment
benefit cu.

Note two things about the worker’s problem. First, contracts are not observ-
able. That is, the planner observes how much an employed worker is paid, ye,
but it cannot monitor how much effort, ne, a job demands. Second, from the zero
profit condition, p[ne − ye] = κ%(p) must hold for any contract, on- and off-the-
equilibrium path.

For an employed worker to consume ce, they must earn ye = ce + T and pay
taxes, T , to the government. Since the output they produce must also cover the
vacancy-related expenditures ne > ye. So, in what follows we relegate ne and T to
the background and write the planner’s program with the controls ce, cu, and ye.

The planner observes both ce and ye. Hence, the only margin in which de-
viation is possible is the choice of p. Moreover, the effort, ne = ye + κ%(p)/p, is
chosen when the worker decides which job to apply to. Because the government
observes neither p nor ne, it can only condition policy on the employment status
and on earnings, ye. A worker who chooses a higher matching probability and
finds a job must exert more effort for the same level of earnings. The intuition is
simple: worse jobs, shorter queues.

Note that (ce, cu, ye) are controlled by the planner and define for any p̂,

U (p̂, cu, ce, ye) := (1− p̂)ϕ(cu) + p̂

[
ϕ(ce)− η

(
ye + κ

%(p̂)

p̂

)]
,
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and let the agent’s optimal choice of p̂ be

p ∈ arg max
p̂
U (p̂, cu, ce, ye) . (1)

Under the assumption that the solution to the agents’ problem is interior, i.e.,
that the worker actively searches for a job, the solution must satisfy the following
first-order condition:

ϕ(ce)− ϕ(cu)− η
(
ye +

%(p)

p

)
− pη′

(
ye +

%(p)

p

)(
%(p)

p

)′
= 0, (2)

where the notation (
ϑ(p)

p

)′
=

d

dp

(
ϑ(p)

p

)
,

is used to simplify the expressions.
The Pareto frontier can be obtained by maximizing the planner’s expected rev-

enue
− (1− p)cu + p (ye − ce) , (3)

subject to delivering utility U∗ to the agent,

U (p, cu, ce, ye) ≥ U∗, (4)

and to respecting the incentive-compatibility constraint (1).
Due to the concavity of the problem, (4) can be replaced by (2) whenever it

is desirable to induce a positive search. If it is not desirable to induce positive
search, the solution displays cu = ce = ϕ−1 (U∗). Focus then on the case in which
the optimal amount of search is positive.

To incentivize effort, the planner must ensure that ce > cu, which implies that
both constraints bind. This fact, coupled with the concavity of the worker’s prob-
lem with respect to p, confirms that (ce − ye) > cu. Hence, the planner raises more
revenues when the worker finds employment. This is the source of moral haz-
ard in our model. The worker does not internalize the fiscal cost of the insurance
provided by the government. Accordingly, the government finds it desirable to
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induce a higher matching probability.
Turn now to how this impacts the marginal rate of substitution between con-

sumption and leisure. From the first-order conditions with respect to ce and ye,
ϕ′(ce) > η′ (ye + %(p)/p).

At the optimal allocation, labor effort is distorted downward. To better under-
stand this property, consider an alternative allocation in which this margin is not
distorted: ϕ′(ce) = η′ (ye + %(p)/p). A small perturbation in which consumption
when employed, ce, and earnings, ye, are both decreased by some small ε > 0 has
no direct fiscal effect and only a second-order effect on the worker’s utility. How-
ever, it changes the marginal incentive to search for a job. The convexity of the cost
of labor and the fact that workers who intend to find a job with higher probability
must provide higher effort once employed imply that this perturbation makes it
relatively more attractive to search for a job. This relaxes the moral-hazard con-
straint and allows the planner to improve policy.

The planner wants the unemployed worker to search for jobs that are easier to
find. As these jobs entail more effort once employed, the planner must provide
incentives for the worker to work harder. By imposing an income tax, the plan-
ner creates a wedge where the marginal utility of consumption is higher than the
marginal disutility of working. Hence, at the margin, exerting more effort is not
so costly for the employed worker. Imposing such a wedge is thus optimal even
when non-distortionary instruments are available. The next few sections show
that this insight carries on to richer environments.

3 Optimal Unemployment Insurance

The one-period version of our model was proper to highlight the extra margin for
deviation when some aspects of jobs cannot be controlled by the planner. Yet, it
abstracts from an important dimension of real-world unemployment insurance:
the time dimension of optimal policy. This section develops a dynamic version
of our model and shows that it is optimal to distort effort downwards when the
worker finds a job. We start by describing what would be possible if contract
offers were observed. That is, we characterize the benchmark case in which a
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firm’s posted contract is observable, but the planner cannot observe whether or
not the worker received an offer.

3.1 Observable Contracts

For now, assume that the planner observes the details of contracts that are offered.
A job contract is a pair, (ce, ne), where ce denotes the consumption for an employed
person and ne the level of effort required from them.

The planner cannot force the agent to find a job if

ϕ(cu) > ϕ(ce)− η (ne) .

Hence, the program that the planner solves is

C(W ) = max
p,ce,cu,n,W̃

p

1− β

[
n− ce − κϑ(p)

p

]
+ (1− p)

[
−cu + βC(W̃ )

]
,

subject to the promise-keeping,

W =
p

1− β
[ϕ(ce)− η (n)] + (1− p)

[
ϕ(cu) + βW̃

]
, (5)

and the incentive constraint,

ϕ(ce)− η (n)

1− β
≥ ϕ(cu) + βW̃ . (6)
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We can write the program above as the following Kuhn-Tucker problem,2

C(W ) = max
p,ce,cu,n,W̃

p

1− β

[
n− ce − κϑ(p)

p

]
+ (1− p)

[
−cu + βC(W̃ )

]
+

µ

[
p

1− β
[ϕ(ce)− η (n)] + (1− p)

[
ϕ(cu) + βW̃

]
−W

]
+

ψ

[
ϕ(ce)− η (n)

1− β
− ϕ(cu)− βW̃

]
To proceed, we first assess whether the moral hazard and the promise-keeping

constraints bind at the optimum. Lemma 3.1 below states that whenever agents
search for a job, they are indifferent between doing so and remaining unemployed
for another period.

Lemma 3.1 The promise-keeping constraint (5) binds in every period, and µ > 0. In any
period in which there is positive search, the moral-hazard constraint binds, ϕ(ce)−η (n) =

[1− β]
[
ϕ(cu) + βW̃

]
, and ψ > 0.

For every period t in which the moral-hazard constraint binds we have

µt+1 = µt −
ψt

1− pt
,

which implies that unemployment consumption decreases over time,

cut−1 = (ϕ′)
−1 (

µ−1
t

)
> (ϕ′)

−1 (
µ−1
t+1

)
= cut .

Moreover, the consumption process is described by an inverse Euler equation,

1

ϕ′
(
cut−1

) = µt = pt
[
µt + ψtp

−1
t

]
+ (1− pt)

[
µt + ψtp

−1
t

]
=

pt
ϕ′ (cet )

+
1− pt
ϕ′ (cut )

.

Also, the first-order conditions with respect to ce and n imply that, in contrast
to our one-period model with non-observed contracts, the effort is not distorted

2We can rely on Lemma A.3 to write the problem as such. This lemma refers to the case in
which contracts are not observed, but the argument is easily adapted to the case with observed
contracts.
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at the optimum in the dynamic model with observable contracts. We gather these
findings in Proposition 3.1.

Proposition 3.1 The solution for the planner’s problem when contracts are observable
has the following properties:

i) It entails a zero marginal income tax rate.

ii) The unemployment insurance is decreasing over time. Moreover, if there is a search
at period t then the unemployment insurance is strictly lower than the one from the
previous period.

iii) The consumption process is described by an inverse Euler equation.

The incentive-compatibility constraint (6) only depends on the agent’s util-
ity when employed, not on how it is generated. Since the government observes
contracts, it can choose them to minimize the cost of providing this utility. That
is, given any utility level, there is no reason for the government to distort effort,
which implies i). Second, unemployment insurance should decrease over time
in order to make it more costly to turn down employment opportunities, which
is the content of ii). Finally, similar to several dynamic moral-hazard models –
e.g., Rogerson (1985) –, the consumption process is described by an inverse Euler
equation.

3.2 Non-observable Contracts

Section 3.1 adopted the strong assumption that the government observes the con-
tracts chosen by workers and hence the disutility of effort from a particular job.
We now consider optimal policies under non-observable labor contracts. With
non-observable contracts, the optimal policy must be based only on whether or
not the agent is employed, on their earnings, and on the length of the unemploy-
ment spell.

If the principal promises a utility sufficiently high for the agent, the solution
to the planning problem implies that there is no search in equilibrium. I.e., it is
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cheaper to deliver the promised utility if the agent remains unemployed forever.
This is an uninteresting case and we focus, instead, on the case in which utility is
not too high.

To characterize the optimal unemployment insurance program in this case, we
rely on a first-order approach. Lemma A.2 shows that the solution for this relaxed
problem is the solution to the original program. Hence, the planner’s problem has
a recursive structure and can be written as follows,

C (W0) = max
p,ce,cu,ye,W1

p

1− β
(ye − ce) + (1− p) [−cu + βC (W1)] ,

subject to a promise-keeping constraint

p

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
+ (1− p) [ϕ(cu) + βW1]−W0 ≥ 0, (7)

and an incentive compatibility constraint

1

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
− ϕ(cu)− βW1 =

pκ

1− β
η′
(
ye + κ

ϑ(p)

p

)(
ϑ(p)

p

)′
.

(8)
Lemma A.3 shows that the planner’s problem is differentiable, and hence the

optimum must satisfy a constraint optimization in which we write µ and λ for
the multipliers relative to the constraints (7) and (8). Both multipliers are strictly
positive. If µwere not strictly positive, the planner would be able to save resources
by lowering the utility promised to the agent in both states with no consequences
for incentives. λ is strictly positive because the worker does not internalize the
fiscal externality when unemployed.

Combining the first order conditions with respect to ye and ce, one obtains

ϕ′(ce)− η′
(
ye + κ

ϑ(p)

p

)
=

λκp

µp+ λ
pη′′

(
ye + κ

ϑ(p)

p

)(
ϑ(p)

p

)′
> 0. (9)

The optimal allocation now displays a positive wedge at the intensive margin.
The dynamic model inherits the finding from our one-period model. If a firm
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offers a better job, i.e., one requiring less effort for the same earnings, then it will
attract more job candidates. Workers, in turn, will find it harder to land such a
job, thus remaining unemployed for more periods. Conditional on getting one of
these jobs a worker would have a higher willingness to exert effort compared to
someone who got one of the jobs offered by firms along the equilibrium path. To
make these deviations less attractive, the planner distorts effort downwards by
taxing earnings at the margin.

Since preferences are separable in consumption and effort, it is always feasible
to vary the unemployment consumption utility in a period and compensate for it
by varying the consumption utility in all states of nature in subsequent periods.
Such a strategy changes neither incentives nor expected utility. Thus, these per-
turbations cannot save resources at the optimum. Because the marginal cost of
delivering utility is 1/ϕ′, the inverse Euler equation ensues.

These findings are summarized in Theorem 3.1, which is proved in the ap-
pendix.

Theorem 3.1 At the optimum, in every period in which there is a positive search,

i) the moral-hazard constraint (8) binds, and the government benefits from strictly in-
creasing p;

ii) the marginal income tax rate is always positive, and;

iii) conditional on not finding a job at period t, the worker’s marginal utility of consump-
tion satisfies the inverse Euler equation,

1

ϕ′ (cut )
= E

[
1

ϕ′ (ct+1)

]
.

The planner may avoid distorting the effort margin. Taxes may be based on
employment, independently of earnings. Moreover, the utility conditional on
finding a job depends on ϕ(ce) − η(ne), regardless of whether ce and ne are ef-
ficiently chosen. What is then the rationale for distorting the intensive margin
prescribed in Proposition 3.1? It is the same that we have seen in a static setting.
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Consider a worker deciding whether to apply for a job in a slightly tighter sub-
market, p̂ > p. The planner controls ye and ce, but not the amount of effort the
agent is making. Upon landing a job in a tighter market, the worker is required to
supply effort, n̂ = ye + κ%(p̂)/p̂ < ye + κ%(p)/p = n while receiving the same ce.
This worker, therefore, has a lower marginal disutility of effort than agents who
followed the optimal policy. To make this downward deviation less valuable – this
is the relevant deviation according to i) – the planner distorts effort downward by
introducing a positive wedge. A little less surprising is the fact that, as in Roger-
son (1985); Atkeson and Lucas (1995), the Inverse Euler Equation characterizes the
dynamics of consumption for the unemployed.

Proposition 3.2 The unemployment benefit is decreasing over time with cut > cut+1 when-
ever the worker searches in period t+ 1.

Moreover, whenever the worker searches in period t + 1, their consumption from em-
ployment is strictly greater than the unemployment benefit from any period τ ≥ t.

Due to income effects, the optimal contract provides constant benefits and asks
the worker never to search for a job when the promised utility is very high. On
the other hand, job search must be incentivized when the government promises
a sufficiently low utility to the worker. These two possibilities render the govern-
ment’s cost of providing utility W to the worker not convex in W , in general. As
a consequence, we cannot rule out the possibility that the worker does not search
for a job in the first period of the optimal contract.

To better understand when it is optimal to search in every period, let W ∗ be
the supremum over all utilities that induce efficient search in a static economy.
Lemma A.1 shows that W ∗ ∈ R. Moreover, Lemma 3.2 below shows that, if the
initial unemployment insurance provides less utility than W ∗, then the worker
must search for a job in every period.

Lemma 3.2 Assume that ϕ (cu0) < W ∗. Then, there is a positive search in every period.

When the initial utility is smaller than W ∗, the initial contract must induce
search in some period. Moreover, whenever the worker searches in some period
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the unemployment benefits eventually fall so that ϕ (cut ) < W ∗ for some period t.
Hence, the worker searches in every period, τ > t.

Lemma 3.3 The following conditions hold in any optimal contract:
a) Assume that W0 < W ∗. Then, there is t > 0 such that ϕ (cut ) < W ∗. Hence, the

worker who is unemployed in any period τ > t searches for a job.
b) Assume that the worker searches for a job in some period t. Then there is T > t such

that the unemployed worker searches in any period τ > t.

In this case, according to Proposition 3.2, cut > cut+1 for all t. Therefore, the un-
employment benefit converges to a non-negative number. Proposition 3.3 shows
that this number is 0.

Proposition 3.3 Assume that W0 < W ∗.Then unemployment benefits converge to zero.

We have focused thus far on the case of separable preferences between con-
sumption and effort. This has been the most frequently studied case in the litera-
ture. In Appendix B, we study non-separability for the case of GHH-CARA utility
U(c, n) = − exp

{
−α
[
c− η(n)

]}
.3 These preferences will be the focus of our analy-

sis when we assume that savings cannot be controlled by the planner. The results
of this section carry over to the GHH-CARA case. In particular, the optimal policy
for this case also prescribes a positive wedge between effort and consumption.

4 Hidden Savings

In Section 3 we have followed most of the literature, and Hopenhayn and Nicolini
(1997), in particular, in assuming that the planner controls the worker’s savings.
This allowed us to define a one-to-one mapping from after-tax earnings, ye−T , to

3The constant absolute risk aversion (CARA) case is the only one for which Shimer and Wern-
ing (2007) have theoretical results for the non-observable savings scenario. They offer numerical
explorations for the constant relative risk aversion (CRRA) case. Because we are also interested in
understanding choices at the intensive margin, we suppress income effects at this margin through
the assumption of quasi-linearity, as in Greenwood et al. (1988).
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consumption, ce. What happens if this is not the case? If the government does not
control savings, do these results remain valid? We answer these questions next.4

To study the optimal design of an unemployment insurance program for the
case in which the government does not observe agents’ savings, we assume that
the agents have access to perfect capital markets with an interest rate r = β−1 − 1.
Because consumption and earnings need not coincide due to the possibility of
borrowing and saving a crucial distinction between the optimal consumption path
and the optimal transfer path arises, as highlighted by Shimer and Werning (2007)
in the context of unemployment insurance. We follow their lead in restricting
our analysis to the case of preferences that do not exhibit income effects, i.e., we
assume that preferences are of the GHH-CARA.

The planner’s program is to minimize the expected cost of delivering utility
W0 for the unemployed agent subject to providing incentives for him to follow
the optimal search strategy.

Assume that the worker starts with assets, A0. In a deterministic mechanism,
the government adds liquidity, a0 − A0, at time t = 0 and transfers, bt, to the
unemployed in period t ≥ 0. If a job is found at period t the government demands
the amount of work yet and makes a net transfer T et (which may be negative) in
every subsequent period.5

Recall that p→ (%(p)/p) is strictly increasing and strictly convex. We make the
following additional assumption, which guarantees that it can be optimal for the
agent to search for a job.

Assumption H1: There exists y and p > 0 such that

y > η

(
y + κ

ϑ(p)

p

)
.

4As we know from Allen (1985); Cole and Kocherlakota (2001), the existence of hidden savings
represents an important constraint for the design of optimal policies, in general.

5Once the worker lends a job, there is no further need to provide incentives and utility provision
is optimally accomplished by a time-invariant allocation. Hence, the time index in yet and T e

t refers
to the period t in which the job is found.
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Intuitively, if H1 were violated, the benefit of making effort would never com-
pensate for its disutility. Optimal programs would entail no vacancy creation.

A policy is a tuple, (a0, {yet , T et , bt}
∞
t=0), where a0 is the agent’s initial asset hold-

ings, yet is the amount of effort that is demanded in every future period if a job is
found at period t, T et are the taxes to be paid in every future period if a job is found
at t, and bt is the value of unemployment insurance at period t.

We say that the consumption sequence {cut , cet}
∞
t=0 is feasible under the policy

(a0, {yet , T et , bt}
∞
t=0) if lim βtcut = lim βtcet = 0 and there exists {at}∞t=0 with lim βtat =

0 such that
at+1 = β−1 (at − cut + bt) ,

and
cet = (1− β) at + yet − T et .

Without loss of generality, we restrict our attention to policies that generate feasi-
ble consumption sequences.

Next, we define a simple policy , which will play an important role in all that
follows.

Definition 4.1 A simple policy is a triple (a0, y
e, T e) in which the earnings, yt, of an

employed agent, are constant, yet = ye for all t, and the transfers, T et , that the agent makes
to the government once employed are also constant, T et = T e.

With Lemma 4.1 we explain how an agent optimally responds to a simple pol-
icy. We then show – Theorem 4.2 – that the constrained efficient allocation can be
implemented by a simple contract which we fully characterize in Section 4.1.

When facing a simple policy the worker’s problem can be written in a recursive
form as

Wt(at) = max
at+1∈R, p∈[0,1]

{
− exp

{
−α
(
at − β−1at+1

)}
+ β

{
pW e

t+1 (at+1, p) + (1− p)Wt+1 (at+1)
}}

, (10)
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subject to

W e
t+1 (at+1, p) = − 1

1− β
exp

{
−α
[
ye − T e +

(
β−1 − 1

)
at+1 − η

(
ye + κ

%(p)

p

)]}
.

For short, we write Wt = Wt(at), W e
t = W e

t+1 (at+1, pt), and W u
t = Wt+1 (at+1),

at the optimal (at+1, pt).
Let ĉet,τ be the consumption at τ for an agent who found a job in period t < τ . It

is immediate to see that ĉet,τ = cet for all τ > t. Hence, in what follows we omit the
current period subscript, τ , and write cet to denote the time-invariant consumption
of an agent who found a job in period t.

Lemma 4.1 Assume that the planner offers a simple contract, (a0, y
e, T e), to the agent.

In this case, the agent chooses,

i) a stationary p;

ii) cet+1 − cet = −∆c and cut+1 − cut = −∆c, for a constant, ∆c > 0;

iii)
W e
t

Wt

=

{
1 + αp(1− p)κη′

(
ye + κ

ϑ(p)

p

)(
ϑ(p)

p

)′}−1

= ke < 1,

and

W u
t

Wt

=

(
1 +

αp2κη′ (ye + κϑ(p)/p) (ϑ(p)/p)′

1 + α2p2(1− p)κη′ (ye + κϑ(p)/p) (ϑ(p)/p)′

)
= ku > 1;

iv)
p

(1− β)Wt

exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
= 1− (1− p) ku.

According to Lemma 4.1, when facing a simple contract, the agent chooses
a constant p, and, for every additional period in which he is unemployed, he re-
duces both the consumption while unemployed, cut , and the planned consumption
after finding a job, cet , by the same amount ∆c.6 As a result, the ratios W e

t /Wt and

6Note that consumption is kept constant after the agent finds a job.
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W u
t /Wt remain constant at ke and ku, respectively.7

Theorem 4.2 There exists a simple policy that implements the optimal allocation.

The optimal unemployment contract implements an allocation characterized
by a constant search, p, and a constant work effort, ne = ye + κ%(p)/p after a job
is found. To provide incentives for agents to keep searching one must guarantee
that cet > cut in every period t. However, spreading consumption across the two
states, unemployment, and employment, within a single period, is a costly way
of delivering promised utility. To reduce this cost, incentives are back-loaded; the
promised utility is reduced every time an agent fails to find a job, as stated in (iii).
For the specification of preferences that we adopt, a lower utility promise with the
same p and ye can be made incentive compatible by an equal reduction in ce and
cu, which we show to be optimal in the proof of Theorem 4.2.

Next, we explain the rationale for how the optimal allocation can be imple-
mented with a simple contract where the agent is given assets a0 and is promised
a labor contract (ye, ce) if he manages to land a job. Agents’ (dis)savings choices
guarantee that cet and cut will follow the path prescribed in Theorem 4.2.

Under Assumption H1, and with GHH-CARA preferences, changes in asset
positions have no impact on agents’ search choices. However, they imply an ad-
justment in consumption during the unemployment and after a job is found which
leads to a simple scaling of expected utility. Given this simple response to asset
position, a Ricardian-equivalence result obtains. Alternative paths are fully char-
acterized by the time in which the worker finds a job and the worker’s decision
only depends on the present value of transfers associated with each path. By
performing simple changes in the timing of payments one can show that simple
insurance schemes are optimal.

4.1 The Optimal Policy

Now that we have established that the optimal contract is stationary and of the
form (a0, c

e, ye), we rely on this simple structure to provide its complete character-
7Because W ∈ (−∞, 0), expected utility decreases with the unemployment spell — ku > 1 —

and increases once a job is found — ke < 1.
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ization.
We can restrict the search for the optimal contract to that of finding a triple

(a0, c
e, ye) that solves the problem

max
(a0,ce,ye)

{
p (ye, ce)

1− β (1− p (ye, ce))

ye − ce

1− β
− a0

}
,

subject to
U (ye, ce, a0) ≥ U0,

where U (ye, ce, a0) is the value of the worker’s program (10) under the simple
policy, (ye, ce, a0). Note that the incentive constraint is summarized by the depen-
dence of p on ye and ce.

The promise-keeping constraint can equivalently be written as

U (ye, ce) exp {−α (1− β) a0} ≥ U0,

where we use the simplified form U (ye, ce) for U (ye, ce, 0).
The first-order condition with respect to a0 allows us to eliminate the Lagrange

multiplier and the promise-keeping constraint. We may, then, write the planner’s
objective as

L =
p (ye, ce)

1− β (1− p (ye, ce))

ye − ce

1− β
− a0 +

U (ye, ce)

exp {−α (1− β) a0}α (1− β) |U0|
.

The first-order condition with respect to ce is

− p (ye, ce)

1− β (1− p (ye, ce))
+

∂U (ye, ce) /∂ce

exp {−α (1− β) a0}α (1− β) |U0|

+
∂

∂p

[
p

1− (1− p) β

]
ye − ce

1− β
∂p

∂ce
= 0, (11)

20



and, with respect to ye is

p (ye, ce)

1− β (1− p (ye, ce))
+

∂U (ye, ce) /∂ye

exp {−α (1− β) a0}α (1− β) |U0|

+
∂

∂p

[
p

1− (1− p) β

]
ye − ce

1− β
∂p

∂ye
= 0. (12)

Consider the optimality conditions above. The first term regards the direct
fiscal cost of an increase in ye. The second term is the impact on the worker’s util-
ity. Both are purely mechanical impacts. The third term summarizes the indirect,
behavioral fiscal effects which are present because p is not observable.

As we show, ∂p/∂ce > 0 and ∂p/∂ye < 0: the worker’s best response to a higher
disposable income is to increase the job-finding probability and, to a higher gross
income is to decrease the job-finding probability. Of course, the fiscal effect also
depends on the sign of ye − ce; whether the behavioral response translates into a
positive or a negative fiscal effect.

Theorem 4.3 The efficient allocation is characterized by:

i) ye − ce is strictly positive;

ii) The labor wedge,

1 +
∂U(ye, ce)/∂ye

∂U(ye, ce)/∂ce
,

is strictly positive;

iii) The utility of the agent who does not get a job by period t diverges to minus infinity
as well as the utility of the agent who gets a job at period t.

According to (i), ye − ce > 0; when the worker finds a job he pays net taxes.
An increase in ye increases the job-finding probability, while an increase in ce de-
creases it, i.e., a worker that provides lower effort responds better to incentives,
being more prone to increase his job-finding rate due to an increase in employ-
ment consumption. As a result, we obtain (ii) which shows that, as in the model
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with observable savings, the moral-hazard problem implies that effort should be
discouraged at the margin.

It is important to emphasize that the moral hazard problem does not arise
because of positive taxes, ye − ce > 0. The planner can make taxes dependent
only on whether the agent is employed regardless of how much he or she earns
thus avoiding the distortions at the work effort margin. The fiscal externality is
important because it makes it desirable for the planner to induce agents to search
harder. What ultimately makes it optimal for the government to distort the effort
margin is the fact that a positive effort wedge increases the cost of downward
deviation of the search margin.

Finally, the last point of the theorem. The worker always expects to find a job
with a constant probability in every period. Because of that, he dis-saves, and
hence his unemployment consumption decreases along the duration of the un-
employment spell. The absence of income effects in our specification implies that
his consumption diverges to minus infinity as the unemployment spell becomes
arbitrarily long.

5 Quantitative Exploration

[TO BE DONE]

6 Conclusion

We study the consequences of intensive margin adjustments for optimal unem-
ployment insurance design. We add to an otherwise standard search problem the
real-world feature that an important dimension of labor contracts is not observed
by the policy maker: how hard an agent is required to work in each job.

We find that it is always optimal to distort downward the intensive margin by
imposing a positive marginal income tax rate. This is true regardless of whether
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savings are controlled by the planner or not. While framed as an effort margin,
a similar conclusion applies to amenities: in a second-best world their supply
should be discouraged when compared to the first-best.
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A Appendix

A.1 Proofs of Section 3.1

Proof of Lemma 3.1. First, we show that the constraint (5) binds. The first-order
condition with respect to cu reads

ϕ′(cu) =
1− p

µ (1− p)− ψ
> 0.

If µ ≤ 0 then ψ < 0 and thus p > 0 and then using the first-order condition
w.r.t. ce we obtain

ϕ′(ce) =
p

pµ+ ψ
< 0.

A contradiction.
Next, towards a contradiction, assume that, without loss of generality, the con-

straint (6) does not bind at t = 0,

ϕ′(cu0) = ϕ′(ce0) = µ−1
0 = η′ (n0) .

In this case,
ϕ(ce0)− η (n0) < ϕ(cu0). (13)

Notice that the moral-hazard constraint must bind for some t > 0, otherwise,

ϕ(cut ) = µ−1
0 ,

for every t. This means that getting a job in period zero is worse than being un-
employed forever.

Assume that the first period in which the constraint binds is t = 1 (the other
case is analogous). We have µ1 = µ0, ψ1 > 0 and, hence,

ϕ′(ce1) =
p1

p1µ0 + ψ1

= η′ (n1) .
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Therefore,
ϕ(ce0)− η (n0) < ϕ(ce1)− η (n1) (14)

Hence, using (13) and (14) we obtain

ϕ(ce0)− η (n0)

1− β
< ϕ(cu0) + β

ϕ(ce1)− η (n1)

1− β
,

which, using the fact that the moral-hazard constraint was binding in the second
period implies that worker strictly prefers being unemployed than getting a job at
zero. A contradiction.

A.2 Proofs of Section 3.2

Let φ := limp↓0 %(p)/p and define z (W ) by

z (W ) ≡ argmin
z

z s.t. v(z) ≥ W,

for
v(z) ≡ max

ye
[ϕ (ye + z)− η (ye + φ)] .

Intuitively, z (W ) is the minimum amount of resources that would cost for the
government to motivate the worker to search for employment if his unemploy-
ment continuation utility were W , assuming that the labor market was competi-
tive. To see this, we use the fact that %(p)/p is increasing in p. Hence, to find a job
with probability p the worker would have to pay %(p)/p > φ to the firm upon the
job arrival.

We also define cu (W ) by
ϕ (cu (W )) = W,

the cost of providing utility W for a worker who never searches for a job.

Lemma A.1 There exists W ∗ such that z (W ∗) = cu (W ∗). Moreover, z (W ) > cu (W ),
for all W > W ∗, and z (W ) < cu (W ), for all W < W ∗. Moreover, both mappings, z (·)
and cu (·), are strictly increasing, twice differentiable, and strictly convex.
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Proof of Lemma A.1. Let ye (W ) be given by

argmax
ye

[ϕ (ye + z (W ))− η (ye + φ)] ,

and notice that if ϕ′ (z (W )) − η′ (φ) ≤ 0, then ye (W ) = 0. Otherwise, ye (W ) is
given by

ϕ′ (ye + z (W ))− η′ (ye + φ) = 0.

Hence, we have

z′ (W ) =
1

ϕ′ (z (W ) + ye (W ))
>

1

ϕ′ (cu (W ))
= cu′ (W ) ,

because z (W ) + ye (W ) > cu (W ) . This implies that if z (·) and cu (·) cross at most
once, and z (W ) > cu (W ) (resp. z (W ) < cu (W )) for every utility greater (resp.
lower) than this utility level.

b) Since z (W )→∞ asW →∞, we have ye (W ) = 0 forW large enough, which
implies z (W ) > cu (W ). The existence of a smallW such that z (W ) < cu (W ) holds
by assumption. Therefore, W ∗ exists by continuity.

It remains to show that both mappings are strictly convex. Since ce (W ) :=

z (W ) + ye (W ) is strictly increasing with positive derivative, we have

z′′ (W ) =
−ϕ′′ (ce (W ))

ϕ′ (ce (W ))2 c
e′ (W ) > 0,

and
cu′′ (W ) =

−ϕ′′ (cu (W ))

ϕ′ (cu (W ))2 c
u′ (W ) > 0.

Proof of Lemma 3.2. First, we claim that unemployment insurance benefits are
weakly decreasing over time. Consider two subsequent periods s and s + 1. First
notice that if there is no search at period s+ 1 then the concavity of ϕ implies that
ϕ
(
cus+1

)
= ϕ (cus ) .On the other hand, if there is search at period s + 1 the result

follows from Lemma A.4.

27



Therefore, since unemployment benefits are weakly decreasing, it suffices to
show that if there is no search in period t then the planner could profitably de-
viate by offering a contract in which the worker also searches at t. Notice that
the (normalized) utility (1− β)Wt can be written as a convex combination of the
terms:

i)

ϕ
(
cet+k

)
− η

(
yet+k +

%(pt+k)

pt+k

)
,

which are obtained if the worker finds a job at period t+ k, and;

ii) ϕ
(
cut+k

)
, which are obtained if the worker does not get a job by period t+ k.

Since cut+k ≤ cu0 , this implies that ϕ
(
cut+k

)
< W ∗. Hence, the cost of deliver-

ing ϕ
(
cut+k

)
is less than Z

(
ϕ
(
cut+k

))
by Lemma A.1. Notice also that the cost of

providing utility,

ϕ
(
cet+k

)
− η

(
yet+k +

%(pt+k)

pt+k

)
,

is less than

Z

(
ϕ
(
cet+k

)
− η

(
yet+k +

%(pt+k)

pt+k

))
.

Since the function, Z, is strictly convex, by Jensen’s inequality and a continuity
argument, there exists ε > 0 such that, if the planner offers the contract in which
payments ye (Wt + ε) are required from and consumption ce (Wt + ε), is extended
to the worker, he will search for a job with positive probability, will obtain a utility
W̃ > Wt from this search, and the government will incur a strictly lower cost.

This strategy makes both the worker as well as the planner better-off at period
t, but may decrease the worker’s incentives at period t − 1. To avoid that, the
planner decreases the worker’s unemployment consumption at period t− 1 up to
the point at which the worker is indifferent at period t− 1. This further improves
the planner’s utility at t− 1 by showing a strictly more profitable contract.

Proof of Lemma 3.3. a) Assume towards a contradiction that ϕ (cut ) ≥ W ∗ for
every t. Therefore, the worker can guarantee a utility at least as large as W ∗ at
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every period. Then, if we let

wet := ϕ (cet )− η
(
yet +

%(pt)

pt

)
,

we observe that incentive-compatibility implies thatwte > W ∗ for every t for which
there is a positive search, in which case Cu (wte) < Ze (wte). Thus since W0(1 − β)

is a convex combination of {ϕ (cu0) , we0, ϕ (cu1) , we1, .., } and Cu(·) is strictly convex,
applying Jensen’s inequality we conclude that the government’s cost is strictly
less than

Cu(W0(1− β))

(1− β)
,

which can be achieved by offering constant unemployment insurance equal to
Cu(W0(1− β)) and never having the worker search for a job. A contradiction.

Next, notice that since cut is decreasing, a) implies that there exists t such that
ϕ (cut ) < W ∗. Then apply Lemma 3.2.

Lemma A.2 Suppose that if a worker gets a job then he must earn ce + T , paying T to
the government, to consume ce whereas if the worker fails to get a job then he obtains the
continuation utility W. Then this problem admits a unique solution. If the solution is
interior, it is given by the associated first-order conditions.

Proof of Lemma A.2. Consider the problem

max p

[
ϕ(ce)− η

(
ce + T + κ

ϑ(p)

p

)
−W

]
This problem admits an interior solution if and only if

ϕ(ce)− η (ce + T ) > W.

Assume that this is the case and consider p that makes its derivative equal to
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zero:

ϕ(ce)− η
(
ce + T + κ

ϑ(p)

p

)
−W − pη′

(
ce + T + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
= 0

Differentiate the left-hand side again to obtain

− 2η′
(
ce + T + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
− pη′

(
ce + T + κ

ϑ(p)

p

)
κ
d2

dp2

(
ϑ(p)

p

)
− pη′′

(
ce + T + κ

ϑ(p)

p

)
κ

[
d

dp

(
ϑ(p)

p

)]2

.

To show that the expression above is negative, it suffices to show that

− 2
d

dp

(
ϑ(p)

p

)
− p d

2

dp2

(
ϑ(p)

p

)
< 0⇔

− 2

(
ϑ′(p)p− ϑ(p)

p2

)
− p d

dp

(
ϑ′(p)p− ϑ(p)

p2

)
< 0⇔

− 2

(
ϑ′(p)p− ϑ(p)

p2

)
−

(
d
dp

[ϑ′(p)p− ϑ(p)] p2 − 2p [ϑ′(p)p− ϑ(p)]

p3

)
< 0⇔

−
(
ϑ′′(p)

p

)
< 0.

Lemma A.3 For every W , let C(W ) be the planner’s cost of providing utility W . The
mapping C(·) is differentiable at Wt for every t > 0.

Proof of Lemma A.3. We prove that C is differentiable at Wt. For that we assume
that pt > 0 as the other case is analogous. Consider any small ε ∈ R and notice
that the following perturbation is feasible:(

ũt−1, ũt, c̃
e
t

)
=
(
ut−1 + ε, ut − εβ−1, ϕ−1 (ϕ(cet ) + ε)

)
.

30



One can thus apply the argument in Clausen and Strub (2020) to conclude that

C ′ (Wt) = −c′(ut) =
1

ϕ′(ut)
.

Proof of Lemma 3.1. Follows from Lemma A.4 below.

Lemma A.4 The multipliers, µ and λ, are strictly positive if there is a search.

Proof of Lemma A.4. First, notice that

[µ(1− p)− λ]ϕ′(cu) = 1− p

and
pµ+ λ

1− β
ϕ′(ce) =

p

1− β
Hence, µ = 0 implies ϕ′(cu)ϕ′(ce) ≤ 0, which is absurd.

Hence assume towards a contradiction that λ0 ≤ 0. Clearly, there is a last pe-
riod at which λt ≤ 0 and λt+1 > 0, otherwise, as we will verify below, cut ≥ cet for
every t, and hence there is no search. Assume that λ1 > 0 (case in which λs ≤ 0

for all s < t and λt > 0 for some t > 1 can be analogously handled).
From the first-order condition with respect to p we get

ϕ′(cu) =
1

µ− λ(1− p)−1
≤ 1

µ+ λp−1
= ϕ′(ce).

Hence, cu ≥ ce.

Moreover, notice that from the first order condition we have

C ′ (W1) = −µ0 +
λ0

(1− p)
= −µ1,

which implies

µ1 = µ0 −
λ0

(1− p)
≥ µ0.
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This, and λ0 ≤ 0 < λ1 imply

ϕ′(ce1) =
1

µ1 + p−1
1 λ1

<
1

µ0 + p−1
0 λ0

= ϕ′(ce0).

Hence,
ce1 > ce0. (15)

We can rearrange the first order condition with respect to ye to get

µη′
(
ye + κ

ϑ(p)

p

)
= 1− λη′′

(
ye + κ

ϑ(p)

p

)
κ
d

dp

(
ϑ(p)

p

)
− λ

p
η′
(
ye + κ

ϑ(p)

p

)
.

Therefore, λ0 ≤ 0 < λ1 imply

η′
(
ye1 + κ

ϑ(p1)

p1

)
< µ−1

1 .

Similarly,

η′
(
ye0 + κ

ϑ(p0)

p0

)
≥ µ−1

0 .

Since µ1 ≥ µ0, this implies

ye1 + κ
ϑ(p1)

p1

< ye0 + κ
ϑ(p0)

p0

,

and

η

(
ye1 + κ

ϑ(p1)

p1

)
< η

(
ye0 + κ

ϑ(p0)

p0

)
,

because η is strictly convex.
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Since p0 > 0, by the assumption of the lemma, we have

0 <
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu0) + βW1]

=
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− ϕ(cu0)

− β
[
p1

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
+ (1− p1) [ϕ(cu1) + βW2]

]
= ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)
− ϕ(cu0) + β

[
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]

− p1
1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
− (1− p1) [ϕ(cu1) + βW2]

]

=
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− ϕ(cu0)

− β
[
p1

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
+ (1− p1) [ϕ(cu1) + βW2]

]
(16)

Since p1 > 0, due to λ1 > 0, we have

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
> ϕ(cu1) + βW2

Hence,

ϕ(ce0)− η
(
ye0 + κ

ϑ(p0)

p0

)
− ϕ(cu0) + β

{
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]

− p1
1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
− (1− p1) [ϕ(cu1) + βW2]

}

< ϕ(ce0)− η
(
ye0 + κ

ϑ(p0)

p0

)
− ϕ(cu0)

+ β

[
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu1) + βW2]

]
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Since the first line from the last term is negative, the entire term is less than

β

[
1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu1) + βW2]

]
,

which is less than,

1

1− β

[
ϕ(ce0)− η

(
ye0 + κ

ϑ(p0)

p0

)]
− [ϕ(cu1) + βW2] ,

since the term is positive.
Since ϕ(ce0) < ϕ(ce1), and

η

(
ye0 + κ

ϑ(p0)

p0

)
> η

(
ye1 + κ

ϑ(p1)

p1

)
,

this is less than

1

1− β

[
ϕ(ce1)− η

(
ye1 + κ

ϑ(p1)

p1

)]
− [ϕ(cu1) + βW2] .

Hence, using the first-order conditions with respect to p, the algebra just per-
formed means that

p1

1− β
η′
(
ye1 + κ

ϑ(p1)

p1

)
κ

(
ϑ(p1)

p1

)
>

p0

1− β
η′
(
ye0 + κ

ϑ(p0)

p0

)
κ

(
ϑ(p0)

p0

)
. (17)

Since
ye1 + κ

ϑ(p1)

p1

< ye0 + κ
ϑ(p0)

p0

,

if ye1 ≥ ye0, we will have p1 < p0 which together contradict (17). We conclude that

ye1 < ye0. (18)

Finally, notice that λ1 > 0 and the first order condition with respect to p and
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the fact that p is a local maximum imply

ye0 − ce0
1− β

≤ −cu0 + βC (W1) . (19)

Analogously, in period 1, using λ0 ≤ 0, the first order condition with respect
to p implies

ye1 − ce1
1− β

≥ −cu1 + βC (W2) .

But notice that

C (W1) = p1
ye1 − ce1
1− β

+ (1− p1) [−cu + βC (W2)] ≤ ye1 − ce1
1− β

(20)

Hence, using (19), we have

cu0 ≤ βC (W1)− ye0 − ce0
1− β

⇔ cu0 + (ye0 − ce0) ≤ βC (W1)− β (ye0 − ce0)

1− β

Since cu0 ≥ ce0 and ye0 ≥ 0 we have

0 ≤ β

[
C (W1)− ye0 − ce0

1− β

]
.

Using (20), the last term is less than

β

[
(ye1 − ce1)

1− β
− (ye0 − ce0)

1− β

]
= β

[
(ye1 − ye0)

1− β
+

(ce0 − ce1)

1− β

]
.

Hence, using (17) and (18), we see that (ye1 − ye0) + (ce0 − ce1) < 0.
A contradiction.

Proof of Theorem 3.1. i) The facts that the moral-hazard constraint (8) binds,
and the government benefits from strictly increasing p follow immediately from
Lemma A.4.
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ii) We have

(ϕ′e) =
p

µp+ λ

η′
(
ye + κ

ϑ(p)

p

)
=

p

µp+ λ
− pλ

µp+ λ
η′′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
Hence,

1−
η′
(
ye + κϑ(p)/p

)
(ϕ′e)

= λη′′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
> 0

iii) Using the first-order conditions we have

1

ϕ′(cut−1)
= µt−1 + p−1

t−1λt−1 = µt−1 − λ(1− pt)−1 = µt,

and (
pt

ϕ′(cet )

)
+

(
1− pt
ϕ′(cut )

)
= (ptµt + λt) + (µt(1− pt)− λt) = µt,

Hence,
1

ϕ′(cut−1)
=

pt
ϕ′(cet )

+
1− pt
ϕ′(cut )

.

Proof of Proposition 3.2. Notice that

ϕ′(cut ) =
1

µt − λt
1−pt

and
µt+1 = µt −

λt
(1− pt)

,

hence

ϕ′(cut+1)− ϕ′(cut ) =
1

µt+1 − λt+1

1−pt+1

− 1

µt − λt
1−pt

=
1

µt+1 − λt+1

1−pt+1

− 1

µt+1

≥ 0,
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with strict inequality whenever the worker searches in t+ 1 and hence λt+1

1−pt+1
> 0.

Finally, for the last claim assume that the worker actively searches in period
t+ 1, use

pt+1

ϕ′(cet+1)
+

1− pt+1

ϕ′(cut+1)
=

1

ϕ′(cut )

and cut+1 > cut to conclude that cet+1 > cuτ for every τ ≥ t.

Proof of Proposition 3.3. Notice that unemployment insurance is decreasing.
Moreover, since W0 < W ∗, there is a period T such that it is strictly decreasing
from T on. Suppose towards a contradiction that it converges to cu∞ > 0. If it
does not converge to zero, since ϕ′(cut ) = 1

µt+1
, we conclude that µt → (ϕ′(cu∞))−1 .

Therefore,
λt

1− pt
→ 0.

We claim that pt → 0. Suppose towards a contradiction that there is a subsequence
ptr → p̂ > 0 and notice that, since

ϕ′(cet ) =
1

µt + p−1
t λt

,

we have along the subsequence ϕ′(cetr)→ ϕ′(cu∞), implying cetr → cu∞. By incentive
compatibility,

η

(
yetr + κ

ϑ(ptr)

ptr

)
→ 0,

which is not possible, a contradiction.
But then by a continuity argument, for every ε > 0, there exists a period t∗ such

that t ≥ t∗ implies that the government’s utility is ε away from −cu∞/(1− β) while
the worker’s utility is ε away from ϕ(cu∞)/(1− β).

Since ϕ(cu∞) < W ∗, there exists ε > 0 such that Z (ϕ(cu∞) + ε) < cu∞. Hence
if the government deviates toward a stationary employment contract in which
he demands ye (ϕ(cu∞) + ε) (see notation of Lemma A.1) and provides consump-
tion ye (ϕ(cu∞) + ε) +Z (ϕ(cu∞) + ε) then worker searches for a job with probability
bounded away from zero (for t sufficiently large). Moreover, for t sufficiently large
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this deviation makes both the worker and the government better off. A contradic-
tion.

A.3 Non-observable Savings

Lemma A.5 Consider any deterministic mechanism. Assume that the agent starts with
income a0. Let (cut , pt) be the optimal choices of the agent at period t. The agent who
starts with income ã0 chooses (cut + (ã0 − a0) (1− β) , pt) in every period t and obtains
e−α(1−β)(ã0−a0)Wt where Wt is the utility obtained at t by the agent who starts the game
with assets at.

Proof. The proof will be based on the principle of optimality. We will guess and
verify that if Wt is the agent’s continuation utility when period t is started with
income a1

t , then e−α(1−β)(a2t−a1t )Wt is the continuation utility when starts period t

with a2
t . Take any optimal strategy {(cuτ (at) , pτ (at))}τ≥t when period t starts with

income at ∈ {a1
t , a

2
t} and let W i

t be its value. Notice that the worker that starts
with assets a2

t can follow strategy {(cuτ (a1
t ) + (a1

t − a2
t ) (1− β) , pτ (a1

t ))}τ≥t. Hence,
by revealed preference,

W 1
t ≥ e−α(1−β)(a2t−a1t )W 2

t .

Similarly,
W 2
t ≥ e−α(1−β)(a1t−a2t )W 1

t ,

and thus
W 1
t = e−α(1−β)(a2t−a1t )W 2

t .

Finally, letW0 be the value from following the optimal strategy when the initial
asset is a0 and observe that strategy (cut + (ã0 − a0) (1− β) , pt) is feasible and it
leads to e−α(1−β)(ã0−a0)W0. Hence this strategy is optimal.

We start with a lemma that establishes a Ricardian equivalence result for this
setting. Take a feasible sequence {cut , cet , pt}

∞
t=0 under the policy (a0, {yet , T et , bt}

∞
t=0).

Let {Wt,W
e
t }
∞
t=0 the sequence of indirect utilities when employed and unemployed

respectively which is generated by {cut , cet , pt}
∞
t=0 .Moreover, letW u

t the utility from
failing to find a job at period t.
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Lemma A.6 The sequence {cut , cet , pt}
∞
t=0 is optimal if and only if:

i)

pt = arg max p

[
−e
−α[cet−η[yet+κ(ϑ(p)p )]]

1− β

]
− (1− p)Wt+1 (21)

ii)
e−αc

u
t = − (1− β)Wt+1. (22)

Proof. In light of Lemma A.5, {cut , cet , pt}
∞
t≥T is optimal at period T if and only if

{cut + (1− β) (ãT − aT ), cet + (1− β) (ãT − aT ), pt}∞t≥T

when period T starts with assets ãT . This allows us to apply the one-shot deviation
principle. In our context, this asserts that {cut , cet , pt}

∞
t=0 is optimal if and only if the

optimality conditions w.r.t. pt and cut hold, which are given by (21) and (22).
The following Lemma states a Ricardian equivalence result for our environ-

ment:

Lemma A.7 Assume that the sequence {cut , cet , pt}
∞
t=0 is feasible under the policies

(a0, {yet , T et , bt}
∞
t=0) and

(
ã0,
{
ỹet , T̃

e
t , b̃t

}∞
t=0

)
.

The sequence, {cut , cet , pt}
∞
t=0, is optimal under (a0, {yet , T et , bt}

∞
t=0) if and only if it is opti-

mal under
(
ã0,
{
ỹet , T̃

e
t , b̃t

}∞
t=0

)
.

Proof. Follows immediately from Lemma A.6.

Lemma A.8 Let (cut , c
e
t , y

e
t , pt)

∞
t=0 solve the government’s problem when the agent starts

with utility W0. Then (cut + ∆, cet + ∆, yet , pt)
∞
t=0 solves the government’s problem when

the agent who starts with utility W̃ = e−α∆W0.

Proof. We claim that (cut + ∆, cet + ∆, yet , pt)
∞
t=0 is at least as good as any alloca-

tion (c̃ut , c̃
e
t , ỹ

e
t , p̃t)

∞
t=0 that yields utility W̃ . Indeed, take (c̃ut , c̃

e
t , ỹ

e
t , p̃t)

∞
t=0 and no-

tice that (c̃ut − ∆, c̃et − ∆, ỹet , p̃t)
∞
t=0 generates utility W0. Hence, the optimality of
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(cut , c
e
t , y

e
t , pt)

∞
t=0 implies

∞∑
t=0

βt

(∑
τ≤t

(Πs<τ (1− ps)) pτ [yeτ − ceτ ]

+

(
1−

∑
τ≤t

(Πs<τ (1− ps)) pτ

)
[−cut ]

)

≥
∞∑
t=0

βt

(∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ [ỹeτ − (c̃eτ −∆)]

+

(
1−

∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ

)
[− (c̃ut −∆)]

)
,

which holds if and only if

∞∑
t=0

βt

(∑
τ≤t

(Πs<τ (1− ps)) pτ [yeτ − (ceτ + ∆)]

+

(
1−

∑
τ≤t

(Πs<τ (1− ps)) pτ

)
[− (cut + ∆)]

)

≥
∞∑
t=0

βt

(∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ [ỹeτ − c̃eτ ]

+

(
1−

∑
τ≤t

(Πs<τ (1− p̃s)) p̃τ

)
[−c̃ut ]

)
,

which proves the optimality of (cut + ∆, cet + ∆, yet , pt)
∞
t=0 when the promised utility

is W̃ .

Proof of Lemma 4.1. Consider a simple policy (a0, y
e, T e). Let (p0, c

u
0) be the

first-period choices and a1 be the corresponding level of assets if the agent is un-
employed in period 1. Lemma A.5 implies that

W1 = e−α(1−β)(a1−a0)W0.
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Moreover, p1 = p0, ce1 = ce0−(1− β) (a1−a0), and cu1 = cu0−(1− β) (a1−a0). Hence,
if we let

∆ := α−1 log

(
W1

W0

)
,

and apply Lemma A.5 inductively we see that pt = p0 for every t, cet = ce0−∆t and
cut = cu0 −∆t.

The last part of the lemma follows immediately from the agent’s first-order
condition w.r.t. pt and straightforward algebra.

Proof of Theorem 4.2. Let {(p∗t , ye∗t , cu∗t , ce∗t )}∞t=0 be the optimal allocation.
Notice that

W ∗
0 = p∗0W

e∗
0 + (1− p∗0)W u∗

0 .

If W e∗
0 ≤ W u∗

0 then p∗0 = 0. In this case, the optimal allocation can be imple-
mented by asset

a0 =
−α−1 log (− (1− β)W0)

1− β
as well as some pair (ye, T e) with ye = T e. The worker best responds by never
searching for a job and consuming− (1− β)α−1 log (− (1− β)W0) in every period.
By Lemma A.8, this is optimal.

Next assume that W e∗
0 > W u∗

0 . Consider the first-order condition:

− e
−α

[
ce∗0 −η

[
ye∗0 +κ

(
ϑ(p∗0)
p∗0

)]]
1− β

−W u∗
0 −

αpe∗0
e
−α

[
ce∗0 −η

[
ye∗0 +κ

(
ϑ(p∗0)
p∗0

)]]
1− β

η′
[
ye + κ

(
ϑ(p∗0)

p∗0

)]
κ

(
ϑ(p∗0)

p∗0

)′
= 0,

and the following promise-keeping condition:

W ∗
0 = p∗0W

e∗
0 + (1− p∗0)W u∗

0 .
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Solving these two equations we obtain:

W e∗
0 =

W ∗
0

1 + αpe∗0 (1− p∗0)η′
[
ye∗0 + κ

(
ϑ(p∗0)

p∗0

)]
κ
(
ϑ(p∗0)

p∗0

)′
W u∗

0 = W ∗
0

1 +
αp∗20 η

′κ
(
ϑ(p∗0)

p∗0

)
1 + αp∗0(1− p∗0)αη′κ

(
ϑ(p∗0)

p∗0

)


Next notice that W e∗
0 delivers ce∗0 by

−e
−α

[
ce∗0 −η

[
ye∗0 +κ

(
ϑ(p∗0)
p∗0

)]]
1− β

= W e∗
0 ,

which implies

ce∗0 = −α−1 log (− (1− β)W e∗
0 ) + η

[
ye∗0 + κ

(
ϑ(p∗0)

p∗0

)]
.

We claim that there exists (a∗0, T
e∗) that solves the system:

ce∗0 = (1− β) a0 + ye∗0 + T e (23)

W u∗
0 = max

c
−e−αc + βU

(
β−1 (a0 − c) , ye∗0 , T e

)
, (24)

where U (a, ye∗0 , T
e) is the utility of an agent who starts a period unemployed and

faces a simple policy, (a, ye∗0 , T
e). Notice that if T e = ye and a0 =

ce∗0
1−β then

W ∗
1 < max

c
−e−αc + βU

(
β−1 (a0 − c) , ye∗0 , T e

)
(25)

as the agent can keep consumption constant at ce∗ even without taking a job. In
fact, he best responds to that contract by choosing p = 0 in every period. From
this point, notice that if we decrease a0 by− ε

1−β and decrease T e by ε the planner’s
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payoff is increased by

ε

1− β

(
1− p (a, ye∗0 , T

e)

1− (1− p (a, ye∗0 , T
e)) β

)
> 0. (26)

Next notice that by construction

−e
−α

[
((1−β)a0+ye∗0 +T e)−η

[
ye∗0 +κ

(
ϑ(p∗0)
p∗0

)]]
1− β

= W e∗
0 .

Hence, meanwhile the inequality (25) the worker’s optimality condition w.r.t.
p implies p (a, ye∗0 , T

e) < p∗.We claim that if we keep decreasing a0 by− ε
1−β and T e

by ε we generate (a∗0, T
e∗) satisfying (23) and (24). Otherwise, as we take a0 to−∞

the planner’s revenue goes to infinity while the worker’s utility at the beginning
remains above W ∗

0 , a contradiction. From the first order condition, we know that
p remains bounded below p∗ (and by lemma A.5 this holds in every future period)
and the principal obtains infinite profits because of (26). At the same time the
worker’ s utility remains greater than pW e∗

0 + (1− p)W u∗
0 . A contradiction.

The reasoning above shows that offering (a∗0, y
e∗, T e∗) in the first period is op-

timal to generate utility W ∗
0 . In this case, Lemma A.8 implies that (a∗1, y

e∗, T e∗) is
optimal to generate utility W ∗

1 , where a∗1 is the asset holdings chosen by the agent.
Inductively, we conclude that (a∗t , y

e∗, T e∗) is optimal to generate utility W ∗
t for

every t and hence the simple policy (a∗0, y
e∗, T e∗) is optimal.

Lemma A.9 We have ∂p
∂ce

> 0 and ∂p
∂ye

< 0.

Proof. We must calculate ∂p
∂ce

and ∂p
∂ye
. Let ce := ye − T e, assume without a loss

that the agent starts with zero assets (Lemma A.5) and write W1 for the payoff of
an agent who starts a period of unemployed with zero assets. Start with the f.o.c.
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w.r.t. p,

− e−α[c
e−η[ye+κ(ϑ(p)p )]]

1− β
−max

a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− αpe

−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
= 0. (27)

Next, we remark that the problem is strictly concave in p and hence the deriva-
tive of (27) w.r.t. p is strictly negative. Differentiating this condition w.r.t. ce we
obtain

α
e−α[c

e−η[ye+κ(ϑ(p)p )]]

1− β
− d

dce

[
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]]
+ α2p

e−α[c
e−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
Now notice that

d

dce

[
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]]
< −αmax

a′

[
eαa

′β − e−αa′(1−β)βW1

]
(28)

as the last number is obtained by the derivative of an increase in c in every state
of nature. Therefore, we have
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α
e−α[c

e−η[ye+κ(ϑ(p)p )]]

1− β
− d

dce

[
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]]
+ α2p

e−α[c
e−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
=

α
e−α[c

e−η[ye+κ(ϑ(p)p )]]

1− β
+ αmax

a′

[
−eαa′β + e−αa

′(1−β)βW1

]
+ α2p

e−α[c
e−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
− αmax

a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− d

dce

[
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]]
=

− αmax
a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− d

dce

[
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]]
> 0,

where we have used (27) and (28). Therefore,

∂p

∂ce
> 0.

Next, differentiating the f.o.c. w.r.t. ye we get

− αη′ e
−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
− d

dye
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− α2pη′

e−α[ce−η[y
e+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
− αpη′′ e

−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
.

Notice that

d

dye
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]
> αη′max

a′

[
−eαa′β + e−αa

′(1−β)βW1

]
(29)
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Hence,

− αη′ e
−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
− d

dye
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− α2pη′

e−α[ce−η[y
e+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
− αpη′′ e

−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
=

− αη′ e
−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
− αη′max

a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− α2pη′

e−α[c
e−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
αη′max

a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− d

dye
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− αpη′′ e

−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
=

αη′max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− d

dye
max
a′

[
−eαa′β + e−αa

′(1−β)βW1

]
− αpη′′ e

−α[ce−η[ye+κ(ϑ(p)p )]]

1− β
η′
[
ye + κ

(
ϑ(p)

p

)]
κ

(
ϑ(p)

p

)′
< 0,

where we have used (27) and (29).

Lemma A.10 We have

∞∑
t=0

pβt (1− p)t−1

[
1 +

1

W0

e−α(1−β)at
e−α[ce−η[y

e+κ(ϑ(p)p )]]

1− β

]
> 0.
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Proof. We have

∞∑
t=0

pβt (1− p)t−1

 −1

1− β
−
e−α(1−β)at e

−α[ce−η[ye+κ(ϑ(p)p )]]
1−β

(1− β)W0

 < 0

⇔
∞∑
t=0

pβt (1− p)t−1

−e−α(1−β)at e
−α[ce−η[ye+κ(ϑ(p)p )]]

1−β∑∞
t=0 pβ

t (1− p)t−1

 > W0.

Since z → −e−αz is strictly increasing. Notice that U0 is the mixture of the
distribution F e over employed payoffs defined above and the distribution over
−e−αcut ,which we call F u. It follows that if F e first-order stochastic dominates F u :∫

xdF e (x) >

∫
xdF u (x)

and hence for any λ ∈ (0, 1) ,∫
xd [λF e (x) + (1− λ)F e (x)] <

∫
xdF e (x) .

Hence it suffices to show that

W0 <

∫
xdF e (x) .

We have

W0 (1− β) = p (1− β)W 0
e +(1−p) (1− β)

[
−e−αcu0 + β

[
pW e

1 + (1− p)
[
−e−αcu1 + βW u

2

]]]
Using W 0

e > − e−αc
u
0

1−β and

− e
−αcu0

1− β
= pW e

1 + (1− p)
[
−e−αcu1 + βW u

2

]
,
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we have

W0 <
pW 0

e + β(1− p)
[
pW e

1 + (1− p)
[
−e−αcu1 + βW u

2

]]
1− (1− p) (1− β)

.

Proceeding analogously, it follows that the last expression is less than

pW 0
e + β(1− p) [pW e

1 + (1− p) βW u
2 ]

1− (1− p) (1− β)− (1− p)2β2
,

Proceeding analogously and taking the limit we obtain the desired inequality.

Proof of Theorem 4.3. Part (i). Recall from (11)

∂

∂p

[
p

1− (1− p) β

](
ye − ce

1− β

)
∂p

∂ce
=

p (ye, ce)

1− (1− p (ye, ce)) β
+

Uce (ye, ce)

eα(1−β)a0α (1− β)W0

Since
∂

∂p

[
p

1− (1− p) β

]
> 0 and

∂p

∂ce
> 0,

ye − ce has the same sign as

−
∞∑
t=0

pβt (1− p)t−1

[
−1

1− β
−

exp
{
−α
{
ce − η

(
ye + κϑ(p)/p

)}}
(1− β)2W0

]
,

by Lemma A.9, which is strictly positive by Lemma A.10.

Part (ii). Consider the problem

C(W0) = max
W1,ce,ye

p

[
ye − ce
1− β

]
+ (1− p) βC(e−αa(1−β)W1),

subject to

− p

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
+

(1− p) max
a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
−W0 = 0
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and

− 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
−max

a′

{
− exp{αa′β}+ exp{−αa′ (1− β)}βW1

}
− αp 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
η′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
= 0.

Plugging the last constraint into the problem, one obtains the following La-
grangian

C(W0) = max
W1,ce,ye

p

[
ye − ce
1− β

]
+ (1− p) βC(e−αa(1−β)W1)+

µ

[
− 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
−

α (1− p) p 1

1− β
exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
η′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
−W0

]

Therefore, we have the first-order conditions with respect to ce,

p = µα exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}[
1 + α (1− p) pη′

(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′]
with respect to ye,

p = µα exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}[
η′
(
ye + κ

ϑ(p)

p

)
+

α (1− p) pη′
(
ye + κ

ϑ(p)

p

)2

κ

(
ϑ(p)

p

)′ ]

+ µ (1− p) p exp

{
−α
[
ce − η

(
ye + κ

ϑ(p)

p

)]}
η′′
(
ye + κ

ϑ(p)

p

)
κ

(
ϑ(p)

p

)′
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Therefore, we have

η′
(
ye + κ

ϑ(p)

p

)
= 1−

(1− p) pη′′
(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′
α

[
1 + α (1− p) pη′

(
ye + κϑ(p)/p

)
κ
(
ϑ(p)
p

)′] .

Part (iii). Notice that W ∗
t < W e∗

t and hence it suffices to show that limW e∗
t = −∞.

We have

lim(1− β)W e∗
t =

− lim exp

{
−α
[
c∗0 + (1− β) ā0 − η

[
ye∗ + κ

(
ϑ(p∗)

p∗

)]]
α (t− 1) ∆c

}
= −∞.
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B Extension: GHH-CARA type and Observable
Savings

In this section, we consider the case of observable savings with period utility of
the form

U(c, n) = − exp {−α [c− η(n)]} .

We can write the Lagrangean as

C (W0) = max
p

1− β
(ye − ce) + (1− p) [−cu + βC (W1)] ,

subject to

p

1− β
[− exp {−α [ce − η(ne)]}] + (1− p) [− exp {−α [cu]}+ βW1]−W0 ≥ 0,

and

1

1− β

[
− exp

{
−α
[
c− η

(
ye + κ

ϑ(p)

p

)]}]
+ exp {−α [cu]} − βW1

=
1

1− β
αη′
(
ye + κ

ϑ(p)

p

)(
κϑ(p)

p

)′
exp

{
−α
[
c− η

(
ye + κ

ϑ(p)

p

)]}
.

Let

U e := exp

{
−α
[
c− η

(
ye + κ

ϑ(p)

p

)]}
Uu := exp {−αcu}

The first order condition for ce0 is

−p+ µpαU e + λαU e = 0.
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The first order condition for cu0 is

− (1− p) + (1− p)µUu − λαUu = 0.

The first order condition for ye is

p− pµαU eη′(ne)− λαU eη′(ne)

−λU e

[
αη′′(ne)κ

(
ϑ(p)

p

)′
+ α2U e [η′(ne)]

2
κ

(
ϑ(p)

p

)′]
= 0

From these, we have
U e =

p

µpα + λα

Uu =
1− p

µ (1− p)α− λα

p− η′(ne)U e [pµα + λα] = λU e

[
αη′′(ne)κ

(
ϑ(p)

p

)′
+ α2U e [η′(ne)]

2
κ

(
ϑ(p)

p

)′]
1− η′(ne) =

λU e

p

[
αη′′(ne)κ

(
ϑ(p)

p

)′
+ α2 [η′(ne)]

2
κ

(
ϑ(p)

p

)′]
(30)

C ′ (W1) = −µ0 +
λ0

(1− p0)
= −µ1,

which implies

µ1 = µ0 −
λ0

(1− p)
.

Moreover, the derivative with respect to p implies

p

1− β
(ye − ce) =

λαU e

1− β

[
η′(ne)

(
κ
ϑ(p)

p

)′
+ η′′(ne)

(
κϑ(p)

p

)′
+ η′(ne)

(
κ
ϑ(p)

p

)′′
+

[
η′(ne)

(
κ
ϑ(p)

p

)′]2
]

(31)

Lemma B.1 The multipliers µ and λ are strictly positive if there is search.
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Proof of Lemma B.1. First notice that

Uu
0 =

1− p0

µ0 (1− p0)α− λ0α

U e
0 =

p0

µ0p0α + λ0α

hence µ0 = 0 implies Uu
0 U

e
0 ≤ 0 which is an absurd.

Hence assume towards a contradiction that λ0 ≤ 0. Clearly, there is a last pe-
riod at which λt ≤ 0 and λt+1 > 0, otherwise, as we will verify below, cut ≥ cet for
every t, and hence there is no search. Assume that λ1 > 0 (case in which λs ≤ 0

for all s < t and λt > 0 for some t > 1 can be analogously handled).
From the first-order conditions, we have:

− U e
1 > −Uu

0 ≥ −U e
0 . (32)

From the first-order condition with respect to p we get
Since the agent searches with positive probability

−U e
0

1− β
> −Uu

0 + β

[
p1
−U e

1

1− β
+ (1− p1) [−U e

1 + βW2]

]
(33)

−U e
1

1− β
> −Uu

1 + βW2 (34)

Notice that
(U e

1 + βW2) <
U e

1

1− β

(U e
1 + βW2) <

Uu
0

1− β
Therefore

U e
1 + βW2 < Uu

0 + β

[
p1

(
U e

1

1− β

)
+ (1− p1) (U e

1 + βW2)

]
(35)

ye0 − ce0
1− β

≤ −cu0 + βC (W1) . (36)

53



ye1 − ce1
1− β

> −cu1 + βC (W2) . (37)

Using (30) and λ0 ≤ 0 < λ1 we obtain

ye1 + κ
ϑ(p1)

p1

< ye0 + κ
ϑ(p0)

p0

(38)

Using (32), (35) and the agent’s f.o.c. w.r.t. p we obtain

1

1− β
αη′
(
ye1 + κ

ϑ(p1)

p1

)(
κϑ(p1)

p1

)′
U e

1 =
−U e

1

1− β
− [−U e

1 + βW2]

>
−U e

0

1− β
−
[
Uu

0 + β

[
p1

(
U e

1

1− β

)
+ (1− p1) (U e

1 + βW2)

]]
=

1

1− β
αη′
(
ye0 + κ

ϑ(p0)

p0

)(
κϑ(p0)

p0

)′
U e

0 ,

and therefore

η′
(
ye1 + κ

ϑ(p1)

p1

)(
κϑ(p1)

p1

)′
U e

1 > η′
(
ye0 + κ

ϑ(p0)

p0

)(
κϑ(p0)

p0

)′
U e

0 .

Since −Uu
1 > −U e

0 we have Uu
1 < U e

0 and hence

η′
(
ye1 + κ

ϑ(p1)

p1

)(
κϑ(p1)

p1

)′
> η′

(
ye0 + κ

ϑ(p0)

p0

)(
κϑ(p0)

p0

)′
. (39)

We claim that (38) and (39) imply y1 < y0 and p1 > p0. If y1 ≥ y0 then (38) imply
p1 > p0. These imply

η′
(
ye1 + κ

ϑ(p1)

p1

)(
κϑ(p1)

p1

)′
< η′

(
ye0 + κ

ϑ(p0)

p0

)(
κϑ(p0)

p0

)′
,

a contradiction. Thus y1 < y0 and using (38) we also have p1 > p0. Hence

y1 < y0 (40)
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and
p1 > p0 (41)

Uu
0 ≥ U e

0

Finally, we have

ye0 − ce0
1− β

≤ −cu0 + βC (W1)

= −cu0 + β

[
p1
ye1 − ce1
1− β

+ (1− p1) [−cu1 + βC (W2)]

]
< −cu0 + β

[
p1
ye1 − ce1
1− β

+ (1− p1)

[
ye1 − ce1
1− β

]]
= −cu0 + β

ye1 − ce1
1− β

(42)

To finish the proof, we consider two cases.

Case 1: ye0 − ce0 ≥ ye1 − ce1 or ye0 − ce0 < ye1 − ce1 and ye1 − ce1 < −cu0 .
We claim that the planner as well a the agent are better off if the planner pays

a constant unemployment insurance equal to cu0 in each period. In response, the
agent never searches. First, (32) and (33) imply that the agent is better off.

To see that the planner is better off, notice that (42) imply that

−cu0 > max {ye0 − ce0, ye1 − ce1} .

. This and (37) imply

−cu0 > p0

(
ye0 − ce0
1− β

)
+ (1− p0)

[
−cu0 + β

[
p1

ye1−ce1
1−β

+ (1− p1) [−cu1 + βC (W2)]

]]
.

Case 2: ye0 − ce0 < ye1 − ce1 and ye1 − ce1 ≥ −cu0 .
Consider a deviation in which the planner gives (ye1, c

e
1) to the agent in the first

period.
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Let p̃0 be the best response of the agent. The planner’s payoff is

p̃0

(
ye1 − ce1
1− β

)
+ (1− p̃0)

[
−cu0 + β

[
p1
ye1 − ce1
1− β

+ (1− p1) [−cu1 + βC (W2)]

]]
> −cu0 + β

[
p1
ye1 − ce1
1− β

+ (1− p1) [−cu1 + βC (W2)]

]
> p0

(
ye0 − ce0
1− β

)
+ (1− p0)

[
−cu0 + β

[
p1
ye1 − ce1
1− β

+ (1− p1) [−cu1 + βC (W2)]

]]
,

where the last line uses (36). To show that the agent is better off, notice that p1 is
available and yields

p1
U e

1

1− β
+ (1− p1)

(
Uu

0 + β

[
p1

U e
1

1− β
+ (1− p1) [U e

1 + βW2]

])
> p1

U e
0

1− β
+ (1− p1)

(
Uu

0 + β

[
p1

U e
1

1− β
+ (1− p1) [U e

1 + βW2]

])
> p0

U e
0

1− β
+ (1− p0)

(
Uu

0 + β

[
p1

U e
1

1− β
+ (1− p1) [U e

1 + βW2]

])
,

which completes the proof.

Recall that
φ = lim

p↓0
ϑ(p)/p > 0.

We make the following assumption (otherwise working is always inefficient):

Assumption DS (desirable search) Search is desirable,

max y − η (y + κφ) > 0.

Let
y∗ = arg max y − η (y + κφ)
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or
1 = η′ (y∗ + κφ)

or
y∗ = (η′)

−1
(1)− κφ.

Lemma B.2 There is positive search in every period.

Proof of Lemma B.2. Assume towards a contradiction that there is no search at
period t. Let Wt be the agent’s utility at t. We have

Wt = E

[
−
∞∑
t=0

βt exp (−αct + αη (yt + κϑ(p)/p))

]
.

Let χ (W ) be given by

−exp (−αχ (W ))

1− β
= W,

or
χ (W ) = − log (−W (1− β))

α
.

Let c (W ) be given by

c (W ) = η (y∗ + κφ) + χ (W ) .

Since x→ − exp (−αx) is strictly concave, it follows that

C(W ) >
η (y∗ + κφ) + χ (W )− y∗

1− β
.

From Assumption DS, there is ε > 0 such that if the planner demands production
y∗ in exchange for consumption η (y∗ + κφ) + χ (W ) + ε at period t then the agent
searches for a job at t and conditionally on finding a job and both players are better
off. If t > 0 then the planner can decrease the unemployment insurance at t − 1

to keep the agent indifferent. This decreases the planner´s cost and establishes a
contradiction.
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Theorem B.1 At the optimum, in every period in which there is positive search,

1. the moral-hazard constraint (8) binds, and the planner benefits from strictly increas-
ing p;

2. the marginal income tax rate is always positive, and;

3. conditional on not finding a job at period t, the worker’s marginal utility of con-
sumption satisfies the inverse Euler equation,

1

ϕ′ (cut )
= E

[
1

ϕ′ (ct+1)

]
.

Proof of Theorem B.1. i) The fact that the moral-hazard constraint (8) binds, and
the planner benefits from strictly increasing p follows immediately from Lemma
B.1.

ii) From (30) and λ > 0 we have

1− η′(ne) =
λU e

p

[
αη′′(ne)κ

(
ϑ(p)

p

)′
+ α2 [η′(ne)]

2
κ

(
ϑ(p)

p

)′]
> 0.

iii) Using the first-order conditions we have

1

ϕ′(cut−1)
= µt−1 −

λt−1

(1− pt−1)
= µt.

Hence,

pt
ϕ′(cet )

+
1− pt
ϕ′(cut )

= (ptµt + λt) + (µt(1− pt)− λt) = µt =
1

ϕ′(cut−1)

Proposition B.1 The unemployment benefit is decreasing over time with cut > cut+1.
Moreover, the worker´s consumption from employment at period t is strictly greater

than the unemployment benefit from any future period τ ≥ t.
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Proof of Proposition B.1. Notice that λt+1 > 0 implies

ϕ′(cut+1)− ϕ′(cut ) =
1

µt+1 − λt+1

1−pt+1

− 1

µt − λt
1−pt

=
1

µt+1 − λt+1

1−pt+1

− 1

µt+1

> 0,

and hence cut+1 < cut .

Next notice that

Uu − U e =
1

µα− λα
1−p
− 1

µα + λαp−1
> 0,

which implies cet > cut + η(net ) > cut .

Proposition B.2 Unemployment benefits converge to zero.

Proof of Proposition B.2. Suppose towards a contradiction that cut → cu∞ > 0. If it
does not converge to zero, since ϕ′(cut ) = 1

µt+1
, we conclude that µt → (ϕ′(cu∞))−1 .

Therefore,
λt

1− pt
→ 0.

We claim that pt → 0. Suppose towards a contradiction that there is a subsequence
ptr → p̂ > 0 and notice that, since

ϕ′(cet ) =
1

µt + p−1
t λt

,

we have along the sub-sequence ϕ′(cetr)→ ϕ′(cu∞), implying cetr → cu∞. By incentive
compatibility,

η

(
yetr + κ

ϑ(ptr)

ptr

)
→ 0,

which is not possible, a contradiction.
But then by a continuity argument, for every ε > 0, there exists a period t∗ such

that t ≥ t∗ implies that the planner’s utility is ε away from −cu∞/(1− β) while the
worker’s utility is ε away from ϕ(cu∞)/(1− β).

It follows by Assumption DS that there is ε > 0 such that if the planner de-
mands production y∗ in exchange for consumption η (y∗ + κφ)+χ (ϕ(cu∞)/(1− β))+
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ε then the worker searches with probability bounded away from some p > 0 for
every t large enough. Moreover, this ε can be chosen to make both players are
better off. A contradiction.
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C Internal Appendix

Start by noting that the planner’s program has a recursive structure,

C (W0) = max
p

1− β
(ye − ce) + (1− p) [−cu + βC (W1)] ,

subject to

p

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
+ (1− p) [ϕ(cu) + βW1]−W0 ≥ 0, (43)

and

1

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
− ϕ(cu)− βW1

=
pκ

1− β
η′
(
ye + κ

ϑ(p)

p

)(
ϑ(p)

p

)′
. (44)

We show – Lemma A.3 – that the planner’s problem is differentiable, and hence
the optimum must satisfy a constraint optimization maximization in which we
write µ and λ for the multipliers relative to the constraints (43) and (44) respec-
tively. The Lagrangian for the problem is, then,

L =
p

1− β
(ye − ce) + (1− p) [cu + βC (W1)] +

µ

{
p

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
+ (1− p) [ϕ(cu) + βW1]−W0

}
+

λ

{
1

1− β

[
ϕ(ce)− η

(
ye + κ

ϑ(p)

p

)]
− ϕ(cu)− βW1

− pκ

1− β
η′
(
ye + κ

ϑ(p)

p

)(
ϑ(p)

p

)′}
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The first-order conditions are

p

1− β
− µ p

1− β
η′ (ne)− λ

[
1

1− β
η′ (ne) +

pκ

1− β
η′′ (ne)

(
ϑ(p)

p

)′]
= 0 (45)

− p

1− β
+ µ

p

1− β
ϕ′ (ce) + λ

1

1− β
ϕ′ (ce) = 0 (46)

1

1− β
(ye − ce)− [−cu + βC (W1)] +

µ

1− β

[
ϕ(ce)− η (ne)

− pκη′ (ne)
(
ϑ(p)

p

)′
− (1− β) [ϕ(cu) + βW1]

]

− λκ

1− β

{
2η′ (ne)

(
ϑ(p)

p

)′
+ p

[
κη′′ (ne)

[(
ϑ(p)

p

)′]2

+ η′ (ne)

(
ϑ(p)

p

)′′]}
= 0,

(47)

− (1− p) + µ(1− p)ϕ′(cu) = λϕ′(cu), (48)

and
(1− p)C ′(W1) + µ(1− p) = λ. (49)

Combining (48) and (49),

C ′(W1) = − 1

ϕ′(cu)
.

Adding (45) and (46) (repeated below for ease),

p− µpη′ (ne)− λ
[
η′ (ne) + pκη′′ (ne)

(
ϑ(p)

p

)′]
= 0,

and
−p+ µpϕ′ (ce) + λϕ′ (ce) = 0,
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gives us

µpϕ′ (ce)− µpη′ (ne)− λ
[
η′ (ne)− ϕ′ (ce) + pκη′′ (ne)

(
ϑ(p)

p

)′]
= 0,

which we rearrange to obtain

ϕ′ (ce)− η′ (ne) =
λp

µp+ λ
κη′′ (ne)

(
ϑ(p)

p

)′
,

or

1− η′ (ne)

ϕ′ (ce)
=

λp

ϕ′ (ce) {µp+ λ}
κη′′ (ne)

(
ϑ(p)

p

)′
.

Using (46),
µp+ λ =

p

ϕ′ (ce)
,

we get

τ = 1− η′ (ne)

ϕ′ (ce)
= λκη′′ (ne)

(
ϑ(p)

p

)′
.

Now, combining (46) and (48), gives us an expression for µ,

µ =
p

ϕ′ (ce)
+

1− p
ϕ′ (cu)

, (50)

and another for λ, [
1

ϕ′ (ce)
− 1

ϕ′ (cu)

]
p [1− p] = λ > 0, (51)

which, then, implies τ > 0.

Next, recall that

ye − ce − (1− β) [−cu + βC (W1)] +

µ

[
ϕ(ce)− η (ne)− pκη′ (ne)

(
ϑ(p)

p

)′
− (1− β) [ϕ(cu) + βW1]

]
− λη′ (ne)κ

{
2

(
ϑ(p)

p

)′
+ p

[
κ
η′′ (ne)

η′ (ne)

[(
ϑ(p)

p

)′]2

+

(
ϑ(p)

p

)′′]}
= 0
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The term in brackets multiplied by µ is the worker’s first order condition with
respect to p, which implies

ne − ce − κϑ(p)

p
+ (1− β) [ϕ(cu)− βC (W1)] =

λη′ (ne)κ

{
2

(
ϑ(p)

p

)′
+ p

[
κ
η′′ (ne)

η′ (ne)

[(
ϑ(p)

p

)′]2

+

(
ϑ(p)

p

)′′]}
,

or(
ne − ce − κϑ(p)

p

)
+ (1− β) [cu − βC (W1)] =

η′ (ne)

[
1

ϕ′ (ce)
− 1

ϕ′ (cu)

]
p [1− p]κ

{
2

(
ϑ(p)

p

)′
+ p

[
κ
η′′ (ne)

η′ (ne)

[(
ϑ(p)

p

)′]2

+

(
ϑ(p)

p

)′′]}
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