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1. Introduction

Market economies feature goods and services that are exchanged for money. Ideally,

trade between agents should occur whenever there is surplus, the price should be fair.

The possibility of such trade has been formally established under complete informa-

tion. The fair price can be identified by the solutions to axiomatic Nash bargaining.

Various dynamic protocols have been provided that implement this solution in a sub-

game perfect equilibrium (for an overview, see Serrano, 2005). We add uncertainty

and follow this agenda without relying on priors.

Uncertainty about values of others is omnipresent in markets. However, incorporating

nontrivial uncertainty introduces two major obstacles. First, efficient trade can no

longer be guaranteed when participation is voluntary and there are no subsidies. We

recall the market for lemons (Akerlof, 1970) and the impossibility results of Myerson

and Satterthwaite (1983) and Güth and Hellwig (1986) that prove nonexistence of

market rules that lead to trade whenever there is surplus. Second, priors can influence

how the market is designed, so a single ideal rule would no longer exist. Priors can

also complicate how to behave under these rules and force agents to first agree on the

priors in order for there to be trade as desired.

We overcome these obstacles by enriching the possible outcomes and focusing on rules

where behavior does not depend on priors. Participants not only have to agree on

how to share the surplus, they also have to agree on the time the trade takes place.

We start with a model of bargaining over how to share an output that results from the

joint effort of a set of players. Individual effort costs are private information. Players

are risk neutral. A bargaining rule determines not only how the output is shared but

also when. Later we show that our results translate immediately to models of trade

with private values and to public good provision (or collective action) with private

values.

Without loss of generality we define bargaining rules using a direct mechanism. So,

participants simultaneously report their private values. A bargaining rule then de-

termines how and when the output is shared. To generate behavior independent

of priors, we ensure that an agent’s choice to participate and to report her private

value does not depend on her prior. This leads to the four basic axioms: Dominant

Strategy Incentive Compatibility, Renegotiation Proofness, Ex-post Individual Ra-

tionality, and Budget Balance. The remaining axioms are motivated by envisaging
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an impartial designer who is interested in the social surplus. We require that the

output produced only depends on the total surplus (Impartiality), that the largest

possible output is traded without delay (Weak Non-Wastefulness), and the agreement

is based on the agents’ actual reports (Independence of Irrelevant Information).

We find that there is a unique rule that satisfies our axioms. According to this rule,

the time of trade is decreasing in the surplus deduced from the reported values. The

output is divided among the agents according to the Nash bargaining solution, so

each agent obtains equal share. We thus obtain the fair allocation by eliminating the

importance of priors and only postulating conditions that relate to efficiency.

An important condition for the implementation of our solution is that participants

can commit to it. This commitment assumption, albeit common in the literature

on mechanism design, is often hard to justify. We demonstrate that our desired

outcome can be supported by an alternating offers bargaining game, in which there is

no commitment. A proposal consists of when the output should be traded and what

shares each player should get. Proposals are made in a given order, where a proposal

is implemented if and only if all participants agree. We show that our solution is

implemented in a perfect Bayesian equilibrium of this game. On the equilibrium

path, the proposal of each player reveals her true value. When the last participant

has revealed her value, her proposal is accepted by all. Given this outcome, one is

tempted to reject the last proposal and to propose instead the maximal quantity with

the same shares as in the last proposal. This would be a Pareto improvement under

complete information. However, if such a proposal were be accepted, then the original

incentives to tell the truth would be destroyed. We deter this deviation as follows.

The player who has deviated is punished by entering a path on which she gets none

of the surplus, the maximal surplus is equally split among the others, and all are

believed to have the lowest possible value.

This completes the so-called Nash program. We postulate axioms on the properties

of the outcome, uncover a unique outcome that satisfies these axioms and then show

how to implement this outcome with common market rules. We know of no other

paper that pursues the Nash program under incomplete information.

Related Literature. We could not find any other paper that both postulates a desid-

eratum and then shows how to implement it without commitment. In the existing

literature we identify two papers that are closest to ours. Cramton (1992) is the only
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other paper that implements trade without commitment whenever there is surplus.

Specifically, Cramton (1992) considers bilateral trade under two sided incomplete

information without commitment. The agents are engaged in a continuous-time dy-

namic game and have the same discount factor. The paper constructs a sequential

equilibrium of this game that features trade if and only if there is a positive surplus.

However, there is efficiency loss, because this trade occurs with delay. The closed-

form description of this sequential equilibrium is only available for uniform priors. We

would like to point out that, curiously, the dynamic implementation of our bargaining

rule presented in Section 3 below can be seen, with slight adjustments, as a different

sequential equilibrium of Cramton’s (1992) dynamic game, with the property that it

does not depend on priors.

Čopič and Ponsati (2016) analyze probabilistic rules for bilateral trade and show that

a rule satisfies Strategy Proofness, Voluntary Participation, and is ex-post Pareto

undominated if and only if it can be implemented using randomized posted pricing.

Our bargaining rule for n = 2 satisfies these axioms and, thus, can be represented

using a randomized posted pricing mechanism. In fact, all of our results would go

through if our axiom of Weak Efficiency is replaced by Čopič and Ponsati’s (2016)

axiom of ex-post Pareto undominance. Adding our axiom of Surplus Dependence

selects the unique randomized posted pricing mechanism, namely the one with the

uniform distribution of prices.

There are several alternative axiomatic approaches to bargaining under incomplete

information when players have common priors. Unlike our approach, each of these

solutions applies to a specific prior and deals with two players only. Harsanyi and

Selten (1972) use axioms to select among the strict equilibrium points of a sequential

two person Nash demand game. Their solution is to maximize a generalized Nash

product whose exponential weights depend on the prior. Weidner (1992) extends

this approach to select among incentive compatible individually rational mechanisms.

Myerson (1984) selects among incentive compatible individually rational mechanisms

that are consistent with the outcome of a random dictator whenever this is efficient.

Osborne and Rubinstein (1990, Ch. 5) consider mechanisms for bilateral trade when

there are two types of each player.

A typical assumption in the literature is to require allocation, provision or trade

to be in a given quantity, immediate and with certainty or not at all. In this re-

strictive environment, only randomized posted pricing mechanisms satisfy Strategy
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Proofness and Voluntary Participation (Kuzmics and Steg, 2017). Among these rules,

the unique one that satisfies our axiom of Surplus Dependence is the rule that does

not produce any output at all. Richer environments have been considered in related

papers. Hartline and Roughgarden (2008) show how goods can be partially destroyed

to create incentives. Probabilistic trade is used strategically in Čopič and Ponsati

(2016) for trade and Mailath and Postlewaite (1990) for public good provision. The

idea to use delay strategically under incomplete information appears in Mailath and

Postlewaite (1990), Kennan and Wilson (1993), and Tóbiás (2018).

We proceed as follows. In Section 2, we introduce a bargaining problem and axioms,

and we find the unique bargaining solution that satisfies these axioms. Section 3

describes an implementation of this solution via an alternating offers protocol. We

apply our results to trade and to provision of public good in Section 4. Section 5

concludes. The proofs are in the Appendix.

2. Bargaining Problem

2.1. Example. A seller and a buyer negotiate a trade of an indivisible good. Provi-

sion of the good costs c ∈ [0, 1] to the seller. Consumption of the good has the value

of v ∈ [0, 1] to the buyer. The seller’s cost and the buyer’s value are their private

information. The traders do not have to trade instantly. If they agree to trade for

a price p at time t, then the seller and buyer’s payoffs are δt(p − c) and δt(v − p),
respectively, where δ is a common discount factor. If they agree not to trade or if

they fail reaching an agreement, then both get zero.

Market rules are defined as follows. The agents announce their information, after

which it is determined whether the good is traded, and if so, the time of trade and

the price are specified. Let ĉ and v̂ be the seller’s and buyer’s announcements of their

cost and value, respectively. A market rule is a profile (κ, p, τ), where κ(ĉ, v̂) ∈ {0, 1}
indicates whether the good is traded or not, p(ĉ, v̂) ≥ 0 is a price, and τ(ĉ, v̂) ≥ 0 is

a time of trade. The seller and buyer’s payoffs are given by

us(ĉ, v̂|c) = κ(ĉ, v̂)δτ(ĉ,v̂)(p(ĉ, v̂)− c) and ub(ĉ, v̂|v) = κ(ĉ, v̂)δτ(ĉ,v̂)(v − p(ĉ, v̂)).

We are interested in market rules that satisfy the following conditions (axioms). Our

first requirement is that no player should be able to manipulate the outcome to her
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benefit by reporting any type profile other than the truth, irrespective of the reports

of the others.

(DSIC) Dominant strategy incentive compatibility. Each player’s dominant strategy

is to report the value truthfully.

The next two axioms impose discipline on the agreement between the traders. These

can be considered ex-post requirements that apply at the time when the agreement

has been reached.

(RP) Renegotiation proofness. The players should not be able to find a Pareto superior

deal ex post, after the conclusion of the agreement. In other words, the players must

agree on an alternative that maximizes the trade surplus. In this case there are

two alternatives: trade and no trade. This is analogous to the Pareto efficiency in

bargaining under complete information.

(IR) Ex-post individual rationality. Whenever the good is agreed to be traded, no

player prefers to walk away with zero payoff.

The last two axioms impose a discipline on the timing of the trade.

(WNW) Weak Nonwastefulness. There exist reports of the buyer and the seller such

that an agreement (whether trade or no trade) is reached immediately, without delay.

This is a very minimal requirement of non-wastefulness.

(IM) Impartiality. The bargaining mechanism is impartial, in the sense that the time

of the agreement depend only on the surplus given by max{v − c, 0}, rather than on

the individual reports. This requirement reflects the idea that the decision of whether

and when trade takes place should depend only on the social benefit.

Proposition 1. A market rule (κ∗, p∗, τ ∗) satisfies DSIC, RP, IR, WNW, and IM

if and only if it is as follows. When v > c, the good is traded at the price p∗(c, v) =

(c+ v)/2 and at the time τ ∗(c, v) given by δτ
∗(c,v) = v− c. When v < c, then the good

is not traded. When v = c, then the good may be traded at price p∗(c, v) = c and at

any time, or not traded at all.

Proposition 1 is a special case of Theorem 1 that we will present after introducing

our general model of bargaining.
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The market rule (κ∗, p∗, τ ∗) is fair, in the sense that it shares the surplus equally and

provides the same discounted expected utility of (v − c)2/2 to each trader whenever

there is a positive surplus.

The market rule (κ∗, p∗, τ ∗) can be implemented as a perfect Bayesian equilibrium in

a dynamic bargaining game where the players make alternating offers. Moreover, this

equilibrium is prior-independent, so the players’ equilibrium choices are independent

of their beliefs.

The alternating offer bargaining protocol is described as follows. The negotiations

proceed in continuous time. Players take turns. The player whose turn it is to move

makes a price offer at the time of her choice. The other player then immediately

decides to accept or reject the offer. If the offer is accepted, then the trade takes place

at the agreed price, and the game ends. Otherwise the negotiations are resumed, and

the next player makes a price offer at the time of her choice, etc. To ensure that there

are finite number of offers in any interval of time, we assume that each player has a

brief “cooldown” period between her own offers. In addition, any time any player can

walk away, resulting in no trade. The negotiations proceed until an offer is accepted

or a player walks away.

Suppose that the seller is the first mover. In equilibrium, the seller with cost c makes

an offer ps = (c + 1)/2 at the time ts such that δts = 1 − c. Note that the seller’s

offer corresponds to the outcome described in Proposition 1 when assuming that the

buyer’s value is v = 1. If the buyer’s value is indeed v = 1, the the buyer accepts this

offer, and the trade is concluded. If v ≤ c, so there is no surplus, then the buyer walks

away. Otherwise, if c < v < 1, then the buyer makes a counteroffer pb = (c+ v)/2 at

the time tb such that δtb = v − c, and the seller accepts this counteroffer.

The described strategies implement the outcome presented in Theorem 1. To see

how these strategies can be supported as an equilibrium, note that each player’s

equilibrium offer reveals her private type. This is as if each player reports the type

to a mechanism that chooses the time and the price offer. So, a player can devi-

ate by following the above equilibrium strategy but pretending to have a different

type. This is not a profitable deviation, because the equilibrium outcome satisfies

IC. Alternatively, a player can deviate by making a choice that is inconsistent with

the equilibrium play for any private type he or she can have. This deviation can be

thwarted by assuming that the deviant has the highest possible value (if she is the

buyer) or the lowest possible cost (if she is the seller), and is willing to give away the
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entire surplus. As long as the “cooldown” period between offers of the same player is

small enough, such deviations cannot be profitable to the players.

2.2. Model. We now present a general bargaining problem.

There are N ≥ 2 players and K ≥ 1 alternatives. The players bargain about which

alternative to choose. The players start with a status quo, interpreted as a null

alternative and denoted by k = 0. A unanimous agreement of all the players is

required for any alternative to be chosen instead of the status quo.

If the players do not agree on any alternative, then each player i obtains her status

quo payoff vi,0, which is normalized to zero, so vi,0 = 0 for each i = 1, ..., N . If the

players agree on an alternative k = 1, ..., K, then each player i = 1, ..., N obtains a

value vi,k representing player i’s net gain or loss relative to the status quo. The type

of each player i is summarized by vi = (vi,1, ..., vi,K). Let Vi be the set of types of

player i. We assume that Vi is a subset of RK that is convex, bounded from above,

and has a nonempty interior. Let V = V1 × ... × VN , and let V−i be the set of value

profiles of all players except i. Let V be the set of all sets of value profiles V that

satisfy the above assumptions.

The players do not have to agree instantly. They may reach an agreement later in

time, where time is continuous. Delaying the agreement can be costly, because a

certain fraction of the surplus can be lost due to discounting of the payoffs. If the

players agree on an alternative k at time t, then the players enjoys the status quo up

to time t. At time t they forgo the status quo for the sake of the agreed alternative

k, and obtain the discounted payoffs from the agreement. Thus the discounted payoff

of player i is given by

δt(vi,k +mi),

where δ ∈ (0, 1) is a common discount factor and mi ∈ R is a monetary transfer to

player i made at the time of the agreement.

Each player’s type is her private information, so a bargaining outcome must rely on

the players’ reports about their types. By invoking the revelation principle, we can

restrict attention to direct mechanisms. A bargaining mechanism is a tuple (κ, µ, τ) :

V → {0, 1, ..., K}×RN×R+. For each profile of announced types v̂ = (v̂1, ..., v̂N) ∈ V ,

a bargaining mechanism determines an agreement (κ(v̂), µ(v̂)) and a time τ(v̂) when

this agreement is implemented. The agreement specifies an alternative κ(v̂) to be
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implemented, and a vector of monetary transfers µ(v̂) = (µ1(v̂), ..., µN(v̂)), where

µi(v̂) is the transfer to player i.

Let (κ, µ, τ) be a bargaining mechanism. For each profile of reports v̂, the payoff of

each player i with type vi is denoted by ui(v̂|vi) and is given by

ui(v̂|vi) = δτ(v̂)
(
vi,κ(v̂) + µi(v̂)

)
.

A bargaining problem with N players and K alternatives is described by a set of value

profiles V ∈ V . A solution ψ to a bargaining problem is a mapping that associates

with each V ∈ V a bargaining mechanism ψ(V ).

2.3. Axioms. Let ψ be a bargaining solution. As the set of value profiles V ∈ V is

fixed throughout most of the paper, we suppress the dependence of the bargaining

mechanism ψ(V ) on V and use the notation ψ(V ) = (κ, µ, τ). When we need to

compare two value profiles V and Ṽ in V , we use the notation ψ(Ṽ ) = (κ̃, µ̃, τ̃).

Let us consider seven desirable properties, or axioms, that a bargaining solution

ψ should satisfy. The first five of these axioms are the IC, RP, IR, NW, and IM

requirements specified in Section 2.1 above. We now formalize these axioms for our

general setting.

Axiom 1 (Dominant Strategy Incentive Compatibility, DSIC). For each i ∈ {1, ..., N},
each vi, v̂i ∈ Vi, and each v̂−i ∈ V−i,

ui(vi, v̂−i|vi) ≥ ui(v̂i, v̂−i|vi).

Axiom 2 (Renegotiation Proofness, RP). For all v̂ ∈ V ,

κ(v̂) ∈ arg max
k∈{0,1,...,K}

∑N

i=1
v̂i,k.

Axiom 3 (Ex-post Individual Rationality, IR). For each i = {1, ..., N} and each

v̂ ∈ V ,

vi,κ(v̂) + µi(v̂) ≥ 0.

Axiom 4 (Weak Non-Wastefulness, WNW). There exists v̂ ∈ V such that τ(v̂) = 0.

To formalize the next axiom, let us first introduce the following notation. Given a

profile of types v, the surplus S(v) is defined as the maximal added value:

S(v) = max
k∈{0,1,...,K}

∑N

i=1
vi,k.
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Axiom 5 (Impartiality, IM). For all v̂′, v̂′′ ∈ V ,

S(v̂′) = S(v̂′′) implies τ(v̂′) = τ(v̂′′).

Two additional axioms can be attributed to the generality of our setting. We require

that the bargaining mechanism is budget balanced, in the sense that the payments

to the players must add up to zero. So, neither players are subsidized, nor money is

destroyed. This axiom rules out the feasibility of Vickrey-Clarke-Groves mechanisms

that rely on subsidies.

Axiom 6 (Budget Balance, BB). For each v̂ ∈ V ,∑N

i=1
µi(v̂) = 0.

Our last requirement says that the agreement, which specifies the chosen alternative

and the transfers, should depend only on the reports made by the players. It should

not depend on the set of possible values V that the players can have. This reflects the

idea that the agreement is based on the actual reports, rather on some hypothetical

values.

Axiom 7 (Independence of Irrelevant Information, III). For each V, Ṽ ∈ V , the

mechanisms (κ, µ, τ) = ψ(V ) and (κ̃, µ̃, τ̃) = ψ(Ṽ ) satisfy

v̂ ∈ V ∩ Ṽ implies κ(v̂) = κ̃(v̂) and µ(v̂) = µ̃(v̂).

2.4. Solution. Before presenting our axiomatic solution, we introduce the following

notation.

We say that a bargaining solution ψ is a Nash bargaining solution with delay if for each

V ∈ V the mechanism (κ, µ, τ) = ψ(V ) maximizes the Nash product (Nash, 1950) at

the time of agreement. Specifically, for each v ∈ V , the agreement (κ(v), µ(v)) is a

solution of

max
(k,m)∈{0,1,...,K}×RN

∏N

i=1
(vi,k +mi) subject to

∑N

i=1
mi = 0.

Any such mechanism chooses a surplus-maximizing alternative, and divides the sur-

plus equally among the players. So, κ(v) and µ(v) are given by

κ(v) ∈ arg max
k∈{0,1,...,K}

∑N

i=1
vi,k, (1)

µi(v) =
S(v)

N
− vi,κ(v) for each i = 1, ..., N. (2)
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Note that κ(v) and µ(v) are uniquely defined, except when there is more than one

surplus-maximizing alternative. The induced payoffs are unique. The payoff of each

player i is her status quo value plus the equal share of the discounted surplus, so

ui(v|vi) =
δτ(v)S(v)

N
for each i = 1, ..., N. (3)

The Nash bargaining solution with delay is fair in the sense that the discounted

surplus is shared equally among the players.

We state our main result.

Theorem 1. A bargaining solution satisfies Axioms 1–7 if and only if it is a Nash

bargaining solution with delay where for each V ∈ V the delay function τ satisfies

δτ(v̂) =

(
S(v̂)

maxv∈V S(v)

)N−1
for each v̂ ∈ V such that S(v̂) > 0. (4)

We prove Theorem 1 in Appendix A.1, and show that Axioms 1–7 are independent

in Appendix A.2.

2.5. Discussion. We now discuss some properties of our solution and its underlying

assumptions.

2.5.1. Incentives. In the delayed Nash bargaining solution presented in Theorem 1,

the responsiveness of the time of agreement to the players’ reports is instrumental

to ensure that the players have incentives to report their costs truthfully. If instead

the agreement was always instant, then the players could announce higher costs to

get higher monetary transfers from the others. Unlike in the Vickrey-Clarke-Groves

(VCG) setting where the traders are subsidized, here the budget is balanced. The time

of the agreement provides the needed strategic variable for the incentive compatibility

that replaces the lack of freedom in the choice of monetary transfers.

2.5.2. Efficiency. In the delayed Nash bargaining solution presented in Theorem 1,

the agreement is always Pareto efficient. The inefficiency emerges because of the delay.

To understand how inefficient our solution is, consider the efficiency loss measure

L(κ,µ,τ) given by the maximum difference between the aggregate payoff under the

efficient allocation and that under a given mechanism (κ, µ, τ) and normalized to be
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in [0, 1], so

L(κ,µ,τ) =
1

maxv′∈V S(v′)
max
v∈V

(
S(v)−

∑N

i=1
ui(v|vi)

)
.

In other words, L(τ,κ,µ) is the upper bound on how large fraction of the maximum

surplus can be lost.

Let us derive the efficiency loss measure for the delayed Nash bargaining solution.

Proposition 2. Let (κ, µ, τ) be the delayed Nash bargaining solution with delay τ

given by Theorem 1. Then

L(κ,µ,τ) =
N − 1

N
N
N−1

.

Proof. Let Smax = maxv′∈V S(v′). By Theorem 1, using (3) and (4), we have

1

Smax

(
S(v)−

∑N

i=1
ui(v|vi)

)
=
S(v)

Smax
− δτ(v) S(v)

Smax
=
S(v)

Smax
−
(
S(v)

Vmax

)N
.

Let x = S(v)/Smax. Note that x ∈ [0, 1] by the definition of S(v). Maximizing x−xN

w.r.t. x over the interval [0, 1] yields the maximum value (N − 1)N−
N
N−1 . �

When there are N = 2 players, the maximum efficiency loss is L(κ,µ,τ) = 0.25. This

means the players never lose more than 1/4 of the maximal surplus due to the delayed

agreement. The maximum efficiency loss is approximately 0.38 for N = 3 and 0.47

for N = 4, and it is increasing in N . We would like to stress, however, that this is

the upper bound on the efficiency loss. So, for any priors on the players’ costs, the

expected efficiency loss is smaller.

2.5.3. Other Interpretations of Delay. Observe that the role of the delay τ(v) is to

cause the decay of the value of the pie that the players share. Let

q(v) = δτ(v).

So, q(v) is the remaining part of the value after the delay τ(v). However, there are

ways of destroying the value other than decaying it over time. For example, q(v) can

be the probability of the agreement. For another example, q(v) can be the quantity of

production (or equivalently, 1− q(v) the fraction of the good to be destroyed). Thus,

instead of specifying the time τ(v) of the agreement, the bargaining mechanism can

directly specify the quantity q(v) as a function of the players’ reported costs.
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The delay can be substantial when the surplus is very small. It makes little sense

that market participants will wait so long for trade or production. This is easily

accommodated by introducing an exogenous deterioration process of the output value,

or a limited window of opportunity for the trade surplus to be realized. Consider

some process under which the expected value of the output is strictly decreasing over

time and becomes zero within a finite time horizon T . This can be anticipated, for

example, by choosing q(v) = (T − τ(v))/T , as q determines the deterioration of the

good, regardless of whether it is driven by impatience or exogenous decay. In this

model, the delay will never exceed T .

3. Implementation

Above we designed a bargaining solution that satisfies a set of axioms. In this sec-

tion, we follow the so-called Nash program (see, e.g., the survey of Serrano, 2020) to

show how one can obtain this outcome in a perfect Bayesian equilibrium of a non-

cooperative Bayesian game. Moreover, we will consider a prior-free implementation,

where each player’s equilibrium strategy is independent of her prior about the costs

of the other players. For this we adapt the alternating offers bargaining game of

Rubinstein (1982) to our setting.

The negotiations proceed in continuous time. The players make offers in a predeter-

mined order. Without loss of generality, let player i be i-th in the order. We will refer

to the player making an offer as the proposer and the other players as the responders.

When player i becomes the proposer, she does not have to make an offer immediately.

We will refer to the time interval between when a player becomes the proposer and

when she makes an offer as a round. Round 1 starts at time t = 0. Round r > 1

starts immediately after an offer has been made (and rejected) in round r−1. Let tr−1

denote the time when round r − 1 ends and round r begins. Note that the proposer

in round r = 1, 2, ... is player i = r (mod N).

We now describe what happens between the start and end of each round r = 1, 2, ....

At time tr−1 when round r starts, all players simultaneously choose whether to stay

or to exit. If at least one player exits, then the game ends, and everyone receives zero

payoff. Otherwise the proposer chooses what offer to make and when. Specifically,

the proposer chooses a tuple (kr,mr, tr) that specifies an alternative kr ∈ {0, 1, ..., K}
and a vector of transfers mr = (m1,r, ...,mN,r) to be offered, as well as a time tr of the

offer. Immediately after the offer has been made, all the responders simultaneously
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decide whether to accept or reject it. If the offer is unanimously accepted, then the

game ends, and each player j = 1, ..., N receives the payoff δtr(vj,kr + mj,r). If the

offer is rejected by someone, then the negotiations proceed to round r + 1.

There are three constraints that the proposer’s choice must satisfy. First, the proposer

must be able to honor the transfers specified in her offer, so if player i is the proposer

in round r, then ∑
j 6=i

mj,r = −mi,r.

Second, the time of the offer tr cannot be earlier than the round starts, so

tr ≥ tt−1.

Third, each player can make at most K offers within a given time interval λ > 0, so

tr ≥ tr−NK + λ for r > NK.

We assume that interval λ is positive, but small enough.

Observe that there can be a succession of several instantaneous rounds, where one

offer succeeds another immediately, at the same time. However, the last assumption

ensures that at any time t the number of rounds preceding t is finite.

At the start of the game, each player is equipped with a prior about the values of

the others. There can be a common prior, or players can have subjective priors. The

solution concept is perfect Bayesian equilibrium.

Let us formally describe the players’ strategies. For r ≥ 1 let hr be the history of

everything that the players have observed up to the conclusion of round r, including

times when offers were made, contents of the offers, and acceptance decisions. The

history h0 that precedes round 1 contains no information. A strategy of each player

specifies how she makes offers in rounds when she is the proposer, how she responds

to offers in rounds when she is a responder, and how she makes exit decisions in

each round. Consider player i = 1, ..., N . An offer strategy of player i is a tuple

(κi, µi, τi) that specifies an alternative κi(vi, hr−1) ∈ {0, 1, ..., K}, and a vector of

monetary payments µi(vi, hr−1) ∈ RN , and a time the offer τi(vi, hr−1) ∈ R+ in

each round r where i is the proposer. An acceptance strategy αi specifies a choice

αi(vi, hr−1, kr,mr, tr) ∈ {0, 1} each round r where i is a responder, where 1 signifies

acceptance and 0 signifies rejection. Note that this choice depends on an offer (kr,mr)

made at time tr by the proposer in round r. Finally, an exit strategy ei specifies a

choice ei(vi, hr−1) ∈ {0, 1}, where 1 signifies exit and 0 signifies stay.
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We now describe a perfect Bayesian equilibrium of this game. The equilibrium

strategy is symmetric across the players, so it is independent of their order of moves,

and it is denoted by E∗ = (κ∗, µ∗, τ ∗, α∗, e∗). The equilibrium belief profile is denoted

by B∗.

The equilibrium strategy describes the play in two phases, an equilibrium phase and a

punishment phase. The play starts in the equilibrium phase until a deviation triggers

the punishment phase.

We begin the description with the strategy profile in the equilibrium phase. For

this purpose, we introduce the following notation. Let (Ŝr)r=0,1,... be a sequence

of admissible surpluses and let (V̂r)r=0,1,... be a sequence of admissible sets of value

profiles. Each admissible set V̂r is a product of the admissible sets of individual

players, so V̂r = ×Ni=1V̂i,r. At the start of the game, the admissible surplus is equal to

the maximum surplus, and the admissible set is equal to the set of value profiles, so

Ŝ0 = Smax and V̂j,0 = Vj for each j = 1, ..., N .

For each subsequent round r = 1, 2, ..., we define Ŝr as follows. Let σ(t) be the

solution of (4) for s = S(v̂) as a function of t = τ(v̂), and let σ−1(s) be its inverse, so

σ(t) = δ
t

N−1Smax and σ−1(s) =
(N − 1)(ln s− lnSmax)

ln δ
.

Given the time tr of the offer in round r, let

Ŝr = σ(tr).

The interpretation is that, in equilibrium, at a time tr the surplus cannot exceed σ(tr),

thus ruling out the possibility of a greater surplus. Had the surplus been greater, the

offer would have been made earlier in equilibrium.

Next, we define V̂r as follows. Let i be the proposer in round r. For each responder

j 6= i in the admissible set remains the same as in the previous round,

V̂j,r = V̂j,r−1 for each j 6= i.

For the proposer i, the admissible set V̂i,r includes all profiles of i’s values in V̂i,r−1

such that the maximum surplus does not exceed Ŝr, so

V̂i,r =

{
v̂i ∈ V̂i,r−1 : max

k=0,1,...,K, v̂−i∈V̂−i,r−1

∑N

j=1
v̂j,k ≤ Ŝr

}
.
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The values that lead to any higher surplus than Ŝr are ruled out in equilibrium, and

thus excluded from the admissible set.

Fix a player i = 1, ..., N . The exit strategy e∗ of player i in the equilibrium phase is

as follows. For each round r = 1, 2, ... let s∗i,r be the highest surplus from perspective

of player i, provided the value profiles of the other players are in the admissible set

V̂r−1, so

s∗i,r = max
k=0,1,...,K

(
vi,k + max

v̂−i∈V̂−i,r−1

∑
j 6=i

v̂j,k

)
.

Player i exits (so e∗(vi, hr−1) = 1) if s∗i,r = 0 and stays if s∗i,r > 0.

The offer strategy (κ∗, µ∗, τ ∗) of player i in the equilibrium phase is as follows. Con-

sider a round r where player i is the proposer. Let

κ∗(vi, hr−1) ∈ arg max
k=0,1,...,K

(
vi,k + max

v̂−i∈V̂−i,r−1

∑
j 6=i

v̂j,k

)
(5)

µ∗j(vi, hr−1) =
s∗i,r
N
− max

v̂j∈V̂j,r−1

v̂j,κ∗i (vi,hr−1) for each j 6= i, (6)

µ∗i (vi, hr−1) = −
∑

j 6=i
µ∗j(vi, hr−1), (7)

τ ∗(vi, hr−1) =

σ−1(s∗i,r) if r ≤ NK,

max
{
σ−1(s∗i,r), tr−NK + λ

}
if r > NK.

(8)

Note that this offer strategy corresponds to that in (1), (2), and (4) under the as-

sumption that player i behaves as if for each player other than i, the value of each

alternative k is the maximal in V̂r−1.

The acceptance strategy α∗ of player i in the equilibrium phase is as follows. Consider

a round r where player i is a responder. Let (kr,mr, tr) be an offer made in round r

by the proposer in that round. Player i accepts the offer, so α∗(vi, hr−1, kr,mr, tr) = 1

if and only if the payoff of player i in the continuation game of round r + 1 would

have been smaller than or equal to the payoff offered in round r.

A detectable deviation from the equilibrium offer strategy triggers the punishment

phase. We say that an offer (kr,mr, tr) is admissible if there exists the proposer’s

value profile v̂i admissible in round r − 1, so v̂i ∈ V̂i,r−1, such that (kr,mr, tr) is the

equilibrium offer for this proposer,

kr = κ∗(v̂i, hr−1), mr = µ∗(v̂i, hr−1), tr = τ ∗(v̂i, hr−1).
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Intuitively, a non-admissible offer cannot be rationalized by the responders as being

the equilibrium choice of the proposer i for any possible value profile in V̂i,r−1.

We now describe the punishment phase. Suppose a non-admissible offer has been

made at the end of a round r∗ − 1. The play then enters the punishment phase in

round r∗. In this phase, all the players stay in the game in round r∗, but exit the

game in every subsequent round, so for each j = 1, ..., N

e∗(vj, hr∗−1) = 0 and e∗(vj, hr−1) = 1 and each r = r∗ + 1, r + 2, ....

So an offer in each round r = r∗, r∗+ 1, ... is a take-it-or-leave-it offer by the proposer

in that round.

Let player i be a responder in round r ≥ r∗. She accepts the offer made in this round

if and only if her payoff from this offer is nonnegative.

Let player i be the proposer in round r ≥ r∗. Define the take-it-or-leave-it offer as

follows:

κ∗(vi, hr−1) ∈ arg max
k=0,1,...,K

(
vi,k + max

v̂i∗∈V−i

∑
j 6=i

v̂j,k

)
(9)

µ∗j(vi, hr−1) = −max
v̂j∈Vj

v̂j,κ∗i (vi,hr−1) for each j 6= i, (10)

µ∗i (vi, hr−1) = −
∑

j 6=i
µ∗j(vi, hr−1), (11)

τ ∗(vi, hr−1) =

tr−1 if r ≤ NK,

max
{
tr−1, tr−NK + λ

}
if r > NK.

(12)

So player i forms an (out-of-equilibrium) posterior belief about each player that her

value of the chosen alternative the maximal possible, and then asks to obtain the

entire surplus.

This punishment deters non-admissible offers, because the deviant expects the next

player in the order, to reject the deviant’s offer and then to make a take-it-or-leave-it

counteroffer by asking for the entire surplus. After that the game will end, because

all players will exit. So the deviant cannot get more than zero after making a non-

admissible offer.

To complete the description of the perfect Bayesian equilibrium, we specify the equi-

librium belief profile B∗. In the equilibrium phase, the beliefs are determined by

Bayes’ rule. In the punishment phase, the beliefs are as described above.
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The next theorem shows that the strategy and belief profiles implement the Nash

bargaining outcome as specified in Theorem 1, irrespective of the players’ priors.

Theorem 2. The strategy profile E∗, together with the belief profile B∗, is a perfect

Bayesian equilibrium for all priors. For each v ∈ V this equilibrium implements the

delayed Nash bargaining solution.

The proof is in Appendix. Intuitively, the idea is very simple. The equilibrium

outcome coincides with that of the delayed Nash bargaining solution presented in

Theorem 1 by construction. A deviation by any player i, for example, an attempt to

reach an agreement earlier than prescribed by the equilibrium, leads to the punish-

ment, where the next player in the order obtains the absolute bargaining power.

4. Applications

In this section, we apply the model in Section 2 in the settings of public good provision

and joint trade.

4.1. Public Good Provision. Consider a public good problem with N ≥ 2 par-

ticipants. The participants decide about buying one of K possible alternatives of

a public good that potentially benefits all of them. The cost of each alternative

k = 1, ..., K is Ck, which is common knowledge. The value of the alternative k to par-

ticipant i is vi,k ≤ 1, which is her private information. We assume that 0 < Ck < N ,

so the total value of all the participants can be greater than the cost of the alternative.

Provision rules are defined as follows. The participants announce their values, after

which the time of the provision, the alternative, and the participants’ payments are

determined. Let v̂i be an announcement of agent i about her value vi. A provision

rule is a triple (τ, κ,m), where τ(v̂) ≥ 0 is the time when the good is to be provided,

κ(v̂) ∈ {0, 1, ..., K} is the alternative, and mi(v̂) ∈ R is the monetary payment by

participant i. The payoff of each player i is given by

ui(v̂|vi) = δτ(v̂)(vi,κ(v̂) −mi(v̂)).

The monetary transfers must add up to the cost of the provided public good, so∑n

i=1
mi(v̂) = Cκ(v̂). (13)
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It can be easily seen that the public good provision problem is equivalent to the

bargaining problem, up to relabeling of the variables. Let

H = max
k=1,...,K

(N − Ck).

The value of each alternative k = 1, ..., K is given by Vk = (N − Ck)/H, and cost of

each participant i = 1, ..., N is given by ci,k = (1− vi,k)/H. These values are rescaled

by 1/H to ensure that the maximum alternative value is 1. The surplus is given by

S(v) = max
k=0,1,...,K

(
Vk −

∑N

i=1
ci,k

)
=

1

H
max

k=0,1,...,K

(∑N

i=1
vi,k − Ck

)
.

We again apply Theorem 1 to find the public good provision rule that satisfies our

Axioms 1–5.

Corollary 1. Let v = (v1, ..., vN) ∈ (−∞, 1]N . If
∑N

i=1 vi,k > Ck for some k, then at

time τ ∗(v) the surplus-maximizing alternative κ∗(v) is provided, and each participant

i pays m∗i (v) given by

δτ
∗(v) = (S(v))N−1 , (14)

κ∗(v) ∈ arg max
k=1,...,K

(∑N

i=1
vi,k − Ck

)
, (15)

m∗i (v) = vi,κ(v) −
S(v)

N
for each i = 1, ..., N . (16)

Alternatively, if there is no surplus, then no public good is provided.

This provision rule is fair, in the sense that it provides equal utility to each player i:

ui(v|vi) = δτ
∗(v)S(v)

N

Note that the monetary payment m∗i (v) to player i can be negative when vi,κ∗(v)

is sufficiently small relative the average value 1
N

∑n
j=1 vj,κ∗(v). So, players with low

values can be subsidized by the provision rule. Subsidizing some players is the price

paid for the ability to elicit truthful information about the participants’ values while

guaranteeing that no player prefers to block the public good provision.

4.2. Joint Trade. This section extends the model of bilateral trade to the case of

multiple buyers and sellers who trade a single indivisible good. In this model, there

are nb ≥ 1 buyers who benefit from the good if it is provided to them, and there are

ns ≥ 1 sellers whose joint effort is required to produce the good.
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Provision of the good has the per-unit cost of ci ≥ 0 to each seller i = 1, ..., ns.

Consumption of the good has the per-unit value of vj ∈ [0, 1] to each buyer j =

1, ..., nb. The sellers’ costs and the buyers’ values are their private information.

Market rules are defined as follows. The agents announce their values, after which

the time of the trade and the monetary payments are determined. Let ĉi and v̂j

be seller i’s and buyer j’s announcements of their cost and value, respectively. Let

ĉ = (ĉ1, ..., ĉns) and v̂ = (v̂1, ..., v̂nb). A market rule is a tuple (κ, ps, pb, τ), where

κ(ĉ, v̂) ∈ {0, 1} indicates whether the good is traded, ps,i(ĉ, v̂) is the payment to seller

i, pb,j(ĉ, v̂) is the payment by buyer j, and τ(ĉ, v̂) ≥ 0 is the time of the trade. Seller

i’s payoff is given by

us,i(ĉ, v̂|ci) = κ(ĉ, v̂)δτ(ĉ,v̂)(ps,i(ĉ, v̂)− ci).

Buyer j’s payoff is given by

ub,j(ĉ, v̂|vj) = κ(ĉ, v̂)δτ(ĉ,v̂)(vj − pb,j(ĉ, v̂)).

The total amount paid by the buyers has to be equal to the total amount received by

the sellers, so the following market clearing condition must hold:∑ns

i=1
ps,i(ĉ, v̂) =

∑nb

j=1
pb,j(ĉ, v̂) for all (ĉ, v̂) ∈ [0, 1]ns × [0, 1]nb . (17)

It can be easily seen that the joint trade problem is equivalent to the bargaining

problem with N = ns + nb players and K = 1 alternative, up to relabeling and

rescaling the variables. Let status quo correspond to no trade, and let alternative

k = 1 correspond to trade. Let sellers be labeled by i = 1, ..., ns and buyers by

j = ns + 1, ..., ns + nb. Each seller’s value is the negative of her cost. The surplus is

S(c, v) = max
{∑nb

j=1
vj −

∑ns

i=1
ci, 0

}
.

The maximum surplus is obtained when each buyer has the highest possible value,

vj = 1, and each seller has smallest possible cost, ci = 0, so

Smax = max
(c,v)

S(c, v) = nb.

We apply Theorem 1 to find a market rule that satisfies Axioms 1–7.

Corollary 2. If
∑

j vj >
∑

i ci, then the good is traded at the time τ ∗(c, v) given by

δτ
∗(c,v) =

(
S(c, v)

nb

)ns+nb−1
,
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each seller i receives p∗s,i(c, v), and each buyer j pays p∗b,j(c, v) given by

p∗s,i(c, v) = ci +
1

ns + nb

(∑
j
vj −

∑
i
ci

)
, i = 1, ..., ns, (18)

p∗b,j(c, v) = vj −
1

ns + nb

(∑
j
vj −

∑
i
ci

)
, j = 1, ..., nb. (19)

If
∑

j vj ≤
∑

i ci, then the good is not traded.

This market rule is fair, in the sense that it provides equal net utility to each seller i

and each buyer j. When there is a positive surplus, this utility is the equal share of

the surplus, so for all i = 1, ..., ns and all j = 1, ..., nb it is given by

us,i(c, v|ci) = ub,j(c, v|vj) =
1

ns + nb

(∑nb

j′=1
vj′ −

∑ns

i′=1
ci′
)n
.

The total price paid by the buyers (and received by the sellers) is

P ∗(c, v) =
∑nb

j=1
p∗b,j(c, v) =

nsnb
ns + nb

(
1

ns

∑ns

i=1
ci +

1

nb

∑nb

j=1
vj

)
.

5. Conclusion

Bargaining is the process of determining how to share a pie. Trade-offs need to

be made as to who gets how much, as typically, if one player gets more then some

other player gets less. The Nash bargaining solution is deemed to be the fair way to

make these trade-offs under complete information. Fairness together with impartial-

ity enters the solution via the Symmetry axiom of Nash (1950). Bargaining under

incomplete information has the difficulty that it is hard to evaluate what is fair when

individual wellbeing is influenced by some parameters that are only known to the

player herself.

We set out to find a bargaining solution under incomplete information. To be able

to unambiguously evaluate the consequences for the participants means to find a

way to let players reveal their private information and to choose an approach where

the outcome does not depend on any priors. We add surplus dependence as an

impartiality condition. With these Axioms (1, 2 and 4) we obtain so much structure

on the solution that only a mild additional axiom of Weak Efficiency (Axiom 3) results

in a unique solution. The astonishing finding is that the shares are determined by

the Nash bargaining solution that treats announcements as true values. Given this

finding, we call our rule the fair bargaining rule. In particular, note that neither
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symmetry nor equitability was postulated, they both result from our axioms. Fairness

is a result, not a postulate. Note also how an asymmetric solution can arise when

players are heterogeneous, either in their discount factors or in their risk preferences.

A key to our paper is the axiom of Surplus Dependence. Without this axiom we

would obtain many different possible rules, such as the trading rules found by Čopič

and Ponsati (2016) and the public good provision rules in Mailath and Postlewaite

(1990).

Another key to our approach is pragmatism. Probabilistic allocation is a useful math-

ematical technique to enrich the market rules and to find more ways to incentivize

players to tell the truth. However it seems very unrealistic for real applications. Sim-

ilarly, to post a price that has been randomly drawn from some distribution, as in

Hagerty and Rogerson (1987) and Čopič and Ponsati (2016), does not seem to be a

very realistic procedure. Thus we emphasize models with either a variable quantity

or a strategic delay. The variable quantity model reveals new insights on the optimal

relationship between quantity and surplus. The downside of the variable quantity

model is that we assume constant marginal values and costs. An investigation of

more general cost structures is on the agenda for future research. The model with

strategic delays can be applied to any of the three settings: bargaining, trade, and

public good provision. Exogenous deterioration of the output can be incorporated to

model a finite horizon. Note that in the context of strategic delay the good need not

be divisible.

There are other closely related models that can be easily investigated with our meth-

odology. For instance, one might wish to allocate a good to the player with the

highest private value for this good. A related setting involves trade with multiple

buyers and sellers where sellers produce the good independently and buyers do not

jointly benefit from the sale. The analysis of these models is left for future research.
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Appendix A. Proofs

A.1. Proof of Theorem 1. Sufficiency. It is straightforward to verify that every

Nash bargaining solution with delay where the delay function is given by (4) satisfies

Axioms 1–7.

Necessity. Let ψ satisfy Axioms 1–7. Let V ∈ V and let (κ, µ, τ) = ψ(V ). Let

Ui(v) be the payoff of player i under (κ, µ, τ) when all players announce their values

truthfully. So, for each v ∈ V and each i ∈ {1, ..., N},

Ui(v) = ui(v|vi) = δτ(v)(vi,κ(v) + µi(v)). (20)

Recall that S(v) = maxk=0,1,...,K

∑N
i=1 vi,k for each v ∈ V . By Axiom 5 (Surplus

Dependence), there exists a function q : R→ [0, 1] such that

δτ(v) = q(S(v)), v ∈ V . (21)

Substituting (21) into (20) and summing it up across the players, by Axiom 2 (Rene-

gotiation Proofness) and Axiom 6 (Budget Balance) we obtain∑N

i=1
Ui(v) = δτ(v)

∑N

i=1
(vi,κ(v) + µi(v)) = q(S(v))S(v). (22)

The rest of the proof is divided into four steps.

Step 1. Using Axioms 1 and 2, we show that for each i = 1, ..., N , each vi, v̂i ∈ Vi,
and each v−i ∈ V−i,

Ui(v̂i, v−i) = Ui(vi, v−i) +

∫ S(v̂i,v−i)

S(vi,v−i)

q(s)ds, (23)

where q(s) is weakly increasing.

Proof of Step 1. Consider vi, v̂i ∈ Vi and v−i ∈ V−i such that for each reported profile

(vi, v−i) and (v̂i, v−i) there is a unique alternative that maximizes the surplus. Note

that this holds for all v−i) ∈ V−i and almost all vi, v̂i ∈ Vi. Let

s∗ = S(vi, v−i) and s∗ = S(v̂i, v−i). (24)

Let φi be a path in Vi that linearly transforms player i’s report from vi = (vi,1, ..., vi,K)

to v̂i = (v̂i,1, ..., v̂i,K). So

φi(z) = (1− z)vi + zv̂i.
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So, φi(z) specifies player i’s report as a linear combination of φi(0) = vi and φi(1) = v̂i.

To simplify the notation, let

ki(z) = κ(φi(z), v−i), mi(z) = µi(φi(z), v−i), and s(z) = S(φi(z), v−i).

Observe that by Axiom 2 (Renegotiation Proofness), there exists a threshold z∗ ∈
(0, 1) such that along the path of reports (φi(z), v−i) the selected alternative ki(z)

satisfies ki(z) = ki(0) for z < z∗ and ki(z) = ki(1) for z > z∗. Thus

κ(φi(z), v−i) is almost everywhere constant w.r.t. z ∈ [0, 1]. (25)

Let z′, z′′ ∈ [0, 1] such that z′ < z′′ and ki(z
′) = ki(z

′′). By (25) the chosen alternative

is constant on [z′, z′′]. For each z ∈ {z′, z′′}, by Axiom 2 (Renegotiation Proofness)

we have vi,ki(z) = s(z)−
∑

j 6=i vj,ki(z). Therefore, we have by (20) and (21)

Ui(φi(z), v−i) = q(s(z))
(
s(z)−

∑
j 6=i

vj,ki(z) +mi(z)
)
, z ∈ {z′, z′′}.

Axiom 1 (Dominant Strategy Incentive Compatibility) then implies

Ui(φi(z
′), v−i) = q(s(z′))

(
s(z′)−

∑
j 6=i

vj,ki(z′) +mi(z
′)
)

≥ q(s(z′′))
(
s(z′)−

∑
j 6=i

vj,ki(z′′) +mi(z
′′)
)
, and

Ui(φi(z
′′), v−i) = q(s(z′′))

(
s(z′′)−

∑
j 6=i

vj,ki(z′′) +mi(z
′′)
)

≥ q(s(z′))
(
s(z′′)−

∑
j 6=i

vj,ki(z′) +mi(z
′)
)
,

Using the above inequalities and the assumption that ki(z
′) = ki(z

′′), we obtain

q(s(z′))(s(z′′)− s(z′)) ≤ Ui(φi(z
′′), v−i)− Ui(φi(z′), v−i) ≤ q(s(z′′))(s(z′′)− s(z′)),

which can only hold if q(s) is weakly increasing. Dividing all terms by (z′′ − z′) and

taking the limit of z′′ → z′, we obtain

dUi(φi(z
′), vr−i) = q(s(z′))ds(z′).

By (25), the above holds for almost all z′ ∈ [0, 1], specifically, where ki(z
′) is locally

constant. Therefore, after changing the variable s = s(z), we obtain

Ui(v̂i, v−i)− Ui(vi, v−i) =

∫ 1

0

q(s(z))ds(z) =

∫ s∗

s∗

q(s)ds (26)

for almost all vi, v̂i ∈ Vi. Because the incentive compatibility implies that Ui(v) is

continuous, (26) holds for all vi, v̂i ∈ Vi. By (24), (26) is equivalent to (23). This

completes the proof of Step 1. �
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Step 2. Using Step 1 and Axioms 3 and 7, we show that for each i, j = 1, ..., N and

each v ∈ V ,

Ui(v) = Uj(v). (27)

Proof of Step 2. A set Ṽ is a comprehensive extension of V if it contains all profiles

that are weakly smaller than v for each v ∈ V , so

Ṽ =
{
ṽ ∈ RN×K : ṽ ≤ v for some v ∈ V

}
.

Let (κ̃, µ̃, τ̃) = ψ(Ṽ ), and let Ũi(vi, v−i) be the payoff of player i under (κ̃, µ̃, τ̃) given

by (20). We first show that (27) holds under the mechanism (κ̃, µ̃, τ̃) for the set Ṽ of

value profiles.

Because Ṽ is unbounded from below, there exists v ∈ Ṽ such that S(v) = 0. For any

such v, by (22) we have
∑

i Ũi(v) = 0, and by Axiom 3 (Individual Rationality) we

have Ũi(v) ≥ 0 for each i. We thus obtain

S(v) = 0 implies Ũi(v) = 0 for each i = 1, ..., N . (28)

If S(v) = 0 for all v ∈ Ṽ , then the proof of Step 2 is complete.

Suppose that there exists v ∈ Ṽ such that S(v) > 0. Consider any such v. Because Ṽi

is unbounded from below, there exists a deviation ṽi of player i such that S(ṽi, v−i) =

0. Then, by (20), (28), and Step 1 we obtain for each i = 1, ..., N and each v ∈ Ṽ

Ũi(vi, v−i) = δτ̃(v)(vi,κ̃(v) + µ̃i(v)) =

∫ S(v)

0

q(s)ds.

Next, by Axiom 7 (Independence of Irrelevant Information), for each v ∈ V ⊂ Ṽ we

have κ(v) = κ̃(v) and µ(v) = µ̃(v). Thus, for each i = 1, ..., N and each v ∈ V we

obtain

Ui(vi, v−i) = δτ(v)(vi,κ(v) + µi(v)) =
δτ(v)

δτ̃(v)

∫ S(v)

0

q(s)ds,

which is the same for each i. This immediately implies (27). �

Step 3. Using Steps 1 and 2, and Axiom 4, we show that for each v ∈ V and each

i = 1, ..., N ,

Ui(v) =
Smax

N
−
∫ Smax

S(v)

q(s)ds, (29)

where

Smax = sup
v∈V

S(v).
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Proof. Let v ∈ V . First consider v ∈ V such that S(v) = Smax. By (22) and Step 2

we have

Ui(v) = q(Smax)
Smax

N
for each i = 1, ..., n.

By Axiom 4 (Weak Nonwastefulness), τ(v) = 0, so q(S(v)) = 1 for some v ∈ V . By

Step 1, q(s) is weakly increasing. It follows that q(Smax) = 1. We thus obtain

S(v) = Smax implies Ui(v) =
Smax

N
for each i = 1, ..., n. (30)

Now consider v ∈ V such that S(v) < Smax. Because V = ×Ni=1Vi, there exists a finite

sequence v̂0, v̂1, ..., v̂R of value profiles in V such that v̂0 = v,

S(v) = S(v̂0) < S(v̂1) < ... < S(v̂R) = Smax,

and for each r = 1, ..., R, the profiles v̂r and v̂r−1 differ by a unilateral deviation of a

single player.

Fix r = 1, ..., R and let i be the player whose report is different between v̂r and v̂r−1,

so vri 6= vr−1i and vr−i = vr−1−i . By Step 1,

Ui(v̂
r−1) = Ui(v̂

r)−
∫ S(v̂r−1)

S(v̂r)

q(s)ds. (31)

By Step 2, the utilities are the same for all players, so Uj(v̂
r−1) = Ui(v̂

r−1) for each

j 6= i. Using (30) to determine Ui(v̂
R) and applying equation (31) recursively for each

r = R,R− 2, ..., 1, we obtain

Ui(v̂
r−1) =

Smax

N
−
∫ Smax

S(v̂r−1)

q(s)ds.

In particular, we obtain Ui(v) = Ui(v̂
0) is given by (29). �

Step 4. Suppose that Smax > 0. Using Step 3, we show that

q(s) =

(
s

Smax

)N−1
for each s ≤ Smax.

Proof of Step 4. Denote

Q(s) =
Smax

N
−
∫ Smax

s

q(x)dx and Q′(s) = q(s).

Let v ∈ V and let s = S(v). By Step 3, we have Ui(v) = Q(s), so∑N

i=1
Ui(v) = NQ(s).
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By (22) we have ∑N

i=1
Ui(v) = q(s)s = Q′(s)s.

We thus obtain a differential equation

NQ(s) = Q′(s)s s.t. Q(Smax) =
Smax
N

and Q′(Smax) = 1,

where condition Q′(1) = q(1) = 1 is by Axiom 4 (Weak Non-Wastfulness) and the

monotonicity of q(s) as shown in Step 1. This is an ODE initial value problem.

Because Q(s) is continuous and bounded on [0, Smax], by Picard-Lindelöf Theorem

there is a unique solution. This solution is

Q(s) =
sN

NSN−1max

.

Thus q(s) = Q′(s) = (s/Smax)
N−1. �

To complete the proof of Theorem 1, we use Steps 3 and 4 to show that (κ, µ, τ)

satisfy the conditions of Theorem 1.

Let V ∈ V . If Smax = 0, then τ trivially satisfies (4). If Smax > 0, then by Step 4,

q(S(v)) = (S(v)/Smax)
N−1. Substituting this into (21) determines τ as in (4).

Next, by (20), (21), and Steps 3 and 4 we obtain for each i = 1, ..., N and each v ∈ V

Ui(v) = δτ(v)(vi,κ(v) + µi(v)) =
Smax

N
−
∫ Smax

S(v)

q(s)ds = q(S(v))
S(v)

N
= δτ(v)

S(v)

N
.

Thus, (κ, µ) must satisfy the conditions (1)–(2) of the Nash bargaining solution with

delay. This completes the proof. �

A.2. Indispensability of the Axioms. Let us point out that each of the seven

axioms is indispensable. For each axiom we present a mechanism, or a class of mech-

anisms, that violates this axiom but satisfies the other six axioms.

Consider the first-best mechanism that splits the surplus equally and without delay

whenever this surplus is positive. Specifically, for each v ∈ V , let τ(v) = 0, and let

κ(v) and µ(v) be given by Nash bargaining solution, (1) and (2). This mechanism

satisfies Axioms 2–7, but violates Axiom 1 (Dominant Strategy Incentive Compatib-

ility).
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Consider the same first-best mechanism, but now let the monetary transfers be the

VCG transfers. This mechanism satisfies Axioms 1–5 and 7, but violates Axiom 6

(Budget Balance).

Next, consider the status quo mechanism that always implements alternative 0 (status

quo) without delay, so τ(v) = 0, κ(v) = 0, and µ(v) = (0, ..., 0) for all v ∈ V .

This mechanism satisfies Axioms 1 and 5–7, but violates Axiom 2 (Renegotiation

Proofness).

Next, consider a biased split mechanism that implements the delayed Nash bargaining

solution as in Theorem 1, but, in addition, player 2 makes an extra payment of ε to

player 1, where ε is a positive constant. Specifically, for each v ∈ V , let κ(v) and τ(v)

be given by (1) and (4). For players 1 and 2 let

µ1(v) =
S(v)

N
− v1,κ(v) + ε and µ2(c) =

S(v)

N
− v1,κ(v) − ε.

If there are more than two players, then for each player i > 2 let µi(v) be given by

(2). This mechanism satisfies Axioms 1–2 and 4–7, but violates Axiom 3 (Individual

Rationality).

Relaxing Axiom 4 (Weak Non-Wastefulness) while keeping the rest of the axioms

leads to a family of bargaining mechanisms (κ, µ, τλ) parameterized by λ ∈ [0, 1],

where κ(v) and µ(v) are given by (1) and (2), and τλ(v) is given by

δτλ(v) = λ (S(v))N−1 for each v ∈ V .

Each of these bargaining mechanisms differs from the mechanism (κ, µ, τ) in Theorem

1 only in that the time of the agreement is increased by − lnλ. This follows easily

from the proof of Theorem 1. Notice that (κ, µ, τλ) is Pareto inferior to (κ, µ, τ1) for

each λ < 1. In particular, this means that (κ, µ, τ1) is the unique ex-post undominated

bargaining mechanism that satisfies Axioms 1–3 and 5–7 (for the formal definition of

ex-post dominance see Čopič and Ponsati, 2016).

Relaxing Axiom 5 (Surplus Dependence) while keeping Axioms 1–4 and 6–7 leads

to a large family of bargaining mechanisms with no closed form characterization. A

particular example in case of a single alternative, K = 1, is the family of posted sharing

mechanisms (also referred to as mechanisms in threshold form by Kuzmics and Steg,

2017). Any such mechanism is described by a fixed profile of shares s̄ = (s̄1, ..., s̄n) ∈
∆n. It is as if a designer proposes to share the revenue from the alternative k = 1

according to s̄, and players simultaneously accept or reject this proposal.
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Finally, we present a solution that satisfies Axioms 1–6 but violates Axiom 7 (In-

dependence of Irrelevant Information). Axiom 7 plays no role when N = 2, so we

present a counterexample for N = 3 and K = 1.

Let Ṽi = [0, 1] for each i = 1, 2, 3, so Ṽ = [0, 1]3. Let vi denote the value of the

alternative k = 1 for player i. Note that the maximum surplus is maxv∈[0,1]3 v1 + v2 +

v3 = 3. For each s ∈ [0, 3] let

q(s) =
s2

9
and Q(s) =

s3

27
.

Consider the following solution ψ̃. For each V ∈ V let the bargaining mechanism

ψ̃(V ) be identical to one that satisfies the conditions of Theorem 1, with a single

difference. When V = Ṽ , the transfer rule µ̃ is as follows. For v = (0, 0, 0) let

µ̃1(v) = µ̃2(v) = µ̃3(v) = 0. For each v ∈ Ṽ \{(0, 0, 0)} let

µ̃1(v) =
Q(v1 + v2 + v3) +Q(v2) +Q(v3)

q(v1 + v2 + v3)
− v1,

µ̃2(v) =
Q(v1 + v2 + v3)−Q(v3)

q(v1 + v2 + v3)
− v2,

µ̃3(v) =
Q(v1 + v2 + v3)−Q(v2)

q(v1 + v2 + v3)
− v3.

It is easy to verify that the mechanism ψ̃(Ṽ ) = (κ̃, µ̃, τ̃) satisfies the conditions of

Axioms 1–6. But Axiom 7 is violated. For example, let V = (−∞, 1]3 and denote by

(κ, µ, τ) the bargaining mechanism induced by ψ̃ for V , so ψ̃(V ) = (κ, µ, τ). Then for

each v ∈ Ṽ \{(0, 0, 0)} ⊂ V we have µi(v) 6= µ̃i(v) for i = 1, 2, 3, which is a violation

of Axiom 7.

A.3. Proof of Theorem 2. Suppose that the players play (γ∗, σ∗, α∗) and have

beliefs B∗ with arbitrary (possibly, degenerate) priors.

First, consider the punishment phase. In this phase, the best share that everyone

except the deviant can be offered is a + (1 − na)/(n − 1), and the deviant can only

be offered a. Any different offer would make at least one of the players strictly worse

off. So making a different offer cannot be a profitable deviation. For any player i

whose value satisfies that wi ≤ a + (1 − na)/(n − 1), rejecting the equilibrium offer

is not profitable either, because no player can expect a better offer in the future.

For any player i whose value satisfies that wi > a + (1 − na)/(n − 1), accepting

a+(1−na)/(n−1) is strictly inferior to rejecting it, and offering to split the quantity
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q = 1 where she gets a+ (1−na)/(n− 1) is strictly inferior to offering q = 0. Finally,

the deviant cannot get more than zero payoff, because any offer where she gets more

than wi ≥ a will be rejected by at least one other player. So, the play during the

punishment phase satisfies the conditions of a perfect Bayesian equilibrium.

We now consider the cooperative phase. Any player who makes an inconsistent offer in

this phase triggers the punishment phase, in which she gets zero payoff. But she gets

at least zero in equilibrium. So, deviations to inconsistent offers cannot be profitable.

By making a consistent offer, the player reveals to the others a value ŵi, which then

becomes the assessment value. Notice that a player can reject offers until her turn to

move comes, through which she makes an “announcement” of her value. So, an offer is

accepted by all if no player wishes to make another consistent offer, thereby changing

her announcement. Whenever an offer is accepted by all, it is equal to the outcome

of the fair bargaining rule, where each player prefers to reveal her value truthfully,

so deviations from truthful announcements are not profitable. Finally, acceptance

of an offer that should be rejected in equilibrium leads to a strictly smaller payoff.

Rejection of an offer that should be accepted in equilibrium cannot lead to a better

payoff, because in equilibrium the other players’ assessments never decrease, and one’s

payoff is decreasing in the assessments of the others. It follows that strategy profile

(γ∗, σ∗, α∗) satisfies the conditions of a perfect Bayesian equilibrium.

It remains to verify that the beliefs B∗ are obtained by the Bayes rule whenever

possible. Observe that the equilibrium strategies are separating. When player i

moves for the first time, her consistent offer induces a degenerate belief about player

i’s value. If this value is in the support of the prior, then the posterior must be

degenerate with the unit mass on that value. Alternatively, if this value is not in

the support of the prior, then the posterior can be arbitrary, in particular, it can be

degenerate with the unit mass on that value. Players move at most one in equilibrium.

It is easy to verify that on the out-of-equilibrium paths, no inconsistencies with the

Bayes rule arise. �
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