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1 Introduction

A growing literature presents equilibrium models where uncertainty shocks, that is,

increases in the standard deviation of economic shocks, are important drivers of the

business cycle (e.g., Justiniano and Primiceri, 2008, Bloom, 2009, Fernández-Villaverde

and Rubio-Ramı́rez, 2013, or Fernández-Villaverde et al., 2015). Researchers generally use

either econometric models of time-varying volatility for macro variables (with stochastic

volatility and GARCH models perhaps most popular), or proxies for uncertainty, such as

the VIX index (see Bloom, 2009).1

In a recent survey of the literature on uncertainty shocks and business cycles, Fernández-

Villaverde and Guerron-Quintana (2020) highlight the lack of research on skewness shocks,

citing the prevalence of negative one sided shocks, which can help create deep recessions.

Building on new research in finance,2 in this paper we decompose macro-uncertainty into

“bad” uncertainty, which is accompanied by negative skewness, and standard Gaussian

uncertainty.

We start by decomposing macroeconomic shocks into aggregate demand and aggregate

supply shocks using only minimal economic structure. We define aggregate supply (AS)

shocks in the Keynesian tradition as shocks that move inflation and real activity in

the opposite direction, and aggregate demand (AD) shocks as those pushing inflation

and real activity in the same direction (see also Blanchard, 1989). This distinction is

important, for example, because the appropriate monetary and fiscal policy responses may

be quite different for adverse demand versus supply shocks. Our identification of AS and

AD shocks builds on Bekaert, Engstrom, and Ermolov (2022), who exploit higher-order

moments in the macro data to resolve the identification problem for the structural AS/AD

shocks. Despite the weak identification assumptions, our structural shocks exhibit some

1Kozeniauskas, Orlik, and Veldkamp (2018) distinguish between uncertainty shocks measured from
micro dispersion, belief heterogeneity or macro uncertainty, but show that volatile macro outcomes can
create all three types of uncertainty consistent with the data correlations.

2Patton and Sheppard (2015) advocate the use of semi variances (which separately uses positive and
negative returns) to create “bad” and “good” volatility, and their methodology has been widely applied
(e.g. Kilic and Shaliastovich, 2019). Bekaert and Engstrom (2017) introduce a component model with
positively and negatively skewed shocks, which is the inspiration for our model.
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salient properties that are postulated in the classic Blanchard and Quah (1989) paper in

which demand shocks affect output temporarily, whereas supply shocks have a permanent

effect on output.

We next formally estimate macro risk factors as the state variables that govern the

time-varying volatility, skewness and higher-order moments of supply and demand shocks.

To model these dynamic factors, we use the Bad Environment-Good Environment model

of Bekaert and Engstrom (2017, “BEGE” henceforth) where each shock consists of a

“good environment” and a “bad environment” component shock. In the model, four

separate factors drive “good” (positively skewed) and “bad” (negatively skewed) uncer-

tainties of AS and AD shocks. As good uncertainty increases, the distribution for the

shock becomes more positively skewed.3 Increases in the bad-type of uncertainty may pull

skewness into negative territory. Thus, the model can easily accommodate asymmetric

business cycles (Sichel, 1993; Morley and Piger, 2012). The BEGE model accommodates

a wide set of distributions, such as a simple Gaussian or extreme rare disaster distri-

butions. In addition, our model allows for a flexible time-varying correlation structure

between shocks that only drive the level of macroeconomic variables versus shocks that

affect uncertainty alone.

We use the estimated model to derive three sets of results regarding: 1) the condi-

tional distribution of macro variables, 2) the correlation of level and volatility shocks,

and 3) the Great Moderation. First, the data suggest that the good component for both

demand and supply shocks is Gaussian, featuring standard persistent volatility dynamics

that have been used extensively in other studies. However, the data also strongly support

a “bad environment” demand component that is highly negatively skewed, which spikes

in recessions and features a more transient volatility process. The supply “bad environ-

ment” component is similar but slightly less skewed and its volatility process is slightly

more persistent. Overall, both AS and AD shocks are strongly non-Gaussian, at times.

Our macro risk measures generate different higher-order (>2) moments for real activity

3This distinction opens the possibility of expansionary uncertainty shocks, such as observed during
the adoption of the internet in the late 90s.
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and inflation depending on whether Gaussian or “bad” risks dominate. In recent years,

the conditional distributions for GDP growth and inflation show substantial negative

skewness, suggesting increased macro vulnerabilities as well as deflation risk. Our work

here generally contributes to the literature proposing and estimating models for GDP

growth and inflation that admit conditional non-Gaussianities, starting with the regime

switching models of Hamilton (1990) for GDP growth and Evans and Wachtel (1993) for

inflation. We show formally that our model fits the data better than regime-switching

and asymmetric GARCH models. Our results are consistent with the quantile regression

results in Adrian, Boyarchenko, and Giannone (2019), showing an important and time-

varying left tail in US GDP growth,4 and Jensen et al. (2020) showing that GDP growth

skewness has decreased over the past three decades, ascribing it to increased leverage of

households and firms. However, our focus is broader as we consider the joint distribution

of GDP growth and inflation and show how it varies across AD and AS environments.

Second, our econometric model does not impose unrealistic restrictions on the correla-

tion between volatility shocks and shocks to the levels of macroeconomic data. Carriero,

Clark and Marcellino (CCM, 2018) point out that more often than not the estimation of

uncertainty measures is not embedded in the econometric model used to identify shocks

and the uncertainty measures are therefore inefficiently and/or inconsistently estimated

(e.g. using a homoskedastic VAR to identify shocks). In illustrating the importance of

this shortcoming within the context of a Bayesian VAR, CCM (2018) demonstrate that

uncertainty indices produce significantly negative output effects, but ultimately uncer-

tainty shocks are not as important as the shocks to the levels of the variables in the VARs

themselves. In doing so, CCM (2018) make the important assumption that volatility and

level shocks are independent. Alessandri and Mumtaz (2019) create an uncertainty in-

dex from 4 macro series, making the same independence assumption. However, level

shocks may be naturally correlated with volatility shocks, with negative economic activ-

ity shocks being associated with higher volatility, mimicking the asymmetric volatility

4Salgado, Guvenen, and Bloom (2019) show related results for micro-dynamics, that is, the skewness
of the growth rates of employment, sales, and productivity at the firm level is time-varying and pro-
cyclical.
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effect in equities (see, e.g., Engle and Ng, 1993). Our general model does not impose

a particular correlation structure on level versus volatility shocks. While the model ad-

mits a very flexible time-varying level-volatility correlation, it focuses on two structural

shocks and can be estimated from just a few macro series. It is therefore complementary

to the reduced form methodology of Gorodnichenko and Ng (2017), who infer volatility

shocks from a large panel of data, without imposing correlation restrictions, using a factor

model approach. We find strong positive (negative) correlation between demand shocks

and shocks to Gaussian (bad) uncertainty for demand. In contrast, supply shocks appear

to be largely independent of shocks to Gaussian uncertainty, but negatively correlated

with shocks to bad supply uncertainty. Thus, the data support the notion that overall

volatility shocks are negatively correlated with level shocks, although these correlations

are time-varying and can even switch signs. Bloom et al. (2018) show that empirical

impulse responses in a macro VAR can only be fit if they allow negative level shocks to

be correlated with uncertainty shocks. This is consistent with our finding that volatility

and level shocks are not independent and thus often occur simultaneously.

Third, we use the estimated conditional volatilities and their Gaussian and negatively

skewed components to revisit the Great Moderation - a reduction in the volatility of

many macroeconomic variables since the mid-1980s. We find it is attributed largely

to strong decreases in the volatility of the Gaussian components of both AS and AD

shocks. Meanwhile, the volatility of bad shocks has not experienced a significant decline.

As a result, the frequency and severity of recessions, which are mostly associated with

elevated bad volatility over the last 40 years, have not changed much over our sample.

These results offer a refinement to the work of Jurado, Ludvigson and Ng (JLN, 2015),

who find a strong counter-cyclical component to aggregate volatility. Our formal break

tests confirm the observation in Jensen et al. (2021) that the recessions since the Great

Moderation are in fact deeper that the pre-1984 ones, that is, the skewness of real GDP

growth has significantly decreased over time. The same is true, but to a lesser extent, for

inflation.
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2 Modeling and Estimating AS/AD Shocks

We provide a brief overview on how we identify and estimate AS/AD shocks using an

identification scheme relying on higher order moments of macro data. The approach is

spelled out in Bekaert, Engstrom, and Ermolov (2022), but the actual model, underlying

data, and estimation are different here.

2.1 Defining and identifying aggregate supply and demand shocks

Consider a bivariate system in real GDP Growth (gt) and inflation (πt):

gt = Et−1[gt] + ugt ,

πt = Et−1[πt] + uπt ,

(1)

where Et−1 denotes the expectation operator conditional on information available at time

t − 1. The variables ugt and uπt are reduced-form shocks. We model the reduced-form

shocks as linear combinations of two structural shocks, labeled supply and demand, and

denoted ust and udt , respectively:

uπt = −σπsust + σπdu
d
t ,

ugt = σgsu
s
t + σgdu

d
t .

(2)

The σ parameters are the loadings of the reduced-form shocks onto the supply and

demand shocks. We assume the σ parameters are all positive to make clear the sign

restrictions that we are imposing. In this sense, our use of sign restrictions is different

from the common methodology in macroeconomics, pioneered by Faust (1998), Canova

and De Nicolo (2002) and Uhlig (2005), to impose sign restrictions on impulse responses

to aid identification. The first fundamental economic shock, ust , is an aggregate supply

shock, defined so that it moves GDP growth and inflation in opposite directions, as

happens, for instance, in episodes of stagflation. The second fundamental shock, udt , is an

aggregate demand shock, defined so that it moves GDP growth and inflation in the same

direction as would be the case in a typical economic boom or recession from the past few
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decades. Supply and demand shocks are assumed to be uncorrelated and, without loss of

generality, to have unit variance.

While more complex shock structures can be entertained, this minimal structure en-

compasses many important economic shocks. For example, standard monetary policy

shocks can be viewed as demand shocks (see, e.g., Ireland, 2011).

Note that the sample covariance matrix of the reduced-form shocks from the bivariate

system in equation (1) only yields three unique moments, but we need to identify four σ

coefficients in equation (2) to extract the supply and demand shocks. In particular, the

unconditional covariance matrix for inflation and growth shocks is:

 σ2
πs + σ2

πd −σπsσgs + σπdσgd

−σπsσgs + σπdσgd σ2
gs + σ2

gd

 . (3)

Hence, absent additional assumptions, a system with Gaussian shocks would be uniden-

tified.

This set-up is analogous to the identification problem on supply and demand data care-

fully laid out in Uhlig (2017). To achieve identification, we exploit the well-established

result that distributions of macroeconomic data exhibit substantial non-Gaussian fea-

tures; thus, demand and supply shocks may have non-zero unconditional skewness and

excess kurtosis. Specifically, we use the four available unconditional skewness and co-

skewness moments and five excess kurtosis and co-kurtosis moments for GDP growth

and inflation. To aid identification, we assume that co-skewness (e.g., E[(ust)(u
d
t )

2]) and

asymmetric excess co-kurtosis (e.g., E[(ust)(u
d
t )

3]) are zero, which is consistent with mod-

eling the supply and demand shocks as independent, an assumption Uhlig (2017) also

imposes. However, we weaken the assumption of independence to allow for supply and

demand to have excess co-kurtosis, that is, E[(ust)
2(udt )

2 − 1] may be nonzero. This un-

conditional moment captures that the volatilities of supply and demand shocks may be

correlated. In sum, this moment together with accommodating non-zero skewness and

excess kurtosis for the supply and demand shocks requires the estimation of five addi-
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tional parameters associated with higher-order moments. Thus, to achieve identification

econometrically through non-Gaussianity we must make use of at least 6 higher-order

moments (see also Lanne, Meitz, and Saikkonen, 2017, and Lanne and Luoto, 2021, for

theoretical work on obtaining identification through higher-order moments in a VAR).

The main advantage of the definition for supply and demand shocks above is that it

carries minimal theoretical restrictions (only a sign restriction). Moreover, once we have

estimated the σ parameters in equation (2), we can simply invert the supply and demand

shocks without further assumptions:

ust =
σπdu

g
t − σgduπt

σπdσgs + σπsσgd
,

udt =
σπsu

g
t + σgsu

π
t

σπdσgs + σπsσgd
.

(4)

2.2 Measuring macro shocks

We use forecast revisions from survey data to operationalize equation (1), obviating

the need for model selection in estimating reduced-form macro shocks. Not having to

model conditional means helps mitigate the criticisms of CCM (2018) on the modeling

of volatility shocks within an inconsistent econometric framework. The survey data are

from the Survey of Professional Forecasters (SPF). Our sample is quarterly from 1968:Q4

to 2019:Q2 (203 quarters). The number of respondents in the SPF varies over time and

across macro variables being forecasted but a typical number of respondents is about 40.

To identify inflation shocks using the survey data, we use:

uπt = π̂t − π̂t,t−1, (5)

where π̂t is the forecast in quarter t for the percentage change in the GDP deflator

in quarter t (πt), and π̂t,t−1 the forecast for πt in the previous quarter. Therefore, uπt

represents the revision to the expectation for πt between periods t− 1 and t. Note that

published data for πt is generally not fully available until many quarters after (at least
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until t + 1 for an advance release), so π̂t need not equal the eventually published official

value for πt. The SPF survey is typically published around the 10th day of the month in

February, May, August and November of each year. As a concrete example, our measured

revision to inflation for the period 2018:Q1 is equal to the average SPF forecast (as of

early February 2018) for inflation for Q1 inflation minus the expectation for Q1 inflation

that was measured in the previous SPF survey, published in early November of 2017.

The inflation data forecasted in the survey corresponds to the percentage change in the

GDP price deflator over the first (calendar) quarter of 2018; this data is first published

(through an advance release) by the U.S. Bureau of Economic Analysis (BEA) in April.

Our use of survey revisions to measure economic shocks is perhaps uncommon, but

we believe it is well justified. First, the true pace of economic activity is never directly

observed, only estimated. One estimate of economic activity is the BEA advance release

that is published one month after the quarter end. Another estimate is the BEA final

(revised) release, which is published many quarters (and often years) after the fact. The

latter measure is the one which is perhaps most often used in academic papers, but it is

the least plausible candidate for being in the minds of economic agents due to the lag in

publishing. For example, Ghysels, Horan, and Moench (2018) show that the use of real

time data substantially reduces the predictive power of macro variables for bond returns,

suggesting that investors do not anticipate future data revisions. In addition, GDP and

inflation data most certainly are plagued by measurement error (see, e.g., Aruoba et al.,

2016, for GDP and Lebow and Rudd, 2006, for inflation), which renders the structural

modeling of shocks more difficult. In contrast, current-quarter nowcasts from survey data

also offer viable estimates of economic activity - those of the survey respondents, and they

have the advantage of being available in real time, and are therefore plausibly reflected

in the beliefs of economic agents. Moreover, they should be less subject to measurement

error noise. Second and importantly, these revisions do correspond to a difference in

realized value from its conditional expectation as in equation (1). Because of the law of

iterated expectations, π̂t,t−1 is the conditional expectation for π̂t in the previous quarter.

Finally, Ang, Bekaert and Wei (2007) show that inflation expectations from the SPF
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provide more accurate forecasts of future inflation than statistical, Phillips curve and term

structure models. Coibion and Gorodnichenko (2012, 2015) show that the predictability of

forecast errors from SPF inflation forecasts (including predictability coming from forecast

revisions) is consistent with models of information rigidities and cast doubt on full rational

expectations models. Our estimates are therefore more consistent with actual expectation

formation than econometric models estimated on revised data would be. Similarly, we

measure shocks to the outlook for real activity as forecast revisions for the percentage

change in real GDP growth.5

Figure 1 depicts the resulting real GDP and inflation shocks, expressed as a percent-

age change at an annual rate. Shocks to real GDP shocks are generally larger earlier in

the sample, and deeply negative spikes occur during recessions throughout the sample.

Similarly, inflation variability is higher earlier in the sample and large positive and neg-

ative spikes are evident during recessions that occur early in the sample period. Later

in the sample period, the overall variability of inflation decreases, and the shocks during

recessions are notably negative.

In Appendix I we verify that these patterns appear largely consistent with patterns

in macro shocks defined in a more standard VAR fashion. In particular, we extract

GDP growth and inflation shocks from a bivariate VAR, which also uses SPF data as

predictors (Ang, Bekaert, and Wei, 2007, emphasize the importance of survey forecasts

in such regressions, and they considerably improve explanatory power in our setting).

For example, we find that the correlation between GDP growth VAR shocks and forecast

revisions is 0.59.

2.3 Estimating supply and demand shocks

To estimate the σ coefficients in equation (2), we use information in all available 2nd,

3rd, and 4th order unconditional moments of the reduced-form macroeconomic shocks in a

classical minimum distance (CMD) estimation framework (see, e.g., Wooldridge, 2002, pp.

445-446). Specifically, we calculate 12 statistics based on the two series of shocks measured

5Mechanically, survey respondents fill out forecasts for nominal GDP and the GDP deflator separately,
with their forecasts for real GDP being calculated as the ratio between the two.
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in the survey data. These are the unconditional sample standard deviations (2 statistics),

the correlation (1 statistic), univariate (scaled) skewness and excess kurtosis (4 statistics),

co-skewness (2 statistics), and co-excess kurtosis (3 statistics). The parameters we use to

match these moments include the loadings of inflation and real activity onto supply and

demand shocks, (σπd, σπs,σgd, and σgs), the unconditional skewness, E[(udt )
3] and E[(ust)

3],

and excess kurtosis of supply and demand shocks, (E[(udt )
4]− 3) and (E[(ust)

4 − 3]), and

the excess co-kurtosis of supply and demand shocks, (E[(udt )
2(ust)

2]− 1).

With 12 moments to match and 9 parameters to estimate, our system is overiden-

tified, thus requiring a weighting matrix. To generate a weighting matrix, we use the

inverse of the covariance matrix of the sampling error for the statistics, consistent with

asymptotic theory suggesting that this choice leads to efficient estimates. We use a block

bootstrapping routine to calculate the covariance matrix. Specifically, we sample, with

replacement, blocks of length 12 quarters of the two survey-based macroeconomic shocks,

to build up a synthetic sample of length equal to that of our data. We calculate the same

set of 2nd, 3rd, and 4th order statistics for each of 10,000 synthetic samples. We then

calculate the covariance matrix of these statistics across bootstrap samples.

Table 1 reports the sample statistics that we use for the estimation. The volatility

statistics have rather tight standard errors, but the unconditional correlation of inflation

revisions and revisions to real growth is insignificantly different from zero with a point

estimate of -0.13. Real growth shocks are significantly negatively skewed with estimated

skewness of -1.23, and the co-skewness moment involving inflation revisions squared times

real growth revisions is significantly negative. Together, these two moments suggest that

real growth is, on average, more negative when inflation volatility is high and when real

growth volatility is high. The excess kurtosis of real growth is significantly positive with a

value of 4.71, as is the fourth moment involving squared inflation revisions times squared

growth revisions. The latter indicates that the volatilities of inflation and real growth

tend to move together. The p-value for the joint significance of all the 3rd and 4th order

moments is 0.26 percent, strongly rejecting the hypothesis that the data are distributed

unconditionally according to a multivariate Gaussian distribution and providing strong
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support for our identification scheme.

In Table 2, Panel A, we report the supply and demand loadings for GDP growth

and inflation. These are generally quite precisely estimated. Our estimates suggest

that supply and demand shocks contribute roughly equally to the unconditional variance

of inflation shocks over this sample period: the inflation supply and demand loadings

are -0.48 and 0.51, respectively. Unconditionally, supply shocks, contribute somewhat

more than demand shocks to the overall variance of real growth shocks: the real GDP

growth supply and demand loadings are 1.18 and 0.60 respectively (in variance terms the

relative contribution is approximately 80% versus 20%). This is perhaps surprising at first

glance, but our sample includes the stagflation of the 70’s and the Great Recession, which

many argue had a significant supply component (see, e.g., Ireland, 2011, or Mulligan,

2012). In addition, we find that the resulting supply and demand shocks are more than

99% correlated with out estimated shocks employing the standard generalized method of

moments (GMM). Appendix II provides further detail.

Returning to Table 1, in square brackets we report the fitted values for all statistics.

Recall that because the system is overidentified by 3 degrees of freedom, not all moments

can be fit perfectly. Nonetheless the overall fit is quite good. All second and third-

order moments are within a one standard error band of the point estimate, and all the

fourth order moments are within a two standard error band. We also report a standard

overidentification test for the CMD model fit. The corresponding p-value is 38.74 percent

implying that the model is not rejected.

In Panel B of Table 2, we report the estimated skewness and kurtosis of the supply

and demand shocks. Both shocks are negatively skewed and leptokurtic (though only for

supply shocks are these estimates statistically significant). Interestingly, we find little

evidence for excess co-kurtosis between supply and demand shocks, suggesting that the

variances of supply and demand shocks may not covary strongly. The top panels of

Figures 2 and 3 depict the supply and demand shocks that we recover from this exercise.

Both sets of shocks exhibit greater overall variability early in the sample period, followed

11



by a secular decline in variability that perhaps reflects the so-called “Great Moderation”,

although deeply negative shocks occur during recessions throughout the entire sample.

In Appendix I, we again verify that these patterns are consistent with patterns in

demand and supply shocks inverted from VAR GDP growth and inflation shocks. For

example, the correlation between both demand and supply shocks extracted using the

VAR and forecast revisions is 0.50.

Our supply and demand shocks definitions do not necessarily comport with demand

and supply shocks in, say, a New Keynesian framework (see, e.g., Woodford, 2003) or

structural VARs in the Sims (1980) tradition.6 However, Appendix III shows that the

short and long-term effects of the AS/AD shocks thus identified are consistent with the

standard Keynesian interpretation (e.g., Blanchard, 1989, or Blanchard and Quah, 1989).

Furthermore, when used to characterize recessions as supply or demand driven, our results

are consistent with Gali (1992) for the first five recessions in the sample.

3 Modeling and Estimating Time-varying AS and

AD Macro Risk Factors

Having identified supply and demand shocks, we now examine how the magnitudes of

uncertainty associated with supply and demand shocks evolve over time, and how those

time-varying volatilities affect various forms of economic activity.

3.1 Defining macro risk factors

We define macro risk factors as the variables that capture the time-variation in the sec-

ond and higher-order moments of supply and demand shocks. Statistically, we generalize

the “bad environment-good environment” (BEGE) framework of Bekaert and Engstrom

(2017) to accommodate potentially independent innovations to the level and volatility of

supply and demand shocks.

Consider a generic shock, ut+1 (e.g., a supply or demand shock) to occur at time

6Furthermore, in some models the “supply” shocks might move real activity and inflation in the same
direction: see, for instance, news shocks in Cochrane (1994).
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(t+ 1). We model ut+1 as having two components:

ut+1 = σupωp,t+1 − σunωn,t+1, (6)

where ωp,t+1 and ωn,t+1 are individual component shocks. The volatility parameters σup

and σun are restricted to be positive. The component shocks are independent and dis-

tributed as centered-gamma:

ωp,t+1 ∼ Γ̃(pt, 1),

ωn,t+1 ∼ Γ̃(nt, 1),

(7)

where the expression ωp,t+1 ∼ Γ̃(pt, 1) denotes that the random variable ωp,t+1 follows

a centered gamma distribution with shape parameter pt and a unit scale parameter.7

Consider the first term on the right hand side of equation (6), σupωp,t+1. Because the

ωp,t+1 shock is right skewed, we refer to it as a “good” shock (though it has zero mean

and it may, of course, have negative realizations). The variance of this component of

ut+1 is σ2
uppt, which is a well-known feature of the gamma distribution, and its (unscaled)

third moment is 2σ3
uppt. When pt is time-varying, we refer to pt as the “good variance”

state variable. Similarly, the second term in ut+1, −σunωn,t+1, is negatively skewed, with

variance σ2
unnt and third moment of −2σ3

unnt. We thus refer to nt as the “bad variance”

state variable. The standard (scaled) skewness coefficient decreases (increases) in pt (nt)

and the demeaned gamma distribution converges to a Gaussian distribution for large pt

and nt. In practice, a demeaned gamma distribution becomes indistinguishable from a

Gaussian distribution when its shape parameter is over 20.

For an illustration of the density implied by equation (6), the upper part of Panel A

in Figure 4 illustrates that the probability density function of σupωp,t+1 (the “good” com-

ponent) is bounded from the left and has an unbounded right tail. Similarly, the middle

part of Panel A in Figure 4 shows that the probability density function of −σunωn,t+1

7The probability density function is φ(ωp,t+1) = 1
Γ(pt)

(ωp,t+1 + pt)
pt−1e−ωp,t+1−pt with ωp,t+1 > pt

and Γ(pt) representing the gamma function. This distribution has zero mean, unlike the standard gamma
distribution.
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(the “bad” component) is bounded from the right and has an unbounded left tail. Panel

B of Figure 4 illustrates possible conditional distributions of ut which could arise as a

result of time variation in the shape parameters pt and nt. In particular, the probability

density function at the top of Panel B in Figure 4 characterizes the situation where good

volatility (as governed by pt) is relatively large and the distribution has a pronounced

right tail, while the probability density function in the bottom corresponds to the case

where bad volatility is relatively large (i.e., a large value for nt) with the distribution

exhibiting a pronounced left tail.

To model the dynamics of macroeconomic uncertainty, we assume that the risk factors,

pt and nt, follow simple autoregressive processes:

pt+1 = p̄(1− ρp) + ρppt + σppνp,t+1,

nt+1 = n̄(1− ρn) + ρnnt + σnnνn,t+1,

(8)

where p̄ and n̄ are the unconditional means of the variables, and ρp and ρn govern their

autocorrelation. The volatility parameters, σpp and σnn are restricted to be positive.

The shocks to good and bad variance, νp,t+1 and νn,t+1 in equation (8), are independent

gamma-distributed shocks and they also use pt and nt as their shape parameters:

νp,t+1 ∼ Γ̃(pt, 1),

νn,t+1 ∼ Γ̃(nt, 1).

(9)

This is similar to other common “square root volatility” specifications in which the con-

ditional volatility of the shock is proportional to the square root of the level of the series.

For example, the conditional volatility of pt+1 is σpp
√
pt. In the general model presented

above, the following conditional moments for ut follow from the properties of the gamma
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distribution:

Et[ut+1] = 0,

Et[u
2
t+1] = V art[ut+1] = σ2

uppt + σ2
unnt,

Et[u
3
t+1] = 2σ2

uppt − 2σ2
unnt,

Et[u
4
t+1]− 3(Et[u

2
t+1])2 = 6σ4

uppt + 6σ4
unnt.

(10)

Thus, the BEGE structure implies that the conditional variance of macro shocks varies

through time, and that the shocks may be conditionally non-Gaussian, with time variation

in the higher order moments all driven by pt and nt. Moreover, the conditional variances

of GDP and inflation vary through time as functions of these structural macroeconomic

risk factors, [pst , n
s
t , p

d
t , n

d
t ]
′, with the “s” superscript denoting supply variables and “d”

denoting demand. In addition, the model also implies that the conditional covariance

between inflation and GDP growth shocks is time-varying and can switch signs:

Covt−1[ugt , u
π
t ] = −σπsσgsV art−1[ust ] + σπdσgdV art−1[udt ], (11)

where the subscripts on the Cov and V ar operators denote that they may vary over

time. As can be seen in equation (11), when demand variance dominates the covariance

is positive but when supply variance dominates it is negative.

To close the model, we must make assumptions regarding the correlation between the

“level” shocks, ωn,t and ωp,t, and the “volatility” or “uncertainty” shocks, νn,t and νp,t.

As we noted above, such shocks are often assumed to be independent. Let’s start by

assuming that the two types of shocks (ω’s and ν’s) are independent. Then, to allow a

flexible correlation between the level and volatility shocks, we replace equation (6) with:

ut+1 = σup((1− λ2
p)

1
2ωp,t+1 + λpνp,t+1)− σun((1− λ2

n)
1
2ωn,t+1 + λnνn,t+1), (12)

where λp and λn are between 0 and 1. Although the formulation looks complex, it is
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simply structured to imply that the conditional correlation between the good component

of ut+1 and pt+1 is equal to λp. Analogously, the conditional correlation between the bad

component of ut+1 and nt+1 is −λn. Note that despite the complexity of the model in

equation (12), the conditional variance, V art, of ut is still σ2
uppt + σ2

unnt. Moreover, we

have:

Covt[ut+1, V art+1] = λpσ
3
upσpppt − λnσ3

unσnnnt. (13)

Naturally, bad (good) variance shocks lower (increase) the conditional covariance between

level shocks and uncertainty shocks. When the bad variance state variable dominates,

the model generates the macroeconomic counterpart of asymmetric volatility in finance

(e.g., Heston, 1993): negative shocks are associated with higher conditional volatility.

When λp = λn = 0, the covariance between the level shocks and the conditional variance

is zero, as is the case in a standard Gaussian GARCH model.

Because the specification in equation (12) requires two additional parameters and

involves 4 latent shock variables, we also consider more parsimonious special cases. In

one case we set the λ parameters equal to zero. Under this specification, νp,t+1 and νn,t+1

are “pure” volatility shocks, with no effect on the level of the overall macro shock. At

the other extreme, the λ’s equal 1. In this case, the level and risk factor shocks coincide.

For example, when λp = 1, the good component of ut is perfectly correlated with the

shock to pt. It is worth noting that even in this seemingly restrictive case, there is still

independent variation between the observed macro shock, ut+1, and the risk factors. To

see this, note that when ωp,t+1 = νp,t+1, the conditional correlation between ut+1 and pt+1

is Corrt(ut+1, pt+1) = σupσpppt

(σ2
uppt+σ

2
unnt)

1
2 (σ2

pppt)
1
2

which in general varies from 0 (nt � pt) to 1

(pt � nt).
8

The model is also rich enough to approximate the popular “disaster risk” model (e.g.,

8There is also a large body of work in finance on the importance of “volatility of volatility” shocks,
see, e.g., Bollerslev, Tauchen and Zhou (2009). The factor structure that we build in for the higher order
moments of the structural shocks implies that the variance of the variance of ut is also an affine function
of pt and nt. Denoting, the variance of the variance of ut by qt, we have: qt = σ4

upσ
2
pppt + σ4

unσ
2
nnnt.

Note that qt is not perfectly correlated with the conditional variance of ut, but the model does imply an
intuitive positive correlation between the variance of ut and its variance of variance, qt.
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Gabaix, 2012, or Wachter, 2013), where Gaussian shocks are combined with a jump pro-

cess delivering occasional severe negative shocks (e.g., following a Poisson distribution).

Such a model emerges when the ωp,t shock is (nearly) Gaussian, and the ωn,t shock is

very skewed (with nt having a very low mean).

3.2 Estimating the macro risk model

With the pre-estimated supply and demand shocks in hand from Section 2, we identify

the BEGE model parameters separately for the supply and demand shocks. We use an

estimation and filtering apparatus due to Bates (2006). The methodology is similar in

spirit to that of the Kalman filter, but the Bates routine accommodates non-Gaussian

shocks. We relegate a technical discussion to Appendix IV.

The estimation of the BEGE model uses pre-estimated coefficients and time series

estimates for supply and demand shocks that are subject to sampling error. Therefore,

we also execute the entire estimation process including the identification of the AS/AD

shocks, using synthetic data, bootstrapped from our raw survey data observations to

conduct statistical inference.

Because the identification scheme for structural shocks in Section 2 is model-free,

we can employ any statistical model that can accommodate non-Gaussian unconditional

moments in the data. The BEGE model is flexible and has been demonstrated to fit

macroeconomic and financial data quite well, out-performing alternative non-linear mod-

els in several cases (see also Bekaert, Engstrom and Ermolov, 2015). For our macro data,

we compare our BEGE specifications against regime-switching models of the Hamilton

(1989)-type with 2-4 regimes and the GJR-GARCH model of Glosten, Jagannathan, and

Runkle (1993), invariably finding the best BEGE models to outperform these alternative

models (see also below).

3.3 Model Selection

The general model in equations (6)-(9) and (12) is quite highly parameterized. There-

fore, we estimate a number of variations on the basic BEGE model for both supply and
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demand shocks to identify the most parsimonious specifications that are supported by

the data. We are particularly interested in determining whether the shocks to the macro

series, ut+1, are correlated or independent of shocks to the good or bad risk factors. The

various specifications that we investigate include:

1. ωp,t+1 and νp,t+1 are (i) independent (λp = 0), (ii) coincide (λp = 1), (iii) partially

correlated (λp free)

2. ωn,t+1 and νn,t+1 are (i) independent (λn = 0), (ii) coincide (λn = 1), (iii) partially

correlated (λn free)

3. pt is time-varying or constant

4. nt is time-varying or constant

5. ωp,t+1 is demeaned gamma or Gaussian

6. ωn,t+1 is demeaned gamma or Gaussian

Variations 1 and 2 impose different degrees of dependence between the good and bad

components of ut+1, and the shocks to the risk factors, νp,t+1 and νn,t+1. The partial

correlation model involves the additional λ parameter as in equation (12). One variation

in 3 and 4 restricts the good and/or bad variance risk factors to be constant. For instance,

pt being constant imposes ρp = σpp = 0, reducing the number of parameters, but also

reducing the flexibility of the model, potentially to the detriment of the model fit of the

data.

Variations 5 and 6 potentially replace the gamma distribution with the Gaussian dis-

tribution for ωp,t+1 and/or ωn,t+1. The Gaussian distribution requires one fewer parameter

relative to the gamma distribution, but the Gaussian distribution cannot accommodate

conditional skewness or other higher-order moments. Because the νp,t+1 and νn,t+1 shocks

drive positive volatility processes, they are always assumed to follow a demeaned gamma

distribution. Under mild restrictions on the parameter space, this specification keeps the

volatility everywhere positive (see Gourieroux and Jasiak, 2006).

We use the small sample corrected Akaike information criterion (AICc) as the basis
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for model selection. In all, we estimate 64 different models for both supply and demand

shocks, with full results reported in Table 3. The AIC criterion does indeed indicate that

a relatively parsimonious specification is optimal. When we estimate the full model, the

λ parameter is not precisely identified for either demand or supply shocks and the full

model does not rank very high on the AIC criterion relative to other models. In fact, the

fully flexible specification is dominated by more parsimonious ones, for both supply and

demand.

For the supply shock, the optimal AICc model is:

ust = σspω
s
p,t − σsnωsn,t,

pst = p̄s(1− ρsp) + ρspp
s
t−1 + σsppν

s
p,t,

nst = n̄s(1− ρsn) + ρsnn
s
t−1 + σsnnω

s
n,t,

ωsp,t+1 ∼ N (0, pst),

νsp,t+1 ∼ N (0, pst),

ωsn,t+1 ∼ Γ̃(nst , 1).

(14)

One important finding is that the data support two volatility factors for supply shocks.

That is, all of the models that use only one volatility factor are dominated by the two-

factor model in equation (14) in which good and bad variance both evolve over time

(as opposed to being constant). In addition, the “good” environment component of

supply shocks, ωsp,t, is well-modeled using a Gaussian distribution as opposed to a gamma

distribution (the latter requires an additional parameter). Also, the good component of

the supply shocks, ωsp,t, and the good variance shock for supply, νsp,t, are independent

under the chosen specification. Finally, the bad component of supply shocks is gamma-

distributed, and a single shock, ωsn,t, affects both the level of the supply shock and the

shock to bad variance. This generates negative correlation (but not perfect negative

correlation) between the overall supply shock and the bad variance shock.
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For demand shocks, the optimal specification under AICc is:

udt = σdpω
d
p,t − σdnωdn,t,

pdt = p̄d(1− ρdp) + ρdpp
d
t−1 + σdppω

d
p,t,

ndt = n̄d(1− ρdn) + ρdnn
d
t−1 + σdnnω

d
n,t, (15)

ωdp,t+1 ∼ N (0, pdt ),

ωdn,t+1 ∼ Γ̃(ndt , 1).

We see that for demand shocks, as with supply shocks, the AICc selects a specification

with two volatility factors. As was the case for supply shocks, the good component of

demand shocks is distributed as Gaussian and the bad component is gamma-distributed.

Moreover, for demand, as for supply, the same shock, ωdn,t, affects both the level of udt

as well as the bad variance, ndt . The only difference between the specification chosen for

demand shocks versus supply shocks is that AIC does not select independent variation

between the good component of the shock to demand and the level of good variance.

That is, for demand ωdp,t is a common shock for both udt and pdt .

Because for both supply and demand shocks AICc selects a Gaussian “good” com-

ponent, which of course has zero skewness, we refer to these components below as the

Gaussian volatility or Gaussian component rather than “good.” Of course, both supply

and demand shocks also feature a negatively skewed bad component of volatility that

varies over time as well, which we continue to refer to as bad volatility.

We also compare our BEGE specifications against regime-switching models of the

Hamilton (1989)-type with 2-4 regimes. Based on AICc, the best models for both demand

and supply shocks are 2 state regime-switching models. For the demand shock AICc is

507.4, and for the supply shock AICc is 494.7. Both are larger than the best BEGE

specifications in Table 3, indicating a worse model fit. The GJR-GARCH model of

Glosten, Jagannathan, and Runkle (1993) results in AICc:s of 509.1 and 495.4 for demand

and supply shocks, respectively, both larger than the best BEGE specifications.
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3.4 BEGE Estimation

The parameter estimates for the BEGE model are reported in Table 4.9 The parameter

σp represents the unconditional volatility of the supply and demand shocks due to the

Gaussian component. This parameter is similar across supply and demand shocks (0.84

for supply; 0.95 for demand). Because the unconditional variance of the shocks is one

under our normalization assumption, most of the variation in both series is due to the

Gaussian component (of course, during adverse times, the “bad” component can, and

does, dominate). As discussed, pt follows a Gaussian stochastic volatility model for

both supply and demand shocks.10 For demand, this variable is very persistent with an

autocorrelation parameter of about 0.98 and a very low innovation standard deviation

(σpp is 0.08). The properties of the gamma-distributed bad environment state variable

for demand shocks, ndt , contrasts sharply with those of pdt . First, its mean is only 0.04,

implying that its unconditional skewness is about 10. This generates substantial negative

skewness for demand shocks. The bad environment shape parameter is also less persistent

than the good environment variable, with an autocorrelation of only 0.50. Therefore, nt

captures short-lived periods of risk characterized by potentially deeply negative shocks.

The BEGE parameter estimates for supply shocks are broadly similar to those for

demand shocks. The Gaussian component has very high persistence (0.99); however, the

volatility of the volatility shocks (σpp) is much larger at 0.31 compared to 0.08 for demand

shocks. Taken together, this implies that the variance of the variance is much larger for

the Gaussian component of supply shocks than it is for the Gaussian component of de-

mand shocks. The supply bad-environment distribution is substantially non-Gaussian

with the unconditional mean of the shape parameter equal to 2.45. This implies uncon-

ditional skewness of -1.28. The bad environment risk factor for supply has somewhat

9The bootstrapped standard errors appear unrealistically high for n̄ for both supply and demand
shocks. This is due to a number of outlier runs in which n̄ was poorly identified either because the CMD
step did not correctly identify supply versus demand shocks, or the Bates estimation got stuck in an
unidentified region for n̄.

10Note that because the selected processes for pt are Gaussian for both supply and demand shocks, the
parameter p̄, the unconditional value of the shape parameter, is not identified. Without loss of generality,
we set p̄=1. This implies that, for example, σdp, represents the unconditional standard deviation of the
Gaussian shock component for demand shocks.
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higher persistence than for demand shocks, suggesting that supply driven recessions may

have greater duration than demand driven recessions. The volatility shock parameter

(σnn) is 0.57, which is considerably larger than the corresponding coefficient for demand

shocks, implying that bad environment supply variances are also more variable than bad

environment demand variances.

The Bates estimation also yields filtered estimates for the shocks to the Gaussian and

bad components for supply and demand. The components of the demand shocks are

shown in the middle and bottom panels of Figure 2. The Gaussian shock is relatively

variable early in the sample, but less so later on. The bad demand shock is mostly

near zero, but spikes down during some recessions. Reminiscent of a “jump” shock, the

extreme non-Gaussianity of this shock is clearly evident. An analogous decomposition for

supply shocks is shown in the bottom three panels of Figure 3. Here too, the variance of

the Gaussian shock decreases notably in the late 1980s, and remains near zero thereafter.

In contrast, the bad environment shock retains its variability throughout the sample,

showing downward sharp spikes during most recessions. Finally, the pure volatility shock

for supply, which is independent of the level shocks, is also mostly variable in the seventies,

and its variance becomes minuscule starting in the 1990s. Hence, pure uncertainty shocks

appear to no longer play a large role in driving supply shock volatility. This implies that

level and uncertainty shocks are likely quite correlated, contradicting the independence

assumption often maintained in the literature (e.g., Alessandri and Mumtaz, 2019). As a

robustness check, we also verify that our key results on the Great Moderation in section

4 continue to hold using the second best specifications for demand and supply shock

dynamics in Table 3.

4 Characterizing the History of Macroeconomic Volatil-

ity in the US

Having used the AIC to select optimal two-factor models of volatility for demand and

supply shocks, and having estimated the optimal BEGE model parameters, we can now
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use the BEGE model as a lens to interpret the history of U.S. macroeconomic uncertainty

over the sample period.

4.1 Time series estimates of uncertainty

The Bates estimation procedure allows us to filter time series estimates of the risk

factors governing Gaussian and bad variances for supply and demand shocks. These

are plotted in Figure 5. Starting with the demand variances, in Panels A and B, the

Gaussian component of demand variance was relatively high in the 70s and the early 80s,

and subsequently decreased to lower levels. The bad demand variance shows much less

pronounced low frequency variation but increases in most recessions after 1980. Figure

5, Panels C and D, performs the same exercise for supply variances. The good variance

level is elevated through the mid-1980s after which it trends down. The bad supply

variance increases in most recessions throughout the sample period. Figure 5, Panel E,

graphs both demand and supply variances. The conditional variance of supply shocks

is largest in the early part of the same, dominating the conditional variance of demand

shocks, consistent with stagflation incidences during that period. In the second half of

the sample, the supply and demand conditional variances seem often indistinguishable,

but the conditional demand variance peaks more sharply in the last 2 recessions.

The Gaussian and bad components of supply and demand variances map linearly into

the conditional variances of inflation and real GDP growth. The latter are graphed in

the top two panels of Figure 6. Both GDP growth and inflation variances were relatively

high in the early part of the sample, and both trended down dramatically through the

1980s. For both inflation and real GDP growth, variance continued to spike up during

recessions through the end of the sample. As shown in the top two panels to the right,

the secular decline in volatility for both real GDP and inflation owes largely to a decline

in the Gaussian component of supply variance. A reduction in the Gaussian component

of demand variance also contributed to the decline in inflation variability in the 1980s.

Spikes in volatility during recessions owe to the bad variance components of both supply

and demand.
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From equation (13), it is evident that in an environment where demand (supply) vari-

ances dominate, the conditional covariance between inflation and real activity is positive

(negative). The bottom panels of Figure 6 graph the conditional covariance between in-

flation and real GDP growth shocks, and its components. The covariance is mostly very

negative up until around 1990 due to the high variance of the Gaussian supply shock,

but afterwards, this source of variation dramatically declines, resulting in a covariance

closer to zero with short dips into positive territory during demand-driven recessions. We

also show the good and bad supply and demand covariance components of the total co-

variance. For example, the near-zero correlation between real GDP and inflation during

the 2000-2001 and 2007-2008 recessions reflects increases in both bad supply and bad

demand variance, with offsetting effects on the covariance.

Figure 7 plots the conditional correlations between shocks to the level and uncertainty

for supply and demand. That is, for supply shocks, we graph the correlation between

ust+1 and V art+1[ust+2] (see equation (13)), and analogously for demand shocks. The

top panel illustrates that for supply, the correlation between shocks to the level and total

uncertainty is always negative. This is because the optimal specification has independence

between shocks to good variance and the level, while bad variance shocks are negatively

correlated with the level shocks. When bad volatility rises (relative to good volatility), the

correlation becomes more negative. As shown in the bottom panel, for demand, shocks to

good volatility are positively correlated with level shocks whereas shocks to bad volatility

are negatively correlated with the level. When good volatility is large (relative to bad

volatility) the correlation between level shocks and total uncertainty is positive, and vice

versa. There is substantial time-variation as well as sign-switching in this correlation.

This finding casts doubt on models that, ex ante, impose independence between level and

uncertainty shocks.

4.2 The Great Moderation

Our estimated time series for volatilities can contribute to the debate on the Great

Moderation. The literature has mostly focused on overall output volatility and puts
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a “break point” for output volatility in the first quarter of 1984 (see McConnell and

Perez-Quiros, 2000; Stock et al., 2002). For inflation, Baele et al. (2015) suggest a later

date, the first quarter of 1990. Whereas most of the literature attributes the decreased

volatility to either good luck or improvements in monetary policy (see e.g. Cogley and

Sargent, 2005, Benati and Surico, 2009, Sims and Zha, 2006, and Baele et al., 2015, and

the references therein), we decompose the overall changes in volatility into changes in

demand versus supply variances and bad versus Gaussian variability. We also address a

more recent question asking whether the Great Moderation is over. Baele et. al. (2015)

suggest that the Great Moderation for both inflation and output has ended, even before

(for inflation) or just with the onset (for output) of the Great Recession. In contrast,

Gadea, Gomez-Loscos and Perez-Quiros (2015) argue that the Great Moderation is alive

and well, despite the Great Recession experience.

To test these various hypotheses, Table 5 reports simple dummy variable regressions

where the dependent variables are the estimated conditional variances for inflation and

GDP growth, as well as their AS versus AD and Gaussian versus bad components. The

columns report the constant and the coefficients for two dummy variables. The first

dummy variable is equal to 1 in the post-1985 (for GDP growth) or post-1990 (for in-

flation) part of the sample and is designed to identify changes in volatility associated

with the onset of the Great Moderation. The second dummy is equal to 1 after 2006

and is designed to capture any possible reversal of the Great Moderation in the period

beginning with the 2007-2008 Great Recession.

The results for the inflation variance are shown in the top panel. The overall level

of the variance declined by about 3
4

of its prior level in the post-1990 period, consistent

with the Great Moderation. Looking at the components of inflation variance, the Gaus-

sian components of both supply and demand shocks exhibit substantial declines as well.

Notably, bad supply and demand variances exhibit no such decline. Thus, for inflation,

the Great Moderation reflects a decline in relatively benign Gaussian volatility, but no

decline due to the more pernicious bad volatility, which is strongly associated with reces-

sions. Turning to the third column, there is no statistical evidence of any change in the
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Great Moderation for any volatility series in the post-2006 period. Thus, recessionary

inflation (deflation) risk for AS (AD) driven recessions has not waned. These results are

not inconsistent with the view that monetary policy changes played an important role

in the Great Moderation but they do suggest that monetary policy had little effect on

“bad” component risk (see Coibion and Gorodnichenko, 2011, for an elaborate discussion

and evidence that monetary policy restored macroeconomic stability through its effect

on the level of trend inflation).

The results for real GDP growth, shown in the bottom panel, tell a similar story.

There is a dramatic decline in the overall level of volatility for real GDP growth and its

Gaussian subcomponents in the post-1985 period, consistent with the Great Moderation.

However, there is no evidence of a decline due to changes in bad demand volatility during

the Great Moderation, nor is there any evidence that volatility changed in the post-

2006 period. We do observe a small but significant decrease in the bad supply variance

post 1985. Note that this decrease disappears, both economically and statistically, if the

regression specification only accommodates one post-1985 dummy instead of featuring

also a second dummy after the Great Recession. Thus, the decrease in the bad supply

variance shown in Table 5 may simply result from the lack of large negative supply shocks

between 1985 and 2007. Overall, we should not expect recessions to be less variable in

the future than they were in the past, even though the Great Moderation appears to still

apply for overall volatility.

Table 6 repeats the same exercise for skewness. The skewness for both inflation (Panel

A) and real GDP growth (Panel B) decreased substantially in the past three decades.

Interestingly, the unscaled (by the standard deviation to the third power) centered third

moment has not changed for inflation and even slightly increased for real GDP growth.

Thus, the decline in conditional skewness in both cases is due to the decline in the con-

ditional variance, which, as documented in Table 5, is due to the decline of Gaussian

demand and supply variances. The effect is stronger for GDP growth than for inflation;

and GDP growth skewness further significantly decreases after 2007. This confirms in-

tuition of the “deepening” of recessions explored in Jensen et al. (2020), who suggest to
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normalize the severity of the recession (the fall in GDP growth per unit of time) by the

standard deviation.

4.3 The conditional distribution of growth and inflation

One novel feature of our model is that it provides estimates of the non-Gaussian

conditional distribution of shocks to real growth and inflation. Figure 8 graphs the

standard (scaled) conditional skewness coefficient for our macro variables. As shown in

the top panel, the skewness of real GDP growth has become more negative over time. This

owes to the downward trend in the Gaussian component of supply and demand variance,

leaving the more pernicious and negatively skewed bad variance to dominate recessions.

An important implication is that risk is in fact higher than before, notwithstanding

the low volatility observed in normal periods. Despite being produced in a framework

with only AS and AD shocks, these results are reminiscent of the “volatility paradox”

generated in models with credit frictions (Adrian and Boyarchenko, 2012; Brunnermeier

and Sannikov, 2014), where periods of low volatility of output growth may foreshadow

future crises. Adrian, Boyarchenko and Giannone (2019) also show distinct negative

conditional skewness of GDP growth, using quantile regressions. They show, consistent

with our results, more variation in the left tail than in the right tail and explore how

financial conditions affect “growth vulnerability.” Jensen et al. (2021), focusing simply

on GDP growth itself, show that skewness is lower over the 1984-2016 period than over

the 1947-1984 period; and the ratio of downside over upside volatility higher.

As shown in the bottom panel, for inflation a similar picture emerges. Skewness was

near zero for the early portion of the sample when the Gaussian variance components

were high. In the latter portion of the sample, inflation skewness declines and occasionally

moves down sharply, particularly during recessions when the bad variance spikes in the

absence of a large Gaussian component. An important conclusion is that deflation risk is

more pronounced than the risk of high positive inflation in recent recessions in the U.S.

The conditional distributions for supply and demand shocks, as governed by the esti-

mated BEGE model, together with the loadings of reduced-form shocks onto the supply
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and demand shocks as in equation (2), imply a non-Gaussian bivariate conditional distri-

bution for real GDP and inflation shocks that varies notably over time. To illustrate this,

Figure 9 plots the conditional bivariate distribution for inflation and real GDP growth

from four periods in our sample. Each panel shows the bivariate density, illustrated using

iso-density contours. The total probability mass inside each contour is labeled in blue.

In the upper left panel, we plot the distribution as of 1972Q4. This is an expansionary

period according to the NBER. As discussed above, during expansionary periods in the

1970s the Gaussian components of both supply and demand shocks dominate the distri-

butions. As a result, an ellipsoid distribution emerges, consistent with a nearly Gaussian

bivariate relationship. In 1974Q4, a recession was underway, and as shown by the up-

per right panel, the distribution expands notably as both supply and demand volatility

increased. Moreover, due to very high Gaussian supply variance, a more negative correla-

tion between real GDP and inflation is evident. Still, the overall distribution appears to

be mostly Gaussian. The bottom two plots show the distribution from two representative

quarters in the 2000s. The lower left panel shows the distribution from the expansionary

period 2006Q4. The distribution is narrower in all directions compared to the top two

panels, consistent with the Great Moderation. However, it is also evidently less Gaus-

sian, with a much less prevalent ellipsoid shape, and, in contrast with the upper panels,

two distinct “bad” tails over low GDP growth outcomes: one with low growth and high

inflation, and another with low growth and low inflation. This is a manifestation of the

“bad” AS and AD risks being more prevalent even in an expansionary period. Finally,

the lower right panel shows the distribution after the onset of the Great Recession in

2008Q4. Due to a surge in bad demand volatility, the distribution appears wide and

highly non-Gaussian with a vastly expanded heavy tail towards outcomes characterized

by low inflation and low growth, suggesting dominant AD risks.

5 Conclusion

In this article, we develop a new dynamic model for real GDP growth and inflation

using forecast revisions from the SPF obviating any complex modeling of conditional mean
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macro-dynamics. We model the shocks using BEGE dynamics, which accommodates

time-varying non-Gaussian features with good and bad volatility. We extract bad and

good volatilities for aggregate demand and supply shocks. We find both aggregate demand

and supply shocks to be negatively skewed and leptokurtic, but their “good” components

are Gaussian. We use the model to provide several contributions to the literature on

macroeconomic uncertainty.

First, we differentiate models with various degrees of correlation between level and

volatility shocks, finding that in the best model volatility and level shocks are on average

negatively correlated and the correlation has decreased over time. Second, we characterize

the time-variation in these supply and demand macro risks and their resulting effect on the

conditional variances of inflation and GDP growth. We show that the Great Moderation

largely reflects secular and large declines in the Gaussian demand and supply variances.

However, there is little evidence that the bad variances have decreased over time, and

these variances almost invariably peak in recessions. Third, the conditional skewness of

both GDP growth and inflation has decreased over time, heightening macro vulnerabilities

and it appears that the prevailing macro risk with regard to price movements is one of

deflation, not inflation.

Our work provides alternative measurement of macro uncertainty. In a leading pa-

per in this literature, JLN, the uncertainty index is based on 114 different time series,

comprising price and output indices, and some financial time series as well. While our

uncertainty measures are based on only two macro series, they admit an easy economic

interpretation of various types of uncertainty and are not contaminated by financial data.

Our model and findings contribute to both the empirical and theoretical literature on

uncertainty and business cycles in various ways. For example, a number of articles (e.g.,

Caggiano, Castelnuovo and Groshenny, 2014, or Alessandri and Mumtaz, 2019) show that

the effects of uncertainty shocks are much larger in recessions. This prompts researchers

to favor models with regime dependent exposures to economic shocks, but our model

incorporates such effects endogenously, as the relative importance of bad volatility varies
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over time.

Our parametric model may also prove useful in theoretical real business cycle models.

As Fernández-Villaverde and Guerron-Quintana (2020) discuss, equilibrium models often

generate overly small effects of uncertainty shocks. Accounting for the strong conditional

non-Gaussianities in the macro data in a tractable fashion as our model does, can be

helpful. While there are alternative models that may fit non-Gaussianities and time-

varying volatilities in macro data (e.g., the rare disaster models in Gabaix, 2012, and

Wachter, 2013), the case for the BEGE model was recently bolstered by Bakshi and Chabi-

Yo (2012), Chabi-Yo and Liu (2020), and Chabi-Yo and Loudis (2020), who show that a

tractable representative agent model with BEGE dynamics for the macro fundamentals

outperforms alternative non-Gaussian models in fitting asset prices.

Our research comes at an opportune time with the COVID crisis representing a huge

economic shock, accompanied by much economic uncertainty. Obviously, the efficacy of

various policy responses may well depend on whether AS or AD shocks dominate and

even which type of uncertainty dominates, if uncertainty has indeed a causal effect on

business cycles, as asserted in the new business cycle literature. Bekaert, Engstrom and

Ermolov (2020) find that an AS shock accounts for 57% of the hugely negative COVID

shock in the second quarter of 2020. Although it is plausible that the COVID shock is

fundamentally different from AS and AD shocks seen in the past, policy makers therefore

operate in an economic environment with dramatic “bad” uncertainty of both demand

and supply shocks.
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Figure 1: Real GDP Growth and Inflation Shocks. Shocks are expressed as a percentage
change at an annual rate. The sample is quarterly 1968:Q4-2019:Q2. Shading corresponds
to NBER Recessions.
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Figure 2: Demand Shock Decomposition. The sample is quarterly 1968:Q4-2019:Q2.
Shading corresponds to NBER Recessions. Demand shocks, udt , are extracted from the
following system: uπt = −σπsust + σπdu

d
t and ugt = σgsu

s
t + σgdu

d
t , where σπs, σπd, σgs, and

σgd are positive constants, ust supply shocks, and uπt and ugt are inflation and GDP growth
shocks, respectively, extracted from survey forecast revisions as uπt = Et[πt] − Et−1[πt]
and ugt = Et[gt] − Et−1[gt]. Demand shock dynamics is udt = σdpω

d
p,t − σdnω

d
n,t with

ωdp,t ∼ N (pdt−1) and ωdn,t ∼ Γ(ndt−1, 1). Furthermore, pdt = p̄d + ρdp(p
d
t−1 − p̄d) + σdppω

d
p,t and

ndt = n̄d +ρdn(ndt−1− n̄d) +σdnnω
d
n,t. N (pt) denotes a zero-mean Gaussian distribution with

variance pt. Γ(nt, 1) denotes a centered gamma distribution with shape parameter nt and
a unit scale parameter.
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Figure 3: Supply Shock Decomposition. The sample is quarterly 1968:Q4-2019:Q2. Shad-
ing corresponds to NBER Recessions. Supply shocks, ust , are extracted from the follow-
ing system: uπt = −σπsust + σπdu

d
t and ugt = σgsu

s
t + σgdu

d
t , where σπs, σπd, σgs, and σgd

are positive constants, udt supply shocks, and uπt and ugt are inflation and GDP growth
shocks, respectively, extracted from survey forecast revisions as uπt = Et[πt]−Et−1[πt] and
ugt = Et[gt]−Et−1[gt]. Supply shock dynamics is ust = σspω

s
p,t−σsnωsn,t with ωsp,t ∼ N (pst−1)

and ωsn,t ∼ Γ(nst−1, 1). Furthermore, pst = p̄s + ρsp(p
s
t−1 − p̄s) + σsppν

s
p,t, ν

s
p,t ∼ Γ(pst−1), and

nst = n̄s + ρsn(nst−1− n̄s) +σsnnω
s
n,t. N (pt) denotes a zero-mean Gaussian distribution with

variance pt. Γ(nt, 1) denotes a centered gamma distribution with shape parameter nt and
a unit scale parameter.
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Figure 4: Components of Bad Environment - Good Environment Distribution.
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Figure 5: Conditional Demand and Supply Variances. The sample is quarterly 1968:Q4-
2019:Q2. Shading corresponds to NBER Recessions.

39



Figure 6: Conditional Second Moments of Real GDP Growth and Inflation. The sample
is quarterly 1968:Q4-2019:Q2. Shading corresponds to NBER Recessions.
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Figure 7: Conditional Correlations between Level and Variance Shocks. The sample is
quarterly 1968:Q4-2019:Q2. Shading corresponds to NBER Recessions.
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Figure 8: Conditional Third Moments of Real GDP Growth and Inflation. The sample
is quarterly 1968:Q4-2019:Q2. Shading corresponds to NBER Recessions.
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Figure 9: Conditional Contour Plots of Joint Real GDP Growth - Inflation Distributions.
Numbers correspond to percentiles. Values are annualized. Plots are constructed by
simulation.
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Table 1: Unconditional Moments of Macroeconomic Revisions: Classical Minimum Dis-
tance Fit. uπt and ugt are inflation and GDP growth shocks, respectively, extracted from
survey forecast revisions as uπt = Et[πt]−Et−1[πt] and ugt = Et[gt]−Et−1[gt]. The sample
is quarterly 1968Q4-2019Q2. Asterisks *, **, and *** correspond to the statistical sig-
nificance at the 10, 5, and 1 percent levels, respectively.

Volatility Correlation
uπt ugt uπt u

g
t

Data 0.6361*** 1.1885*** -0.1344
Standard error (0.0913) (0.1448) (0.1555)
Fitted value [0.7083] [1.3295] [-0.2776]

Skewness Coskewness
uπt ugt (uπt )2ugt uπt (ugt )

2

Data 0.2005 -1.2343*** -0.7873*** 0.4309
Standard error (0.3712) (0.3890) (0.2674) (0.4884)
Fitted value [0.3663] [-1.4465] [-0.9808] [0.4874]

Excess kurtosis Excess cokurtosis
uπt ugt (uπt )2(ugt )

2 (uπt )3ugt uπt (ugt )
3

Data 1.7280* 4.7138*** 1.9239** -0.5464 -1.6186
Standard error (0.9813) (1.3877) (0.8979) (1.1467) (1.5647)
Fitted value [1.7502] [4.3216] [2.6462] [-1.7761] [-3.2401]

Test for joint significance of 3rd and 4th order moments
J-stat 25.3618
p-value 0.26%***

Overidentification test
J-stat 2.9781
p-value 38.74%
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Table 2: CMD Parameter Estimates. uπt and ugt are inflation and GDP growth shocks,
respectively, extracted from survey forecast revisions as uπt = Et[πt]− Et−1[πt] and ugt =
Et[gt] − Et−1[gt]. u

d
t and ust are demand and supply shocks, respectively. The system is

uπt = −σπsust + σπdu
d
t and ugt = σgsu

s
t + σgdu

d
t , where σπs, σπd, σgs, and σgd are positive

constants. The sample is quarterly 1968Q4-2019Q2. Asymptotic standard errors are in
parentheses.

Panel A: Loadings of Reduced-form Shocks onto Supply and Demand Shocks
uπt ugt

ust -0.4829 1.1802
(0.0566) (0.1129)

udt 0.5141 0.6035
(0.0685) (0.1064)

Panel B: Higher-order Moments of Supply and Demand Shocks
Skewness Excess kurtosis

ust -1.9563 6.8535
(0.3873) (1.5692)

udt -0.6896 1.0062
(0.5413) (1.6825)

Co-excess kurtosis -0.0095
(0.2843)
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Table 3: Demand and Supply Model Comparison. Models with the best (lowest) AICc
criteria are shaded.

ωp,t ωn,t AICc-supply AICc-demand
Distribution Time-variation λ Distribution Time-variation λ
Gaussian constant Gaussian constant 575.4 574.2
Gaussian constant Gaussian time-varying 0 494.6 508.8
Gaussian constant Gaussian time-varying 1 519.4 567.2
Gaussian constant Gamma time-varying free 494.6 510.9
Gaussian constant Gamma constant 538.9 556.0
Gaussian constant Gamma time-varying 0 490.3 510.6
Gaussian constant Gamma time-varying 1 507.8 550.1
Gaussian constant Gamma time-varying free 492.0 512.8
Gaussian time-varying 0 Gaussian constant 493.0 508.8
Gaussian time-varying 0 Gaussian time-varying 0 497.3 513.5
Gaussian time-varying 0 Gaussian time-varying 1 493.8 513.3
Gaussian time-varying 0 Gamma time-varying free 498.2 515.5
Gaussian time-varying 0 Gamma constant 493.4 510.7
Gaussian time-varying 0 Gamma time-varying 0 497.6 513.6
Gaussian time-varying 0 Gamma time-varying 1 488.0 515.7
Gaussian time-varying 0 Gamma time-varying free 496.5 515.8
Gaussian time-varying 1 Gaussian constant 512.2 524.0
Gaussian time-varying 1 Gaussian time-varying 0 497.2 504.3
Gaussian time-varying 1 Gaussian time-varying 1 523.4 526.2
Gaussian time-varying 1 Gamma time-varying free 498.2 506.2
Gaussian time-varying 1 Gamma constant 501.7 504.2
Gaussian time-varying 1 Gamma time-varying 0 494.8 504.1
Gaussian time-varying 1 Gamma time-varying 1 494.3 503.2
Gaussian time-varying 1 Gamma time-varying free 496.2 505.3
Gaussian time-varying free Gaussian constant 495.2 508.4
Gaussian time-varying free Gaussian time-varying 0 499.4 506.4
Gaussian time-varying free Gaussian time-varying 1 495.8 511.7
Gaussian time-varying free Gamma time-varying free 500.4 508.3
Gaussian time-varying free Gamma constant 495.8 510.5
Gaussian time-varying free Gamma time-varying 0 496.9 506.2
Gaussian time-varying free Gamma time-varying 1 490.3 515.0
Gaussian time-varying free Gamma time-varying free 498.7 507.4
Gamma constant Gaussian constant 577.7 576.3
Gamma constant Gaussian time-varying 0 493.4 511.2
Gamma constant Gaussian time-varying 1 521.0 554.0
Gamma constant Gamma time-varying free 496.3 513.3
Gamma constant Gamma constant 530.2 537.1
Gamma constant Gamma time-varying 0 490.2 511.8
Gamma constant Gamma time-varying 1 507.7 530.8
Gamma constant Gamma time-varying free 492.9 514.0
Gamma time-varying 0 Gaussian constant 505.2 525.3
Gamma time-varying 0 Gaussian time-varying 0 500.4 515.5
Gamma time-varying 0 Gaussian time-varying 1 500.8 530.1
Gamma time-varying 0 Gamma time-varying free 501.4 517.8
Gamma time-varying 0 Gamma constant 503.7 520.1
Gamma time-varying 0 Gamma time-varying 0 497.4 516.0
Gamma time-varying 0 Gamma time-varying 1 490.4 524.2
Gamma time-varying 0 Gamma time-varying free 499.3 518.1
Gamma time-varying 1 Gaussian constant 581.6 540.4
Gamma time-varying 1 Gaussian time-varying 0 500.3 508.4
Gamma time-varying 1 Gaussian time-varying 1 505.5 526.3
Gamma time-varying 1 Gamma time-varying free 501.3 510.4
Gamma time-varying 1 Gamma constant 510.2 507.5
Gamma time-varying 1 Gamma time-varying 0 497.4 516.4
Gamma time-varying 1 Gamma time-varying 1 498.0 507.5
Gamma time-varying 1 Gamma time-varying free 499.3 510.3
Gamma time-varying free Gaussian constant 507.3 523.6
Gamma time-varying free Gaussian time-varying 0 502.2 510.3
Gamma time-varying free Gaussian time-varying 1 502.3 525.1
Gamma time-varying free Gamma time-varying free 503.1 513.0
Gamma time-varying free Gamma constant 500.9 514.6
Gamma time-varying free Gamma time-varying 0 499.4 510.3
Gamma time-varying free Gamma time-varying 1 492.9 510.3
Gamma time-varying free Gamma time-varying free 501.3 511.0

46



Table 4: Demand and Supply Shock Dynamics Parameter Estimates. Asymptotic stan-
dard errors are in parentheses. Bootstrap standard errors controlling for uncertainty in
both CMD and maximum likelihood steps are in square brackets. Note that p̄ is missing,
because “good” components of both demand and supply shocks are Gaussian.

ust udt
σp 0.8441 0.9515

(0.0307) (0.0427)
[0.1272] [0.0479]

ρp 0.9922 0.9847
(0.0082) (0.0066)
[0.1159] [0.1457]

σpp 0.3129 0.0806
(0.1408) (0.0177)
[0.2309] [0.1066]

σn 0.3423 1.5126
(0.1085) (1.6994)
[0.4169] [0.6686]

n̄ 2.4547 0.0413
(1.3388) (0.0714)
[19.4438] [2.1465]

ρn 0.5952 0.5044
(0.2058) (0.4283)
[0.1982] [0.1098]

σnn 0.5739 0.3242
(0.3234) (0.3219)
[0.2119] [0.1664]
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Table 5: Decomposing the Great Moderation into Changes in Demand and Supply Vari-
ances. The sample is quarterly 1968Q4-2019Q2. Coefficients are OLS regression coeffi-
cients from regressing the dependent variable on a constant and both dummies. Standard
errors in parentheses are Newey-West (1987) standard errors computed with 40 lags. The
asterisks, ** and ***, correspond to statistical significance at the 5 and 1 percent levels,
respectively.

Panel A: Aggregate Inflation
Dependent variable Constant Dummy 1991Q1- Dummy 2007Q1-
Aggregate variance 0.7753*** -0.5697*** 0.0009

(0.1153) (0.1194) (0.0338)
Supply variance 0.4268*** -0.3336*** -0.0022

(0.0834) (0.0850) (0.0130)
Gaussian supply variance 0.3497*** -0.3245*** -0.0106

(0.0789) (0.0803) (0.0074)
Bad supply variance 0.0771*** -0.0091 0.0084

(0.0063) (0.0079) (0.0096)
Demand variance 0.3486*** -0.2361*** 0.0031

(0.0399) (0.0424) (0.0212)
Gaussian demand variance 0.3116*** -0.2313*** -0.0076

(0.0383) (0.0425) (0.0122)
Bad demand variance 0.0369** -0.0047 0.0107

(0.0182) (0.0425) (0.0122)
Panel B: Real GDP Growth

Dependent variable Constant Dummy 1985Q1- Dummy 2007Q1-
Aggregate variance 3.6030*** -2.6769*** -0.2239

(0.2486) (0.3432) (0.2161)
Supply variance 3.0572*** -2.3256*** -0.1882

(0.2549) (0.3333) (0.1722)
Gaussian supply variance 2.5723*** -2.2438*** -0.2412

(0.2423) (0.3175) (0.1494)
Bad supply variance 0.4850*** -0.0818** 0.0530

(0.0357) (0.0388) (0.0559)
Demand variance 0.5458*** -0.3513*** -0.0356

(0.0497) (0.0525) (0.0457)
Gaussian demand variance 0.4920*** -0.3413*** -0.0508

(0.0347) (0.0464) (0.0380)
Bad demand variance 0.0538*** -0.0100 0.0151

(0.0196) (0.0205) (0.0181)
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Table 6: The Great Moderation and Macroeconomic Skewness. The sample is quarterly
1968Q4-2019Q2. Reported coefficients are OLS regression coefficients from regressing the
dependent variable on a constant and both dummies. Standard errors in parentheses are
Newey-West (1987) standard errors computed with 40 lags. The asterisks, *, **, and ***,
correspond to statistical significance at the 10, 5, and 1 percent levels, respectively. Note
that good demand and supply components are Gaussian and, thus, have 0 skewness.

Panel A: Aggregate Inflation
Dependent variable Constant Dummy 1991:Q1- Dummy 2007:Q1-
Skewness -0.0513* -0.1583*** -0.0610

(0.0269) (0.0442) (0.0476)
Unscaled centered 3rd moment -0.0322* 0.0044 -0.0139

(0.0170) (0.0246) (0.0179)
Supply component (bad) 0.0254** -0.0030 0.0028

(0.0021) (0.0026) (0.0032)
Demand component (bad) -0.0576*** 0.0074 0.0167

(0.0154) (0.0176) (0.0210)
Panel B: Real GDP Growth

Dependent variable Constant Dummy 1991:Q1- Dummy 2007:Q1-
Skewness -0.0826*** -0.4950*** -0.2469*

(0.0106) (0.1056) (0.1330)
Unscaled centered 3rd moment -0.4897*** 0.0843** -0.0705

(0.0210) (0.0371) (0.0758)
Supply component (bad) -0.3914*** 0.0660** -0.0428

(0.0288) (0.0313) (0.0451)
Demand component (bad) -0.0984*** 0.0182 -0.0277

(0.0357) (0.0375) (0.0331)
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Appendix I: Survey Revisions versus VAR shocks

Real GDP Growth and Inflation Shocks. Shocks are expressed as a percentage change
at an annual rate. VAR shocks are shocks to realized GDP growth and inflation from
VAR(1) with realized real GDP growth and inflation and their Survey of Professional
Forecasters expectations as variables. The sample is quarterly 1968:Q4-2019:Q2. Shading
corresponds to NBER Recessions.
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Demand and Supply Shocks. Shocks are inverted from real GDP growth and inflation
shocks. VAR shocks are shocks to realized GDP growth and inflation from VAR(1) with
realized real GDP growth and inflation and their Survey of Professional Forecasters ex-
pectations as variables. The sample is quarterly 1968:Q4-2019:Q2. Shading corresponds
to NBER Recessions.

Appendix II: GMM Estimation of Demand and Sup-

ply Shocks

The CMD methodology employs statistics rather than moments, and here we verify

that our results are robust to using standard GMM on regular moments of inflation and

GDP growth. To this end, we use the following raw moments: (uπt )2, (ugt )
2, uπt u

g
t , (uπt )3,

(ugt )
3, (uπt )4, (ugt )

4, (uπt )2ugt , u
π
t (ugt )

2, (uπt )2(ugt )
2, (uπt )3ugt , and uπt (ugt )

3.
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Of course, the statistics we use for the CMD procedure (volatilities, correlation, and

scaled higher-order moments) are simple functions of these unscaled moments, so we

expect results to be similar. We have the same 9 parameters to fit these 12 moments in

a GMM system. Another difference is that we now can use a standard weighting matrix,

based on the spectral density at frequency zero of the orthogonality conditions (instead

of the bootstrap procedure used with the CMD methodology). To compute an initial

GMM weighting matrix, we use our usual CMD parameters (from Table 2) as starting

values, obtain residuals, and compute the spectral density. We use the optimal GMM

weighting matrix using 30 Newey-West (1987) lags. Below are the results. In a nutshell,

the loadings in Panel A are very similar to the ones reported in Table 2, confirming GDP

growth shocks loading more on supply than on demand shocks. Moreover, the inverted

supply and demand series are virtually indistinguishable, as the regressions in Panel B

show.

GMM Estimation of Demand and Supply Shocks.

Panel A: Loadings of Reduced-form Shocks onto Supply and Demand Shocks
uπt ugt

ust -0.4022 1.0125
(0.0509) (0.1647)

udt 0.4804 0.5461
(0.0471) (0.0721)

Panel B: OLS Regression Coefficients of CMD extracted shocks on GMM extracted shocks
Constant Slope R2

ust 0.0017 1.0000 0.9998
udt -0.0029 0.9999 0.9997
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Appendix III: VAR Impulse Responses to Aggregate

Demand and Aggregate Supply Shocks

Cumulative 20 Quarter VAR Impulse Responses of Real GDP and Aggregate Price Level
to One Standard Deviation Demand and Supply Shocks. The data are 1968:Q4-2019:Q2
quarterly. The VAR model is: Yt = A0 + A1Yt−1 + S[ust , u

d
t ]
′ + εt, where Yt is the vector

of final, revised real GDP growth and inflation, [ust , u
d
t ]
′ are pre-estimated structural

shocks from the SPF, and εt is a residual noise vector. The cumulative impulse responses
include the quarter 0 (where the shocks happened) responses. Numbers in parentheses
are probabilities that the impulse response is less than 0 obtained from 10,000 block-
bootstrap samples of historical length with the block size of 8 quarters. The asterisks,
***, correspond to statistical significance at the 1 percent level.

Shock Real GDP level Price level
Demand 0.00% 1.17%***

(52.25%) (0.00%)
Supply 0.66%*** -0.45%

(0.00%) (93.95%)

Appendix IV: Maximum Likelihood Estimation of De-

mand and Supply Shocks Parameters

The estimation procedure is a version of Bates (2006) algorithm for the component

model of two gamma distributed variables. The step-by-step estimation strategy for the

demand shock is described below. The estimation for the supply shock is identical.

The methodology below is an approximation, because, in order to facilitate the com-

putation, at each time point the conditional distribution of state variables pdt and ndt is

assumed to be gamma, although the distribution does not have a closed form solution.

The choice of the approximating distributions is discussed in details in section 1.3 of

Bates (2006). Here the gamma distributions are used, because they are bounded from

the left at 0, which ensures that the shape parameters of the gamma distribution in the

model (pdt and ndt ) will always stay positive, like they should.
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The system to estimate is:

udt+1 = σdpω
d
p,t+1 − σdnωdn,t+1,

ωdp,t+1 ∼ Γ(pdt , 1)− pdt ,

ωdn,t+1 ∼ Γ(ndt , 1)− ndt ,

pdt+1 = p̄d(1− ρdp) + ρdpp
d
t + σdppω

d
p,t+1,

ndt+1 = n̄d(1− ρdn) + ρdnn
d
t + σdnnω

d
n,t+1.

The following notation is defined:

Ud
t ≡ {ud1, ..., udt } is the sequence of observations up to time t.

F (iφ, iψ1, iψ2|Ud
t ) ≡ E(eiφu

d
t+1+iψ1pdt+1+iψ2ndt+1|Ud

t ) is the next period’s joint conditional

characteristic function of the observation and the state variables.

Gt|s(iψ
1, iψ2) ≡ E(eiψ

1pdt+iψ2ndt |Ud
s ) is the characteristic function of the time t state

variables conditioned on observing data up to time s.

At time 0, the characteristic function of the state variables G0|0(iψ1, iψ2) is initial-

ized. As mentioned above, the distribution of pd0 and nd0 is approximated with gamma

distributions. Note that the unconditional mean and variance of pdt are E(pdt ) = p̄d and

V ar(pdt ) =
σ2
pp

1−ρd2p
p̄d, respectively. The approximation by the gamma distribution with

the shape parameter k0 and the scale parameter σp0 is done by matching the first two

unconditional moments. Using the properties of the gamma distribution, kp0 =
E2pdt

V ar(pdt )

and θp0 =
V ar(pdt )

E(pdt )
. Thus, pd0 is assumed to follow Γ(kp0, θ

p
0) and nd0 is assumed to follow

Γ(kn0 , θ
n
0 ), where kn0 and θn0 are computed in the same way. Using the properties of the

expectations of the gamma variables, G0|0(iψ1, iψ2) = e−k
p
0 ln(1−θp0 iψ1)−kn0 ln(1−θn0 iψ2) . Given

G0|0(iψ1, iψ2), computing the likelihood of Ud
T is performed by repeating the steps 1-3

below for all subsequent values of t.

Step 1. Computing the next period’s joint conditional characteristic function of the
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observation and the state variables:

F (iΦ, iψ1, iψ2|Udt ) = E(E(eiΦ(σdpω
d
p,t+1−σdnω

d
n,t+1)+iψ1(p̄d+ρdpp

d
t +σd

ppω
d
p,t+1)+iψ2(n̄d(1−ρdn)+ρdnn

d
t +σd

nnω
d
n,t+1)|Udt )

= E(eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)+(iψ1ρdp−ln(1−iΦσdp−iψ1σd

pp)−iΦσdp−iψ1σd
pp)pdt +(iψ2ρdn−ln(1+iΦσdn−iψ2σd

nn)+iΦσdn−iψ2σd
nn)nd

t |Udt )

= eiψ
1p̄d(1−ρdp)+iψ2n̄d(1−ρdn)Gt|t(iψ

1ρdp − ln(1− iΦσdp − iψ1σdpp)− iΦσdp − iψ1σdpp, iψ
2ρdn − ln(1 + iΦσdn − iψ2σdnn) + iΦσdn − iψ2σdnn).

Step 2. Evaluating the conditional likelihood of the time t+ 1 observation:

p(udt+1|Ud
t ) =

1

2π

∫ ∞
−∞

F (iΦ, 0, 0|Ud
t )e−iΦu

d
t+1)dΦ,

where the function F is defined in step 1 and the integral is evaluated numerically.

Step 3. Computing the conditional characteristic function for the next period,

Gt+1|t+1(iψ1, iψ2):

Gt+1|t+1(iψ1, iψ2) =
1

2π

∫∞
−∞ F (iΦ, iψ1, iψ2|Ud

t )e−iΦu
d
t+1dΦ

p(udt+1|Ud
t )

.

As above, the function Gt+1|t+1(iψ1, iψ2) is also approximated with the gamma distribu-

tion via matching the first two moments of the distribution. The moments are obtained

by taking the first and second partial derivatives of the joint characteristic function:

Et+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1p
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ1ψ1(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1p
d
t+1,

Et+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ,

V art+1n
d
t+1 =

1

2πp(udt+1|Ud
t )

∫ ∞
−∞

Fψ2ψ2(iΦ, 0, 0|Ud
t )e−iΦu

d
t+1dΦ− E2

t+1n
d
t+1,

where Fψi denotes the derivative of F with respect to ψi. The expressions inside the inte-

gral are obtained in closed form by taking the derivative of the function F (iΦ, iψ1, iψ2|Ud
t )

in step 1, and integrals are evaluated numerically. Using the properties of the gamma

distribution, the values of the shape and the scale parameters are kpt+1 =
E2
t+1p

d
t+1

V art+1pdt+1
and

θpt+1 =
V art+1pdt+1

Et+1pdt+1
, respectively. The expressions for knt+1 and θnt+1 are similar.
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The total likelihood of the time series is the sum of individual likelihoods from step

2: L(YT ) = ln p(ud1|k
p
0, θ

p
0) +

∑T
t=2 ln p(udt+1|Ud

t ).
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