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1 Introduction

Recent decades have witnessed a groundwater revolution across the Asian subcontinent as millions

of borewells have sprung up, most of them equipped with submersible electric pumps (Shah 2010;

Jacoby 2017). In India, groundwater has become the dominant source of irrigation, driving increased

agricultural intensification (Jain et al., 2021) and rising rural income (Sekhri 2014). Most Indian states,

however, currently offer farmers free or highly subsidized electricity to run their pumps, artificially

inflating the economic returns to well-drilling.1 Groundwater development has thus devolved into a form

of rent-seeking (“drilling for subsidies”) as smallholders sink costly wells that would not be economically

viable absent these price distortions (Badiani-Magnusson and Jessoe, 2018).

In this paper, we assess the social cost of electricity subsidies in the southern Indian states of Andhra

Pradesh (AP) and Telangana (part of AP prior to its partition in 2014). Farmers in these states typically

run their pumps continuously during the fixed number of hours (7-9) per day that electricity is available

for agricultural use (Fishman et al., 2023). As pumping begins, the water table around each well drops,

creating a conical draw-down region centered on the borewell. If two wells are located close enough to

each another, their respective cones of depression will overlap, significantly reducing the flow from both

wells.2 An additional functioning borewell nearby thus lowers the discharge of any given borewell, and

may ultimately lead to its failure (i.e., when discharge is too low to warrant any cultivation whatsoever).

During the dry season, when groundwater is virtually the sole source of irrigation, well interference

becomes an important, albeit highly localized, common property externality.3

To be sure, even in the absence of this externality, electricity subsidies create welfare losses by encour-

aging borewell over-investment, as the gross return from the marginal well falls below the private cost of

drilling plus the fiscal cost of the subsidy. Absent externalities, the social cost of over-drilling could be

assessed using a partial equilibrium framework,4 in which one simulates the number of borewells sunk

(per unit area) and their expected private return under a counterfactual policy of removing subsidies.

1In 2013, the Indian government spent US$11.4 billion to subsidize agricultural power, although this figure likely
understates the fiscal drain (Sidhu et al., 2020). Since metering of usage is rare, subsidies generally take the form of low
or nonexistent flat charges.

2 The extent of the draw-down region depends on both aquifer and borewell characteristics. In our setting, pump tests
conducted by the National Geophysical Research Laboratory, Hyderabad, recommend an interwell spacing of at least 250
meters to avoid interference (see Chandrakanth 2015). Pfeiffer and Lin (2012) discusses well interference externalities in
the context of US agriculture (see also Katic and Grafton 2012 for a conceptual overview).

3Well interference is accentuated in hard rock aquifers, such as those of south India, because of the low transmissivity
(velocity of horizontal groundwater flow). Blakeslee et al. (2020) describe the process of well failure in such aquifers in
greater detail, emphasizing the importance of local hydrogeological features, i.e., sub-surface fractures fed from different
sources of recharge.

4Fafchamps and Pender (1997), for example, uses Indian panel data to estimate a representative agent model of
borewell investment without externalities or strategic interactions.
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With spatial externalities, however, the expected private and social returns to borewell investment

diverge and only a general equilibrium framework that captures both the costly externality and the

resulting strategic interactions between neighboring farmers can generate valid policy counterfactuals.

To appreciate the complexity of our problem, consider the related setting in Lin (2013) that estimates

a strategic model of firms exploring and developing (i.e., drilling) off-shore oil parcels in the Gulf of

Mexico. To simplify the estimation, Lin restricts the sample to adjacent pairs of (oil) parcels taken

in isolation. We cannot use this approach, however, because any given farmer’s decision to drill is

influenced by nearby wells and by the decisions of neighboring farmers, who in turn are influenced

by wells in their neighborhood and by the decisions of all their surrounding neighbors, and so on ad

infinitum. Similarly, using (arbitrary) administrative boundaries to demarcate ‘neighborhoods’ within

which all farmer/plots are treated symmetrically (e.g., Fu and Gregory 2019) is problematic in our case

because the externality is highly localized.

We thus develop and estimate a dynamic discrete borewell investment game played on a large

(but necessarily bounded) map representing the network of adjacent agricultural plots in the locality.

Structural estimation requires taking into account each plot owner’s beliefs about the temporal evolution

of borewells on all “relevant” plots, a potentially vast state-space. To avoid this curse of dimensionality,

we assume (plausibly, as we shall argue) that interference effects arise only from functioning wells located

in adjacent plots and that decisions depend only on beliefs about such wells. The existence of a steady

state in which the expected number of successful drilling attempts matches the expected number of well

failures then allows for a novel estimation strategy.5 Given model parameters, we simulate investment

on the plot network map for many periods until a steady state is reached, at which point we compute

beliefs based on the temporal evolution of wells in each plot owner’s adjacency, i.e., the collection

of bordering plots determining the local externality. This adjacency equilibrium is solved within an

estimation algorithm along the lines suggested in Aguirregabiria and Mira (2010).

Using a two-year panel (2010 and 2017) of borewell discharge (or flow) and failure data from 1,057

reference plots, we provide evidence of well interference effects. We also use a 5-year panel (2012–2016)

of well-drilling attempts (successful and otherwise) in each of these 1,057 plots, along with panel data

econometric methods that address endogeneity of past investments and recall/measurement error, to

show that drilling is less likely the more functioning borewells there are on the plot and in the adjacency

outside of the plot. Taken together, these results establish both the importance of the local externality

and its influence on farmers’ investment decisions.

With the ‘first-stage’ results for well flow and failure processes as inputs, along with subjective

5In our sample of plots described below, the average number of functioning borewells remains relatively stable at
around two over a 5-year period despite a roughly 7 percent annual failure rate.
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drilling success rates, information on drilling costs, and cadastral maps showing plot configurations,

we pin down primitive parameters of the production technology by estimating the dynamic structural

model via simulated method of moments (SMM). In particular, we match, among other moments, the

observed drilling rates by plot size and by the number of currently functional borewells on the plot

to the corresponding conditional choice probabilities. Given reduced-form evidence that well-drilling is

strongly increasing in farmer wealth, we also assume that investment can only occur on plots owned by

farmers with sufficient wealth.6 To identify the sample proportion of such ‘developed’ plots we target

additional moments related to drilling rates by wealth level.

Using the estimated structural parameters, we find in the steady state that the expected discounted

present value of agricultural output minus drilling costs on developed land is 45,600 Rs/acre. By

contrast, the value to society, which differs from the private value by the expected discounted present

value of electricity costs, is only 14,500 Rs/acre. Moreover, charging borewell owners fully for electricity

through an annual flat rate would increase the social value of groundwater development to 19,000

Rs/acre, or by 28%. In other words, the social cost of free electricity amounts to 4,500 Rs (65 US$) per

acre, or around 1.5% of farmland value in our setting.

Finally, we consider the optimal borewell tax that both eliminates rent-seeking due to free electricity

and the externality costs due to well interference. We compute this optimal tax under two different

policies regarding extant wells. Under the first regime, all borewells (old and newly sunk) are subject to

taxation but old wells can be dismantled at zero cost. In the second regime, old wells are “grandfathered”

so that the tax only applies to new drilling. We find that, when both new and old borewells are subject

to taxation, the social welfare maximizing tax equals annual electricity costs plus a Pigouvian premium

of around 12% to correct for the externality. When existing borewells are grandfathered, however, the

social welfare maximizing tax equals annual electricity costs plus a Pigouvian premium of 30% (about

2,500 Rs per borewell per year); the higher premium is required because the marginal externality cost of

a new borewell is higher when old borewells still operate. Nevertheless, both tax policies curb excessive

drilling and thus achieve similar social welfare along their respective transition paths. Grandfathering

of existing borewells is, however, the more politically palatable policy as no farmer would suffer a capital

loss on sunk investments.

This paper makes both methodological and empirical contributions. Using our novel adjacency

equilibrium concept, we are the first to estimate a dynamic model of irreversible investment with

strategic interactions across a spatial network. Until now, the empirical literature on network games

has consisted entirely of static applications (see, e.g., Acemoglu et al. 2015, Xu 2018, König et al. 2017).

6For structural models of investment incorporating liquidity constraints in similar contexts see Rosenzweig and Wolpin
(1993) and Fafchamps and Pender (1997).
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While we could have also used a static model in which all plot owners drill their borewells simultaneously,

such a model would not account for well failure, an inherently dynamic concept featuring prominently

in our setting. Moreover, a static model would not inform us about the transition dynamics between the

baseline scenario of over-drilling to a new steady state under alternative counterfactual policy regimes.

Analysis of transition paths is crucial to distinguishing between different policy treatments of existing

wells (see, e.g., Domeij and Heathcote 2004 in the context of capital taxation).

We also contribute to a small empirical literature quantifying the social costs of common property

externalities. Closest in spirit to our work is the aforementioned oil-drilling paper by Lin (2013).

In addition to limiting its analysis to pairs of interacting parcels, Lin (2013)’s approach does not

accommodate another important feature of our setting, permanent unobserved heterogeneity in the

suitability of land for resource development. Huang and Smith (2014) models boat owners’ daily fishing

decisions in the US shrimp industry as a dynamic game and structurally estimates the welfare cost

associated with seasonal over-fishing. The key difference from our setting is that in the fishery the

externality is not local; any shrimp caught by one boat reduces the potential catch of all other boats

equally. In the context of groundwater pumping from existing wells, Sears et al. (2022) estimates a

dynamic model of strategic interactions among neighboring extractors in California, but eschews the

spatial network structure that is central to this paper. Finally, Ryan and Sudarshan (2022) estimates the

welfare cost associated with over-pumping in the north Indian state of Rajasthan, without considering

well interference, focusing instead on the non-local, aquifer-wide, externality.7 Ryan and Sudarshan

(2022) also takes the number of borewells as given, thus ignoring drilling costs which are our primary

concern. It finds that electricity rationing to agriculture leads farmers in Rajasthan to pump roughly

the socially optimal quantity of groundwater on average. Similar rationing in our study areas of AP

and Telangana undoubtedly also limits over-pumping, rendering this intensive margin distortion small

in comparison to the extensive margin distortion that we emphasize in this paper.

The rest of the paper is organized as follows. In Section 2, we describe our setting and data. Section

3 presents panel data estimates of the determinants of drilling along with a joint econometric model

of well flow and failure that accounts for unobserved heterogeneity. Section 4 lays out the dynamic

structural model of borewell investment while Section 5 discusses the SMM estimation algorithm and

presents the results. The analysis of counterfactual policies and the optimal borewell tax follow in

Section 6. Section 7 concludes.

7Well interference implies that Ryan and Sudarshan (2022) likely understates the social cost of extraction. It also
ignores revenue from groundwater sales to neighboring farmers. To avoid such complications in our study, we deliberately
chose a setting in which groundwater markets are virtually nonexistent (see Giné and Jacoby 2020).
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2 Setting and Data

2.1 Context

Before its partition, Andhra Pradesh was one of the most important agricultural states of India, ac-

counting for about 7 percent of gross cropped area nationally, with groundwater supplying roughly half

of its irrigation. As argued by Kumar et al. (2011), however, the economic efficiency of groundwater

extraction in AP has been falling substantially, with the tripling in the number of borewells to more

than 1.5 million from 1995-2010 (see Jacoby 2017), leading to high rates of well failure, lower area

irrigated per well, and higher energy requirements for groundwater pumping due to well interference.

Power supply to agriculture for running electrical pumps has, meanwhile, become a political issue all

over India. In 2004, a newly elected government in AP abolished flat rate electricity charges to farmers,

which had previously covered just 11 percent of the cost of provision, and introduced free agricultural

power, a move swiftly followed by the major states of Tamil Nadu, Karnataka, and Punjab.8

Much of south India is underlain by shallow hard rock aquifers with limited groundwater storage

capacity. Recharge from monsoon rains is thus largely depleted through pumping during the subsequent

dry season; there are no deep groundwater reserves available to ‘mine’.9 As seen in Figure 1, the time-

series of depth to water table across AP, a measure of overall resource depletion, is dominated by

the intra-annual variability, showing practically zero trend from 1998-2014, the most recent years for

which we have consistent data before the partition.10 Well interference, therefore, is the predominant

groundwater pumping externality in our setting, one that is both localized and static, affecting only

current groundwater availability.

Our data come from the drought-prone districts of Anantapur (Andhra Pradesh) and Mahabubnagar

(Telangana), originally the backdrop for the weather insurance study of Cole et al. (2013). As shown in

Giné and Jacoby (2020), groundwater availability and the related development of groundwater markets

in these drought-prone districts is limited compared to districts in the intermediate range of annual

rainfall and, especially, to those in water-abundant coastal AP. Only farmers with access to a functioning

borewell can cultivate during the dry (rabi) season, typically growing groundnut, maize, mulberry, and

8Shah et al. (2012) estimates that these subsidies in AP amounted to 94% of the gross value of its agricultural output
before partition. The corresponding figure in the more agriculturally productive state of Punjab is only 12%. Note that
Shah et al. (2012) uses an annual electricity cost per borewell of about USD 450 for the entire state of AP circa 2010,
whereas we obtain a much more conservative figure of USD 180 (8500 Rs) in our study areas (see Appendix A).

9By contrast, water-mining is a major concern in the deep alluvial aquifers of northwest India (see Fishman et al.
2011; Sayre and Taraz 2019 and Ryan and Sudarshan 2022).

10Hora et al. (2019) argues that such water table trends are biased upward by relying on surviving (i.e., non-failed)
observation wells to measure groundwater levels across time. Indeed, our analysis of well failure in Appendix C is
consistent with a secular, but rather slow, decline in water tables in our study area.
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Figure 1: Water table fluctuations: 1998-2014

Notes: Average depth to water table in meters below ground-level from all state observation wells
and rainfall in millimeters by month (Source: Government of Andhra Pradesh, Groundwater
Department, 2014, http://apsgwd.gov.in/swfFiles/reports/state/monitoring.pdf).

paddy in Ananatapur and paddy and groundnut in Mahabubnagar. In the wet (kharif) season, during

which groundwater is used to supplement monsoonal rainfall, the main crops in both districts are paddy,

sorghum, and groundnut.

An important contextual feature contributing to well interference is the high degree of land frag-

mentation. Indeed, absent such fragmentation, the well interference externality would be internalized

through unified landownership. To replicate the ‘networks’ of individually owned land parcels across

which to compute the drilling-game equilibria for our structural estimation, we manually digitized cadas-

tral maps for a subset of study villages, at least one for each mandal or county (see Appendix D for

details and an example of the original cadastral map and its digitized counterpart). In all, we have 14

maps containing 12,330 land parcels with a median size of 2.02 acres.

2.2 Adjacency panel: Well drilling

Our main dataset is a seven-year (2011-17) retrospective panel on borewell status and drilling attempts.

In 2017, we were able to re-interview 1,436 of 1,488 farm households that participated in the the 2010

survey used in the weather insurance study of Cole et al. (2013). The 2017 survey instrument included
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a history of drilling attempts on and around each of the household’s plots since 2011. Based on these

responses, we selected up to one reference plot per respondent if there had been drilling attempts made

in the last seven years either on the plot itself or within a 500 meters radius of the plot (in case of two

or more eligible plots per household, one was chosen at random).

An adjacency is a central concept underlying both our data collection and our structural model;

it is defined as the set of all agricultural plots contiguous to the reference plot, inclusive of it. As

part of the 2017 instrument, we administered an adjacency survey to the 1,057 farmers with an eligible

reference plot, asking the reference plot owner for retrospective information about the existence and

status (functioning or not) of all borewells in the adjacency over the previous seven years. We shall

assume throughout this paper that only other borewells operating in the adjacency create interference

effects on the reference plot, imposing a negative externality. Put differently, the effects of borewells

outside the adjacency on reference plot borewell flow and failure are negligible. Given the typical size

of plots and the range of well interference effects in our setting (Chandrakanth, 2015), we believe that

this is a sensible assumption.11

Denoting by nit the number of functioning wells on reference plot i in year t and by Nit the number of

functioning wells in the adjacency outside of reference plot i, we define the total number of functioning

wells in the adjacency as

Nit ≡ Nit + nit. (1)

Arguably, respondents may less accurately recall the status of borewells on adjacent plots than of

those on (their own) reference plots. We, therefore, allow Nit, but not nit, to be measured with error,

specifically, misclassified as functioning or failed. We discuss the econometric implications of this form

of measurement error in subsection 3.2.

Figure 2 provides an event timeline, with the “year” beginning at rabi season planting. Borewell

drilling occurs in the pre-monsoon (summer) season when water tables are at their lowest, thereby

assuring farmers that, if successful, the new borewell will yield groundwater throughout the rabi season.

New borewells are thus available for pumping only in the year following a successful drilling attempt,

with year t “success” defined as being functional at least during year t + 1. Well failures can occur

throughout the rabi season; our survey does not record the exact month of failure. We, therefore, treat

year t failures in the same way as successful drilling attempts in year t, assuming that neither event

11The median reference plot in our data is about one hectare. In a chessboard configuration of identical plots of this
size with borewells located at the center, the distance between a borewell in the reference plot and one elsewhere in the
adjacency would be 100-140 meters, well within the range of interference effects mentioned in footnote 2. Expanding the
definition of adjacency to include a second ring of identical plots would increase the average distance between wells to
200-280 meters, which is beyond the range for interference effects in our setting.
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Figure 2: Timeline
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affects agricultural output or the decision to drill in year t.12 In other words, year t drilling, output, as

well as failure depend on the number of functioning borewells at the end of year t− 1.

Figure 3: Drilling attempts and successes by year
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We drop the data from 2011 because we do not have the lagged (2010) number of functioning wells

for 2011. We also drop the data from 2017 because, as the survey was administered in May of 2017,

well drilling attempts and failures that may have occurred later in 2017 were not recorded, potentially

12Well failure is also not necessarily seen as a discrete event. If a well fails to yield water at the end of the rabi season,
for example, it may only be at the beginning of the next rabi that it is considered to have truly failed.
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understating drilling activity for that year. From 2012-16, a total of 371 reference plot drilling attempts

were reported in 1, 057 × 5 adjacency-years, for a 7.0% average annual rate of drilling (see Figure 3);

157 or 42.0% of these attempts were successful.

Lastly, we note that, over 2012-16, the average number of own borewells nit per reference plot (0.648)

is substantially greater than the average of Nit per adjacent plot (0.385). Given our sampling procedure

described above, we conjecture that this difference in well density reflects selection on the basis of

factors, idiosyncratic to the plot or to its owner, that make the reference plot particularly conducive to

drilling on, a point that we shall return to later in regards to the structural estimation.

2.3 Reference well panel: Failure

To estimate the annual probability of well failure, we construct a 2012-16 panel of reference plot borewells

that are at risk of failure. For reasons that will become clear below, when the reference plot has multiple

functioning wells we restrict attention to the oldest, i.e., the first one sunk. We also drop wells sunk in

2016 which would not have had time to fail; more generally, wells only enter the failure panel in the year

after they are sunk. Since failure is an absorbing state, a well exits the panel in the year following its

failure. The result is an unbalanced failure panel of 697 borewells over as many as five years. This figure

of 697 is lower than the total number of 1,057 adjacencies because 320 adjacencies have no functioning

borewells on the reference plot over the 2012-16 period. Of the 606 borewells that were functional going

into 2012, about a third (195) had failed by 2016 leading to an average annual failure rate of 7.3% (see

Appendix Table B.1).13

A key issue in modelling well failure is duration dependence, whereby the probability of failure

depends on the age of the well. If water tables are trending downward, then older and thus shallower

wells would dry up first. With a non-constant hazard rate of well failure, farmers would profitably take

into account not only the number of adjacent functioning borewells but also their ages, introducing

considerable complexity into the structural model. While Figure 1 suggests that water tables in our

setting have been fairly stable over the last two decades, we assess the importance of duration dependence

by focusing on the 606 extant borewells in 2012, when they had a median age of 12 years. Regressions

reported in Appendix C reveal a significant positive association between well age and subsequent failure,

but this entire effect is driven by 59 borewells that were more than 20 years old in 2012. For investment

planning purposes, then, and given discounting, it is reasonable to assume that farmers view the well

failure hazard as essentially constant.

13Blakeslee et al. (2020) also report high rates of well failure in the neighboring south Indian state of Karnataka.
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2.4 Well flow

Data on discharge (well flow) were collected in the 2010 survey from all functioning borewells for the

2009-10 rabi season and, in the 2017 survey, for the 2016-17 rabi season. Farmers were asked to assess

flow at both the beginning and end of the rabi season based on the fraction of the outlet pipe that was

full when pumping water (see Giné and Jacoby 2020), so the flow measure varies between (“minimal”

coded as) 0.1 and (“full” coded as) 1.0, with one-quarter, one-half, and three-quarters flow in between.

Reflecting the cyclicality of water tables during the rabi season seen in Figure 1, average flow assessments

in 2016-17 (2009-10) fall from 0.84 (0.62) at the start of rabi to 0.57 (0.35) at the end. We focus here

on end-of-season flows, since well interference becomes more salient as the local aquifer is drawn down.

To estimate flow probabilities in Section 4, we construct a balanced 2-year panel of 514 functioning

wells present in both the 2010 and 2017 household/plot surveys. We find that average end-of-season

flow declined in the panel by almost half from 2010 to 2017 (see Appendix Table B.2), which may be

attributable to differences in the respective monsoons. According to data on total precipitation from

June to November from our study area (see Appendix Figure B.1) rainfall during the 2016 monsoon

season, responsible for rabi 2016-17 recharge, fell roughly 30% short of that in 2009.

2.5 Subjective drilling success

Both the 2010 and 2017 household/plot surveys ask “if anyone tried to dig a well today within 500

meters of this plot, what do you think is the percent chance that the person would succeed?” A

significant advantage of these data (relative to those on actual drilling success) is that they provide a

probability, albeit a subjective one, around each plot regardless of whether there was ever an attempt to

drill on it. Because subjective assessments of drilling success could be affected by recent drilling activity,

however, we only use responses from the 2010 survey, predating our drilling panel (see Appendix Figure

B.2). While there is considerable variation in the average subjective success rate across mandal (ranging

from 0.337 to 0.572), the overall average rate of 0.446 is remarkably close to the actual success rate of

0.423 for 2012-16 noted above.14 Consistent with drilling occurring when well interference effects are

negligible and when groundwater levels are at their annual nadir (i.e., in the summer), our structural

model assumes that the drilling success probability, proxied by the mandal average subjective rate, is

independent of both the number of functioning wells in the adjacency and of monsoon rainfall.

14This relatively low success rate reflects the nature of the shallow hard rock aquifer, where groundwater storage is
highly localized, confined to certain narrow fissures. By contrast, drilling success rates in a deep alluvial (”bathtub”-type)
aquifers would be close to one.
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3 Preliminary Estimation

In this section, we first develop the panel data econometrics for our preliminary estimations using the

survey data described in the previous section, then investigate the determinants of borewell drilling to

assess the empirical relevance of well interference, and lastly present estimates of the flow-state and well

failure processes that we shall use as primitives in the structural estimation.

3.1 Unobserved heterogeneity

To allow for time invariant unobserved heterogeneity, we specify the probability of an outcome as a

function of an index in plot i and period (year) t as follows:

zit = νi + β0 + β1Nit−1 + β2Rmt + εit, (2)

where νi is a normally distributed random effect that varies across reference plots, Nit−1 is the number

of functioning wells in the adjacency at the end of the previous period, and Rmt is a dummy variable

that takes a value of one if monsoon rainfall in mandal m in year t exceeds the 2009-17 average for the

12 mandal study area as a whole. The time-varying error εit is assumed iid logistic.

A key concern is that νi may be correlated with (Nit−1, Rmt). However, since nonlinear probability

models do not lend themselves to fixed effects approaches (except in some special cases), we employ

correlated random effects (CRE). As discussed in Wooldridge (2016), the validity of CRE depends on

Nit−1 and Rmt being strictly exogenous conditional on νi.
15 In particular, let

νi = γ1N̄i + γ2R̄m + µi, (3)

where bars denote reference plot-specific means of the corresponding explanatory variable and µi is a

continuously distributed mean zero random effect. Substituting into (2) yields

zit = µi + β0 + β1Nit−1 + β2Rmt + γ1N̄i + γ2R̄m + εit, (4)

which is the index function that we use in our estimations below.

15In other words, Nit−1 and Rmt must be uncorrelated with all present and future values of εit. In the case of the
reduced-form drilling logit, however, strict exogeneity is violated if we condition on Nit−1 = Nit−1 + nit−1 (or Nit−1 and
nit−1 separately) because a successful drilling attempt in period t will augment nit by one. For this reason, we adopt a
slightly different approach in the reduced-form drilling logit discussed in Subsection 3.3.
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3.2 Misclassification error

The reported number of functioning wells on neighboring plots, Nit−1, is plausibly subject to recall

error, as already noted, leading to a non-classical form of measurement error.16 We thus begin with the

(also plausible) assumption that the number of existing neighboring wells NE
it−1 is accurately observed.

Ignoring nit−1, which is accurately measured by assumption, we thus want to estimate the probability

that some outcome Yit depends upon the true number of functioning wells in the adjacency Pr(Yit|Nit−1).

Although Nit−1 is not perfectly observed, we know that

Pr(Yit|NE
it−1) =

NEit−1∑
k=1

Pr(Yit|k)Pr(k|NE
it−1), (5)

where Pr(k|NE
it−1) is the discrete probability density of the true number of functioning wells outside of

the reference plot. This density is of the binomial form

Pr(k|NE
it−1) =

NE
it−1!

k!(NE
it−1 − k)!

pN
E
it−1−k(1− p)k, (6)

where p is the underlying annual probability of well failure. For simplicity, we take p to be constant

over time and across adjacencies in each of the two districts. From our data on the rate of reference

plot borewell failures, we estimate p̂ = 0.104 in Anantapur and p̂ = 0.052 in Mahabubnagar.

Our misclassification error model (MEM) estimator then assumes that the likelihood contribution

conditional on unobservable µ is

`yi (µ) =
T∏
t=1

NEit−1∑
k=1

Pr(Yit|zit(k, µ))Pr(k|NE
it−1, p̂). (7)

3.3 Determinants of drilling

Our drilling logit is based on CRE-MEM likelihood (7) with µ assumed normally distributed. A suc-

cessful drilling attempt in period t, however, increases the number of functioning wells on the reference

nit by one well. Thus, we have in nit−1 essentially a lagged endogenous variable. Wooldridge (2005)

16While there has been recent progress in the econometrics literature on models of misclassification (e.g., Mahajan
2006; Hu 2008), no tractable general approaches exist applicable to our specific situation.
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suggests controlling for the initial conditions, altering equation (4) as follows:

zdit = µi + β0 + β1Nit−1 + β21nit−1=1 + β31nit−1>1 + β4Rmt

+ γ1N̄i + γ21na0=1 + γ31na0>1 + γ4R̄m + γ′5Zi + εit. (8)

In addition to allowing for separate effects of own (β2 and β3) and neighboring (β1) borewells, equation

(8) includes the vector of controls Zi consisting of log reference plot area, number of plots in the

adjacency, and mandal dummies.

The premise of our theoretical framework, laid out in the next section, is that well interference

induces strategic substitutability between drilling decisions of neighboring plot owners, implying that

β1 < 0. Since Nit−1 reflects only past investment behavior by neighbors, β1 in equation (8) is identified

even if contemporaneous plot-specific drilling shocks εit are (spatially) correlated between plots in the

same adjacency.17 Turning to the estimation results in Table 1, the column 1 specification, which

ignores misclassification of neighboring wells functioning status, shows no significant effect on drilling

(first row). The corresponding MEM estimate in column 2, which corrects for misclassification, is much

larger in magnitude and statistically significant, indicating that having more functioning wells in the

adjacency, outside of the reference plot, reduces the likelihood of drilling.18 We thus find strong evidence

of strategic substitutability between neighbors’ drilling decisions.

Also in Table 1, we see that having more functional borewells on the reference plot substantially

reduces well-drilling by the plot owner, perhaps due to diminishing returns to groundwater in production

and to potential interference among own borewells.19 As expected if rainfall were iid across years and

thus not predictive of future rainfall, a good past monsoon does not significantly affect the propensity

to drill on the reference plot. We also find more drilling on larger plots. However, drilling is unaffected

by the number of plots in the adjacency, which supports a simplified state-space (N, n) for the reference

plot owner’s investment decision (see Section 4.2 below). All of these results, and that on strategic

substitutability, are robust to the inclusion of mandal dummies (compare columns 2 and 3).

17While identification does break down if εit is both spatially and serially correlated (a version of Manski 1993’s reflection
problem), a spurious finding of strategic substitutability could only be explained by either negative spatial or negative
serial correlation in drilling shocks, either of which is implausible. In a more likely scenario of positive spatial and serial
correlation of drilling shocks, our estimate of β1 would be biased upward and thus away from strategic substitutability. Of
course, if the random effect µi fully accounts for serial dependence in the error term of equation (8), then the CRE-MEM
estimator of β1 is unbiased regardless of spatial correlation.

18Misclassification of neighboring wells’ functioning status thus appears to act like classical measurement error leading
to attenuation bias. Indeed, in Appendix E, we obtain qualitatively similar results from a linear probability model with
plot fixed effects using instrumental variables to correct for classical measurement error.

19The marginal effects are very large: Going from 0 to 1 reference plot borewells reduces the predicted annual drilling
rate from 0.132 to 0.044, whereas going from 1 to 2 reference plot borewells reduces the predicted annual drilling rate
from 0.044 to just 0.017.
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Table 1: Determinants of Drilling

(1) (2) (3) (4)

No. func. wells outside ref. plot (N ) -0.143 -0.549 -0.599 -0.626
(0.170) (0.211) (0.203) (0.205)

1 func. well on ref. plot (1n=1) -1.083 -1.150 -1.092 -1.124
(0.195) (0.199) (0.195) (0.195)

2+ func. wells on ref. plot (1n=2) -2.204 -2.350 -2.065 -2.103
(0.373) (0.383) (0.375) (0.376)

Good monsoon (R) -0.0622 -0.0494 -0.0608 -0.0616
(0.171) (0.172) (0.186) (0.186)

Log(ref plot area) 0.366 0.372 0.337 0.192
(0.0850) (0.0858) (0.0883) (0.0947)

No. of plots in adjacency -0.0332 -0.0381 0.0170 0.0251
(0.0631) (0.0636) (0.0629) (0.0629)

Log(gross wealth in 2009) — — — 0.284
(0.0787)

Mandal dummies (11) No No Yes Yes
Estimation method CRE CRE-MEM CRE-MEM CRE-MEM

Log-likelihood -1296 -1293 -1271 -1265

H0 : No plot-level unobserved heterogeneity
LR test statistic 68.11 148.5 93.79 86.58
p-value 0.000 0.000 0.000 0.000

Notes: Standard errors in parentheses. Dependent variable is an indicator for whether well-

drilling was attempted on reference plot that year. All estimations use a sample of 1,057 reference

plots over five years (for a total sample of 5,285). All logit models estimated by maximum

likelihood (selected coefficients reported). For estimation method, CRE refers to correlated

(normally distributed) random effects (see subsection 4.1) and MEM to misclassification error

model (see subsection 4.2).

Next, we assess the importance of financial liquidity for borewell investment. From the 2010 house-

hold survey, we construct a measure of the reference plot owner’s gross wealth defined as the total value

of household assets as of 2009, including agricultural land, livestock, agricultural machinery, household

durable goods, and savings in the form of bank deposits, cash and jewelry.20 Not surprisingly, given

the high capital requirement of drilling a borewell, initially wealthier households were significantly more

likely to undertake such investment between 2012-16 (column 5). In particular, a doubling of financial

wealth would increase the predicted annual drilling rate from 7.2 to 9.5%. Since households with larger

reference plots also tend to be wealthier, conditioning on wealth attenuates the reference plot area

coefficient by more than 40% (compare columns 4 and 5), although it remains statistically significant.

Lastly, for each specification of Table 1, we provide a likelihood ratio test against the null of no unob-

20In this low-income agrarian setting, it is very difficult to distinguish between liquid and illiquid assets and we make
no attempt to do so. Total wealth should be a good proxy for liquidity.
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served heterogeneity at the reference plot level, referring specifically to the distribution of unconditional

heterogeneity νi (see the next subsection for details of the testing procedure). In all specifications, we

strongly reject the null of no heterogeneity.21 This finding suggests that unobserved heterogeneity ex-

plains part of the cross-sectional correlation between drilling and the number of functioning wells in the

adjacency and should, therefore, be addressed in the structural estimation.

3.4 A joint model of well flow and failure

The well flow and failure panels cover 382 and 697 adjacencies, respectively, of which 360 overlap,

i.e., include wells with both flow and failure observations.22 This overlap allows identification of the

correlation in reference plot-level unobserved heterogeneity between the well flow and failure processes.

Such correlation is plausible if well failure is seen as a state of zero flow forever.

First, we discuss the likelihood contribution of each process in turn and then derive the joint flow-

failure likelihood.

Flow To estimate the probabilities for the five well-flow states (q = 0.1, 0.25, 0.5, 0.75, 1.0), we use a

CRE ordered logit for the two-year panel. The conditional likelihood contribution of reference plot i is

`fi (µ) =
∏
t

5∏
m=1

(
1

1 + ecm+1+zfit(µ)
− 1

1 + ecm+zfit(µ)

)
1Qit=m

(9)

where zfit(µ) is a linear index for flow as in equation (4), Qit is a 5-valued flow-state indicator and the

cm are cutoff parameters with c1 = −∞ and c6 = ∞. Note that the variable Nit differs between the

household/plot panel dataset used in the flow estimation and the retrospective adjacency panel dataset.

In the former case, farmers were asked about the number of other functioning borewells within a 100

meters radius of the reference plot; while not precisely the same as our concept of adjacency, the two

definitions of neighborhood turn out to be essentially the same in practice (see below). Moreover, since

the Nit obtained from the household/plot survey is the contemporaneous (rather than retrospective)

report of the respondent, we assume no misclassification error.

Failure For reasons discussed in Section 2.2, we adopt a constant failure hazard specification, using

the sequential logit as in Cameron and Heckman (1998), among others. The conditional likelihood

21The p-values account for testing on the boundary of the parameter space; i.e., they are one-half of the probability
that a chi-squared with 1 degree of freedom is greater than the LR test statistic reported in the table.

22Non-overlap occurs because flow data were collected on all borewells owned by the household, irrespective of their
inclusion in the adjacency survey, and because there are adjacencies that did not have functioning wells on the reference
plot in 2010 and 2017, when flow data were collected.
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contribution with Nit−1 subject to misclassification error, as discussed in Subsection 3.2,23 is

`Fi (ξ) =

Ti∏
t=τi

NEit−1∑
k=1

ez
F
it(k,ξ)·Fiat

1 + ez
F
it(k,ξ)

· Pr(k|NE
it−1, p̂), (10)

where zFit (ξ) is a linear index for failure, Fit is a binary failure indicator, τi is the year that the borewell

first enters the panel (or 2012, whichever comes last), Ti is the last year the borewell exists in the panel

(or 2016, whichever comes first), and ξ is the unobserved heterogeneity in well failure. As also noted

in Section 2.2, the failure panel is restricted to just one reference plot borewell; we always choose the

oldest well. Allowing multiple borewells would lead to a violation of strict exogeneity due to correlation

between Nit−1 and the failure shock.

The joint model For the joint flow/failure estimation, we follow, e.g., Eckstein and Wolpin (1999) in

assuming that the reference plot level random effects, µ and ξ, are linearly related, i.e., ξ = κµ, where

κ is a covariance parameter. Defining three indicator variables, D1
i , D

2
i , D

3
i for whether reference plot i

contributes, respectively, only flow data, only failure data, or both flow and failure data, and assuming

that µ is normally distributed with variance σ2
µ, the full log-likelihood is

L =
∑
i

log

{∫
µ

`i(µ, κµ)dΦ(
µ

σµ
)

}
, (11)

where

`i(µ, ξ) =
[
`fi (µ)

]D1
i [
`Fi (ξ)

]D2
i

[
`fi (µ)`Fi (ξ)

]D3
i

. (12)

We use 10-point Guass-Hermite quadrature to integrate out the continuous random effect µ.24

To estimate the probabilities of the five well flow states, πk(N,R, ν
f ), and the failure probability,

πF (N,R, νF ), where νf and νF are, respectively, the flow and failure unobserved heterogeneity uncon-

ditional on the CRE covariates (N̄i, R̄m) , we proceed in four steps:

Step 1: Maximize the CRE likelihood given by equation (11) and obtain estimates of the linear index

coefficients β̂f , γ̂f , β̂F , and γ̂F (see equation 4).

23Whether derived from the adjacency or household/plot survey (and conditional on having at least one functional
reference plot borewell), Nit−1 averages very close to 3 borewells in 2017, indicating that an ‘adjacency’ and a 100 meter
radius around a plot are essentially the same thing.

24Compared to a discrete distribution, a continuous distribution of the random effect is easier to estimate and more
conducive to hypothesis testing. However, since the structural model requires discrete types, we estimate a discrete
heterogeneity distribution in our final specification (see Step 4 below).

16



Step 2: Set βf = β̂f , βF = β̂F , γf = γF = 0, and re-maximize the likelihood with respect to the

unconditional heterogeneity distribution parameters σν =
√
var(νf ) and κν = cov(νf , νF )/σ2

ν .

Step 3: Test H0 : σν = κν = 0.25 If reject, go to Step 4. Otherwise, set νf = νF = 0.

Step 4: Estimate a discrete joint distribution of (νf , νF ) adding points of support j = 1, ..., J until the

likelihood fails to improve. Compute πk(N,R, ν
f
j ) and πF (N,R, νFj ) for each j.

The top panel of Table 2 reports the coefficient estimates from Step 1. Column 1 ignores misclas-

sification error; column 2 controls for misclassification error using the MEM approach; and column 3

augments the column 2 specification with mandal dummies in both flow and failure linear indices. Con-

sistent with the well interference externality, having more borewells in an adjacency depresses well-flow

and makes failure of the reference well more likely. This latter effect, however, only emerges when we

control for misclassification error using MEM in columns 2 and 3. Also, having had a good previous

monsoon improves well flow but does not have a significant effect on failure, consistent with our inter-

pretation of well failure as an absorbing state, independent of the vagaries of the monsoon. Including

mandal dummies in column 3 shrinks the estimated standard error of unobserved heterogeneity σν from

1.39 to 0.31. Lastly, only the MEM specifications in columns 2 and 3 show the expected negative cor-

relation between flow and failure heterogeneity and, in both specifications, we strongly reject the null

of no unobserved heterogeneity (Step 3).

Moving to Step 4, we redo Step 2 allowing for 2 discrete types, obtaining a log-likelihood value of

-2245.59 (compare to -2246.55 in column 3 of Table 2). Since adding a third type does not lead to an

improvement in the likelihood, we stop at J = 2 and compute the flow and failure probabilities. For each

unobserved flow type, “low” and “high”, Figure 4 plots expected well flow,
∑

k πkqk, on the left panel and

the probability of well failure, πF , on the right panel against the (hypothetical) number of functioning

wells in the adjacency N , averaging across mandals and rainfall states for ease of presentation. While

expected flow differs modestly between high and low unobserved flow types, the marginal effect of N on

expected flow (the intensive margin externality) is virtually identical across types. By contrast, both

the rate of well failure and the marginal effect of N on failure (extensive margin externality) are higher

for the low flow type (probability = 0.364) than for the high flow type (probability = 0.636).

Note that the flow-failure estimation sample is restricted to reference plots that had a functioning

borewell at some point during 2010–2017, which we shall refer to as ‘developed’ plots. Our four-step

procedure recovers the distribution of unobserved type ν = νf only for such developed plots. In the

25This test presents the same boundary condition problem encountered earlier in Table 1 complicated further by κν not
being identified under the null. Following Stata’s advice for such scenarios (see “help j mixedlr” and citations therein),
we use a conventional chi-square statistic to obtain a conservative p-value.
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Table 2: Joint Flow-Failure CRE Estimation

Step 1 (1) (2) (3)

Flow:

log(N) -0.849 -0.858 -0.884
(0.171) (0.172) (0.172)

Good monsoon 1.766 1.782 1.917
(0.800) (0.802) (0.804)

Failure:

log(N) 0.052 1.842 1.163
(0.635) (0.560) (0.473)

Good monsoon 0.119 0.127 -0.258
(0.211) (0.222) (0.259)

Mandal dummies NO NO YES
Estimation method CRE CRE-MEM CRE-MEM

Log-likelihood -2,246.71 -2,240.36 -2,163.23

Step 2

σν 1.289 1.390 0.311
(0.093) (0.112) (0.136)

κν 0.059 -1.864 -4.676
(0.205) (0.237) (2.220)

ρν 0.024 -0.498 -0.106
(0.084) (0.029) (0.045)

Log-likelihood -2404.41 -2480.97 -2246.55

H0 : No plot-level unobserved heterogeneity
LR test statistic 123.203 218.726 30.789
p-value 0.000 0.000 0.000

Notes: Standard errors in parentheses. Maximum likelihood estimates

with reference plot-level correlated random effects (CRE). Ordered

logit cutoffs for flow, constant term for failure, and CRE covariate

coefficients for both equations, not reported. Sample size = 3,401. σν

is standard deviation of (unconditional) unobserved heterogeneity; κν

is flow-failure covariance of same; ρν = corr(νf + εf , νF + εF ) is full

cross-equation error correlation.

structural estimation, we mimic this approach by drawing an unobserved plot type from the estimated

distribution only if the plot could be developed (see Subsection 5.2 for details).

To summarize the empirical results thus far, more functional borewells near a plot reduce the dis-

charge of borewells on that plot, increase their likelihood of failure, and reduce the propensity for further

drilling. Taken together, these findings point to a well interference externality that farmers incorporate

into their investment decisions. We turn next to the theoretical framework for these decisions.
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Figure 4: Expected flow and failure probability by type
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4 A Model of Borewell Investment

4.1 Preliminaries

Let the incremental agricultural output from having a functioning borewell on plot i at time t be

yit = θ
[
αqδit + (1− α)aδi

] 1
δ , (13)

where (θ, α, δ) are production function parameters, ai is plot area, and qit is well discharge, which is

stochastic and thus unknown to the farmer prior to drilling. We assume that borewell discharge has

a discrete distribution with K points of support {qit1, ..., qitK} each with probability πitk. Along with

a constant elasticity of substitution (CES), production function (13) also imposes constant returns to

scale (CRS), so that output per acre only depends on total borewell discharge per acre.26 The scale

parameter θ converts physical units of incremental output into 2017 Indian Rupees (Rs).

Discharge probabilities πitk evolve over time depending on monsoon rainfall, Rt, which determines

26The Online Appendix in Giné and Jacoby (2020) tests and cannot reject CRS based on a Cobb-Douglas production
function estimation in a closely related setting.

19



annual aquifer recharge, and on the number of functioning borewells in the adjacency Nit according to

πitk = πk(Nit, Rt). (14)

The well interference externality, estimated in Subsection 3.4, can be thought of as a higher Nit shifting

the probability mass to low flow states. A borewell remains functional, with positive discharge, until

stochastic failure occurs with probability πFit = πF (Nit, Rt). Once a borewell fails, it will never have a

positive discharge again regardless of monsoon rainfall Rt, and, as a result, yit = 0 forever.27 Drilling

success is also stochastic and, for reasons discussed in Subsection 2.5, we assume that the probability

of success πS is constant.

Drilling a borewell entails a cost cd and if the attempt is successful, there is an additional cost of

installing a pipe, casing, and applying for the electricity connection (the submersible pump itself is

removable and thus not considered a sunk cost). The total cost of a successful attempt is thus cs > cd

and both cs and cd are estimable from our survey data.

Finally, for the sake of tractability, we assume that at most two wells can function simultaneously on

any given plot.28 So, if pi is the number of plots in adjacency i, then Nit ∈ {0, .., 2pi}. Drilling success,

failure, and discharge events for two wells on the same plot are independent random variables (condi-

tional on the plot-specific unobserved heterogeneity described in Subsection 3.1). Using superscripts to

enumerate wells, incremental output of a plot with two wells depends on the sum of their discharges

q1
it + q2

it, since water from both wells can be pooled and dispersed throughout the plot.

Summarizing, expected output conditional on monsoon rainfall may be written as

E[yit(Nit, nit)|Rt] =
K∑
k=1

πitk(Nit, Rt)θ
[
α(q1

itk)
δ + (1− α)aδi

] 1
δ if nit = 1 (15)

=
K∑
j=1

K∑
k=1

πitj(Nit, Rt)πitk(Nit, Rt)θ
[
α(q1

itk + q2
itj)

δ + (1− α)aδi
] 1
δ if nit = 2.

27While we allow the failure probability to depend on rainfall from the past monsoon for the sake of generality, a null
effect of rainfall is more consistent with well failure being a permanent (i.e., ‘absorbing’) state, which is indeed what we
find in Subsection 3.4.

28In our sample, there are just 21 out of 5,285 plot-years in which a reference plot had 3 functioning wells at the same
time (zero cases of 4 or more wells). We set nit = 2 in these cases.
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4.2 Borewell investment decision

We now consider the discrete choice to drill (d = 1) or not to drill (d = 0) and derive the plot owner’s

decision rule or conditional choice probability CCP (N , n) ≡ Pr(d = 1 | N , n).29

We first describe the dynamic investment problem facing the owner of a plot, with area a in an

adjacency with p plots, in isolation, i.e, taking as given their beliefs about the evolution of the state of

the adjacency. As noted, the state space of the plot owner is assumed to consist only of the number

of own functioning wells, n ∈ {0, 1, 2}, and the total number of wells in other plots in the adjacency,

N ∈ {0, .., 2(p − 1)}. In the next subsection we discuss this assumption and its role in a tractable

equilibrium model of beliefs and conditional choice probabilities.

By assumption, state n = 0 or n = 1 are the only cases where investment can occur. A plot

owner with n = 0 may decide not to drill, with payoff value v00(N ) + ε00, or to drill, with payoff value

v0I(N ) + ε0I . As in a random-utility framework, choice-specific payoffs have additive “deterministic”

and “random” components. The random components of the payoff of waiting (ε00) or drilling (ε0I) are

realized every period before choices are made, are iid across choices and time, and are unobserved by

other plot owners in the adjacency, each of whom are drawing their own random components.

The deterministic components, which are known to the plot owner conditional on the observable

state variables and parameters, include the static one-period profits (expected value of output minus

drilling costs, if any) and the expected continuation values. For the no drilling (waiting) choice, we have

v00(N ) = β EV (N ′, 0)

= β
∑
N ′

F̃ (N ′ | N , 0)V (N ′, 0)
(16)

and for the choice of making a drilling attempt

v0I(N ) = πS

(
−cs + β

∑
N ′

F̃ (N ′ | N , 0)V (N ′, 1)

)

+ (1− πS)

(
−cd + β

∑
N ′

F̃ (N ′ | N , 0)V (N ′, 0)

)
,

(17)

where the value function V (N , n) is defined below, β is the discount factor and F̃ (N ′ | N , n) captures

the individual’s beliefs about the probability of N ′ functioning wells in other adjacency plots next

period, conditional on N functioning wells in other adjacency plots this period and on n functioning

29While subscripts are removed for expositional ease, according to the timing conventions of Section 2.2, the drilling
decision on reference plot i at time t, dit, depends on nit−1 and Nit−1.
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wells on the reference plot this period (n = 0, in this case). As indicated in Figure 2, since drilling

occurs only after (rabi) production has taken place, the increase in expected output from any successful

attempt are only realized in the next period.

We assume that the random components associated with the choices of waiting and drilling, (ε00, ε0I),

are each iid Type-1 extreme value with location parameter 0 and scale parameter σ. Further, denote

by V (N , n) the beginning-of-period value function for the plot owner, before these random components

of payoffs are realized. Taking expectations for n = 0, we have

V (N , 0) = Emax
{
v00(N ) + ε00, v0I(N ) + ε0I

}
(18)

= σ
(
γ + log

(
exp(v00(N )/σ) + exp(v0I(N )/σ)

))
where the second line follows from the Type-1 extreme value assumption and γ is Euler’s constant.

Similarly, a borewell owner with n = 1 may decide to wait, with payoff value v10(N ) + ε10, where

v10(N ) =E
{
E[y(N + 1, 1)|R]

+ β

(
(1− πF (N + 1, R))

∑
N ′

F̃ (N ′ | N , 1)V (N ′, 1)

+ πF (N + 1, R)
∑
N ′

F̃ (N ′ | N , 1)V (N ′, 0)

)}
,

(19)

using equation (15) for the inner expectation of output conditional on monsoon rainfall R and taking

the outer expectation with respect to the distribution of R. Alternatively, the plot owner may attempt

to drill a second borewell, with payoff value v1I(N ) + ε1I , where

v1I(N ) = E
{
E[y(N + 1, 1)|R]− csπS − cd(1− πS)

+ β

(
πS(1− πF (N + 1, R))

∑
N ′

F̃ (N ′ | N , 1)V (N ′, 2)

)
+ β (πSπF (N + 1, R) + (1− πS)(1− πF (N + 1, R)))

×
∑
N ′

F̃ (N ′ | N , 1)V (N ′, 1)

+ β(1− πS)πF (N + 1, R)
∑
N ′

F (N ′ | N , 1)V (N ′, 0)
}
.

(20)
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We can now write

V (N , 1) = Emax
{
v10(N ) + ε10, v1I(N ) + ε1I

}
(21)

= σ
(
γ + log (exp(v10(N )/σ) + exp(v1I(N )/σ))

)
where the second line follows, again, from an analogous Type-1 extreme value assumption on (ε10, ε1I).

Finally, we have

V (N , 2) = E
{
E[y(N + 2, 2)|R]

+ β

(
(1− πF (N + 2, R))2

∑
N ′

F̃ (N ′ | N , 2)V (N ′, 2)

+ 2πF (N + 2, R)(1− πF (N + 2, R))
∑
N ′

F̃ (N ′ | N , 2)V (N ′, 1)

+ π2
F (N + 2, R)

∑
N ′

F̃ (N ′ | N , 2)V (N ′, 0)

)}
.

(22)

Note that equations (16)-(22) combine to form the Bellman equation for this investment problem.

The discrete choice to attempt drilling a borewell in the reference plot is thus

d = d(N , n) =

{
1 if n < 2 and vnI(N )− vn0(N ) > εn0 − εnI
0 otherwise.

using equations (16), (17), (19) and (20). With logit random utility shocks, the decision rule as perceived

by the researcher (and by neighbors) is characterized by the CCP function

CCP(N , n) = Pr(d = 1 | N , n) = Pr(εn0 − εnI < vnI(N )− vn0(N ))

=
exp(vnI(N )/σ)

exp(vnI(N )/σ) + exp(vn0(N )/σ)
.

4.3 Adjacency equilibrium

Before characterizing the equilibrium of the dynamic drilling game, we introduce the concept of a village

“map”, or plot network, upon which this game is played. As previously described, we use 14 cadastral

maps representing at least one village in each mandal. While the borders of these administrative maps

are arbitrary in that they do not correspond to salient geographic or geological features, since each
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contains many plots, “truncation-at-border” effects should have negligible empirical consequences.30

Formally, a cadastral map with P plots is characterized by a P × 1 vector A listing the area of

each plot and a P × P adjacency matrix M with typical element Mij = 1 if plot j adjoins plot i and

0 otherwise, and with Mii = 1. Ignoring for now the plot’s unobserved flow/failure type, {A,M} fully

characterizes all adjacencies in the map. For instance, plot i has an area equal to the i-th element of

A and its adjacency has
∑

jMij plots because plot j with Mij = 1 belongs in plot i’s adjacency. Let

M(ih) be the set of plots h-level adjacent to plot i so thatM(i1) = {j : Mij = 1} is the set of immediate

(1-level) neighbors in i’s adjacency, M(i2) =
{
j : j /∈M(i1), j ∈M(k1), k ∈M(i1)

}
is the set of 1-level

adjacent neighbors of i’s 1-level adjacent neighbors, and so on for all “layers” h.

The state of plot i in period t is defined by the number of functioning wells nit ∈ {0, 1, 2}. Let

Xt = {nit : i = 1, . . . , P} be the state of the map, representing the entire spatial distribution of borewells

in the cadastral map. Now, define X(ih)t =
{
njt : j ∈M(ih)

}
, where X(i1)t collects the state of the

neighbors of reference plot i, X(i2)t collects the state of the neighbors’ neighbors, and so on.

Thus far, we have taken beliefs about the evolution of the number of functioning wells in the

adjacency as given, deriving the plot owner’s dynamic investment decision as if it were a “game against

nature”. However, we assume a Markov-perfect equilibrium (MPE), in which beliefs and decision

rules (CCPs) of all plot owners are consistent with one another. Furthermore, our state space (N , n)

implicitly assumes that plot owners ignore the status of wells on successive layers of plots outside

their own adjacencies. This restriction is not, in general, implied by our key assumption that well

interference is limited to functioning wells in the adjacency. Indeed, information on the status of wells

outside the first layer might help agents predict neighbors’ investment behavior and the status of wells

in their adjacencies, which in turn helps neighbors’ predict their neighbors’ investment behavior and

the status of their wells, and so on. In other words, under unrestricted MPE play, investment decisions

may depend on the state of the whole map, even with well interference effects confined to adjacent

plots. Let CCPi(Xt) be a choice probability function for the owner of plot i and {CCP} be the

vector of choice probabilities of all plot owners in the cadastral map. Further, let one-period ahead

transition probabilities F̃ (Xt+1 | Xt) describe beliefs about the evolution of the state of the map and

F (Xt+1 | Xt; {CCP}) be the one-period-ahead law of motion for the state induced by the primitives of

the problem and {CCP}. We thus have:

Definition 1. An MPE is a vector of choice probabilities {CCP ∗i (Xt) : i = 1, . . . , P} and beliefs F̃ ∗()

such that: a) given beliefs F̃ ∗(), CCP ∗i () is the solution of plot owner i’s dynamic “game against nature”;

and b) beliefs are correct, in that F̃ ∗(Xt+1 | Xt) = F (Xt+1 | Xt; {CCP}∗).
30To be sure, adjacencies of border plots will always be truncated. However, our average cadastral map has 881 plots

with only 102 (12%) being border plots.
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In general, each plot owner with their unique adjacency would have a different equilibrium CCP depend-

ing on all primitives, including the structure of the map. Because {Xt, {CCP}} has high dimensionality

given the number of plots in the map, unrestricted MPE play is not empirically feasible.

As a tractable alternative, we consider a Markov equilibrium in which: i) CCPs depend only on the

state of the (1-level) adjacency (X(i1)t, nit), and ii) the plot owner has beliefs only about the stochastic

evolution of X(i1)t in steady state. While assumption i) avoids the “curse of dimensionality”, the fact

that well interference is largely limited to the adjacency should dampen the influences induced by

unrestricted play of plot owners in layers h > 1 as well as making it less plausible (i.e., by bounded

rationality) that plot owners would keep track of the full state of a large map. Assumption ii) is, firstly,

a natural implication of assumption i), but it also adds the non-trivial requirement that equilibrium

beliefs about the state of the adjacency be correct when averaged over the map’s stochastic steady

state.31 Thus, in the spirit of an “oblivious equilibrium”,32 we propose

Definition 2. An Adjacency Equilibrium (AE) is a vector of choice probabilities {CCP ∗i (X(i1)t, nit) :

i = 1, . . . , P} and of beliefs
{
F̃ ∗i (X(i1)t+1 | X(i1)t, nit) : i = 1, . . . , P

}
such that: a) given beliefs F̃ ∗i (),

the decision rule CCP ∗i () is the solution of plot owner i’s dynamic “game against nature”; and b)

beliefs are correct “on average” in steady state. That is, let F∞(Xt; {CCP}) be the stationary joint

distribution over the state induced by the primitives and the vector of CCPs.33 Further, let F∞(X(i2)t |
X(i1)t, n(it); {CCP}) be the conditional distribution implied by F∞(Xt; {CCP}). Then,

F̃ ∗i (X(i1)t+1 = x(i1)t+1 | X(i1)t = x(i1)t, nit) = (23)∑
x(i2)t

F∞(x(i2)t | x(i1)t, nit; {CCP}∗)F (x(i1)t+1 | x(i1)t, x(i2)t, nit; {CCP}∗).

To understand how equation (23) constrains beliefs, note first that the evolution of the state of plot

j ∈M(i1) between t and t+ 1 depends on CCP ∗j () at t. This investment decision rule depends, in turn,

upon the state of j’s adjacency at t, i.e., the states of plot j and those of all its neighbors. The neighbors

of plot j are plot i and some (but not necessarily all) of the other plots inM(i1) andM(i2). Therefore,

the state variables of plot owner j are contained in {nit, X(i1)t, X(i2)t}. If the owner of plot i knew X(i2)t,

31Even if all plot owners base their drilling decisions solely on the state of their own adjacencies, the evolution of
the state of any adjacency more than one period ahead will still depend on the state of the full map today. There is,
therefore, a tension between reducing the state space of the decision rule and imposing the equilibrium constraint of
coherency between beliefs and behavior. This tension is resolved by imposing coherency in steady state.

32Weintraub et al. (2008), Benkard et al. (2015) and Ifrach and Weintraub (2017) consider alternative “oblivious
equilibrium” concepts in the context of the Ericson and Pakes (1995) model of industry dynamics and show that they
closely approximate the corresponding MPE. While we expect similar approximation results to hold in our setting, we
leave this issue for future reseach.

33Since the state of the map is an irreducible and aperiodic Markov chain, a unique stationary distribution exists.
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he would thus be able to predict his neighbor j’s behavior at t using CCP ∗j () and, together with other

primitives such as the drilling success and well failure processes, predict the stochastic evolution of the

state of plot j; this prediction is the second factor in each term of the summation in equation (23). An

AE assumes, however, that, rather than having X(i2)t in his information set, plot owner i can only form

expectations about it using the (conditional) steady state distribution F∞(X(i2)t | X(i1)t, nit; {CCP}∗),
hence the probability weights on the RHS of equation (23).34 Although plot owners each still have a

unique CCP and beliefs, and their joint decisions still depend on the entire village map, the AE concept

achieves considerable simplification.35

5 Structural Estimation

5.1 Overview

Three results established in Sections 2 and 3 inform our empirical strategy: First, misclassification error

in the reported number of functioning borewells on neighboring plots leads to non-trivial econometric

biases. Since incorporating a misclassification error correction into a likelihood-based estimator is

complex, we pursue the simpler SMM approach described below. Second, there is important plot-level

unobserved heterogeneity in groundwater availability driving both well flow and failure, which we shall

have to account for in our estimation algorithm. Third, the adjacency panel, which we shall use for the

structural estimation, is restricted to plots from the Cole et al. (2013) weather insurance study that

had any drilling activity within a 500 meter radius over the previous seven years; this drilling activity

requirement was satisfied by (only) 74% of surveyed farmers. Furthermore, we have evidence that lack

of drilling activity may reflect liquidity constraints, as drilling is significantly positively associated with

the plot owner’s initial wealth conditional on the number of currently functioning borewells on that

plot. We discuss how we tackle selection and liquidity constraints in the next subsection.

Before laying out our estimation algorithm, we summarize the primitives of the structural model in

Table 3. In addition to the four structural parameters Ω = (θ, α, δ, σ) that we estimate in the second

stage, the estimation algorithm recovers three auxiliary parameters, to which we now turn.

34In our empirical implementation, we do not employ equation (23) directly but rather compute equilibrium beliefs
using “brute force” by simulating very long histories of investment, success, and failure events on the village map until a
steady state is reached. We then use simulated histories to compute the requisite transition probabilities.

35Using Brouwer’s fixed point theorem, we can show that at least one AE exists. Multiplicity of equilibria, however,
cannot be ruled out. Xu (2018) establishes that, in a static version of a similar model, the best response operator has a
contraction property provided that the “strategic interaction parameter” is small enough. An extension of this result to
a dynamic setting is nontrivial and is left as a topic for future research.
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Table 3: Model Primitives

Symbol(s) Subsection/note
Estimated in 2nd stage:

Production function θ, α, δ 4.1
Scale of drilling shock σ 4.2

Estimated in 1st stage:

Flow state probability functions π1, ..., π5 3.4/note 1
Failure probability function πF 3.4/note 1
Flow/fail heterogeneity ν1, ν2 3.4/note 2
Success probability (mandal-level): πS 2.5
Successful drilling cost cs note 3
Unsuccessful drilling cost cd note 4
Good monsoon prob. (mandal-level): ERmt 3.1

Fixed parameters:

Discount factor β note 5
Map of plot network (mandal-level) {A,M} 4.3

Notes: See subsection specified in column 3 and/or the following numbered notes for
details: (1) Probability functions depend upon the number of functioning borewells in
the adjacency and vary at the mandal-level, as well as by monsoon rainfall and unobserved
type; (2) Probability of (low) type 1 = 0.364; (3) cd = 35, 200 Rs. is computed as average
drilling cost (in 2017 Rs) across all borewells sunk since the year 2000; (4) cs = 72, 300
Rs. is computed as cd plus the average cost of the pipe, casing, and electrical connection
across all borewells sunk since the year 2000; (5) β = 0.90 throughout estimation.

5.2 Empirical specification

Selection and liquidity constraints: To adequately fit the observed distribution of drilling and

borewells across reference plots in our adjacency sample to the model’s predictions for a plot network

(map) of an entire village, we assume that a fraction of plots are permanently incapable of being

developed for groundwater extraction; i.e., for these plots, nit = 0 forever and the annual decision

about whether to drill or not to drill is irrelevant. Let us refer to these plots as undeveloped and to all

other plots susceptible to drilling as developed. We (econometricians), however, do not observe which

plots with nit = 0 are (permanently) undeveloped versus subject to drilling but not currently having a

functioning borewell. Let the propensity for a plot to be developed be given by linear index

Λi = λ0 + λ1wi + ζi, (24)
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where wi is the log of pre-sample wealth of the plot owner and ζi is an iid logistic error term. While

wi in equation (24) captures liquidity constraints – that low wealth farmers are less able to afford the

drilling costs – ζi reflects the (unobserved) suitability of the plot for groundwater development. For the

sake of tractability, we shall assume, that ζi is uncorrelated with unobserved flow/failure heterogeneity

νi.
36 We may now write the probability that a plot is undeveloped as

Pr(Ui = 1|wi, i ∈ sample) =
1

1 + e−(λ0+λ1wi)
. (25)

As described in the next subsection, the initial step of our estimation algorithm assigns a development

status, Uj = 0 or 1, to each plot j on the map. In doing so, two problems arise: i) the wealth of plot

owners on the map is not observed, and ii) the sample of reference plot owners, for whom we do observe

wealth, is positively selected on wealth, since drilling is more likely to have occurred on reference

plots (see Subsection 2.2) and drilling is positively correlated with wealth through a plot’s unobserved

development status U . Moreover, plot area ak (discretized into 4 types indexed by k), which we do

observe on the map, is positively correlated with wealth. Consider, then, the probability that a plot on

the map of area ak is undeveloped:

Pr(Uj = 1|ak, j ∈ map) =

∫
Pr(Uj = 1|ak, wj, j ∈ map)Pr(wj|ak, j ∈ map)dwj (26)

=

∫
Pr(Ui = 1|wi, i ∈ sample)Pr(wi − s|ak, i ∈ sample)dwi

where the unknown parameter s in the second line shifts the log-wealth distribution in the sample to

the left to mimic the log-wealth distribution on the map. Because of selection on observable wealth,

the fraction of undeveloped plots on the map is higher than in the sample and, consequently, there are

fewer borewells on average on the map than on our sample reference plots.

State space restrictions and heterogeneity of developed plots: To make the empirical model

more tractable, we assume that the CCP in the Adjacency Equilibrium depends on the area of the refer-

ence plot a and on the number, but not the areas of adjacent plots. This restriction effectively reduces

X(i1)t to Nit =
∑

j∈M(i1)t
njt, yielding state space (Nit, nit).37 We allow for L “types” of developed

plots, where type encompasses characteristics that are both observed (area, number of adjacent plots)

and unobserved (low or high flow/failure heterogeneity) to the econometrician. The discretization of

36Once we obtain estimates of all of the structural model parameters, we shall use simulation to quantify the difference
in the distributions of νi conditional on the plot being developed and undeveloped.

37Our empirical investigation in Section 3.3 indicates that, conditional on (Nit, nit), the distribution of functioning
wells across plots in the adjacency is not predictive of drilling decisions. Hence, the more fine-grained adjacency state
space (X(i1)t, nit) would not improve model fit.
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reference plot area into four quartiles, already mentioned, coupled with the number of adjacent plots in

the maps ranging from 1 to 7, yields 28 possible observed types, along with 2 unobserved types; thus,

L = 56. Finally, we assume that unobserved plot type νi and development suitability ζi are both iid

across plots.38

5.3 Solution Algorithm

Given values of parameters (Ω, λ0, λ1, s), we obtain an AE on each of the 14 village maps as follows:

Initialize the maps:

Step 1 Given parameter s, randomly draw for each plot j a w̃i from the conditional distribution

of wealth in the sample Pr(wi|ak, i ∈ sample) and set wj = w̃i − s.

Step 2 Given parameters (λ0, λ1), draw a Uj from the binomial distribution with Pr(Uj = 1|wj) =

[1 + e−(λ0+λ1wj)]−1.

Step 3 Assign each plot for which Uj = 0 an unobserved flow type ν1 or ν2, drawing from a

binomial distribution with probability of (low) type 1 = 0.364.

Step 4 Assign each plot an initial number (zero) of functioning borewells {nj0 : j = 1, . . . , P} and

an initial choice probability function (constant equal to 0.5) to each type {CCPl,0 : l = 1, . . . , L} .

Iterate on beliefs and CCPs:

Step 5 Given {CCPl,k−1 : l = 1, . . . , L} at iteration k = 1, 2, ..., simulate the time-series of well

drilling decisions, successes and (unobserved type-specific) failures in every plot on the map

until the steady state is reached. Simulate T = 150, 000 periods forward in steady state.

Step 6 From the steady state simulations, construct estimates of the one-period ahead state

transition matrices F (N ′|N , n) for each type, averaging across plots on the map of the same

type. Denote these estimates by F̂lk.

Step 7 Given beliefs F̂lk and primitives, use policy iteration to compute new CCP’s which solve

the plot owner’s “game against nature”. Upon convergence of policy iterations, obtain a

{CCPl,k} satisfying the fixed point condition CCPlk = Ψ(CCPlk−1, F̂lk,Ω) for all types,

where Ψ() is a policy iteration operator.

Convergence:

38In other words, we abstract from spatial correlation in these plot characteristics. Incorporating spatial correlation
into the structural model is complex and is left as a topic for future research.
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Step 9 If ‖CCPk − CCPk−1 ‖ is small enough, done. If not, update k and back to Step 5. If

CCPs converge, so do beliefs which are a continuous function of CCPs.

Steps 1-9 are nested within a routine for minimizing, with respect to parameter vector (Ω, λ0, λ1, s),

the SMM criterion function, as described next.

5.4 Moment conditions and identification

We match the following 22 empirical moments to their model-based counterparts:

1. Probability of drilling for n = 0 and n = 1 across area quartiles (8 moments);

2. Fraction of plots with n = 0 (1 moment);

3. Probability of drilling when n = 0 across wealth terciles and area quartiles (12 moments);

4. Fraction of plots with N = 0 (1 moment).

Empirical moments are computed as (cell) means across all reference plot-years, while the weighting

matrix used to form the SMM criterion is diagonal, consisting of the inverse moment variances. Heuris-

tically speaking, the first set of moment conditions identify the structural primitive parameters Ω, the

second and third set of moment conditions identify the developed plot probability parameters (λ0, λ1),

and the fourth moment condition (combined with the second) identifies the selection parameter s.

Computing model-based moments corresponding to each of these empirical moments involves sim-

ulating drilling decisions and the number of functioning wells on each map for 500 periods in steady

state and taking the appropriate averages weighted by the proportion of sample plots linked to each

map. This procedure is complicated, however, by unobserved heterogeneity ν and by the presence of

undeveloped plots. To fix ideas, consider the model-simulated counterpart to moment set 1:

Pr[di′|ni′ , ak] =
∑
j

Pr[di′ |ni′ , ak, νj]Pr(νj|ni′ , ak) (27)

=
∑
j

Pr[di′ |Ui′ = 0, ni′ , ak, νj]Pr(Ui′ = 0|ni′ , ak, νj)Pr(νj|ni′ , ak),

where i′ indexes simulated observations. Since our drilling game applies to owners of developed plots,

only Pr[di′ |Ui′ = 0, ni′ , ak, νj] comes from simulating drilling decisions on the maps and taking averages

as just described. In case ni′ = 1, Pr(Ui′ = 0|ni′ , ak, νj) = 1, so that Pr[di′|ni′ = 1, ak] is just the
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weighted average of simulated drilling rates across unobserved types, where the weights Pr(νj|ni′ =

1, ak) are computed from the simulated data using Bayes’ rule. In case ni′ = 0, we have

Pr(Ui′ = 0|ni′ = 0, ak, νj) =

∫
Pr(Ui′ = 0|ni′ = 0, ak, νj, wi′)Pr(wi′ |ni′ = 0, ak, νj)dw

'
∑
i′

1(ni′ = 0, ai′ = ak, νi′ = νj)∑
i′ 1(ni′ = 0, ai′ = ak, νi′ = νj)

[1 + e−(λ0+λ1wi′ )]−1

where the second line uses equation (25) and the fact that wi′ , as in Step 1 of estimation algorithm,

is drawn from the conditional distribution Pr(wi|ak, i ∈ sample). We then apply equation (27) with

simulated weights Pr(νj|ni′ = 0, ak). The other moment conditions are constructed analogously.

We minimize the SMM criterion function, assembled from these moment conditions and the weighting

matrix discussed above, using a downhill simplex method.

5.5 Structural estimation results

Table 4 reports the model parameter estimates along with their bootstrapped standard errors based on

R replications of our estimation procedure. We can reject a Cobb-Douglas production function, which

is nested within the CES, i.e., when δ = 0. We also find, as expected, that λ1 > 0, indicating that

plots owned by wealthier farmers are more likely to be developed for groundwater. Overall, our model

Table 4: Parameter Estimates

θ α δ σ λ0 λ1 s

18.87 0.18 0.73 1.29 -22.34 1.94 2.52
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Notes: Standard errors in parentheses. See equation (13) for def-
inition of production function parameters (θ, α, δ); σ is standard
deviation of random drilling shock; λ0 and λ1 are parameters of
the probability of an undeveloped plot (see equation (25)); s is
the shrinkage parameter to account for nonrandom sampling of
reference plots on the basis of owner wealth.

matches the targeted moments reasonably well (see Figures 5-8). The model also does quite well in

matching certain untargeted moments, as shown in Figures 6 and 8, although it tends to over-predict

the fraction of plots with 2 borewells as well as the fraction with at least 4 neighboring borewells.

We next subject the structural model to a more exacting test of fit. Starting at a steady state on

each village map, we simulate 10 five-year panels consisting of triplets {dit, nit−1,Nit−1 : t = 1, ..., 5}
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Figure 5: Drilling rate by area quartile and number of functioning borewells

Data  2 s.d.

Model

Note: All moments are targeted.

Figure 6: Fraction of plots with n functioning borewells

Data  2 s.d.

Model

Note: n = 0 targeted; n = 1, 2 untargeted

for every plot on the map that is assigned developed status (see Step 2 in Subsection 5.3), yielding

28,508 synthetic panels in total. We then randomly draw from this sample, by village, a number of
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Figure 7: Drilling rate by area quartile and wealth tercile

Wealth Tercile

Data  2 s.d.

Model

Wealth Tercile

Wealth Tercile Wealth Tercile

Note: All moments are targeted.

Figure 8: Fraction of plots with N surrounding functioning borewells

Data  2 s.d.

Model

Note: N = 0 targeted; N = 1, 2...10 untargeted.
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“reference plots” equal to the number of reference plots contributed by that village to the actual sample

of 1,057. Using 1000 draws of these simulated panels, we estimate a linear probability model version of

the drilling reduced form reported (based on actual data) in column 5 of Appendix Table E.1.39

Figure 9: Test of model fit

data model
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Notes: Distribution of estimated coefficients from linear fixed-effects regressions of a drilling indicator on the
number of functioning wells outside the reference plot using 1000 panels simulated from the structural model.

Since we have not exploited the correlation between dit and Nit−1 in estimating the structural

model, we shall focus on β1, the coefficient on Nit−1 in the drilling regression (See equation (8)). In

other words, β1 is an untargeted moment, yet one most directly tied to the strategic behavior that our

model is designed to capture. Figure 9 shows the distribution of β1 estimates from the synthetic panels.

Remarkably, the estimate of 0.0441 from the actual data virtually coincides with the median estimate

from the 1000 replication samples. We view this as powerful corroboration of our model’s validity.

39Because these synthetic reference plots are each endowed with unobserved flow/fail heterogeneity (see Step 1 in
Subsection 5.3), we use reference plot fixed effects just as with the real data. However, because misclassification error is
not an issue in the simulated data, we do not use IV. Finally, since our model assumes (for tractability) that no drilling
occurs on plots with two borewells, we drop observations with n = 2 in the estimation samples for both actual and
synthetic data.
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6 Counterfactuals

We now turn to the quantitative evaluation of counterfactual policies designed to address both the

distortion induced by electricity subsidies and the negative well interference externality.

6.1 Preliminaries

With model parameter estimates in hand, we assess the implications for social welfare and groundwater

development of an annual tax τ on each functioning borewell. Practically, τ could be implemented as a

flat charge for maintaining an agricultural electrical connection, which, if set equal to the annual cost of

electricity to run the pump (given a binding power supply rationing constraint), effectively counteracts

the electricity subsidy; any excess of connection charge over electricity costs acts like a Pigouvian tax on

borewells. In terms of the decision to drill, the annual net Rupee value of output under a counterfactual

τ > 0 is simply E[y(N, n)|R] − τn. Once a borewell fails, we can think of its electricity connection as

being disabled so that no further taxes are incurred.

As a prelude to the policy analysis, we use our structural model to simulate the value of existing and

potential future groundwater development, or “welfare”, in steady state on each map, and average the

result across maps. We calculate private welfare per acre of (model-predicted) developed land as the

expected discounted present value of agricultural output minus drilling costs. To be clear, our private

welfare calculation takes account of well interference externalities inasmuch as it averages output across

hundreds of adjacent plots in each simulated map. Using this approach, the incremental capitalized

private value of groundwater development is 45,600 Rs/acre.40 While this calculation does not net out

the (sunk) cost of drilling extant borewells, it does implicitly discount the future income flows from

these borewells by their failure probability and incorporates the option value of expected future drilling.

The social value of groundwater development is the private value, just discussed, minus the cost of

electricity, which, though free to farmers, is not free to society. We find that this social value is only

14,500 Rs/acre. In other words, more than two-thirds of the private value of groundwater development

is accounted for by the capitalized value of the electricity subsidy. Next, we recompute the village map

equilibria under the counterfactual that each and every plot is an island unto itself, thereby zeroing out

interference effects between borewells operating in adjacent plots. Compared to the current equilibrium,

we find that borewell density in steady state increases by more than 20 percent and that the social value

of groundwater development rises to 22,100 Rs/acre. Thus, the negative externality diminishes the value

of groundwater to society by around a third, a substantial economic burden.

40By way of comparison, median plot value in our study setting is 300,000 Rs per acre. Specifically, we collected
information from farmers on the per acre market value of 2885 owned plots (including all reference plots for the adjacency
survey) in 2017. The median plot does not have a functioning borewell.
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6.2 Optimal tax on borewells

We now consider alternative borewell taxes τ , searching for the optimal tax τ ∗ that maximizes social

welfare. Since well-drilling entails a negative externality, τ ∗ should exceed the annual cost of (currently

freely provided) electricity, the difference being the Pigouvian component of the tax.

For each counterfactual borewell tax τ , we follow Domeij and Heathcote (2004) and compute social

welfare along the transition path from the zero tax baseline. This calculation takes into account the

“short-run”, over which the existing stock of borewells is relevant and, therefore, allows us to compare

alternative policy treatments of wells that have already been sunk.41 We thus consider two regimes,

the first in which all borewells (extant and newly sunk) are subject to taxation but extant wells can be

dismantled at zero cost, and a second in which extant wells are “grandfathered” so that the tax only

applies to new drilling (i.e., no dismantling of old borewells).

As shown in Figure 10, under either tax treatment of extant borewells, setting τ = τe, the annual

electricity cost, would increase the social value of groundwater development to around 19,000 Rs/acre,

or by 28%. In other words, the social cost of free electricity amounts to 4,500 Rs (65 US$) per acre, or

about 1.5% of farmland value in our setting. The welfare gain is only slightly larger when the government

charges all borewell owners for the electricity they use rather than charging only new borewell owners.

To understand the magnitude of this deadweight loss, first note that removing the electricity subsidy is

predicted to induce 0.16 fewer borewells per acre in the new steady state. Therefore, the deadweight loss

is slightly more than 28,000 (= 4500/0.16) Rs per ‘surplus’ borewell. Meanwhile, the cost of electricity

in expected present value terms is 85,000 Rs per borewell (i.e., 8500/0.1, where the numerator is the

annual cost and the denominator is the discount rate), which is an upper bound on the deadweight loss

per surplus borewell. In other words, 85,000 Rs is the marginal deadweight loss (from the last borewell

sunk) under the subsidy policy, whereas 28,000 Rs is the average deadweight loss.

Turning to the first-best, when both new and extant borewells are subject to taxation, the social

welfare maximizing tax, τ ∗D in Figure 10, equals annual electricity costs plus a Pigouvian premium

of around 12% (above τe) to correct for the externality. When existing borewells are grandfathered,

however, the social welfare maximizing tax equals τe plus a roughly 30% Pigouvian premium (about

2,500 Rs per borewell per year); the higher premium is required because the marginal externality cost

of a new borewell is higher when extant borewells still operate. Nevertheless, both tax policies curb

excessive drilling and thus achieve very similar social welfare along their respective transition paths.

Grandfathering of existing borewells is, however, the more politically palatable policy as no farmer

41By contrast, a comparison of steady states with and without a borewell tax provides a long-run perspective, tanta-
mount to comparing alternative histories of groundwater development starting from an initially clean slate. The short
run analysis that we pursue here is arguably the more salient for policy-making purposes.

36



Figure 10: Social welfare under alternative borewell taxes

Tax Per Well (000s Rs)

0
0

0
s 

R
s/

ac
re

e

No dismantling

Dismantling

Notes: Each point on the solid (dashed) curve represents the social welfare along the transition path
from the benchmark zero-tax economy to the steady state under the corresponding (on the x -axis)
counterfactual tax on newly drilled (both new and old) borewells: τe = 8.5 is the tax that recovers
electricity costs; τ∗D = 9.5 is the optimal tax applied to all borewells (dismantling); τ∗ND = 11.0 is the
optimal tax applied only to newly drilled borewells (no dismantling).

would suffer a capital loss on sunk investments.

Lastly, Figure 11 shows the transitional dynamics for the optimal tax under each treatment of extant

borewells. When all borewells, old and new, are taxed, a large fraction of existing wells are dimantled

when the policy is first implemented, hence the vertical drop in wells at time 0 (dashed curve, top

panel). Since those borewells that continue to be operated tend to be on high flow type plots, they fail

infrequently, so that the subsequent decline in borewell numbers is quite slow. By contrast, when only

new borewells are subject to taxation, the initial decline in well density occurs more slowly as it comes

entirely through stochastic failure. Eventually, however, the number of wells per plot under the optimal

tax targeted to new drilling falls below that of universal borewell taxation. This is because, compared

to the former scenario, the optimal tax is considerably higher, implying a lower steady state drilling

rate (bottom panel of Figure 11).
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Figure 11: Transitional dynamics
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Notes: The solid curve in the top (bottom) panel shows the number of borewells per plot (drilling
attempts per plot) along the transition path from the benchmark zero-tax economy to the steady state
under τ∗D, whereas the dashed curves do the same for the transition to the steady state under τ∗ND.

7 Conclusion

Our main goal in this paper has been to assess the social cost of a current government policy of providing

free electricity to groundwater extractors in south India. To tackle the highly localized (and economically

important) well interference externality, we have developed a tractable strategic equilibrium model of

well-drilling on a large map of agricultural plots along with a novel estimation strategy, an approach

potentially applicable to dynamic discrete network games across a wide range of settings. Counterfactual

analysis based on the model reveals a social cost of free electricity amounting to 4,500 Rs (65 US$) per

acre in present value terms, or around 1.5% of farmland value.

The presence of externalities also raises the broader question of the optimal tax on borewells, which

would not only eliminate the distortion from the electricity subsidy but would also maximize social

welfare. In taking into account how such a tax affects existing borewell investments in the transition to

the new steady state, our counterfactual analysis is uniquely relevant for policy. Indeed, we find that

38



only a modest Pigouvian tax would be needed to correct for the externality when both new and existing

borewells are subject to taxation, whereas the requisite Pigouvian tax increases by a factor of about

2.5 when it applies only to new borewells. That said, the latter policy (in practice, charging only for

new electrical connections) makes the most sense on political-economy grounds as, with minimal loss in

social welfare relative to the broader tax, it avoids a capital levy on existing well owners, an influential

interest group in rural India.
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Appendix

A Average annual electricity costs per borewell

The electricity cost of a borewell per year is the product of (1) power consumption of the average pump

of 6 horsepower (HP), which is 4.5 kWh (= 6 HP×0.746 kWh/HP), (2) 630 annual hours of pumping

(average of unit record data for our 12 sample mandals from India’s 4th Minor Irrigation Census), and

(3) marginal cost of electricity of 3 Rs/kWh (Gulati and Pahuja, 2012). All three components in this

calculation are likely overly conservative estimates, so that 8500 Rs. should be viewed as a lower bound

on the true electricity cost.

B Descriptive figures and tables

Figure B.1: Monsoon rainfall at mandal level by year
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Table B.1: Well Failure by Year

Year Functional Failed Total

2012 559 47 606
(92.2) (7.8) (100)

2013 556 41 597
(93.1) (6.9) (100)

2014 527 53 580
(90.9) (9.1) (100)

2015 512 33 545
(93.9) (6.1) (100)

2016 489 34 523
(93.5) (6.5) (100)

Total 2,643 208 2,851
(92.7) (7.3) (100)

Notes: Percent of yearly total in
parentheses. Sample consists of
reference plot borewells subject
to failure in each year.

Table B.2: End-of-Season Well Flow

Frequency (%)

Flow 2010 2017

0.10 32 114
(6.2) (22.2)

0.25 57 219
(11.1) (42.6)

0.50 172 143
(33.5) (27.8)

0.75 192 35
(37.4) (6.8)

1.00 61 3
(11.9) (0.6)

Total 514 514
(100) (100)

Mean 0.600 0.325
Std. dev. 0.245 0.193
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Figure B.2: Drilling success probability
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C Well failure and duration dependence

A simple test of duration dependence in well failure that avoids the intricate specification issues of

duration modelling is to check whether the probability of failure between 2012-16 is related to well age

in 2012, which is predetermined. The results in Table C.1 indicate significant duration dependence.

The marginal effect from the column 1 estimates implies that a well that was 10 years older in 2012

has a failure rate 0.092 higher over the subsequent five years. All of this effect, however, appears to be

concentrated among the 59 wells that were more than 20 years old in 2012 (see, especially, column 3).

Table C.1: Well Age and Subsequent Failure

(1) (2) (3)

Age in 2012 0.0428*** — —
(0.0130)

Age×1Age≤10 — 0.00545 —
(0.0319)

(Age-10)×110<Age≤20 — 0.0375 —
(0.0372)

Age×1Age≤20 — — 0.0165
(0.0169)

(Age-20)×120<Age — 0.125*** 0.132***
(0.0456) (0.0466)

Observations 606 606 606
log-likelihood -375 -375.3 -375.5
Equal slopes test (p-value) — 0.028 0.006
Notes: Standard errors in parentheses (*** p < 0.01, ** p < 0.05, * p <

0.10). Dependent variable is indicator for whether well failed between 2012-16.

Estimation is by ML logit. Constant term not reported. Test of equal slopes

compares spline coefficients (3 in column 2 and 2 in column 3).
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D Cadastral Maps

The villages for which we have cadastral maps are Pamireddypalli in Atmakur mandal, Dharmapur and

Ramachandrapuram in Mahabubnagar mandal, Jajapur in Narayanapet and Thipparasipalli in Utkur

madal. In Anatapur district, we have cadastral maps for Manesamudram in Hindupur mandal, M.

Venkata Puram and Manepalli, both part of the same panchayat in Lepakshi mandal, Y.B. Halli in

Madakasira Muddireddy Palli in Parigi Chalakuru and Somandepalli, both part of the same panchayat

in Somandepalli mandal, Siddarampuram and Reddipalli in B.K. Samudram mandal, Itukalapalli in

Anantapur and Ayyavaripalli in Rapthadu mandal.

We take these maps to be representative of all villages for which we have data in each respective

mandal. We use the digitize maps to identify the adjacency of each plot that will be used in the

structural estimation.

Figure D.1: Village Muddiredipalle

((a)) Original Cadastral Map ((b)) Digitized Cadastral Map
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E Drilling propensity: Linear FE-IV estimates

Using the notation from the main text, we estimate a linear probability model for drilling of the form

dit = αi + β1Nit−1 + β2Rmt + εit, (E.1)

now treating αi as a fixed (rather than random) effect. We assume measurement error of the classical

variety and use the number of existing wells in the adjacency (outside the reference plot), NE
it−1, as an

instrument. Figure E.1 shows the within reference plot (i.e., fixed effects) regression of dit on NE
it−1,

which is essentially the reduced form corresponding to our IV regression of equation E.1.

Figure E.1: Drilling and the number of existing wells in the adjacency
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Column (1) of Table E.1 reports the least-squares (FE) coefficient ignoring measurement error. As

in Table 1 of the main text, we do not find a significant impact of neighboring wells on drilling. Column

(2) shows the first stage regression of Nit−1 on the instrument NE
it−1 and column (3) the resulting FE-IV

estimate. Just as with the CRE-MEM estimator in Table 1, here we find a significantly negative effect

of neighboring wells once we correct for measurement error. One concern, however, is that, if there is

spatial correlation in the unobservables, then NE
it−1 may be correlated with the residuals, which contain

the effect of own borewells on drilling. To assess this, in column (4) we add dummies for the number of
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borewells on the reference plot to remove the effect of own borewells from the residuals.42 That there

is no appreciable difference between the estimates of β1 across columns (3) and (4) gives us further

confidence that negative effect of neighboring wells on reference plot drilling is indeed causal.

Table E.1: Determinants of drilling 2012-16–Linear probability models

(1) (2) (3) (4) (5)
drill N drill drill drill

No. func wells exc ref plot (N ) -0.0150 -0.0482** -0.0485** -0.0441
(0.0108) (0.0213) (0.0199) (0.0198)

Good Monsoon (R) -0.00340 0.000760 -0.00248 -0.00257
(0.00881) (0.00775) (0.00884) (0.00866)

No. exist wells exc ref plot 0.900***
(0.0285)

1 func well on ref plot -0.243***
(0.0241)

2 func wells on ref plot -0.447***
(0.0538)

Ref plot FE YES YES YES YES YES

Observations 5,285 5,285 5,285 5,285 4,837
R2 0.226 0.969 -0.002 0.067 -0.0024

Notes: Standard errors in parentheses clustered by reference plot (*** p < 0.01, ** p < 0.05, * p < 0.10).

Columns 1 and 2 are by least-squares with fixed effects; columns 3-5 are by two stage least squares using

the number of existing wells in adjacency (outside of reference plot) as instrument. Column 5 drops

observations with more than one functioning well on the reference plot.

42Insofar as past drilling successes lead to having more borewells on the reference plot, the fixed effects estimator of
the own borewell coefficients in this short panel will be biased (akin to Nickell bias). We shall, therefore, refrain from
comparing the relative magnitudes of own borewell and neighboring borewell coefficients between Table E.1 and Table 1
in the main text.

49


