
The Dynamic Effects of Weather Shocks on

Agricultural Production *

Cédric Crofils1 Ewen Gallic2 Gauthier Vermandel3

February 24, 2023

Abstract

The paper investigates the dynamic effects of weather shocks on monthly agricul-

tural production in Peru with local projections. An adverse weather shock, measured

by an excess of heat or rain, always generates a negative downturn in agricultural

production, but its magnitude and duration depend on several factors such as the

type of crop concerned, the land geographical type and the season. On average, a

weather shock can cause a monthly decline by 5% of agricultural production up to

four consecutive months. The response is time and space dependent. A shock in trop-

ical forest regions or occurring during growing season exhibits a much larger response.

At a macroeconomic level, weather shocks entail a surge in inflation and reduction in

aggregate production.
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1 Introduction

Among all economic sectors, agriculture is the most vulnerable to fluctuations in the

weather. In developing countries, the agricultural sector is a major contributor to aggregate

production in terms of output and employment. In these economies, weather shocks can

have wide economic consequences (Mendelsohn, 2009). Because many small-scale farmers

in developing countries have limited access to risk management tools, such as insurance

and irrigation infrastructure, these economies are also particularly vulnerable to exogenous

shifts in weather conditions (Aragón et al., 2021). As a result, weather shocks can have a

disproportionate impact on livelihoods and food security.

Given those vulnerabilities, the goal of this paper is to quantitatively measure the dy-

namic effects of abnormal weather realizations on the supply of agricultural products over

time. Understanding and quantitatively assessing what consequences an unexpected weather

event observed today has on future crop production is central to anticipate its adverse con-

sequences. Such quantitative analysis can be used to make better informed decisions about

planting or harvesting crop, to adapt to climate change at a farmer level. In addition, these

quantitative assessments are critically important for policymakers to anticipate the potential

food shortage and income loss, and thus to implement adequate mitigation policies.

The literature examining how the weather affects agricultural production typically bases

its quantitative analysis on annual data (see, e.g., Jagnani et al., 2020; D'Agostino and

Schlenker, 2016; Burke and Emerick, 2016; Deschênes and Greenstone, 2007). However, the

use of annual data probably underestimates the total cost of the weather as extreme positive

and negative weather events average out throughout the year (Colacito et al., 2019). To be

immune to these temporal aggregation effects, this study relies on monthly production data

in order to examine the dynamic effects of the weather along the crop growth process. This

process naturally creates a time lag between the shock realization and its materialization in

terms of economic loss at harvesting time. This dynamic propagation mechanism shaped

by the growing process of crops is to our knowledge yet unexplored in the literature (see

Dell et al., 2014 for a literature review). The goal of this paper is therefore to evaluate the

dynamic propagation over months of the weather, and analyze how land-specific factors such

as geographical topology and stage of crop growth play a role in shaping the response of

agricultural products to a random draw in the weather.

Our empirical approach investigates the impact of weather fluctuations on agricultural

production in Peru, based on monthly regional and crop-specific data. The analysis em-
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ploys a linear panel model with local projections. The Peruvian agricultural sector in 2015

represented 7% of the country’s GDP, 28% of employment, and used 18% of the total coun-

try’s land. The Ministry of Agriculture and Irrigation of Peru provides agricultural data

on a monthly basis at a region level between 2001 to 2015 for four types of crops: rice,

maize, potato and cassava. The highly detailed region-crop-month data allows to precisely

decompose how the weather affects agricultural production over months. Our measure of

weather shocks is based on precipitation and temperatures: we extract the maximum re-

gional extreme daytime weather data within a month, and express it into a weather anomaly

by taking the distance of the variable from its historical average.1 We study the effects of

weather shocks on production rather than on yields. The literature traditionally studies

yields rather than production. However, as indicated by Iizumi and Ramankutty (2015),

when calculating agricultural yields, all information about the quantity produced and avail-

able is erased. In fact, in the event of a weather disruption to crop growth, farmers may

choose to abandon a part of their production if the cost of harvesting outweighs the expected

profit or if harvesting is no longer feasible. The yields observed at the end of the season will

not reflect such decisions. This idea is echoed by Lesk et al. (2016), who additionally state

that the volume of production plays a role in determining food security, whereas yields do

not.

Local projections (LPs), pioneered by Jordà (2005), have become a widespread economet-

ric tool to measure impulse response functions. LPs are relatively more robust to misspeci-

fication, easy to both estimate (via linear regression) and accommodate to panel data. We

exploit the plausibly exogenous variation in temperature and precipitation at the Peruvian

regional level to study the effects of weather shocks on agricultural production. We control

for fixed regional attributes and macroeconomic characteristics. Then, by exploiting the the

cross-sectional dimension at the region-level, we use impulse response analysis to measure the

propagation of a regional weather shock on agricultural production. The impulse response

analysis is particularly well suited to dissect the cost of weather shocks that are disseminated

over time through the natural growing process of crops.

Our paper is connected to two complementary literature branches. The first strand of

literature examines the nexus between economic growth and climate based on yearly data.

Dell et al. (2012) find on a large panel of countries that higher temperatures reduce economic

1Intergovernmental Panel on Climate Change (IPCC) studies, such as Parry et al. (2007), have docu-
mented a large negative sensitivity of crop production to extreme daytime temperature and precipitation.
We build on this observation to construct out weather variables.
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growth as well as agricultural production. In the continuation of this paper, the research

question has been next extended in many directions.2 Colacito et al. (2019) provide a similar

exercise for the US economy and find that rising summer temperatures have a pervasive effect

in the entire cross-section of industries. Ortiz-Bobea et al. (2021) use panel regression at the

country level and yearly data from 1961 to 2015 to investigate the impact of climate change

on agricultural Total Factor Productivity (TFP). The authors find that on average, in Latin

America, climate change has had a negative impact on agricultural TFP, reducing it by more

than 25% over the sample period, as explained by the variations of average temperature and

total rainfall.

The second strand of literature our paper is connected to estimates the effects of weather

and climate change on agriculture. This literature can be divided into two branches: agro-

nomic models based on crop simulations (see, e.g., Rosenzweig et al., 2013; Asseng et al.,

2014) and statistical models based on historical observations of agricultural production linked

to weather observations. The economic literature has tended to rely more on statistical mod-

els. While early work used cross-sectional data (Mendelsohn et al., 1994), there has been

a shift towards the use of panel data in the recent years. The dependent variable –crop

yields, production, or profits– varies over both space and time. It is observed either di-

rectly at the farm level (see, e.g., Welch et al., 2010; Powell and Reinhard, 2016; Schmitt

et al., 2022) or at an aggregated geographical unit such as administrative regions (see, e.g.,

Deschênes and Greenstone, 2007; Schlenker and Roberts, 2009; D'Agostino and Schlenker,

2016). The year-to-year variations of that variable are then modeled through a linear func-

tion of some weather variables. A group-specific effect –at the farm or administrative area

level– that varies over time, and a time-specific effect that varies over groups are included to

control for unobservable variables. The group-specific effect captures differences in factors

such as soil quality between regions, which remain constant over time. On the other hand,

the time-specific effect captures the impacts of variables such as exchange rate or inflation,

which affect all regions similarly in a given year. By considering the year-to-year variations

in the weather as exogenous, panel regressions can estimate the short-term effects of these

unpredictable events on the dependent variable, capturing the dynamic response over time.3

2While most of the literature examines the effects of weather variables on quantities, Faccia et al. (2021)
examine the effects on prices and finds desinflationary effects.

3As explained in Kolstad and Moore (2020), the use of panel regression and weather fluctuations to
estimate the long-term effects of climate change is appropriate only if farmers cannot rapidly adapt to
changing conditions. If farmers have the ability to rapidly adapt, then using this method to study the
long-term responses of agriculture to climate change can lead to biased results, as it fails to account for
the farmers’ adaptation. To study long-term effects, Burke and Emerick (2016) suggest another framework
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Furthermore, panel approaches are quite capable of predicting aggregate yields a few years

ahead, as shown by D'Agostino and Schlenker (2016), at the US level. These authors esti-

mate maize and soybean yields at the county level using annual historical data from 1950 to

2011. Once their models are estimated, they highlight that these panel models are able to

convincingly predict yields over an out-of-sample period from 2012 to 2015, at the national

level. For a more in-depth analysis of the strengths and weaknesses of panel data methods

used to estimate the effects of weather or climate change on agriculture, see, e.g., Kolstad

and Moore (2020) and Blanc and Schlenker (2017).

The selection of weather variables to include in the analysis has received significant at-

tention in the literature. Given that the dependent variable is typically observed annually,

a temporal aggregation of weather data is necessary.4 Ortiz-Bobea and Just (2012) mention

that most econometric models rely on weather variables aggregated over the growing sea-

son, with the underlying assumption that growing season dates are fixed in time. In this

vein, some studies define accumulated metrics over the growing season, such as the growing

degree days (Schlenker and Roberts, 2009). Other studies break down the growing season

into several parts, based on the four seasons (Schmitt et al., 2022), or on on weeks of the

year (Powell and Reinhard, 2016). The division of the periods can also be done in order to

match with different stages of the growing process, such as the vegetative phase, ripening,

and maturation (Ortiz-Bobea et al., 2019; Welch et al., 2010). The consideration of multiple

points in time for aggregating weather variables stems from the idea that weather shocks can

impact agriculture differently depending on when they occur. In fact, Jagnani et al. (2020),

using survey data from Kenya revealed that farmers exhibit adaptation to weather shocks

over the course of the growing season. Their findings indicate that in response to unexpected

high temperatures, Kenyan farmers tend to increase pesticide use, decrease fertilizer applica-

tion, and increase weeding efforts during the season. However, even when the weather data

are aggregated across the different stages of production, the annual nature of the response

variable prevents the study of the intra-season dynamics of the effects of weather shocks.

Using monthly data and local projections, allows us to study these dynamic effects.

This paper brings three main contribution with respect to the literature. First, the high

frequency of our data captures infra-annual variations in production and maps them with

the corresponding weather fluctuations. While most of the literature uses annual panel data

in which they model the change in average yields at two different points in time for a given location as a
function of changes in average temperature.

4The literature has also addressed the issue of spatial aggregation, which can lead to very different results
depending on the method chosen. For more details, see D'Agostino and Schlenker (2016).
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and exploits year-to-year variations by aggregating the weather conditions over the growing

season, our approach allows for a finer estimation of the non-linear effects of the season.

Using the context of Peru and its diversity in both geological and climatic conditions, we

can distinguish geographical effects, leading to different responses according to the location

of the weather shock.

Second, we employ the local projection method to examine the impact of weather fluctu-

ations on production. Although this method has been used to estimate temperature shocks,5

its application on analyzing the agriculture-weather nexus is rather recent. LPs are partic-

ularly well-suited in this case to account for non-linear seasonal effects, which cannot be

clearly determined with annual data.

Our last contribution concerns the role local weather shocks play in triggering aggregate

fluctuations. Instead of focusing on the channel of impact directly on aggregate outcomes

as literature usually does,6 we aggregate in-sample responses of regional crop production to

weather shocks from LPs, in order to build a macroeconomic index of weather shock losses.

We next include this new index into an otherwise standard vector auto-regressive model to

quantitatively measure how weather shocks entail macroeconomic fluctuations.

Our main result is that an adverse weather shock always generates a negative downturn

in agricultural production. The extent and duration of this decline depend on various factors

such as the type of crops, the type of weather shock, the geographical pattern of agricultural

land, and the season (growing season versus harvesting season). We find that a weather shock

can cause a 5% monthly decline in agricultural production for up to four consecutive months

for any crop type in the sample. Our second key finding highlights the role of geographical

distribution of agricultural land in determining the response of agricultural production to

weather shocks. We find that the response to weather shocks can be much greater in areas

with tropical forests but much lower in coastal regions. Our third key finding emphasizes the

role of crop growth timing in determining the response of agricultural production to weather

fluctuations. A weather shock occurring during the growing season has a greater impact

than one occurring during the harvest season.

The paper proceeds as follows. Section 2 presents the data and the variables used in the

empirical analysis. Section 3 provides the estimation strategy and analyses the results of

the panel estimation. Section 4 investigates how the response of agricultural production to

5Natoli (2022) used this method to analyze the impacts of temperature surprises on the US economy on
using quarterly data.

6See for example Acevedo et al. (2020) who find negative impacts of weather shocks on agricultural and
aggregate output in developing countries.
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a weather shock may differ accordingly with climate regions. Section 5 explores the differ-

entiated effects of weather shocks across production stages, distinguishing between a growth

regime and a harvest regime. Section 6 shifts the focus from agricultural production and

examines the transmission of weather shocks to the rest of the national economy. Section 7

concludes.

2 Data

This section provides a summary of the main data sources used for the empirical analysis.

2.1 Regional agricultural production data

Our main source of agricultural data comes from the monthly agricultural reports “El

Agro en Cifras” produced by the Ministry of Agriculture and Irrigation of Peru (MINAGRI)

from 2001 to 2019.7 Each report provides agroeconomic indexes and agricultural production

at both a regional and national level. From these reports, we extract data on the production

(in tons) and on the planted and harvested areas (in hectares) for each of the main crops

cultivated in Peru at a regional level from January 2001 to December 2015. Note that

observations after 2016 are no longer given on a monthly scale but only on a quarterly basis

and are therefore excluded from our analysis. Each monthly report presents the data as

cumulative sums between January and the month of the report. We apply a first difference

filter to express production in net flows.

Four main crops are analyzed in this study: Potatoes (papa), Cassava (yuca), Rice (arroz

cáscara), and Maize (máız amarillo duro).8 The four crops selected in this study represent

a significant share of agricultural production, both in terms of volume and surface: these

crop varieties represent 53% of the cultivated surface and 37% of the total production in

Peru.9 We compared our data to the Food and Agriculture Organisation data (FAOSTAT)

to ensure their validity over the same years of observation and we find similar quantities (see

Table A.1 in the appendix). In the FAO data, our crop selection accounts for 41% of the

7Data are available for download at: https://www.midagri.gob.pe/portal/boletin-estadistico-mensual-el-
agro-en-cifras.

8Two types of Maize are reported in the MINAGRI reports. In the rest of paper, we refer to “Dent corn”
as “Maize.”

9The Peruvian agricultural report actually includes data for other types of crop, but the latter exhibits
many missing observations and do not cover a sufficiently large time span in order to be included in the
quantitative analysis.
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cultivated surface and 31% of the total quantity produced. The small differences observed

between the figures provided by the monthly reports produced by the Peruvian Ministry and

those reported by the FAO are due to the fact that the former compile only the main crops

while the latter are more exhaustive.

In agricultural economics, it is commonplace to express agricultural production into yields

by dividing by the land surface planted. However, with monthly data, a significant number

of observations exhibit zero value for the planted area, resulting in an inability to calculate

yields for those months. In this paper, we propose to express agricultural production into

percentage deviation from an average. The advantage of this procedure is twofold: first,

it avoids arbitrarily excluding zero values for agricultural production, and second, it natu-

rally corrects for the size effect stemming from regional heterogeneity in production. Our

data transformation is addressed in two steps. For the subset of months m ∈ t (e.g., all

observations in January), we remove the trend by estimating the following OLS equation:

yrawcim = α0 + α1t + α2t
2 + εcim, where c denotes the crop type and i the region, and εcim is

a Normally distributed error term with zero mean. Let yd denote the detrended expression,

we finally deseasonalize by dividing each month by its monthly average as follows:

yc,i,t = ln
(
ydetc,i,t

)
− ln

(
ydetc,i,m

)
, (1)

where ydetc,i,m denotes the monthly average of detrended production of crop c in region i at

specific month m.

2.2 Regional weather data

As previously mentioned, agricultural production is subject to weather fluctuations. From

daily grid temperature and precipitation data, we construct weather shock series, aggregated

at the monthly level, for each of the 24 regions of Peru. In a nutshell, we follow Barrios

et al. (2010) and demean the weather observation at the grid level. The means are the

monthly historical values observed in the previous 20 years. Then, we aggregate the values

at the region level and at a monthly scale. The obtained variables –the temperature and

precipitation anomalies– are simply deviations from the average. The rest of this subsection

provides the main steps to express raw weather data into regional weather anomalies.

Grid temperature data. We obtained data from PISCOt V1.1, a gridded daily tem-

peratures data set available for Peru. The data runs from Jan 1981 to Dec 2016. The grid
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has a 0.1° spatial resolution(10 km). The data set is developed by the SENAMHI (the Na-

tional Service of Meteorology and Hydrology of Peru). The methodology that lead to the

construction of this data set is explained in Huerta et al. (2018).10

Grid precipitation data. The rainfall data are obtained from the CHIRPS v2.0

database, made available by the Climate Hazards Center of the UC Santa Barbara. Covering

the quasi totality of the globe, the data set provides daily information on rainfall on a 0.05°
resolution satellite imagery, from 1981 to present. The complete presentation of the data

can be found on the Climate Hazards Center’s website (Funk et al., 2015) and the data set

is freely available online.11

From grid to regional data. Agricultural production is available at the regional level.

It is therefore necessary to map grids and regions to aggregate the weather data at the

regional level. In addition, shocks such as excessive temperatures or rainfall occurring in

an agricultural area should not be accounted for in the same way as shocks occurring on

urban geographic land. For example, the weather conditions of a grid cell where 90% of

the surface is used for agricultural production should matter more than a cell with 10% of

agricultural surface. When aggregating the weather data we need to identify beforehand

where the agricultural regions are located in Peru, to give those regions more weight in

the aggregation procedure. To do so, we rely on the data from Copernicus, a European

program for monitoring the Earth using satellite and ground data, managed by the European

Commission.12 We use the 2015 Peru’s data, with a 100m resolution.

Regional weather anomalies. What is a relevant weather shock to predict agricul-

tural production? Parry et al. (2007) have documented a large negative sensitivity of crop

production to extreme daytime weather variables. We build on this observation to construct

our two weather variables by taking the most daily extreme weather value within a month.

To do so, let Wi,y,m,d denote one of the two weather measures –temperature or precipitation–

observed in region i at day d = {D1, D2, ...D31}, month m = {M1,M2, ...M12} and year

y = {2001, 2002, ..., 2015}.13 A weather shock is defined here as the most extreme meteoro-

10Data can be obtained from https://drive.google.com/drive/folders/1eGqhmJXBJfFSzUFz2RVqtbKIlOphpkcs.
11See https://data.chc.ucsb.edu/products/CHIRPS-2.0/.
12The data are freely available: https://land.copernicus.eu/global/products/lc. The share of agriculutral

land for each grid cell is shown on a map in Figure 2 in the Online Appendix.
13Note that the weather data are given on a grid, on a daily basis. For more clarity in the notations, we

write the equations on a regional and monthly scale. However, following D'Agostino and Schlenker (2016),
the transformations of the weather data were first performed at the scale of the cells of the grid and then
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logical event observed over the sequence of days within the considered month m in region

i:

Wi,y,m = max
(
{Wi,y,m,d}31d=1

)
.

Note that taking the maximum, instead of some monthly average, avoids that extreme

positive and negative events average out throughout the period (Colacito et al., 2019).

To assess the relative intensity of one weather shock with respect to other realizations,

we measure the distance of the weather variable from its monthly average:

Wi,t = Wi,y,m = Wi,y,m −W i,y,m,

where W i,y,m := (yT − y0)
−1
∑yT

y=y0
Wi,y,m denotes the average value of the weather data

during the specific month m observed over y years (between y0 to yT ). Note that this

procedure takes away the seasonal component of the weather. Therefore, Wi,t denotes the

deviations of the weather variable with respect its average, and is interpreted as a weather

anomaly.

Going back to temperatures data, we apply the weather anomaly formula. Temperature

anomaly Ti,t is given by:

Ti,t = Ti,y,m − T i,y,m, (2)

where Ti,y,m is the maximum of the monthly maximal temperature observed in month m of

year y, y being within our time interval of interest (i.e., 2001–2015), and where T i,y,m is the

corresponding average for month type m over all the years available data (i.e., y0 =1881 and

yT=2016). We interpret a large value of Ti,t as an excess of heat (in °C) with respect to its

historical average.

A similar indicator for the precipitation anomalies is computed, using the monthly sum

of daily precipitation. It is compared to its monthly historical average:

Pi,t = Pi,y,m − P i,y,m, (3)

where Pi,y,m is the sum of daily precipitation in month m of year y and where P i,y,m is its

historical average. We interpret a large value of Pi,t as an overabundance of humidity (in

millimeters of rain) with respect to its historical average.

aggregated at a monthly frequency for each region. In other words, the temperature anomalies were first
computed for each cell of the grid, and were aggregated after.
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2.3 Macroeconomic data

Our sample also includes macroeconomic data that are used in our econometric approach

as control variables. These control variables are useful to purge the variable of interest

from unrelated sources of fluctuations with respect to the weather, and therefore isolate the

effect of a weather variable on agricultural production. By holding constant the values of

control variables, any changes in the outcome can be attributed solely to the variable of

interest, rather than the combined effects of multiple variables. This makes it possible to

draw more accurate conclusions about the causal relationship between the weather shocks

and the agricultural output. To consider these potential effects, control variables based on

macroeconomic data for the Peruvian economy are included. Namely, the monthly Peruvian

CPI, the monthly Sol/US Exchange rate, the monthly national interest rate and the monthly

GDP index.14 Note that all the control variables are national aggregates given on a monthly

basis. Nominal variables (e.g. exchange rate and CPI) are detrended by calculating the

growth rate. A similar transformation is applied on the interest rate, as the latter exhibits a

downward trend on the time span considered. Finally, the GDP is expressed in percentage

deviation from the Hodrick-Prescott filter, in order to control our projections from effects

stemming from aggregate demand and supply shocks.

2.4 Summary statistics

This section introduces the main interesting features concerning the data. Table 1

presents some descriptive statistics about the monthly production of the selected crops,

averaged over the regions. One can observe an important variation in the production, which

is also highly crop-specific. We remove from our data the negative values for production,

which are due to different revaluations of production data estimates. We also exclude the

regions where no tons were produced during our sample period. Columns 7 and 8 report

respectively the number of producing regions and the number of observations for each type

of crop.

In addition to this table, Figure 1 provides a visual representation of the national pro-

duction of each time of crop over our time sample, which is the sum of the monthly regional

production. Interestingly, some cultures exhibit a clear and regular pattern (for Potato and

Rice) while others are more volatile. We observe also that Cassava seems to present a pos-

14All macroeconomic data are taken from the data warehouse of Banco Central de Reserva del Peru
(BCRP).
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itive trend.15 We consider these features in the following sections by deseasonalizing the

data.

Culture Mean Median
Standard
Deviation

Min. Max. Nb. of regions Nb. of obs.

Cassava 6,004.5 3,878.0 7,792.5 0.0 16,079.9 15 2,631
Maize 7,169.7 4,336.0 8,490.5 0.0 2,704.6 13 2,271
Potato 17,252.1 5,801.0 30,155.5 6.0 360,070.0 12 2,091
Rice 13,127.7 4,441.3 16,212.9 3.9 8,863.4 7 1,212

Notes: Quantities are reported in tons.
Source: MINAGRI. Author’s estimate

Table 1: Descriptive statistics for monthly production (in tons) per type of crop

Potato Rice

Cassava Maize
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Notes: The graphs show the evolution of monthly crop production, summed over all admnistrative regions. For

cassava, two observations (2007-06-01 and 2007-07-01) were incorrect and were replaced by a linear interpolation

between May and July 2007.

Source: MINAGRI. Author’s estimate

Figure 1: National monthly crop production for selected cultures (in tons)

Peru is geographically very diverse in terms of climate and geographical topology and is

usually divided in three types of climate areas: Coast, Highlands and Amazon Rain-forest.

15This positive trend is possibly due to the increase in agrarian land, resulting from the deforestation of
the Amazon rainforest, where a large share of cassava is produced. See Figure 3.
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These areas exhibits very different climatic conditions due to their proximity to the sea and

their different altitudes. As explained in Aragón et al. (2021), the Coast area is a narrow

strip extending from the seashore up to 500 meters above sea level (masl). It is situated

in a semi-arid climate, with warm temperatures and little precipitation. The highlands

extend from 500 up to almost 7,000 masl, albeit most agriculture stops below 4,000 masl.

They have a much cooler and wetter climate, with seasonal precipitation in spring and

early summer. Finally, the Amazon Rainforest area is continental and is characterized by a

tropical weather with important rainfalls. A map dividing the Peruvian territory into these

three natural regions is provided in Figure A.2 in the Appendix, based on data available on

the Geo GPS Peru website.16

The natural regions do not necessarily coincide with the administrative regions. Conse-

quently, for each region, three variables are constructed, respectively indicating the share of

each type of natural region in the administrative region.

Potato Rice

Cassava Maize
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Notes: The graphs show the sum of each crop production, broken down by month and weighted by share of natural
region.
Source: MINAGRI. Author’s estimate

Figure 2: Crop production by months and natural regions (in tons)

16See https://www.geogpsperu.com/2019/11/mapa-de-regiones-naturales-costa-sierra.html.
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In Figure 2, we document the regional differences and the seasonality by averaging the

monthly production over the different types of natural regions. In these graphics, the seasonal

patterns can be observed more closely. For example, Potato production is sharply increasing

between March and May, before decreasing after. Even if we account for the seasonality in the

data by deseasonalizing them, the effects of weather might differ depending on the season.

We investigate further this effect in Section 5. In contrast, Maize displays differentiated

seasonal cycles, depending on the natural regions. In coastal regions, we notice that there

is only one production peak, in June. In forest areas, there are two main peaks, the higher

in February and a smaller one in July. Those differences in season, associated with different

climates depending on the natural region, call for a geographical analysis that we perform

in Section 4. Finally, the example of Cassava shows that the production can be highly

concentrated in one area, here in the Forest where more than half of the production is

located. On the over hand, Maize production is more evenly distributed. Figure 3 below

presents in more detail the production distribution for each type of crop.
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Potato Rice

Cassava Maize

0.1

0.2

0.3

Share

Notes: Distribution of the production of each crop by administrative regions. For each map, the sum of of the

distribution across regions equals 1. Non-producing regions are shown in gray.

Source: MINAGRI. Author’s estimate

Figure 3: Regional distribution of crop production by administrative regions
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3 The Dynamic Effects of Weather Shocks

How do weather shocks dynamically affect agricultural production? This section provides

a discussion of the econometric approach, and then discusses the main results obtained from

an impulse response function analysis.

3.1 Empirical Approach

Our empirical framework follows a similar conceptual framework from Dell et al. (2012).

To fix ideas, consider the following simple economy characterized by a Cobb-Douglas tech-

nology in the agricultural sector in region i for crop c:

Yc,i,t = Ac,iNc,i,tHc,i,t, (4)

where the agricultural output for crop type c planted in region i at time t is denoted Y ,

crop-regional total factor productivity A, labor demand N and harvesting H. Note that

in this expression, Ac,i, captures how regional conditions –such as local labor productivity–

shape the productivity of labor for crops planted in this region. In contrast, Nc,i,t embeds

the macroeconomic fluctuations stemming from the labor market (e.g., all aggregate shocks

realized in t determining the country-wide real wage). Lastly, Hc,i,t represents the surface

harvested with N units of labor.

How does the weather interfere in the production process of agricultural goods? Consider

that each period, farmers in region i plant a crop c on a land surface L. A typical process

of crop growth cycle implies a lag between planting and harvesting times, referred to as the

growing season. During the growing season, crops are vulnerable to weather shocks such as

droughts and floods, leading to reduced growth and yields. In addition to these direct effects,

weather shocks also lead to increased stress on the plants, making them more vulnerable to

diseases. In severe cases, a drought can cause complete crop failure.

To capture these delayed effects of the weather on agricultural yields, let Tc denote the

monthly duration of the crop-specific growing season between planting time (h = 0) and

harvesting time (h = Tc). Therefore, it is assumed that Lc,i,t units of planted land yields

Lc,i,t exp
(∑Tc

h=0 βc,hWi,t−h

)
effective units of productive land, where the weather shockWi,t−h

realized in t−h affects crop production in harvested t with elasticity βc,h.
17 Weather shocks

17Note that we do not include a squared value for the weather variable. Squared terms are typically
introduced to capture low frequency effects of climate change. In this paper, the time frequency is monthly.
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are considered from the farmer’s perspective as exogenous variables that affect land produc-

tivity along the growing season. Weather variables, stacked in W , are formally connected to

agricultural output as follows:

Hc,i,t ≤ Lc,i,t exp

(
Tc∑
h=0

βc,hWi,t−h

)
. (5)

In this expression, it is assumed that the land surface planted Li,c,t exhibits both seasonal

and trend components stemming from soil quality across time and space. Assuming that all

planted surface is harvested, Equation 5 binds to equality. Note, however, that in presence

of severe weather shocks, if the marginal cost of harvesting exceeds the marginal profits of

land, it might be optimal for the farmer to partially harvest the planted surface.

Combining Equation 4 and Equation 5, and applying logs yields the following expression:

ln

(
Yc,i,t

Lc,i,t

)
= ln (Ac,i) +

Tc∑
h=0

βc,hWi,t−h + ln (Nc,i,t) . (6)

The left-hand-side of this equation represents the percentage deviation of agricultural pro-

duction from its potential value, measured by Lc,i,t.

A natural question at this stage is to gauge how important is the elasticity of agricultural

production to a change in weather conditions, namely inferring the value of βc,h. We use local

projections (LPs) based on Jordà (2005) to estimate how weather shocks impact agricultural

output along the growing season of crops. In this paper, our two main exogenous variables

are precipitation and temperature anomalies described in the data section. The interest of

LPs is to allow for dynamic responses while neither imposing the estimation of the whole

auto-regressive model nor introducing exogeneity restrictions. To estimate these effects, we

run a local projection for h = {0, 1, ..., Tc} of the form:

yc,i,t+h = αc,i,h + βT
c,hTi,t + βP

c,hPi,t + δc,i,hXt + εc,i,t+h, (7)

where h denotes the time horizon considered. Consistently with Equation 6, agricultural

production yc,i,t+h is deseasonalized and expressed in percentage deviation from a trend.18

Parameter αc,i,h is the regional fixed effect that captures the time-invariant factors, such as

The use of a squared term is unlikely to change the sign nor the significance of our results.
18Recall that an OLS regression is employed with a seasonal fixed effects as well as a quadratic trend to

infer the potential production of crops measured by Lc,i,t in Equation 6.
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the local productivity level of labor or soil quality in region i. Note also that terms Ti,t and Pi,t

represent the two distinctive weather variables that are considered in the inference exercise,

namely the temperature and precipitation anomaly variables (described in Subsection 2.2).

The two sequences of coefficients associated to the weather variables, βT
c,h and βP

c,h, are of

first order interest as they provide how much sensitive agricultural output is to exogenous

changes in the weather variables. In addition, Xt is the set of control variables that capture

contributions from aggregate fluctuations, as stacked in the labor demand term in Equation 6.

Control variables include the growth rate of the Exchange Rate (RER) growth rate, the

seasonally adjusted industrial production expressed as a percentage deviation from the trend

calculated by HP filter, the inflation rate and the growth of the interest rate. The set of

coefficients δc,i,h are unknown and need to be estimated in the inference exercise. Finally

εc,i,t+h is an error term that is assumed to be white noise with zero mean.

3.2 Impulse response functions results

Estimated coefficients given in Equation 7 are multiplied by a standard deviation of

the weather variable to obtain the impulse response of the agricultural production to a

standard weather shock. The responses are reported in Figure 4 for a nine period horizon,

contrasting for four different crops considered. A response to a one standard-deviation

shock of temperature anomalies is reported on on top, and for precipitation anomalies at the

bottom.19 In both cases, a positive shock is considered: a one standard deviation increase

in temperature and a one standard deviation increase in precipitation, both with respect

to their historical averages. Positive deviations of temperature or precipitation anomalies

correspond to higher than usual values.

The first row of Figure 4 shows the response of agricultural production following a positive

temperature shock. Overall, the shock leads to a sharp decrease in production for several

months. However, the effects of this shock is often crop-specific due to the heterogeneous

characteristics of the four type of crops considered. For example, temperature shocks on

maize, potato and cassava lead to an abnormally lower than usual production, especially if

the temperature shock occurs close to the harvesting time (i.e., when the local projection

horizon is close to zero). The percentage of production lost is about 5% per month for

about 5 to 6 months. In contrast, rice exhibits a smaller albeit more persistent decrease in

19Note that the number of regions is not the same across crops as some regions do not produce specific
types of agricultural products. We refer to Table 1 for the description of agricultural production per regions
and crop types.
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Notes: The panels show the crop-specific impulse response function of monthly agricultural production to a one
standard deviation (SD) increase in the weather variable, i.e., a 1 SD increase with respect to the historical
average. The weather variable is temperature anomaly for the first row and precipitation anomaly for the second
row. Horizon 0 is the month of the shock. Shaded areas represent the 95% and 68% confidence intervals with
region-level clustered standard errors.
Source: Author’s estimates.

Figure 4: Agricultural production response to a weather shock

production, suggesting that this crop type is more temperature-tolerant.

The second row of panels in Figure 4 reports the response of agricultural production

following the realization of a precipitation anomaly shock in h = 0. A positive realization

of the shock is associated with wetter than usual weather, more specifically, a one standard

deviation increase in total precipitation relative to the historical average. With respect to

temperature anomaly shocks, a precipitation anomaly exhibits a similar pattern, but with a

response of a relatively smaller magnitude. Excess rainfalls are detrimental to agricultural

production leading to a average agricultural production between 2 and 5%. As explained

in Skees et al. (2007), El Niño events in Peru devastated a number of regions with massive

flooding that washed away crops.20 The presence of tropical climate, characterized by al-

ready abundant rainfalls, induces a large decrease in agricultural production following the

realization of the precipitation anomaly shock. Although the shocks display a similar pat-

tern, each crop reacts differently to the shocks through the timing and the magnitude of

their response.

Variations in production following a precipitation shock are also highly crop-specific, and

20Crost et al. (2018) find that an increase in wet-season rainfall is harmful to crops and produces more
conflict in Philippines.
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more volatile than responses to temperature shocks. Rice and maize are clearly affected

during the first months consecutive to the shock, and then the effect becomes more variable

and less significant. The two tuber crops, i.e., cassava and potato, although sensitive to

temperature shocks, show small and insignificant responses to abnormally high precipitation.

Specific conditions due to the topology of the region may be a factor in explaining this

apparent low sensitivity of production to precipitation variations. Section 4 investigates this

effect, by differentiating cultures according to their geographical environment.

4 The geographical dimension of weather shocks

The previous section highlighted that the response of agricultural production to a weather

shock is crop-specific. In addition to the crop dimension, the spatial one can also be an

important determinant of the vulnerability of agricultural production to the weather. Peru,

as discussed in Subsection 2.4, is indeed subject to different climatic conditions from one

region to another. In particular, the climates that the country faces are different according

to its natural regions, namely the coasts, the highlands and the Amazon rainforest. This

section intends to address the geographical specificity of agricultural production responses

to weather shocks.

4.1 Conceptual framework

To assess how much the geographical patterns quantitatively shape the role of weather

shocks on agricultural production, consider the toy model presented in the previous section.

It was previously assumed that land was homogeneous across regions. Consider now that

each region, Lc,i(ω), exhibits idiosyncratic climatic characteristics ω, such that geographical

patterns affect crops differently across regions as follows: Lc,i(ω) exp
(∑Tc

h=0 βc,h,ωWi,t−h

)
,.

As discussed previously, Peru’s geographical patterns can be stacked into three categories,

such that ω is discrete and can take three values ω = {C,H,F}, i.e., coast, highlands, and
forest, respectively. Each type of geographic pattern can be associated with a production

technology that is combined in a Cobb-Douglas manner:

Hc,i,t ≤
∏

r∈{C,H,F}

[
Lc,i,t(r) exp

(
Tc∑
h=0

βc,h,rWi,t−h

)]γi,r
. (8)

20



where γi,r denotes the intensity of the rth type of geographical land in the total surface

planted in region i.

Plugging Equation 8 into the production function, and applying logs yield the following

expression:

ln

(
Yc,i,t

Lc,i,t

)
= ln (Ac,i) +

∑
r∈{C,H,F}

γi,r

Tc∑
h=0

βc,h,rWi,t−h + ln (Ni,c,t) . (9)

where potential production is a geometric average of different types geographical land, Lc,i,t =∏
r Lc,i,t(r)

γi,r . The assumption of constant return to scale in land is maintained through the

restriction: γi,C + γi,H + γi,F = 1.

Our new LPs framework that takes into account regional patterns consistently with the

theoretical setup in Equation 9 is given by:

yc,i,t+h = αi,h +
∑

r∈C,H,F}

γi,r
(
βT
c,h,rTi,t + βP

c,h,rPi,t

)
+ δi,hXt + εc,i,t+h, (10)

where γi,r is here an observable value that is computed based on the grid data covering Peru

from the Geo GPS Peru website mentioned in Section 2.

Figure 5 reports the local projection obtained by estimating Equation 10. The graphs in

the first row of the figure present the response of abnormally hot temperature shocks for each

selected crop while those in the second row concern abnormal precipitation shocks. Again,

as in Section 3, one standard deviation shocks are reported. Responses are differentiated by

type of climate regions. Overall, the response to weather shocks is strongly altered when

considering the geographical topology of land, in particular for coastal and forest regions.

Responses for forest are furthermore predominantly more statistically different from zero.
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Figure 5: Agricultural production response to a weather shock by taking into account
geographical patterns (Highlands, Forest and Coast)

Let us start with the precipitation shocks. The responses for regions in forest areas ex-

hibit a stronger negative effect of abnormally heavy rainfalls. This result is in line with our

observations in Section 3. While the effects in the highlands and the coast remain positive

albeit low, they are strongly negative and significant in forested areas. Also, by not dis-

tinguishing between types of climatic regions, the positive precipitation shocks are globally

negative although not significantly different from zero. More importantly, this suggests that

increases in precipitation are detrimental for already wet regions, while it may improve pro-

duction to a lesser extent in dryer regions. We notice that the negative effect of abnormally

abundant precipitation is driven by the forestry regions only for rice, maize and potatoes.

This last result also confirms that responses to shocks remain highly crop-specific. For

example, rice produced in highland areas or in coastal regions can be better off with warmer

than usual temperatures while such weather changes are always detrimental for rice pro-

duced in forested areas. In contrast, higher temperatures are always detrimental –or non

significant– for cassava production, at least in the short run. Interestingly, for some crops
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cultivated equally in coastal regions and in the mountains, responses to shocks are similar,

while for other crops, the responses are quite different. For example, production of rice is

evenly distributed between the coast and the highland in the north of Peru. In these regions,

production is affected in the same manner by a precipitation shock. However, for potato

production, also distributed almost evenly across the coast and the highland, the responses

are quite different, with a positive response in the highlands and a negative one in the coast.

5 Time-varying exposure to weather shocks

A large body of the literature has found that the effects of weather shocks in agriculture

critically depend on crop growth stages. For example, Welch et al. (2010) show differen-

tial effects of increases in minimum and maximum temperatures on rice yields in tropi-

cal/subtropical Asia depending on the growth phase. Letta et al. (2022) find that weather

shocks triggers food prices rise during the growing period. Massetti et al. (2016) examine

empirically how weather shocks within a growing season affect maize and soybean harvests

using US county-level data. Crops need different types of nutriments depending on the stage

of development of the plant. Excessively high temperatures or water volumes can be very

detrimental to crop growth at some stages of growth while having little or no effect at other

stages.

This section aims to capture this effect by exploiting the high frequency of our data.

Indeed we can track the amount of crop that is planted and harvested each month. Rather

than usual growing versus harvesting season dummy in annual data analysis, our measure

of the growing season is a monthly continuous variables weighting the flow of land planted

versus harvested. Although it is not possible to identify each development stage with the

data at hand, we can distinguish the growing period (i.e., when the planted surface is

increasing) from the harvesting period (i.e., when the harvested surface is increasing). The

response of agricultural production to weather shocks can then be studied under two different

regimes. To do so using local projections, we adapt the framework developed by Auerbach

and Gorodnichenko (2011) for fiscal policy, and accommodate it to allow for state-dependent

effects of the weather with a smooth transition between two distinctive stages: the growing

and harvesting stages.
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5.1 A state-dependent framework

Recall the toy model of agricultural production from Equation 5. In this section, we will

modify this model to endogenize the decision of planting crops.

Let pc,i,t denote the new surface planted and hc,i,t its harvested counterpart at time t for

crop type c in region i. The net flow of new planted surface is therefore given by pc,i,t−hc,i,t.

The total fraction of land with growing crops is measured here as the cumulative sums of

flows in cultivated land surface over lifetime of a crop Tc as follows: zc,i,t =
∑Tc

h=0(pc,i,t−h −
hc,i,t−h). To compare regions on a regular basis, we remove the possible trend and divide by

the standard error as follows, ẑc,i,t = (zc,i,t − zHP
c,i,t)/σc,i,t, where ẑc,i,t is our and zero-mean

standardized index variable of utilized land surface. To express this index into a transition

function with support [0,1], it is assumed that our planted surface variable follows a logistic

distribution ẑc,i,t ∼ L(γc) where F (ẑc,i,t) is the cumulative density function:21

F (ẑc,i,t) =
1

1 + exp (−γcẑc,i,t)
(11)

Letting F (ẑc,i,t)Lc,i,t denote the fraction of the potential land that is planted, F (ẑc,i,t) is

both interpreted as a mass of land planted, or a degree of exposure of agricultural production

to weather changes. Parameter γc captures the smoothness of the transition function, the

transition becoming steeper as γc increases. Note that this parameter is crop-specific, as it

captures how quick each type of crop is switching from its growing to harvesting stage. We

discuss its numerical determination later on.

Consider now that weather effects depend of the growing stage of crops. The harvesting

season is interpreted as the period when the mass of land planted F (zc,i,t) is low (close to

zero). In contrast, the growing season corresponds to the situation in which F (zc,i,t) is high

(close to one). Contrasting for the effects of the weather on the growing and the harvesting

season, the surface of harvested land can be written as follows:

Hc,i,t ≤ Lc,i,t exp

(
Tc∑
h=0

(
F (ẑc,i,t−h)β

h
c,G + (1− F (ẑc,i,t−h))β

h
c,H

)
Wi,t−h

)
, (12)

where βh
c,G and βh

c,H are the response of agricultural production during the growing season,

and during the harvesting season, respectively.

21Note that following Auerbach and Gorodnichenko (2011), this type of transition function is common in
the context of LPs.
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Injecting this term into the production yields to the following expression:

ln

(
Yc,i,t

Lc,i,t

)
= ln (Ac,i) +

Tc∑
h=0

(
F (ẑc,i,t)β

h
c,G + (1− F (ẑc,i,t))β

h
c,H

)
Wi,t−h + ln (Ni,c,t) . (13)

The LPs framework can be accommodated again to analyze the role of growing versus

harvesting season in the propagation of shocks. We examine the non-linear influence of the

season in the response of each crop production to weather shocks. The same local projection

method is used, but augmented with a state-dependent variable to allow for non-linear

responses as in Auerbach and Gorodnichenko (2011). The framework takes into account the

probability to be in growing season or in harvesting season:

yi,c,t+h = F (ẑi,c,t)
[
αh
G,i + βh

G,TTi,c,t + βh
G,PPi,c,t + δhG,iXt

]
+ (1− F (ẑi,c,t))

[
αh
H,i + βh

H,TTi,c,t + βh
H,PPi,c,t + δhH,iXt

]
+ εi,c,t+h, (14)

where yi,c,t+h is still the deseasonalized production, and Ti,c,t, Pi,c,t, and Xt are, respectively

the temperature and precipitation anomalies and the control variables, as defined in Equa-

tion 7. The difference with this latter equation is that we now estimate the associated

coefficients conditionally on the state of the season. Note that βh
H,T and βh

H,P are there-

fore the parameters of interest for the harvesting season, while βh
G,T and βh

G,P are the ones

for the growing season. Following Auerbach and Gorodnichenko (2011), we also allow for

seasonal-dependent fixed effects and marginal effects for control variables.

A key question at this stage is to determine γc, the parameter shaping the transition

speed. Auerbach and Gorodnichenko (2011) typically calibrates this parameter to 1.5 with-

out extensively discussing this choice. In contrast, we propose to empirically ground the

value of γc by selecting the value maximizing log-likelihood function averaged over the 8

period horizon of the LPs. We obtain a crop-specific parameter that best fits the observed

variations in agricultural productions for each type of product. We limit the support of γc to

the range [1, 10]. A low value would make the transition probability to flatten to 0.5, while

a high value would increase the transition speed without drastically changing the LPs, but

would lead to small marginal gain in terms of log-likelihood.

The transition parameter exhibits heterogeneity across crops. The best value of γc for

each type of crop is reported in Figure 6. Rice and maize exhibit a relatively high value

for γ, suggesting that transition from harvesting to growing season is relatively faster. In

contrast, Potato and Cassava exhibit a relatively lower transition speed.
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Figure 6: Average log-likelihood function for various values for transition speed parameter
γc

5.2 Season-dependent impulse response functions

Figure 7 reports the response obtained from Equation 14. As before, the first row presents

the crop-specific responses to a one standard deviation temperature anomaly shock, while the

second row is the responses to a precipitation anomaly shock. Responses are distinguished

by regime: the grey area represents the responses during the growing season while areas

between the green dashed lines refer to the harvesting one. Confidence intervals are reported

at a 95% confidence level.

The distinction between growing and harvesting season play an important role. Overall,

we observe a differentiated impact with smaller –and quasi-null– effects when the shock

happens during the harvesting season. In contrast, if the shock occurs during the growing

season, the responses are in all cases negative and tend to have long-lasting effects on the

production. This important result is in line with earlier studies such as Hatfield and Prueger

(2015). These authors find that when a temperature shock happens during the growing stage

of the crop development, it may affect the crop growth, which in turn leads to fewer yields.

However, if the shock occurs when the crop is about to be harvested, then only a shock of

high magnitude (severe drought, hail, landslide...) is likely to affect production significantly.

Strikingly, the effect is common to all cultures, which underscores the importance of taking

into account the different effects of the seasons.

Yet, as in the previous sections, we observe crop-specific responses, with differences in

magnitude and duration of the detrimental effects. Again, abnormally high temperatures

have stronger impacts on production than precipitation. Rice, for example, tend to be

more affected by abnormal hot temperatures and the effect lasts at least four months after

the shock when the latter happen during the growing period. Maize appears also to be

significantly harmed by warmer temperatures during the growing stage, while the responses
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Notes: The panels show the crop and season specific impulse responses of monthly agricultural production to a 1 SD
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Figure 7: Agricultural production response to a weather shock contrasting for growing vs.
harvesting season

during the harvesting season and following rises in precipitation are weaker, in line with

the results of Lobell et al. (2013). In cumulative terms, the response of rice and maize

implies a cumulative loss of about 30 to 40 percentage points, which highlights the particular

vulnerability of these two crops during their growing stage.

6 From Regional to Aggregate Fluctuations

Are regional weather shocks important enough to spread to the rest of the economy?

Weather shocks tend to be serially correlated across regions because these regions share

common atmospheric, soil, or topographic patterns. Therefore, a weather shock may entail

macroeconomic fluctuations if the number of regions affected by the same weather pattern is

large enough. On policy grounds, the quantitative assessment of weather shocks on macroe-

conomic fluctuations is particularly important for the design of mitigation policies. For

example, if a region experiences a negative shock, monetary and fiscal policies can be used
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to support economic activity and cushion the impact of the shock.

The literature typically provides a synthetic measure of the weather based on average

measures of county-level weather shocks and analyze its interaction with macroeconomic

time series (see, e.g., Natoli, 2022; Gallic and Vermandel, 2020). In contrast, we propose

to measure the macroeconomic effects of the weather through the weather-implied losses

measured by our baseline local projections in Equation 7. More specifically, we compute an

aggregate measure Wt as follows:

Wt =
R∑

c=1

ωc,t

[
H∑

h=0

(
βh
c,TTi,c,t−h + βh

c,PPi,c,t−h

)]
, (15)

where ωc,t is a weight measuring the relative size of crop c in the total value added among

all crops at time t, while βh
c,T and βh

c,P are the marginal effects estimated previously in the

baseline LPs. Intuitively, Wt measures the percentage loss in agricultural value added from

weather shocks.

A vector auto-regressive (VAR) model is a straightforward way to quantitatively assess

dynamic interactions across time series. A typical VAR model with p lags reads:

Yt = ϕ0 +

p∑
i=1

ϕiYt−i + εt, (16)

where Yt is a N × 1 vector of endogenous variables, εt denotes the error term, normally

distributed with zero mean and variance Σε, ϕ0 is a N × 1 vector stacking constant terms

and ϕi are N×N matrices gathering dynamic interactions across endogenous variables. The

optimal number of lag p is often determined by the Akaike information criterion.

The vector of endogenous variables comprises six endogenous variables: Yt =[
Wt πt, RERt, yAt , yt, rt

]
. In this expression, Wt denotes the aggregate measure of

weather-driven agricultural losses, πt is the percentage change of the Consumer Price Index

(CPI), RERt denotes the Real Exchange Rate (RER), y
A
t our measure of agricultural output,

yt the GDP, and rt the interbank rate in Peru.22 Variables exhibiting a trend (namely agri-

cultural output and GDP) are expressed in percentage deviation from the Hodrick-Prescott

trend, while seasonal components are removed with the X13 method of the Census Bureau.

Our sample covers the period 2003M1–2015M12.

22Data are all taken from Peru Central Bank, the CPI token is PN01270PM, the RER PN01259PM, GDP
PN01773AM, interest rate PN07819NM.
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With the Cholesky factorization of the reduced form VAR covariance matrix, the order

of the variable matters. To impose full exogeneity in the weather process, we follow Gallic

and Vermandel (2020) by ordering first the weather-driven agricultural-losses equation in the

VAR, and muting cross-interactions with other variables. Following the ordering scheme of

Stock andWatson (2001), we next order prices variables, followed by quantities and terminate

with interest rates. The idea is mainly that prices variables are relatively more driven by

exogenous factors (e.g., oil prices shocks), while the interest rate is the most endogenous

variable that reacts in contemporaneous changes in prices and quantities.
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Notes: The plain blue line is the Impulse Response Function. The gray band represents 95% and 68% error bands
obtained from 10,000 Monte-Carlo simulations. The response horizon is in months.

Figure 8: VAR(2) system response to one standard deviation orthogonal shock to the
weather aggregate cost equation

The number of lags selected by the AIC criterion is 2. Figure 8 reports the system

response to a one standard deviation increase in agricultural output from weather shocks.

A rise by 4% of losses in the agricultural sector from weather shocks entails a persistent

reduction of 0.5% in the real exchange rate, mainly because exports in the agricultural sector

are lower. The scarcity of agricultural goods, combined with an increased prices of imports,

directly affect the consumers price index and creates a relatively small surge in inflation. The

inflationary effect of weather shock contrasts with the findings of Natoli (2022) and Faccia

et al. (2021), who both find a lower than usual inflation following a temperature shock.

In terms of quantities, this shock in the agricultural loss equation from weather shocks

generates a reduction in agricultural output by 0.4% below its trend, while GDP is 0.1%
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below its trend, but is followed by a modest expansion. This delayed expansion can be

rationalized by the reduction in the real exchange rate that typically boosts exports. Finally,

the central bank faces a trade-off between inflation and quantity stabilization, as both are

going in opposite directions. The VAR model suggests that the Peruvian central bank favor

output stabilization when weather shocks occur by easing monetary conditions.

Our quantitative assessment of the macroeconomic cost of weather shocks are fairly in

line with the literature. The response of output and the interest rate are very close to the

findings of Natoli (2022) for the US economy for temperatures anomalies. Our results are

also in line with the VAR model of Gallic and Vermandel (2020) for New Zealand, as they

also obtain a GDP decrease by 0.1%, 1% for the agricultural output and a decline by 0.4%

of the real exchange rate, following a drought shock.

7 Discussion and conclusion

Many efforts in the literature have been devoted to quantitatively measure how the

weather is an important driver of the supply of agricultural goods. This paper contributes

to this effort by analyzing the propagation mechanism of a weather shock on agricultural

production at a monthly frequency, for various crops, in heterogeneous geographical and

seasonal patterns. We find that the growing process of crop generates a time lag between

the realization and the economic loss of the weather. An increase in both temperatures and

precipitation leads to decline in production, for up to four consecutive months for any crop

in our sample. Responses appear to vary both in magnitude and duration depending on the

crop, with negative effects primarily driven by abnormally warm temperatures rather than

increased precipitation. We analyze further these responses by distinguishing between the

main geographical zones that composes Peru: the Coast, the Highlands and the Forest. This

decomposition allows us to observe disparities in the climate and points out crop-specific

responses when the shocks hit a zone rather than another. Responses turn out to be quite

different, with negative impacts of warmer temperatures on rice production in the Forest

region compared to a positive one in the two other regions for example. As highlighted by

the agronomic literature (Hatfield and Prueger, 2015), responses of crops yields to weather

shocks highly depend on the stage of development of the plant. We consider this point in

a third section and find indeed that for each type of crop, production is harmed when the

weather shock happens during the growing period, but hardly at all during the harvesting

phase. This result highlights the importance of the timing of the shock, confirming that
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weather anomalies arising at early growing stage have more prejudicial repercussions. Finally,

we build on local projections to create a novel index of weather-driven losses. We find that

a representative shock in weather-driven loss shock cause a 0.4% loss in agricultural output,

leading to a 0.1% reduction in GDP.

Our findings have substantial policy implications. First, using our estimates can be in-

formative for policymakers to anticipate the future scarcity of agricultural products arising

few months after the realization of the weather shock. A government observing an adverse

weather shock can import agricultural products from other regions and countries to mitigate

its detrimental effects, before the economic consequences of the weather materialize at the

harvesting stage. By dampening local fluctuations, such policies could be beneficial at a

macroeconomic level, in particular for central banks to target price stability. Our findings

are also useful in the perspective of global warming, by identifying crops and regions that

are the most weather-sensitive. Adaptation to climate change implies diversifying agricul-

tural supply toward crops that more resistant to droughts, or to flooded and waterlogged

conditions.

This article also opens the avenue for future research on weather shocks at higher frequen-

cies. First, the analysis could be extended to investigate price responses to weather variations

rather than quantities. The literature (Faccia et al., 2021; Natoli, 2022), based on macroe-

conomic quarterly data finds that aggregate prices decline following temperature shocks.

Based on more granular data exploiting the cross-section of regions and crops, the analysis

could investigate whether this disinflation nature of the weather holds at a regional level.

Second, future research could be devoted to understand how El Niño events are anticipated

by farmers. Local market prices and quantities could react differently when the weather

shock is a surprise or an anticipated news. Finally, the analysis could also be extended to

analyze how local weather shocks can spread to other regions through trade interlinkages.

With that respect, accommodating the international trade gravity model seems a promising

avenue for future research.
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Deschênes, O. and Greenstone, M. (2007). The economic impacts of climate change: evidence from

agricultural output and random fluctuations in weather. American economic review 97: 354–385,

doi:10.1257/aer.97.1.354. 2, 4

Faccia, D., Parker, M. and Stracca, L. (2021). Feeling the heat: extreme temperatures and price

stability . 4, 29, 31

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J.,

Harrison, L., Hoell, A. et al. (2015). CHIRPS: Rainfall estimates from rain gauge and satellite

observations. doi:10.15780/G2RP4Q. 9

Gallic, E. and Vermandel, G. (2020). Weather shocks. European Economic Review 124: 103409,

doi:10.1016/j.euroecorev.2020.103409. 28, 29, 30

Hatfield, J. L. and Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and

development. Weather and climate extremes 10: 4–10, doi:10.1016/j.wace.2015.08.001. 26, 30

Huerta, A., Aybar, C. and Lavado-Casimiro, W. (2018). PISCO temperatura v.1.1. Tech. rep.,

SENAMHI - DHI, Lima-Perú. 9
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Internet Appendix
(not for publication)

A Data

Table A.1 reports the total harvested area of Peru’s main crops and their share of total
annual production between 2001 and 2015. The surface area figures on which the article is
based, i.e., those from the files of the Ministry of Agriculture of Peru (MINAGRI), are very
close to those reported by the FAO. Those pertaining to the relative share of each crop are
higher in the Ministry data. The crops included in the analyses carried out in the article
represent almost two-thirds of production.

Table A.1: Main agricultural cultures in Peru

Product
FAO data MINAGRI data

Total surface Share Total surface Share (%)

Maize
7,349,640 16,4

4,227,147 14.7
Starchy corn 2,948,963 10.3
Rice, paddy 5,359,251 12.0 5,320,330 18.5
Coffee, green 4,999,410 11.1 - -
Potatoes 4,213,436 9.4 4,151,734 14.5
Barley 2,253,611 5.0 2,233,429 7.8
Plantains and others 2,227,709 5.0 - -
Wheat 2,158,122 4.8 2,102,246 7.3
Cassava 1,425,493 3.2 1,418,054 4.9
Sugar cane 1,112,131 2.5 1,032,231 3.6
Beans, dry 1,104,473 2.5 686,788 2.4

Notes: Products shown in bold are those studied in this article. Total surfaces correspond to the sum of national harvested
surfaces, from 2001 to 2015, in hectares. Maize corresponds to Dent corn in the MINAGRI data. No distinction is made between
Dent corn and Starchy corn in FAO data.
Source: FAO and MINAGRI. Author’s estimate.

The map in Figure 2 shows the percentage of agricultural land for each cell corresponding
to the weather data grid. These percentages are calculated from the Land Cover map data
(Buchhorn et al., 2020). It can be noted that the agricultural land is mainly located on the
coastal regions and in the highlands, as shown in Figure A.1 and Figure A.2.
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Figure A.2: Natural regions in Peru
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