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Abstract

The plausibility of the “parallel trends assumption” in Difference-in-Differences esti-
mation is usually assessed by a test of the null hypothesis that the difference between
the average outcomes of both groups is constant over time before the treatment.
However, failure to reject the null hypothesis does not imply the absence of differ-
ences in time trends between both groups. We provide equivalence tests that allow
researchers to find evidence in favor of the parallel trends assumption and thus in-
crease the credibility of their treatment effect estimates. Since our test procedures
are based on simple linear regressions, we show that they can be easily adapted to
staggered treatment assignments and heterogeneous treatment effects by appropriate
extensions of the regression model.
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1 Introduction

In the classic case, the Difference-in-Differences (DiD) framework consists of two groups
observed over two periods of time, where the “treatment group” is untreated in the initial
period and has received a treatment in the second period whereas the “control group”
is untreated in both periods. The key condition under which the DiD estimator yields
sensible point estimates of the true effect of the treatment is known as the “parallel paths”
or “parallel trends assumption”, henceforth referred to as PTA, which states that in the
absence of treatment both groups would have experienced the same temporal trends in
the outcome variable on average. If pre-treatment observations are available for both
groups, the plausibility of this assumption is typically assessed by plots accompanied by
a formal testing procedure showing that there is no evidence of differences in trends over
time between the treatment and the control group. However, this procedure is problematic
as traditional pre-tests suffer from low power to detect violations of the PTA (Kahn-Lang
& Lang 2020). Thus, finding no evidence of differences in trends in finite samples does
not imply that there are no differences in trends in the population. More concerningly,
Roth (2022) points out that if differences in trends exist, conditional on not detecting
violations of parallel trends at the pre-testing stage, the bias of DiD-estimators may be
greatly amplified.

Given the severe consequences of falsely accepting the PTA, we propose that instead
of testing the null hypothesis of ”no differences in trends” between the treatment and
the control group in the pre-treatments periods, one should apply a test for statistical
“equivalence”. We provide three distinct types of equivalence that impose bounds on the
maximum, the average and the root mean square change over time in the group mean
difference between treatment and control in the pre-treatment periods. Given a threshold
below which deviations from the PTA can be considered negligible, these tests allow the
researcher to provide statistical evidence in favor of the PTA, thus increasing its credibility.
If no sensible equivalence threshold can be determined before analyzing the data, we propose
to report the smallest equivalence threshold for which the null hypothesis of ”non-negligible
trend differences” can still be rejected at a given level of significance. Conceptually, this
idea is similar to the “equivalence confidence interval” in Hartman & Hidalgo (2018) applied
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to a DiD setting. Our procedure reverses the burden of proof since the data has to provide
evidence in favor of similar trends in the treatment and the control group, which is arguably
more appropriate for an assumption as crucial to the DiD-framework as the comparability
of treatment and control in the absence of treatment. Furthermore, for our procedure based
on equivalence tests, the power to reject the null hypothesis of a difference is increasing
with the sample size (also see Hartman & Hidalgo 2018). This improves upon the current
practice of testing the null hypothesis of “no difference”, since large samples increase the
chances of rejecting this null hypothesis (and thus seemingly making the DiD framework
inapplicable), even if the true difference between treatment and control may be negligible
in the given context. Finally, our equivalence test statistics make use of the standard OLS
estimator and can thus easily be implemented in practice. This also allows us to extend our
framework to heterogeneous treatment effects. For instance, we demonstrate how our tests
can be applied in situations where treatment timing differs across groups (e.g. “staggered
treatment assignment”) or where average treatment effects depend on some observable
characteristics.

As we use equivalence tests, our paper is closely related to Bilinski & Hatfield (2020),
who provide a discussion on the benefits of using equivalence (or ”non-inferiority”) tests
when testing for violations of modeling assumptions. Their “one-step-up” approach is based
on a non-inferiority test of treatment effect estimates obtained from a standard DiD model
and from a model augmented with a particular violation of the parallel trends assumption
(e.g. a linear trend). While both approaches stress the potential benefits of equivalence
testing in DiD setups, a distinctive feature is that we do not necessarily focus on a particular
violation of the PTA. As pointed out in Kahn-Lang & Lang (2020), including for instance
group-specific linear time trends can lead to a loss in degrees of freedom and thus to a
substantial loss in power. In contrast, our approach focuses on testing for “negligible”
differences between treatment and control in the pre-treatment periods. Our paper is also
related to other approaches that allow for certain deviations from exactly parallel trends. In
particular, Rambachan & Roth (2022) relax the PTA by imposing restrictions on the extend
in which post-treatment violations of parallel trends differ from pre-treatment differences
in trends. They then proceed by deriving confidence sets that allow for uniformly valid
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inference when the imposed restrictions on trend differences are satisfied. Consequently,
the parameters of interest are typically set-identified in their setup, where the identified
set reflects the uncertainty about the PTA in the pre-treatment periods. In contrast, our
approach focuses less on valid inference under violations of parallel trends but rather on
testing for “negligible” differences in trends that are consistent with the pre-treatment
data. A conceptual key difference is thus how the plausibility of point-identification based
on the PTA is addressed: as the PTA imposes restrictions on counterfactuals and is thus
inherently untestable, we take the point of view that one can point-identify the parameter
of interest, as long as sufficient evidence in favor of the PTA is available from pre-treatment
data, whereas Rambachan & Roth (2022) incorporate uncertainty about the PTA in their
confidence intervals.

The rest of the paper is organized as follows. Section 2 introduces the main model and
discusses the widely used practice of testing for violations of the PTA. Our equivalence tests
as well as our main assumptions and theorems are presented in Section 3. Section 4 discusses
the use of our methodology under violations of the PTA. Section 5 presents extensions of the
main model that allow for heterogeneous treatment effects due to differences in treatment
timing or observable characteristics. Simulation evidence on the performance of our test
procedures is provided in Section 6, while Section 7 contains an empirical illustration of
our approach. Section 8 concludes. Finally, mathematical details and tables are collected
in the Appendix.

2 Pre-testing in Difference-in-Differences

To motivate our test procedures, we initially consider the simple DiD case with only two
groups, homogeneous treatment effects and common treatment timing in a repeated cross-
sectional setting where we observe nt ∈ N individuals in period t ∈ {1, . . . , T +1}. In later
sections we extend our approach to allow for heterogeneous treatment effects and panel
data models. We refer to individual i as “treated” or being in the “treatment group” if
the treatment indicator Gi = 1 and as being “non-treated” or in the “control group” if
Gi = 0. Moreover, periods 1, ..., T correspond to pre-treatment periods while T +1 denotes
the post-treatment period. The potential outcome of unit i when treated is denoted as
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Y 1
i , whereas Y 0

i denotes the potential outcome of unit i in the absence of treatment. The
observed outcome is then given by

Yi = Y 0
i + (Y 1

i − Y 0
i )Gi ×Di,T+1, (2.1)

where Di,l denotes an indicator that takes the value 1 if unit i is observed in period
l ∈ {1, ..., T +1} and zero otherwise. Note that (2.1) implicitly imposes a “no-anticipation”
assumption, as the observed outcome in the pre-treatment periods coincides with the po-
tential outcome in the absence of treatment, which rules out any treatment effects before
period T + 1. Similar assumptions are used for instance in Goodman-Bacon (2021). Our
object of interest is the average treatment effect on the treated

πATT := E[Y 1
i − Y 0

i |Gi = 1, Di,T+1 = 1]. (2.2)

The PTA, which ensures that in the absence of treatment both the treatment and the
control group would have experienced the same time trends between the post-treatment
period T + 1 and period T (subsequently called the “base period” following Kahn-Lang &
Lang 2020), is given by ∆T+1(0)−∆T (0) = 0, where

∆l(0) := E[Y 0
i |Gi = 1, Di,l = 1]− E[Y 0

i |Gi = 0, Di,l = 1], l = 1, ..., T + 1 .

In most applications, it is however not considered plausible that group trends are parallel
between periods T and T + 1 but not between period l ∈ {1, ..., T − 1} and T . In the rest
of the paper, we therefore refer to the PTA in its “augmented” version given by

∆l(0)−∆T (0) = 0, l = 1, ..., T − 1. (2.3)

Under (2.1) and (2.3), we can recover the ATT as πATT = ∆T+1 −∆T , where

∆l := E[Yi|Gi = 1, Di,l = 1]− E[Yi|Gi = 0, Di,l = 1]

denotes the population group mean difference in period l. Thus, assuming (2.1) holds, the
PTA ensures that πATT can be estimated based on observable quantities.
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2.1 Statistical evidence

A popular model specification (see, e.g., Angrist & Pischke 2008, p.177) that yields both
an estimator of the ATT and a pre-testing procedure is

Yi = c+ αGi +
T+1∑
l=1
l ̸=T

γlDi,l +
T+1∑
l=1
l ̸=T

βlDi,l ×Gi + ui , i = 1, . . . , n , (2.4)

where c denotes a constant. A simple linear regression then yields estimates β̂l, l ∈

{1, . . . , T−1, T+1}, where πATT is estimated by β̂T+1. The remaining β̂0, . . . , β̂T−1 referring
to leads of the treatment effect are used for a “Granger-type causality test” (Wing et al.
2018). If the trends in the average outcome of interest in treatment and control are indeed
“parallel”, changes in treatment status occurring in period T + 1 should not affect the
outcome in prior periods. Under strict exogeneity, i.e. E[ui|Gi, Di,1, ..., Di,T−1, Di,T+1] = 0,
we have βl = ∆l − ∆T , i.e. βl measures the change in group mean differences between
period l and the base period. Thus, βl = 0 signifies the absence of temporary shocks in
periods l and T that only affect either treatment or control. Further notice that by (2.1)
and (2.3), βl = ∆l(0)−∆T (0)=0, which underlines that anticipation of treatment is ruled
out. Conversely, βl ̸= 0 signals that the control group may not be an optimal comparison
group for the treatment group, as there may be unobserved differences between both. In
that sense, β1, ..., βT−1 may provide a measure of comparability of treatment and control.
To find evidence against the plausibility of parallel trends, it is therefore common in ap-
plied economic research to test for individual significance (see Roth 2022), i.e. for every
l ∈ {1, ..., T − 1} we test

H0 : βl = 0 vs. H1 : βl ̸= 0. (2.5)

If the null hypothesis is rejected in a pre-treatment period, the PTA is deemed unreasonable,
and consequently the DiD framework is often regarded as unsuitable in the corresponding
context. This procedure has several shortcomings. For instance, a problematic common
practice is to treat failure to reject the null hypothesis in (2.5) as evidence in favor of
H0, i.e. one proceeds as if the null hypothesis was true and as if the PTA held. From a
statistical point of view, this practice is incorrect as it neglects the error of type II. In some
cases, there may be differences in trends between both groups in the population that cannot
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be detected with traditional test of (2.5) due to a lack of statistical power. Roth (2022)
points out that ignoring these differences can amplify the bias and thus raise concerns of
a “publication bias”, since articles using a DiD identification argument are more likely to
be deemed publishable when a test of (2.5) could not detect evidence against the PTA.
Moreover, the DiD framework is sometimes used even when H0 in (2.5) is rejected, as some
statistically significant differences are deemed negligible in a given context. However, a
potential threshold U > 0 that quantifies what constitutes a negligible effect is usually
insufficiently discussed. On the other hand, if the DiD framework is not applied when H0

in (2.5) is rejected in at least one pre-treatment period, useful information may be lost if
U can be interpreted as a plausible “upper bound” for trend differences. For these reasons,
the plausibility of the PTA as the fundamental modeling assumption of the DiD framework
can be more convincingly assessed using statistical equivalence tests as these tests address
all of the above shortcomings of the current standard testing procedure. For instance, to
rewrite (2.5) in terms of statistical equivalence, for some l ∈ {1, ..., T −1} one would define
the equivalence threshold U > 0 and test

H0 : |βl| ≥ U vs. H1 : |βl| < U .

Rejecting this null hypothesis thus yields evidence in favor of the absence of changes in
group mean differences between period t and the base period. In the following, we elaborate
on the benefits of equivalence tests and provide different ways of summarizing the statistical
evidence in favor of the PTA in the pre-treatment periods.

3 Testing for equivalence

Equivalence testing is well known in biostatistics (see Berger & Hsu 1996 or Wellek 2010).
While it has recently been considered in the statistical literature for the analysis of struc-
tural breaks (e.g. Dette & Wied 2014, Dette & Wu 2019, Dette, Kokot & Aue 2020 or Dette,
Kokot & Volgushev 2020), it is less frequently used in econometrics. Instead of assuming
that treatment and control are perfectly comparable (i.e. βl = 0, l = 1, ..., T − 1) unless
there is strong evidence against this assumption, we suggest several testing procedures that
explicitly require finding evidence in favor of the comparability of both groups. Each of
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the tests is based on an upper bound U > 0 for changes in the group mean differences in
the pre-treatment periods relative to the base period. There are two ways in which one
can make use of the upper bound U . First, as in the “classic” use of equivalence tests,
one can specify a threshold U below which changes in the group mean differences over
time are deemed negligible. One then applies our equivalence testing procedures using
the pre-specified threshold. Rejecting an equivalence test with threshold U at α level of
significance then implies that deviations from parallel trends in the pre-treatment periods
are negligible with probability 1 − α. Since the PTA in the pre-treatment periods is now
supported by sufficient evidence, this provides a justification for the PTA post-treatment so
that the true ATT can again be point-identified. This procedure improves upon the current
use of the Granger-causality test as it requires an explicit rationalization of the threshold
U and sufficient data to support the assumption of negligible violations of the PTA pre-
treatment. The choice of the threshold U should reflect the specific scientific background of
the application. In bio-statistics, the popularity of equivalence tests has led to a consensus
on sensible choices for U , and regulators frequently specify the equivalence thresholds that
should be employed (see Wellek 2010 for a recent review). We expect that with a more
frequent adoption of equivalence testing in applied economics a similar consensus will be
reached. However, in some applications, it may still be difficult to objectively argue that a
certain extend of violations of the PTA can be ignored in practice. It may then be sensible
to report U∗ as the smallest value at which H0 can be rejected at a given level of significance
(i.e. for which “equivalence of pre-trends” can be concluded). Small values of U∗ relative
to the estimated treatment effect may then be regarded as reassuring as it is unlikely that
the treatment effect is merely an artifact of differences in trends. On the contrary, if U∗ is
relatively large, the credibility of the estimated effect is in serious doubt. Finally, in cases
where the choice of the threshold is difficult, the methodology presented here can also be
used to provide (asymptotic) confidence intervals for violations of the PTA which provide
information about the size of the deviation with statistical guarantees. Notice that these
confidence intervals differ from those considered by Rambachan & Roth (2022), as they
focus on confidence intervals for the treatment effect that reflect the uncertainty about
the PTA while we consider confidence intervals on trend differences in the pre-treatment
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periods. Consequently, unlike Rambachan & Roth (2022), we maintain point-identification
of the ATT in the presence of sufficient evidence in favor of the PTA.

Overall, we consider three distinct hypotheses to test for equivalence of pre-trends
in treatment and control. We start with a discussion of the maximum absolute change
of the group mean difference in the pre-treatment periods relative to the base period.
More precisely, letting β(T−1) := (β1, ..., βT−1)

′, for a given level of significance α and the
equivalence threshold δ > 0, we test

H0 : ∥β(T−1)∥∞ ≥ δ vs. H1 : ∥β(T−1)∥∞ < δ, (3.1)

where ∥β(T−1)∥∞ := maxl∈{1,...,T−1} |βl|. Since we are now controlling the type I error, this
implies that with probability of at least 1−α, δ is an upper bound for the absolute change
in group mean differences in the pre-treatment periods relative to the base period.

In many applications, pre- and post-treatment periods are pooled, for instance to in-
crease statistical power. Similarly, it may be sensible in some applications to consider a
pooled or average measure of the pre-treatment deviations from parallel trends. Thus,
defining β̄(T−1) := 1

T−1

∑T−1
l=1 βl, one can find bounds on the average deviation from the

group mean difference in the base period by testing

H0 : |β̄(T−1)| ≥ τ vs. H1 : |β̄(T−1)| < τ. (3.2)

One disadvantage of (3.2) is that there may be cancellation effects in situations where
the components of β(T−1) are large in absolute terms but have opposing signs. Therefore,
(3.2) should be used when differences in pre-trends can safely assumed to be of the same
sign. As pointed out in Rambachan & Roth (2022), monotone violations of the PTA are
frequently discussed in the applied literature. For instance, treatment effect estimates are
often considered robust if potential violations of the PTA are of the opposing sign and can
thus be ruled out as an explanation for the estimated effects. As an alternative to (3.2)
that does not suffer from potential cancellation effects, we further consider the root mean
square (RMS) of β(T−1), i.e. βRMS := ∥β(T−1)∥/

√
T − 1 =

√
1

T−1

∑T−1
l=1 β

2
l , where ∥ · ∥

denotes the euclidean norm on RT−1. The RMS of β(T−1) can thus be interpreted as the
euclidean distance between treatment and control in the pre-treatment periods relative to
the distance in the base period scaled by the number of pre-treatment periods. The scaling
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is induced to ensure that this distance between treatment and control does not increase
with the number of pre-treatment periods available. The hypotheses are then formulated
as

H0 : βRMS ≥ ζ vs. H1 : βRMS < ζ , (3.3)

which can equivalently be written as

H0 : β
2
RMS ≥ ζ2 vs. H1 : β

2
RMS < ζ2. (3.4)

In Section 3.1 below we develop a test statistic for (3.4) and recover ζ as
√
ζ2.

3.1 Implementing equivalence tests

We now focus on developing the test statistics for the hypotheses in (3.1), (3.2) and (3.4)
which can be applied in model (2.4). To formalize the necessary assumptions, we introduce
the random vector

Wi :=
(
1, Gi, Di,1, . . . , Di,T−1, Di,T+1, Gi ×Di,1, . . . , Gi ×Di,T−1, Gi ×Di,T+1

)′
and the parameter

θ := (c, α, γ1, ..., γT−1, γT+1, β1, ..., βT−1, βT+1)
′ ∈ R2T+2. (3.5)

With these notations we can write model (2.4) in the form Yi = W ′
iθ + ui, and the least

squares estimator θ̂ is given by

θ̂ = (
1

n

n∑
i=1

WiW
′
i )

−1 1

n

n∑
i=1

WiYi = θ + (
1

n

n∑
i=1

WiW
′
i )

−1 1

n

n∑
i=1

Wiui, (3.6)

where n :=
∑T+1

t=1 nt denotes the total sample size. For the asymptotic analysis we make
the following assumptions.

Assumption 3.1

(1) Gi is a Bernoulli distributed random variable with parameter p ∈ (0, 1) specifying the
probability of individual i being treated.
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(2) The T + 1-dimensional vector (Di,1, . . . , Di,T+1)
′ has a multinomial distribution with

a single trial and probabilities p1, . . . , pT+1, where pj ∈ (0, 1) specifies the probability
that individual i is observed in period j and

∑T+1
j=1 pj = 1.

(3) W1, . . . ,Wn and u1 . . . , un are independent samples of independent identically dis-
tributed random variables.

(4) The matrix Γ = E[WiW
′
i ] exists and is positive definite. E[ui] = 0 and E[u2i ] exists and

is positive.

Under these assumptions, standard arguments show that the estimate θ̂ is consistent for θ
in (3.5). Let further β̂ := (β̂1, ..., β̂T−1, β̂T+1)

′ denote the OLS estimator of the parameter
β := (β1, ..., βT−1, βT+1)

′ in model (2.4). It then follows that
√
n(β̂ − β) → N(0,Σ), (3.7)

where N(0,Σ) denotes a T -dimensional normal distribution with mean vector 0 ∈ RT and
covariance matrix Σ = (Σij)i,j=1,...,T . As we discuss in Remark 3.2 below, our methodology
also works under alternative assumptions which for instance allow for serial dependence in
the model errors or panel data applications. Combining (2.1) and (2.4) with Assumption
3.1 now implies that β = (0, . . . , 0, πATT ) if and only if the PTA is satisfied. Based on the
asymptotic normality of the OLS estimator in (3.7), we propose tests for the three different
hypotheses of equivalence.

3.1.1 Two tests for (3.1).

To describe the first test for the hypotheses in (3.1) we initially consider the case T = 2

so that our objective is to test whether a single parameter β1 exceeds a certain threshold.
As β̂1 is approximately distributed as N1(β1,Σ11/n), the test statistic |β̂1| approximately
follows a folded normal distribution. We therefore propose to reject the null hypothesis in
(3.1), whenever

|β̂1| < QNF (δ,Σ̂11/n)
(α), (3.8)

where QNF (δ,σ2)(α) denotes the α quantile of the folded normal distribution with mean δ

and variance σ2 and where Σ̂ = (Σ̂ij)i,j=1,...,T is a consistent estimator of the matrix Σ in
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(3.7). It is shown in Appendix A that this test is consistent, has asymptotic level α and
is (asymptotically) uniformly most powerful for testing the hypotheses in (3.1) in the case
T = 2. In particular this test is more powerful than the two-sided t-test (TOST), which
could be developed following the arguments in Hartman & Hidalgo (2018). For T > 2, we
apply the idea of intersection-union tests outlined in Berger & Hsu (1996) and reject the
null hypothesis in (3.1), whenever

|β̂t| < QNF (δ,Σ̂tt/n)
(α) ∀t ∈ {1, . . . , T − 1}. (3.9)

While this test is computationally attractive, a well-known disadvantage of testing proce-
dures based on the intersection-union principle is that they tend to be rather conservative
(see Berger & Hsu 1996, among others), which is confirmed by our simulation study (see
Table 2 in Section 6).

To obtain a more powerful test for the hypotheses (3.1), we write β̂(T−1) := (β̂1, . . . , β̂T−1)
′

so that β̂(T−1) denotes the sub-vector which extracts the coordinates in the positions
T + 3, . . . , 2T from the vector θ̂. We derive an alternative test for (3.1) as follows: In
the first step, estimate (2.4) by OLS to obtain the unconstrained least squares estimator
θ̂u and the sub-vector β̂(T−1)

u . In the second step, we re-estimate (2.4) by minimizing the
sum of squared residuals under the constraint maxl=1,...,T−1 |βl| = δ to obtain a constrained
estimator, say θ̂c. We then define new estimators of the parameters as

ˆ̂
θc =

 θ̂u if ∥β̂(T−1)∥∞ ≥ δ

θ̂c if ∥β̂(T−1)∥∞ < δ
(3.10)

and ˆ̂σc =
1

n−2T−2

∑n
i=1(Yi −W ′

i
ˆ̂
θc)

2. Note that the vector ˆ̂
βc extracted from ˆ̂

θc satisfies the
null hypothesis in (3.1). In the third step, for b = 1, ..., B ∈ N, we generate bootstrap
samples with u

(b)
1 , ..., u

(b)
n

i.i.d.∼ N(0, ˆ̂σc) and Y
(b)
1 = W ′

i
ˆ̂
θc + u

(b)
i . For each bootstrap sample,

estimate θ̂(b)u and extract the components β̂(b)
1 , ..., β̂

(b)
T−1. Further compute Q∗

α as the empir-
ical α-quantile of the bootstrap sample {maxl=1,...,T−1 |β̂(b)

l | : b = 1, ..., B}. Finally, reject
the null hypothesis H0 in (3.1) if

∥β̂(T−1)∥∞ < Q∗
α . (3.11)

The following result shows that this test is consistent and has asymptotic level α.
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Theorem 3.1 The test defined by (3.11) is consistent and has asymptotic level α for the
hypotheses in (3.1). More precisely,

(1) if the null hypothesis in (3.1) is satisfied, then we have for any α ∈ (0, 0.5)

lim sup
n→∞

Pβ(T−1)

(
∥β̂(T−1)∥∞ < Q∗

α

)
≤ α. (3.12)

(2) if the null hypothesis in (3.1) is satisfied and the set

E = {ℓ = 1, . . . , T − 1 : |βℓ| = ∥β(T−1)∥∞} (3.13)

consists of one point, then we have for any α ∈ (0, 0.5)

lim
n→∞

Pβ(T−1)

(
∥β̂(T−1)∥∞ < Q∗

α

)
=

 0 if ∥β(T−1)∥∞ > δ

α if ∥β(T−1)∥∞ = δ.
(3.14)

(3) if the alternative in (3.1) is satisfied, then we have for any α ∈ (0, 0.5)

lim
n→∞

Pβ(T−1)

(
∥β̂(T−1)∥∞ < Q∗

α

)
= 1. (3.15)

3.1.2 A test for (3.2).

For some fixed τ > 0, a test can be constructed by first computing the statistic

¯̂
β(T−1) :=

1

T − 1

T−1∑
t=1

β̂t = 1′β̂(T−1)/(T − 1),

where 1 = (1, . . . , 1)′ ∈ RT−1. Note that it follows from (3.7) that

√
n1′(β̂(T−1) − β(T−1)) → N(0,1′Σ1)).

Consequently, based on the discussion in the first part of 3.1.1, we propose to reject the
null hypothesis in (3.2), whenever

| ¯̂β(T−1)| < QNF (τ,σ̂2)(α), (3.16)

where σ̂2 = 1′Σ̂1/(n(T − 1)2).
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3.1.3 A pivotal test for (3.4).

In order to construct a pivot test for the hypotheses (3.4), recall the definition of the OLS
estimator θ̂ in (3.6) and let ε > 0 denote a small positive constant. For λ ∈ [ε, 1], define

θ̂(λ) =
( 1
n

⌊nλ⌋∑
i=1

WiW
′
i

)−1 1

n

⌊nλ⌋∑
i=1

WiYi

as the OLS estimator for θ in (3.5) from the sample (W1, Y1), . . . , (W⌊nλ⌋, Y⌊nλ⌋), such that
for sufficiently large sample sizes θ̂(λ) is well defined. Next, define β̂(T−1)(λ) as the sub-
vector of θ̂(λ) extracting the coordinates in the positions T +2, . . . , 2T +2. Further define
β̂2
RMS := 1

T−1
∥β̂(T−1)∥2 and β̂2

RMS(λ) :=
1

T−1
∥β̂(T−1)(λ)∥2. Notice that for λ = 1 we recover

the respective estimators based on the full sample. We now define

M̂n :=
β̂2
RMS(1)− β2

RMS

V̂n
, (3.17)

where
V̂n =

(∫ 1

ε

(β̂2
RMS(λ)− β̂2

RMS(1))
2ν(d λ)

)1/2

(3.18)

and ν denotes a measure on the interval [ε, 1]. The following result is proved in the Ap-
pendix.

Theorem 3.2 If Assumption 3.1 is satisfied and β(T−1) ̸= 0, then the statistic M̂n defined
in (3.17) converges weakly with a non-degenerate limit distribution, that is

M̂n
d→ W :=

B(1)( ∫ 1

ε
(B(λ)/λ− B(1))2ν(dλ)

)1/2 , (3.19)

where {B(λ)}λ∈[ε,1] is a Brownian motion on the interval [ε, 1]. Moreover, if β(T−1) = 0,
then

M̂n
d→ Z2(1)( ∫ 1

ε
(Z2(λ)− Z2(1))2ν(dλ)

)1/2 , (3.20)

where Z2(λ) = 1
λ2 B⃗′(λ)D′DB⃗, ⃗≈≂⋗⋉≊ is a 2T + 2-dimensional vector of independent

Brownian motions and D is a (T − 1) × (2T + 2) matrix of full rank defined in equation
(A.7) in the Appendix.
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It follows from the proof of Theorem 3.2 that the statistic β̂2
RMS is a consistent estimator

of β2
RMS. Therefore, we propose to reject the null hypothesis H0 in (3.4) (and consequently

H0 in (3.3)), whenever
β̂2
RMS < ζ2 +QW(α)V̂n (3.21)

where QW(α) is the α-quantile of the distribution of the limiting distribution of the ran-
dom variable W on the right-hand side of (3.19). Note that these quantiles can be easily
obtained by simulation because the distribution of W is completely known. For instance,
QW(0.05) ≈ −2.1. The following result shows that this decision rule defines a valid test for
the hypotheses in (3.4).

Theorem 3.3 If Assumption 3.1 is satisfied, then the test defined by (3.21) is a consistent
asymptotic level α-test for the hypotheses in (3.4), that is

lim
n→∞

Pβ(T−1)

(
β̂2
RMS < ζ2 +QW(α)V̂n

)
=


0, if β2

RMS > ζ2

α, if β2
RMS = ζ2

1, if β2
RMS < ζ2

Remark 3.1
(a) Notice that in practice one chooses ν as a discrete distribution which makes the evalua-
tion of the integrals in (3.18) and in the denominator of the random variable W very easy.
For example, if ν denotes the uniform distribution on {1

5
, 2
5
, 3
5
, 4
5
}, then the statistics V̂ 2

n in
(3.18) simplifies to

1

4

4∑
k=1

(∥∥β̂(T−1)(k
5
)
∥∥2 −

∥∥β̂(T−1)(1)
∥∥2
)2

.

This measure is also used in the simulation study in Section 6, where we analyze the
finite sample properties of the different procedures. In practice, it is thus not necessary to
explicitly choose ε.
(b) It follows from the proof of Theorem 3.2 that an asymptotic (1−α)-confidence interval
for the parameter β2

RMS > 0 is given by[
β̂2
RMS +QW(α/2)V̂n, β̂

2
RMS +QW(1− α/2)V̂n

]
.

(c) Theorem 3.3 can be extended to get uniform results. More precisely, define for a small
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positive constant c the sets

H =
{
β(T−1)

∣∣∣ ∆(β(T−1)) > c , β̂2
RMS ≥ ζ2

}
,

A =
{
β(T−1)

∣∣∣ ∆(β(T−1)) > c , β̂2
RMS < ζ2 − x/

√
n
}
,

corresponding to the null hypothesis and alternative, respectively, where ∆(β(T−1)) is de-
fined in equation (A.8) in the Appendix. Then

lim sup
n→∞

sup
β(T−1)∈H

Pβ(T−1)

(
β̂2
RMS < ζ2 +QW(α)V̂n

)
= α .

Furthermore there exists a non-decreasing function f : R>0 → R>0, with f(x) > α for all
x > 0 and limx→∞ f(x) = 1, such that

lim inf
n→∞

inf
β(T−1)∈A

Pβ(T−1)

(
β̂2
RMS < ζ2 +QW(α)V̂n

)
= f(x) .

The details are omitted for the sake of brevity.

Remark 3.2 The statements made in this section remain valid under more general or
alternative assumptions and we exemplary mention here two such scenarios.

(1) In Assumption 3.1 it is postulated that the random variables (W1, ε1), . . . , (Wn, εn)

are independent. However, a careful inspection of the proofs in Section A.3 shows
that similar results can be obtained in the case of dependent data. More precisely,
for a symmetric d× d matrix A let vech(A) denote the d(d+1)/2-dimensional vector
that stacks the columns of the matrix A below the diagonal in a vector. Let d :=

(2T + 2) + (2T + 2)(2T + 3)/2, let K denote a non-singular d × d-matrix and let
B⃗ be a d-dimensional vector of independent Brownian motions. If the time series
{(Wi, ui)}ni=1 is stationary and the sequential process satisfies√

n

 1
⌊nλ⌋

∑⌊nλ⌋
i=1 Wiui

vech( 1
⌊nλ⌋

∑⌊nλ⌋
i=1 WiW

′
i − Γ)


λ∈[ε,1]

⇝
{
K

B(λ)
λ

}
λ∈[ε,1]

, (3.22)

where “⇝” denotes weak convergence in the space (ℓ∞[ε, 1])d of all d-dimensional
bounded functions on the interval [ε, 1], then the results stated in this section remain
valid. Results of the form (3.22) have been proved for many dependence concepts
in the literature (such as different types of mixing or physical dependence; see, for
instance, Merlevède et al. 2006 and the references therein).
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(2) Similarly, note that Assumption 3.1(2), which reflects the fact that each individual
is only observed at exactly one time period, can be replaced by other assumptions,
modeling alternative observation schemes. For example, in the situation of panel
data with no missing observations, the vector Di = (Di,1, . . . , Di,T+1)

′ is not random
and given by (1, . . . , 1)′. Moreover, panel data with missing observations can be also
modeled using a random vector Di = (Ui,1, . . . , Ui,T+1)

′ where Ui,1, . . . , Ui,T+1 are
independent Bernoulli variables with success probabilities p1, . . . , pT+1, respectively.
Here, 1 − pt represents the probability that an observation for the i-th individual is
not available for time t.

4 Equivalence testing in practice

In practice, the PTA is often violated, for instance due to self-selection into treatment that
is not accounted for in the estimation procedure (Heckman & Smith 1999). Importantly
for our approach, violations of the PTA due to differences in unobserved characteristics
between both groups typically induce bias in β̂(T−1) which affects the equivalence thresholds
at which the null hypothesis in our tests can be rejected. In order to formalize the violations
of the PTA, we now consider the model in (2.4) with the crucial difference that the model
error may contain a vector of unobserved covariates that lead to unobserved differences
between the two groups, thus making the control group an imperfect comparison group for
the treatment group. For instance, the variable Zi may represent group-specific transitory
shocks leading to a pre-program-dip or other unobserved individual characteristics (e.g.
the sector of last employment) that affect the mean difference of the outcome of interest
between the two groups. The data generating process is thus given by

Yi = c+ αGi +
T+1∑
l=1
l ̸=T

γlDi,l +
T+1∑
l=1
l ̸=T

βlDi,l ×Gi + ũi, i = 1, . . . , n (4.1)

where ũi = Z ′
iν + ui. When Zi is omitted, the OLS estimator is

θ̂ = θ + (
1

n

n∑
i=1

WiW
′
i )

−1 1

n

n∑
i=1

WiZ
′
iν + (

1

n

n∑
i=1

WiW
′
i )

−1 1

n

n∑
i=1

Wiui.

As E[Wiui] = 0 under Assumption 3.1, it is easy to see that the OLS estimator is only
consistent as n → ∞ if E[WiZ

′
i] = 0. Notice that in the presence of Zi we have βl =
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∆l −∆T − (∆Z
l −∆Z

T ), where

∆Z
l := E[Zi|Gi = 1, Di,l = 1]− E[Zi|Gi = 0, Di,l = 1].

Thus, in the presence of unobserved covariates that affect the group means of treatment and
control differently, the OLS estimator is biased and estimates θ+ρ, where ρ = Γ−1E[WiZ

′
iν]

is the omitted variable bias. Therefore, when the true effect of the treatment prior to the
treatment is zero, i.e. βl = 0 for l = 1, ..., T − 1, rejecting our equivalence tests for a
threshold U > 0 implicitly yields an upper bound for the omitted variable bias ρ. In the
following, let δ∗, τ ∗ and ζ∗ denote the smallest values such that the null hypotheses in (3.1),
(3.2) and (3.3) can be rejected.

4.1 Examples

We now consider possible scenarios in which the PTA is violated due to the presence
of unobserved covariates that have a differential effect on both groups. To simplify the
exposition, we assume that the unobserved variable only affects the treatment group while
the control group is unaffected.

Example 4.1 (Pre-program dip) As a first example, we model Ashenfelter’s dip through
the presence of a temporary shock denoted as Zi that affects one group but not the other.
We assume that the data is generated by the model in (4.1) with Zi = Di,T ×Gi×Vi, where
Vi, i = 1, ..., n, denotes i.i.d draws of a random variable with mean v > 0 and bounded
variance independent of treatment status and time. We further assume that the treatment
itself does not have an effect before the treatment takes place so that β1, ..., βT−1 = 0. The
OLS estimator of πATT , which still corresponds to the usual change in mean difference of
the outcome variable from the post-treatment period to the base period then becomes

∆T+1 −∆T = βT+1 +∆Z
T+1 −∆Z

T = βT+1 − ν,

since ∆Z
T+1 = 0 and ∆Z

T = ν. Therefore, we cannot recover the true ATT βT+1 due to the
omitted variable bias ρ = −ν. However, a similar argument shows that β̂l converges to
βl − v = −v for l ∈ {1, ..., T − 1} which differs from the true β1 by the same amount in
absolute terms as the probability limit of the estimated treatment effect differs from the
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true treatment effect. Consequently, if the null hypotheses in (3.1), (3.2) or (3.3) is rejected
for a threshold U at level of significance α, U constitutes an upper bound of the absolute
omitted variable bias with probability of at least 1− α.

Example 4.2 (Unobserved covariate with time trend) We now consider the DGP in (4.1)
when the unobserved variable Zi follows a time trend. More precisely, the unobserved
variable is modeled as Zi = ψ×Gi×Di,l× l, where ψ represents the slope of the time trend
which only affects the treatment group and l ∈ {1, . . . , T +1}. In this setup, ∆T+1−∆T =

βT+1 + ψ, since ∆Z
T+1 − ∆Z

T = (T + 1)ψ − Tψ = ψ. Moreover, for l ∈ {1, ..., T − 1},
βl −∆T = βl + ψ(l− T ) = ψ(l− T ), so that |β̂l| will typically increase with |l− T |. Thus,
δ∗, τ ∗ and ζ∗ will typically increase accordingly with the number of pre-treatment periods
available. While δ∗ increases with T even in the absence of an underlying time trend, the
increase in τ ∗ and ζ∗ can be regarded as evidence against the PTA and temporary shocks
to the group mean difference (as in Ashenfelter’s dip) and may thus be useful in identifying
a permanent time trend.

5 Equivalence testing with heterogeneous treatment

effects

The use of the simple DiD model has recently experienced substantial criticism in the
presence of multiple groups, heterogeneous treatment effects and differences in treatment
timing. In this situation, the DiD estimator often does not correspond to a reasonable
estimate of the ATT (see, for instance, Goodman-Bacon 2021, Callaway & Sant’Anna
2021, Sun & Abraham 2021, Borusyak et al. 2021 or de Chaisemartin & D’Haultfœuille
2020. Excellent reviews of this fast-growing literature are provided by Roth et al. 2022 and
de Chaisemartin & D’Haultfoeuille 2022.). In a recent paper, Wooldridge (2021) shows that
this deficiency of the DiD estimator can be regarded as a model misspecification problem.
He then proposes model adjustments that allow for treatment effect heterogeneity due
to differences in treatment timing and observed characteristics (which are assumed to be
unaffected by the treatment). In the following, we show how our equivalence tests can
be adapted for the case of staggered adoption over time of an absorbing treatment in
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the presence of a never-treated group. Here, following Roth et al. (2022), we refer to a
treatment as “staggered” if some groups are treated earlier than others. The treatment is
“absorbing” if treated units remain treated in periods after the initial treatment assignment.
Following (Wooldridge 2021, Section 6), we assume that the time since the initial treatment
adoption produces different levels of exposure to the treatment, resulting in treatment
effect heterogeneity across time. As before, we consider repeated cross-sections where each
individual i is observed in exactly one period and treatment cohort (the panel data case
can be handled by adjusting the notation as in Wooldridge 2021), and we maintain the
assumption that T pre-treatment periods are observed. In each of the following periods
T + 1, ..., T , a subset of individuals adopts treatment, leading to “treatment cohorts”. To
define a treatment cohort dummy, let Gr

i = 1 if individual i has first adopted treatment in
period r ∈ R := {T + 1, ..., T ,∞} and zero otherwise, where G∞

i is a dummy indicating
that individual i is a member of the never treated group. We assume that individuals of
every treatment cohort can be observed in each period, i.e. P(Gr

i ×Di,s = 1) = prs ∈ (0, 1)

with
∑

r,s prs = 1. The potential outcome of unit i in treatment cohort r ∈ R observed in
time period t ∈ {1, ..., T} is denoted by Y r

i (t), where the “baseline” potential outcome in
period t if unit i is never treated is given by Y ∞

i (t). We assume that the observed outcome
can be written as

Yi =
T∑
t=1

Y ∞
i (t)Di,t +

T∑
r=T+1

T∑
t=r

(Y r
i (t)− Y ∞

i (t))Di,tG
r
i (5.1)

which implicitly rules out that units deviate from their designated treatment paths. In
particular, (5.1) rules out anticipatory behavior or spillover effects. In this staggered set-
ting, researchers may be interested in estimating the ATTs for each of the post-treatment
periods separately. If these ATTs are dependent on a vector of observed covariates Xi, the
ultimate objects of interest are

πr
X(t) = E[Y r

i (t)− Y ∞
i (t)|Gr

i = 1, Di,t = 1, Xi], r = T + 1, ..., T , t = r, ..., T . (5.2)

By iterated expectations, we can recover πr(t), the overall ATT for cohort r in post-
treatment period t, by averaging (5.2) across the distribution of Xi. If the never-treated
group can be considered a “good control” for each treated group conditional on Xi, we may
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use a “conditional staggered parallel trends assumption” (CSPTA), given as ∆r
s(∞, Xi)−

∆r
T (∞, Xi) = 0 for all s = 1, ..., T and r ∈ R, where

∆r
s(∞, Xi) = E[Y ∞

i (s)|Gr
i = 1, Di,s = 1, Xi]− E[Y ∞

i (s)|G∞
i = 1, Di,s = 1, Xi].

This condition requires that, conditional on Xi, the development of the baseline potential
outcome between time period t and the base period T in each treatment cohort matches
the corresponding development in the never-treated group in the absence of treatment.
Following (Wooldridge 2021, Section 7), we can allow for heterogeneity due to staggered
treatment assignment as well as differences in observed characteristics by assuming that
the observed data is generated as

Yi = c+ κ′Xi +
∑

r∈R\{∞}

(αrG
r
i + ζ ′rXiG

r
i ) +

T∑
l=1
l ̸=T

(γlDi,l + ξ′lXiDi,l)

+
T∑

m=T+1

m−1∑
k=1
k ̸=T

(τmkG
m
i Di,k + υ′mkẊ

r
iG

m
i Di,k) +

T∑
r=T+1

T∑
s=r

(τrsG
r
iDi,s + ν ′rsẊ

r
iG

r
iDi,s) + ui,

(5.3)

where Ẋr
i = Xi − E[Xi|Gr

i = 1]. Clearly, model (5.3) implicitly imposes that πr
X(t) is a

linear function of Xi. However, the vector Xi may contain polynomial functions of the
observed covariates. Simple algebra shows that τrs + ν ′rsẊ

r
i = ∆r

s(Xi)−∆r
T (Xi), where

∆r
s = E[Yi|Gr

i = 1, Di,s = 1, Xi]− E[Yi|G∞
i = 1, Di,s = 1, Xi].

Combining (5.3) with (5.1), the CSPTA implies that τrs + ν ′rsẊ
r
i = πr

X(s). Due to the
centering of Xi around its cohort mean, averaging across the distribution of Xi conditional
on Gr

i = 1 shows that τrs can indeed be interpreted as the ATT for the treatment cohort r
observed in period s. The model also includes placebo treatment effects τmk for individuals
in cohort m observed in period k < m, i.e. before their actual treatment. If (5.1) and (5.3)
hold, the CSPTA implies that τmk + ν ′mkẊ

m
i = 0. We therefore avoid any “contamination”

by treatment effects at time m′ > m, which, as noted by Sun & Abraham (2021), can lead
to a rejection of the CSPTA in the pre-treatment periods even in cases where it actually
holds. Since asymptotic normality of the OLS estimator applied to model (5.3) holds under
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small modifications of the notation in Assumption 3.1, we can directly apply our equivalence
tests. For instance, assuming that (5.3) and (5.1) hold, one can find evidence in favor of the
unconditional staggered PTA by testing the null hypothesis that the maximum component
of the vector τplacebo, defined as the vector collecting all τmk for m = T + 1, ..., T and
k = 1, ...,m− 1, k ̸= T , exceeds a certain threshold. If interest lies in the CSPTA, one can
apply the same testing strategy on τplacebo(x) with components τmk+ν

′
mkx, where x denotes

a specific outcome of Xi. In many applications, Xi is a single discrete variable, e.g. Xi = 1

for high-skilled workers and zero otherwise. One can then alternatively check the CSPTA
by estimating (5.3) for both subgroups (omitting any interaction terms involving Xi) and
applying our tests to the corresponding estimates of τplacebo. In principle, our methodology
can also be used to test for negligible treatment effect heterogeneity by applying the same
testing strategy to τstaggered, defined as the vector collecting all τrs for r = T + 1, ..., T ,
s = r, ..., T .

The model in (5.3) can be flexibly adjusted to the problem at hand. For instance, one
may be willing to exclude a subset of the placebo treatment effects from the model in order
to allow for some pooling across cohorts and time. As noted by Wooldridge (2021), in this
case, the pooled OLS estimator of τrs is an averaged “rolling DiD” where, on top of the
never-treated group and the base period, any cohort and period that corresponds to an
omitted placebo treatment effect is used as a control. In this case, the CSPTA needs to be
adjusted accordingly (e.g. as in Roth et al. 2022), as parallel trends need to be plausible
between multiple groups and periods. Finally, notice that in practice E[Xi|Gr

i = 1] needs
to be replaced by the sample average of Xi in cohort r. As suggested in Wooldridge (2021),
one should adjust the standard errors to account for the additional sampling variation.

6 Simulations

In order to investigate the small sample properties of our tests, we conduct a simulation
study in R. For that, we create a data set of repeated cross sections, where the number of
pre-treatment periods is T ∈ {2, 4, 8, 12} and the number of individuals observed in each
period nt is either 100 or 1000. We set P(Gi = 1) = 0.5 and P(Dl = 1) = 1/(T + 1)

in all simulations. Consequently, the treatment and the control group consist each of
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roughly half of the individuals and about the same number of individuals is observed in
each period. We set the group dummy α = 2 and draw the time dummies γl and the
model error ui independently from a standard normal distribution. Finally, we include an
observed covariate Xi which is independently drawn from a normal distribution with mean
and standard deviation 1.

In an initial step, we investigate the level of the proposed tests. To do so, we set the
level of significance α = 5% choose the threshold for all hypotheses as 1. We then choose
the parameters βl in the pre-treatment periods such that we are on the ”boundary” of the
hypotheses, that is βl = 1 for some l ∈ {1, . . . , T − 1} or βl = 1 for all l = 1, ..., T − 1.
Moreover, we also investigate the power of the test procedures by choosing βl ∈ {0.8, 0.9}

for all l = 1, ..., T − 1. The bootstrap based test (3.11) for (3.1) is computed using 500

bootstrap draws. The results for all tests based on 20000 simulations are presented in
Tables 2, 3 and 4.

In the following scenarios, we choose the level of significance α = 5% and compute
δ∗IU and δ∗Boot as the smallest equivalence thresholds for the intersection-union and the
bootstrap tests such that the null hypothesis in (3.1) can still be rejected (i.e. for which
equivalence of pre-trends can be concluded). Similarly, we compute the smallest equivalence
thresholds τ ∗ and ζ∗ for the corresponding null hypotheses in (3.2) and (3.3) using the tests
in (3.16) and (3.21), respectively. The reported numbers correspond to the average over
M = 2500 simulations and can be used to assess at what value of the equivalence threshold
a particular test can be expected to reject the null hypothesis. Finally, we report the
usual 95% confidence interval CIβ̂T+1 and the number of simulations in which each βl for
l = 1, ..., T − 1 was found to be statistically insignificant. In all our scenarios we set
βT+1 = 0 so that the treatment has no effect. We then investigate how violations of the
PTA affect the chance of falsely detecting a treatment effect and how these violations affect
the smallest equivalence thresholds for which equivalence can be concluded.

Table 5 shows the results under the PTA. We further simulate scenarios in which the
PTA is violated due to the presence of unobserved covariates that affect the treatment group
but not the control group. Our first setup is Example 4.1 augmented by an additionally
observed covariate Xi. The unobserved variable is modeled as Zi = Gi ×Di,T × Vi, where
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Vi denotes a random draw from a normal distribution with mean µ ∈ {1
4
, 1
2
} and variance

1. The results are given in Table 6 and 7. The second setup includes a linear time trend as
in Example 4.2, i.e. Zi = ψ× t×Di,t×Gi with ψ ∈ {0.025, 0.05}. The results are presented
in Tables 8 and 9.

6.1 Simulation results – Discussion

Table 2 shows that the test in (3.16) approximately keeps the desired level for every T even
in small samples. The test in (3.21) appears to be slightly over-rejecting when nt = 100

but keeps its nominal level in larger samples. Notice that in Table 3 the tests in (3.16) and
(3.21) rightfully reject the null hypothesis in an increasing number of cases as nt and T

increase. This makes sense, since an increase in T > 2 means that the average and the root
mean square value of β(T−1) are further away from the boundary of the null, resulting in
an increase in statistical power. Regarding the two tests in (3.9) and (3.11), Tables 2 and
3 illustrate that they maintain their nominal level for T = 2. When only one parameter is
at the boundary of the null hypothesis, i.e. β1 = 1 while β2 = ... = βT−1 = 0, both tests
perform well in the sense that the empirical rejection frequency is close to the nominal level
for sufficiently large n. In contrast, if βl = 1 for all pre-treatment periods l = 1, ..., T − 1,
both tests become conservative for larger values of T . This phenomenon appears to be much
more pronounced for the test based on the intersection-union principle, for which it is well-
documented (Berger & Hsu 1996). For instance, the empirical level of the intersection-union
test is more than 6 times smaller than the corresponding level of the bootstrap based test for
T = 8. As shown in Table 4, this has important consequences for the power of both tests.
As can easily be seen, our bootstrap based test procedure outperforms the intersection-
union-based test for T > 2. On the other hand, the intersection-union based test may
still be attractive for practical applications at it is numerically much less demanding. As
compared to the tests in (3.9) and (3.11), the power of our test in (3.21) is substantially
larger, only surpassed by the power of the test in (3.16). All tests have in common that the
power decreases with T . This is true even for the test in (3.16), which is the uniformly most
powerful (asymptotic) test for this null hypothesis for any T . Thus, concluding equivalence
of pre-trends becomes more demanding with an increase in the number of pre-treatment
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periods. This makes intuitive sense in the DiD setup, where equivalence of pre-trends in a
larger number of periods is often regarded as stronger evidence for the plausibility of the
PTA.

The fact that the intersection-union test for (3.1) becomes very conservative may explain
why δ∗IU is increasing in T for all sample sizes and in all simulation setups. One of the
reasons for this behavior is that due to its construction, the value of δ∗IU is largely determined
by the maximal variation in the components of (β̂1, ..., β̂T−1). For T = 2, we see that
ζ∗ > δ∗IU ≈ δ∗Boot = τ ∗. This may be explained by the fact that for T = 2 the tests in
(3.1) and (3.16) coincide while (asymptotically) being the uniformly most powerful test.
The bootstrap based test performs very well, as anticipated from the high power shown in
Table 4. For T > 2, we roughly observe that τ ∗ < ζ∗ ≤ δ∗Boot < δ∗IU , which can be explained
by the observation β̄(T−1) ≤ βRMS ≤ ∥β(T−1)∥∞. In all cases, δ∗Boot is substantially smaller
than δ∗IU , which may be explained by the higher power of the bootstrap based test. Further
notice that even when the PTA holds, the practice of rejecting the DiD framework when
β̂l is statistically insignificant for at least one l ∈ {1, ..., T − 1} is clearly inefficient as is
shown by the first row of Table 5, as an increase in available pre-treatment periods increases
the chance of incorrectly rejecting the DiD framework under the PTA. Thus, rather than
rejecting a DiD analysis in an application due to a significant pre-treatment parameter
estimate, it may be more sensible to use an equivalence test based procedure. A similar
observation can be made in the presence of a linear time trend as shown in Tables 8 and 9.
Here, even when the empirical coverage rate of the usual confidence interval is only slightly
lower than the nominal level, the DiD framework is rejected in a large number of cases.

When the PTA is violated due to a small temporary shock as in Table 6, the usual
practice of adopting the PTA when no significant differences in pre-trends could be found
can lead to a false discovery of a non-zero treatment effect in a substantial number of
cases, in particular when the sample size is small. If the temporal shock is larger as in
Table 7, a non-existing treatment effect will be found to be significantly different from
zero in almost all cases. All our test procedures require an unrealistically large equivalence
threshold in order to be able to conclude equivalence of pre-trends. In particular, any
equivalence threshold for which equivalence could be concluded would have to be larger
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than the estimated treatment effect, therefore casting serious doubt on the validity of the
latter. We further notice that δ∗IU and δ∗Boot increase in T , whereas τ ∗ and ζ∗ remain stable
or slightly decrease in T , as variation in β̂(T−1) is “smoothed out” with more pre-treatment
periods available.

When the PTA is violated due to a permanent linear time trend that affects only the
treatment group, the bias of β̂T+1 corresponds to the slope of the trend. Again, when the
sample is large (an thus when the width of CIβ̂T+1 is small), CIβ̂T+1 contains the true ATT
in less than 95% of the cases. If the slope of the time trend is small, the coverage of CIβ̂T+1

is however close to its nominal level, as is shown in Table 8. As expected from Example 4.2,
the coverage gets worse with a steeper slope of the time trends (Table 9). As before, in order
to be able to conclude equivalence of pre-trends, the equivalence thresholds would have to
be chosen larger than the estimated treatment effect, thus suggesting that the estimated
ATT may contain bias due to insufficient support for the PTA. Moreover, our methodology
can be useful in identifying the presence of a linear time trend, as τ ∗ and ζ∗ tend do decrease
with T under the PTA or when the violation of the PTA is only temporary, whereas under
the presence of a linear trend, they increase with T (as is expected by Example 4.2).

7 Empirical illustration

In this section, we illustrate our approach by re-considering the influential Difference-in-
Differences analysis in Di Tella & Schargrodsky (2004). They use a shock to the allocation
of police forces as a consequence of a terrorist attack on a Jewish institution as a natural
experiment to study the the effect of police on crime. We choose this paper as it provides an
excellent opportunity for a comparison between our methodology and the current standard
of testing for violations of parallel trends. The original authors conduct the usual Granger-
causality test in (2.5) and find no evidence for violations of the PTA. However, Donohue
et al. (2013) point out several shortcomings of the original paper (e.g. spillover effects
from the treated to the untreated group). In particular, they find that the PTA is not
plausible if the pre-treatment data is inspected on a more granular level, thus casting
doubt on the validity of the estimated treatment effects. While the traditional test failed
to detect evidence against the PTA, we will apply our test procedures to analyze how much
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evidence in favor of the PTA can be extracted from the original specification in Di Tella
& Schargrodsky (2004).

The data consists of monthly averages of the number of car thefts between April and
December 1994 in each out of 876 Buenos Aires city blocks out of which 37 blocks hosted
Jewish institutions and thus received additional protection after the attack. The main
specification in Di Tella & Schargrodsky (2004) is given by Yit = αi + γt + βDit, where
Yit denotes the number of car thefts in block i and month t and Dit is a dummy variable
taking the value 1 if block i is treated in period t. Finally, αi and γt are block- and
time-specific fixed effects. By using this specification, the pre- and post-treatment periods
are pooled together so that the estimated treatment effect compares the post-treatment
difference in car thefts between treated and non-treated blocks to the corresponding pre-
treatment difference. To analyze group mean differences in the pre-treatment periods, we
adapt (2.4) by pooling the post-treatment periods in two different specifications. First,
as in the original paper, we include block-specific effects and cluster on the block level.
Secondly, we replace the block-specific dummies by a single group dummy and compute
heteroskedasticity-robust standard errors. Finally, we compute δ∗IU , δ∗Boot, τ ∗ and ζ∗ based
on one, two and three pre-treatment periods, corresponding to June, May and June and
April–June. Since the data set is a panel that is ordered by time (as are most panel data
sets in practice), the implementation of our test in (3.21) needs to be adjusted slightly:
instead of choosing the first ⌊λn⌋ observations in the data set, we use the first ⌊λn/(T +1)⌋

observations in each time period to compute θ̂(λ) for λ ∈ {1
5
, 2
5
, 3
5
, 4
5
}. Moreover, notice

that (3.11) and (3.21) do not require an estimator of the asymptotic variance. Thus, they
are not affected by the choice of standard errors. The results are summarized in Table 1
below. Notice that for all tests the smallest equivalence threshold that still allows us to
conclude equivalence of pre-trends are the largest when only the pre-treatment period June
is used. If more pre-treatment periods are taken into account, the minimum upper bounds
δ∗IU and δ∗Boot stay constant whereas the average and the root mean squared upper bounds
τ ∗ and ζ∗ become smaller. This hints towards a temporary shock to treatment or control
in June which may bias the pooled estimates in Table 3 of Di Tella & Schargrodsky (2004).
The latter are significant and range between −0.058 and −0.081. One important outcome
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PPPPPPPPPPPPP
Estimates

periods
June May&June April–June

δ∗IU (clustered) 0.104 0.104 0.104
δ∗IU (White) 0.161 0.161 0.161
δ∗Boot 0.156 0.156 0.156
τ ∗ (clustered) 0.104 0.083 0.076
τ ∗ (White) 0.161 0.098 0.093
ζ∗ 0.106 0.076 0.066

Table 1: Smallest equivalence thresholds such that the null hypotheses in (3.1), (3.2) and
(3.3) can be rejected for varying numbers of pre-treatment periods.

of our equivalence test based analysis is that, even without the granular data inspection
of Donohue et al. (2013), the equivalence thresholds have to be chosen unrealistically large
in order to conclude equivalence of pre-trends. In fact, the smallest equivalence bounds
for which the null hypotheses can be rejected are larger than the estimated effect size of
police on crime. Therefore, it is questionable whether there is any effect at all, since the
estimated effect may be an artifact of the violated PTA only.

8 Conclusion

We have derived four distinct procedures for testing equivalence of pre-trends in difference-
in-differences estimation. Our tests capture the maximum, average and root mean square
change in group mean differences relative to the base period and thus provide a measure
of similarity between treatment and control. Contrary to the current practice, our tests
require researchers to provide evidence in support of the parallel trends assumption. Our
approach is based on the explicit specification of a threshold below which equivalence can
be assumed. Alternatively, we propose to compare the estimated treatment effects with
the smallest equivalence threshold for which equivalence can still be concluded for a given
level of significance. Computationally, our tests are based on simple linear regressions.
Therefore, they can easily be adapted to more complicated setups, including heterogeneous
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treatment effects and staggered treatment assignment. In a simulation study, we further
show that our tests maintain their nominal level and exhibit high statistical power in
sufficiently large samples. Moreover, we illustrate the performance of our tests under
violations of the parallel trends assumption. Finally, we apply our methodology to the
data provided by Di Tella & Schargrodsky (2004). Even without a granular inspection of
the data as in Donohue et al. (2013), our methodology casts doubt on the estimated effects,
as they may simply result from previously undetected differences in pre-trends.
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A Mathematical proofs

A.1 Properties of the test (3.8)

For sufficiently large sample sizes the quantile fα := QNF (δ,Σ̂11/n)
(α) satisfies

α = P
(
| NF (δ, Σ̂11/n) |≤ QNF (δ,Σ̂11/n)

(α)
)
= Φ

(fα − δ

Σ11

)
−Φ

(−fα − δ

Σ11

)
+O

(
1√
n

)
(A.1)

where Φ is the cdf of the standard normal distribution. Consequently, we obtain for the
probability of rejection

Pβ1(|β̂1| ≤ fα) ≈ Φ
(fα − β1

Σ11

)
− Φ

(−fα − β1
Σ11

)
. (A.2)

It is well known that the right-hand side of (A.2) (with the quantile fα defined by (A.1))
is the power function of the uniformly most powerful unbiased test (see Example 1.1 in
Romano (2005)).

A.2 Proof of Theorem 3.1

The proof follows essentially by the same arguments as given in Dette et al. (2018), and,
for the sake of brevity, we only explain why this is the case. First note that a standard
calculation (see also the discussion below in Section A.3, where a sequential version of the
result is derived) shows that

√
n(θ̂ − θ) = Γ−1 1√

n

n∑
i=1

Wiui + oP(1) ,

where θ̂ = Γ̂−1 1
n

∑n
i=1WiYi is the OLS of the parameter θ in model (2.4) from the observa-

tions (W1, Y1), . . . , (Wn, Yn) and Γ̂ = 1
n

∑n
i=1WiW

′
i . Consequently, by the CLT

√
n(θ̂ − θ)

has an asymptotic normal distribution. Observing the definition of the vector β(T−1) as a
sub-vector of θ, it follows from the continuous mapping theorem that

√
n(β̂(T−1) − β(T−1))

has an asymptotic (T − 1)-dimensional centred normal distribution as well. We denote the
corresponding asymptotic covariance matrix by Σ(T−1) = (σij)i,j=1,...T−1. Now we interpret
all vectors as stochastic processes on the set X = {1, . . . , T − 1} and rewrite the weak
convergence of the vector β̂(T−1) = (β̂1, . . . , β̂T−1)

′ as

{
√
n(β̂x − βx)}x∈X ⇝ {G(x)}x∈X , (A.3)
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where {G(x)}x∈X is a centered Gaussian process on X = {1, . . . , T − 1} with covariance
structure Cov(G(x),G(y)) = σxy (x, y ∈ X ). Note that (A.3) is the analog of equation
(A.7) in Dette et al. (2018), and it follows by exactly the same arguments as stated in this
paper that

√
n
(
∥β̂(T−1)∥∞ − ∥β(T−1)∥∞

)
→ max

{
max
x∈E+

G(x),max
x∈E−

−G(x)
}
, (A.4)

provided that ∥β̂(T−1)∥∞ > 0, where the sets E+ and E− are defined by

E+ = {ℓ = 1, . . . , T − 1 : βℓ = ∥β(T−1)∥∞} ,

E− = {ℓ = 1, . . . , T − 1 : βℓ = −∥β(T−1)∥∞} ,

respectively. Note that E− ∪ E+ = E , where E is defined in (3.13), and that (A.3) is the
analog of Theorem 3 in Dette et al. (2018). Moreover, if β̂(T−1),∗ = (β̂∗

1 , . . . , β̂
∗
T−1)

′ denotes
the estimate from the bootstrap sample, we obtain an analog of the weak convergence in
(A.3), that is

{
√
n(β̂∗

x −
ˆ̂
βx)}x∈X ⇝ {G(x)}x∈X (A.5)

conditional on the sample (W1, Y1), . . . , (Wn, Yn). Note that this statement corresponds to
the statement (A.25) in Dette et al. (2018). Now the statements (A.7) and (A.25) and their
Theorem 3 are the main ingredients for the proof of Theorem 5 in Dette et al. (2018). In the
present context these statements can be replaced by (A.3), (A.5) and (A.4), respectively,
and a careful inspection of the arguments given in Dette et al. (2018) shows that Theorem
3.1 holds (the arguments even simplify substantially as in our case the index set X of the
processes is finite).

A.3 Proof of Theorem 3.2

Recall that θ̂(λ) is the OLS for the parameter θ in model (2.4) from the observations
(W1, Y1), . . . , (W⌊nλ⌋, Y⌊nλ⌋), that is

θ̂(λ) = Γ̂−1
⌊nλ⌋

1

⌊nλ⌋

⌊nλ⌋∑
i=1

WiYi = θ + Γ̂−1
⌊nλ⌋

1

⌊nλ⌋

⌊nλ⌋∑
i=1

Wiui,

34



where the matrix Γk is defined by

Γ̂k =
1

k

k∑
i=1

WiW
′
i .

As
sup

λ∈[ε,1]
∥Γ̂⌊nλ⌋ − Γ∥ = oP(1)

and the matrix Γ is non-singular, it follows that

√
n(θ̂(λ)− θ) = Γ−1

√
n

⌊nλ⌋

⌊nλ⌋∑
i=1

Wiui + oP(1)

uniformly with respect to λ ∈ [ε, 1]. Consequently, we obtain from the Cramer-Wold device
and Theorem 2.12.1 in van der Vaart & Wellner (1996) that

{√
n(θ̂(λ)− θ)

}
λ∈[ε,1] ⇝

{ηΓ−1/2

λ
B⃗(λ)

}
λ∈[ε,1]

(A.6)

where B⃗ is a 2T +2-dimensional vector of independent Brownian motions, η = Var(ui) and
the symbol⇝means weak convergence in the space (ℓ∞[ε, 1])2T+2 of all (2T+2)-dimensional
bounded functions on the interval [ε, 1]. As the projections of θ on its coordinates are
continuous mappings, the weak convergence (A.6) and the continuous mapping theorem
imply {√

n(β̂(T−1)(λ)− β(T−1))
}
λ∈[ε,1] ⇝

{1
λ
DB⃗(λ)

}
λ∈[ε,1], (A.7)

where D is a (T − 1) × (2T + 2) matrix of full rank. In the case β(T−1) = 0 the result
in Theorem 3.2 now follows directly from the continuous mapping theorem. On the other
hand, if β(T−1) ̸= 0, it follows that

Hn(λ) =
√
n
(
∥β̂(T−1)(λ)∥2 − ∥β(T−1)∥2

)
=

√
n{∥β̂(T−1)(λ)− β(T−1)∥2 + 2(β̂(T−1)(λ)− β(T−1))′β(T−1)

= 2
√
n(β̂(T−1)(λ)− β(T−1))′β(T−1) + oP(1)

uniformly with respect to λ ∈ [ε, 1], and a further application of the continuous mapping
theorem yields {

Hn(λ)
}
λ∈[ε,1] ⇝

{
2(β(T−1))′D

B⃗(λ)
λ

}
λ∈[ε,1]
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in ℓ∞([ε, 1]). It is easy to see that for (β(T−1)) ̸= 0 the process on the right-hand side equals
in distribution {

∆(β(T−1))
B1(λ)

λ

}
λ∈[ε,1]

where B1 is a one-dimensional Brownian motion and

∆(β(T−1)) = 4(β(T−1))′DD′β(T−1) (A.8)

is a positive constant. Recalling the definition of the statistic M̂n in (3.17) and a further
application of the continuous mapping theorem shows that

M̂n =
β̂2
RMS(1)− β2

RMS

V̂n

=
∥β̂(T−1)(1)∥2 − ∥β(T−1)∥2( ∫ 1

ε
(∥β̂(T−1)(λ)∥2 − ∥β̂(T−1)(1)∥2)2ν(dλ)

)1/2
=

Hn(1)( ∫ 1

ε
(Hn(λ)−Hn(1))2ν(dλ)

)1/2
d→ W =

B1(1)( ∫ 1

ε
(B1(λ)/λ− B1(1))2ν(dλ)

)1/2 ,
which proves the assertion.

A.4 Proof of Theorem 3.3

Observing the definition of M̂T in (3.17) we obtain

Pβ(T−1)

(
β̂2
RMS < ζ2 +QW(α)V̂n

)
= Pβ(T−1)

(
M̂n <

ζ2 − β2
RMS

V̂n
+QW(α)

)
.

It follows from the proof of Theorem 3.2 that V̂n = OP(1/
√
n). Consequently, if β2

RMS > 0,
the assertion follows by a simple calculation considering the three cases separately. On the
other hand, if βRMS = 0, the proof of Theorem 3.2 also shows that ∥β̂(T−1)(1)∥2 = OP(

1
n
)

and the assertion follows from the weak convergence (3.20) in Theorem 3.2.

36



B Simulation results

nt = 100 nt = 1000

Test T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

(3.9) 0.0502 0.0049 0.0005 0.0004 0.0502 0.0051 0.0010 0.0000

(3.11) 0.0512 0.0154 0.0071 0.0046 0.0527 0.0132 0.0066 0.0046

(3.16) 0.0502 0.0474 0.0523 0.0510 0.0502 0.0481 0.0507 0.0491

(3.21) 0.0983 0.0815 0.0725 0.0764 0.0599 0.0556 0.0595 0.0555

Table 2: Rejection frequencies for βt = 1, t = 1, ..., T − 1 with equivalence threshold 1 at
nominal level of significance α = 5%.

nt = 100 nt = 1000

Test T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

(3.9) 0.0483 0.0389 0.0239 0.0197 0.0508 0.0493 0.0503 0.0512

(3.11) 0.0546 0.0783 0.0944 0.1052 0.0512 0.0527 0.0506 0.0505

(3.16) 0.0483 0.8902 0.9896 0.9965 0.0508 1.0000 1.0000 1.0000

(3.21) 0.0964 0.5739 0.8182 0.8610 0.0585 0.9979 1.0000 1.0000

Table 3: Rejection frequencies for β1 = 1 and βl = 0, l = 2, ..., T − 1 with equivalence
threshold 1 at nominal level of significance α = 5%.
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βl = 0.8, l = 1, ..., T − 1 βl = 0.9, l = 1, ..., T − 1

Test T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

(3.9) 1.0000 0.5915 0.3609 0.2750 1.0000 0.1525 0.0410 0.0215

(3.11) 1.0000 0.6331 0.5129 0.4740 1.0000 0.2033 0.1114 0.0982

(3.16) 1.0000 1.0000 0.9983 0.9934 1.0000 1.0000 0.9580 0.8676

(3.21) 1.0000 0.9768 0.9012 0.8617 1.0000 0.9043 0.6446 0.5418

Table 4: Rejection frequencies for nt = 1000 with equivalence threshold 1 at nominal level
of significance α = 5%.

nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.9476 0.8684 0.7696 0.6912 0.9492 0.8584 0.7604 0.7116
β̂T+1 0.0061 0.0015 −0.0005 −0.0020 0.0030 0.0020 0.0000 −0.0018

CIβ̂T+1 0.9548 0.9444 0.9524 0.9435 0.9484 0.9484 0.9504 0.9540
δ∗IU 0.6360 0.8216 0.9148 0.9536 0.2002 0.2581 0.2888 0.3017
δ∗Boot 0.6460 0.6644 0.6455 0.6171 0.2022 0.2137 0.2099 0.1998
τ ∗ 0.6360 0.5207 0.4782 0.4675 0.2002 0.1651 0.1515 0.1478
ζ∗ 0.7104 0.6958 0.6923 0.7016 0.2196 0.2141 0.2099 0.2091

Table 5: Estimation and test performance under the PTA at nominal level of significance
α = 5%.
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nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.8636 0.7028 0.5426 0.4461 0.2756 0.0912 0.0372 0.0192

β̂T+1 −0.2563 −0.2592 −0.2648 −0.2509 −0.2520 −0.2512 −0.2528 −0.2537

CIβ̂T+1 0.8560 0.8347 0.8244 0.8398 0.2640 0.2460 0.2400 0.2344

δ∗IU 0.8016 0.9900 1.0928 1.1242 0.4155 0.4671 0.5028 0.5171

δ∗Boot 0.7885 0.8412 0.8330 0.8331 0.4102 0.4371 0.4570 0.4599

τ ∗ 0.8016 0.7153 0.6963 0.6693 0.4155 0.3895 0.3856 0.3843

ζ∗ 0.9279 0.8334 0.8050 0.8211 0.4216 0.4032 0.3975 0.3938

Table 6: Estimation and test performance under violation of the PTA due to a temporary
group-specific shock (Zist = Gi×DT ×Vi with Vi

i.i.d∼ N(1
4
, 1)) at nominal level of significance

α = 5% with βT+1 = 0.

nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.6036 0.4024 0.2565 0.1797 0.0012 0.0000 0.0000 0.0000

β̂T+1 −0.5028 −0.4959 −0.5023 −0.4976 −0.4983 −0.4970 −0.4991 −0.50004

CIβ̂T+1 0.6176 0.6018 0.5810 0.5910 0.0008 0.0004 0.0000 0.0004

δ∗IU 1.0299 1.1943 1.2953 1.3503 0.6673 0.7161 0.7495 0.7638

δ∗Boot 1.0040 1.0862 1.1144 1.1312 0.6639 0.6843 0.7011 0.7126

τ ∗ 1.0299 0.9424 0.9163 0.9181 0.6673 0.6391 0.6329 0.6303

ζ∗ 1.0357 1.0098 0.9984 1.0064 0.6869 0.6692 0.6645 0.6614

Table 7: Estimation and test performance under violation of the PTA due to a temporary
group-specific shock (Zist = Gi×DT ×Vi with Vi

i.i.d∼ N(1
2
, 1)) at nominal level of significance

α = 5% with βT+1 = 0.
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nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.9460 0.8635 0.7015 0.5494 0.9376 0.7848 0.2884 0.0236

β̂T+1 0.0269 0.0267 0.0207 0.0284 0.0235 0.0267 0.0258 0.0234

CIβ̂T+1 0.9528 0.9484 0.9520 0.9476 0.9372 0.9392 0.9388 0.9388

δ∗IU 0.6332 0.8227 0.9382 1.0209 0.2050 0.2764 0.3652 0.4606

δ∗Boot 0.6348 0.6763 0.6875 0.6875 0.2049 0.2404 0.3242 0.4354

τ ∗ 0.6332 0.5261 0.5029 0.5177 0.2050 0.1815 0.2115 0.2591

ζ∗ 0.7178 0.7136 0.7141 0.7221 0.2197 0.2229 0.2496 0.2899

Table 8: Estimation and test performance under violation of the PTA due to a time trend
with slope 0.025 (Zi = 0.025× t×Di,t ×Gi) at nominal level of significance α = 5% with
βT+1 = 0.

nt = 100 nt = 1000

T = 2 T = 4 T = 8 T = 12 T = 2 T = 4 T = 8 T = 12

#insig/M 0.9458 0.8392 0.5501 0.2353 0.9130 0.5271 0.0061 0.0000

β̂T+1 0.0544 0.0593 0.0547 0.0457 0.0514 0.0495 0.0530 0.0504

CIβ̂T+1 0.9420 0.9436 0.9445 0.9495 0.9195 0.9120 0.9135 0.9096

δ∗IU 0.6395 0.8437 1.0144 1.1961 0.2144 0.3233 0.5150 0.7158

δ∗Boot 0.6528 0.7066 0.8251 1.0038 0.2166 0.2979 0.5029 0.7039

τ ∗ 0.6395 0.5412 0.5612 0.6478 0.2144 0.2205 0.3098 0.4084

ζ∗ 0.7212 0.7225 0.7484 0.8030 0.2271 0.2505 0.3466 0.4575

Table 9: Estimation and test performance under violation of the PTA due to a time trend
with slope 0.05 (Zi = 0.05 × t × Di,t × Gi) at nominal level of significance α = 5% with
βT+1 = 0.
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