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Abstract

This study examines the causal effects of sunlight exposure on suicide. The analysis
relates solar insolation to suicide rates at the county-by-month level between 1979 and
2004 in the U.S. We find that suicide increases by 6.99% as sunlight decreases by
one standard deviation, and such effects exhibit limited adaptation across space and
time. We find consistent evidence between sunlight and mental well-being measured
by Google searches containing depressive language. These estimates suggest that pro-
posed solar geoengineering can result in 1.26–3.18 thousand excess suicides by reducing
incoming sunlight to keep the temperature rise below 1.5◦C between 2030 and 2100.
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I. Introduction

The so-called “Deaths of Despair” (Case and Deaton 2020) phenomenon attributes the rising

rate of premature deaths and declining life expectancy among certain demographic groups

in the U.S. to an increase in the rate of suicide. Since suicide has most often been linked

to individual, social, and economic factors (Hamermesh and Soss 1974, Ruhm 2000, CDC

2022c), policy and program interventions have tended to address the issue accordingly. Yet,

by and large these efforts have failed to stem the recent rising trend in the rates of sui-

cide—by 30% between 2000 and 2018 and more than twice higher among younger people

(CDC 2022a)—making it the only leading cause of deaths that is on the rise in critical need

of a new approach. New research is calling into question whether environmental changes,

e.g., temperature (Carleton 2017; Burke et al. 2018) and air pollution (Braithwaite et al.

2019, Marcotte and Persico 2022), portend a substantial change in the suicide rate.

We conduct the first large-scale, causal investigation of how sunlight exposure affects

our mental health by focusing on suicide as an outcome. We first quantify the effects of

solar insolation on suicide rates using novel datasets at the county-by-month level between

1979 and 2004 from the U.S. We then explore potential adaptation to sunlight exposure

in suicidal behavior by assessing whether the effects of sunlight on suicide differ by county

characteristics or over decades. To uncover potential mechanisms, we assess whether sunlight

exposure affects mental well-being among a general population by investigating whether the

number of searches containing or related to depressive language on Google is related to the

sunlight patterns. Lastly, we project, to the best of our knowledge, the first estimates of

the impacts of proposed solar radiation management geoengineering by assessing the excess

suicides due to the negative radiative forcing required to keep the temperature rise below

1.5 ◦C between 2030 and 2100.

This study contributes to addressing three distinct economic questions that remain largely

unanswered. First, determining factors that contribute to suicide risk merits close attention

as suicide imposes substantial economic costs worldwide. Globally, more people die from

suicide every year than major diseases such as HIV, malaria, or breast cancer, or conflicts

and other types of violence (WHO 2021). In the U.S., an estimated 12.2 million American

adults had serious thoughts about suicide, 3.2 million planned an attempt, and 1.2 million

attempted suicide, and nearly 46,000 people, or one person every 11 minutes, died in 2020

(CDC 2022b). The economic costs of medical and work-loss alone as a result of suicide and

suicide attempts amount to $70 billion annually in the U.S. (CDC 2019).

Second, the potential effects of sunlight exposure on mental health, and on suicide in

particular, remain surprisingly poorly understood. Insufficient sunlight exposure during win-
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tertime has been hypothesized to explain Seasonal Affective Disorder, a type of depression

that peaks in wintertime, because of disrupted sleep, impeded neurotransmissions of sero-

tonin, vitamin D deficiency, and the overproduction of melatonin (Benedetti et al. 2001;

Berk et al. 2007; Kim et al. 2021). In contrast, suicide rates typically peak in late spring to

early summer and decline in wintertime (Figure A.1). This apparently paradoxical seasonal

pattern in the suicide rate has been cited as discrediting the sunlight-suicide relationship.

In addition, determining whether or not sunlight exposure affects the rate of suicide has

an important policy implication, as the growing awareness worldwide of the adverse effects

of Sun’s ultraviolet (UV) rays, such as skin cancer, amplified by public campaigns to reduce

excessive exposure to sunlight (CDC 2022d), has resulted in people spending increasing

amounts of time indoors. On the other hand, there is increasing evidence that insufficient

sunlight exposure can also be hazardous. For example, the worldwide vitamin D deficiency

(about 40% of population in the U.S. and Europe (Forrest and Stuhldreher 2011; Cashman et

al. 2016)) due to increased time indoors has been linked to increased mortality from chronic

diseases such as cancer, cardiovascular diseases, and metabolic syndrome, resulting in an

estimated 340,000 deaths in the U.S. and 480,000 deaths in Europe each year (Alfredsson et

al. 2020).

Third, the sunlight-suicide relationship provides an important policy implication for new

climate geoengineering technologies. Despite the worldwide efforts to curb the temperature

rise and combat climate change, culminating in the Paris Agreement, progress in reducing

pollution emissions is insufficient, and key mechanisms to accomplish the goal of keeping

global warming to less than 1.5 ◦C remain to be developed. In this light, there is increasing

interest in employing solar radiation management, which reflects sunlight back into space by

using orbiting mirrors or spraying aerosol particles into the outer atmosphere (Crutzen 2006;

National Research Council 2015; National Academies of Sciences, Engineering, and Medicine

2021). While the low financial cost and high availability of relevant technologies enable solar

geoengineering to be implemented within a couple of years, resulting in a rapid reduction in

global temperatures (Robock et al. 2009), the substantial uncertainties that remain concern-

ing the impacts of solar geoengineering on both the natural environment and human health

and well-being have given rise to controversies among scholars and policymakers regarding

its deployment (MacMartin et al. 2016; Proctor et al. 2018; Trisos et al. 2018; Irvine et al.

2019; Abatayo et al. 2020; Keith 2021; Aldy et al. 2021).

Our empirical approach involves two novel features. First, sunlight exposure is measured

by solar insolation, which is the amount of incident solar radiation energy received from

the Sun per unit surface of the Earth over a specified period. Many factors determine how

much sunlight reaches the surface, such as the solar zenith angle, the variable distance from
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the Earth to the Sun, day length, weather conditions, levels of atmospheric aerosols, and

solar activity. Thus, solar insolation measures the intensive margin of sunlight exposure to

humans much more precisely than the duration of daylight, the metric most widely used

in the existing literature, which measures only the extensive margin of sunrise and sunset.

Because the conventional use of daylight duration allows for little variation after controlling

for the month effects, most studies have concluded that there is no relationship between

sunlight and suicide (Kadotani et al. 2014; White et al. 2015; Gao et al. 2019; Makris et

al. 2021; Papadopoulos et al. 2005; Vyssoki et al. 2014). Further, the more direct measure

of sunlight exposure provided by solar insolation is necessary to project the impacts of

geoengineering-driven reductions in sunlight on suicides.

Second, our longitudinal dataset with substantial cross-sectional and temporal coverage,

along with our novel use of a direct measure of solar insolation, offers a unique opportunity to

plausibly isolate the effects of sunlight exposure on suicide from a large set of other potential

impacts on the suicide patterns by local monthly seasonality effects, such as daylight dura-

tion and school calendar, as well as local time-varying shocks, such as economic conditions,

agricultural production, poverty rates, and gun ownership. In contrast, a handful of studies

using solar insolation or irradiation as the exposure measure have relied exclusively on time-

series data and showed a positive association with suicide (Papadopoulos et al. 2005), which

we show is likely to be driven by other local seasonal patterns in meteorological, social, and

economic factors.

Our main findings suggest that suicide rates increase by 6.99% (95% CI: 3.86, 10.13) as

sunlight in a given and previous months decreases by one standard deviation, which is almost

equivalent to the difference in sunlight between the lowest (Vermont) and highest (Arizona)

state-level averages. We find few heterogeneities in the sunlight-suicide relationship by county

characteristics or over time, suggesting limited adaptation to sunlight exposure in suicidal

behavior. Our additional analysis indicates that sunlight is negatively related to the volume

of internet searches for depressive language on Google, highlighting individuals’ mental well-

being as a suggestive mechanism linking sunlight and suicide. Our projection suggests that

reducing solar radiation to keep the global temperature rise below 1.5 ◦C, as targeted by the

Paris Agreement, can result in 1.26–3.18 thousand additional suicides in the 95% confidence

interval (CI) between 2030 and 2100, which can more than offset the averted suicides by

temperature reductions.

The rest of the paper is organized as follows. Section II describes data and empirical

strategies. Section III presents empirical results. Lastly, Section IV concludes.
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II. Empirical Framework

A. Data

Our data on suicide comes from Burke et al. (2018), which reports the age-adjusted suicide

rates at the county-month level based on the Multiple Cause of Death Mortality Data from

the National Vital Statistics System between 1968 and 2004.1 The data also included the

monthly average temperature and total precipitation from PRISM.2

We combine the suicide data with average daily solar insolation data at the county-by-

month level in kilojoules per square meter (KJ/m2) from the North America Land Data

Assimilation System Daily Sunlight data compiled by the U.S. Centers for Disease Control

and Prevention (CDC) (CDC 2012). Solar insolation is the amount of incident solar radiation

energy received from the Sun per unit surface of the Earth over a specified period of time.

Many factors determine how much sunlight reaches the surface, such as the solar zenith

angle, the variable distance from the earth from the sun, day length, weather conditions,

atmospheric aerosols levels, and the solar activity. The original data cover the 48 contiguous

states plus the District of Columbia from 1979 to 2011. Thus, the resulting data after merging

sunlight and suicide information span the period from 1979 to 2004 across (unbalanced) 3,107

counties in the 48 contiguous states and the District of Columbia.

To explore the potential heterogeneities in the effects of sunlight on suicide rates by

various county characteristics, we draw annual county income data from the U.S. Bureau of

Economic Analysis, deflated by the GDP deflator, data on the state-level average adoption

of air conditioning between 1979 and 2004 from Barreca et al. (2016), and state-level gun

ownership data from Okoro et al. (2005). The suicide rates by gender and methods of suicide

are from Burke et al. (2018).

We analyze the impacts of sunlight exposure on the volume of searches made on Google

using Google Trends. Google Trends reports the search data at several geographical levels,

and two sets of the regions useful in our context are the state and Designated Marketing

Area (DMA), whereas the county data are unavailable. A DMA is a geographically delineated

media market, in which people receive the same television and radio options. There are 210

DMAs in total across the U.S. Google Trends reports normalized search interests, rather than

raw search volumes, on a scale of 0 to 100, by comparing the search volumes in the respective

time and region relative to the highest point under the selected condition. For example, an

1The data contain all counties until 1988 and counties with more than 100,000 residents after 1989. The
data period necessarily ended in 2004 because county identifiers were not reported in the public-use data
after 2004.

2See more details on how these variables were constructed in Burke et al. (2018).
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index of 50 at a given time (e.g., month, week, or day) represents half the volume of searches

with the index value of 100 at the same time.

Given the restrictions on the number of regions and keywords that can be included for

each search, and because the data date back to 2004, each round of our data collection in-

volves the words “depression” and one other keyword from the list of depressive language

below for 2004–2011 by each region.3 The set of depressive language follows Burke et al.

(2018) and includes: addictive, alone, anxiety, appetite, attacks, bleak, depress, depressed, de-

pression, drowsiness, episodes, fatigue, frightened, lonely, nausea, nervousness, severe, sleep,

suicidal, suicide, and trapped. We sum up Google Trends values for all these keywords at

the region-by-year-by-month level and again normalize them to the highest value within the

region with a scale of 0 to 100 to construct the overall normalized search interests in de-

pressive language. Note that while the constructed Google Trends values are not comparable

across regions, e.g., 100 in region A is not comparable to 100 in region B, the inclusion of

region fixed effects addresses this issue.

B. The effects of sunlight exposure on the suicide rate

The main analysis estimates the following distributed lag models that includes the lags and

leads of each environmental factor, using ordinary least squares:

Ycsmt = α +
K∑
l=k

[
βl ln(Sunlight)c(m+l)t + γlTc(m+l)t + λlPc(m+l)t

]
+ µcm + τst + εcsmt, (1)

where the main outcome variable is the suicide rate in county c in state s in month m of

year t. The main independent variable of interest, ln(Sunlight), is the log of average daily

solar insolation (in KJ/m2), T denotes the monthly average temperature, and P denotes the

monthly precipitation. The county-by-month fixed effects, µcm, control for unobserved sea-

sonality effects at the county-month level, such as the daylight duration or the school calen-

dar, whereas the state-by-year fixed effects, τst, account for any time-varying factors common

across counties within a given state, such as economic conditions, agricultural production,

poverty rates, and gun ownership. Thus, the parameters of interest, βl’s, are estimated based

on the random variation in the amount of sunlight between, for example, August 2000 in a

particular county and August 2001 in the same county. Following the convention, the regres-

sions are weighted by county population, as the suicide rate is more precisely estimated with

3For example, we select “depression” and “suicide” as search terms, 2004–2011 as the time range, and
California as the location. We select the word “depression” as the reference word because this yields greater
search volumes than most other keywords, and in this way the Google Trends values for each keyword are
comparable within each region.
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a larger population. Further, we cluster the standard errors at the county level to correct

heteroskedasticity in the error term, εcsmt, and allow for correlations between observations

within clusters. We also test alternative levels of clustering, such as the state level and two-

way clustering at the county and year level, to account for spatial correlation in sunlight and

show that the results are virtually the same (Table A.4).

The identification assumption is that such within-county-month variation in the amount

of sunlight is uncorrelated with any other factors that affect the suicide rate. Such assump-

tion is plausible because the amount of sunlight is determined by random fluctuations in

climatic and meteorological conditions, after adjusting for factors related to sunlight itself,

such as temperature, precipitation, the average sunlight in a given county-by-month, and

year-specific shocks common within a given state. Thus, our estimates are not confounded

by the permanent heterogeneities across counties or state-specific within-year fluctuations in

sunlight and suicide rate. For example, individuals with higher incomes may be at a lower

risk of suicides and may be inclined to live in areas with sunnier climates; or state-level

annual average suicide rates may be lower in years with greater sunlight and greater agri-

cultural production. Air pollution may be another environmental factor that is related to

both sunlight and suicides. Unfortunately, reliable data on air pollution is available only for

recent years, e.g., after 2000 (van Donkelaar et al. 2019). As a robustness check, we con-

firm that the estimated effect of sunlight is unchanged with and without controlling for the

PM2.5 concentrations in ambient air in 2000–2004, the period during which we have both air

pollution and suicide data (Table A.5).

The distributed lag models allow us to examine whether insufficient sunlight exposure

caused excess suicides or simply hastened suicides that would have occurred later anyway, the

so-called harvesting effect. Each parameter, ωl ∈ (βl, γl, λl) for l ∈ [k,K], can be interpreted

as the effects of sunlight, temperature, and precipitation, respectively, in each month with

lags and leads of l. For example, ω0 indicates the effect of a given month’s environmental

factor, ω−1 the previous month’s factor, and ω1, the following month’s factor. A finding of

βl < 0 for l < 0 indicates the lagged impacts of sunlight exposure in the previous l month

on the current suicide rate, whereas a finding of βl > 0 for l < 0 indicates a displacement

effect, where insufficient sunlight in a particular month hastened suicides that would have

occurred anyway in a −l month later. Thus, the overall effect of sunlight in a given month

is given by
∑0

l=k βl. We expect ωl = 0 for l > 0 as a placebo test since a future amount of

sunlight should not have a causal impact on the incidence of suicide in a given month.

Since the main model is the level-log model, the interpretation of the coefficient is that

a 1% increase in sunlight increases the suicide rate by βl/100. To allow for potential non-

linear effects of sunlight, we also consider a 3rd order polynomial function of average daily
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sunlight, where the main independent variable is replaced with
∑K

l=k[β1lSunlightcs(m+l)t +

β2lSunlight
2
cs(m+l)t + β3lSunlight

3
cs(m+l)t].

4 As a further robustness check, we also consider a

nonparametric binned model, where the main independent variable is replaced with∑K
l=k

∑10
b=1 β

b
l × lnSunlightcs(m+l)t × Db, where Db is an indicator variable for each decile

bin b. Based on the results from the main analysis and to ensure greater statistical power,

we consider l ∈ [−1, 0], whereas extending the period does not alter the conclusion.

A concern may arise about the endogeneity of temperature to sunlight, making it a “bad

control” (Angrist and Pischke 2009). However, our main model includes temperature as a

control for two reasons. One is that our goal is to estimate the effects of sunlight itself free

from the effects of temperature. Because increased sunlight raises temperature, a model that

does not control for temperature would estimate the overall impacts of sunlight on suicides

resulting from two offsetting channels; reductions in suicides due to increased sunlight itself

and increases in suicides due to higher temperatures. Thus, the inclusion of temperature

as a control helps us isolate the impacts of sunlight on suicides net to temperature effects.

Indeed, a model that does not control for temperature understates the effects of sunlight

itself on suicides (Table A.6). Second, the effect of sunlight on temperature is small, rendering

the problem of endogeneity negligible. For example, the county-by-month and state-by-year

fixed effects explain 97.27% of the overall variation in temperature, whereas precipitation

only accounts for an additional 0.01 percentage point explanatory power, and sunlight adds

0.03 percentage points (Table A.7). We also show that a one standard deviation decrease

in sunlight leads to a 0.144 standard deviation decrease in temperature. Thus, the overall

variation in temperature that is explained by sunlight is small.

C. Heterogeneities in the effects of sunlight

To estimate the potential heterogeneous effects of sunlight exposure on the suicide rate by

various county- or state-level characteristics, i.e., sunlight, temperature, income, air condi-

tioning ownership, and gun ownership, we first compute the population-weighted county- or

state-level median characteristics and run a regression for each characteristic:

4The temperature and precipitation are included as a linear function based on evidence presented by
Burke et al. (2018).
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Ycsmt =
K∑
l=k

[
βA
l ln(Sunlight)c(m+l)t + γA

l Tc(m+l)t + λA
l Pc(m+l)t

]
×D

K∑
l=k

[
βB
l ln(Sunlight)c(m+l)t + γB

l Tc(m+l)t + λB
l Pc(m+l)t

]
× (1−D)

+ µcm + τst + εcsmt,

(2)

where D is an indicator variable for being above the median characteristics. Then, βA
l indi-

cates the effects of sunlight in counties with above-median characteristics and βB
l indicates

the effects for counties with below-median characteristics.

D. Adaptation over time

We explore how individuals adapt to variations in sunlight over time. Given that increasing

public awareness of the harmful effects of sunlight exposure (e.g. skin cancer) has caused

people increasingly to avoid such exposure, we would expect to see the suicide effects of

sunlight lessen in more recent years. We first apply a model comparable to the main analysis

by interacting each environmental factor with a dummy variable for the respective year.

Ycsmt =
2004∑

t=1979

K∑
l=k

[
βl ln(Sunlight)c(m+l)t+γlTc(m+l)t+λlPc(m+l)t

]
×Dt+µcm+τst+εcsmt, (3)

where Dt is an indicator variable for each year t. Based on the results from the main analysis

and to ensure greater statistical power, we consider l ∈ [−1, 0], whereas extending the period

does not alter the conclusion.

E. Sunlight and depressive language in Google Trends

We estimate the effects of monthly sunlight on Google searches containing depressive lan-

guage by regressing the following fixed-effects model using the ordinary least squares:

Yrmt = α+
K∑
l=k

[
βl ln(Sunlight)r(m+l)t + γlTr(m+l)t + λlPr(m+l)t

]
+ νr + µm + τt + εrmt. (4)
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where Yrmt is the Google Trends index in region r ∈ (state,DMA), month m, and year

t. Based on the results from the main analysis and to ensure greater statistical power,

we consider l ∈ [−1, 0], whereas extending the period does not alter the conclusion. The

regressions are weighted by regional population, and the standard errors are clustered at

the regional level. Since the time framework for Google Trends data does not overlap with

that of the main analysis, we additionally obtain population data from the U.S. Census. We

also obtain the temperature and precipitation information from NOAA’s Global Historical

Climatology Network - Daily.

As robustness checks, we include a set of alternative fixed effects. For example, with the

DMA-level data, we include state-by-year and state-by-month fixed effects or state-by-month

and state-specific trends, as in the main analysis. Note that many DMAs cross multiple states.

In such a case, we select the state that is referenced in the DMA name as the primary state

of affiliation.

As further robustness checks, we estimate the same models for a different subset of

depressive language terms and find similar results (Table A.9).

F. Projected impacts of solar geoengineering

The estimated effects of sunlight on suicides thus far include both the effects of an anticipated

shift in sunlight over time, i.e., climate effects, and the effects of an unanticipated shock to

sunlight exposure, i.e., weather shocks. For example, individuals in areas with greater sunlight

may shelter themselves from the increased harms of sunlight exposure due to, for instance,

ozone depletion, by shifting their work from outdoors to indoors over time, whereas current

daily activities, such as work and school, are less responsive to day-to-day fluctuations in

sunlight. In this case, the marginal effects of an unanticipated shock are likely to outweigh

the marginal effects of an anticipated shift over time (Gammans 2020), with the result that

the projected impacts of solar geoengineering based on weather shocks overstate the actual

impacts of the climate effect. Thus, we adopt a model that explicitly disentangles these two

effects as follows:
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Ycsmt =α +
K∑
l=k

{
βl ln(Sunlight)c(m+l)︸ ︷︷ ︸

climate effect

+ δl

[
ln(Sunlight)c(m+l)t − ln(Sunlight)c(m+l)

]
︸ ︷︷ ︸

weather effect

+ γlTc(m−+)t + λlPc(m+l)t

}
+ νc + µm + τst + εcsmt,

(5)

where we separately control for the county-month average sunlight in our study period,

(Sunlight)cm, and the difference between the observed sunlight and long-term average sun-

light for each county and month. Since the county-by-month fixed effects would be multi-

collinear with the county-month’s average sunlight, we separately control for county fixed

effects, νc, and month fixed effects, µm. The county fixed effects control for permanent differ-

ences in county characteristics that affect the suicide rate, whereas the month fixed effects

control for seasonality patterns across months in the suicide rate. Additionally, we control

for state-by-year fixed effects to control for transitory shocks to the suicide rate that are

common within a particular year of the state.

The effect of an anticipated sunlight shift over time is captured by the
∑K

l=k βl coefficients,

which are identified from within-county variation in the average sunlight in each month, after

controlling for national seasonality. For example, sunlight may be stronger in August than in

July in County A much more so than in County B, leading people in County A to spend more

time indoors than those in County B. In contrast, the effects of an unanticipated sunlight

shock in a given month of a particular year is captured by the
∑K

l=k δl coefficients, which

are identified from a transitory deviation from the anticipated level of sunlight in a specific

month.

Then, using the parameter based on the climate effect, we project how the reduction

of sunlight due to solar radiation management will affect the incidence of suicide between

2030 and 2100. We assume that the cumulative CO2 emissions in 2030 would be 700 Gt

(Benveniste et al. 2018) and would grow at the rate of 47 Gt/year under a business-as-

usual scenario thereafter (Lawrence et al. 2018).5 Temperature is already set to be above

1 ◦C from preindustrial times in 2015 (Schurer et al. 2018) and is projected to increase by

1 ◦C for every 1,300 Gt CO2 emissions (Lawrence et al. 2018). Thus, the cumulative CO2

emissions must stay at 650 Gt from 2015 onward to keep the temperature rise below 1.5 ◦C

or 1,300 Gt for the temperature to be below 2◦ C. The equivalent radiative forcing amount

5As robustness checks, we also consider other emission reductions scenarios in each year.
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is taken from the equilibrium climate sensitivity of approximately 0.8 ◦C/(W/m2) (IPCC

2013). Together, these parameters imply the amount of radiative forcing that is required to

offset the temperature rise due to 1 Gt of CO2 is 9.6× 10−4 (W/m2)/Gt(CO2) (Lawrence et

al. 2018).

Using these parameters, the cumulative number of excess suicides due to the reduction in

sunlight required to meet the goal of keeping global temperature rise below 1.5 ◦C between

2030 and 2100 can be obtained by:

2100∑
t=2030

popt × β ×∆ ln(Sunlight)t, (6)

where popt is the projected U.S. population in year t in hundred thousand from United

Nations (UN 2022), β is the estimated climate impact of sunlight on the suicide rate (β =

−0.078, 95%CI: −0.112,−0.044) from Table A.10 Column (1), and ∆ ln(Sunlight) is the

log point change of the implied negative radiative forcing gap to achieve the temperature

limit in each year from the mean (set to be zero if the radiative forcing gap is positive since

radiative forcing need not be increased to meet the temperature limit). For example, in 2030,

the cumulative CO2 emissions will already exceed the remaining CO2 budgets of 650 Gt by

50 Gt to keep the temperature rise below 1.5 ◦C. The implied negative radiative forcing gap

is then 0.048 W/m2 (= 50 × 9.610−4). This is equivalent to a 4.4172 KJ/m2 reduction in

the daily solar insolation, which is a 0.0002526 log point reduction from its mean, i.e., an

approximately 0.025% reduction in daily solar insolation. Finally, to arrive at the annual

increase in suicides, we multiply the number by the projected population and by 12 months.

Since reduced temperature has been shown to reduce suicides (Burke et al. 2018), we

incorporate suicides “averted” by temperature fall to arrive at the net impacts of solar

geoengineering on the incidence of suicides. We conduct a similar analysis to compute averted

suicides due to reduced temperature to meet the global temperature rise between 2030 and

2100 by:

2100∑
t=2030

popt × γ ×∆Tt, (7)

where ∆Tt is the change in temperature from the business-as-usual scenario to achieve the

temperature limit (again set to be zero if the temperature is below the limit). For example,

in 2030, the temperature will exceed the 1.5 ◦C limit by 0.038 ◦C. We then multiply 0.038

by the estimated impacts of temperature in a given and previous month on the suicide rate

(γ = 0.00134 (95% CI: 0.000287, 0.00248) from Gammans (2020)) to obtain the averted
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suicide rates.6 To arrive at the annual reductions in suicides, we multiplied the number by

the projected population and by 12 months.

To compute the net effects of sunlight and temperature on the incidence of suicides,

we randomly draw β and γ from its estimated distribution and projected their cumulative

impacts in 2100. We repeat the process by 10,000 times to arrive at the 95% CI.

III. Results

A. The effects of sunlight on the suicide rate

We find that insufficient sunlight significantly increases the suicide rate. The results of the

distributed lag model show that the contemporaneous effect is negative and statistically

significant (β0 = −0.049; 95% CI: −0.092,−0.006) (Table A.2). We additionally find a sta-

tistically significant and larger in magnitude effect of sunlight from the previous month

(β−1 = −0.085; 95% CI: −0.132,−0.038), suggesting that the sunlight-suicide relationship

is a dynamic one in which the trajectory of depression leading to suicide can develop over

months (Ballard et al. 2020). In contrast, the effect of sunlight in the second previous month is

negligible (β−2 = −0.003; 95% CI: −0.046, 0.040), indicating that the cumulative effects span

two months. As placebo evidence, we find that the effect of sunlight in the following month

has no impact on the suicide rate in this month (β1=0.010; 95% CI: −0.037, 0.057). The over-

all impact of sunlight is thus given by β0 + β−1, which is −0.134 (95% CI: −0.194,−0.074,

p-value = 0.000, N = 444,861).

These estimates suggest that a one standard deviation decrease in population-weighted

sunlight, 6,449.2 KJ/m2, from the population-weighted mean value of 16,422.9 KJ/m2, leads

to a 6.99% (95% CI: 3.86, 10.13) increase in the suicide rate. This amount of change in

sunlight is approximately equivalent to the difference in the average state-level sunlight

between Vermont at the lowest level of sunlight and Arizona at the highest level of sunlight

during our study period of 1979–2004. The estimated size of the effect is nearly comparable

to the effect of a one standard deviation increase in temperature on the suicide rate (Table

A.2).

We test the robustness of these estimates in several ways. First, we use different, and

often more granular, fixed effects, such as county-by-month and county-by-year fixed effects,

and cubic polynomial models. Figure 1 illustrates the estimated cumulative effects based on

these alternative models. The shaded area represents the 95% CI of the baseline model with

6We take the temperature effects from Gammans (2020) because our unbalanced data do not allow us
to compute the county-month average temperature in our study period. Nonetheless, the estimated effects
using the county-month average temperature within our data produce very similar impacts.
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county-by-month and state-by-year fixed effects. We find that all estimated effects from the

alternative models are quantitatively similar to each other. Second, we find similar results

using various other dependent variables and a count model (Table A.3). Third, we explore

temporal displacement effects over a longer period, showing consistent evidence that the

months before the second previous month have no impact on the suicide rate in a given

month (Figure A.4).

Let us compare our estimated impact of sunlight on the suicide rate with the impacts of

other interventions in previous studies. Figure 2 describes the amount of changes in sunlight

in both percentage and standard deviation that brings about the equivalent impacts by

other factors such as air pollution (Braithwaite et al. 2019), temperature (Burke et al. 2018),

firearm regulations (Okoro et al. 2005), national suicide prevention programs (Matsubayashi

and Ueda 2011), celebrity suicides (Ueda et al. 2014), a higher unemployment rate (Stuckler

et al. 2009), and COVID-19 (Tanaka and Okamoto 2021). For example, a 0.34 standard

deviation, or 13.3%, decrease in sunlight brings about the equivalent effect of a 10-µg/m3

increase in PM10 on suicide. Overall, we find that a 1 to 2 standard deviation change in

sunlight generates the equivalent impact of other interventions, revealing sunlight as a major

risk factor in the incidence of suicide.

B. Heterogeneities in the effects of sunlight

We now explore potential heterogeneities in the sunlight-suicide relationships by county

characteristics (Figure 3). We find that the effects of sunlight are virtually identical between

counties with above- or below-median sunlight. The results from the nonparametric approach

that explores the effects in each decile of historical sunlight exposure provide consistent

results, although the highest decile appears to have a slightly stronger effect (Figure A.2). We

also find that the effects in each month are quantitatively in the similar range (Figure A.3).

These results suggest that the effects of sunlight exposure do not vary by the baseline levels of

sunlight exposure. We also find similar impacts of sunlight on the suicide rate across county

temperature, indicating that the effect of sunlight on the suicide rate is independent from

that of temperature. It is worth noting that while the log of sunlight is positively correlated

with the monthly temperature, temperature is significantly and positively associated with

the suicide rate. Using the county-level income data, we find a larger effect of sunlight

in counties with above-median income, whereas the estimated effect among below-median

income counties is not statistically different from zero. We also find no heterogeneities in

the effects of sunlight by the state-level adoption rate of air conditioning, although people

with air conditioning may stay indoors on warm days and avoid sunlight exposure. Further,
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we find no heterogeneities by state-level gun ownership rate, although over 50% of suicides

involved a firearm in 2020 (CDC 2020). Lastly, we find no heterogeneities by method of

suicide among men, whereas the estimated effects are smaller for women, particularly using

violent methods.

C. Adaptation over time

Existing studies find mixed evidence regarding the extent of adaptation to changes in the

environment. For example, while the effects of temperature on all-cause mortality have less-

ened over time in the U.S. due to the adoption of air conditioning (Barreca et al. 2016),

the effects of temperature on suicide have been stable over decades in the U.S. and Mexico

(Burke et al. 2018).

In contrast, existing evidence offers no insight into the sunlight-suicide relationship. In-

creasing evidence regarding the role of ultraviolet radiation in skin cancer has led to reduced

time spent outdoors over the past decades, which has potentially reduced the effects of sun-

light on suicide over time. We find that the effects of sunlight on the suicide rate have been

quantitively similar over our study period (Figure 4). Overall, these findings point to limited

adaptation to sunlight exposure in suicidal behavior.

D. Sunlight and depressive language on Google Trends

Our findings thus far demonstrate a strong relationship between sunlight and suicide, while

the underlying mechanism remains unclear. Building upon Burke et al. (2018), we seek to

uncover the mechanism by examining the possibility that sunlight exposure is related to

mental well-being. We measure mental well-being by the patterns of internet searches for or

using depressive language among the general population, in anticipation that they vary in

accordance with sunlight. To test this, we obtain the monthly internet search results using

depressive language on Google using Google Trends between 2004 and 2011.7

Using a similar fixed-effects model, we find evidence consistent with the main analysis that

sunlight in given and previous months has significantly negative impacts on the number of

searches employing depressive language (Figure 5). In particular, we find that a one standard

deviation decrease in the amount of monthly sunlight (6,532.7 KJ/m2) at the state level leads

to a 4.33% (95% CI: 3.26, 5.40, p = 0.000, N = 4,655) increase in the search volumes for

depressive language. We also find similar effects with the Designated Marketing Area (DMA)-

level of observations with various fixed effects (Figure 5). We further find comparable effects

7The study period is bounded by the initial year when Google Trends is available and the last year for
which the sunlight data is available.
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with subsets of the entire list of depressive language (Table A.9).

The mechanism through which sunlight affects mental well-being may well be biologi-

cal and/or behavioral. Biologically, insufficient sunlight is known to cause disrupted sleep,

impeded neurotransmissions of serotonin, vitamin D deficiency, and the overproduction of

melatonin levels (Benedetti et al. 2001; Berk et al. 2007; Kim et al. 2021), all or some of which

may adversely affect mental health and increase suicide risk. The behavioral component may

stem from the association of greater sunlight with more physical activity and more social

interactions, both of which can reduce feelings of sadness and isolation. Such a behavioral

linkage is likely for individuals in places with low levels of sunlight who would spend more

time outdoors on sunnier days (holding temperature constant). On the other hand, individ-

uals in places with high levels of sunlight would spend more time indoors when sunlight is

greater (Graff Zivin and Neidell 2014), which would lead to a positive association, or at least

a weaker negative association, between sunlight and suicides. Thus, such a behavioral mech-

anism contradicts our finding that the effect is strongest in the top decile areas. In addition,

the substantial cumulative impacts from the previous month suggest the mechanism leading

to a suicide attempt is a dynamic process over months. In contrast, temperature and air

pollution have immediate effects on suicides, as aggressive emotions or inflammation of the

nervous system trigger self-harm attempts (Cianconi et al. 2020).

E. Projected impacts of solar geoengineering

We project the first estimates of how reduced incoming sunlight by solar radiation manage-

ment will affect the suicide rate. We first disentangle the effects of an anticipated shift in

sunlight (climate effect) and an unanticipated shock to sunlight exposure (weather effect).

Since the future impacts depend solely on the anticipated climate effect, we project the fu-

ture impacts of sunlight shift by solar geoengineering using the parameters for the climate

effect (Gammans 2020).

Overall, our estimates suggest that solar insolation needs to be reduced by up to 1.69%

in 2100 under the business-as-usual scenario, which will cause cumulative 2.23 (95% CI: 1.26

3.18) thousand additional suicides by 2100 (Figure 6, Table A.12). In contrast, temperature

is projected to rise by 4 ◦C in 2100 under the business-as-usual scenario. By reducing the

temperature rise by about 2.5 ◦C to achieve the goal of a 1.5 ◦C temperature rise, we

project that 5.75 (95% CI: 1.23 10.69) thousand suicides will be averted. Thus, the effects

of insufficient sunlight will offset about 38.8% (95% CI: 27.8, 163.5) of the suicides averted

by temperature fall. The resulting net reduction in the cumulative suicides by 2100 will be

3.52 (95% CI: −0.781, 7.72) thousand (Table A.12). Thus, solar geoengineering can indeed
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increase the incidence of suicides when the effects of insufficient sunlight more than offset

the effects of temperature (Figure A.5). The results are consistent with an alternative goal

of a 2.0 ◦C temperature rise and with other pollution emission reductions scenarios (Table

A.12).

IV. Conclusion

This study assesses whether and to what extent sunlight exposure affects the suicide rate

and the implications for solar geoengineering. Our main findings suggest that suicide rates

increase by 6.99% as sunlight in a given and previous months decreases by one standard

deviation. We find few heterogeneities in the sunlight-suicide relationship by county charac-

teristics or over time, suggesting limited adaptation to sunlight exposure in suicidal behavior.

The findings should still be carefully interpreted for generalizability, especially for places at

extremely high or low latitudes. Our additional analysis indicates that sunlight is negatively

related to the volume of internet searches for depressive language on Google, highlighting

individuals’ mental well-being as a suggestive mechanism linking sunlight and suicide. Future

research is warranted to discover the precise underlying mechanism(s) at work.

Our projection suggests that reducing solar radiation to keep the global temperature

rise below 1.5 ◦C, as currently targeted by the Paris Agreement, can result in 1.26–3.18

thousand additional suicides (95% CI) between 2030 and 2100, and the net of the temperature

reduction effects is projected to cause 0.781 to −7.72 additional suicides by 2100. Thus, solar

geoengineering can indeed increase the incidence of suicides when the effects of insufficient

sunlight more than offset the effects of temperature. From a distributive justice perspective,

future research would also be useful to explore potential differences in the effects of solar

geoengineering between developed and developing countries.

This study has important policy implications for two distinct fields. First, most research

on sunlight has focused on adverse health consequences such as skin cancer, resulting in

the widespread awareness and current public health advice to reduce sunlight exposure.

However, our findings suggest that it is vital for public health policies to evaluate and

attempt to balance the potential benefits and harms of sunlight exposure, incorporating

benefits of sunlight exposure on preventing suicide and improving mental health along with

other health benefits.

Second, our findings show that climate policy remedies, such as geoengineering, can have

adverse impacts on human well-being, offering key insights that accompanying supplemental

policy remedies, such as suicide prevention programs or mental health assistance programs,

may be beneficial to mitigate some of the adverse impacts of solar geoengineering.
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Benveniste, Héléne, Olivier Boucher, Céline Guivarch, Hervé Le Treut, and
Patrick Criqui, “Impacts of nationally determined contributions on 2030 global green-
house gas emissions: uncertainty analysis and distribution of emissions,” Environmental
Research Letters, 2018, 13, 014022.

Berk, Michael, Kerrie M. Sanders, Julie A. Pasco, Felice N. Jacka, Lana
J. Williams andAmanda L. Hayles, and Seetal Dodd, “Vitamin D deficiency may
play a role in depression,” Medical Hypotheses, 2007, 69, 1316–1319.

Braithwaite, Isobel, Shuo Zhang, James B. Kirkbride, David P.J. Osborn, and
Joseph F. Hayes, “Air Pollution (Particulate Matter) Exposure and Associations with
Depression, Anxiety, Bipolar, Psychosis and Suicide Risk: A Systematic Review and Meta-
Analysis,” Environmental Health Perspectives, 2019, 127 (12), 126002.

17
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Figures

Figure 1: Effects of Sunlight on the Suicide Rate

Notes: The top panel plots the estimated cumulative effects of sunlight in given and previous
months on the percentage change in the suicide rate with various time effects and models as
specified by the labels. The intercepts are adjusted to allow all curves to show no change in
the suicide rate at the mean sunlight level. The blue shaded area represents the 95% confidence
interval of the elasticity estimated from the baseline model with the county-month and state-year
fixed effects. All regressions additionally include the mean temperature and precipitation in the
given and previous months. The underlying coefficients are presented in Table A.2. The bottom
figure plots the distribution of average monthly sunlight in our sample. The average monthly
suicide rate weighted by county population is 0.955 per 100,000 population. The mean of average
daily sunlight weighted by county population is 16,422.91 KJ/m2.
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Figure 2: Changes in Sunlight Required to Achieve the Equivalent Impacts of Other Inter-
ventions

Notes: This figure describes the amount of changes in sunlight in both percentage and standard
deviation (SD) that is required to achieve the equivalent impacts of other interventions estimated
in previous studies (Braithwaite et al. 2019; Burke et al. 2018; Okoro et al. 2005; Matsubayashi
and Ueda 2011; Ueda et al. 2014; Stuckler et al. 2009; Tanaka and Okamoto 2021). “Intervention”
describes the type of intervention, “%∆Suicide” describes the percentage change in the suicide
rate by the intervention, each dot describes the change in the standard deviation of sunlight
that is required to achieve the same magnitude of the impact as the intervention, along with
its associated 95% CI, and “%∆Sunlight” indicates the percentage change in sunlight that is
required to achieve the same magnitude of impact as the intervention. The underlying parameters
are reported in Table A.11.
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Figure 3: Heterogeneous Effects of Sunlight

Notes: This figure plots the cumulative effect of sunlight in given and previous months, as given
by β0 + β−1 and its 95% confidence interval based on Equation (2).
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Figure 4: Effects of Sunlight on the Suicide Rate across Years

Notes: This figure plots the cumulative effect of sunlight in given and previous months,
as given by β0 + β−1 and its 95% confidence interval based on Equation (3).
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Figure 5: Effects of Sunlight on Depressive Language Searches from Google Trends

Notes: This figure plots the estimated cumulative effects of sunlight in given and previous months
on the percentage change in Google Trends search interests for the set of depressive language terms
as specified in the main text with various time effects as specified by the labels. The intercepts are
adjusted to allow all curves to show no change in Google Trends values at the mean sunlight level.
The thick blue line indicates the estimate from the observations at the state-year-month level, and
the blue shaded area represents its 95% confidence interval. The other three lines are estimated
from observations at the DMA-year-month level. All regressions additionally include the mean
temperature and precipitation in a given and previous months. The underlying coefficients are
presented in Table A.9.
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Figure 6: Projected impacts of solar radiation management on suicides, 2030–2100

Notes: This figure plots the projected impacts of solar radiation management on suicides to
keep the global temperature rise below 1.5 ◦C between 2030 and 2100. The blue line indicates
the cumulative excess suicide deaths due to the negative radiative forcing, and the shaded area
represents the 95% CI. The red line indicates the net increase in suicide deaths after accounting
for averted suicides due to temperature fall, and the shaded area represents the 95% CI.
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Figure A.1: Seasonality Trends in the Suicide Rate

Notes: This figure shows the monthly average suicide rates based on the
data for the analysis.
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Figure A.2: The Effects of Sunlight on the Suicide Rate by Decile

Notes: This figure plots the cumulative effect of sunlight in the current and
previous months, as given by β0 + β−1 and its 95% confidence interval in
each decile bin of the average amount of sunlight at the county level. The
regression additionally controls for the average temperature, precipitation
interacted, the county-by-month and state-by-year fixed effects. The regres-
sion is weighted by county population. The standard errors are clustered at
the county level. The blue dashed line indicates the estimated effect from
the main analysis for the reference purpose.
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Figure A.3: The Effects of Sunlight on the Suicide Rate by Month

Notes: This figure plots the cumulative effect of sunlight in given and pre-
vious months, as given by β0 + β−1 and its 95% confidence interval in each
month. The regression additionally controls for the average temperature and
precipitation in given and previous months as well as the county-by-month
and state-by-year fixed effects. The regression is weighted by county popu-
lation. The standard errors are clustered at the county level.
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Figure A.4: Robustness to Extensive Temporal Displacements

Notes: This figure plots the cumulative impacts on suicide rate of the log of
sunlight exposure in the current and previous months. Each value reports∑0

l=k βl and associated 95% CI from a separate regression for eachl ∈ [0, 6],
as we iteratively add an additional month in the past. All regressions addi-
tionally control for the monthly average temperature and precipitation with
the same set of lags, the log of sunlight, temperature, and precipitation in
the following month, and county-by-month and state-by-year fixed effects.
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Figure A.5: Projected cumulative net impacts of solar radiation management on suicides in
2030–2100

Notes: This figure plots the cumulative net impacts of excess suicides due
to reduced sunlight and averted suicides due to lower temperature to meet
the goal of keeping the global temperature rise below 1.5 ℃ in 2030–2100.
The values are based on the simulation of 10,000 replications based on the
parameters described in the main text. The shaded area represents the 95%
of the distribution.
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Table A.1: Summary Statistics

variable N Mean Std

Suicide rate (per 100K pop) 444,861 0.955 0.967
Sunlight (KJ/m2/day) 444,861 16,422.91 6,449.22
Population 444,861 143,376 384,245
Temperature (◦C) 444,861 13.822 9.120
Precipitation (mm) 444,861 0.073 0.059
Suicide rate, male nonviolent 444,861 0.210 0.578
Suicide rate, male violent 444,861 1.171 1.581
Suicide rate, female nonviolent 444,861 0.159 0.458
Suicide rate, female violent 444,861 0.215 0.633
Real income (USD) 439,202 31347.5 10047.4
Gun ownership 444,861 0.309 0.120

Notes: This table reports the summary statistics of the main variables. Each column
reports the variable name, the number of observations, the mean value weighted by popu-
lation (except for population, where the mean is the arithmetic average), and the standard
deviation, respectively. The sample is restricted to what is used in the main analysis. The
level of observations is at the county-by-month level.
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Table A.2: The Effects of Sunlight on Suicide Rates

(1) (2) (3) (4) (5) (6)

ln(Sunlight)0 -0.049∗∗ -0.052∗∗ -0.045∗ -0.060∗∗∗ -0.043∗

(0.022) (0.022) (0.025) (0.022) (0.023)
ln(Sunlight)-1 -0.085∗∗∗ -0.083∗∗∗ -0.086∗∗∗ -0.093∗∗∗ -0.077∗∗∗

(0.024) (0.024) (0.025) (0.024) (0.024)
ln(Sunlight)-2 -0.003 0.001 -0.002 -0.008 0.003

(0.022) (0.021) (0.023) (0.021) (0.022)
ln(Sunlight)1 0.010 0.006 0.002 -0.004 0.017

(0.024) (0.023) (0.025) (0.023) (0.024)
Temperature0 0.008∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.008∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Temperature-1 -0.002∗∗ -0.001 -0.001 -0.002∗∗ -0.002∗∗ -0.002∗∗

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Temperature-2 0.000 0.001 0.001 0.000 -0.000 0.000

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Temperature1 0.001 0.002∗ 0.002 0.001 0.001 0.001

(0.001) (0.001) (0.002) (0.001) (0.001) (0.001)
Precipitation0 -0.043 -0.012 -0.001 -0.032 -0.024 -0.043

(0.032) (0.034) (0.036) (0.032) (0.033) (0.033)
Precipitation-1 -0.014 0.032 0.044 0.011 0.003 -0.013

(0.036) (0.038) (0.041) (0.037) (0.036) (0.036)
Precipitation-2 -0.013 0.042 0.046 0.016 0.003 -0.011

(0.034) (0.037) (0.040) (0.032) (0.034) (0.034)
Precipitation1 0.019 0.044 0.065∗ 0.029 0.040 0.020

(0.032) (0.031) (0.033) (0.032) (0.033) (0.032)
Sunlight -0.020

(0.013)
Sunlight2 0.001

(0.001)
Sunlight3 -0.000

(0.000)
Sunlight-1 -0.011

(0.013)
Sunlight-12 -0.000

(0.001)
Sunlight-13 0.000

(0.000)
Sunlight-2 0.002

(0.013)
Sunlight-22 0.000

(0.001)
Sunlight-23 -0.000

(0.000)
Sunlight1 0.010

(0.013)
Sunlight12 -0.001

(0.001)
Sunlight13 0.000

(0.000)
Constant 2.088∗∗∗ 2.025∗∗∗ 2.032∗∗∗ 17.855 1.828∗∗∗ 1.080∗∗∗

(0.461) (0.408) (0.454) (36.095) (0.477) (0.158)
adj. R2 0.11 0.11 0.11 0.11 0.16 0.11
β0 + β−1 -0.134 -0.136 -0.131 -0.152 -0.120 -0.141
se(β0 + β−1) 0.031 0.030 0.034 0.030 0.031 0.047
p(β0 + β−1) 0.000 0.000 0.000 0.000 0.000 0.003
Fixed effects county × month county ×month county × month county × month county × month cubic

+ state × year + year + year ×month + year + state trend + county × year polynomial

Notes: The dependent variable is the suicide rate per 10,000 population. The mean of the dependent variable is 0.955, and the mean
of sunlight is 16422.91 KJ/m2. The level of observations is at the county-month. The sample size is 444,861 across 3,107 counties. At
the bottom of the table, we report the linear combination of β0 + β−1, which represents the cumulative effects of sunlight in a given
and previous month as well as the associated standard errors and the p-values. The corresponding value in Column (5) has the same
interpretation, which is the changes in the suicide rate by a 100% increase in sunlight from its mean value. All regressions are weighted
by county population. The standard errors clustered at the county level are reported in the parentheses.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.3: Robustness to Alternative Outcomes

(1) (2) (3) (4)
ln(rate+1) ln(count+1) IHS Count

ln(Sunlight)0 -0.049** -0.015 -0.038** -0.052**
(0.022) (0.011) (0.015) (0.024)

ln(Sunlight)-1 -0.085*** -0.019* -0.055*** -0.089***
(0.024) (0.011) (0.016) (0.025)

ln(Sunlight)-2 -0.003 -0.015 -0.005 -0.007
(0.022) (0.011) (0.015) (0.023)

ln(Sunlight)1 0.010 0.020* 0.004 0.009
(0.024) (0.011) (0.016) (0.026)

Temperature0 0.008*** 0.003*** 0.005*** 0.008***
(0.001) (0.000) (0.001) (0.001)

Temperature-1 -0.002** -0.000 -0.001** -0.002**
(0.001) (0.000) (0.001) (0.001)

Temperature-2 0.000 0.000 0.000 0.000
(0.001) (0.000) (0.001) (0.001)

Temperature1 0.001 0.000 0.001 0.001
(0.001) (0.000) (0.001) (0.001)

Precipitation0 -0.043 -0.004 -0.028 -0.041
(0.032) (0.015) (0.021) (0.034)

Precipitation-1 -0.014 0.001 -0.006 -0.013
(0.036) (0.015) (0.025) (0.038)

Precipitation-2 -0.013 -0.008 -0.009 -0.014
(0.034) (0.016) (0.022) (0.035)

Precipitation1 0.019 0.014 0.017 0.024
(0.032) (0.015) (0.022) (0.033)

ln(population) 0.430***
(0.034)

Constant 2.088*** -3.828*** 1.595*** -10.232***
(0.461) (0.387) (0.309) (0.484)

adj. R2 0.11 0.73 0.19
β0 + β−1 -0.134 -0.034 -0.093 -0.141
se(β0 + β−1) 0.031 0.015 0.020 0.032
p(β0 + β−1) 0.000 0.022 0.000 0.000

Notes: This table reports the estimates from various alternative specifications. In particular,
Column (1) uses the log of the suicide rate per 10,000 population plus one as the dependent
variable, Column (2) uses the log of the suicide count plus one as the dependent variable,
Column (3) uses the inverse hyperbolic sine (IHS) of the suicide rate as the dependent variable,
and Column (4) applies the Poisson model. The sample size is 444,861 in Columns (1)–(3)
and 364,778 in Column (4), as Poisson pseudo-maximum likelihood regressions with multi-way
fixed effects additionally detects and drops separated observations. All regressions control for
county-month and state-year fixed effects. Regressions are weighted by population in Columns
(1) and (3), while Column (2) additionally controls for the log of population, and Column (4) is
estimated by the Poisson regression that includes the population as an exposure variable. The
interpretations of the bottom parameters are the same as Table A.2.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.4: Robustness to Alternative Levels of Clustering the Standard Errors

(1) (2) (3) (4)

β0 + β−1 -0.134*** -0.134*** -0.134*** -0.134***
se(β0 + β−1) (0.031) (0.031) (0.041) (0.028)
p(β0 + β−1) [0.000] [0.000] [0.003] [0.000]

Clustering county county county state
+ state-year + year

Notes: This table tests the robustness of the effects of sunlight on the suicide
rates based on the same model as in Table A.2 Column (1) but at different
levels of clustering the standard errors. In particular, the standard errors are
clustered at the county level in Column (1) as the reference from the main
analysis, the county + state-by-year level in Column (2), the county + year
level in Column (3), and the state level in Column (4). The interpretations
of the parameters are the same as Table S2. N = 444, 861.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.5: Robustness to Inclusion of Air Pollution

(1) (2) (3)
Baseline Add PM2.5 Add lagged PM2.5

β0 + β−1 -0.197** -0.196** -0.189**
se(β0 + β−1) (0.084) (0.084) (0.086)
p(β0 + β−1) [0.020] [0.020] [0.028]

Notes: This table presents the results with controlling for the monthly
average PM2.5 concentrations levels. The sample period is 2000–2004.
The interpretations of the parameters are the same as Table A.2. Col-
umn (1) replicates the main analysis in Table A.2 Column (1). Column
(2) adds the PM2.5 concentrations in a given month, and Column (3)
adds the lags in PM2.5 as sunlight, i.e., the values in a given and past
two months as well as the following month. N = 27,009.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.6: Estimated Effects of a set of Environmental Factors

(1) (2) (3) (4) (5)

ln(Sunlight)0 -0.009 -0.035* -0.023 -0.049**
(0.019) (0.020) (0.022) (0.022)

ln(Sunlight)-1 -0.063*** -0.080*** -0.074*** -0.085***
(0.020) (0.021) (0.024) (0.024)

ln(Sunlight)-2 0.002 0.002 -0.005 -0.003
(0.020) (0.020) (0.022) (0.022)

ln(Sunlight)1 -0.005 0.002 -0.000 0.010
(0.022) (0.022) (0.023) (0.024)

Temperature0 0.008*** 0.008*** 0.007***
(0.001) (0.001) (0.001)

Temperature-1 -0.002** -0.002** -0.002***
(0.001) (0.001) (0.001)

Temperature-2 0.000 0.000 0.000
(0.001) (0.001) (0.001)

Temperature1 0.001 0.001 0.001
(0.001) (0.001) (0.001)

Precipitation0 -0.044 -0.043 -0.006
(0.032) (0.032) (0.029)

Precipitation-1 -0.029 -0.014 0.041
(0.036) (0.036) (0.032)

Precipitation-2 -0.017 -0.013 -0.017
(0.033) (0.034) (0.030)

Precipitation1 0.011 0.019 0.013
(0.032) (0.032) (0.030)

Constant 1.677*** 1.926*** 1.939*** 2.088*** 0.875***
(0.405) (0.411) (0.459) (0.461) (0.029)

β0 + β−1 -0.072 -0.115 -0.097 -0.134
se(β0 + β−1) 0.028 0.028 0.030 0.031
p(β0 + β−1) 0.009 0.000 0.001 0.000

Notes: Columns (1)–(4) present the effects of sunlight on suicides with various sets of
other controls, whereas Column (5) presents the effects of temperature and precipi-
tation on suicides without controlling for sunlight. The interpretations of the bottom
parameters are the same as Table A.2.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.7: Estimated Effects of Sunlight on Temperature

(1) (2) (3) (4) (5) (6)

Weighted Unweighted

ln(Sunlight) 2.633*** 1.479***
(0.177) (0.079)

Precipitation -2.319*** -0.543*** -2.182*** -1.173***
(0.236) (0.193) (0.060) (0.072)

R2 .9727 .9728 .9731 .9708 .9709 .9710
∆Temp (◦C) -1.328 -.732
∆Temp (SD) -0.144 -0.074

Notes: This table presents the estimated effects of sunlight and precipitation as well as
the county-by-month and state-by-year fixed effects on temperature. Columns (1) and (4)
include only the fixed effects. Columns (1)–(3) are weighted by population as in the main
analysis, whereas Columns (4)–(6) are not weighted. The last two rows indicate the effect of
a 1-standard deviation (SD) decrease in sunlight on temperature in ◦C and SD, respectively.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.8: Estimated Effects of Sunlight on Suicides based on Time-Series Analysis

(1) (2) (3) (4)

ln(Sunlight)0 0.050*** 0.041** 0.044*** 0.044***
(0.016) (0.016) (0.016) (0.016)

ln(Sunlight)-1 -0.016 -0.019 -0.019 -0.019
(0.016) (0.016) (0.016) (0.016)

β0 + β−1 0.034 0.022 0.025 0.026
se(β0 + β−1) 0.013 0.013 0.014 0.013
p(β0 + β−1) 0.012 0.104 0.071 0.057
Fixed effects County County County County-

+ year + state-by-year by-year

Notes: This table shows the estimated effects of sunlight on suicides based
on the time-series analysis that mimics the literature. In particular, we run
the same model as in Table A.2 Column (1) but with different fixed effects
as specified in each column. The interpretations of the bottom parameters
are the same as Table A.2. N = 444,864.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.9: Effects of Sunlight on Depressive Language Searches from Google Trends

(1) (2) (3) (4)

Panel A: All keywords
Effect -8.464*** -10.896*** -5.860** -5.549**

(1.038) (2.608) (2.817) (2.306)
p [0.000] [0.000] [0.039] [0.017]
N 4655 8796 8774 8774
Panel B: depression, depressed, depress
Effect -8.881*** -12.557*** -8.697 -7.746

(2.426) (4.805) (6.388) (6.158)
p [0.001] [0.010] [0.175] [0.210]
N 4655 8785 8763 8763
Panel C: suicide, suicidal
Effect -4.584*** -7.545 -5.507 -5.287

(1.193) (4.632) (5.278) (5.006)
p [0.000] [0.105] [0.298] [0.292]
N 4655 8697 8675 8675

Region type State DMA DMA DMA
Fixed effects State DMA DMA DMA

+ yr + yr + state × yr + state × mo
+ mo + mo + state × mo + state trend

Notes: Each panel reports the effect of a one-log point increase in sunlight in a given and previous
months on the Google Trends index in the first row, the standard errors clustered at the region level in
the second row, the p-value at the third row, the number of observations in the fourth row, the mean
value of the dependent variable in the fifth row, and the mean value of sunlight (KJ/m2) in the last
row. The dependent variable is scaled from 0 to 100 with respect to the highest point in each region
(see Methods for data processing). Column (1) uses observations at the state-year-month level, and
Columns (2)–(4) use observations at the DMA-year-month level.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.10: Marginal Impacts of Weather vs. Climate

(1) (2) (3) (4) (5)

Climate (β) -0.078*** -0.070*** -0.081*** -0.078*** -0.076***
(0.017) (0.018) (0.018) (0.017) (0.017)
[0.000] [0.000] [0.000] [0.000] [0.000]

Weather (δ) -0.124*** -0.129*** -0.130*** -0.146*** -0.115***
(0.030) (0.033) (0.029) (0.029) (0.030)
[0.000] [0.000] [0.000] [0.000] [0.000]

Fixed effects County County County County County
+ month + month + month + month + month

+ state × year × year + year + year + county
+ state-trend × year

Notes: This table reports the estimated effects from Equation (5) in Methods. “Climate (β)” reports the β’s and
“Weather (δ)” reports the δ’s from Equation (5). The standard errors, clustered at the county level, are reported
in the parentheses, and the p-values are reported in the square brackets. The sample size is 451,371.
***p < 0.01, **p < 0.5, *p < 0.1
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Table A.11: Changes in sunlight required to achieve the equivalent impacts of other inter-
ventions

%change in suicide rate Equivalent % change in sunlight Equivalent SD change in sunlight

Estimate Lower Upper Estimate Upper Lower Estimate Upper Lower
Intervention bound bound bound bound bound bound

10-µg/m2 change in PM10, 2 0 3 -13.28 0.00 -19.25 -0.34 0.00 -0.49
meta-analysis
1◦C increase in monthly 0.42 0.21 0.63 -2.95 -1.49 -4.39 -0.08 -0.04 -0.11
average temperature, US
State firearm regulations, US -5.6 -7.4 -3.9 49.05 69.45 32.04 1.25 1.77 0.82
National suicide prevention -6.62 -11.31 -1.93 60.31 123.92 14.77 1.54 3.16 0.38
program, OECD countries
Celebrity suicide, JPN 4.6 2.4 6.7 -27.95 -15.72 -37.97 -0.71 -0.40 -0.97
1% increase in suicide, EU 0.49 -0.04 1.02 -3.43 0.29 -7.01 -0.09 0.01 -0.18
COVID-19, JPN 16 11 21 -68.03 -54.34 -77.61 -1.73 -1.38 -1.98

Notes: This figure describes the amount of changes in sunlight in both percentage and standard deviation (SD) that is required
to achieve the equivalent impacts of other interventions estimated in previous studies. “Intervention” describes the type of inter-
vention, “Equivalent % change in suicide rate” describes the percentage change in suicide rate by the intervention, “Equivalent
% change in sunlight” indicates the percentage change in sunlight that is required to achieve the same magnitude of impact
as the intervention, and “Equivalent SD change in sunlight” describes the change in the standard deviation of sunlight that is
required to achieve the same magnitude of the impact as the intervention. Each number under “Estimate” represents the mean
impact, and those under “Lower bound” and “Upper bound” represent the 95% CI.
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Table A.12: Projected impacts of solar radiation management geoengineering

Temperature limit Sunlight Temperature Net

Panel A: 0%
1.5 ◦C 2.23 (1.26, 3.18) -5.75 (-10.69, -1.23) -3.52 (-7.72, 0.781)
2 ◦C 1.46 (0.83, 2.08) -3.77 (-7.00, -0.81) -2.31 (-5.06, 0.509)
Panel B: 1%
1.5 ◦C 1.78 (1.01, 2.55) -4.61 (-8.56, -0.99) -2.82 (-6.19, 0.623)
2 ◦C 1.02 (0.58, 1.45) -2.63 (-4.89, -0.56) -1.61 (-3.53, 0.354)
Panel C: 3%
1.5 ◦C 1.22 (0.70, 1.75) -3.17 (-5.89, 0.68) -1.94 (-4.26, 0.426)
2 ◦C 0.47 (0.27, 0.67) -1.22 (-2.26, -0.26) -0.746 (-1.63, 0.163)
Panel D: 5%
1.5 ◦C 0.91 (0.52, 1.30) -2.35 (-4.37, -0.50) -1.44 (-3.16, 0.316)
2 ◦C 0.17 (0.10, 0.24) -0.44 (-0.81, -0.09) -0.267 (-0.585, 0.058)

Notes: This table summarizes the cumulative additional suicides due to the negative radiative
forcing (in the second column) and averted suicides due to temperature fall (in the third row) to
meet the goal of keeping global temperature rise below 1.5 ◦C in the first row and 2 ◦C in second
row of each panel. The last column represents the net effect of sunlight and temperature effects
estimated from the simulation (see Methods). The numbers in the parentheses represent the 95%
CI. All numbers are in thousands of deaths in 2100. Each panel title refers to annual emissions
reduction rate between 2031 and 2100.
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