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Abstract

I consider an auction in which one bidder is a team, consisting of symmetric

individuals for whom the auctioned item is a public good: if the team wins it,

they all enjoy it. Team members need to agree on a bid, and on splitting the

burden of payment if they win; these decisions are taken through a mechanism.

If the auction format is second-price, the game has a symmetric equilibrium.

Under the first-price and all-pay formats, if there exists an equilibrium, then it

extremely asymmetric: one member participates in the mechanism, and every-

body else free ride.

Keywords : Auctions; Mechanisms; Public goods; Team bidding.

JEL Codes : D44

∗Department of Economics, University of Haifa, Mount Carmel, Haifa, 31905, Israel. Email:

shiranrach@econ.haifa.ac.il Web: https://sites.google.com/site/profshiranrachmilevitch/

1



1 Introduction

Auction theory typically assumes that bidders are individuals. Namely, that “one bid-

der=one agent.” In practice, however, bidding is often decided by groups of agents—

firms’ managements, consulting groups, and households, to name a few. If group

members hold private information (e.g., about their preferences), the team needs to

aggregate this information in order to operate. Somewhat surprisingly, the game

theoretic literature has yet to provide an account on the matter. The present paper

addresses this lacuna by studying an auction model in which one of the bidders is a

team, who faces the aforementioned challenge.

One takeaway from the analysis is that in an environment with team bidders, there

may be dramatic differences between the major auction formats. Another takeaway

is that the second-price format exhibits appealing properties, and offers (under some

conditions) a generalization of the results concerning the individual-bidders auction

into the current setting. More specifically, the environment I consider and the results

are as follows.

There is a single-item auction with two bidders: one who is a multi-member team,

comprising n individuals (players 1 through n), and one who is a single individual

(player n + 1, the regular bidder). Players 1 though n are symmetric: each has a

valuation for the item which is drawn from a distribution on [0, 1], which is the same

for all of them. The valuations of all n + 1 individuals are private and independent.

From the regular bidder’s standpoint, the auction is standard; the novel angle is that

of the team, whose perspective is as follows.

Given that team members’ valuations are (θ1, · · · , θn), if the team wins, the payoff

of member i is θi − pi, where pi is the payment he contributes to cover the item’s

cost. The team needs to decide what bid to submit, and how to split the burden of

payment between its members if the auction is won. These decisions are taken by a

mechanism to which team members, players 1 through n, send reports. The mecha-

nism consists of a bid aggregation rule, A, and a cost sharing rule, s, and it works as
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follows: player i sends a report (or bid) bi ≥ 0, the reports are sent simultaneously,

and the bid submitted on behalf of the team is A(b1, · · · , bn); if the auction is won, the

cost is split between the players in proportions (s1(b1, · · · , bn), · · · , sn(b1, · · · , bn)).1

The interpretation is that by announcing bi, player i reports his maximal willingness

to pay for the item.2

I start the analysis by considering a second-price auction. Under the second-price

format, it can be assumed that the regular bidder reports his valuation truthfully.3

When the regular bidder’s strategy is fixed at truthful reporting, the resulting game

is a symmetric Bayesian game between the n team members, and under fairly general

conditions it admits a symmetric (Bayes-Nash) equilibrium. After establishing this

existence, I show that no equilibrium leads to an efficient allocation of the item. This

is to be expected, because from the team’s perspective, the auctioned item is a public

good, hence free riding arises inevitably within the team.

Next, I turn to first-price and all-pay auctions. These are more challenging, be-

cause the regular bidder has no dominant strategy. The analysis of these auctions

proceeds by considering two qualitatively different cases.

First, suppose that n − 1 team members do not participate in the mechanism

(equivalently, they mimic the zero type) and only one member actively participates.

Then, the situation is that of a standard 2-player auction, played between the “team’s

representative” and the regular bidder. The challenge here is to provide the n−1 des-

ignated abstainers the incentives to report zero even if their type is high—incentives

that can or cannot be provided, depending on the auction’s format, the type distribu-

1Throughout, the word “bid” will be used in several senses. It will be used to denote an individual

bid by player i—namely bi, his report to the mechanism—and to denote the team’s bid, A(b1, · · · , bn),

that results from these reports. It will also be used to denote the regular bidder’s bid (namely, the

bid against which the team competes).
2A discussion about the definition of a mechanism—specifically, why I assume the aforementioned

form rather than a “revelation mechanism”—appears in Appendix A.
3For that matter, one could assume an arbitrary number of out-of-team bidders, and identify the

“regular bidder” with the first-order statistic of their type distributions.
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tion, and the team’s mechanism. For the case where these incentive can be provided,

the resulting equilibrium is called an equilibrium with complete free riding.

Next, consider a candidate for an equilibrium without complete free riding. Then,

at least two team members follow a non-zero reporting function. For each such mem-

ber, the reporting function, while not identically zero, is still constantly zero on some

interval of low types. The zero bidding of these low types induces low types of the

regular bidder to bid zero as well, which is impossible: if all types below a cutoff re-

port zero, any one of them would find it profitable to slightly increase his bid/report.

Therefore, under the first-price and all-pay formats, in contrast to second-price auc-

tions, if there exists an equilibrium, then it is an equilibrium with complete free riding.

I show that both options—non-existence and existence of only complete free riding

equilibria—are possible.

To get a closer look at team bidding in models where equilibria without complete

free riding exist, I analyze a specific version of the second-price model—the separable-

proportional one, which means that there exists a strictly increasing function ψ, with

ψ(0) = 0, such that:

• Bid aggregation is separable: A(b1, · · · , bn) =
∑n

i=1 ψ(bi); and

• Cost sharing is proportional: max{b1, · · · , bn} > 0⇒ si(b1, · · · , bn) = ψ(bi)∑n
j=1 ψ(bj)

and s1(0, · · · , 0) = · · · = sn(0, · · · , 0) = 1
n
.

All separable-proportional mechanisms are equivalent, therefore there is not loss

of generality in assuming that ψ is the identity function.4 I make this assumption.

Under the second-price format and given that the regular bidder’s type is distributed

uniformly over a sufficiently large support, the separable-proportional model has a

unique equilibrium. The equilibrium is symmetric, and is such that all team members

send reports according to the following function:

4This point is explained in Appendix A.
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βSPA(θ) = max{θ − a, 0}, (1)

where the constant a is the (unique) solution to some equation. The equilibrium

can be described as follows: Each team member computes an adjusted valuation,

which is the maximum between zero and true valuation minus the constant a, and

if the adjusted valuation is positive, the individual sends a report that increases the

collective bid by the adjusted valuation; otherwise, the individual abstains. The

constant a is equal to zero if and only if n = 1. Therefore, the bid function (1)

generalizes the weak dominance equilibrium of the ordinary second-price action.5

The equilibrium expected utility of a type-θ team member is:

π∗(θ) =
1

2M
· [2θ −max{θ − a, 0}] · [2a+ max{θ − a, 0}], (2)

where M > 0 is the regular bidder’s maximum type. Expression (2) generalize

that equilibrium’s payoffs for the case of uniform competition. By contrast, under

the first-price format and with uniform type distributions, the above model has no

equilibrium; and under the all-pay format, equilibria with complete free riding exist.

The paper is organized as follows. Subsection 1.1 reviews the literature. Section

2 provides definitions. Sections 3 is dedicated to second-price auctions, and Section

4 to first-price and all-pay auctions. Section 5 considers the separable-proportional

model. Section 6 concludes. Appendix A is dedicated to remarks about modeling

issues, and Appendix B collects proofs.

5When n = 1 the RHS of (1) is θ, therefore the bid submitted on behalf of the “team” is A = θ.
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1.1 Literature

Studying auctions with a single team-bidder is both of its own merit,6 and can be

viewed as a first step towards the analysis of competition between multiple bidding

teams. Such competition, from a game theoretic point of view, is an under-studied

topic. A recent exception is a paper by Asker et al. (2021), who study teams-

competition in auctions for patents. That paper’s focus, however, is different from

mine, since within each team there is no private information. Instead, the team’s

value is commonly known to all of its members, and since the auction format is

second-price, bidding is straightforward—the entire team behaves as a single agent

who has a well-defined value for winning, and the team’s bid is equal to this value.

Additionally, there are some earlier papers in the auctions literature about bidding

in joint ventures, in particular for offshore drilling.7 In these papers, too, each team’s

members’ incentives are fully aligned.

At a general level, the paper is related to the literature about games that are played

by teams. This literature is mostly experimental,8 and the handful of theoretical

exceptions it offers are substantially different from my model. For example, Kim

et al. (2021) study a theoretical model of team play, but similarly to the papers

mentioned in the previous paragraph, their model is such that there is no strategic

interaction between members of the same team.9

6Bidding scenarios with only one multi-member bidder are actually encountered in the real world.

For instance, the Israeli 5G spectrum auction that was carried out in 2020 is a case in point:

it included several bidders, one of which was multi-member, comprising three telecommunication

companies. A recent paper that describes this auction is Blumrosen and Solan (2022). Disclosure:

I was involved in consulting to one of the operators in the 5G auction. The present paper is not

related to this consulting.
7See, e.g., DeBrock and Smith (1983).
8See, e.g., Charness and Sutter (2012), Kugler et al. (2012). Experimental papers on team

bidding include Cox and Hayne (2006) and Sutter et al. (2009).
9In subsection 2.1 of their paper Kim et al. write: “Because it is a common value problem for

the team, there is an implicit assumption of sincere reporting.” A similar approach was taken in an
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From the existing literature, the model which is closest to the ones studied here

is by Barbieri and Malueg (2010), who study private funding of public goods. This

funding is decided via a game in which agents simultaneously make contributions,

the public good is provided if the sum of contributions exceeds the good’s cost, and

otherwise it is not provided and the contributions are refunded. In that paper, the

public good’s provision-cost is stochastic, which is analogous to the stochastic bid (i.e.,

outside competition) against which the team competes in the second-price version of

my model.

The literature on collusion can also be seen as somewhat relevant, to the extent

that the team is viewed as a cartel. However, it is not a cartel in the ordinary

sense of the word. Conceptually, the team in my model is an organic unit, not a

fictitious construct the purpose of which is to advance the goals of its individual

members. Operationally, collusion in auctions is typically based on transfers between

the colluding agents, because the cartel allocates the won item to one of its members,

and the others need to be compensated for leaving the auction empty-handed.10,11 In

the present paper, by contrast, transfers are not available, and losers-compensation is

irrelevant, because when the team wins the auction, all of its members win together.12

Finally, another work which is related (albeit indirectly) to the present paper is

by Haghpanah et al. (2021), who study selling a good to a group, where the transfer

payed to the seller is incurred by each of the group’s members.

earlier paper by Duggan (2001), where groups of players aggregate their actions via social choice

rules, with no strategic issues involved in this aggregation.
10See, e.g., McAfee and McMillan (1992).
11Many papers on collusion consider repeated games. In such games, continuation play can sub-

stitute for monetary transfers, but the basic idea is the same—winners need to compensate losers.

See, e.g., Athey and Bagwell (2001), Skrzypacz and Hopenhayn (2004), and Rachmilevitch (2013).
12Another context in which team members win together or lose together is that of group contests.

See Eliaz and Wu (2018), Kobayashi and Konishi (2021), and the references therein.
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2 Definitions

A mechanism, as described in the Introduction, consists of a bid aggregation rule A

and cost sharing rule s. Both are continuous functions on Rn
+, A takes values in R+

and s in the (n−1)-dimensional unit simplex. The function A satisfies A(0, · · · , 0) =

0, it is weakly increasing in each coordinate, A(b) > 0 whenever there is at least one

i with bi > 0, and is such that for every r > 0 and b−i, there exists a bi such that

A(bi, b−i) ≥ r. Each player’s payment-share si is weakly increasing in bi. Since A and

s are monotone in each argument, they are differentiable a.e. I assume that (at least)

one of the following holds: either ∂A
∂bi

> 0 or ∂si
∂bi

> 0 (wherever the derivatives exist).

The valuation of each team member is distributed on [0, 1] according to the cdf F ,

whose density is f . The regular bidder’s valuation is distributed on an interval in R+

that contains zero, according to the cdf G, whose density is g.13 All n+ 1 valuations

(or types) are independent of one another.

A mechanism (A, s) gives rise to a Bayesian game played by the n+1 participants.

The solution concept is Bayes-Nash equilibrium. When the auction format is second-

price, it is assumed that the regular bidder reports his type truthfully and therefore,

in this case, the game is actually considered as an n person game. In this game,

a (pure) strategy for player i is a reporting (or bid) function βi : [0, 1] → R+. An

equilibrium is symmetric if β1 = · · · = βn. If the auction format is first-price or all-

pay, a strategy for the regular bidder needs to be specified as well, hence a strategy

profile takes the form ((β1, · · · , βn), βn+1), where βn+1 is a bid function of the regular

bidder, defined on his type-set. An equilibrium is with complete free riding if the

profile of team reporting functions, (β1, · · · , βn), is such that |{i : βi ≡ 0}| = n− 1.

A mechanism (A, s) leads to an efficient allocation if the corresponding game has

an equilibrium under which the team wins the auction if
∑n

i=1 θi > θn+1, and the

regular bidder wins if the reverse strict inequality holds.

13This interval need not be bounded, it can be R+.
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3 Second-price auctions

Suppose that the auction format is second-price and let (A, s) be a mechanism. De-

note the game by ΓSPA(A, s). Define the following functions on Rn
+:

ΠA,s
i ((b1, · · · , bn)|θi) ≡

≡ G(A(b1, · · · , bn))× [θi − si(b1, · · · , bn) · E(θn+1 : θn+1 ≤ A(b1, · · · , bn))].

Since the regular bidder reports his type truthfully, ΠA,s
i (.|θi) is the objective that

type-θi player maximizes in equilibrium, over bi, given the reports of his teammates.

I make the following assumption:

Assumption 1. For every i ∈ {1, · · · , n}, ΠA,s
i (.|θi) is a continuous function of the

reports.

It is not required that both A and s be continuous, just that ΠA,s
i (.|θi) is. In

fact, it may be that one of these functions is not continuous; for example, in the

separable-proportional model the cost sharing rule is not continuous,14 but the func-

tions ΠA,s
i (.|θi) are continuous.

Theorem 1. Under Assumption 1, ΓSPA(A, s) has an equilibrium. Moreover, it has

a symmetric equilibrium—a one in which all team members follow the same reporting

function.

Proof. Clearly, there exists an K > 0 such that no player will send a report in excess

of K, hence the strategy sets can be constrained to [0, K]. Since the latter is compact

and the objectives ΠA,s
i (.|.) are continuous, it follows from Theorem 4.5 in Reny (2011)

that a symmetric equilibrium exists.

As the following result shows, whereas an equilibrium exists, any equilibrium is

inefficient. The result can be seen as related to Holmstrom (1982), who considered a

14(0, · · · , 0) is the (single) discontinuity point if the function (b1, · · · , bn) 7→ ( b1∑
j bj

, · · · , bn∑
j bj

).
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model in which agents take non-observable actions that produce a monetary outcome,

which the agents then share via a sharing rule. He showed that there does not exist

a sharing rule such that the associated game has a Pareto efficient Nash equilibrium.

For simplicity, I state the result under the assumption that the regular bidder’s

valuation is distributed on an interval that includes [0, n]. This assumption, however,

is inessential.

Theorem 2. Under the second-price format, no mechanism leads to an efficient

allocation.

Proof. Let (A, s) be a mechanism, and assume by contradiction that it leads to an

efficient allocation. Then there exists an equilibrium, (β1, · · · , βn), such that for

every profile of valuations, (θ1, · · · , θn), it holds that A(β1(θ1), · · · , βn(θn)) =
∑n

i=1 θi.

W.l.o.g, it can be assumed that A(b1, · · · , bn) ≡
∑n

i=1 bi and each βi is the identity.

Consider player 1. When he reports r, his payoff, given that the others have types

t−i, is G(r +
∑

j 6=i tj) · [θ1 − s1(r, t−i)
∫ r+∑

j 6=i tj
0

sh(s)
G(r+

∑
j 6=i tj)

ds]. Integrating over the

possible t−i’s gives the expected payoff:

θ1 [

∫
t−i

G(r +
∑
j 6=i

tj)f−i(t−i)dt−i]︸ ︷︷ ︸
X

− [

∫
t−i

s1(r, t−i)

∫ r+
∑
j 6=i tj

0

sh(s)dsf−i(t−i)dt−i]︸ ︷︷ ︸
Y

.

Since s1 is weakly increasing in r, the term Y is differentiable (w.r.t r) almost

everywhere, and it is clear that Y ′ > 0 whenever it exists. The derivative of the

above expression is θ1 · X ′ − Y ′, which is negative for small enough θ1’s; thus, it is

impossible for β1 to be the identity—a contradiction.

The above proof indicates what goes wrong if team bidding is required to mimic

truthful individual bidding: the negativity of the aforementioned derivative not only

implies that the reporting function cannot be the identity, but, moreover, that it is

zero for all low enough θi’s. Namely, low enough types mimic the minimum type, or,

in other words, refrain from participation.
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4 First-price and all-pay auctions

As indicated at the end of the previous section, the attempt to sustain “truthful team

reporting” unravels, in the sense that all low enough types mimic the minimal type.

Technically, the bid/reporting function starts flat, and assumes the value zero on an

interval of low types. This pattern manifests itself in further ways, not only in the

(failed) attempt to achieve efficiency in the second-price game. Under a first-price or

an all-pay format, the implication of this pattern is this: if an equilibrium is not with

complete free riding, then there are multiple team member who actively participate

in the mechanism; between these members, there is free riding in the above sense—

namely, low enough types send the same report as the minimal type—and this implies

that the low types of the regular bidder also have an incentive to take the action of

the minimal type. But this cannot be an equilibrium, because then each of these low

types would have a profitable deviation, namely to slightly increase the bid/report.

This is the meaning of the following result, in the statement of which ΓFPA(A, s)

is the game corresponding to a first-price format and the mechanism (A, s).

Theorem 3. If ΓFPA(A, s) has an equilibrium, then it is an equilibrium with complete

free-riding.

To prove Theorem 3, I make use of the following lemma.

Lemma 1. Fix an equilibrium of ΓFPA(A, s), and let (β1, · · · , βn) be the profile of

team reporting functions in this equilibrium. Then there exists a non-empty subset of

team members, I, such that the following holds for all i ∈ I: there exists an ai > 0

such that βi is identically zero on [0, ai].

Proof. Fix an equilibrium. If it is an equilibrium with complete free-riding, then

|I| = n−1 and ai = 0 for all i ∈ I. Suppose, then, that this is not the case. Consider

a team member, i, with type θi, whose reporting function βi is not identically zero.

Given θ−i, his expected utility from the report x is:

H(A(x, β−i(θ−i))) · [θi − si(x, β−i(θ−i)) · A(x, β−i(θ−i))],
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where H is the cdf of the regular bidder’s equilibrium-bid. Therefore, his expected

utility is:

Ui(x|θi) = E[H(A(x, β−i(θ−i)))·θi]−E[H(A(x, β−i(θ−i)))·si(x, β−i(θ−i))·A(x, β−i(θ−i))].

The derivative of this objective is:

d

dx
Ui(x|θi) = θiE[h(A(x, β−i(θ−i)))A

′]−

− E{h(A(x, β−i(θ−i)))A
′ · si(x, β−i(θ−i)) · A(x, β−i(θ−i))−

−H(A(x, β−i(θ−i)))·s′i(x, β−i(θ−i))·A(x, β−i(θ−i))−H(A(x, β−i(θ−i)))·si(x, β−i(θ−i))A′},

where A′ and s′ is a shorthand for the appropriate partial derivative, and for

brevity I omitted A’s argument. Since the equilibrium is not an equilibrium with

complete free-riding, there exists a j 6= i such that βj is no identically zero. Therefore

d
dx
Ui(0|0) < 0, which implies that βi(θi) = 0 for all small enough θi’s.

Proof of Theorem 3: Assume by contradiction that an equilibrium without com-

plete free riding exists. Fix such an equilibrium, and for each i let ai > 0 be the

constant described in Lemma 1. Let p ≡ Πn
i=1F (ai). Now consider the regular bid-

der; suppose that his type is θ ∈ (0, p). I argue that it is optimal for this type of the

regular bidder to bid zero. To see this, assume by contradiction that his optimal bid

is x > 0.15 Then the expected utility form x is at least as large as the expected utility

from the bid zero:

p(θ − x) +

∫ x

0

(θ − x)dZ ≥ pθ,

where Z is the cdf of the team’s bid. Therefore∫ x

0

(θ − x)dZ ≥ px,

15By assumption (by contradiction) an equilibrium exists, therefore, in particular, the aforemen-

tioned optimal bid exists.
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which is impossible because
∫ x
0

(θ − x)dZ <
∫ x
0

(p− x)dZ <
∫ x
0
pdZ ≤ px. There-

fore both the team members and the regular bidder employ functions that are zero

on [0, a∗], where a∗ ≡ min{p, a1, · · · , an}. However, this cannot be an equilibrium,

because then each participant with type θ ∈ (0, a∗)—be it a team member or the

regular bidder—has an incentive to slightly increase his report/bid.

Given a mechanism (A, s), let ΓAPA(A, s) denote the associated game given that

the auction format is all-pay. The result for all-pay auctions, whose proof is relegated

to Appendix B, is analogous to the one about first-price auctions.

Theorem 4. If ΓAPA(A, s) has an equilibrium, then it is an equilibrium with complete

free-riding.

The following propositions show how Theorems 3 and 4 can be manifested both

in the form of equilibrium existence, and in equilibrium non-existence.

Proposition 1. If F and G are both uniform over [0, 1] and the auction-format is

all-pay, then the separable-proportional model has equilibria with complete free riding.

Proposition 2. If F and G are both uniform over [0, 1] and the auction-format is

first-price, then the separable-proportional model has no equilibrium with complete free

riding. Therefore, it has no equilibrium.

The intuition for the difference between the two propositions is the following.

Under an equilibrium with complete free riding, one team member plays a standard

2-player auction against the regular bidder. The equilibrium of this auction is the

same under any of the considered formats, due to payoff-equivalence. The issue, then,

is whether the n − 1 designated free riders have the incentives not to intervene (by

increasing the team’s bid) even if their type is high. Under the all-pay case, such

incentives are provided by the harsh pay-your-bid rule; under the “softer” first-price

format, they cannot.
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5 The separable-proportional model

In the separable-proportional model, if the auction format is second-price and out-

side competition is uniform over a sufficiently large support, then the equilibrium is

unique. The equilibrium, which is described below, generalizes the weak dominance

equilibrium of the ordinary second-price auction.

Theorem 5. Let the regular bidder’s type be uniform on [0,M ], where M ≥ 2n,

and suppose that the auction-format is second-price. Then the separable-proportional

model has a unique equilibrium, (β1, · · · , βn). The equilibrium is symmetric: β1 =

· · · = βn = βSPA, where the common reporting function, βSPA, is given by:

βSPA(θ) = max{θ − a, 0},

where a is the unique solution to:

a =
n− 1

n+ 1
· (
∫ 1

a

tf(t)dt+ aF (a)). (3)

In equilibrium, all non-abstaining types behave as in the weak dominance equi-

librium of the ordinary second-price auction, in which their valuation is adjusted to

θ−a. Types below a free ride—they refrain from bidding, hoping that their partners’

types be sufficiently high, in which case the auction will be won, but they will not

be asked to contribute. Since a measure the free riders’ segment, one would expect

it to depend positively on n. The following result shows that this is indeed so. In its

statement, an denotes the cutoff corresponding to a team of size n.

Proposition 3. The cutoff an satisfies the following:

1. an is strictly increasing in n.

2. limn→∞an = 1.

3. an ≥ (n−1
n+1

)E(θ) for all n ≥ 1.
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The intuition for 1 is that a greater number of team members implies stronger free-

riding incentives for each member. Part 2 is a little delicate: whereas the assertion

on the limit is mathematically correct, one need not forget that formula (3) applies

when M ≥ 2n; thus, the result should be interpreted as saying that if M is sufficiently

large, then for a large enough n (but smaller than M
2

) the equilibrium is close to a

degenerate equilibrium, in which all types refrain from participation. The intuition

behind part 3 is that if a team member believes that his partners’ types are expected

to be high, then he also believes that they are likely to place high bids and therefore

there is a high probability that the auction will be won even if he does not contribute.

By the same logic, one would expect the cutoff to increase under first-order stochastic

dominance. This is indeed the case; the following result, in the statement of which

a(·) denotes the cutoff as a function of the types distribution, formalizes of this fact.

Proposition 4. If F ∗ first-order stochastically dominates F , then a(F ∗) ≥ a(F ).

Proof. By integration by parts, equation (3) can be written as a = k(1−
∫ 1

a
F (t)dt),

where k ≡ n−1
n+1

. Let then F ∗ and F be as in the proposition’s statement. Assume by

contradiction that a(F ∗) < a(F ). By the above argument, it holds that:

a(F ) = k(1−
∫ 1

a(F )

F (t)dt),

and

a(F ∗) = k(1−
∫ 1

a(F ∗)

F ∗(t)dt).

Equation-subtraction and invoking first-order dominance yields:

a(F )− a(F ∗) = k(

∫ 1

a(F ∗)

F ∗(t)dt−
∫ 1

a(F )

F (t)dt) ≤

≤ k(

∫ 1

a(F ∗)

F (t)dt−
∫ 1

a(F )

F (t)dt) = k

∫ a(F )

a(F ∗)

F (t)dt ≤ k(a(F )− a(F ∗)),

which is impossible because k < 1.
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It is straightforward to see that if one sets n = 1, then Theorem 5’s equilibrium

boils down to the weak dominance equilibrium of the ordinary second-price auction.

Correspondingly, the classical auctions’ equilibrium payoffs are also obtained from

the present payoffs, when one imposes n = 1.

Proposition 5. Consider the separable-proportional model under the second-price

format, and let the regular bidder’s type be uniform on [0,M ], where M ≥ 2n. Then

the equilibrium-expected-utility of a team member with type θ is:

π∗(θ) =
1

2M
· [2θ −max{θ − a, 0}] · [2a+ max{θ − a, 0}].

Similarly to the bid function βSPA, the type distribution F and the team size n

affect equilibrium payoffs only through the cutoff a. Since a = 0 when n = 1, the

above formula generalizes the standard auction’s equilibrium payoffs formula.

It is easy to check that π∗ is increasing in a, and therefore, by part 1 of Proposition

3, it is increasing in n. In particular, the model exhibits no group-size paradox (Olson

1965)—i.e., the free-riding that stems from collective bidding is not severe enough to

create “decreasing returns to scale,” namely to make smaller teams better off relative

to larger ones.

Similarly to the team, the auctioneer also benefits from a large team size.

Proposition 6. Consider the separable-proportional model under the second-price

format, and let the regular bidder’s type be uniform on [0,M ], where M ≥ 2n. Then

the team’s equilibrium expected bid, n× E(βSPA), is increasing in n.

Proof. In Lemma 3 in Appendix B it is shown that E(βSPA) = 2a
c(n−1) . Since a =

n−1
n+1

(
∫ 1

a
tf(t)dt+aF (a)), it follows that n·E(βSPA) = 2na

n−1 = 2n
n+1

(
∫ 1

a
tf(t)dt+aF (a)) =

2n
n+1

(1 −
∫ 1

a
F (t)dt). Monotonicity follows from the fact that the term in the paren-

theses is increasing in a.

I end this section by considering, briefly, first-price auctions. As opposed to the

second-price format, under the first-price format the linear-proportional model has
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no equilibrium, even when all type distributions (including that of the regular bidder)

are uniform.

Proposition 7. Let the regular bidder’s type be uniform on [0,M ], where M ≥ 1,

and suppose that the auction-format is first-price. Then the separable-proportional

model has no equilibrium.

Note that Proposition 7 is a generalization of Proposition 2.

Proof. Suppose, w.l.o.g, that c = 1 and that M > 1 (M = 1 is covered in Proposition

2). By Theorem 3, if there is an equilibrium, then it is one with complete free riding.

Consider then such an equilibrium, and suppose that player 1 is the team’s repre-

sentative who competes against the regular bidder in the associated 2-player auction.

Griesmer et al. (1967) proved that the following inverse bid-functions constitute an

equilibrium:

θ1(b) =
2bM2

M2 − b2(1−M2)
,

and

θn+1(b) =
2bM2

M2 + b2(1−M2)
.16

Therefore, the maximal bid of either player, and, in particular, of player 2 of type

θ2 = 1 is b̄ =
√
M

1+M
. Thus, by “jumping in” and sending the report b̄ this player can

secure the payoff 1 − b̄ = 1+M−
√
M

1+M
. Since in the 2-player auction the weaker player

(the team’s representative) wins with probability no greater than half, the payoff of

type θ2 = 1 in the putative equilibrium is bounded above by 1
2
. Therefore, it is

enough to show that 1+M−
√
M

1+M
> 1

2
, or 1 +M > 2

√
M , or 1 + 2M +M2 > 4M . This

is equivalent (M − 1)2 > 0, which clearly holds.

16Equilibrium uniqueness follows, for example, from Lebrun (2006). A comprehensive analysis of

the uniform case can be found in Kaplan and Zamir (2012).
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6 Conclusion

I have considered an auction in which one of the bidders is a multi-member team.

Under the second-price format, a symmetric equilibrium exists, but team bidding

leads to inefficiency, because of within-team free riding. For a specific version of the

model, the separable-proportional one, the equilibrium is unique, and is a generaliza-

tion of the weak dominance equilibrium. A sharp contrast to classical auction theory

is encountered when replacing the auction-format to first-price or all-pay. Under any

of these two formats, the only possible equilibria are extremely asymmetric ones,

specifically equilibria with complete free riding. Such equilibria may exist or fail to

exist, depending on the environment’s characteristics—the auction format, the type

distributions, and the team’s mechanism.

Whereas the main motivation for the paper is the prevalent phenomenon of team

bidding, the paper can also be viewed from a more theoretical angle, as a robustness

check for classical auction theory, as this theory corresponds to the imposition n = 1

in the present framework. From this perspective, the paper delivers both positive and

negative results. On the negative side, the equivalence between first-, second-price,

and all-pay auctions is not robust, since it breaks down when n > 1; on the positive

side, the weak dominance equilibrium of the second-price auction is robust, in the

sense that, when outside competition is uniform, the separable-proportional model’s

equilibrium generalizes it to the n-person-team case.
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Appendix A: Remarks about modeling

The definition of a “mechanism”

Throughout the paper, a mechanism is defined to be a pair, (A, s), of bid aggregation

and cost sharing rules, and the players’ reports to the mechanism are bids (real

numbers). Whereas the word “natural” should be used with caution in the contexts

of theoretical economic models, I believe that the above form is the natural way to

model the phenomenon at hand. The reason outside competition, namely the presence

of the regular bidder in the model.

First of all, the regular bidder is an explicitly-modeled entity that bids in the

auction, and it is with respect to this entity that the team’s operation needs to be

described. It seems suitable to have the team members’ description be given in the

same language as the one describing the regular bidders; that is, all n+ 1 individuals

do the same thing—they all choose bids.

Secondly, the seemingly more conventional approach of setting up a revelation

mechanism, to which the players report their types, is not suitable here. The reason

is that such a mechanism has the players reported types as input and, as output,

it produces allocation probabilities and expected payments. In a typical mechanism

design problem, these probabilities and payments can be chosen independently of

one another, but here they cannot—because of the result bidder. To take a simple

example, it is impossible to allocate the item to the team with certainty, and at the

same time charge zero payments from its members.

In general, the description of the feasible set of probabilities-and-transfers may

be complicated. In the simplest case, where the format is second-price, the set of

feasible probabilities is Q ≡ {G(b) : b ≥ 0} and the set of pairs of feasible probability-

and-transfer is {(q,E(θn+1 : θn+1 ≤ G−1(q))) : q ∈ Q}. If the auction format is not

second-price, and hence the regular bidder need not report truthfully, it is not clear

what the counterparts of the above sets are.
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Finally, under the revelation game approach one needs to to specify the incentive

constraints. These constraints depend on the way the burden of payments is split

within the team, the description of which is missing from the description of the

revelation mechanism, as given in the previous paragraphs. The explicit description

of (A, s) takes care of all these shortcomings.

The functional form in the separable-proportional model

In the general formulation of the separable-proportional model, the bid aggregation

rule is A(b1, · · · , bn) =
∑n

i=1 ψ(bi) and player i’s share of the payment (when not all

reports are zero) is ψ(bi)∑n
i=1 ψ(bi)

, where ψ is some strictly increasing function that satisfies

ψ(0) = 0. There is no loss of generality in assuming that ψ is the identity, namely

that ψ(x) ≡ x.

To see this, let M be a version of the model when the above function is some ψ,

and let M∗ be the same model, except that ψ is the identity. I will show that every

equilibrium of M , (β1, · · · , βn), can be mapped into an equilibrium of M∗ in which,

conditional on every type-realization, the team’s behavior is the same as in M ; and,

similarly, one can may every equilibrium of M∗ to an equivalent on in M .

Let then (β1, · · · , βn) be an equilibrium of M . For each i, define γi ≡ ψ ◦ βi.

I argue that (γ1, · · · , γn) is an equilibrium of M . To see this, assume by contra-

diction that, given the behavior of the others fixed at γ−i, player i of some type θi

has a profitable deviation γi(θi) 7→ x. Given θ−i, the deviation changes the team’s

bid by δi = x − γi(θi) = x − ψ(βi); and it changes player i’s payment-share by

δi
δi+

∑
j 6=i

∑
γi(θi)

= δi
δi+

∑
j 6=i

∑
ψ(βi(θi))

= x−ψ(βi)
x−ψ(βi)+

∑
j 6=i

∑
ψ(βi(θi))

. But this means that the

deviation βi(θi) 7→ ψ−1(x) is profitable in M—in contradiction to equilibrium. In the

same way, one can map equilibria of M∗ to equilibria of M .

Therefore, all specifications of ψ-functions are equivalent, because all are equiva-

lent to the case where ψ is the identity. Let then the bid aggregation and cost sharing

rules be:
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• A(b1, · · · , bn) =
∑n

i=1 bi; and

• max{b1, · · · , bn} > 0 ⇒ si(b1, · · · , bn) = bi∑n
j=1 bj)

and s1(0, · · · , 0) = · · · =

sn(0, · · · , 0) = 1
n
.

Now, let c > 0. It is easy to see that (β1, · · · , βn) is an equilibrium of the above

game if and only if (β̃1, · · · , β̃n) of the game in which A is replaced by c · A, where

β̃i ≡ 1
c
· βi for all i = 1, · · · , n.

The role of outside competition in the second-price separable-

proportional model

The requirement that M be sufficiently large is imposed in Theorem 5 in order to

guarantee that each bid-increase by a team member increases the probability of win-

ning, no matter the partners’ types. When that is not the case, the objective faced

by a team member changes significantly relative to the large-M case. To illustrate,

consider n = 2 and suppose that M > 0 is small enough, so that if player 1 reports x

and θ2 exceeds some value—call this value θ(x)—the team wins for sure. Then, the

objective faced by type θ1 of player 1, given that player 2 follows some monotonic

reporting function β̃, is to maximize the following expression over x:

1

M

∫ θ(x)

0

(x+β̃(t))·(θ1−
x

x+ β̃(t)
· x+ β̃(t)

2
)f(t)dt+

∫ 1

θ(x)

[θ1−
xM

2(x+ β̃(t))
]f(t)dt. (4)

The first-order condition associated with this objective is a differential equation

that depends on F non-trivially, and for which I have no closed-form solution. Similar

to the equilibrium bid function βSPA, the function β̃ is identically zero on an interval

that starts at the origin and ends at some cutoff, but to the right of this cutoff β̃ is

non-linear. The function βSPA stems from a more tractable optimization because the

largeness of M implies that θ(x) ≥ 1 for every x a player may report in equilibrium,

hence the second term in (4) disappears.
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The requirement M ≥ 2n is sufficient to guarantee that, no matter how the

equilibrium looks like, it necessarily has the property that any bid-increase by a

team member increases the winning probability. Therefore, M ≥ 2n is sufficient

for equilibrium uniqueness. However, for the equilibrium from Theorem 4 to exit

(but without making a claim for uniqueness), it is sufficient and necessary that

n(1 − a) ≤ M , where a is given by (3). This is because a sufficient and necessary

condition for the existence of this equilibrium is that A(βSPA(1), · · · , βSPA(1)) ≤M ,

and A(βSPA(1), · · · , βSPA(1)) = n(1− a).

For the parameter-range M ∈ ((1 − a)n, 2n), I believe that the equilibrium need

not be unique. I end the section with a sketch (without a proof) why I believe this is

so. Consider a team with N = n + 1 members, and suppose that M = n(1− a) + ε,

where ε > 0 is arbitrarily small and a = an is the cutoff from the n-member version

of Theorem 5’s equilibrium. Now, consider the profile under which team members

1 through n play the n-version of Theorem 5’s equilibrium, and member N reports

zero independent of his valuation. Clearly, members 1 through n are playing best-

responses. As for N , his payoff equals θN times the probability of winning. I argue

that if n and E(θ) are large, then this probability is approximately one. One can show

that the team’s winning probability is the probability is 2na
(n−1)M .17 By assumption on

M , 2na
(n−1)M ∼

2na
(n−1)n(1−a) = 2a

(n−1)(1−a) ≡ g(a). This expression is increasing in a, and

by part 3 of Proposition 3, if E(θ) ∼ 1 then a is bounded from below by a number

which is approximately n−1
n+1

. Plugging a = n−1
n+1

in the expression for the approximated

probability yields g(n−1
n+1

) = 1.

17The calculation appears in an earlier version of this paper. The details are available from the

author upon request.
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Appendix B: Proofs

Proof of Proposition 1 : Let team member 1 follow the function β(θ1) =
θ21
2

, let the

regular bidder follow β(θn+1) =
θ2n+1

2
, and let all other team member report/bid zero

independent of their type. In other words, team member 1 is the team’s representa-

tive, and he plays, against the regular bidder, the equilibrium of the 2-bidder all-pay

IPV auction with uniform types;18 all other team member abstain. It remains to

show that no member i > 1 has an incentive to submit a non-zero report.

Consider such a member. When his type is θ and he bids x > 0, the probability

that the team wins, conditional on θ1 = t, is:

P (x, t) ≡ Pr(x+
t2

2
≥
θ2n+1

2
) = Pr(θn+1 ≤

√
2x+ t2) =

√
2x+ t2.

The expected winning probability is therefore P (x) ≡
∫ 1

0
P (x, t)dt =

∫ 1

0

√
2x+ t2dt.

Player i’s expected utility from (the deviation to the report) x is:

V (θ1, x) ≡ P (x) · θ1 − x.

To establish the equilibrium, it suffices to show that dV (θ1,x)
dx

< 0 at all x > 0.

For this purpose, it is enough to show that P ′(x) ≤ 1, which is indeed the case:

P ′(x) =
√

2x+ 1−
√

2x ≤ 1 is equivalent to
√

2x+ 1 ≤ 1+
√

2x, which clearly holds.

Proof of Proposition 2 : Consider a designated free rider whose type is θi = 1. By

sending a report of 1
2

in the first-price auction, player i obtains the utility 1 − 1
2
·∫ 1

0
1

1+t
dt, which exceeds what he is getting under complete free riding, namely 1

2
.

Lemma 2. Fix an equilibrium of ΓFPA(A, s), and let (β1, · · · , βn) be the profile of

team reporting functions in this equilibrium. Then for each i there exists an ai > 0

such that βi is identically zero on [0, ai].

18See, e.g., Krishna 2002, p.31-32.
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Proof. Fix an equilibrium as above. Following the notation of Lemma 1’s proof, the

objective that team member i maximizes is:

E[H(A(x, β−i(θ−i))) · θi − si(x, β−i(θ−i)) · A(x, β−i(θ−i))].

The derivative w.r.t x is E[ d
dx
H(A(x, β−i(θ−i)))·θi]−E[s′iA+siA

′], which is negative

for small enough θi’s.

Proof of Theorem 4: Assume by contradiction that a symmetric equilibrium exists.

Fix such an equilibrium, and let ai > 0 be the constant described in Lemma 1. Let

p ≡ Πn
i=1F (ai). Now consider the regular bidder; suppose that his type is θ ∈ (0, p). I

argue that it is optimal for this type of the regular bidder to submit the bid zero. To

see this, assume by contradiction that his optimal bid is x > 0. Then the following

holds for every ε ∈ (0, x):

pθ +

∫ x

0

θdZ − x ≥ pθ +

∫ x−ε

0

θdZ − (x− ε),

where Z is the cdf of the team’s bid. Rearranging this inequality yields
∫ x
x−ε θdZ ≥ ε,

which is impossible. Therefore both the team members and the regular bidder em-

ploy functions that are zero on an interval of low enough types, which, as explained

in Theorem 3’s proof, is impossible.

Proof of Proposition 3 :

1. Equation (3) can be written as φ ≡
∫ 1

a
tf(t)dt − a − ( 2a

n−1) + aF (a) = 0.

Let us view n as a continuous, rather than discrete, variable. By the implicit func-

tion theorem, he sign of the derivative ∂a
∂n

is the same as that of −[∂φ
∂n

]/[∂φ
∂a

]. Since

∂φ
∂n

= −2a( 1
n−1)′ > 0 and ∂φ

∂a
= −1− 2

n−1 + F (a) < 0, the result follows.

2. Let a∗ ≡ limn→∞an. Equation (3) implies a∗(1 − F (a∗)) =
∫ 1

a∗
tf(t)dt, or

a∗ = E(θ : θ ≥ a∗). Therefore a∗ = 1.
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3. This is clear for n = 1, so suppose n ≥ 2. It follows from (3) that:

a · (n+ 1

n− 1
) =

∫ 1

a

tf(t)dt+ aF (a) =

=

∫ 1

a

tf(t)dt+ a

∫ a

0

f(t)dt >

∫ 1

a

tf(t)dt+

∫ a

0

tf(t)dt = E(θ).

Proof of Proposition 5 : Let b denote the team’s collective bid. I will calculate the

payoff for player i conditional on a given b, and then integrate over b.

The above mentioned payoff is Pr(u ≤ b) ·(θ− cβSPA(θi)
b
· b
2
), where u is the uniform

random variable on [0,M ]. This expression is equal to b
M
·(θ− max{θi−a,0}

2
). Therefore,

the expected payoff is:

1

M
· (θ − max{θ − a, 0}

2
) ·

∫ M

0

b · Pr(cβSPA(θi) + c
∑
j 6=i

βSPA(θj) = b)db =

=
1

M
· (θi −

max{θi − a, 0}
2

) · {max{θi − a, 0}+ E[c(n− 1)β(θ)]} =

=
1

2M
· [2θi −max{θi − a, 0}] · [max{θi − a, 0}+ 2a].

Lemma 3. Let (β1, · · · , βn) be an equilibrium of the linear-proportional model. Then

each βi is weakly increasing.

Proof. Let p (resp. p′) and t (resp. t′) be the wining probability and expected

payment of types θi (resp. θ′i) when they send their equilibrium bids, where θi > θ′i.

If bi(θ
′
i) > bi(θi), then p′ > p and t′ > t. Incentive compatibility implies:

pθi − t ≥ p′θi − t′,

and

p′θ′i − t′ ≥ pθ′i − t.
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Rearranging these inequalities yields t′ − t ≥ θi(p
′ − p) and t − t′ ≥ θ′i(p − p′).

Summing the rearranged inequalities yields 0 ≥ (p′−p)·(θi−θ′i) > 0—a contradiction.

Lemma 4. Suppose that M ≥ 2n. If (β1, · · · , βn) is an equilibrium of the separable-

proportional model, then β1 = · · · = βn = β, where β satisfies (1)− (3).

Proof. Let (β1, · · · , βn) be an equilibrium. Let I be the set of players who follow

a non-null bidding strategy. That is, I ≡ {i : βi(θi) > 0 for some θi}. Obviously,

I 6= ∅. By Lemma 2, for each i ∈ I the function βi is positive-valued on (ai, 1], where

ai ≡ inf{θi : βi(θi) ≥ 0}.

I argue that |I| > 1. To see this, assume by contradiction that I is a singleton, and,

w.l.o.g, that 1 /∈ I. When type θ1 reports r, his payoff, conditional on (θ2, · · · , θn) =

(t2, · · · , tn), is19:

(r +
∑

i∈I,i 6=1 βi(ti))

M
· (θ1 −

r

r +
∑

i∈I,i 6=1 βi(ti)
·

(r +
∑

i∈I,i 6=1 βi(ti))

2
) =

=
1

M
· [(r +

∑
i∈I,i 6=1

βi(ti))θ1 −
r2

2
−
r
∑

i 6=1 βi(ti)

2
].

Clearly, the objective is independent of M , so to ease the notation I assume, in

what follows, that M = 1. Therefore, when type θ1 reports r, his expected payoff is:

(r +
∑

i∈I,i 6=1

E(βi))θ1 −
r2

2
−
r
∑

i∈I,i 6=1 E(βi)

2
. (5)

The derivative of this expression w.r.t r is:

θ1 − r −
∑

i∈I,i 6=1 E(βi)

2
. (6)

If I = {j∗} for some j∗ 6= 1, then this j∗ plays an ordinary SPA against the regular

bidder, and therefore sends the report θj∗ . Therefore, at θ1 = 1 and r = 0 the above

19This payoff formula applies regardless of the cardinality of I.
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derivative is equal to 1− E(θ)
2
> 0. Therefore, |I| > 0.

Suppose that 1 ∈ I. For θ1 > a1, the first-order condition is:

θ1 − r −
∑

i∈I,i 6=1 E(βi)

2
= 0.

The condition is satisfied at r = β1(θ1), hence:

β1(θ1) = θ1 −
1

2
·
∑

i∈I,i 6=1

E(βi). (7)

The analogous formula holds for any other i ∈ I. Therefore, the following holds

for each i ∈ I:

βi(θi) =

 0 if θi < ai

θ1 − 1
2
·
∑

j∈I,j 6=i E(βj) if θ1 > a1

Consider type ai. This type is indifferent between bidding zero and bidding βi(ai).

This type’s expected payoff from bidding zero is ai times the probability of winning:

ai·
∑

j∈I,j 6=i E(βj). The expected utility from bidding βi(ai) is (βi(ai)+
∑

j∈I,j 6=i E(βj))·

(ai − βi(ai)
2

). The indifference condition is:

ai ·
∑

j∈I,j 6=i

E(βj) = (βi(ai) +
∑

j∈I,j 6=i

E(βj)) · (ai −
βi(ai)

2
),

or:

βi(ai)

2
· (βi(ai) +

∑
j∈I,j 6=i

E(βj)) = aiβi(ai).

I argue that βi(ai) = 0. To see this, note that if βi(ai) > 0 then the above equation

implies ai − βi(ai)
2

=
∑
j∈I,j 6=i E(βj)

2
, which implies βi(ai) = 2βi(ai), hence βi(ai) = 0.

It therefore follows that the following holds for all i ∈ I:

βi(θi) =

 0 if θi < ai

θi − ai if θi ≥ ai,
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where ai = 1
2
·
∑

j∈I,j 6=i E(βj).

Note that E(βi) =
∫ 1

ai
(t− ai)f(t)dt =

∫ 1

ai
tf(t)dt− ai(1− F (ai)). Therefore:

∑
j∈I,j 6=1

E(βj) =
∑

j∈I,j 6=1

{
∫ 1

aj

tf(t)dt− aj(1− F (aj))} = 2a1.

Since |I| > 1, assume, w.l.o.g, that 2 ∈ I. Then:

∑
j∈I,j 6=2

{
∫ 1

aj

tf(t)dt− aj(1− F (aj))} = 2a2.

I argue that a1 = a2. To see this, assume by contradiction, w.l.o.g, that a1 > a2.

Therefore, the above equations imply:

∫ a1

a2

tf(t)dt− a2(1− F (a2)) + a1(1− F (a1)) = 2(a1 − a2). (8)

At a1 = a2 both sides are equal to zero; the derivative of the LHS w.r.t. a1 is

1 − F (a1) ≤ 1 and that of the RHS is 2, hence a1 = a2 is the unique solution, in

contradiction to a1 > a2. It follows that there exists an a such that ai = a for all

i ∈ I, and therefore all bid functions coincide; the equilibrium bid function, β, is

given by:

β(θ) =

 0 if θ < a

θ − a if θ ≥ a,

where a = (n−1)
2
· E(β), or E(β) = 2a

(n−1) . This condition can be written as:

E(β) =

∫ 1

a

(t− a)f(t)dt =

∫ 1

a

tf(t)dt− a(1− F (a)) =
2a

(n− 1)
,

or:

∫ 1

a

tf(t)dt = a · (n+ 1

n− 1
)− aF (a).
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Note that a = 0 the LHS exceeds the RHS, and at a = 1 the converse holds;

therefore, a solution, a, exists. To see that it is unique, assume by contradiction that

there exists a b 6= a such that:

∫ 1

b

tf(t)dt = b · (n+ 1

n− 1
)− bF (b).

Suppose, w.l.o.g, that b > a. The above equations imply
∫ b
a
tf(t)dt = (a − b) ·

(n+1
n−1) − aF (a) + bF (b). At b = a both sides are equal to zero, the derivative of the

LHS w.r.t b is bf(b) and that of the RHS is −(n+1
n−1) +F (b) + bf(b) < bf(b), hence the

solution is unique.

Finally, it remains to show that |I| = n. To see this, assume by contradiction that

|I| = k < n and let i be such that i /∈ I. For θi = 1 and r = 0, the (counterpart of

the) derivative (6) is 1− kE(β)
2

= 1−
k 2a
(n−1)

2
= 1−

k 2a
(n−1)

2
≥ 1−

k 2a
(n−1)

2
≥ 1− a > 0.

Proof of Theorem 5: By Lemma 4, if (β1, · · · , βn) is an equilibrium, then βi = βSPA

for all i and (1) and (3) hold. Conversely, consider β such that (1) and (3) hold.

The arguments from Lemma 2’s proof establish that this is an equilibrium; for types

θ > x the FOC is satisfied at r = βSPA(θ) and for types θ < x not participating is

optimal, because the derivative of their objective function w.r.t. r is negative.
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