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Abstract
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interest rate survey expectations. We therefore propose a joint term structure model for
observed interest rates and interest rate surveys that allows for separate objective and
subjective probability measures. Our results contradict the previous term structure
literature and provide evidence that interest rate surveys do not help identify observed
interest rate dynamics. Yet, despite this evidence against the rational expectation
hypothesis, we find that surveys provide valuable information as a priced risk factor
that is not spanned by observed interest rates.
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1 Introduction

Central banks, government and market participants closely monitor long term interest rates

and routinely use term structure models to separate the information about investors’ ex-

pectations of the economy from the one about the risks they perceive. A well-known draw-

back of term structure models is that they suffer from identification issues (see Ang and

Piazzesi 2003, Hamilton and Wu 2012), and minor changes in the estimated coefficients can

lead to a misestimation of the risk premium and a misperception of the market’s outlook.

One way to address these identification problems is to use survey expectations on short-term

rates to aid in the identification of the physical parameters (Kim and Wright 2005, Kim and

Orphanides 2012, d’Amico, Kim and Wei 2018), to proxy for expectations (Crump, Eusepi

and Moench 2018) or to proxy for state variables (Chun 2011). These approaches rely on

the rational expectation hypothesis, i.e. the assumption that the probability measure used

by economic agents is the same as the statistical probability measure.

The empirical evidence on the rational expectation hypothesis, however, is rather weak,

as there is increasing evidence of large and persistent errors in investors’ expectations about

the short-term interest rate (Cieslak 2018, Farmer, Nakamura and Steinsson 2021). This

indicates a departure from rational expectations, for example because agents overestimate

the persistence of the pricing factors (Piazzesi, Salomao and Schneider 2015) or are learning

about the real-world parameters (Farmer et al. 2021).

Still, there can be a discrepancy between survey expectations and forecasts implied by

observed long-term interest rates even under the rational expectation hypothesis. This can

happen when observed interest rates do not contain all the information necessary to identify

the drivers of interest rate expectations due to the presence of hidden factors. A hidden (or

unspanned) factor arises when a state variable has offsetting effects on the expectation and
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the risk premium components. As a consequence, it is not possible to extrapolate it from

observed interest rates, but any variable that depends separately on these two components

(or weights them differently) will reveal such unspanned factors (see Duffee 2011).

In this paper we propose using survey expectations to directly extrapolate the infor-

mation about any unspanned factors while accounting for possible deviations from rational

expectations. This is motivated by three stylised facts about interest rate surveys that we

document. First, yield forecasts implied by the term structure of observed interest rates are

at odds with survey expectations. Second, interest rate surveys, apart from yield curve fac-

tors, are spanned by an additional, survey-specific factor. Third, the survey-specific factor

Granger-causes the yield curve factors and drives the term premium.

To account for these stylised facts, we develop a joint term structure model for observed

zero-coupon yields and survey expectations that allows for separate real-world and survey

dynamics, and that also includes an additional state variable that is unspanned by observed

interest rates but that drives surveys. In addition, we explicitly enforce a zero-lower bound

on observed interest rates and interest rate surveys. We estimate the joint shadow-rate

model for observed zero-coupon yields and survey expectations by maximum likelihood on

quarterly US interest rate data from 1983:Q1 to 2020:Q3 and Blue Chip Financial Forecasts.

We then use our maximally-flexible model to test the rational expectation hypothesis and

for the presence of a priced survey factor unspanned by observed rates.

Contrary to earlier approaches postulated in the term structure literature, we find that

surveys do not help to identify the physical dynamics parameters. Under the full information

rational expectations (FIRE) hypothesis, agents’ subjective probability measure coincides

with the real-world measure, so that rational agents’ forecast errors should not be biased

or persistent.1 However in a formal test we overwhelmingly reject the FIRE hypothesis.

1This definition of rationality is different from the one used by Adam and Marcet (2011) and Singleton
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In particular, we find that imposing FIRE implies that the factor dynamics collapse to

subjective expectations, but then they fail to forecast interest rates. On the other hand, when

we allow for different objective and subjective dynamics, the estimated objective dynamics

are very similar to those obtained from a yields-only model, but in this case they cannot be

used to determine the risk premium demanded by investors.

Our rejection of the rational expectation hypothesis using survey expectations is in line

with previous results in macroeconomic (see, among others, Mankiw, Reis and Wolfers 2003,

Coibion and Gorodnichenko 2015) and finance (see Greenwood and Shleifer 2014, Adam,

Marcet and Beutel 2017, De La O and Myers 2021). An important implication is that the

perceived risk premium of market agents is not measured by the objective risk premium (de-

termined by the real-world dynamics of observed interest rates) but instead by the subjective

risk premium (determined by the dynamics of survey expectations, see Nagel and Xu 2022).

A second important result from our analysis is that surveys contain important information

as they are driven by a priced risk factor that is not spanned by observed interest rates.

We show that accounting for this unspanned survey-specific factor is important for a more

reliable measurement of interest rate forecasts and of the risk premium. It is usually difficult

to determine a priori which variables are good candidates for unspanned risk factors. The

literature has focused on macroeconomic variables (see Joslin, Priebsch and Singleton 2014,

Coroneo, Giannone and Modugno 2016), but as noted in Duffee (2011), macroeconomic

variables explain only a small fraction of the variation in the hidden factor. In this paper,

instead, we follow the intuition in Duffee (2011) that “the most obvious choice is survey data

on interest rate forecasts.” Indeed, our results indicate that while surveys cannot be used to

aid the identification of the physical parameters, they contain priced information that helps

(2021), in which the agent does not know the data generating process but forms rational beliefs.
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predict observed interest rates.2

The paper is organized as follows. In Section 2 we describe the data and present the

three stylized facts that show the deficiency of standard term structure models. In Section 3

we present the general modelling framework and the shadow rate term structure model. In

Section 4 we describe the estimation approach. In Section 5 we report the empirical results,

and, finally, in Section 6 we conclude.

2 Data and preliminary evidence

2.1 Data

We use quarterly observations for zero-coupon yields and surveys for the period 1983:Q1 to

2020:Q3. For interest rates, we use end-of-quarter rates for maturities 3 and 6 months, 1,

2, 5, 7 and 10 years. Data for 3 and 6-month maturities are from the FRED dataset, while

data for 1, 2, 5, 7 and 10-year maturities are from the Federal Reserve Board website.

For surveys we use Blue Chips Financial Forecasts (BCFF) consensus (mean) forecasts

at 1 through 5 quarters ahead, which is the longest forecast horizon available throughout

the whole data sample. Although the BCFF forecasts are published at the beginning of a

month, they are collected in the last few days of the preceding month. Thus, to align the

timing of the conditioning information set of the survey forecasts with that in spot interest

rates, we assume that the surveys are observed as soon as they are collected (i.e. at the end

of the month), so that we use BCFF surveys published in the first few days of April, July,

October and January as observed at the end of preceding months: March, June, September

and December, respectively.

2In a closely related paper Piazzesi et al. (2015) also use survey data on interest rate forecasts to construct
subjective bond risk premia, but they do not consider unspanned information in surveys, and they do not
formally test for the equality between subjective and objective dynamics.
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We use forecasts for all available rates, which are generally different at each point in

time. The 3-month rate is available in surveys throughout the entire sample. With the

exception of the first three quarters of 1983, when surveys also include the 10-year rate, up

to 1987:Q4, only three survey rates are available (3 months, 3 years and 30 years). From

1988:Q1 the surveys also always include the 6-month, 1-year and 10-year rates. For almost

the whole sample period the longest available rate is the 30-year bond, with the exception

of the period 2002:Q2 to 2006:Q1, during which the longest rates are for 10-year (2002:Q2-

2004:Q2) and 20-year bonds (2004:Q3-2006:Q1).

Since the surveys refer to T-bill discount rates and par yields, we extract zero-coupon

rates using the Nelson and Siegel (1987) and Svensson (1994) model.3 In particular, we

parameterize the zero-coupon yield curve and use it to compute the implied T-bill discount

rates and par yields, which we then fit to the survey data. To prevent overfitting, in the period

1983:Q1 to 1987:Q4, we fit the simple 4-parameter Nelson and Siegel (1987) model, where

the parameters are the three shape parameters and the decay parameter. From 1988:Q1 the

BCFF surveys include forecasts for between 6 and 8 different maturities, which allows us

to fit the more flexible Svensson (1994) model that includes four shape parameters and two

decay parameters. From this procedure, throughout this paper, we use 3-month, 1, 5 and

10-year zero-coupon survey yields.

Finally, we note that the BCFF forecasts are for average rates over calendar quarters. To

align the forecasts with spot interest rates, following the standard approach in the literature

(e.g. Kim and Orphanides 2012, Buraschi, Piatti and Whelan 2022, Nagel and Xu 2022), we

assume that the survey forecasts are for mid-quarter rates, and interpolate linearly between

quarters. We use forecasts for up to 5-quarters ahead, which after interpolation gives us

3Although T-bills are quoted on the actual-to-360 days basis, for simplicity we assume that each calendar
quarter has 90 days. For a textbook treatment of quoting conventions and the Nelson and Siegel (1987)
model, see Veronesi (2010).
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quarterly forecasts up to 1 year ahead. Thus, in the empirical analysis we use 16 interest

rate survey forecasts: 4 maturities (0.25, 1, 5 and 10 years) with 4 forecast horizons (from

one to four quarters ahead) each.

2.2 Preliminary evidence

In this section, we document three empirical findings that show the deficiency of standard

yields-only term structure models. First, as explained in the introduction, the standard

approach in term structure modelling is to assume that the probability measure used by

economic agents is the same as the statistical probability measure.4 It follows that the

model-implied term premium is interpreted as the risk premium that investors require for

holding long-maturity bonds. In this conceptual framework, investors’ expectations are

filtered out from the physical dynamics of interest rates. Then, a valid question is how the

expectations implied by the model are related to market expectations.

To address this question in Figure 1 we plot the median forecasts of the Blue Chip Finan-

cial Forecasts for the 1−year yield over the period 1983:Q1 to 2020:Q3 for horizons 1 through

4 quarters ahead.5 In the same figure we plot the forecasts implied by a term structure model

estimated using only yields (in the rest of the paper we refer to this specification as Case

0). Since a large part of the sample size is the period of the zero lower bound, we use a

shadow rate model that prohibits negative interest rates (for more details please see Section

3.3). Visual inspection reveals that forecasts from the yields-only model seem to have little

relation to market-based expectations. Even more striking is the pattern that indicates a

different direction of predicted interest rates. Thus, our first fact is that subjective dynamics

4In the literature, the statistical measure is also called the real-world measure, the physical measure or
the objective measure. In this paper, we use these terms interchangeably.

5Figures for other maturities look fundamentally the same and they are available from the authors upon
request.
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Figure 1. Market expectations measured by surveys (black-dotted lines) and expectations
extracted from a yields-only term structure model of interest rates (red-dotted lines), along
with the observed 1-year yield (bold black line).

are different from real-world dynamics.

Fact 1 The real-world probability distribution that drives observed interest rates is different

from the subjective probability distribution that drives interest rate survey expectations.

Our second fact is a finding that the space spanned by interest surveys is different from the

space spanned by spot interest rates. In Table 1 we report the principal component analysis

for yields and surveys. We report both the percentage of the total variance explained by the

principal components and, to get some economic intuition of the magnitudes, also the (time-

series and cross-sectional) average RMSE of the remaining fitting errors (in basis points).
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Yields: fit with first k Y PC
k 1 2 3 4 5
Variance explained 97.30 99.88 99.98 100.00 100.00
Average RMSE 45.45 9.33 3.49 1.12 0.24

Surveys: fit with first k SPC
k 1 2 3 4 5
Variance explained 97.15 99.81 99.90 99.95 99.98
Average RMSE 44.95 11.68 8.40 5.90 3.94

Surveys: fit with 3 Y PC and k SPC⊥
k 0 1 2 3 4
Variance explained 97.97 99.63 99.85 99.93 99.96
Average RMSE 39.35 16.48 10.15 7.26 5.08

Table 1. Principal component analysis
Cumulative proportions of variance (in percentage points) and average RMSEs (in basis points) of observed
yields (top panel) and surveys (mid and bottom panels) explained by the principal components extracted
from yields (YCY), surveys (SPC), or the residuals of the projection of surveys in the first three yields
principal components (SPC⊥).

The results indicate that three principal components extracted from observed yields (Y PC)

explain virtually all variation in yields, and also that three principal components extracted

from surveys (SPC) explain 99.90% of the total variation in surveys. The resulting fit is

very tight, slightly more than 3 basis points for yields and 8 basis points for surveys. This

seems to indicate that three state variables extracted from interest rates drive the dynamics

of interest rates surveys as well. More precisely, if there are no arbitrage opportunities in the

bond market and there are no unspanned risk factors that drive the interest rates dynamics

under the subjective probability measures, then the first three principal components of yields

should be sufficient to span the whole survey space.6

The bottom panel of Table 1, however, contradicts this conjecture, since the space

6If the pricing model is nonlinear, as in our application, this statement is valid only up to a first-order
approximation.

9



spanned by these two sets of variables is different. Here we report the percentage of the

total variance of surveys explained by the first 3 principal components of yields plus up

to 4 first principal components of the residuals from the regression of surveys on the first

three Y PCs, denoted SPC⊥. We can see that the 3 yield principal components explain only

97.97% of the surveys variance and leave measurement errors with an average RMSE of

about 39 basis points. A survey-specifc factor that is (by construction) orthogonal to the

principal components of observed yields increases this percentage to 99.63%, an increase by

almost 1.7 percentage points, which reduces the average RMSE of the fitting errors to 16

basis points. Adding more principal components explains little additional survey variation,

suggesting that the remaining variation in surveys is effectively just idiosyncratic noise.

This provides evidence that there is systematic comovement in surveys that can be cap-

tured by a factor unspanned by bond prices. As such, in the following analysis we focus on

the first principal component that captures the common variation specific to interest rate

surveys, which we dub the s−factor.7

Fact 2 Interest rates surveys, apart from yield curve factors, are spanned by an additional,

survey-specific factor. In other words, there is a factor unspanned by yields that drives the

subjective dynamics of interest rates.

Finally, we examine the role the survey-specific factor plays in factor dynamics under

the real-world probability measure. To this end, we estimate a V AR(1) with the first three

principal components extracted from yields (Y PC) and the s−factor (SPC⊥). In the top

panel of Table 2, we report the coefficient estimates, which indicate that the survey factor

Granger-causes the first Y PC at the 1% significance level and the third Y PC at the 5%

7We also check the possibility that surveys are spanned by higher principal components of yields. The
analysis of survey residuals from the regression on the 5 first Y PCs is virtually identical to that reported in
the bottom panel of Table 1 - results available upon request.
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V AR(1)
Y PC1,t−1 Y PC2,t−1 Y PC3,t−1 SPC⊥,t−1

Y PC1,t 0.9835∗∗∗ 0.0062 −0.0216∗∗ 0.1204∗∗∗

Y PC2,t −0.0026 0.9238∗∗∗ 0.1250∗∗∗ −0.0396
Y PC3,t 0.0699∗ −0.0218 0.6552∗∗∗ −0.1515∗∗

SPC⊥,t −0.0086 0.0864 0.0078 0.2319∗∗∗

Excess returns
Y PC1,t−1 Y PC2,t−1 Y PC3,t−1 SPC⊥,t−1

xret1,t −1.9777∗∗∗ 0.4302∗∗∗ −0.0594∗∗ −0.2456∗∗∗

xret2,t −1.9106∗∗∗ 0.5118∗∗∗ −0.1041 −0.4261∗∗∗

xret5,t −1.8587∗∗∗ 0.7612∗∗∗ −0.2573 −0.7565∗∗∗

xret7,t −1.8501∗∗∗ 0.9646∗∗∗ −0.3107 −0.8931∗∗∗

xret10,t −1.8332∗∗∗ 1.1786∗∗∗ −0.3558 −1.0314∗∗∗

Table 2. Estimates of VAR(1) coefficients (top panel) and coefficients of predictive regres-
sion of excess returns on yield curve factors and the survey factor (bottom panel). ∗∗∗, ∗∗

and ∗ denote significance at the 1%, 5% and 10% level.

level. In the bottom panel of Table 2 we report forecasting regressions of quarterly excess

returns for 1, 2, 5, 7 and 10−year zero coupon bonds on the yield curve factors (Y PC) and

the s−factor (SPC⊥). In our sample bond excess returns are strongly predictable by the

first and the second Y PC. Importantly, however, the s−factor is statistically significant in

forecasts of all excess returns at the 1% significance level.

Although this preliminary analysis provides plenty of evidence that the survey-specific

factor is important for the real-world dynamics of interest rates, we should note that the

statistical significance presented in this section is likely underestimated due to the possible

presence of nonlinearities in the factor dynamics induced by the zero lower bound of interest

rates. All in all, this evidence indicates that, despite not being spanned by the observed

rates by construction, the survey factor contains useful information to predict future interest

rates.
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Fact 3 The survey-specific factor (s−factor) drives the real-world dynamics of (Granger-

causes) the yield curve factors.

Taken together, Facts 1-3 indicate that in order to correctly estimate the term premium

and interest rate expectations any term structure model must allow for separate real-world

and survey dynamics and also include an additional survey-specific state variable that is

unspanned by observed interest rates.

3 Framework

In this section we detail our term structure modeling framework which involves both the

standard specification of the risk-neutral and the physical dynamics, and also the subjective

dynamics. We embed the underlying Gaussian dynamics of the factors in a shadow rate

model, which prohibits negative interest rates.

3.1 Bond prices and real-world factor dynamics

We assume that bond prices are driven by a K−dimensional state vector xt, and that there

exists a risk-neutral probability measure Q that prices all financial assets, under which the

state variable follows a first-order Gaussian vector autoregression (V AR(1)):

xt = µQ +ΦQxt−1 + uQ
t , (1)

where uQ
t

Q∼ i.i.d.N (0,Σx).

We denote the logarithm of the price of a zero-coupon bond at time t with remaining

maturity n by pn,t and the corresponding yield by yn,t = −pn,t/n. In the absence of arbitrage

12



opportunities, the price of a zero-coupon bond can be expressed as

pn,t = logEQ
t

[
exp

(
−

n−1∑
j=0

rt+j

)]
, (2)

where rt is the short rate driven solely by the state vector xt, that is rt = r(xt).
8 It follows

that bond yields are spanned by the state vector, which we denote as

yn,t ≡ y(xt, n;Ψ), (3)

whereΨ is a vector of relevant risk-neutral parameters and y(.) is the (yield) pricing function.

The risk-neutral dynamics of the risk factors are not observable and can only be inferred

from asset prices. Instead, what we measure are the physical dynamics of the term structure

variables xt, which can be also influenced by other unspanned factors st. We assume that

the system of physical (or real-world) dynamics follows a Gaussian V AR(1):

 xt

st

 =

 µµµP
x

µµµP
s

+

 ΦP
xx ΦP

xs

ΦP
sx ΦP

ss


 xt−1

st−1

+

 uP
x,t

uP
s,t

 , (4)

where [uP
x,t

′,uP
s,t

′]′
P∼ i.i.d.N (0,Σ), with the K ×K top left matrix block of Σ equal to Σx

defined in Eq.(1). As long as the matrix block ΦP
xs contains non-zero elements, we say that

the variable st is unspanned by yields because it cannot be recovered from bond prices (see

(3)) but, nonetheless, it drives the expectation (under the P measure) of future interest rates

and thus the objective risk premium.

Under FIRE the real-world probability measure defines the risk premium demanded by

risk-averse investors for holding risky assets. In particular, if market participants were

8If the pricing function includes lags of xt, we can always redefine the state vector as x̃t = [x′
t,x

′
t−1, . . .]

′.
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rational and risk indifferent, the log bond price would be given by the real-world expectation

of interest rates in the future (adjusted for convexity), a theory commonly known as the

expectations hypothesis of interest rates. Building on this concept, Bauer, Rudebusch and

Wu (2012) define a ‘risk-neutral’ yield that reflects expectations of the short term rate over

the lifetime of the bond under the real-world probability measure

yPn,t = − 1

n
logEP

t

[
exp

(
−

n−1∑
j=0

rt+j

)]
. (5)

Hence, the yield risk premium on an n−period zero-coupon bond with respect to the real-

world probability measure is defined as

rpPn,t = yn,t − yPn,t

=
1

n
logEP

t

[
exp

(
−

n−1∑
j=0

rt+j

)]
− 1

n
logEQ

t

[
exp

(
−

n−1∑
j=0

rt+j

)]
. (6)

3.2 Surveys and subjective risk premia

Assume now that, in addition to the zero-coupon bond prices, we also observe market agents’

expectations about future zero-coupon yields. Typically in the literature the rational expec-

tations (or FIRE) hypothesis is assumed, so that the subjective dynamics are the same as

the dynamics under the real-world probability measure (4). This is a useful assumption,

since it allows us to ‘measure’ market expectations from the history of bond prices, which in

turn allows us to determine the objective risk premium. However, in general, the subjective

probability measure S used by market agents can differ from the real-world probability mea-

sure P. Indeed, if market expectations are observable, the equality of the S and P measures

is a testable hypothesis.
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Denote the h−period ahead expectation at time t of a yield on a zero-coupon bond with

an n−period tenor by ysn,t,h, such that ysn,t,h ≡ ES
t [y(xt+h, n;Ψ)]. In general, it might not be

possible to find an analytic solution to this expectation as, e.g., in the case of the shadow

rate model that we are going to adopt, see Section 3.3. Therefore, we are going to work with

a first-order approximation

ysn,t,h ≈ y(ES
t [xt+h], n;Ψ). (7)

Eq.(7) is exact for a fully Gaussian (Vasicek) model and almost exact for a shadow rate model

when interest rates are away from the zero lower bound, while at the zero lower bound there

are omitted higher-order terms.

In this paper, we assume that the factor dynamics under S also follow a V AR(1)

 xt

st

 =

 µµµS
x

µµµS
s

+

 ΦS
xx ΦS

xs

ΦS
sx ΦS

ss


 xt−1

st−1

+

 uS
x,t

uS
s,t

 , (8)

where [uS
x,t

′,uS
s,t

′]′
S∼ i.i.d.N (0,Σ). Note that, by the Girsanov theorem, the conditional

variance matrix of the factor innovations is the same under different probability measures.

If st is a scalar variable (i.e. st = st), as we assume following the preliminary evidence set

out in Section 2, ΦS
xs is a K × 1 block of parameters.

An advantage of using survey data is that it allows us to readily recover the unspanned

risk factor under the S probability measure. To see this, note that unless the block ΦS
xs

includes only zeros, the price expectation becomes also a function of st, since

ES
t [xt+h] = µµµS

x,h +ΦS
x,hxt +ΦS

s,hst, (9)

where µµµS
x,h, Φ

S
x,h and ΦS

s,h are functions of terms defined in (8). As such, the existence of
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a survey-specific factor documented in Section 2 is equivalent to the statement that ΦS
s,h is

nonzero, which holds if ΦS
xs is nonzero.

We can define the subjective risk premium analogously to the definition of the objective

risk premium in Eq.(6), that is:

rpSn,t =
1

n
logES

t

[
exp

(
−

n−1∑
j=0

rt+j

)]
− 1

n
logEQ

t

[
exp

(
−

n−1∑
j=0

rt+j

)]
. (10)

The subjective risk premium has a clear economic interpretation as the compensation re-

quired by risky investors for holding risky assets, since it corresponds to the investors’ beliefs.

This is corroborated by the finding in Giglio, Maggiori, Stroebel and Utkus (2021) that sur-

vey data is highly informative about individuals’ portfolio decisions. On the other hand,

if the subjective probability measure is different from the real-world measure, the objective

risk premium in (6) is difficult to interpret, as it merely represents the measured ex-post risk

premium based on the history of bond prices.

Since the s−factor exists if and only if it drives the interest rates dynamics under the S

probability measure, it drives the subjective risk premium by construction. Moreover, if we

assume that the subjective probability measure coincides with the real-world measure, the

survey-specific factor is also a predictor of interest rates and, as such, it is a risk factor under

the P probability measure. This observation could be useful if the modeller is uncertain

about which variables should be included as risk factors in a term structure model and she

is willing to assume that the subjective and real-world measures are the same.9 In this case,

she can avoid the inclusion of arbitrary macro variables and substitute them with the factor

extracted from surveys. However, in the more general case in which the subjective and the

objective dynamics are different, it is an empirical question whether the s-factor also drives

9In the empirical section, we reject the hypothesis about the equality of the subjective and real-world
probability measures.
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Is st a risk
factor under P?

ΦP
xs ̸= 0

Rational expectations (S ∼ P)
µµµP
x = µµµS

x and ΦP
xx = ΦS

xx

No rational expectations (S ≁ P)
µµµP
x ̸= µµµS

x and ΦP
xx ̸= ΦS

xx

No
Case 1 (S∼ P, no st)

surveys informative for econometric
identification of P−parameters

Case 3 (S≁ P , st is not P−risk factor)
surveys not informative

Yes

Case 2 (S∼ P, st is P−risk factor)
surveys informative

for both the physical risk factors
and P−parameters

Case 4 (S≁ P , st is P−risk factor)
surveys informative for
physical risk factors

Table 3. Model specifications.

the objective dynamics.

In our framework, both the assumptions of rational expectations and about the existence

of a priced unspanned survey factor can be tested. To facilitate the interpretation of these

assumptions and their implications, in Table 3 we tabulate the four different cases that arise.

In Case 1 the subjective and the real-world measures coincide and all the risk factors can

be extracted from observed rates (no hidden factors). In this case surveys can be used to aid

the econometric identification of the physical parameters of the term structure model (Kim

and Orphanides 2012, d’Amico et al. 2018), to proxy for expectations (Crump et al. 2018), or

to proxy for state variables (Chun 2011), but they do not convey any additional information

about the risk factors. In terms of the model parameters, in Case 1 the factor st and the

corresponding parameters do not appear in the factor dynamics equations (4) and (8), so

that ΦP
xs = ΦS

xs = 0 and the remaining parameters coincide, i.e. µµµP
x = µµµS

x and ΦP
xx = ΦS

xx.

In Case 2 we maintain the rational expectations hypothesis, and we have a hidden factor

under the physical measure (which, as a consequence, cannot be extracted from observed

yields). Consequently, surveys have a dual role. First, they convey information about the
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hidden factor that drives real-world expectations and risk premium. Second, they help

identify econometrically the physical parameters of the term structure model. This amounts

to the restriction that the real-world dynamics in Eq.(4) and the subjective dynamics in

Eq.(8) are the same, including ΦP
xs = ΦS

xs ̸= 0.

In Case 3 we abandon the rational expectations hypothesis, and we assume that all the

risk factors under the objective measure can be extracted from observed rates (no hidden

factors under the objective measure). In this case surveys do not convey additional informa-

tion about the risk factors extracted from observed rates nor help to identify econometrically

the model parameters. In terms of the model specification, the parameters in Eq.(4) and

Eq.(8) are allowed to be different but we have the restriction ΦP
xs = 0.

In Case 4 we have hidden factors under the physical measure and no rational expectations.

In this case, surveys convey information about the hidden factor that drives observed risk

premium and real-world expectations. This is the general model presented in the previous

section, in which all parameters in Eq.(4) and Eq.(8) are allowed to be different and freely

estimated. As such, it nests all the other cases and allows us to conduct statistical tests of

the corresponding restrictions.

3.3 The shadow rate term structure model

To enforce a lower bound on interest rates, we assume that there exists a shadow short rate

that is linear in the Gaussian state variables

ssrt = δ0 + δδδ′1xt (11)
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and that the observed short-term interest rate rt is equal to the shadow short rate only when

the latter is above the lower bound and equal to the lower bound otherwise,

rt = max{ssrt, r}. (12)

The short rate equation (12) together with the state dynamics under the risk-neutral measure

(1) and under the subjective measure (8) represent the complete term structure model.

The advantage of the shadow rate model is that it allows us to operate within the Gaussian

framework described in Section 3 but at the same time it imposes the lower bound on interest

rates, which is essential for the consistency of the model estimates if the sample period

includes such episodes. The idea of a shadow rate was first introduced by Black (1995) and

is based on the observation that negative interest rates are hard to enforce if investors have

the option to convert to currency. As a result of this option, all term rates and forward rates

are bounded and do not have a reflecting boundary condition, as opposed to affine models

with factors that follow square-root processes or quadratic Gaussian models. Another feature

of the shadow rate term structure model is that, when short-term interest rates are far from

the lower bound, interest rates behave approximately as in a Gaussian affine term structure

model.

Although in the Gaussian setting the pricing functional for the shadow rate model is

available in closed form (see Priebsch 2013), it is computationally demanding, which makes

it inconvenient in practical applications. Wu and Xia (2016), however, provide a convenient

approximation in discrete time. In particular, denote by fn,t the time t one period forward

rate for a loan starting at t + n. Wu and Xia (2016) show that, under (1) and (12), the
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forward rate fn,t is approximately equal to

fn,t ≈ r + σQ
n g

(
an + b′

nxt − r

σQ
n

)
(13)

where the function g(z) = zN(z) + n(z) with N(z) and n(z) the CDF and the PDF of z,

respectively, and σQ
n , an and bn are known coefficients, given the risk-neutral parameters.10

4 Estimation and identification

We estimate the joint model of zero-coupon yields and interest rate survey expectations

by maximum likelihood. We implement it using the factor extraction method proposed by

Golinski and Spencer (2022), which generalizes the estimation technique by factor rotation

with observable factors introduced by Joslin, Singleton and Zhu (2011) to non-linear models.

This method does not require any approximation (such as e.g. that required by the extended

Kalman filter) and is computationally efficient since it allows for concentrating the likelihood

function with respect to the P parameters.

We denote the vector of model-implied zero-coupon yields at time t by yt and the associ-

ated vector of pricing errors by vt ∼ N(0,Σy), such that the observed yields are ỹt = yt+vt.

Similarly, we denote the vector of observable surveys with different maturities and forecast-

ing horizons as ỹs
t = ys

t + ηηηt, where entries of the model-implied surveys ys
t are given in

Eq.(7) and ηηηt are the associated zero mean measurement errors with variance Σs.

Following Joslin et al. (2011), we assume that the first three principal components of yields

are measured without error. If the eigenvectors associated with the three largest eigenvalues

of the covariance matrix of observed yields are collected in a N × 3 matrix W (where N

10For more details and definition of the terms in (13), please refer to Wu and Xia (2016), Appendix A.
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is the number of yields), the first three principal components of observed yields are given

by qy,t ≡ W′ỹt = W′yt, where the last equality follows from the observability assumption

(W′vt = 0). As shown in Golinski and Spencer (2022), this observability assumption allows

us to extract the underlying state vector xt from the nonlinear system, conditionally on the

risk-neutral parameters.

In a similar fashion, we extract the factor unspanned by interest rates but spanned by

interest rates surveys. We assume that the first principal component of surveys (across

maturities and forecast horizons) qs,t is observable without error. Then, conditional on the

Q parameters (which is equivalent to observable xt) and the S parameters, we can solve the

system of interest rates surveys with respect to st.

We adopt the parameterization of the model of Joslin et al. (2011) in which the Q

dynamics depend on {µQ
1 ,λλλ

Q,Σ}, where µQ
1 is the first element of µµµQ, other elements being

zeros, and λλλQ is the vector of eigenvalues of ΦQ. The short shadow-rate equation (11) is

identified with δ0 = 0 and δδδ1 = 1, where 1 denotes a vector of ones. Since the s−factor is

essentially a (nonlinear) rotation of the system of surveys, it is not identified for unrestricted

S parameters since st can be linearly rotated to an observationally equivalent representation,

s∗t , by changing its mean and scale: s∗t = c0 + c1st, where c0 and c1 are arbitrary constants.

Thus, to identify the s−factor we impose µS
s = 0; and

∑K
j=1 ϕ

S
sx,j = 1, where ϕS

sx,j are

elements of the 1 × K vector ΦS
sx defined in (8). In addition, we impose r = 0, which

guards against model overfitting. Denote Θ ≡ {µQ
1 ,λλλ

Q,Σy,µ
SµSµS,ΦS,Σs,µµµ

P,ΦP,Σ} and the

conditional likelihood function as

logL(Θ) =
T∑
t=2

log ℓ(ỹt, ỹ
s
t |ỹt−1, ỹ

s
t−1;Θ). (14)
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Then, the time−t conditional likelihood can be decomposed as

ℓ(ỹt, ỹ
s
t |ỹt−1, ỹ

s
t−1;Θ) = ℓQ(ỹt|qy,t;µ

Q
1 ,λλλ

Q,Σy,Σ)

×ℓS(ỹs
t |qy,t, qs,t;µ

Q
1 ,λλλ

Q,µµµS,ΦS,Σs,Σ)

×ℓP(qy,t, qs,t|qy,t−1, qs,t−1;µµµ
P,ΦP,Σ).

Note that the last part of the likelihood, ℓP, involves only the P parameters, which, upon

rotation of the principal components qy,t and qs,t to xt and st, allows us to estimate the

conditional mean parameters µµµP and ΦP by OLS due to the classic result in Zellner (1962).11

Since the factor extraction of xt is conditional on the Q parameters and the extraction of

the s−factor is conditional on both theQ and S parameters, these have to be jointly estimated

numerically. However, assuming that xt and st are observable allows us to estimate the P

dynamics in Eq.(4) by OLS, which greatly facilitates the estimation since it considerably

reduces the number of parameters in numerical optimization. For more details, please see

Appendix A.

5 Results

In this section we report the empirical results focussing on the comparison between the

four different cases in Table 3, and also Case 0 (the yields-only model). After reporting the

model fit for each case, we perform formal model specification testing. For each case, we then

analyse the factor dynamics, the in-sample and out-of-sample forecasting performance, and

the risk premium estimates. Lastly, we analyze the determinants of the unspanned survey

factor.

11The factor rotation introduces in the likelihood a Jacobian term - see Golinski and Spencer (2022) for
details.
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Yields
Model 3m 6m 1y 2y 5y 7y 10y Av. RMSE
Case 0 (yield-only model, no st) 4.16 1.87 4.33 2.21 4.81 2.44 4.35 3.45
Case 1 (S ∼ P, no st) 4.15 1.87 4.34 2.26 4.81 2.47 4.36 3.47
Case 2 (S ∼ P, st is P−risk factor) 4.11 1.86 4.24 2.32 4.84 2.57 4.44 3.48
Case 3 (S ≁ P, st is not P−risk factor) 4.13 1.87 4.26 2.30 4.84 2.55 4.44 3.48
Case 4 (S ≁ P, st is P−risk factor) 4.10 1.86 4.24 2.33 4.84 2.57 4.45 3.48

Surveys
Model Horizon 3m 1y 5y 10y Av. RMSE
Case 0 (yield-only model, no st) 1q 37.97 44.58 41.38 41.85 41.45

2q 40.67 53.87 48.57 44.46 46.89
3q 47.63 64.97 59.42 51.78 55.95
4q 60.20 79.78 72.96 62.91 68.96

Case 1 (S ∼ P, no st) 1q 37.79 41.90 39.87 42.21 40.44
2q 38.06 45.10 39.71 40.79 40.92
3q 37.42 44.49 38.84 39.67 40.10
4q 37.91 42.45 38.49 40.16 39.75

Case 2 (S ∼ P, st is P−risk factor) 1q 18.69 20.21 12.63 17.85 17.34
2q 14.64 18.23 10.89 15.71 14.87
3q 12.84 17.26 12.83 16.18 14.78
4q 15.67 16.43 15.72 18.49 16.58

Case 3 (S ≁ P, st is not P−risk factor) 1q 18.47 20.18 12.60 17.40 17.17
2q 14.49 18.10 11.08 15.35 14.75
3q 12.64 17.08 13.19 15.96 14.72
4q 15.36 16.09 16.03 18.47 16.49

Case 4 (S ≁ P, st is P−risk factor) 1q 18.45 20.12 12.59 17.56 17.18
2q 14.43 18.14 11.05 15.56 14.80
3q 12.70 17.22 13.07 16.12 14.78
4q 15.55 16.33 15.86 18.52 16.56

Table 4. Model fit measured by the root mean-square error (RMSE) for yields (top panel)
and surveys (bottom panel). The numbers are reported in basis points.

5.1 Fit to data

In Table 4 we present root mean-square errors for fitting errors for yields and surveys for

different cases tabulated in Table 3, and the model estimated only with yields (Case 0). The

first observation we can make is that the yield fit for all models (about 3.5 basis points)

is very close to the unrestricted fit of first three principal components reported in Table 1.

The yields-only model (Case 0) has the greatest flexibility to fit yields and so it also has the

smallest average RMSE, although generally the differences among different models are not
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economically significant.

Similarly, due to the presence of a survey-specific factor in Cases 2, 3 and 4, the model fit

of subjective expectations reported in Table 1 is close to the unrestricted fit of three Y PC

and the first SPC⊥, 16.5 basis points on average, while the model without the survey factor

(Case 1) is unable to fit the surveys. The RMSE for surveys in Case 1 is about 40 basis

points for all forecast horizons, more than double those reported for Cases 2-4, about 15−17

basis points with a U−shaped fit pattern. It is also remarkable that restrictions placed

on the objective probability measures have little effect on the fit of the model to surveys

expectations.

5.2 Likelihood function and likelihood ratio tests

From the cross-sectional fit statistics presented in Table 4, it is clear that as long as we

have a survey-specific factor in the model, the fitting errors do not provide us with sufficient

information to discriminate among different hypotheses. Thus, for statistical comparison,

we use the likelihood ratio test, where the most flexible model of Case 4 is the unrestricted

model. The relevant models for comparison are Cases 2 and 3, i.e., the model specifications

with the s−factor. The number of restrictions amounts to 20 for Case 2, and 3 for Case

3 (see the discussion in Section 3.2). In Table 5 we report the value of the log-likelihood

function at the estimated maximum as well as its components as in Eq.(15). In the last

column of the table we report the p−value of the likelihood ratio test for Cases 2 and 3.

First of all, the evidence in favour of the rejection of the rational expectations hypothesis

(Case 2) is overwhelming, with the p−value equal to zero. We also reject the hypothesis that

the s−factor is not priced under the P probability measure even when we allow for deviation

from rational expectations (Case 3), with the p−value equal to zero. As such, our results
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Model Restrictions (# of restr.) Total L LQ LS LP p−value

Case 4 S ≁ P, st is P-risk factor
None (0)

17,120.52 3,729.22 10,866.16 2,525.14 -

Case 2 S ∼ P, st is P−risk factor
µµµP
x = µµµS

x, Φ
P = ΦS (20)

17,080.31 3,729.54 10,855.72 2,495.04 0.0000

Case 3 S ≁ P, st is not P−risk factor
ΦP

xs = 0 (3)
17,082.57 3,728.84 10,865.14 2,488.59 0.0000

Case 5 S ≁ P, st is P−risk factor
mP = mS (4)

17,116.19 3,729.56 10,884.45 2,502.19 0.0700

Table 5. Likelihood ratio test. Total likelihood values (first column), and its components
as in Equation (15), along with likelihood ratio p−values (last column) for different cases.

provide us with strong evidence in favour of a P−priced survey factor and an unequivocal

rejection of the rational expectations hypothesis.

The inspection of the likelihood decomposition allows us to explore the reasons for these

rejections. Confirming our former informal analysis of the fit of the model in Table 4, we

can see that the parts of the likelihood corresponding to the cross-sectional fit of yields (LQ)

and surveys (LS) for all cases are similar and, therefore, they are not the source of these

rejections. However, the value of the likelihood corresponding to the physical dynamics of

the factors (LP) deteriorates substantially for the restricted models.

In a closely related application, Piazzesi et al. (2015) allow for different objective and

subjective factor dynamics but they assume that agents are rational in the long run and, thus,

they impose a restriction on the long-run mean of the factors. In our Gaussian framework,

the long-run mean can be defined as mP ≡ (I−ΦP)−1µµµP and mS ≡ (I−ΦS)−1µµµS under the

objective and subjective probability measure, respectively. Since we can rewrite Eq.(4) as

xt −mP = ΦP(xt−1 −mP) + uP
t , (15)

under the long-run mean restriction, mP = mS, we can estimate ΦP by OLS conditionally
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Model µQ
1 × 100 eig(ΦQ)

Case 0 (yields-only model) 0.0567 0.9981 0.8491±0.0118
Case 1 (S ∼ P, no st) 0.0565 0.9982 0.8542±0.0372
Case 2 (S ∼ P, st is P− risk factor) 0.0661 0.9966 0.8372±0.0196
Case 3 (S ≁ P, st is not P−risk factor) 0.0724 0.9966 0.8355±0.0169
Case 4 (S ≁ P, st is P−risk factor) 0.0657 0.9965 0.8357±0.0181

Table 6. Estimates of risk-neutral parameters.

on the S parameters:

xt −mS = ΦP(xt−1 −mS) + uP
t . (16)

The p−value for the likelihood-ratio test with 4 degrees of freedom is 7%, which indicates

that the rationality of agents in the long-run cannot be rejected at a 5% significance level.

A closer inspection at the likelihood components, however, reveals that the high overall

likelihood value for this case is achieved by a closer fit to surveys forecasts (higher LS)

at a cost of worse likelihood of the P dynamics. Indeed, in unreported results (available

upon request), the improvement in the survey fit is about 0.01 basis point as measured by

cross-sectional RMSE. In Appendix B we confirm that this model specification has inferior

predictive performance relative to Case 4, which renders it unreliable for the purposes of the

objective risk premium decomposition, and therefore we are not going to consider it further.

5.3 Factor dynamics

We now inspect the factor dynamics in each of the cases considered. In Table 6 we report

the estimates of the risk-neutral parameters. As typically found in the literature, our results

show that the factors are highly persistent under the risk-neutral measure. For all cases, the

Q dynamics are close to a unit root process with the largest eigenvalue exceeding 0.996.

In Table 7 we report the estimates of the factor dynamics under the real-world measure.
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Model µµµP ΦP Eigenvalues µP
∞ (%)

Case 0 0.0017 0.9816 0.0534 -0.4125 0.9866 -0.75
yields-only model -0.0024 0.0055 0.9278 0.4859 0.9199

0.0014 0.0003 -0.0007 0.7535 0.7564
Case 1 0.0061 0.9759 0.1231 -0.7506 0.9544 5.97
S ∼ P 0.0001 -0.0073 0.9268 0.3793 0.9322
no st 0.0006 0.0025 -0.0036 0.7125 0.7285
Case 2 0.0036 0.9999 -0.1641 -2.0787 1.7099 0.9692 3.87
S ∼ P -0.0002 -0.0050 0.9123 0.3043 0.0837 0.9429
st is P−risk factor -0.0000 0.0035 0.0163 0.7438 -0.0306 0.7010

0 -0.0114 0.1902 0.8211 0.0368 0.0796
Case 3 0.0013 0.9804 0.0581 -0.3223 0 0.9885 -1.66
S ≁ P -0.0025 0.0087 0.9297 0.3999 0 0.9215
st is not P−risk factor 0.0014 -0.0011 -0.0010 0.7973 0 0.7974

0.0020 -0.0124 0.1262 0.5715 0.2733 0.2733
Case 4 -0.0043 1.0188 -0.1557 -1.5087 1.6478 0.9891 -1.83
S ≁ P -0.0023 0.0064 0.9343 0.4632 -0.4632 0.9007
st is P−risk factor 0.0017 -0.0023 0.0061 0.8200 -0.0608 0.7794

0.0025 -0.0191 0.1235 0.5757 0.2043 0.3082

Table 7. Estimates of factor (shadow PC) dynamics under the real-world probability mea-
sure. The last column reports the long-run mean of the shadow short rate in percentage
points.

The penultimate column reports the eigenvalues of the feedback matrix ΦP. In all cases, the

eigenvalues are within the unit circle, which indicates stationarity. The highest eigenvalue for

the model estimated only with yields (Case 0) amounts to 0.987, a value typical in the term

structure literature. If in the estimation process we include interest rates surveys and impose

the rational expectation assumption, the persistence of interest rates decreases considerably,

to 0.954 and 0.969 for Case 1 and Case 2, respectively. If we allow for different objective and

subjective probability measures in Case 3 and Case 4, the physical dynamics are freed and

become similar to those obtained from the yields-only model, with the value of the highest

eigenvalue of about 0.989.

In the last column of Table 7 we report the long-run mean of the shadow short rate under
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the real-world probability measure, which, for cases with the survey factor, can be found as

µP
∞ = [1′, 0]

(
I−ΦP)−1

µµµP. (17)

When there is no survey factor (Case 0), the formula is the same without a zero in the square

bracket.

When surveys are not included in the estimation, the physical long-run mean is esti-

mated at −0.75%, due to the protracted downward trend of interest rates in our sample.

Including surveys in the estimation process and imposing rational expectations turns the

estimate of the long-run mean to a positive value, 5.97% and 3.87% for Case 1 and Case 2,

respectively. These estimates are negative again when the physical measure and subjective

measure are allowed to be different and amount to −1.66% and −1.83% for Case 3 and Case

4, respectively.

Results in Table 7 suggest that survey expectations exhibit lower persistence than mea-

sured under the real-world measure,12 but also that they dominate the physical dynamics if

the rational expectation hypothesis is maintained. Estimates for the subjective dynamics,

reported in Table 8, confirm this conjecture. The highest eigenvalue for subjective dynamics

for Case 3 and Case 4 amounts to 0.97, about the same as for Case 2. Generally, the point

estimates of dynamics for Case 3 and Case 4 under the subjective measure are very similar

to each other. Also the estimated long-run mean under the subjective measure is similar in

the two cases, about 3.7%.

12This is in line with the finding in Gourinchas and Tornell (2004) that agents misperceive interest rate
shocks to be more transitory than what they actually are.
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Model µµµS ΦS Eigenvalues µS
∞ (%)

Case 3 0.0036 0.9880 -0.2489 -2.2179 1.8585 0.9718 3.70
S ≁ P -0.0002 -0.0050 0.9019 0.2901 0.1062 0.9429
st is not P−risk factor -0.0001 0.0045 0.0211 0.6939 -0.0239 0.6515

0 -0.0043 0.2217 0.7826 0.0448 0.0624
Case 4 0.0034 1.0006 -0.1929 -2.1262 1.7365 0.9689 3.65
S ≁ P -0.0002 -0.0051 0.9098 0.3179 0.0858 0.9475
st is P−risk factor -0.0000 0.0042 -0.0179 0.6896 -0.0190 0.6549

0 -0.0108 0.2093 0.8015 0.0289 0.0576

Table 8. Estimates of factor (shadow PC) dynamics under the subjective probability mea-
sure. The last column reports the long run mean of the shadow short rate in percentage
points.

5.4 Yield forecasts

5.4.1 In-sample

In this section we evaluate the predictive performance for different model specifications.

First, we focus on in-sample forecasts. For all periods from 1983:Q1 to 2019:Q3 we forecast

0.25, 1, 5 and 10−year yields for 1 through 4 quarters ahead, so that for each forecast horizon

we have a time series of 147 predictions.

In Table 9 we report the root mean-square forecasting error (RMSFE) for forecasts

made with the physical dynamics of different model specification. For completeness, we also

report the RMSFE statistic for the random walk forecasts, which is a common benchmark

for predictive exercises in the term structure literature. We highlight in bold the smallest

RMSFE for each yield and at each forecasting horizon. The most flexible model with

different physical and subjective dynamics, and with the s−factor (Case 4) clearly dominates

other specifications by providing the smallest RMSFE for all yields and forecast horizons

with the exception only of the 10−year yield at 3 quarters ahead (best RMSFE obtained

from Case 0) and the 10−year yield at 4 quarters ahead (best RMSFE obtained from Case

3), but in both cases the difference in the RMSFE is not economically meaningful. With the
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Model Horizon\Yield 3m 1y 5y 10y
Case 0 1q 45.93 51.76 51.65 48.04
(yields-only model) 2q 74.04 80.40 73.49 67.06

3q 96.80 101.20 86.42 78.33
4q 119.48 123.49 101.88 99.49

Case 1 1q 45.93 53.30 53.48 48.92
(S ∼ P, no st) 2q 76.21 84.75 78.84 70.08

3q 101.97 109.95 96.67 84.69
4q 128.41 137.17 117.23 100.43

Case 2 1q 31.73 35.66 40.82 41.06
(S ∼ P, st is P− risk factor) 2q 63.69 73.74 73.46 67.46

3q 92.37 103.01 94.54 84.79
4q 119.57 131.80 115.01 99.91

Case 3 1q 45.95 51.78 51.70 48.05
(S ≁ P, st is not P−risk factor) 2q 74.62 80.48 73.57 67.12

3q 97.47 101.34 86.53 78.47
4q 119.94 123.60 102.05 90.70

Case 4 1q 31.58 34.43 39.40 39.49
(S ≁ P, st is P−risk factor) 2q 61.62 69.18 69.58 65.08

3q 86.23 92.28 85.37 79.66
4q 107.52 113.23 98.96 90.71

Random walk 1q 49.12 52.83 52.39 48.55
2q 81.68 83.59 75.90 68.70
3q 109.87 108.28 91.18 81.96
4q 136.58 134.28 109.15 96.89

Table 9. Root mean-square forecasting error for in-sample model-implied objective expec-
tations and the random walk.

aforementioned exceptions, the forecast precision delivered by other specifications is inferior

to Case 4, with RMSFE often higher by more than 10 basis points at both short and long

forecast horizons.

The models with the rational expectations assumption, Case 1 and Case 2, generally

produce the worst predictions, especially at long horizons. At the 1 quarter ahead horizon,

the forecasts produced by Case 2 are worse but not far from Case 4, which can indicate the

importance of the unspanned s−factor for short-run dynamics. Nonetheless, the results con-
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firm our conclusions from previous sections that forcing the model to fit survey expectations

with real-world dynamics distorts the latter. As such, this is another manifestation of the

rejection of the rational expectations hypothesis by our model. In fact, it would be preferable

to estimate the model without surveys (Case 0) rather than try to learn about the objective

dynamics of interest rates from surveys expectations assuming rational expectations (Case

1 and Case 2).

A separate question is the role of the survey-specific factor. Its importance for yield

predictions is particularly pronounced for short-horizon forecasts: the specifications without

the s−factor driving the P dynamics (Case 1 and Case 3) attain the RMSFE about 10−15

basis points worse than their counterparts that allow for this interaction (Case 3 and Case 4,

respectively) for 1−quarter ahead forecasts. At longer forecast horizons this effect remains

strong for the 3−month and 1−year yields but it dissipates for longer maturity yields.

These results indicate that to obtain reliable yield forecasts using the information in

interest rates surveys, we should a) allow for different objective and subjective factor dy-

namics, and b) allow the survey-specific factor to drive the real-world dynamics. Both of

these elements seem to play important role in the determination of the real-world dynamics.

Moving to the subjective dynamics, in Figure 2 we report survey expectations for the 1-

year yield, the subjective expectations from Case 4 and the realised 10-year yield. Contrary

to Figure 1, we can see that our maximally flexible model is able to replicate the survey

expectations, further validating the evidence that subjective dynamics are different from

objective ones. However, given the strong rejection of the rational expectations hypothesis

by our model, we should not expect subjective dynamics to prove useful in the predictive

exercise.

To corroborate this conjecture, in Table 10 we report the RMSFE for observed survey

forecasts and for the forecasts made using subjective expectations from Case 3 and Case 4.
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Figure 2. Market expectations measured by surveys (black-dotted lines) and in-sample sub-
jective expectations extracted from the Case 4 model with different subjective and objective
probability measures and with a priced survey-specific factor (red-dotted lines), along with
the observed 1-year yield (bold black line)

First, confirming our conjecture regarding the subjective probability measure, we observe

that the RMSFE for models specified in Case 3 and Case 4 are much larger than the

forecasts made with the physical dynamics. However, for three yields the survey forecasts at

the 1−quarter horizon produce RMSFE slightly lower than the model-generated predictions

from Table 9. For longer horizons, however, surveys perform significantly worse than P

forecasts produced by our preferred specification in Case 4.

Finally, we note that the forecasts obtained with real-world dynamics in models specified

in Case 0 and Case 4 reported in Table 9 generally comfortably outperform the random walk
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Model Horizon\Yield 3m 1y 5y 10y
Surveys 1q 26.56 36.89 37.56 38.91

2q 61.81 76.59 73.04 65.53
3q 92.83 104.66 93.95 83.65
4q 122.67 134.02 113.82 100.10

Case 3 (subjective) 1q 31.85 35.65 40.95 41.47
(S ≁ P, st is not P−risk factor) 2q 63.60 73.89 73.60 67.67

3q 92.26 103.38 94.75 84.94
4q 119.58 132.33 115.19 99.99

Case 4 (subjective) 1q 31.73 35.61 40.90 41.34
(S ≁ P, st is P−risk factor) 2q 63.55 73.88 73.56 67.56

3q 92.25 103.36 94.73 84.87
4q 119.61 132.31 115.21 99.97

Table 10. Root mean-square forecasting error for surveys and in-sample model-implied
subjective expectations.

benchmark, with particularly large margins at longer forecast horizons.

5.4.2 Out-of-sample

Next, we turn to the results of the out-of-sample forecasting exercise. We use the expanding-

window scheme on the last 15 years of our data sample. In particular, using the initial sample

from 1983:Q1 to 2004:Q4 (88 observations) we estimate the model and make forecasts (under

the P measure) for the next 4 quarters. Next, we add the data on 2005:Q1 (89 observations)

and re-estimate the model to make predictions for the following 4 quarters. We repeat this

procedure until 2019:Q3, so that we obtain 60 predictions for each forecast horizon.

In Table 11 we report the RMSFE for the out-of-sample forecasts. As a benchmark we

also report the RMFSE produced by the random walk model and with bold font we high-

light the smallest RMFSE across all cases. Similarly to the in-sample results, predictions

generated by Case 4 have generally the smallest RMFSE among other model specifications.

The two exceptions are forecasts of the 3−month and 5−year yields at the 1−quarter hori-
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Model Horizon\Yield 3m 1y 5y 10y
Case 1 1q 33.31 34.28 38.50 40.74
(S ∼ P, no st) 2q 58.96 61.55 61.16 58.86

3q 84.92 88.43 80.27 74.74
4q 110.62 116.68 101.61 90.70

Case 2 1q 25.56 28.46 31.97 37.54
(S ∼ P, st is P− risk factor) 2q 47.32 55.85 58.16 55.15

3q 73.75 85.73 81.91 73.44
4q 98.76 114.48 101.63 86.90

Case 3 1q 33.95 34.04 40.35 42.45
(S ≁ P, st is not P−risk factor) 2q 59.14 59.16 60.55 59.57

3q 83.55 82.03 74.97 72.14
4q 105.87 105.09 91.55 84.98

Case 4 1q 26.34 26.53 32.41 36.57
(S ≁ P, st is P−risk factor) 2q 46.31 48.61 54.28 53.80

3q 67.50 69.08 71.21 68.90
4q 84.91 86.76 83.22 79.08

Random walk 1q 39.54 36.75 37.33 39.60
2q 68.99 62.46 55.69 54.38
3q 95.06 85.13 67.77 64.95
4q 118.04 107.37 81.49 75.54

Table 11. Out-of-sample RMSFE for model-implied objective expectations for the period
from 2004:Q4 to 2019:Q3. Entries in bold are the lowest for the specific horizon and yield.

zon, for which the smallest RMSFE was attained by Case 2, but the difference is marginal,

smaller than 1 basis point. However, in all other cases, Case 4 produces more accurate

predictions than other specifications, especially at long forecast horizons. In particular, the

RMSFE for the 4−quarters ahead forecasts produced by Case 4 are about 10 − 30 basis

points smaller than obtained by other specifications. Case 4 also produces mostly smaller

RMSFE than the random walk benchmark except for the 5 and 10−year yields for the

forecasts 3 and 4 quarters ahead.

Having found that Case 4 delivers predictions superior in economic terms, we turn to the

statistical significance of differences in predictability. In Table 12 we report the ratio of the
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Benchmark Horizon\Yield 3m 1y 5y 10y
Case 1 1q 0.791∗ 0.774∗ 0.842∗ 0.898∗

(S ∼ P, no st) 2q 0.785∗∗ 0.790∗∗ 0.888 0.914
3q 0.795∗∗ 0.781∗∗ 0.887 0.922
4q 0.768∗∗ 0.744∗∗ 0.819∗ 0.872

Case 2 1q 1.031 0.932 1.014 0.974
(S ∼ P, st is P− risk factor) 2q 0.979 0.870∗∗ 0.933 0.976

3q 0.915∗∗ 0.806∗∗ 0.869∗∗ 0.938
4q 0.860∗∗ 0.758∗∗ 0.819∗∗ 0.910∗

Case 3 1q 0.776∗ 0.780∗ 0.803∗ 0.862∗

(S ≁ P, st is not P−risk factor) 2q 0.783∗∗ 0.822∗ 0.897 0.903
3q 0.808∗ 0.842 0.950 0.955
4q 0.802∗ 0.826∗ 0.909 0.931

Random walk 1q 0.666∗ 0.722∗ 0.868∗ 0.924
2q 0.671∗∗ 0.778∗ 0.975 0.989
3q 0.710∗∗ 0.811∗∗ 1.051 1.061
4q 0.719∗∗ 0.808∗∗ 1.021 1.047

Table 12. Out-of-sample forecasting performance of Case 4. The table reports out-of-
sample RMSFEs for the model-implied objective expectations of Case 4 relative to the
ones of the other cases and the random walk. The evaluation period is 2004:Q4 to 2019:Q3.
∗∗∗, ∗∗ and ∗ denote one-side significance at 1%, 5% and 10% level of the Diebold and Mariano
(1995) test of equal predictive ability using fixed−b asymptotics as in Coroneo and Iacone
(2020).

RMSFE of the forecasts generated by Case 4 to the RMSFE of other specifications. A

value smaller than 1 means that the forecasts generated by Case 4 are more accurate, as is

indeed the case for most maturities and forecasting horizons, as also noted in Table 11.

To assess whether the predictive performance of Case 4 is statistically different than other

specifications, we apply the Diebold and Mariano (1995) test of equal predictive ability

using fixed-b asymptotics as in Coroneo and Iacone (2020). This approach allows us to

obtain correctly sized tests with our small sample (60 out-of-sample observations) and in the

presence of autocorrelated forecast errors.13

13As in Coroneo and Iacone (2020), we use a quadratic loss and a weighted covariance estimate for the
long-run variance with Bartlett kernel and truncation ⌊T 1/2⌋ (which equals 7 for our out of sample size of
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The null hypothesis is that two models produce forecasts that are not statistically differ-

ent, and the alternative is that the benchmark (Case 4) produces more accurate forecasts.

As shown in Table 12, the null hypothesis is frequently rejected, especially for 3-months and

1−year yields. The rejection for yields with maturities of 5 and 10 years is less frequent.

Regarding comparison with the random walk model, although, as indicated earlier, ran-

dom walk predictions produce the smallest RMSFE for 5 and 10−year yields at the 3 and

4−quarters horizon, Case 4 provides significantly more accurate forecasts for the 3-months

and 1−year yields at all forecasting horizons.

5.5 Risk premium

In this section we examine the model’s predictions in terms of the decomposition of interest

rates into expected future rates and risk premium.

Focusing on the real-world probability measure first, in Figure 3, we plot the objective

10−year risk premium calculated as in Eq.(6) for different model specifications. For reference,

we also plot the 10−year yield. To get a more nuanced view, we split the plots of the term

premium into two subperiods: 1983-2000 (top panel) and 2001-2020 (bottom panel). The

most visible feature in this figure, which also reflects our discussion in previous sections, is

that imposing rational expectations distorts objective probabilities which, in turn, results

in anomalous risk premia for Case 1 and Case 2. Indeed, the risk premia for these rational

expectation specifications are very different from the premia implied by other models: they

are much lower, starting at about 3% in 1983, they gradually decline, reach zero around

2005, and after 2010 stay negative for the rest of the sample. This is due to the relatively

low persistence of interest rates implied by surveys expectations, so the model predicts that

interest rates would quickly return to their long-run mean of about 4 − 6%, see Table 7.

60 observations).
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Since the 10−year yield drops below 4% after 2010, the risk-neutral yield yP10 becomes higher

than the observed yield and the risk premium, being the residual in this relation, becomes

negative.

Although relative to the models in Case 1 and Case 2 that impose rational expectations

the risk premia implied by the three other cases in Figure 3 seem to be close to each other, a

careful inspection reveals that there are important differences in the risk premium dynamics

implied by these models, which underlines the importance of accounting for the survey-

specific factor as a P−risk factor. As expected, since the real-world dynamics of the model

estimated only with yields (Case 0) and the model with different probability measures but

with the risk premium restriction on the s−factor (Case 3) are very similar, the implied risk

premia for these two specifications are nearly identical throughout the whole sample period.

The risk premium implied by our preferred, fully-fledged model (Case 4), however, follows the

same secular trend but exhibits locally very different dynamics. This is particularly visible

in the second part of the sample presented in the bottom panel of Figure 3. First, it exhibits

clear countercyclical behaviour, increasing substantially in all three recession episodes in

the 21st century. Although the term premia implied by Case 0 and Case 3 also increase in

the dot-com recession in 2001 and the financial crisis 2008-2009, they decline throughout

the coronavirus recession in 2020. Second, following the recessionary episodes, during the

expansionary periods the term premium of Case 4 declines faster than those implied by

other specifications and gradually becomes larger at the later stages of the business cycle.

For example, although during the peak of the great financial crisis at the end of 2008 the

term premia implied by all cases with flexible P dynamics were about the same (about 3.3%),

at the end of 2010 the Case 4 term premium amounted to 1.2%, about 80 basis points lower

than those of Case 0 and Case 3. On the other hand, when the coronavirus pandemic shook

the global economy in the first quarter of 2020, the Case 4 term premium increased from

37



Figure 3. Objective 10−year risk premia implied by different model specifications for the
period from 1983:Q1 to 2000:Q4 (top panel) and from 2001:Q1 to 2020:Q3 (bottom panel).

38



0.65% to 1%, while those of Case 0 and Case 3 declined from 0.30% to 0.25%.

Figure 4. Subjective 10−year risk premia implied by different model specifications for the
period from 1983:Q1 to 2000:Q4 (top panel) and from 2001:Q1 to 2020:Q3 (bottom panel).
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Figure 5. PC−based s−factor estimated in Section 2 (continuous blue line) and the
s−factor extracted from the term structure model in Section 3 specified as Case 4 (red
dashed line). Shaded areas denote the NBER recessions.

In Figure 4 we plot the subjective risk premia for different model specifications through-

out the sample period. Naturally, the subjective risk premia for the models with rational

expectations constraint, Case 1 and Case 2, are the same as presented in Figure 3. However,

due to the extremely strong identification of subjective dynamics parameters, subjective ex-

pectations for all models are virtually the same, which is manifested by overlapping lines for

Cases 2, 3 and 4. The estimates of the risk premium for Case 1 are slightly different since

this model omits the survey-specific factor in the dynamics equation (8).
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5.6 A closer look into the unspanned survey factor

In Figure 5 we plot the time series of the PC−based s−factor estimated in Section 2 (con-

tinuous blue line) and the s−factor extracted from the term structure model in Section 3

specified as Case 4 (red dashed line) with shaded areas denoting the NBER recessions.14

The two time series comove together throughout the whole sample (the correlation amounts

to 0.83) with a notable exception of the zero lower bound period 2009-2015. If the s−factor

picks up just random correlation in noise in surveys, we should not expect it to have any

business cycle variation. However, the cyclical nature of the survey factor is striking: the

s−factor increases during economic expansions and strongly declines in recessions, such as in

1990, 2001, 2007-2008 and 2020. Other large negative spikes, although not related to official

recession periods, can also be identified with important economic and political events, such

as the 1985:Q2 collapse of Home State Savings Bank that set off a series of savings-and-loan

closures across the US; the fall of communism in Central and Eastern Europe in 1989:Q2;

dissolution of the Soviet Union in 1991:Q4; Clinton’s bailout to Mexico in response to the

peso crisis in 1995:Q2; Russian financial crisis in 1998:Q3. This indicates that there is a

systematic factor in surveys, unspanned by interest rates, that contains information about

the business cycle.

To investigate this possibility, we analyze the determinants of the unspanned survey

factor by regressing estimates of the s-factor on a set of potential proxies. In particular, in

Table 13 we report results for the estimated s-factor from the joint term structure model

in Section 3 specified as Case 4, and in Table 14 we report results for the PC−based s-

factor estimated in Section 2. We use as regressors a set of variables that include: industrial

production growth and CPI inflation (which are commonly used in macro-finance models of

14It should be kept in mind that the factor sign is unidentified, so our choice of the pro-cyclical character
of the s−factor is arbitrary.
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Table 13. Determinats of the model-based s−factor

(1) (2) (3) (4) (5) (6) (7)

IP 13.084∗∗ 8.830∗∗

(5.246) (4.451)

CPI 15.884 11.919
(15.731) (16.059)

VIX -0.034∗∗ -0.008
(0.014) (0.015)

EPU -0.002∗ 0.002
(0.001) (0.001)

EPU-MP -0.006∗∗∗ -0.004∗∗

(0.002) (0.002)

EM-EUI -0.823∗∗ -0.577∗

(0.330) (0.300)

Constant -0.062 -0.103 0.703∗∗ 0.280∗ 0.571∗∗∗ 0.320∗ 0.519
(0.137) (0.189) (0.313) (0.165) (0.198) (0.175) (0.389)

Observations 151 151 120 140 140 140 120
R2 0.034 0.002 0.067 0.034 0.135 0.084 0.166

The dependent variable is the estimated s-factor from the model in Section 3 specified as Case 4. The
regressors are: the Industrial Production growth rate (IP), the Consumer Price Index growth rate (CPI),
the CBOE Volatility Index (VIX), the Economic Policy Uncertainty index (EPU), the Economic Policy
Uncertainty Index: Monetary policy (EPU-MP ), and the Equity Market-related Economic Uncertainty Index
(EM-EUI). All variables are quarterly from 1983:Q1 (when available) to 2020:Q3. Newey-West standard
errors with 4 lags in parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.

the term structure), the VIX index, the Economic Policy Uncertainty index of Baker, Bloom

and Davis (2016) (both the full index and the categorical index for monetary policy) and

also the Equity Market-related Economic Uncertainty Index (also from Baker et al. 2016).

Results indicate that, when considering each regressor individually, the Economic Policy

Uncertainty categorical index for monetary policy explains the largest proportion of the

variance of both estimates of the s-factor. In particular, it explains 13.5% of the variance
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Table 14. Determinants of the PC−based s−factor

(1) (2) (3) (4) (5) (6) (7)

IP 17.063∗∗∗ 4.664
(4.447) (4.032)

CPI 41.314∗∗∗ 23.659∗

(12.765) (13.451)

VIX -0.047∗∗∗ -0.018∗

(0.011) (0.010)

EPU -0.004∗∗∗ 0.000
(0.001) (0.001)

EPU-MP -0.007∗∗∗ -0.005∗∗∗

(0.002) (0.002)

EM-EUI -0.624∗∗ -0.118
(0.257) (0.213)

Constant -0.081 -0.268∗ 0.880∗∗∗ 0.469∗∗∗ 0.646∗∗∗ 0.219 0.657∗∗

(0.107) (0.141) (0.253) (0.154) (0.156) (0.139) (0.296)

Observations 151 151 120 140 140 140 120
R2 0.062 0.051 0.179 0.140 0.214 0.052 0.286

The dependent variable is the PC−based s-factor estimated in Section 2. The regressors are: the Industrial
Production growth rate (IP), the Consumer Price Index growth rate (CPI), the CBOE Volatility Index
(VIX), the Economic Policy Uncertainty index (EPU), the Economic Policy Uncertainty Index: Monetary
policy (EPU-MP ), and the Equity Market-related Economic Uncertainty Index (EM-EUI). All variables are
quarterly from 1983:Q1 (when available) to 2020:Q3. Newey-West standard errors with 4 lags in parentheses.
* p < 0.10, ** p < 0.05, *** p < 0.01.

of the model-based estimate and 21.4% of the variance of the non-parametric estimate. The

adjusted−R2 does not improve much when other regressors are added in the last column of

the two tables, as it reaches 16.6% and 28.6%.

Other variables that seem related to the s-factor are the VIX and the other two uncer-

tainty indices, the EPU and the EM-EUI. The VIX explains, respectively, the third and

the second largest share of the model-based and the non-parametric estimate of the s-factor.

The equity market-related uncertainty index explains the second largest share of the variance
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of the model-based s-factor and the economic policy uncertainty index explains the third

largest share of the non-parametric estimate of the s-factor. The macro indicators, while

significant in some cases, do not seem to have an important role, as they explain at most

6.2% of the variance of the s-factor estimates.

These results indicate that the s-factor is more related to uncertainty than to macroe-

conomic fundamentals. This is in line with the findings in Tillmann (2020) that the effects

of monetary policies designed to reduce long-term bond yields can become less effective if

monetary policy uncertainty is high. In particular, his finding that term premia would in-

crease and partly offset the stimulating policy impulse seems in line with our results about

the presence of a priced unspanned survey factor related to monetary policy uncertainty.

6 Conclusion

One of the popular approaches to deal with the poor identification of the parameters that

determine the dynamics of interest rates and thus the risk premium is to augment the term

structure model of interest rates with expectations obtained from interest rates surveys (see

Kim and Wright 2005, Kim and Orphanides 2012, d’Amico et al. 2018). It has been assumed

offhand that the resulting decomposition can be taken as both the risk premium demanded by

investors for holding long-range Treasury securities and the expectation of the short interest

rate with respect to the real-world probability measure. Unfortunately, the results presented

in this paper show that such conclusions are unwarranted.

To examine the properties of interest rates surveys, we develop a joint model of interest

rates and surveys that allows for separate objective and subjective probability measures.

Contrary to earlier approaches postulated in the literature, our results indicate that surveys

do not help to identify the parameters of physical dynamics. On the contrary, the model
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overwhelmingly rejects the equality of subjective and objective dynamics, which can be

interpreted as evidence against the rational expectations hypothesis. Yet, we find that under

both objective and subjective probability measures there exists a common risk factor that

is not spanned by observed interest rates. Modelling jointly interest rates and interest rates

surveys allows us to extract this common unspanned factor within the model. Our results

suggest that taking into account the survey-specific factor is important for a more reliable

measurement of the risk premium and interest rate forecasts.

Undoubtedly, our results should be taken as the first step towards deeper understanding

of the role of surveys as a gauge of market expectations. It should be noted that we rely

solely on the consensus forecasts from Blue Chip Financial Forecasts. It is plausible that

a deeper examination of the granular structure of individual forecasts could reveal more

information. In particular, an important development for future research should explain the

underlying causes of the divergence between the objective and subjective probability measure

of a representative (consensus) agent. The possible explanation might involve microfounded

aggregation results with conditioning information or some market microstructure effects,

along the lines of Giacoletti, Laursen and Singleton (2021), Singleton (2021) and Buraschi

et al. (2022), but focussed on understanding the superior out-of-sample predictability under

the objective, not subjective, probability measure.

Also, it is plausible that the survey-specific factor documented in this paper, being a

systematic risk factor in the bond market, is also a pricing factor in other asset classes, such

as equities or derivatives. This conjecture can be supported by our finding that the survey

factor is related to economic uncertainty which is generally market-wide. Also, since the

survey factor contributes to the subjective risk premium, it might be used for monitoring

market’s perceptions of the monetary policy. These are all interesting directions for future

research.
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Finally, a natural extension of the model presented in this paper could involve a joint real

and nominal term structure model with survey expectations of macro variables. A related

application involves a joint term structure model of inflation swaps with survey inflation

expectations. The latter is particularly relevant in the current times of elevated inflation.

Further research in this direction is currently underway.
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Appendix A Factor extraction

This appendix is based on Golinski and Spencer (2022), please see there for more details.

First, for convenience, we restate the notation. We denote the model-implied zero coupon

yields at time t by yt and the associated vector of pricing errors by vt ∼ N(0,Σy), such that

the observed yields are

ỹt = yt + vt. (A-1)

We assume that there are K < N − 1 yields or fixed combinations (or ‘portfolios’) of yields,

given by a fixed N ×K weighting matrix W, that are nevertheless fitted without error:

qy,t ≡ W′ỹt = W′yt (A-2)

for all t, which is equivalent to assuming W′vt = 0. Following Golinski and Spencer (2022),

we refer to Eq.(A-2) as the observability restriction. As in Joslin et al. (2011), we assume

that the first three principal components of yields are observed without error, so W is a

N × 3 matrix that consists of eigenvectors corresponding to the three largest eigenvalues of

cov(yt).

Denote by qy(xt;Ψ) the vector-valued function in RK that maps the latent state vector

xt to the observable principal components qy,t, where Ψ denotes a generic vector of relevant

parameters, possibly different in every equation. Also, denote the inverse of qy(xt;Ψ) by

q−1
y (qy,t;Ψ), so that:

qy,t = qy(xt;Ψ) = W′y(xt;Ψ) ⇐⇒ xt = q−1
y (qy,t;Ψ) = x(yo

t ;Ψ). (A-3)
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Substituting xt back into (A-1) gives a non-linear econometric model of the cross section of

N observed yields:

ỹt = y(x(ỹt;Ψ);Ψ) + vt. (A-4)

Thus, given a set of parameters Ψ, we can find xt that solves the equation

qy,t = W′y(x(ỹt;Ψ);Ψ) (A-5)

for any t. Since there is a direct mapping between qy,t and xt, the latter can be treated as

observable, conditional on Ψ. The parameters that are necessary for solving Eq.(A-5) are

those necessary for cross-sectional spanning of asset prices, i.e. the risk-neutral parameters:

µµµQ, ΦQ and Σ.

Similarly, assuming that the first principal component of surveys is observed without

measurement errors

qs,t ≡ W′
sỹ

s
t = W′

sy
s
t , (A-6)

we can then extract the s−factor:

qs({xt, st};Ψ) = W′
sy

s({xt, st};Ψ) ⇐⇒ st = q−1
s ({qs,t,xt};Ψ),

where Ws is the weighting matrix (vector) for surveys. Note that extraction of st is condi-

tional on xt, since those are required for forming model-based expectations that are fitted

to surveys. Given that, we can solve

qs,t = W′
sy

s({xt, st};Ψ) (A-7)

for st for all t. Since surveys span both cross-sectional and temporal dimensions, the vector
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of parameters required to solve Eq.(A-7) must include both the Q parameters µµµQ, ΦQ and

Σ and the S parameters µµµS and ΦS.

Due to the observability restriction, the parts of the likelihood function that correspond

to cross sections of yields and surveys are identical regardless of whether we condition on

the observed principal components or on the underlying factors, i.e.

ℓQ(ỹt|qy,t;µ
Q
1 ,λλλ

Q,Σy,Σ) = ℓQ(ỹt|xt;µ
Q
1 ,λλλ

Q,Σy,Σ)

ℓS(ỹs
t |qy,t, qs,t;µ

Q
1 ,λλλ

Q,µµµS,ΦS,Σs,Σ) = ℓS(ỹs
t |xt, st;µ

Q
1 ,λλλ

Q,µµµS,ΦS,Σs,Σ)

The rotation of the factors, however, requires an adjustment to the part of the likelihood

that corresponds to the physical dynamics of the factors ℓP. This can be done through the

application of the change-of-variable technique:15

ℓP(qy,t, qs,t|qy,t−1, qs,t−1;µµµ
P,ΦP,Σ) = ℓP(xt, st|xt−1, st−1)× |det (Jx,t)|−1 × |(Js,t)|−1 , (A-8)

where Jx,t and Js,t are the Jacobian terms resulting from the change of variables:

Jx,t ≡
[
∂qy,t

∂x1,t

, · · · , ∂qy,t

∂xK,t

]
and Js,t ≡

[
∂qs,t
∂st

]
.

The rotation of factors from qy,t and qs,t to xt and st, respectively, allows us to find the

conditional mean parameter under the P measure in Eq.(4), µµµP and ΦP, by OLS due to the

result in Zellner (1962), conditional on the risk-neutral and subjective parameters that are

necessary for factor rotation.

In the shadow rate model the first derivative for a j−th yield with the remaining maturity

15See Greene (2011), Appendix B.
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mj is

∂yj,t
∂xt

=
1

mj

∂

∂xt

mj−1∑
m=0

f(xt,m; Ψ) ≈ 1

mj

mj−1∑
m=0

Φ

(
af,m + b′

f,mxt − r

σQ
m

)
bf,m. (A-9)

Denote by Hx,t stacked vectors ∂yj,t/∂xt:

Bt =
∂yt

∂x′
t

=

[
∂y1,t
∂x′

t

, · · · , ∂yJ,t
∂x′

t

]′
. (A-10)

Thus, the Jacobian Jy,t is given by

Jy,t = W′Hx,t. (A-11)

In a similar fashion we find the Jacobian Js,t. First, note that given our assumption of

the subjective yield expectations in Eq.(7), the shadow rate yield expectation is

ysj,t,h =
1

mj

Et

[
mj−1∑
m=0

fm,t+h

]
(A-12)

≈ r +
1

mj

mj−1∑
m=0

σQ
mg

(
af,m + b′

f,mEt[xt+h]− r

σQ
m

)

= r +
1

mj

mj−1∑
m=0

σQ
mg

(
af,m + b′

f,mµµµ
S
x,h + b′

f,mΦ
S
x,hxt + b′

f,mΦ
S
s,hst − r

σQ
m

)
,

where the last line uses the conditional expectation of xt+h at time t is defined in Eq.(9).

The parameters µµµS
x,h and ΦS

x,h are found by forward propagating the subjective dynamics

equation (8). Since the first derivative of ym,t with respect to st is

∂ysj,t,h
∂st

=
1

mj

mj−1∑
m=0

Φ

(
af,m + b′

f,mµµµ
S
x,h + b′

f,mΦ
S
x,hxt + b′

f,mΦ
S
s,hst − r

σQ
m

)
ΦS′

s,hbf,m, (A-13)
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the Jacobian Js,t is

Js,t = W′
sHs,t, (A-14)

where

Hs,t =
∂ys

t

∂st
=

[
∂ys1,t
∂st

, · · · ,
∂ysJs,t
∂st

]′
.
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Appendix B Forecasting errors for Case 5

In this appendix, we report in-sample and out-of-sample RMSFE for Case 5.

Model Horizon\Yield 3m 1y 5y 10y
Case 5 (in-sample) 1q 31.74 35.57 40.87 41.33
(S ≁ P, mS = mS) 2q 63.56 73.86 73.55 67.56

3q 92.27 103.35 94.72 84.87
4q 119.67 132.31 115.21 99.99

Case 5 (out-of-sample) 1q 26.54 28.31 33.12 37.24
(S ≁ P, mS = mS) 2q 46.24 49.92 55.00 54.25

3q 68.01 71.27 72.70 69.41
4q 85.54 89.56 85.13 79.52

Table 15. Root mean-square forecasting error for Case 5, in-sample and out-of-sample.
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