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Abstract

We propose a structural estimation method for the risk aversion and the

ability to cope with uncertainty over time of a representative agent in

a dynamic market equilibrium. The technique exploits the conditional

restrictions for nonparametric state variables dynamics that describe the

utility model in a Markovian setting. These restrictions are functional

equations solved by Approximate Nonparametric Dynamic Programming

based on a contraction mapping argument. Therefore, our method can

accommodate any preference specification that features contraction, such as

those in the Chew-Dekel class, and characterizes the corresponding parameter

space. We study a representative agent endowed with Epstein-Zin utility

for the U.S. equity and T-bill markets from 1952 to 2019. Our estimates

of the preference parameters are plausible values that have not yet been

established empirically. We include asymptotic properties of the model

parameter estimators and evaluate the finite sample performance using a

Monte Carlo study of the Bansal-Kiku-Yaron (2012) model.

JEL: C14, C36, E44, G12.

Keywords: structural estimation, contraction mapping, Local GMM, Approximate

Nonparametric Dynamic Programming, Epstein-Zin preferences.

The need for a prompt resolution of risk or allowing its postponement comes

from the endurance to cope with unpredictable scenarios over time. Research in
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economics and finance has shown that human decision-makers have preferences

over the timing in the temporal resolution of uncertainty (e.g., Kreps and Porteus,

1978; Chew and Epstein, 1989; Dekel, 1986). Plausible characterizations of these

preferences are necessary to calibrate models for analyzing (macro)economic shocks

that, for example, policymakers and climate change induce and have long-run effects

(e.g., Mumtaz and Theodoridis, 2020; Barnett et al., 2020). The time-non-separable

preferences in the Chew-Dekel class, which nest the widespread Constant Relative

Risk Aversion (CRRA) preferences, are popular specifications in utility models (e.g.,

Kreps and Porteus, 1978; Routledge and Zin, 2010; Backus et al., 2004; Campanale

et al., 2010). Under these specifications, the preference over the early (or late)

risk resolution is defined recursively over current consumption and a risk-adjusted

valuation of the continuation utility. Specifically, a nonlinear forward-looking

difference equation with a terminal condition defines the next period ’s continuation

utility.

We build an estimation method for Markovian nonparametric time-series

models that are represented by functional equations that can be solved by a

contraction mapping argument, such as the utility models discussed above. Our

minimum-distance estimator is akin to a Local Generalized Method of Moments

(LGMM), but with generalized residual functions whose functional forms are

known just partially.1 They are indeed known up to (i) an unknown Euclidean

(finite-dimensional) parameter, and (ii) an unknown functional of this Euclidean

parameter and the transition density of the state variables, which is itself unknown.

Differently than in other econometric approaches, we reconstruct the unknown

moment functions and parameter space accounting for their structural interdependence.

In the first step, we rebuild the true conditional moment restrictions from a

sequence of auxiliary ones based on a numerical convergence criterion. We

reconstruct the moment function using Approximate Nonparametric Dynamic

Programming (ANDP). For dynamic equilibrium models, the moment function

includes the agent’s continuation utility. We directly obtain it alongside its

1The LGMM extends the GMM in Hansen (1982) and Hansen and Singleton (1982) to directly
account for conditional moment restrictions.

2



equivalent certainty measure, which we both need to compute the Stochastic

Discount Factor (SDF). In the second step, we finalize the model estimation by

exploiting the reconstructed conditional moment restrictions through an LGMM

estimation for the nonparametric time-series model.2

Our method exploits wholly and exclusively the structural information that

is embedded in the original model with a non-parametric specification of the

Markovian dynamics of the state variables. This methodological improvement

leads to higher precision in the estimation of the model parameters. For the utility

models mentioned above, we use the information content of the dynamic pricing

errors for the asset pricing model implied by the preference specification. We

leave the structure of the SDF intact and exploit the flexibility of nonparametric

regression techniques to reconstruct its value over time. We identify the continuation

utility since any admissible lifetime utility function is a contraction mapping. In

particular, the state variable dynamics and preference parameter values determine

the unique fixed point for the continuation utility. For some combinations of

recursive preferences and state variables dynamics, the existing literature provides

limits to the parameter space (e.g., Hansen and Scheinkman, 2012; Borovička and

Stachurski, 2020; Christensen, 2022). In other cases, our data-driven method

allows determining the limits up to an error bound at the econometrician’s

discretion. This flexibility is because our approach does not rely upon (i) any

ad-hoc parameterization of the dynamics of consumption growth and asset returns,

(ii) any further assumption on the continuation utility, including proxying the

wealth portfolio or hidden state variables, (iii) any relaxation of the interpretation

of the SDF as a non-negative intertemporal marginal rate of substitution, and (iv)

any instrument selection.

We apply our method to the estimation of the preference parameters of the

representative U.S. consumer-investor from 1952Q1 to 2019Q3, adopting the

homothetic preference specification introduced by Epstein and Zin (1989), which is

2Several authors stress the importance of retaining the entire information arising from the
dynamic restrictions in economic and financial models (e.g., Domı́nguez and Lobato, 2004;
Gospodinov and Otsu, 2012).
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the most widely adopted among those in the Chew-Dekel class for economics and

finance applications (e.g., Epstein and Zin, 1991; Chen et al., 2013; Brown and

Kim, 2014). We summarize the U.S. equity return variation through the six size-

and value-based bi-variate sorted FF portfolios of U.S. publicly traded equities

and the 3-month T-Bills. We proxy consumption growth by data on Personal

Consumption Expenditures of non-durables and services. Our point estimates

correspond to values that are plausible from a theoretical perspective. They suggest

the preference for an early resolution of risk, with a much lower upper bound

of the confidence interval for the risk aversion parameter than previously found

in the literature. Consequently, the equity premium puzzle becomes less severe.

Confidence intervals obtained through existing estimation methods do not sustain

this economic interpretation. We then argue that the sensitivity to structural

information losses and model misspecification is considerable for estimating models

with agents with recursive preferences.

1 Model structure

Time is discrete, labeled by t ∈ Z. We denote the space of (d[X]×d[X])-dimensional

transition densities by F , and a generic element of this space by f .

Assumption 1. The random vector Xt ∈ X ⊂ Rd[X]
, with d[X] <∞ summarizes

the relevant information for pricing, and it is Markov of order one.

The vector Xt may include exogenous factors for consumption growth and its

volatility, dividend-price ratio, and term spreads. We denote its true one-period

transition density and marginal probability density function by f? ∈ F and f
[M ]
? ,

respectively. If a variable is measurable w.r.t. the information available to investors,

we say it is Xt-measurable.

A unique non-durable consumption good serves as the numéraire.

Assumption 2. A representative agent for the market consumes the amount of

consumption good indicated by the function C : X 7→ R+.

Assumption 2 coincides with point b in Assumption 1 of Hansen and Scheinkman

(2012). As they explain, the function C is a convenient consumption specification
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that is determined endogenously.

1.1 The SDF family

The symbol L1(X ) is for the linear space of integrable functions on X . We use

the symbol × for matrix dimensions and Cartesian product spaces. Consider a

d[θ]-dimensional real parameter vector θ that we refer to as the SDF parameter

vector, with d[θ] < ∞, and an infinite-dimensional real parameter f serving as

transition density for a d[X]-dimensional real vector. The elements of θ are the

preference parameters.

The utility function Vf (Xt;θ) represents the representative agent’s (stationary)

preferences over consumption strategies as follows. Recursive preferences in the

Chew-Dekel class are defined by the time aggregator and the risk aggregator.

The time aggregator F is a function that evaluates deterministic sequences of

consumption. Koopmans (1960) characterizes the time aggregators that satisfy

the conditions of historical independence, future independence, and stationarity.

The risk aggregator Rf ;θ measures the consequences and probabilities of risky

pay-offs. Chew and Epstein (1989) and Dekel (1986) characterize a class of risk

preferences that alleviates the independence axiom and include expected utility

as a particular case. Backus et al. (2004) provide a coherent overview of this

literature. The time aggregator and the risk aggregator jointly define the functional

V· : X × F × Rd[θ] 7→ R+ as

Vf (Xt;θ) = F
(
C(Xt),Rf ;θ [Vf (Xt+1;θ)] (Xt);θ

)
, (1)

where, in particular, the risk aggregator Rf ;θ, applied to the function Vf (·;θ) ∈

L1(X ) and valued at Xt, returns the function Rf ;θ [Vf (Xt+1;θ)] (Xt) ∈ L1(X ).

The function Vf? (·;θ) for the transition density f? in Assumption 1 is the true

continuation function.

Equation (1) constrains the SDF parameter vector’s values and the state

variables’ dynamics. To emphasize the link between them, we introduce the

conditional SDF parameter space for the transition density f as the space Θf ⊆ Rd[θ] .

The notation makes explicit that we focus on a subspace of Rd[θ] identified by
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the fixed transition density f . The space Θf collects all the values θ such that

the function Vf (·;θ) is a contraction and satisfies Equation (1). Therefore, for

given dynamics of the state variables, this space includes all the allowable values

that the SDF parameter vector can take while satisfying Equation (1). This

definition embeds our identification strategy of the continuation value, which is

global and nonparametric. It considers just the functional V· and, in the Epstein-Zin

specification, it involves all the integrable functions.

Despite that our discussion concerns any preference specification that exhibits

contraction, we particularize it to the case of Epstein-Zin preferences, for which

d[θ] = 3 and Equation (1) adapts to

Vf (Xt;θ) =
(

(1− β)C (Xt)
1− 1

ψ + β Ef

[
Vf (Xt+1;θ)1−γ∣∣Xt

] 1
α

) 1

1− 1
ψ , (2)

where Ef [·|Xt] is the conditional expectation operator for the transition density

f by, the parameter β ∈ (0 : 1) is a subjective discount factor, the parameter

γ > 0 indicates the relative risk aversion, the parameter ψ > 0 is for the Elasticity

of Intertemporal Substitution (EIS), and where we simplify the notation by the

auxiliary parameter α := (1−γ)/(1−1/ψ). Therefore, with Epstein-Zin preferences,

we are interested in the combinations of transition densities for a d[X]-dimensional

real vector and vectors in R3
+ satisfying Equation (2). We then analyze this

equation for any transition density f ∈ F and any value for the parameter vector

θ = [β γ ψ]′ ∈ Θf ⊆ (0 : 1)× R2
+. The quantity Ef

[
Vf (Xt+1;θ)1−γ∣∣Xt

]1/(1−γ)
is

the certainty equivalence measure of Vf (Xt+1;θ), which is concave because γ > 0.

Consequently, the risk aggregator is lower when Vf (Xt+1;θ) is more volatile. When

γ > 1/ψ, the preferences imply a preference for the early resolution of risk (Kreps

and Porteus, 1978; Bansal et al., 2010).

The SDF follows from the Benveniste-Scheinkman Theorem. Te first-order

optimality condition of the consumption profile implies that the SDF

mf (Xt+1,Xt;θ) = β

(
Vf (Xt+1;θ) / Ef

[
Vf (Xt+1;θ)1−γ∣∣Xt

] 1
1−γ
)−(γ− 1

ψ )

(C (Xt+1) /C (Xt))
1
ψ

. (3)
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Consequently, the SDF variation over time is due to (i) the consumption growth

rate C (Xt+1) /C (Xt); (ii) the unobservable continuation utility Vf (Xt+1;θ); and

(iii) the information spanned by the vector Xt.
3

The highly nonlinear relationships between state variables make the model

estimation challenging. The historical consumption growth rate is close to independent

and identically distributed (i.i.d.) and not that volatile around the value of 1.

Intuitively, for a plausible value of the quarterly real consumption growth rate of

1.001, the values 1.0012 and 1.0012/3 differ by roughly 10−3, and the corresponding

EIS parameter ψ is 1/2 = 0.5 and 3/2 = 1.5, respectively. Notwithstanding, these

two distinct values have wildly different asset pricing implications and economic

substance. When ψ > 1, the substitution effect dominates the wealth effect and

vice versa. That is to say, when ψ > 1, agents buy more risky assets in response to

higher expected growth, increasing the consumption-wealth ratio (e.g., see Bansal

and Yaron, 2004). Furthermore, when γ > 1/ψ, investors prefer the early resolution

of risk (e.g., see Backus et al., 2004). Next to that, when the consumption growth

rate is i.i.d., the measure of certainty equivalence E
[
Vf (Xt+1;θ)1−γ∣∣Xt

]1/(1−γ)

does not vary over time and, therefore, is rendered meaningless.4 All in all, the

modification of the utility from the CRRA case stems from just the scalar parameter

ψ. However, the relationships between the relevant model variables are highly

nonlinear, with risk and timing premia being structurally intertwined (Pohl et al.,

2018).

To resolve the lack of observability of the continuation utility, Epstein and

Zin (1991), Weber (2000), and Yogo (2006), among others, use the equivalent

representation

Mt+1 = βα (C (Xt+1) /C (Xt))
−α
ψ

(
R

[A]
t+1

)α−1

, (4)

where R
[A]
t+1 is the gross return from time t to time t + 1 on the aggregate

3A CRRA utility function implies the SDF specification mf (Xt+1,Xt;θ) =

β (C (Xt+1) /C (Xt))
−γ

, which corresponds to the specification in Equation (3) for γ = 1/ψ.
4We show in Proposition 1 that this term is meaningless when the consumption growth rate

is i.i.d., as Vf (Xt+1;θ) /C (Xt+1) is constant. The term between parentheses on the RHS of
Equation (3) equals unity for all t, and Epstein-Zin preferences collapse to a CRRA specification.
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consumption claim. It corresponds to the return on the portfolio associated

with the representative agent’s optimal investment strategy. Adapting Roll’s (1977)

critique of the Capital Asset Pricing Model, statistical tests might reject the model

because the chosen proxy for the wealth portfolio does not capture the dynamics

of the wealth portfolio.5 Because Lettau and Ludvigson (2001) estimate that

about two-thirds of total wealth consists of human capital, one has to be very

careful in selecting or designing a proxy. Some researchers specify the complete

macroeconomic structure alongside the agent’s preferences (e.g., Bansal et al.,

2016; Constantinides and Ghosh, 2011). Though the purpose of these studies

is not necessary to validate the Epstein-Zin preferences, any misspecification of

the macroeconomic structure will impact the statistical analyses of the preference

parameters. Albeit their primary focus is not the validation of the Epstein-Zin

preference specification, any wrong assumption on the design of the macroeconomic

system may affect the inference of the preference parameters.

Detecting which unconditional restrictions, if any, out of the infinitely many

dynamic ones implied by the model, retain the original information is also challenging

(cf. Domı́nguez and Lobato, 2004). Stock and Wright (2000) suggest confidence

sets that are immune to weak instruments. Yogo (2004) derives valid confidence

intervals of a linearized specification of the SDF. However, Manresa et al. (2017)

show that such strategies do not perform well in small samples. Linearization

works well when γ and ψ are close to one, corresponding to log utility preferences.

Suppose the risk aversion parameter γ is between five and ten, as commonly used

in calibrations. In that case, linearization techniques might not be appropriate.

Kleibergen and Zhan (2020) generalize the Stock and Wright (2000) approach

to include many risk factors in both linear and nonlinear specifications. They

allow for joint tests on pricing errors. However, the confidence sets they propose

remain rather wide. Besides, other researchers exploit the information contents

of modifications of the original model with recursive preferences. Yogo (2004)

5Roll (1977) argues in the context of the Capital Asset Pricing Model that a model specification
test involving a proxy on the wealth portfolio constitutes a joint test on the model specification
and the proxy’s adequacy. Set statistical uncertainty aside, the rejection of the model may be
due to its overall misspecification, the adopted lousy proxy of the wealth portfolio, or both.
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linearizes the time-aggregator. Chen et al. (2013) particularize and filter the

dynamics of the continuation utility-to-consumption ratio.

1.2 Stationary variables

The consumption level is typically non-stationary, and so is the value function

Vf (·;θ), which challenges the application of our method. To ease its implementation,

we write the model in terms of the log-consumption growth rate g : X 2 → R,

defined as

g (Xt+1,Xt) := ln [C (Xt+1) /C (Xt)] (5)

(cf. Hansen and Scheinkman, 2012; Chen et al., 2013; Christensen, 2017). For

ψ 6= 1, we express the model through the dynamic restriction

Af,θ [vf (·;θ)] (Xt)

:= Ef

[
e(1−γ)g(Xt+1,Xt)vf (Xt+1;θ)α −

(
vf (Xt;θ)− 1 + β

β

)α ∣∣∣∣∣Xt

]
= 0,

(6)

featuring the unknown Xt-measurable function v· : X × F ×Θf → R defined as

vf (Xt;θ) := (Vf (Xt;θ) /C (Xt))
1−1/ψ . (7)

If ψ = 1, the discussion adjusts with parameter space Θ̃f ⊆ (0 : 1) × R+,

Xt-measurable function ṽ· : X × F × Θ̃f → R defined as

ṽf (Xt; β, γ) := ln [Vf (Xt; β, γ, 1)/C(Xt)], (8)

and dynamic restriction

Ãf,θ [vf (·; β, γ)] (Xt)

:=
β

1− γ
ln
[
Ef

[
e(1−γ)(ṽf (Xt+1;β,γ)+g(Xt+1,Xt))

∣∣∣Xt

]]
− ṽf (Xt; β, γ) = 0. (9)

9



We can rewrite the SDF in Equation (3) as

mf (Xt+1,Xt;θ) =


β

e−γg(Xt+1,Xt)vf (Xt+1;θ)α−1

Ef

[
e(1−γ)g(Xt+1,Xt)vf (Xt+1;θ)α

∣∣∣Xt

]1− 1
α

, ψ 6= 1,

β
e−γg(Xt+1,Xt)+(1−γ)ṽf (Xt+1;β,γ)

Ef

[
e(1−γ)(ṽf (Xt+1;β,γ)+g(Xt+1,Xt))∣∣Xt

] , ψ = 1.

(10)

Online Appendix F contains the proofs of these results.

The terms on the left-hand side (LHS) of Equations (6) and (9) are functionals

of the unknown continuation value functional v·. An analogous consideration

holds for alternative recursive preference specifications. In general, the sensitivity

of the dynamic restriction to changes in the parameter θ at the borders of the

space Θf depends on the functional v·. Ultimately, the functional v· determines

how informative the dynamic restriction is about the space Θf . We can describe

the sensitivity of the functional Af,θ [vf (·;θ)] (Xt) through its Fréchet derivative

at v· in the perturbation direction ∆v·. This functional derivative indicates the

first-order variation of the functional Af,θ [vf (·;θ)] (Xt) to the perturbation of

the continuation value v· to the function v· + ∆v·. Keeping all the remaining

model elements fixed, we expand the functional in the following Fréchet first-order

expansion:

Af,θ [vf (·;θ) + ∆vf (·;θ)] (Xt)

= 〈DAf,θ [vf (·;θ)] (Xt),∆vf (·;θ)〉 + O
(
‖∆vf (·;θ)‖2

∞
)
,

where the scalar ‖∆vf (·;θ)‖2
∞ is the supremum norm of ∆vf (·;θ).

Our local identification assumption for v· is an assumption on the local convexity

of the functional Af,θ [vf (·;θ) + ∆vf (·;θ)] (Xt) at the function vf (·;θ). We

assume a local stationary point based on the sensitivity mentioned above. As

we are interested in the entire space Θf and that space only, our identification

assumption for the functional v· also identifies the space Θf? .
6

6 Identification conditions have been proposed in the literature for different settings than
the one considered here. In a continuous-time Markov environment, Hansen and Scheinkman
(2009) show that a function ς : X 7→ R++, with the value eη being the eigenvalue of the
Perron-Frobenius equation Tς(Xt) = eης(Xt+t), for the operator T defined as Tvf?(Xt;θ) =
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Assumption 3. For the transition density f? in Assumption 1 and any θ ∈ Θf?, the

functional equation 〈DAf?,θ [vf? (·;θ)] (Xt),∆vf? (·;θ)〉 + O
(
‖∆vf? (·;θ)‖2

∞
)

= 0

has the equivalently null function ∆vf? (·;θ) ≡ 0 as unique solution.

Assumption 4. There is a partition of the state variable vector Xt =
[
Y ′t Ỹ

′
t

]′
such that the log-consumption growth rate at time t does not depend on Ỹt.

To account for Assumption 4, we adjust the notation for the log-consumption

growth rate in Equation (5) to g (Yt+1,Xt). We first introduce a new random

vector Yt,∗ and a new constant vector ỹ∗ such that we can solve the two equations

in closed form when
[
Y ′t,∗ ỹ

′
∗
]′

replaces the state variable vector Xt. Then, we

construct the sequence of vectors indexed by the non-negative integer i[
W ′

t (i) W̃
′
t (i)
]′

:=
1

i+ 1

[
Y ′t,∗ ỹ

′
∗
]′

+

(
1− 1

i+ 1

)[
Y ′t Ỹ

′
t

]′
. (11)

As the index i increases, the sequence represents an increased perturbation of the

reference random vector
[
Y ′t,∗ ỹ

′
∗
]′

. The vector
[
W ′

t (i) W̃
′
t (i)
]′
∈ W × W̃ = X

with transition density f[i] induces the conditional expectation E[i]

[
·
∣∣∣Wt, W̃t

]
.

At the start of the sequence, E[0]

[
·
∣∣∣Wt, W̃t

]
≡ E[0]

[
·
∣∣∣Yt,∗, ỹ∗] is the conditional

expectation induced by the vector
[
W ′

t (0) W̃ ′
t (0)

]′
≡
[
Y ′t,∗ ỹ

′
∗
]′

. At the end of

the sequence, as i → ∞, we have that lim
i→∞

E[i]

[
·
∣∣∣Wt, W̃t

]
≡ Ef?

[
·
∣∣∣Xt

]
is the

true conditional expectation we are ultimately interested in. We also introduce,

for any positive integer i, the two functions v[i] : X × F × (0 : 1) × R2
+ 7→ R+

and ṽ[i] : X × F × (0 : 1) × R+ 7→ R+ solving Equations (6) and (9) under the

i-th perturbation of the reference random vector
[
Y ′t,∗ ỹ

′
∗
]′

, and the conditional

expectations

µ
[g]
[i] (w̃; γ) := E[i]

[
e(1−γ)g(Wt+1(i),W̃t(i))

∣∣∣ W̃t = w̃
]
, (12)

for any w̃ ∈ W̃ .

Proposition 1. For the random vectors Yt,Yt,∗ ∈ Rd[Y ]

and Ỹt, ỹ∗ ∈ Rd[Ỹ ]

in

Ef?

[
e(1−γ)g(Xt+1,Xt)vf?(Xt+1;θ)|Xt

]
for any θ = [β γ ψ]′ ∈ Θf? , characterizes a contraction

mapping. The sign and magnitude of η then define Θf? . For example, when η < 0 and β < 1, the

restriction − ln[β] > 1−1/ψ
1−γ η defines the bounds of Θf? . Hansen and Scheinkman (2009) extend

their arguments to the existence and uniqueness of the value function ṽ.
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Equation (11), v[0](ỹ∗;θ) = (1 − β)/
(

1− βµ[g]
[0] (ỹ∗; γ)

1
α

)
and ṽ[0](ỹ∗; β, γ) =

(β/((1− β)(1− γ))) ln
[
µ

[g]
[0] (ỹ∗; γ)

]
if (i) Yt+1(i) ⊥ Ỹt+1(i)|Wt, W̃t, i; (ii) the

functions vf and ṽf are continuous in W̃t and do not depend on Wt; and (iii) the

function µ
[g]
[0] in Equation (12) is finite for any w̃ ∈ W̃.

Proof. See Appendix A.

We take the solutions to Equations (6) and (9) in the setting considered in

Proposition 1 as the functions v[0] and ṽ[0]. Then, for any i > 1, any w̃ ∈ W̃ , and

any θ ∈ (0 : 1)× R2, we introduce the following value function iterations:

v[i] (w̃;θ) := 1−β+βE[i]

[
e(1−γ)g(Wt+1(i),W̃t(i))v[i−1]

(
W̃t+1(i);θ

)α ∣∣∣W̃t = w̃
] 1
α

,

(13)

and

ṽ[i] (w̃; β, γ) :=
β ln

[
E[i]

[
e(1−γ)(ṽ[i−1](W̃t+1(i);β,γ)+g(Wt+1(i),W̃t(i)))

∣∣∣W̃t = w̃
]]

1− γ
. (14)

Online Appendix G discusses normal and Laplace log-consumption growth rates

with time-varying first moments as reference cases for Proposition 1.

1.3 The true SDF

There are q risky assets traded in the economy, and Rt = [R1,t . . . Rq,t]
′ is the

q-dimensional vector of cum-dividend gross returns. We denote the q-dimensional

null vector and vector of ones by 0q and ıq, respectively. The functional h· : X 2 ×

F ×Θf ×Rq
+ → Rq defined as hf (Xt+1,Xt,Rt+1;θ) := mf (Xt+1;Xt;θ)Rt+1− ıq

is the pricing error vector functional, defined for any f ∈ F and θ ∈ Θf .

Its conditional expectation e· : X × F × Θf → Rq such that ef(Xt;θ) :=

Ef [hf (Xt+1,Xt,Rt+1;θ)|Xt] is the conditional expected pricing error vector

functional. If an additional asset offers at time t the risk-free gross return

R
[F ]
t+1 from that time and t + 1, we adjust the population pricing error vector to

hf (Xt+1,Xt, R̃t+1;θ) := mf (Xt+1;Xt;θ)R̃t+1 − eq+1, for the (q + 1)-dimensional

extended vector of cum-dividend returns in excess of the risk-free one R̃t :=[(
Rt −R[F ]

t ıq

)′
R

[F ]
t

]′
, and the unit vector eq+1 with one as the q+1’th component.
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From here onward, we consider the inclusion of a risk-free asset. Thus hf is a

(q + 1)-vector. The following assumption, which states the absence of arbitrage

possibilities, introduces the true value θ? of the SDF parameter vector.7

Assumption 5. For the transition density f? in Assumption 1, the value θ? ∈ Θf?

such that ef?(Xt;θ?) = 0q is unique.

2 Model estimation

We consider a nonparametric specification for the state variables dynamics and

reconstruct it through kernel regression techniques.8

Assumption 6. The process {Xt}t∈Z is strictly stationary and time-homogeneous,

and we have a sample of T time-series observations during [1 : T ].

We consider a kernel function K : Rd[X] 7→ R+ such that

∫
Rd[X]

K(x)dx =

1,

∫
Rd[X]

xK(x)dx = 0d[X] and

∫
Rd[X]

xx′dx = Id[X]×d[X]

∫
Rd[X]

x2
iK(x)dx and is

independent of the index i, for the (d[X]×d[X])-dimensional identity matrix Id[X]×d[X] .

Furthermore, we define the symmetric and positive-definite (d[X]×d[X])-dimensional

bandwidth matrix H for KH(x) := |H|−1/2K(H−1/2x).9 The kernel weight

wT (x,Xs;H) for the state variable vector Xs conditionally on the value x is the

s’th element of the (T − 1)-vector e′1
(
X [X]′W [W ]X [X]

)−1
X [X]′W [W ]. In this

expression, X [X] indicates either (i) the (T − 1)-dimensional vector ıT−1 in the

case of the local constant kernel regression estimator (a.k.a. Nadaraya-Watson

regression estimator); or (ii) the ((T − 1)× (d[X] + 1))-dimensional matrix with

[1 (Xs − x)′] as s’th row in case of the local linear kernel regression estimator,

for any s = 1, . . . , T − 1. We also use the ((T − 1) × (T − 1))-dimensional

matrix W [W ] := diag
[
KH(X1 − x), . . . ,KH(XT−1 − x)

]
, for the vector-to-matrix

diagonalization operator diag [·].

We denote by f̂T and Ef̂T

[
.
∣∣Xt;H

]
the kernel estimator of the one-period

7A few scalar parameters lack strong identification in typical parametric specifications of
the state variables dynamics, such as the one in Bansal and Yaron (2004). Differently, here we
identify nonparametrically the transition density f?.

8A global regression estimator that fits a whole curve over the entire sample space would
spread local errors faster. The mistake at a point would affect the estimated regression in its
proximity and the level and shape of the whole estimated regression curve.

9See, for example, Wand and Jones (1994).
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transition density function of the process {Xt}t∈Z and a kernel regression function

with bandwidth matrix H , respectively. The matrix H controls the weighting of

the observations around x. Various kernel functions satisfy the assumptions above.

However, the performance of kernel regressions is determined by the selected

bandwidth H, while the selected kernel function is of secondary importance

(e.g. see Wand and Jones, 1994). We use the kernel of a multivariate normal

distribution, K(x) ∝ e−x
′x, because it is numerically more stable than other kernel

functions, such as the spherical Epanechnikov kernel K(x) ∝ (1− x′x)1{x′x61},

in a multivariate setting.

2.1 The reconstruction of the SDF family

We estimate the conditional expectations in Equations (13) and (14) by ANDP.

For any chosen
(
d[X] × d[X]

)
-dimensional bandwidth matrix H [1], we compute each

expectation operator Ef̂T

[
.
∣∣Xt;H

[1]
]

by a local constant kernel regression.10

For any point [x′ θ′]′ on a grid on X × Θ̂T , we compute the estimator of

the functions v[0](x;θ) and ṽ[0](x; β, γ), which we denote by v̂[0]

(
x;θ,H [1]

)
and

ˆ̃v[0]

(
x; β, γ,H [1]

)
.11 Then, for positive integer numbers i and any grid point, we

compute the function12

v̂[i]

(
x;θ,H [1]

)
= 1− β

+ β

(
T−1∑
s=1

wT
(
x,Xs;H

[1]
)
e(1−γ)g(Xs+1,Xs)v̂[i−1]

(
Xs+1;θ,H [1]

)α) 1
α

(15)

if ψ 6= 1. When ψ = 1, we apply the iterative scheme

ˆ̃v[i]

(
x; β, γ,H [1]

)
=

β

1− γ

· ln

(
T−1∑
s=1

wT
(
x,Xs;H

[1]
)
e(1−γ)(g(Xs+1,Xs)+ˆ̃v[i−1](Xs+1;β,γ,H[1]))

)
. (16)

10The kernel regression estimators are asymptotically equivalent to integrals w.r.t. the transition
density f̂T .

11The local constant kernel regression estimator ensures that any numerical reconstruction of
the continuation utility function is a non-negative function.

12Our method resembles the Value Function Iteration (VFI) method that is often applied
to solve computational equilibrium models (cf. Judd, 1998) in that we employ the empirical
transition density rather than the transition density that is implied by the theoretical model.
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For the reconstruction of the SDF, we apply Scott’s rule of thumb bandwidth

H [1]
? = T

− 1

4+d[X] V
f̂
[M ]
T

[Xt], where the matrix V
f̂
[M ]
T

[Xt] is the unconditional sample

variance-covariance matrix of the vector Xt. We select the maximum number of

admissible iterations M and an error bound ε. For any fixed θ = [β γ ψ]′ with

ψ 6= 1, the positive integer number NT (θ), which may depend on T and θ, returns

the number of iterations so that we define the estimated parameter space Θ̂T as

Θ̂T :=

{
θ ∈ R3

+ :

lim
i→NT (θ)6M

sup
x∈X

∣∣∣∣∣∣
v̂[i]

(
x;θ,H

[1]
?

)
− v̂[i−1]

(
x;θ,H

[1]
?

)
v̂[i−1]

(
x;θ,H

[1]
?

)
∣∣∣∣∣∣ 6 ε

}
. (17)

If ψ = 1, we replace the function v̂[i] with ˆ̃v[i].
13 Then, our reconstruction of the SDF

in Equation (10) for any value θ ∈ Θ̂T , which we denote by mf̂T

(
Xt+1,Xt;θ,H

[1]
)

is, for ψ 6= 1,

βe−γg(Xt+1,Xt)v̂[NT (θ)]

(
Xt+1;θ,H [1]

)α−1(
T−1∑
s=1

wT
(
Xt,Xs;H

[1]
)
e(1−γ)g(Xs+1,Xs)v̂[NT (θ)−1]

(
Xs+1;θ,H [1]

)α)1− 1
α

. (18)

For ψ = 1, it is

βe−γg(Xt+1,Xt)e(1−γ)ˆ̃v[NT (β,γ)](Xt+1;β,γ,H[1])

T−1∑
s=1

wT
(
Xt,Xs;H

[1]
)
e(1−γ)(g(Xs+1,Xs)+ˆ̃v[NT (β,γ)−1](Xs+1;β,γ,H[1]))

, (19)

where, again, we indicate the bandwidth matrix H [1] as the last argument of the

function. We then check the validity of Assumption 3 numerically on data, excluding

multiple alternative specifications for the functional vf̂T := v̂[NT (θ)]

(
·; ·,H [1]

)
. In

case ψ 6= 1, we look for a perturbation direction ∆vf̂T 6≡ 0 solving the functional

equation
〈
DAf̂T ,θ

[
vf̂T (·;θ)

]
(Xt),∆vf̂T (·;θ)

〉
+O

(∥∥∥∆vf̂T (·;θ)
∥∥∥2

∞

)
= 0 for any

13In our empirical applications, choosing v[0],f̂T and ṽ[0],f̂T either constant or varying as in
Proposition 1 leads to the same convergence limit v[N ],f̂T

and ṽ[N ],f̂T
. However, in the second

case, we need a far lower number of iterations. In particular, the difference in the number of
iterations to achieve convergence is enormous for higher values of γ and values of ψ in the vicinity
of 1. Because of the curvature of the risk aggregator, the lower γ, the closer is v[0] to the mean of
v[N ],f̂T

.
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value θ ∈ Θ̂T . In particular, we consider local perturbations of the reconstructed

continuation value function and also families of interpolating functions from sets of

basis functions. We proceed similarly with the functional ṽf̂T := ˆ̃v[NT (θ)]

(
·; ·, ·,H [1]

)
in case ψ = 1.

We report the asymptotic distribution of the SDF reconstructed as in Equations

(18) and (19) for any fixed value of the SDF parameter θ, under the standard

simplifying parametrization of the bandwidth matrix H [1] through the scalar

bandwidth b
[1]
T , and regularity assumptions usually adopted in economic applications

listed in Appendix C. We denote the conditional variance-covariance matrix operator

for the state variables transition density f by Vf [·|Xt].

Proposition 2. Under Assumptions 7-15 in Appendix C, we have Θ̂T
P→ Θf? and√

Tb
[1]d[X]

T

(
mf̂T

(x̃,x;θ, b
[1]
T )−mf?(x̃,x;θ)

)
D→ N (0,K (0d[X])V(x̃,x;θ)) for any

x̃,x ∈ X , θ ∈ Θf?, the function convolution K(x) :=

∫
X
K (u)K (u− x) du and

V (x̃,x;θ)

:=



e−γg(x̃,x)vf? (x̃;θ)α−1 Vf?

[
e−γg(Xt+1,Xt)vf? (Xt+1;θ)α−1

∣∣Xt = x
]

Ef?

[
e−2γg(Xt+1,Xt)v

2(α−1)
f?

(Xt+1;θ)
∣∣∣Xt = x

]
f

[M ]
? (x)

,

for ψ 6= 1,

e−γg(x̃,x)+(1−γ)ṽf? (x̃;β,γ) Vf?

[
e−γg(Xt+1,Xt)+(1−γ)ṽf? (Xt+1;β,γ)

∣∣Xt = x
]

Ef?

[
e−2γg(Xt+1,Xt)+2(1−γ)ṽf? (Xt+1;β,γ)

∣∣Xt = x
]
f

[M ]
? (x)

,

for ψ = 1.

Proof. See Appendix D.2.

For any point on a grid on X 2× Θ̂T that is interesting for our analysis, we estimate

the value V (x̃,x;θ) by plugging v[NT (θ)] and ṽ[NT (θ)] in its formula in place of

vf? and ṽf? , respectively, and estimating conditional expectation and variance by

local linear kernel estimators Ef̂T

[
.
∣∣Xt;H

[1]
]

and Vf̂T

[
.
∣∣Xt;H

[1]
]
, respectively.

We consider mf̂T

(
x̃,x;θ,H [1]

)
e
ca/2V̂T (x̃,x;θ)/

(√
Tmf̂T

(x̃,x;θ,H[1])
)

as the lower bound

for the confidence interval for mf?(x̃,x;θ), at the asymptotic confidence level a,

where ca/2 is the (a/2)-quantile of the standard normal distribution. We obtain
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the corresponding upper bound by replacing the (a/2)-quantile with the (1 −

a/2)-quantile, from Proposition 2 and the Delta Method.

2.2 The estimation of the true SDF

We estimate the true value θ? of the SDF parameter vector by a kernel-based LGMM

estimator.14 For any value {x,θ} on a grid of points over X × Θ̂T , we compute

the SDF defined in Equations (18) and (19) as follows. For any choice of the(
d[X] × d[X]

)
-dimensional bandwidth matrices in the set H[2] :=

{
H

[2]
1 , . . . ,H

[2]
q

}
and H [1], we implement the expectation operator Ef̂T

[
.
∣∣Xt;H[2]

]
as a local linear

kernel regression function:

ej,f̂T

(
x;θ,H [1],H

[2]
j

)
:=

T−1∑
s=1

wT

(
x,Xs;H

[2]
j

)
hj,f̂T

(
Xs+1,Xs, Rj,s+1;θ,H

[1]
j

)
, (20)

where the function hj,f̂T
(
Xs+1,Xs,Rs+1;θ,H [1]

)
estimates the time s population

pricing error for asset j for the SDF defined in Equations (18) and (19). We

introduce the indicator function 1X̄ , which excludes pricing errors conditionally on

the chosen part X̄ of the state variable space X , to control for boundary effects

in the kernel regression.15 Moreover, we use local linear kernel regressions for the

conditional pricing errors. These estimators suffer much less from boundary effects

than local constant kernel regressors for a highly non-linear regression function (e.g.

see Wand and Jones, 1994). Therefore, we can use a more lax trimming condition

than if we would use local constant kernel regressions for the pricing errors.

We select each bandwidth matrix H
[2]
j,?, j = 1, . . . , q + 1, by leave-one-out

cross-validation:

H
[2]
j,? := argmin

Hj

T−1∑
t=1

[
hj,f̂T

(
Xt+1,Xt,Rt+1;θ,H [1]

?

)
−ej,f̂T ,−t

(
Xt;θ,H

[1]
? ,Hj

) ]2

,

where ej,f̂T ,−t is the j’th element of the kernel local linear kernel regression

estimator vector defined in Equation (20) with the observation Xt excluded,

14Christensen (2017) estimates the model under the restriction ψ = 1 by a sieve method.
15In kernel regressions, trimming factors control boundary effects (cf. Tripathi and Kitamura,

2003; Gagliardini and Ronchetti, 2020).
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and the minimization is over the set of admissible bandwidth matrices.

The estimator of the true value θ? of the SDF parameter vector is

θ̂T := argmin
θ∈Θ̂T

1

T − 1

T−1∑
t=1

1X̄ (Xt)ef̂T
(
Xt;θ,H

[1]
? ,H[2]

?

)′
Ω̂T (Xt)

−1 ef̂T
(
Xt;θ,H

[1]
? ,H[2]

?

)
, (21)

for the set H[2]
? :=

{
H

[2]
1,?, . . . ,H

[2]
q,?

}
, and the trimming indicator function 1X̄ (x) is

one when x belong to the compact subset X̄ of the support of the state variables,

and zero otherwise, and the ((q+1)× (q+1))-dimensional matrix Ω̂t is a consistent

estimator of a weighting matrix Ω? chosen based on ease of implementation or

properties. The estimator θ̂T minimizes the time-series average of the empirical

counterpart of a quadratic form of the pricing error vector based on the matrix

Ω?(Xt)
−1. In particular, the matrix weighs each pricing error on a traded asset.

The quadratic form varies over time, and the criterion in Equation (21) is zero only

when this form is identically null. Appendix D shows that this criterion function

uniquely identifies the SDF parameter vector.

Depending on the chosen estimator properties to control, there are various

natural candidates for the weighting matrix Ω?. For instance, the identity matrix

weighs all pricing errors equally in the cross-section and across time. The conditional

covariance matrix of the pricing errors minimizes the asymptotic variance of the

estimator θ̂T . When the weighting matrix involves conditional expectations, such

as the conditional covariance of the pricing errors, we employ a local constant

regression with the common bandwidth matrixHΩ for each element of the weighting

matrix. This approach is standard in the literature on nonparametric estimation

methods (e.g., Yin et al., 2010; Nagel and Singleton, 2011). The local constant

estimator with a scalar bandwidth matrix ensures that Ω̂t is positive definite. In

addition, estimates that rely upon a unique bandwidth are numerically more stable

than those obtained by ((q + 1) × q)-dimensional bandwidth matrices for each

weighting matrix element. Following Yin et al. (2010) and Nagel and Singleton
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(2011), we employ the matrix

argmin
HΩ

T−1∑
t=1

ln
[
|Ω̂T,−t(Xt;θ,HΩ)|

]
+
[
hf̂T

(
Xt+1,Xt,Rt+1;θ,H [1]

)
− ef̂T

(
Xt;θ,H

[1]
? ,H[2]

?

)]′
Ω̂−1
T,−t(Xt;θ,HΩ)

·
[
hf̂T

(
Xt+1,Xt,Rt+1;θ,H [1]

)
− ef̂T

(
Xt;θ,H

[1]
? ,H[2]

?

)]
,

where Ω̂T,−t(·;θ,HΩ) is the estimate ofΩ? obtained by omitting the t-th observation,

and | · | denotes the matrix determinant. When Ω?,t is the conditional centered

(or uncentered) second-moment matrix of the pricing error vector, we consider

its kernel estimator and compute the estimator θ̂T iteratively, as with a Local

Continuously Updated Generalized Method of Moments.

Proposition 3. Under Assumptions 7-16 in Appendix C, estimator θ̂T is consistent

and asymptotically normal with
√
T -rate of convergence, with minimal asymptotic

variance when Ω?(Xt) = Vf? [hf? (Xt+1,Xt,Rt+1;θ?)|Xt].

Proof. See Appendix D.3.

3 The U.S. market from 1952 to 2019

We estimate the Epstein-Zin preference parameters for a representative agent

that invests in the U.S. equity and T-bills market from 1952Q1 to 2019Q3. We

assume that the log-consumption growth rate and the consumption-wealth ratio

span the information used for pricing. We simplify the notation for the former

in Equation (5) to gt, and denote the latter by cayt. We take consumption

data from the National Income and Products Accounts tables of the Bureau of

Economic Analysis. We proxy aggregate consumption by the sum of the Personal

Consumption Expenditures: Nondurables and Personal Consumption Expenditures:

Services, which we scale by Population. We obtain the consumption-wealth ratio

of Lettau and Ludvigson (2001) from Martin Lettau’s website.16

Our test assets are the 3-month T-Bill and the six value-weighted Fama-French

portfolios, which are two-way sorted for the size and book-to-market factors. These

16https://sites.google.com/view/martinlettau/data
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portfolios capture most of the cross-sectional variation in equity returns (e.g.,

Fama and French, 1993; Nagel and Singleton, 2011). They classify as Growth (G),

Neutral (N), and Value (V ), along the book-to-market dimension and as Small (S)

and Big (B), along the market capitalization dimension. Accordingly, we add the

superscripts SG, SN , SV , BG, BN , and BV to the notation of the gross time t

returns. The returns on these portfolios are from Kenneth French’s website.17 We

proxy the risk-free rate R
[F ]
t by the gross return on 3-month T-Bills from Federal

Reserve Economic Data (FRED). We adjust consumption and the asset returns for

inflation by scaling the data for the Personal Consumption Expenditures Chain-type

Price Index from the Bureau of Economic Analysis.

Figure 1 displays the log-consumption growth rate gt and the consumption-wealth

cayt over time. The National Bureau of Economic Research (NBER) recession

periods from the FRED recession indicators are the shaded areas. No volatility

clustering and persistence are apparent in the log-consumption growth rate, which

suggests that it is close to i.i.d.. We standardize both conditioning variables for

numerical stability. We trim through the set X? =
{
Xt ∈ R2 :

√
X2

1,t +X2
2,t 6 3

}
.

Figure 2 exhibits this trimming. We retain just the points inside the circle. In

practice, we exclude very little data.

Since consumption growth and the consumption-wealth ratio predict conditional

returns well, we assume they span the information set. Figure 3 exhibits the (excess)

expected returns on the test assets conditional on the log-consumption growth rate

and consumption-wealth ratio. We can see that both variables capture different

components of (excess) returns, as evidenced by the gradients’ diagonal directions.18

We compute the estimator Θ̂T selecting the combinations of values of the

preference parameters that make the iterations in Equations (15) and (16) converge.

Figure 4 exhibits the estimated parameter space. At each node in dark gray, vf̂T

and ṽf̂T exhibit contraction. Panel 4(a) refers to the instance that we restrict ψ to

unity. We construct an orthogonal grid with 0.99 6 β 6 1.002 and 0.5 6 γ 6 150

17http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
18This result is unsurprising because the two variables do not correlate (their estimated

correlation equals 0.02), while both variables describe nonlinear relations with expected (excess)
returns. Figures in Online Appendix E show this effect.
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Figure 1. The log-consumption growth rate, gt, and the standardized

consumption-wealth ratio, cayt, with null mean and unit variance, over time. The

shaded areas correspond to the NBER recession periods.
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Figure 2. Trimming using a circle with a radius of 3 for the standardized values of

log-consumption growth rate, gt (on the horizontal axis), and the consumption-wealth

ratio, cayt (on the vertical axis).
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Figure 3. Conditional expected (excess) returns on both log-consumption growth

rate, gt (on the x-axes), and the consumption-wealth ratio, cayt (on the y-axes). We

standardize the values of gt and cayt to a mean of zero and a standard deviation of one

for numerical stability.
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and take 100 equidistant nodes in each direction. Thus, we evaluate 10, 000 points

on the two-dimensional grid. We can see that we have a contraction for all values

of γ between 0.5 and 150 and for β 6 0.9993. Given that we use quarterly data,

we think this is a very reasonable upper bound on β.
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(a) ψ = 1.
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(b) ψ 6= 1.

Figure 4. Preference parameter space estimated by the method in Section 2 and

log-consumption growth and consumption-wealth ratio spanning the information used to

set prices.

Panel 4(b) refers to the case with ψ 6= 1. Since β is the primary determinant of

the speed and limit of convergence among the preference parameters, we consider

some of its values. For each of them, we construct an orthogonal grid with

0.5 6 γ 6 150 and 0.1 6 ψ 6 6 with 100 nodes in each direction. Given that

we have quarterly data, we can expect an estimate of β in the vicinity of 0.993.

Therefore, we construct grids for β equal to 0.99 and 0.995. In addition, we

evaluate the convergence for relatively high values of β since they are associated

with weaker convergence. Specifically, we use β = 0.998 and β = 0.999, which are

relatively high values β since such values are associated with a monthly rather

than a quarterly frequency. For β = 0.99 and β = 0.995, we have convergence

everywhere. However, for values of β closer to 1, we see that the maximal γ varies

with the value of ψ. When ψ is lower than 4, the maximum value of γ drops

substantially. This fact is rather unsurprising since for a low value of ψ and a high

value of γ the absolute value of the auxiliary parameter α := (1− γ)/(1− 1/ψ) in

Equation (15) becomes very high. However, such values for β are implausible for

quarterly data, so the space Θ̂T is large and unlikely to constrain the other SDF
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parameters.19

Table 1 reports the point estimates and serial bootstrap confidence intervals

of the preference parameters obtained with the identity matrix as the weighting

matrix. This weighting matrix, which weighs the pricing errors on the distinct

assets equally in the cross-section and across time, is the most interesting from

an economic perspective. The conditional covariance matrix of the pricing errors

minimizes the asymptotic variance of the SDF parameter vector estimator. Still,

it puts a lot of weight on the risk-free asset since the variation of pricing errors

is relatively low. The first column with numbers exhibits the estimates for the

estimates of β and γ when we restrict ψ to the value of 1. The former is at 0.989,

which is somewhat low given that we have quarterly data. At the same time, the

estimate of γ is slightly higher than expected at a value of 16.55. The second

column with numbers exhibits the estimates of the parameters when ψ is a free

parameter. We can see that the point estimates of β and γ do not change that

much but that the confidence interval of γ becomes substantially wider. The

estimated value of ψ is 1.74 but is not statistically significantly bigger than 1.

Table 1. Estimates of the preference parameters and minimized criterion Q̂T that

define the estimator
[
β̂T γ̂T ψ̂T

]′
in Equation (21), with serial bootstrap 90% standard

confidence intervals in parentheses (expected block length of six). The estimation method

is described in Section 2, with the identity matrix as the weighting matrix, the six FF

portfolios, and the 3-month T-Bill as test assets, and log-consumption growth rate and

consumption-wealth ratio as conditioning information to set prices at time t. Online

Appendix H describes the serial bootstrap.

β̂T 0.989 0.987
(0.967, 0.999) (0.972, 1.00)

γ̂T 16.55 16.44
(2.50, 23.94) (1.85, 40.27)

ψ̂T - 1.74
(0.10, 2.66)

Q̂T 0.004 0.0039
(0.002, 0.009) (0.002, 0.009)

19We reconstruct the SDF family as described in Section 2 with normal and Laplace
log-consumption growth rates as reference cases.
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Figure 5. Estimated SDF M̂t,t+1 and its multiplicative components M̂
[1]
t,t+1 :=

β̂T (C (Xt+1) /C (Xt))
− 1

ψ̂T and M̂
[2]
t,t+1 := M̂t,t+1/M̂

[1]
t,t+1 over time.

The first panel of Figure 5 displays the estimated SDF as a function of time.

It exhibits heteroskedasticity, and it is relatively volatile around recessions. The

second and third panels of the figure show the SDF multiplicative components

β (C (Xt+1) /C (Xt))
− 1
ψ and

 Vf (Xt+1;θ)

Ef

[
Vf (Xt+1;θ)1−γ ∣∣Xt

] 1
1−γ

−(γ− 1
ψ )

, respectively.

In particular, the latter component introduces most of the heteroskedasticity.

This pattern explains our relatively low estimate compared to estimates of γ in

applications with the CRRA discount factor. With that preference specification,

γ = 1/ψ, so that the latter SDF component is everywhere equal to 1. In that case,

one has to assume a very high value for the risk aversion parameter γ, say 90, to

generate sufficient variation in the SDF to match the equity premium (Mehra and

Prescott, 1985).20 With Epstein-Zin preferences, as the estimate of the second

component of the SDF is somehow volatile, we do not need to inflate further the

variation in consumption growth rate by raising it to a high power in the first SDF

20Mehra and Prescott (1985) suggest a lower bound of four and an upper bound of ten for γ.
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Figure 6. Quadratic form of the pricing errors of the six FF portfolios and the

3-month T-Bill at the estimate θ̂T = [0.987 16.44 1.74]′ over time. The estimate is for

the six FF portfolios and the 3-month T-Bill as test assets, consumption growth and

consumption-wealth ratio spanning the information used to set prices at time t, and the

identity matrix as the weighting matrix.

component.

The top panel of Figure 6 plots the value ê(Xt; θ̂T )′ê(Xt; θ̂T ) as a function

of time. The pricing errors are substantial during recessions and crises. The

consumption growth rate takes on extremely low values during such periods, as

shown in the upper panel of Figure 1. However, the indicator function nullifies

such periods in the criterion function (21). The bottom panel of Figure 6 displays

the statistic 1X̄ (Xt)ê(Xt; θ̂T )′ê(Xt; θ̂T ) as a function of time. The asset pricing

model explains the data very well in more tranquil times. Next, we can understand

that we might need to generate more volatility in the SDF to match the price

fluctuations in turbulent periods by raising γ.

4 Monte Carlo experiment

We evaluate the finite sample performance of our estimator with a Monte Carlo

(MC) experiment of the Bansal, Kiku and Yaron 2012 (BKY) long-run risks
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model. In the model for q tradable risky assets, the (q + 3)-dimensional vector

ζt = [ηt u1,t . . . uq,t εt wt]
′ ∼ N (0q+3, Iq+3) of unobservable shocks is at the base

of the dynamics of the log-consumption growth rate, g(Xt+1,Xt), and of the

growth rate of each dividend claim, gj(Xt+1,Xt) for j = 1, . . . , q. The function

µ induces persistent changes in the expected growth rates of consumption and

dividends. The function σ represents the stochastic volatility component that

creates conditional heteroskedasticity in these growth rates. The following set of

equations characterize the dynamics of the BKY economy:

g(Xt+1,Xt) = µ0 + µ(Xt) + σ(Xt)ηt+1,

gj(Xt+1,Xt) = µj + φjµ(Xt) + σ(Xt) (πjηt+1 + ϕjuj,t+1) ,

µ(Xt+1) = ρµ(Xt) + ϕ[e]σ(Xt)εt+1,

σ2(Xt+1) = σ̄2 + ν (σ2(Xt)− σ̄2) + σ[w]wt+1,

(22)

where |ρ| < 1, ϕj, ϕ
[ε], σ[w] > 0, µ0, µj ∈ R. Even if the shocks are independent,

the variables g (Xt+1,Xt) and gj (Xt+1,Xt) are correlated because of the common

factor µ(Xt). In calibrations, the factor µ is persistent since ρ is close to one

and σ(Xt) is relatively small (e.g., Bansal and Yaron, 2004; Bansal et al., 2012).

Additionally, note that the log-consumption growth rate and dividend growth

rate are i.i.d. when σ[w] = ϕ[ε] = 0. The parameters φj > 1 and πj > 1 govern

j-th dividend dynamics, particularly its mean, variance, and correlation with the

log-consumption growth rate. For q = 1 and π1 = 0, the model is to the Bansal

and Yaron (2004) one.

We align our MC experiment with the empirical estimation by adopting a

quarterly calibration and 275 simulated quarters. We solve the model using global

projection methods. Therefore, we do not induce approximation errors that result

from i) log-linearization or ii) errors from time aggregation of a high-frequency

simulation to quarterly observations. Online Appendix I explains how we solve the

model using global projection methods. We generate MC samples by simulating

the returns using this global solution. Furthermore, we note that the functions

µ(Xt) and σ2(Xt) contain the necessary information for the time t conditional

expectations and can serve as the Markov state variables. Therefore, we proceed
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with our discussion with X = R× R+ and the same notation as in Proposition 1.

4.1 Setting

We evaluate the estimator’s finite sample properties in B = 1000 time series. We

simulate the processes for six risky gross returns and a risk-free gross return. We

take unconditional averages of the variables as starting values, and we use a burn-in

period to mitigate the potential influence of our choice. Table 2 displays the DGP

parameter values, which correspond with a quarterly calibration of the (Bansal

et al., 2012) model.

Table 2. Calibration of the MC sample

Preferences Volatility Consumption

β 0.9930 σ̄ 0.0165 µ0 0.0045

γ 10 ν[1] 0.9960 ρ 0.9000

ψ 1 or 2 σ[w] 0 or 0.89e-5 ϕ[e] 0.0380

Asset µj φj πj ϕj

1 0.0045 1.6000 2.0000 5.0000
2 0.0045 2.1000 2.6000 5.2500
3 0.0045 2.5000 2.8000 5.5000
4 0.0045 2.7500 2.9000 5.7500
5 0.0045 3.0000 2.9500 6.0000
6 0.0045 3.2000 3.1000 6.5000

First, we consider ψ = 1 and no stochastic volatility, that is σ[w] = 0. We then

estimate the parameters with ψ unconstrained and σ[w] = 0. The simulation model

parameters are the same as before, except for ψ, which we set equal to 2, as do

Bansal et al. (2012).

4.2 Results

Figure 7 displays the empirical distribution of the estimated SDF parameters for

ψ = 1 and σ[w] = 0. Panel 7a exhibits the distribution of β̂
[MC]
b,T . The dashed

vertical line is at the Data Generating Process (DGP) parameter value of 0.993,

and the solid vertical line indicates the mean of its 1, 000 bootstrap estimates. We

do not find any bias in the estimation of β.

Panel 7b exhibits the distribution of γ̂
[MC]
b,T . The dashed vertical line indicates

the DGP value of 10 for the risk aversion parameter, and the solid vertical line is at
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Figure 7. Smoothed distribution of the MC estimates of β and γ in the BKY long-run

risks model for six risky assets and a risk-free one, with ψ = 1 and log-consumption

growth rate spanning the information used to set prices. In each MC iteration, we

estimate the SDF parameter vector by the method described in Section 2, with the

identity matrix as the weighting matrix.

the mean of its 1, 000 bootstrap estimates γ̂
[MC]
b,T . We cannot point to a downward

bias because of the magnitude of the MC standard errors.
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Figure 8. Smoothed distribution of the MC estimates of β, γ, and ψ, in the BKY

long-run risks model for six risky assets and a risk-free one, with log-consumption growth

rate spanning the information used to set prices. In each MC iteration, we estimate the

SDF parameter vector by the method described in Section 2, with the identity matrix as

the weighting matrix.

Panel 8a exhibits the distribution of β̂
[MC]
b,T . The dashed vertical line is at the

DGP parameter value of 0.993, and the solid vertical line indicates the mean of

its 1, 000 bootstrap estimates. We cannot point to an upward bias because of

the magnitude of the MC standard errors. Also, we note that the distribution of

this estimate is left-tailed. Panel 8b exhibits the distribution of the MC estimate

γ̂
[MC]
b,T . The dashed vertical line indicates the DGP value of 10 for the risk aversion

parameter γ, and the solid vertical line indicates the mean of its bootstrap estimates.
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In Panel 8c, we report the distribution of the MC estimates of ψ. The dashed line

indicates the DGP value of 2 and we see that the mean of the MC estimates, as

indicated by the solid line, is slightly to the right of this true value. By comparing

Figures 7 and 8, we can also observe that the confidence intervals for β and γ are

somewhat wider when ψ is a free parameter.

5 Conclusion

We propose a minimum distance estimation method for nonparametric time series

models described by conditional moment restrictions as functional equations solved

by a contraction mapping argument. The technique exploits the complete structural

information of the theoretical model, and it limits several sources of misspecification

risk. We employ the method to estimate the Epstein-Zin preference parameters

for an agent representing U.S. consumers and investors in the U.S. equity and

T-bill markets from 1952 to 2019. The point estimates of risk aversion and

EIS parameters are 16 and 1.7, respectively, close to previously theorized values.

Confidence intervals for these estimates indicate a preference for an early risk

resolution.

Studies in finance and macroeconomics differ in specifying the agents’ recursive

preferences and their information. As our estimation approach exploits solely

and entirely each of these specifications, the method can be included in a model

selection procedure. We leave this extension to future work.
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A Proof of Proposition 1

From Assumption 4, we can change the parameterization of the log-consumption

growth rate in Equation (5) as a function of Yt+1. Similarly, from Assumption (ii),

we can change the parameterization of the functions vf? and ṽf in Equations (7)

and (8). We have that Wt(0) = Yt,? and W̃t(0) = ỹ∗. Therefore, from Assumptions

(i) and (iii) in Proposition 1, the expectations in the r.h.s.’s of Equations (6) and

(9) are such that

E[0]

[
e(1−γ)g(Wt+1(0),W̃t(0))vα[0]

(
W̃t+1(0);θ

)∣∣∣Wt, W̃t

]
= µ

[g]
[0] (ỹ∗; γ) vα[0] (ỹ∗;θ) ,

and

ln
[
E[0]

[
e(1−γ)(ṽ[0](W̃t+1(0);β,γ)+g(Wt+1(0),W̃t(0)))

∣∣∣Wt, W̃t

]]
= ln

[
E[0]

[
e(1−γ)ṽ[0](W̃t+1(0);β,γ)

∣∣∣Wt, W̃t

]]
+ ln

[
µ

[g]
[0] (ỹ∗; γ)

]
.

Therefore, we can write Equation (6) as v[0] (ỹ∗;θ) = 1−β+βµ
[g]
[0] (ỹ∗; γ)

1
α v[0] (ỹ∗;θ)

and Equation (9) as ṽ[0] (ỹ∗; β, γ) = βṽ[0] (ỹ∗; β, γ) +
β

1− γ
ln
[
µ

[g]
[0] (ỹ∗; γ)

]
. The

proposition follows from reordering the terms.

B Alternative SDF characterization

The true value of the SDF parameter vector is θ? = argmin
θ∈Θf?

Q
f
[M ]
? ,f?

(θ), where

Qf [M ],f (θ) := Ef [M ]

[
1X̄ (Xt)ef (Xt;θ)′Ω?(Xt)

−1ef (Xt;θ)
]
, (B.1)

for the Xt-measurable weighting matrix function Ω?(Xt) estimated by Ω̂t, and

where Ef [M ] [·] is the unconditional expectation operator for the marginal probability
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density function f [M ]. Under Assumption 5, we have the singleton

{θ?} := {θ : Ef? [hf?(Xt+1,Xt,Rt+1;θ)|Xt] = 0q} , (B.2)

with the pricing error functional serving as a generalized residual. We can write

the criterion function in Equation (B.1) for the true pdf’s f
[M ]
? and f? as

Qf [M ]
? , f?(θ) := E

f
[M ]
?

[
1X̄ (Xt)Ef?

[
hf?(Xt+1,Xt,Rt+1;θ)

∣∣Xt

]′
Ω?(Xt)

−1Ef?

[
hf?(Xt+1,Xt,Rt+1;θ)

∣∣Xt

]]
. (B.3)

Under Assumption 5, we have Q
f
[M ]
? ,f?

(θ?) = 0, so that ∇θ′Qf [M ]
? ,f?

(θ) = 0p locally

in an open neighborhood of θ?. This equation represents the local identification

condition of the SDF parameter. In general, it may hold without Assumption 5.

However, that assumption makes the identification global.

C Regularity assumptions

Assumption 7. The vector Xt is geometrically strong mixing. The stationary pdf

fZ of the vector Zt := [X ′t X
′
t−1]′ is of differentiability class C r(R2d[X]

), for integer

r > 2, such that fZ > 0 in the interior of the set X 2. The same conditions are

satisfied by f
[M ]
? . Also,

∫
X

∫
X

[
fZ(x̃,x)

f
[M ]
? (x̃)f

[M ]
? (x)

]q
fZ(x̃,x)dx̃dx <∞ for real q > 1.

Assumption 8. There exists a growing sequence of sets XT ⊂ X with complement

XC
T , for T ∈ N, and real constants c1, c2 > 0 such that sup

x∈XT
P
[
Xt+1 ∈ XC

T |Xt = x
]
→

0 as T →∞, and inf
x,x̃∈XT

fZ (x, x̃) >
c1

log [T ]c2
and inf

x∈XT
f [M ]
? (x) >

c1

log [T ]c2
.

Assumption 9. The set X̄ is compact and independent of the value θ? of the SDF

parameter vector and the time series sample size T . It belongs to the interior of

set X ⊆ Rd[X]
, and it is such that inf

x∈X̄
f [M ]
? (x) > 0.

Assumption 10. The parameter θ? is in the interior of the compact set Θf? ⊂ Rp.

Assumption 11. We have (i) E
f
[M ]
?

[
|mf? (Xt+1,Xt;θ?) |2p̃

]
<∞, for real p̃ > 1

such that 1/p̃ + 1/q = 1, where q > 1 is defined in Assumption 7; and (ii)

sup
θ∈Θf?
x∈X

Ef?

[
|mf? (Xt+1,Xt;θ)|2+d

∣∣Xt = x
]
<∞, for real d > 0.

Assumption 12. The kernel function K is a bounded and Lipschitz function on X
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such that K(x) = K(−x) > 0 for any x ∈ X ,

∫
X
K(u)du = 1, K(0d[X]) <∞, and∫

X
‖u‖rK(u)du <∞, where r is defined in Assumption 7, and

∫
Rd[X]

uiK(u)du =

0, for any multi-index i ∈ Nd[X]
such that |i| 6 r − 1.

Assumption 13. The bandwidth b
[1]
T > 0 used for the local constant kernel

estimation is such that (i) b
[1]
T = o(1), (ii)

log [T ]2

Tb
[1]3d[X]

T

= o(1), and (iii) Tb
[1]2r
T = o(1),

where r is defined in Assumption 7.

Assumption 14. For any θ ∈ Θf?, the positive integer number NT (θ) used

in Proposition 1 is such that lim
T→∞

NT (θ) = ∞, lim
T→∞

NT (θ)b
[1]d[X]

T = ∞ for the

bandwidth b
[1]
T in Assumption 13.

Assumption 15. The functions µ
[g]
[i] in Equation (12) are of differentiability class

C 1
(
X̃ × R+

)
, and the functions σ

[g]2
[i] : X × Rd[θ] → R+ and σ̃

[g]2
[i] : X × (0 :

1)× R+ → R+ defined as

σ
[g]2
[i] (x̃;θ) := V[i]

[
e(1−γ)g(Wt+1(i),W̃t(i))v[i]

(
W̃t+1(i);θ

)α∣∣∣ W̃t(i) = x̃
]

σ̃
[g]2
[i] (x̃; β, γ) := V[i]

[
e(1−γ)(ṽ[i−1](W̃t+1(i);β,γ)+g(Wt+1(i),W̃t(i)))

∣∣∣ W̃t(i) = x̃
]
,

for any non-negative integer i, are of differentiability class C 1
(
X̃ × Rd[θ]

)
and

C 1
(
X̃ × (0 : 1)× R+

)
, respectively.

Assumption 16. The matrixΩT (Xt) converges in probability to the positive-definite

matrix Ω?(Xt) introduced in Equation (B.1).

Assumption 17. The (q × d[θ])-dimensional, finite-valued matrix J[θ] (Xt) :=

∇θ′ Ef?

[
hf?(Xt+1,Xt,Rt+1;θ)

∣∣Xt

] ∣∣
θ=θ?

is full column-rank.

Assumptions 7-9 are on the probabilistic properties of the vector Xt. These

assumptions simplify the derivation of the large sample properties of our estimators.

Relaxing them would add a technical burden. The first part of Assumption 7 allows

the application of Central Limit Theorems for sums. The last part of Assumption 7

restricts the dependence between Xt and Xt−1 at the boundaries of their support.

The assumption on the set XT makes the densities bounded away from zero from

below on XT and X 2
T , respectively, at an inverse logarithmic rate as T increases.
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We use them to control for boundary effects in the kernel regression and trim

the support of the state variables in Proposition 3. Under Assumption 8, the

stationary densities of Xt and [X ′t X
′
t−1]′ are constrained at the boundary of their

supports.21 Assumptions 10 and 11 are on the true value of the model parameters,

and Assumptions 12 and 13 concern the kernel and the bandwidth. Function K

is a kernel of order r, the same as the differentiability order of the densities in

Assumption 7. Condition (ii) in Assumption 13 ensures that the second-order

terms in the Fréchet expansions are negligible asymptotically (see the proof of

Proposition 3). Condition (iii) in the same assumption makes the bias of estimators

constructed by averaging kernel regression estimators over the conditioning value

asymptotically negligible. Assumptions 14 and 15 concern the initial functions in

the continuation value reconstruction procedure of Section 2. Under Assumption

16, the criterion we minimize to estimate the SDF parameter vector converges to

a function with a unique global minimum. Assumptions 17 constrain the joint

probability distribution of returns and state variables.

D Large sample properties of the estimators

We report the asymptotic statistical properties under the regularity assumptions

listed in Appendix C. We present the results under the standard simplifying choice

of a diagonal bandwidth matrix with equal bandwidths. As is customary in the

literature on local nonparametric regressions, we parameterize the bandwidth

matrix H [1] by the scalar bandwidth b
[1]
T for the matrix b

[1]
T , and the set H[2] by

the scalar bandwidth b
[2]
T , so that K

b
[1]
T

(z) = b
[1] −d[X]

T K
(
b

[1] −1
T z

)
.

D.1 The reconstruction of the SDF family

As explained in Section 2, we estimate the continuation for the SDF parameter

value θ based on a sequence of auxiliary models approximating more closely the one

of interest as i approaches the integer NT (θ) defined in Expression (17). In doing so,

we consider a sequential approximation of the continuation value, taking the kernel

transition density f̂T with the bandwidth matrix H [1] in place of the true transition

21Christensen (2022) shows, by imposing thin-tail restrictions, that v and ṽ exhibit contraction
for an unbounded state variable space X as well.
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density f? relying on the contraction mapping in Equation (6). The pricing error

functional hf̂T
(
Xt+1,Xt,Rt+1;θ,H [1]

?

)
is the one we reconstruct. Therefore, in

place of the unfeasible set in Equation (B.2), we consider the function ρ of the SDF

parameter vector that solves the pricing restriction for the auxiliary model. We

identify the corresponding value by the related auxiliary no-arbitrage restriction in

Assumption D.1. As explained in Section 2, we estimate the expectation operator

Ef̂T

[
·
∣∣Xt;H[2]

?

]
by a local linear kernel regression. Under Assumption D.1, the

true value θ? of the SDF parameter vector, which Equation (B.2) defines, is

uniquely identified by the auxiliary model based on the auxiliary parameter value

ρ̂T (θ?) obtained through the injective function ρ̂T : Θf? → Θ̂T that solves the

equation

Ef̂T

[
hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T (θ?) ,H

[1]
?

) ∣∣∣Xt;H[2]
?

]
= 0q. (D.1)

By the chain rule for differentiation and Assumption D.1, we express the matrix

∇θ Ef̂T

[
hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T (θ) ,H [1]

?

) ∣∣∣Xt;H[2]
?

] ∣∣∣
θ=θ?

as J[θ] (Xt)∇θρ̂T (θ?),

where the matrix J[θ] (Xt) is defined in Assumption 17. Intuitively, the lower the

gradient of the function ρ̂T , the harder the inference on θ? based on our continuation

value reconstruction method. In the extreme case of a flat function ρ̂T , at least

two columns of the matrix Mθ are linearly dependent. By uniform convergence of

kernel estimators (see, e.g., Hansen (2008)) and Assumptions 9, 7, 8-13, and

11, plim
T→∞

∇θ Ef̂T

[
hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T (θ) ,H [1]

?

) ∣∣∣Xt;H[2]
?

] ∣∣∣
θ=θ?

= J[θ] (x)

for any x ∈ X , and consequently

plim
T→∞

∇θρ̂T (θ?) = Id[θ]×d[θ] . (D.2)

Let us consider the kernel transition density f̂T , kernel bandwidth b
[1]
T ∈ R+

and the known functions v[0] and ṽ[0] for any θ ∈ Rd[θ] , so that, for any θ ∈ Θ̂T

and x̃ ∈ X , the function

ϕ̂[i]

(
x̃;θ, b

[1]
T

)
:=

T−1∑
t=1

wT

(
x̃,Wt(i); b

[1]
T

)
e(1−γ)g(Wt+1(i),W̃t(i))v[i]

(
W̃t+1(i);θ

)α
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is the local constant kernel regression estimator of the function

ϕ[i] (x̃;θ) := E[i]

[
e(1−γ)g(Wt+1(i),W̃t(i))v[i]

(
W̃t+1(i);θ

)α ∣∣∣W̃t(i) = x̃
]
.

For ψ = 1, we define its counterpart similarly as

ϕ̃[i] (x̃; β, γ) := E[i]

[
e(1−γ)(ṽ[i−1](W̃t+1(i);β,γ)+g(Wt+1(i),W̃t(i)))

∣∣∣W̃t(i) = x̃
]
.

From Assumptions 9-14, we have, for any x̃ ∈ X , θ ∈ Θ̂T , that

√
Tb

[1]d[X]

T

(
ϕ̂[i]

(
x̃;θ, b

[1]
T

)
− ϕ[i−1] (x̃;θ) + D

[
ϕ[i]

]
(x̃;θ)

)
D→ N

(
0,K (0d[X])

σ
[g]2
[i] (x̃;θ)

f
[M ]
? (x̃)

)
, (D.3)

for the kernel convolution function K in Proposition (2), the conditional moment

function σ
[g]2
[0] in Assumption 15, and the operator D defined as D

[
ϕ[i]

]
(x̃;θ) :=

ϕ[i−1] (x̃;θ) − ϕ[i] (x̃;θ) and similarly for v[1]. For ψ = 1, the result is similar,

with ˆ̃ϕ[0]

(
x̃; β, γ, b

[1]
T

)
, ϕ̃f? (x̃; β, γ) and σ̃

[g]2
[0] (x̃; β, γ) in Assumption 15 replacing

ϕ̂[0]

(
x̃;θ, b

[1]
T

)
, ϕf? (x̃;θ) and σ

[g]2
[0] (x̃;θ), respectively.

Consider a particular θ ∈ (0 : 1) × R2
+. For that value, we have two cases.

If the functions v[i] and ṽ[i] feature contraction, that is θ ∈ Θf? , we have that

lim
T→∞

sup
x∈X
|D
[
ϕ[NT (θ)]

]
(x;θ) | = 0, for the integer-valued function NT implicitly

defined in Expression (17). Let us now consider the functions v[i] (x̃;θ) := 1− β +

βϕ[i] (x̃;θ)
1
α and v̂[i]

(
x̃;θ, b

[1]
T

)
:= 1 − β + βϕ̂[i]

(
x̃;θ, b

[1]
T

) 1
α
. For any a, b, c ∈ R,

the function a+ bxc : R→ R is continuously differentiable and independent of T .

By an application of the DM to this function and Expression (D.3), we obtain, for

any x̃ ∈ X ,√
Tb

[1]d[X]

T

(
v̂[i]

(
x̃;θ, b

[1]
T

)
− v[i−1] (x̃;θ) + D

[
v[i]

]
(x̃;θ)

)
D→ N

0,K (0d[X])
β2

α2

σ
[g]2
[i] (x̃;θ)ϕ[i−1] (x̃;θ)2( 1

α
−1)

f
[M ]
? (x̃)

 . (D.4)

This first case occurs if θ ∈ Θf? . The special case of Θf? ≡ ∅ corresponds to a

preference specification without any acceptable solution. When ψ = 1, we take
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similar steps with ṽ[i]

(
x̃; β, γ, b

[1]
T

)
:=

β

1− γ
ln
[
ϕ̃[i] (x̃; β, γ)

]
and ˆ̃v[1]

(
x̃; β, γ, b

[1]
T

)
:=

β

1− γ
ln
[

ˆ̃ϕ[i] (x̃; β, γ)
]
. Applying the DM to a scaled logarithmic transformation

independent of T and Expression (D.3) adjusted to the case ψ = 1, we obtain, for

any x̃ ∈ X ,√
Tb

[1]d[X]

T

(
ˆ̃v[i]

(
x̃;θ, b

[1]
T

)
− ṽ[i−1] (x̃;θ) + D

[
ṽ[i]

]
(x̃;θ)

)
D→ N

(
0,

β2

(1− γ)2
K (0d[X])

σ̃
[g]2
[i] (x̃;θ)

f
[M ]
? (x̃)

1

ϕ2
[i−1] (x̃;θ)

)
. (D.5)

Let us now consider the second case with functions v[i] and ṽ[i] not featuring

contraction. This second case realizes whatever value θ is outside the parameter

space Θf? . In this case, we have that lim
T→∞

D
[
ϕ[NT (θ)]

]
(Xt;θ) is not null everywhere.

If D
[
ϕ[i]

]
(Xt;θ) converges to a positive (negative, or null) number, the limit is

+∞ (−∞, or 0, respectively). All the values θ leading to this second case lie in

the complement of the parameter space Θf? .

D.2 Proof of Proposition 2

The conditional moment condition in Equation (6) valued at the true transition

density f? is Aθ,f? [vf? (·;θ)] (Xt) = 0 for any θ ∈ Θf? . This condition is

the asymptotic limit condition for Aθ,f̂T
[
vf̂T (·;θ)

]
(Xt) = 0 for any θ ∈ Θ̂T .

Under the identification condition in Assumption 3, if we replace the function

vf? (·;θ) with any other function, the equation is not null for all the values

θ ∈ Θf? . The set Θf? is compact by Assumption 10, and the set Θ̂T is compact

by its same construction. The function Aθ,f? [vf? (·;θ)] (Xt) is a continuous

function of θ. Finally, the function Aθ,f̂T
[
vf̂T (·;θ)

]
(Xt) converges to the function

Aθ,f? [vf? (·;θ)] (Xt) uniformly in θ ∈ Θ̂T . This convergence derives from the

uniform convergence of kernel estimators (see, e.g., Hansen (2008)) and Assumptions

9, 7, 8-13, and 11. Because of these properties, we have that, for any x ∈ X ,

sup
θ∈Θ̂T

∥∥∥Ef̂T

[
ϕ (Xt+1)

∣∣Xt = x;H [2]
]
− Ef?

[
ϕ (Xt+1)

∣∣Xt = x
]∥∥∥ = op(1), for any

integrable function ϕ (Xt+1) : X → R. Then, the function Aθ,f̂T
[
vf̂T (·;θ)

]
(Xt)

converges to the function Aθ,f? [vf? (·;θ)] (Xt) uniformly in θ ∈ Θ̂T . Then, the
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consistency of the SDF parameter space estimator Θ̂T follows from Theorem 2.1 in

Newey and McFadden (1994).

We now move to the large sample properties of the estimator of the SDF

family, considering the functions ϕf(Xt+1,Xt;θ) := e−γg(Xt+1,Xt)vf (Xt+1;θ)α−1

and ϕ̃f(Xt+1,Xt; β, γ) := e−γg(Xt+1,Xt)+(1−γ)ṽf (Xt+1;β,γ). The SDF in System (10)

is

mf (Xt+1,Xt;θ) =



β
ϕf (Xt+1,Xt;θ)

Ef

[
ϕf (Xt+1,Xt;θ)vf (Xt+1;θ) eg(Xt+1,Xt)

∣∣∣Xt

]1− 1
α

,

if ψ 6= 1,

β
ϕ̃f (Xt+1,Xt; β, γ)

Ef

[
ϕ̃f (Xt+1,Xt; β, γ)eg(Xt+1,Xt)

∣∣∣Xt

] , if ψ = 1.

From System (10) and the SDF normalization Ef? [mf?(Xt+1,Xt;θ?)|Xt] = 1, the

function βEf?

[
e(1−γ?)g(Xt+1,Xt)vf? (Xt+1;θ)α?

∣∣∣Xt

] 1
α?
−1

coincides with the function

Ef?

[
e−γg(Xt+1,Xt)vf? (Xt+1;θ?)

α?−1
∣∣Xt

]−1
, with α? := (1 − γ?)/(1 − 1/ψ?). So,

Ef̂T

[
mf̂T

(
Xt+1,Xt;θ?, b

[1]
T

)∣∣∣Xt

]
= ε̃f̂T (Xt; β?, γ?, b

[1]
T ) = 1 + Op

(
1/

√
Tb

[1]
T

)
.

Then, the SDF in Equations (18) and (19) is

mf̂T
(Xt+1,Xt;θ?, b

[1]
T )

=



ϕ̂[NT (θ)](Xt+1,Xt;θ?)/ Ef̂T

[
ϕ̂[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt

]
,

if ψ? 6= 1,

ˆ̃ϕ[NT (θ?)](Xt+1,Xt; β?, γ?)/ Ef̂T

[
ˆ̃ϕ[NT (θ?)−1](Xt+1,Xt; β?, γ?)

∣∣∣Xt

]
,

if ψ? = 1.

with a local constant kernel regression estimator at the denominator. As explained

in Section 2, our iterative reconstruction of the functions vf (·;θ) and ṽf (·; β, γ)

start with the functions v[0] (·;θ) and ṽ[0] (·; β, γ). Together with the log-consumption

growth rate g (Xt+1,Xt), they determine the design of the nonparametric regression.

We indeed interpret our parameter inference conditional on the state variables
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sample. From Assumptions 9-13, we have, for any x ∈ X , θ ∈ Θ̂T , that√
Tb

[1]d[X]

T

(
Ef̂T

[
ϕ̂[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt = x
]

− Ef?

[
ϕ[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt = x
] )

D→ N

(
0,

K (0d[X]) Vf?

[
ϕ[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt = x
]

f
[M ]
? (x)

)
.

Since the function ζ1 : R → R defined as ζ1(x) := 1/x is independent of T , and

continuously differentiable with ζ ′1 = −1/x2 6= 0, we get from the DM that√
Tb

[1]d[X]

T

(
E−1

f̂T

[
ϕ̂[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt = x
]

− E−1
f?

[
ϕ[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt = x
]) D→ Z,

for the random variable

Z ∼ N

(
0,

K (0d[X]) Vf?

[
ϕ[NT (θ?)−1](Xt+1,Xt;θ)

∣∣Xt = x
]

E2
f?

[
ϕ[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt = x
]
f

[M ]
? (x)

)
.

Then, we can approximate

mf̂T
(Xt+1,Xt;θ?, b

[1]
T ) ≈

(
1/

√
Tb

[1]d[X]

T

)
Zϕ̂[NT (θ?)](Xt+1,Xt;θ?)

+ ϕ̂[NT (θ?)](Xt+1,Xt;θ?) E−1
f?

[
ϕ[NT (θ?)−1](Xt+1,Xt;θ?)

∣∣Xt

]
.

We take similar steps for the case ψ = 1, with the function ϕ̃f (Xt+1,Xt; β?, γ?) in

place of ϕf (Xt+1,Xt;θ?). Proposition 2 follows.

D.3 Proof of Proposition 3

We prove the consistency of the estimator θ̂T by checking the Assumptions

(i)-(iv) of Theorem 2.1 in Newey and McFadden (1994). (i) Let us consider

the limit criterion Q
f
[M ]
? ,f?

(θ) in Equation (B.3) for θ ∈ Θf? , that is the asymptotic

limit of the criterion Qf̂T minimized by θ̂T (see Equation (21)). The limit

criterion Q
f
[M ]
? ,f?

(θ) is uniquely minimized at θ? by the identification condition

in Assumption 5 and since Ω?(Xt) is positive-definite (Assumption 16). (ii)

The set Θf? is compact by Assumption 10. (iii) For any x ∈ X , the mapping
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θ → Ef?

[
hf? (Xt+1,Xt,Rt+1;θ)

∣∣Xt = x
]

is continuous. Therefore, the criterion

Q
f
[M ]
? ,f?

(θ), which is a quadratic form of it, is also continuous. (iv) Let us verify

that Qf̂T (θ) converges to Q
f
[M ]
? ,f?

(θ) uniformly in θ ∈ Θ̂T , and, for this purpose,

consider the vector 1X (Xt+1)hf? (Xt+1,Xt,Rt+1;θ). By uniform convergence of

kernel estimators (see, e.g., Hansen (2008)) and Assumptions 9, 7, 8-13, and 11,

sup
θ∈Θ̂T

∥∥∥∥∥ Ef̂T

[
1XT (Xt+1)hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T (θ) ,H [1]

?

) ∣∣∣Xt;H[2]
?

]

− Ef?

[
1X (Xt+1)hf? (Xt+1,Xt,Rt+1;θ)

∣∣Xt = x
] ∥∥∥∥∥ = op(1) (D.6)

for any x ∈ X . where XT is in Assumption 8. Then, from Equation (D.6), and

Assumption 16, Qf̂T (θ) converges to Q
f
[M ]
? ,f?

(θ) uniformly in θ ∈ Θ̂T for any

x ∈ X .

We now prove the asymptotic normality of the estimator θ̂T . The first-order

condition for estimator θ̂T in Equation (21) is

T−1∑
t=1

1X̄ (Xt)∇θ′ef̂T
(
Xt; θ̂T ,H

[1]
? ,H[2]

?

)′
Ω̂T (Xt)

−1 ef̂T

(
Xt; θ̂T ,H

[1]
? ,H[2]

?

)
=

T−1∑
t=1

1X̄ (Xt)Ef̂T

[
∇θ′hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̂T

)
,H [1]

?

) ∣∣∣Xt;H[2]
?

]′
Ω̂T (Xt)

−1 Ef̂T

[
hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̂T

)
,H [1]

?

) ∣∣∣Xt;H[2]
?

]
= 0p.

By the mean-value theorem, there exists a vector ρ̂T

(
θ̃
)

, whose components are
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singularly between those of ρ̂T

(
θ̂T

)
and ρ̂T (θ?), such that

T−1∑
t=1

1X̄ (Xt)Ef̂T

[
∇θ′hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̂T

)
,H [1]

?

) ∣∣∣Xt;H[2]
?

]′
Ω̂T (Xt)

−1 Ef̂T

[
hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T (θ?) ,H

[1]
?

) ∣∣∣Xt;H[2]
?

]
+

(
T−1∑
t=1

1X̄ (Xt)Ef̂T

[
∇θ′hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̂T

)
,H [1]

?

) ∣∣∣Xt;H[2]
?

]′
Ω̂T (Xt)

−1 Ef̂T

[
∇θ′hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̃
)
,H [1]

?

) ∣∣∣Xt;H[2]
?

] )
(
ρ̂T

(
θ̂T

)
− ρ̂T (θ?)

)
= 0p.

By multiplying the two sides of the last equation by
√
T − 1 and rearranging its

terms, we get
√
T − 1

(
ρ̂T

(
θ̂T

)
− ρ̂T (θ?)

)
= −A−1

T BT , for the variables

AT :=
1

T − 1

T−1∑
t=1

Ef̂T

[
∇θ′hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̂T

)
,H [1]

?

) ∣∣∣Xt;H[2]
?

]′
1X̄ (Xt)Ω̂T (Xt)

−1 Ef̂T

[
∇θ′hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̃
)
,H [1]

?

) ∣∣∣Xt;H[2]
?

]
,

and

BT :=
1

T − 1

T−1∑
t=1

Ef̂T

[
∇θ′hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T

(
θ̂T

)
,H [1]

?

) ∣∣∣Xt;H[2]
?

]′
1X̄ (Xt)Ω̂T (Xt)

−1 Ef̂T

[
hf̂T

(
Xt+1,Xt,Rt+1; ρ̂T (θ?) ,H

[1]
?

) ∣∣∣Xt;H[2]
?

]
.

From the consistency of the kernel regression estimators and Equation (D.2), we

have

AT = E
f
[M ]
?

[
1X̄ (Xt)J[θ] (Xt)

′Ω?(Xt)
−1J[θ] (Xt)

]
+ op(1)

BT =
1√
T − 1

T−1∑
t=1

1X̄ (Xt)J[θ] (Xt)
′Ω? (Xt)

−1

· Ef?

[
hf? (Xt+1,Xt,Rt+1;θ?)

∣∣Xt

]
+ op(1).
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Then,

√
T − 1

(
ρ̂T

(
θ̂T

)
− ρ̂T (θ?)

)
= op(1)− E

f
[M ]
?

[
1X̄ (Xt)J[θ] (Xt)

′Ω?(Xt)
−1J[θ] (Xt)

]−1

· 1√
T − 1

T−1∑
t=1

1X̄ (Xt)J[θ] (Xt)
′Ω? (Xt)

−1 Ef?

[
hf? (Xt+1,Xt,Rt+1;θ?)

∣∣Xt

]
.

So,
√
T − 1

(
ρ̂T

(
θ̂T

)
− ρ̂T (θ?)

)
D→ N

(
0,Avar

f
[M ]
?

[
θ̂T

])
from the first part of

Assumption 7 and the Central Limit Theorem for stationary and α-mixing variables

with the asymptotic variance-covariance matrix

Avar
f
[M ]
?

[
θ̂T

]
:= E

f
[M ]
?

[
1X̄ (Xt)J[θ] (Xt)

′Ω?(Xt)
−1J[θ] (Xt)

]−1

E
f
[M ]
?

[
1X̄ (Xt)J[θ] (Xt)

′Ω?(Xt)
−1 Vf? [hf? (Xt+1,Xt,Rt+1;θ?)|Xt]

Ω?(Xt)
−1J[θ] (Xt)

]
E
f
[M ]
?

[
1X̄ (Xt)J[θ] (Xt)

′Ω?(Xt)
−1J[θ] (Xt)

]−1
.

Asymptotically, there is no bias as Tb
[1]2r
T = o(1) in Assumption 13. The asymptotic

variance of the estimator θ̂T is minimal for the weighting matrix Ω?(Xt) =

Vf? [hf? (Xt+1,Xt,Rt+1;θ?)|Xt]. In that case, the asymptotic variance is equal to

E
f
[M ]
?

[
1X̄ (Xt)J[θ] (Xt)

′Ω?(Xt)
−1J[θ] (Xt)

]−1
. The asymptotic behavior of ρ̂T

(
θ̂T

)
,

Equation (D.2), and the implications for stochastic convergence modes prove

Proposition 3.
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