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1. Introduction

The adoption of the Paris Agreement in 2016 committed a majority of countries to limit

global temperature rises to less than 2°C above pre-industrial levels. Working toward this

goal requires deep cuts to greenhouse gas (GHG) emissions around the world. As carbon

dioxide constitutes approximately three-quarters of all anthropogenic GHG emissions and

92% of carbon emissions originate from burning fossil fuels (IPCC, 2014; IEA, 2022), accel-

erating the energy transition from fossil fuels to clean energy1 is a key element of emissions

reduction strategies (Shahbaz et al., 2020; Chen et al., 2022). This has driven a surge

in global clean energy investment that has seen approximately sixfold growth since 2004,

with clean energy investments exceeding new investment in fossil fuel power generation by

a factor of three in 2018 (IRENA, 2022). However, this rapid growth has occurred in the

absence of a detailed understanding of either the domestic effects of clean energy invest-

ment on carbon emissions or its spatial spillover effects. Our contribution is to provide

new evidence on both of these quantities using a spatial panel data model.

A rapidly growing body of literature has studied the impact of energy investment on

emissions abatement but no consensus has yet emerged. Recent work in this area includes

Ganda (2018), Huang et al. (2021), Li and Li (2020), Ma et al. (2021), Mahesh and Shoba

Jasmin (2013), Shen et al. (2021), Shahbaz et al. (2020), Wang et al. (2020) and Zhang

et al. (2021). One strand of the literature argues that investment in the energy sector

can curb carbon emissions by optimizing the energy structure and improving low-carbon

technologies (Ganda, 2018; Ma et al., 2021; Wang et al., 2020; Huang et al., 2021; Shen et al.,

2021). An alternative strand argues that gains in energy efficiency fueled by investments

in the energy sector can induce a ‘rebound effect’ of the type described by Jevons (1866)

in his famous book The Coal Question, which either partially or completely offsets the

1Clean energy is defined as energy the consumption of which produces zero carbon dioxide (Lee, 2013).
It consists of hydropower and renewable energy resources.
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reduction in energy use, potentially exacerbating carbon emissions (Qiu et al., 2019; Deng

and Newton, 2017; Li and Li, 2020).

This literature suffers from two important limitations. First, most studies concentrate

on the impact of general energy investments on carbon emissions, without distinguishing

between clean and dirty energy investments. This approach implicitly sets aside the possi-

bility that investments in clean and dirty energy may affect carbon emissions in different

ways. There is reason to believe that this is not an innocuous assumption. For example,

Acemoglu et al. (2016) show that investments in dirty technology lead to a relative advan-

tage of dirty technology over clean technology, prohibiting the transition of an economy

towards clean technology. Consequently, the failure to distinguish between investments in

clean and dirty energy may lead to misleading or biased results.

Second, the geographical coverage of existing empirical studies is limited, with many pa-

pers focusing on individual countries. This is problematic given the clear positive spatial

correlation of carbon emissions demonstrated in Figure 1, where high-high and low-low

agglomerations are easily seen. These agglomerations indicate that initiatives that cur-

tail emissions in one country—including clean energy investments—can have effects that

are felt among neighboring countries. Furthermore, Shahnazi and Dehghan Shabani (2020)

argue that clean energy investments are spatially correlated due to the prevalence of knowl-

edge spillovers and because neighboring countries often have similar clean energy potential,

meaning that clean energy projects initiated in one country can serve as prototypes for sim-

ilar initiatives in neighboring countries. Consequently, to understand the global impacts

of clean energy investment, it is necessary to properly account for spatial dependence.

— Insert Figure 1 Here —

We address both of these problems by fitting a Spatial Durbin Model (SDM) relating

carbon dioxide emissions to clean energy investment and a raft of country characteristics

using a large panel data set covering 73 countries over the period 2000 to 2018. The SDM
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not only corrects the estimation bias that would arise from ignoring the spatial correlation

in the data, but it also allows us to estimate the domestic effect and the spatial spillover

effect of clean energy investments on carbon emissions.

We make two key findings. First, clean energy investment is conducive to local carbon

emission mitigation. Specifically, we find that a 1 percent increase in a country’s clean

energy investment results in approximately a 0.05 percent reduction in domestic carbon

emissions. Second, clean energy investment in among neighboring countries tends to ex-

acerbate local carbon emissions. This is evidence of carbon leakage, whereby economic

activities that generate substantial carbon emissions are relocated from countries seeking

to improve their domestic environment (as reflected by their clean energy investment) to

neighboring countries with weaker environmental protections (Gray and Shadbegian, 1998;

Liao et al., 2018). We further investigate this effect using an auxiliary model of the spatial

interactions of clean energy investment and dirty energy consumption. Our results show

that domestic investment in clean energy reduces domestic dirty energy consumption but

that investment in clean energy among neighboring countries induces the opposite effect,

raising domestic dirty energy consumption.

We show that our results are robust to a range of specification changes. We consider

three different spatial weights matrices based on the geographic distance between country

pairs, a GDP-adjusted measure of geographical distance and the five-nearest-neighbors

weighting scheme. Our key findings are robust across all three specifications. We also

obtain qualitatively similar results when we re-estimate the SDM with lagged explanatory

variables to eliminate potential endogeneity issues arising from spatial feedback effects.

Lastly, by re-estimating the SDM for subsamples of countries grouped by income level,

we show that our principal findings are robust across both groups but that clean energy

investments mitigate carbon emissions more effectively in high-income countries than in

middle-income countries.
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Our results have an important policy implication. Given the evidence that clean energy

investment can contribute to domestic carbon abatement efforts, national governments

should continue to support clean energy projects in pursuit of their domestic decarboniza-

tion goals. However, the evidence of adverse spatial spillover effects arising from clean

energy investment means it is unlikely that ad hoc country-specific initiatives will be suf-

ficient to achieve global decarbonization goals. We conclude that global decarbonization

will require collective action from governments to create common environmental protection

policies that effectively prevent carbon leakage.

The remainder of this article proceeds as follows. In Section 2, we introduce and scrutinize

our dataset and lay out our econometric methodology. In Section 3, we present our main

empirical findings accompanied by the results of a raft of robustness tests. We conclude

and draw out the policy implications of our work in Section 4. Additional details are

collected in an Appendix.

2. Methodology and Data

2.1. Spatial Econometric Model

To capture the spatial spillover effects of clean energy investment on carbon emissions, we

adopt the SDM developed by Elhorst (2010). The SDM is a popular spatial model that

is more general than either the spatial autoregressive (SAR) model or the spatial error

model (SEM). In the spirit of LeSage and Pace (2009) and You and Lv (2018), our baseline

specification of the SDM is as follows:

logCO2,it = α+ ρ
N∑
j=1

wij logCO2,jt + β1 log ceiit +
M∑
k=2

βk logZ
k
it + γ1

N∑
j=1

wij log ceijt

+
M∑
k=2

γk

N∑
j=1

wij logZ
k
jt + µi + ηt + εit, (1)
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where spatial units (countries) are indexed by i, j = 1, . . . , N and time is indexed by

t = 1, . . . , T . The variable names are interpreted as follows: CO2,it denotes CO2 emissions

per capita, ceiit represents clean energy investment, and {Zk
it}k=2,··· ,M are a set of control

variables defined in Subsection 2.2.1. The spatial weight for the {i, j}th country-pair—that

is, the {i, j}th element of the spatial weights matrix, W—is denoted by wij . The spatial

autoregressive coefficient, denoted by ρ, captures the intensity of the contemporaneous

spatial correlation between carbon emissions in neighboring countries and carbon emissions

in country i. Lastly, µi and ηt denote individual and time fixed effects, respectively, while

εit
i.i.d.∼ N(0, σ2) is an independent and identically distributed error term with zero mean

and variance σ2, that is commonly assumed to follow an asymptotic normal distribution.

2.1.1. Decomposition of Direct and Indirect Effects

Unlike the parameter estimates obtained from non-spatial models, the coefficients of the

SDM cannot be interpreted as marginal effects because of the presence of spatial depen-

dence, which can induce a feedback effect (LeSage and Pace, 2009). Instead, it is common

to decompose the estimated coefficients into direct and indirect effects. Referring to Elhorst

(2014), we can rewrite the SDM in (1) as follows:

Yt = (IN − ρW )−1 (Xtβ +WXtγ) +Rt, (2)

where Yt denotes the dependent variable (CO2); Xt represents the independent variables,

including clean energy investment (cei) and the other control variables (Zit), andRt collects

the remaining terms, including the constant and the error term.

The matrix of partial derivatives of the expected value of Yt with respect to the kth inde-

6



pendent variable of Xt in unit 1 up to unit N at time t is given by:

[
∂E(Y )

∂x1k
· · · ∂E(Y )

∂xNk

]
t

= (IN − ρW )−1


βk w12γk · · · w1Nγk

w21γk βk · · · w2Nγk
...

...
. . .

...

wN1γk wN2γk · · · βk


= (IN − ρW )−1 (βkIN + γkW ) . (3)

The direct effect is calculated as the average of the diagonal elements from the matrix

(IN − ρW )−1 (βkIN + γkW ) and represents the average effect of a unit change in an ex-

planatory variable in a country on the dependent variable. The indirect effect, also known

as the spillover effect, is the average of row sums of the off-diagonal elements of the matrix.

The indirect effect can be interpreted as the impact on a country’s dependent variable as

a result of a unit change of a particular independent variable in all other countries. The

sum of the direct effect and the indirect effect is the total effect.

It is worth noting that the direct effect of a given independent variable differs from the

point estimate β̂ in (1) due to the feedback effect—that is, the effect of passing through

neighboring countries and returning to the country of origin (e.g. passing from country

i → j → i or passing from country i → j → k → j → i).

2.1.2. Spatial Weights Matrix

The choice of an appropriate spatial weights matrix is important, as different weighting

schemes may capture distinct spillover channels (LeSage and Pace, 2009). We consider the

following three weights matrices:

1. Geographical distance (W1). Tobler’s (1970) first law of geography states that spatial

correlations fall as the geographical distance between countries rises. To capture

spatial correlations that decay increasingly rapidly with distance, it is common to
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specify an inverse squared distance matrix (see, for example, You and Lv, 2018).

The elements of the weights matrix are defined as follows:

wij =


1/d2ij i ̸= j

0 i = j

, (4)

where dij represents the geographical distance between countries i and j.

2. Economic geography (W2). In addition to geographical distance, economic connec-

tions among countries also play an important role in determining spatial correla-

tions. For example, countries with similar levels of economic development may share

stronger economic connections, leading to stronger spatial correlation. However,

economic connections may often be asymmetric between countries. For instance, a

developed country may have a stronger economic influence on its neighbors than a

developing country. Consequently, we construct an asymmetric economic geography

weighting matrix that combines geographical distance and relative economic mass in

a similar manner to Parent and LeSage (2008). The elements of W2 are as follows:

wij =


1
d2ij

gdpj
gdpi

i ̸= j

0 i = j

, (5)

where gdpk (k = i, j) is country k’s average annual GDP per capita over the sample

period and dij is the geographical distance between countries i and j, as above.

3. Five-nearest-neighbors (W3). A popular and simple choice of weights matrix is

based on contiguity, where only countries that share a land border are considered

neighbors. However, as Maddison (2006) notes, this is problematic if the dataset

includes island states with no land borders (e.g. Australia) and can also discount

well-known spatial links (e.g. Denmark and Sweden do not share a land border but
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share strong historical, economic, social and political linkages).2 A simple way to

avoid these issues is to identify the k-nearest-neighbors of each country, regardless of

whether they share a land border. Following You and Lv (2018), we set k = 5, such

that:

wij =


1 if j is one of i’s five nearest neighbors

0 otherwise.

(6)

For each weights matrix, we follow standard practice and apply a row-sum normalization

such that all rows sum to unity.

2.2. Variables and Data

2.2.1. Variable Selection

The dependent variable in (1) is the level of per capita CO2 emissions in country i. The

independent variable of primary interest is clean energy investment (cei). According to

Chen et al. (2021), installed clean energy capacity can be used as a proxy for clean energy

investment. Consequently, we measure clean energy investment using the installed capacity

of solar energy, wind energy, hydropower, bioenergy, geothermal energy and marine energy

resources.

In line with previous studies, we control for the following variables gathered in the vector

{Zk
it} in (1):

(1) Economic Development (gdp). We use GDP per capita quoted in constant prices in

2010 US dollars to measure the level of economic development of a country. Grossman

2Another common weights matrix defines countries to be neighbors if the distance between their centroids
is < 1, 750 miles. Maddison (2006) points out that this can be problematic for large or oddly shaped
countries.
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and Krueger (1991) show that the nexus between the level of economic development of

a country and the level of pollution is characterised by an inverted U-shaped curve,

known as the Environmental Kuznets Curve (EKC). The curvature arises because

environmental quality initially deteriorates with economic growth. However, once a

certain level of economic development is reached, the relationship reverses, such that

economic growth acts to curb pollution. To account for the EKC, we include both

the level and square of real GDP per capita in our regression model.

(2) Population (pop). We measure the population of a country using the mid-year total

population estimate. The existing literature identifies two effects linking population

and pollution: a size effect and an agglomeration effect. The population size effect re-

flects how a larger population generates more demand for goods and services, thereby

generating increased CO2 emissions (Alam et al., 2020). By contrast, the popula-

tion agglomeration effect indicates that population agglomeration may be conducive

to CO2 emissions abatement. Yi et al. (2022) notes that population agglomeration

may enhance technological innovation and improve production efficiency, ultimately

reducing carbon emissions. Moreover, the growing population may raise environmen-

tal awareness, increasing the pressure to enact strict environmental regulations and

mitigate CO2 emissions (Selden and Song, 1994).

(3) Trade Openness (trade). The proportion of imports and exports in GDP is widely

used as a measure of trade openness. Theoretically, trade openness may affect the

environment in three ways, via scale, technique and structure effects (Grossman and

Krueger, 1991). The scale effect suggests a positive link between trade openness and

CO2 emissions, as higher levels of trade openness may expand the scale of production.

The technique effect, meanwhile, suggests a negative link between trade and CO2

emissions via the adoption of improved production technologies. Lastly, the structure

effect relates to the effect of trade openness on emissions via changes in the industrial

structure. This may act either to worsen or improve emissions.
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(4) Energy Consumption Structure (ec). In line with the existing literature, we use fossil

fuel consumption as a proportion of total energy consumption to describe the energy

consumption structure of a country. Countries that consume a larger share of fossil

fuels in their total energy use will generate more carbon emissions than those that

consume a larger share of non-fossil fuels (Bai et al., 2020). Consequently, the energy

consumption structure as defined here is expected to be positively related to CO2

emissions.

2.2.2. Data Sources

We estimate our model using annual data over the T = 19 years from 2000 to 2018,

inclusive, on the following N = 73 countries: Algeria, Argentina, Armenia, Australia, Aus-

tria, Belarus, Belgium, Bosnia and Herzegovina, Brazil, Bulgaria, Canada, Chile, China,

Colombia, Croatia, Czech Republic, Denmark, Egypt, Estonia, Finland, France, Georgia,

Germany, Greece, Hungary, Iceland, India, Indonesia, Iran, Ireland, Israel, Italy, Japan,

Jordan, Kazakhstan, Kenya, Latvia, Lebanon, Lithuania, Luxembourg, Malaysia, Mex-

ico, Moldova, Morocco, Netherlands, New Zealand, Norway, Panama, Peru, Philippines,

Poland, Portugal, Romania, Russia, Saudi Arabia, Serbia, Singapore, Slovak Republic,

Slovenia, South Korea, Spain, Sir Lanka, Sweden, Switzerland, Thailand, Tunisia, Turkey,

Ukraine, United Kingdom, United States, Uruguay, Uzbekistan, and Vietnam.

We obtain data on CO2 emissions per capita, real GDP per capita, total population and

trade openness from the World Development Indicators (WDI) published by the World

Bank. We source data on the structure of energy consumption from the Energy Infor-

mation Administration (EIA). We also gather data on dirty energy consumption (dc) for

use in a subsequent regression model from the same source. Finally, data on clean energy

investment is obtained from the International Renewable Energy Agency (IRENA).

Detailed definitions of each variable are reported in Table A.1 in Appendix A. The data are

logged prior to estimation. In Table 1, we report a range of common descriptive statistics
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for the natural log of each variable.

— Insert Table 1 Here —

3. Estimation Results

3.1. Spatial Dependence Test

We begin by testing for evidence of spatial dependence in the data. In Table 2, we examine

the spatial autocorrelation of CO2 emissions and clean energy investment using Moran’s

1950 I-statistic.3 Three sets of results are reported in the table, one corresponding to

each spatial weights matrix. In each case, we report the global Moran’s I statistic for

every year between 2000 and 2018, as well as the average over that period. In every

case, the test statistic is positive and statistically significant at the 1% level, providing

overwhelming evidence of positive global spatial dependence in CO2 emissions and clean

energy investments. This implies that economies with high (resp. low) values of CO2

emissions and clean energy investment are spatially clustered, which motivates the use of

spatial econometric techniques.

— Insert Table 2 Here —

To visually illustrate the local spatial dependence in the neighborhood around each observa-

tion, Figure 2 shows Moran’s I scatter plots for CO2 emissions and clean energy investment

in 2000 and 2018 using the spatial weights matrix W1
4. The first and third quadrants in-

dicate spatial concentrations of similar values (i.e. high-high and low-low agglomerations).

3Global Moran’s I =
∑n

i=1

∑n
j=1 wij(xi−x̄)(xj−x̄)

s2
∑n

i=1

∑n
j=1 wij

, where xi and xj are the observed values in the ith and

jth spatial units, respectively, with i ̸= j, x̄ is the mean of x, wij is the {i, j}th element of the spatial
weights matrix and s2 = n−1 ∑n

i=1 (xi − x̄)2 is the sample variance.
4Equivalent scatter plots using spatial weight matrices W2 and W3 are provided in Figures A.1 and

A.2 in Appendix A.
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By contrast, the second and fourth quadrants show the spatial concentration of dissimilar

values (i.e. high-low and low-high agglomerations). As shown in Figure 2, in the majority

of cases, we observe positive spatial correlation.

— Insert Figure 2 Here —

3.2. Full-sample Estimation Results

To examine whether the SDM is an appropriate choice of model, we conduct several speci-

fication tests following Elhorst (2014). The results are summarised in Table 3. In panel A

of the table, we use likelihood ratio (LR) tests to determine the appropriate specification

of the fixed effects in the SDM. The test results favour a model with both spatial and

time-period fixed effects. Next, in the first four rows of panel B, we report results for both

the classic Lagrange Multiplier (LM) spatial lag and spatial error tests and their robust

counterparts (Anselin et al., 2008; Debarsy and Ertur, 2010). These tests evaluate whether

a traditional non-spatial panel data model fails to capture relevant spatial interactions

within the data—specifically whether a model with spatial lags of the dependent variable

or a spatially autocorrelated error term would be preferable to the non-spatial model. For

all three of our spatial weights matrices, every null hypothesis is rejected at the 5% level of

significance at least, supporting the use of the spatial model over a non-spatial panel data

specification.

— Insert Table 3 Here —

In the fifth and sixth rows of panel B in Table 3, we test whether the SDM specification can

be reduced to either the SAR or SEM specifications using the Wald spatial lag and spatial

error tests. For all three spatial weights matrices, the null hypothesis is rejected at the 5%

level of significance or better, providing strong support for the SDM specification. In the

final row of the table, we assess the fixed effects model against a random effects specification
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using the Hausman (1978) specification test. For all three spatial weights matrices, the null

hypothesis is rejected at the 1% level of significance, indicating a rejection of the random

effects specification in favour of the fixed effects model. Consequently, the SDM with both

spatial and time-period fixed effects is the preferred specification.

In Table 4, we present parameter estimates for the SDM over the full sample (i.e. including

all countries). We adopt the geographic distance weighting scheme (matrix W1) as our

benchmark set-up and treat the other two weighting schemes as robustness tests. The

robustness of our results across the three spatial weights matrices is striking—the sign,

magnitude and statistical significance of the estimated coefficients are very similar in each

case. The spatial autoregressive coefficient, ρ, is positive and highly statistically significant

in all cases, reflecting the positive spatial dependence of CO2 emissions visible in Figure 2.

— Insert Table 4 Here —

Because the point estimates of the SDM coefficients cannot be interpreted as marginal

effects, we report the direct and indirect effects described in subsection 2.1.1 in Table 5

accompanied by t-statistics obtained by bootstrapping. The direct effects are relatively

similar across all three weighting schemes, although some of the indirect effects are weaker

when using the five-nearest neighbors weights matrix (W3). This is likely a result of the

greater sparsity of W3 relative to either of the other weights matrices that we consider.

— Insert Table 5 Here —

A close examination of Table 5 reveals several important findings. First, consider the

direct effects reported in panel A of the table. The variable of primary interest is the log

of clean energy investment, logcei. We find that a 1% increase in domestic clean energy

investment results in a fall of approximately 0.05% in domestic carbon emissions in the

benchmark model, with very little sensitivity to the use of alternative weights. This effect
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is statistically significant at the 1% level and is consistent with the finding of Wang et al.

(2020) that clean energy investments are conducive to the mitigation of domestic CO2

emissions.

Moving on to the control variables, the estimated parameters on the level and square of

log GDP are indicative of the inverted U-shaped relationship between economic develop-

ment and carbon emissions implied by the EKC (You and Lv, 2018; Li and Li, 2020; Chen

et al., 2022). Meanwhile, the direct effect of trade openness on carbon emissions is nega-

tive, which is consistent with the view that trade can bring advanced technology into an

economy, improving energy efficiency and mitigating emissions. By contrast, the direct

effect of the energy consumption structure on carbon emissions is positive, in line with the

findings of Li and Li (2020) that a higher proportion of fossil fuel consumption in total

energy consumption is associated with higher emissions. Each of these estimated direct

effects is statistically significant at the 1% level. The only variable for which we obtain an

insignificant direct effect is population, which may reflect the countervailing influence of

the population size and agglomeration effects on carbon emissions.

Panel B of Table 5 shows the estimated indirect effects, which capture the spillover effects

from neighboring countries onto the CO2 emissions of country i. The indirect effect of

clean energy investment is positive and statistically significant at the 5% level or better,

regardless of which weighting scheme is used. In our benchmark model using geographic

distance weights, a 1% rise in clean energy investment in neighboring countries leads to

a 0.188% increase in domestic CO2 emissions. This result points to a substantial carbon

leakage effect, whereby polluting activities are outsourced from countries seeking to improve

their domestic environment (as reflected in their investments in clean energy) to neighboring

countries. Further analysis of the carbon leakage mechanism will be the focus of subsection

3.3.

Most of the remaining control variables have no statistically significant spatial spillover
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effect. The only exception is trade openness, which we find to have a positive indirect

effect on carbon emissions. This suggests that countries whose neighbors have high levels

of trade openness risk becoming “pollution havens”, in the sense that the opening up of

international trade may result in the offshoring of polluting activities from countries with

strict environmental protections to countries with less stringent environmental regulation

(Cai et al., 2018; You and Lv, 2018).

3.3. Further Evidence of the Carbon Leakage Effect

To further explore our finding of a significant carbon leakage effect, we now investigate the

spatial interplay between investment in clean energy and the consumption of dirty energy.

To this end, we specify a new SDM similar to (1) in which dirty energy consumption, log dc,

is the dependent variable and clean energy investment is included among the explanatory

variables:

log dcit = ρ
N∑
j=1

wij log dcjt + β log ceiit +Zitα+ γ
N∑
j=1

wij log ceijt

+
N∑
j=1

wijZitΦ+ µi + ηt + εit, (7)

where Zit refers to the same matrix of control variables used in (1), α and Φ are vectors

of unknown parameters to be estimated and the remaining terms are interpreted as before.

Our measure of dirty energy consumption includes consumption of oil, coal and natural

gas. The estimated direct and indirect effects obtained from this model as well as the

accompanying bootstrap t-statistics are reported in Table 6.5

— Insert Table 6 Here —

5We again follow Elhorst (2014) and conduct an array of tests to identify the correct model specification.
The results are reported in Table A.3 in the Appendix.
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Regardless of the weighting scheme used, we find that the direct effect of clean energy

investment on dirty energy consumption is negative, while the indirect effect is positive.

This indicates that domestic investment in clean energy reduces domestic dirty energy

consumption but that clean energy investment among a country’s neighbors tend to induce

the opposite effect. These differing local and regional effects can be explained intuitively.

Clean energy investment may promote domestic emissions abatement by scaling up local

clean energy production, leading to a substitution away from dirty energy. Additionally,

investment in clean energy may arise in response to domestic environmental regulations

and incentives, which may, in their own right, lead to reducing dirty energy consumption.

Meanwhile, the adverse spatial spillover effect may arise through a simple supply and

demand effect, as the decline in dirty energy consumption in one country may depress

the price of dirty energy on the regional/global market, stimulating the demand for dirty

energy in other countries and contributing to higher carbon emissions (Arroyo-Currás et al.,

2015). Consequently, our results indicate that an increase in clean energy investment in

one country may lead to the offshoring of polluting activity to neighboring countries with

looser environmental controls.

3.4. Robustness Tests

In this section, we test the robustness of our estimation results for (1) in two ways: (i)

by lagging the explanatory variables to counter any endogeneity concerns; and (ii) by

subsampling to test for evidence of income heterogeneity.

3.4.1. Lagged Explanatory Variables

In the same vein as Xu et al. (2021) and Wang and Zhu (2020), we re-estimate the SDM,

having lagged all of the explanatory variables by one period to eliminate any endogeneity

arising from spatial feedback effects. The direct and indirect effects from the lagged spec-

ification are reported in Table 7. Our key finding that clean energy investment exerts a
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negative direct effect and a positive indirect effect on carbon emissions is robust to this

change, although the magnitude of the direct effect is smaller in the lagged case. The

estimated direct and indirect effects of the control variables are qualitatively similar to

the baseline case, although the evidence in favour of both direct and indirect effects of

trade openness on carbon emissions is weaker. Overall, therefore, we conclude that our key

findings are not compromised by endogeneity among the explanatory variables.

— Insert Table 7 Here —

3.4.2. Heterogeneity by Income Level

The effects of investments on carbon emissions may vary depending on income levels be-

cause of the high cost of clean energy deployment. In order to test for evidence of a

heterogeneous income effect, we classify the 73 countries in our sample into high-income

and middle-income groups using the World Bank’s income group classification for 2021.6

Based on this classification, we create a dummy variable H equal to one if the country is

in the high-income group and zero otherwise. By adding the interaction term between this

dummy variable and both the clean energy investment variable and its spatially lagged

counterpart into our baseline SDM specification (1), we are able to examine the effects of

clean energy investment on carbon emissions at different income levels.

In Table 8, we provide a concise summary of both the direct and indirect effects of logcei

and logcei×H on carbon emissions.7 First, it is interesting to note that the estimated direct

and indirect effects of logcei are similar to those reported for our baseline specification in

Table 5. Given that the direct and indirect effects for the interaction terms are either

considerably smaller in magnitude than those associated with logcei or insignificant, we

conclude that our main estimation results still hold after controlling for the income level.

6Table A.2 of Appendix A lists countries in high-income and middle-income groups.
7Full estimation results for the SDM, including the interaction terms, are presented in Tables A.4 and

A.5 in the Appendix.
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Nevertheless, we do observe some interesting heterogeneity between the two groups of

countries.

— Insert Table 8 Here —

The direct effect of the interaction term logcei×H is approximately -0.012 and is statisti-

cally significant at the 5% and 1% levels under W1 and W3, respectively. This indicates

that clean energy investment has a stronger emissions abatement effect in high-income

countries than in middle-income countries.8 At least three phenomena may contribute to

this finding. First, faced with a tradeoff between economic development and environmental

protection, less developed economies may be more inclined to favor the former, limiting

the scope for emissions reduction initiatives that may come at the cost of economic devel-

opment. High-income countries, by contrast, may place a greater emphasis on controlling

carbon emissions and may institute more supportive policies to encourage the introduction

of clean energy technologies. Second, high-income countries typically experience higher

rates of productivity and private market activity subject to market discipline than middle-

income economies. Both of these forces will tend to reduce the cost of adopting new clean

energy technologies (Du et al., 2019). Finally, high-income countries will often have a

greater ability to fund ambitious clean energy projects and to meet the potentially large

initial and/or ongoing costs associated with exploiting knowledge spillovers.

Interestingly, we find that the indirect effect of logcei × H is statistically insignificant

under all three weighting schemes. This indicates that the indirect effects of clean energy

investment on emissions are similar irrespective of whether neighboring countries are in

the high-income or middle-income group.

8The estimate for the direct effect of logcei × H under W2 is smaller than under the other weighting
schemes and is statistically insignificant. We conjecture that this finding reflects the construction of W2,
which already accounts for GDP per capita. Therefore, the elements of the weights matrix W2 will be
correlated with the income group dummy, which may reduce the significance of the interaction terms.
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4. Conclusion and Policy Implications

Investments in clean energy are a key pillar of decarbonization strategies around the world.

However, existing research on the nexus between energy investments and carbon emissions

has largely failed to distinguish between clean and dirty energy investments and to account

for the spatial dependence in the data. We address both of these issues by fitting a spatial

panel data model to a large panel data set covering 73 countries over the 19 years from

2000 to 2018.

Our results indicate that investments in clean energy in a given country can be effective in

mitigating domestic carbon emissions. This effect is stronger among high-income countries

than middle-income countries. However, we find that clean energy investments can generate

adverse spillover effects that increase emissions in other countries through a carbon leakage

effect, whereby increased investment in clean energy in one country leads to the offshoring

of polluting activity to neighboring countries with less stringent environmental protections.

Such countries risk becoming pollution havens in the absence of international regulation

to prevent jurisdiction-shopping on the part of polluters.

Our results have several policy implications. First, given the evidence that clean energy

investments can contribute to domestic emissions reduction, national governments should

continue to support clean energy investment in order to make progress toward their de-

carbonization objectives. Second, because of the spatial dependence in global emissions,

a free-rider problem may arise that cannot be solved by national policymakers operating

alone. Therefore, it is necessary to improve international cooperation, establish a global

carbon emissions control mechanism and move from a system dominated by unilateral ac-

tion to one subject to a higher level of common governance. An important aspect of this

will be the introduction of mechanisms to prevent carbon leakage, including border carbon

adjustments, consistent pricing of carbon emissions, and levies of consumption taxes for

emissions-intensive activities. Finally, by subsidising clean energy initiatives in middle-
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income countries, it may be possible to promote convergence onto the level of effectiveness

of clean energy investments observed in the high-income group.

We close by noting two important avenues for continuing research. First, due to data

limitations, we are obliged to use installed renewable energy capacity to proxy for clean

energy investment. This is an imperfect proxy, not least because it involves the use of a

stock to proxy for a flow. The development of an improved proxy can be expected to yield

more precise estimation results. Second, the use of firm-level data to study the carbon

leakage mechanism in detail would provide a firm basis for the development of regulations

to prevent jurisdiction-shopping by polluters.
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Table 1: Descriptive statistics

Variable Obs. Mean Std. Dev. Min. Max.

logCO2 1387 1.565 0.828 -1.670 3.245
logcei 1387 8.038 2.181 -1.050 13.452
loggdp 1387 9.380 1.193 6.640 11.626
loggdp2 1387 89.415 22.172 44.091 135.163
logpop 1387 16.683 1.587 12.547 21.055
logtrade 1387 4.356 0.530 2.986 6.081
logec 1387 4.375 0.266 2.801 4.681
logdc 1387 17.309 1.656 13.622 21.898

Table 2: Global Moran’s I-statistic for CO2 emission per capita and clean energy investment

logCO2 logcei

Year W1 W2 W3 W1 W2 W3

2000 0.251*** 0.239*** 0.281*** 0.191*** 0.144*** 0.228***
2001 0.259*** 0.248*** 0.292*** 0.191*** 0.144*** 0.228***
2002 0.264*** 0.253*** 0.288*** 0.184*** 0.142*** 0.223***
2003 0.258*** 0.252*** 0.289*** 0.187*** 0.144*** 0.227***
2004 0.250*** 0.244*** 0.276*** 0.191*** 0.147*** 0.232***
2005 0.239*** 0.233*** 0.276*** 0.191*** 0.148*** 0.232***
2006 0.233*** 0.235*** 0.274*** 0.189*** 0.145*** 0.230***
2007 0.214*** 0.219*** 0.255*** 0.188*** 0.145*** 0.230***
2008 0.206*** 0.214*** 0.237*** 0.187*** 0.145*** 0.230***
2009 0.198*** 0.198*** 0.223*** 0.177*** 0.140*** 0.225***
2010 0.201*** 0.201*** 0.226*** 0.176*** 0.142*** 0.216***
2011 0.173*** 0.180*** 0.193*** 0.160*** 0.135*** 0.206***
2012 0.156*** 0.156*** 0.175*** 0.165*** 0.142*** 0.200***
2013 0.151*** 0.146*** 0.176*** 0.156*** 0.139*** 0.194***
2014 0.141*** 0.126** 0.159*** 0.152*** 0.139*** 0.195***
2015 0.144*** 0.129** 0.160*** 0.135*** 0.120** 0.184***
2016 0.146*** 0.136*** 0.167*** 0.128*** 0.109** 0.183***
2017 0.153*** 0.144*** 0.171*** 0.131*** 0.110** 0.186***
2018 0.153*** 0.145*** 0.175*** 0.127*** 0.104** 0.178***
Average 0.206*** 0.202*** 0.232*** 0.176*** 0.141*** 0.218***

Notes: The null hypothesis is the absence of global spatial autocorrelation. ***, **, * denote

significance at the 1%, 5% and 10% levels, respectively.
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Table 3: Model selection

Panel A

Tests Statistic Degrees of freedom p-value

LR spatial fixed effects 118.981 73 0.001
LR time fixed effects 529.040 19 0.000

Panel B

W1 W2 W3

Tests Statistic p-value Statistic p-value Statistic p-value

LM spatial lag 508.221 0.000 371.202 0.000 516.181 0.000
LM spatial error 683.759 0.000 614.207 0.000 1023.279 0.000
Robust LM spatial lag 19.152 0.000 7.931 0.005 4.203 0.040
Robust LM spatial error 194.689 0.000 250.936 0.000 511.301 0.000
Wald spatial lag 264.732 0.000 340.067 0.000 435.919 0.000
Wald spatial error 26.246 0.000 24.561 0.000 13.923 0.031
Hausman test 63.615 0.000 216.644 0.000 89.603 0.000
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Table 4: SDM estimation results for the full sample

Model 1 Model 2 Model 3

Variables W1 W2 W3

logcei -0.057*** -0.053*** -0.061***
(-6.623) (-6.274) (-7.234)

loggdp 1.917*** 1.905*** 2.224***
(12.710) (12.893) (15.214)

loggdp2 -0.074*** -0.073*** -0.089***
(-9.061) (-9.122) (-11.260)

logpop -0.020 -0.021 -0.010
(-1.255) (-1.373) (-0.636)

logtrade -0.156*** -0.133*** -0.115***
(-4.850) (-4.227) (-3.660)

logec 0.820*** 0.788*** 0.794***
(11.990) (11.331) (12.137)

W ∗ logcei 0.079*** 0.084*** 0.063***
(4.683) (6.122) (5.485)

W ∗ loggdp -1.365*** -1.435*** -1.776***
(-4.487) (-5.374) (-8.312)

W ∗ loggdp2 0.051*** 0.054*** 0.074***
(3.145) (3.743) (6.477)

W ∗ logpop 0.043 0.027 0.020
(1.516) (1.024) (0.972)

W ∗ logtrade 0.271*** 0.222*** 0.132***
(4.691) (3.783) (3.056)

W ∗ logec -0.669*** -0.522*** -0.511***
(-5.392) (-4.530) (-5.750)

ρ 0.838*** 0.808*** 0.697***
(56.945) (56.409) (36.688)

Obs. 1387 1387 1387
Log-likelihood -320.565 -380.373 -287.184
R2 0.885 0.875 0.885

Notes: t-statistics are shown in parentheses. *, **,*** represent significance at the 10%, 5%, and 1%

levels, respectively.
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Table 5: Direct and indirect effects

Model 1 Model 2 Model 3

Variables W1 W2 W3

Panel A: Direct Effect
logcei -0.049*** -0.045*** -0.056***

(-5.901) (-5.374) (-6.803)
loggdp 1.970*** 1.919*** 2.172***

(13.587) (13.246) (15.256)
loggdp2 -0.077*** -0.074*** -0.087***

(-9.752) (-9.405) (-11.219)
logpop -0.013 -0.019 -0.007

(-0.885) (-1.293) (-0.472)
logtrade -0.122*** -0.112*** -0.105***

(-3.920) (-3.644) (-3.404)
logec 0.821*** 0.806*** 0.800***

(12.715) (12.079) (12.532)

Panel B: Indirect Effect
logcei 0.188** 0.205*** 0.063**

(2.277) (3.502) (2.188)
loggdp 1.475 0.546 -0.694

(0.967) (0.467) (-1.250)
loggdp2 -0.067 -0.026 0.037

(-0.821) (-0.416) (1.248)
logpop 0.165 0.054 0.042

(1.214) (0.491) (0.845)
logtrade 0.848*** 0.586** 0.164

(3.049) (2.327) (1.512)
logec 0.107 0.581 0.131

(0.184) (1.254) (0.604)

Notes: t-statistics are shown in parentheses. *, **,*** represent significance at the 10%, 5%, and 1%

levels, respectively.
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Table 6: Estimated direct and indirect effects from equation (7)

Model 1 Model 2 Model 3

Variables W1 W2 W3

Panel A: Direct Effect
logcei -0.073*** -0.070*** -0.080***

(-8.478) (-8.050) (-9.321)
loggdp 1.837*** 1.768*** 1.982***

(12.291) (11.863) (13.388)
loggdp2 -0.066*** -0.062*** -0.073***

(-8.141) (-7.700) (-9.059)
logpop 1.030*** 1.024*** 1.035***

(66.055) (66.061) (66.497)
logtrade 0.041 0.059* 0.052

(1.269) (1.850) (1.621)
logec 0.579*** 0.577*** 0.584***

(8.634) (8.380) (8.776)

Panel B: Indirect Effect
logcei 0.252*** 0.223*** 0.085***

(3.356) (3.895) (2.962)
loggdp 2.528* 1.674 -0.062

(1.827) (1.463) (-0.113)
loggdp2 -0.128* -0.090 0.001

(-1.731) (-1.463) (0.049)
logpop 0.091 0.036 0.038

(0.731) (0.335) (0.761)
logtrade 1.060*** 0.780*** 0.287***

(4.223) (3.174) (2.688)
logec 0.199 0.408 0.049

(0.372) (0.900) (0.228)

Notes: t-statistics are shown in parentheses. *, **,*** represent significance at the 10%, 5%, and 1%

levels, respectively.
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Table 7: Robustness to the use of lagged explanatory variables

Model 1 Model 2 Model 3

Variables W1 W2 W3

Panel A: Direct Effect
logcei -0.020** -0.022** -0.023***

(-2.219) (-2.354) (-2.649)
loggdp 1.664*** 1.594*** 2.061***

(9.720) (9.148) (11.878)
loggdp2 -0.063*** -0.059*** -0.084***

(-6.843) (-6.302) (-9.001)
logpop -0.011 0.003 -0.025

(-0.668) (0.202) (-1.573)
logtrade -0.026 -0.008 -0.071**

(-0.788) (-0.225) (-1.993)
logec 0.917*** 0.906*** 0.844***

(12.654) (12.567) (11.923)

Panel B: Indirect Effect
logcei 0.205*** 0.132* 0.078**

(2.770) (1.808) (2.295)
loggdp -3.443*** -1.292 -1.503***

(-8.368) (-1.045) (-2.746)
loggdp2 0.186*** 0.072 0.082***

(8.008) (1.095) (2.792)
logpop -0.143 -0.153 0.043

(-1.377) (-1.293) (0.838)
logtrade -0.081 -0.104 0.316***

(-0.386) (-0.401) (2.802)
logec 1.116** 1.012* 0.435*

(2.274) (1.676) (1.734)

Notes: t-statistics are shown in parentheses. *, **,*** represent significance at the 10%, 5%, and 1%

levels, respectively.
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Table 8: Heterogeneity by income level

Model 1 Model 2 Model 3

Variables W1 W2 W3

Direct Effect

logcei -0.046*** -0.044*** -0.052***
(-5.344) (-5.009) (-5.972)

logcei×H -0.012** -0.006 -0.015***
(-2.254) (-1.128) (-2.909)

Indirect Effect

logcei 0.185** 0.196*** 0.059**
(2.225) (3.524) (2.070)

logcei×H 0.009 -0.003 0.016
(0.196) (-0.084) (0.983)

Notes: t-statistics are shown in parentheses. *, **,*** represent significance at the 10%, 5%, and 1% levels,

respectively.
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Figure 1: Spatial distribution of the log-arithmetic mean of per capita CO2 emissions from 2000 to 2018.
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(a) CO2 emissions, Year=2000 (b) Clean energy investment, Year=2000

(c) CO2 emissions, Year=2018 (d) Clean energy investment, Year=2018

Figure 2: Moran’s I scatter plots of the logarithm of per capita CO2 emissions and clean energy investment
in 2000 and 2018.
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Appendix A

Table A.1: Variable definitions and data sources

Variables Definitions Units Sources

CO2 emissions Carbon dioxide emissions per capita Metric
tonnes/person

WDI

Clean energy invest-
ment

Installed renewable energy capacity Megawatts IRENA

GDP Real GDP per capita (base year=2010) US$/person WDI
Population Mid-year estimate of total population individuals WDI
Trade openness Proportion of total exports and im-

ports in GDP
% WDI

Energy consumption
structure

Proportion of fossil fuel consumption in
total energy consumption

% EIA

Dirty energy consump-
tion

Total energy consumption in coal, oil
and natural gas

Tonnes of oil equiv-
alent

EIA

Notes: WDI=World Development Indicators; IRENA=International Renewable Energy Agency; EIA=Energy

Information Administration.
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Table A.2: List of Countries Grouped by Income Level

Classification Country

High-income Australia Austria Belgium Canada
Chile Croatia Czech Republic Denmark
Estonia Finland France Germany
Greece Hungary Iceland Ireland
Israel Italy Japan Latvia
Lithuania Luxembourg Netherlands New Zealand
Norway Poland Portugal Saudi Arabia
Singapore Slovak Republic Slovenia South Korea
Spain Sweden Switzerland U.K.
U.S. Uruguay

Middle-income Algeria Argentina Armenia Belarus
Bosnia and
Herzegovina

Brazil Bulgaria China

Colombia Egypt Georgia India
Indonesia Iran Jordan Kazakhstan
Kenya Lebanon Malaysia Mexico
Moldova Morocco Panama Peru
Philippines Romania Russia Serbia
Sri Lanka Thailand Tunisia Turkey
Ukraine Uzbekistan Vietnam
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Table A.3: Model selection for dirty energy consumption

Panel A

Tests Statistic Degree of freedom p-value

LR spatial fixed test 94.061 73 0.049
LR time fixed test 447.674 19 0.000

Panel B

W1 W2 W3

Tests Statistic p-value Statistic p-value Statistic p-value

LM spatial lag 226.548 0.000 183.251 0.000 213.980 0.000
LM spatial error 704.952 0.000 679.060 0.000 1036.000 0.000
Robust LM spatial lag 17.054 0.000 14.963 0.000 12.864 0.040
Robust LM spatial error 495.458 0.000 510.771 0.000 834.884 0.000
Wald spatial lag 1677.513 0.000 1763.102 0.000 1199.133 0.000
Wald spatial error 37.912 0.000 28.114 0.000 17.757 0.007
Hausman test 64.800 0.000 88.592 0.000 5996.299 0.000

37



Table A.4: Heterogeneity analysis: estimation results for income dummy

Model 1 Model 2 Model 3

Variables W1 W2 W3

logcei -0.053*** -0.051*** -0.055***
(-5.991) (-5.888) (-6.452)

logcei ∗H -0.012** -0.006 -0.016***
(-2.180) (-1.067) (-3.024)

loggdp 1.848*** 1.870*** 2.120***
(12.016) (12.333) (14.163)

loggdp2 -0.069*** -0.071*** -0.082***
(-8.116) (-8.401) (-9.835)

logpop -0.019 -0.020 -0.010
(-1.216) (-1.298) (-0.654)

logtrade -0.163*** -0.135*** -0.128***
(-5.048) (-4.276) (-4.044)

logec 0.810*** 0.782*** 0.776***
(11.854) (11.208) (11.850)

W ∗ logcei 0.076*** 0.082*** 0.058***
(4.420) (5.895) (5.006)

W ∗ logcei ∗H 0.012 0.004 0.017**
(1.190) (0.475) (2.376)

W ∗ loggdp -1.288*** -1.372*** -1.656***
(-4.194) (-5.042) (-7.627)

W ∗ loggdp2 0.046*** 0.051** 0.066***
(2.742) (3.379) (5.532)

W ∗ logpop 0.041 0.025 0.018
(1.454) (0.959) (0.891)

W ∗ logtrade 0.278*** 0.225*** 0.144***
(4.803) (3.809) (3.327)

W ∗ logec -0.661*** -0.509*** -0.482***
(-5.252) (-4.382) (-5.371)

ρ 0.838*** 0.797*** 0.696***
(57.060) (52.865) (36.582)

Obs. 1387 1387 1387
Log-likelihood -318.018 -378.299 -282.268
R2 0.886 0.874 0.885
Wald spatial lag 261.653*** 322.806*** 432.572***
Wald spatial error 27.198*** 25.170*** 14.980**

Notes: Numbers in ( ) are t-statistics. *, **, *** represent the significance at the 10%, 5%, and 1% level,

respectively.
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Table A.5: Heterogeneity analysis: Direct and indirect impacts of the models in Table A.4

Model 1 Model 2 Model 3

Variables W1 W2 W3

Panel A: Direct Effect
logcei -0.046*** -0.044*** -0.052***

(-5.344) (-5.009) (-5.972)
logcei ∗H -0.012** -0.006 -0.015***

(-2.254) (-1.128) (-2.909)
loggdp 1.908*** 1.891*** 2.083***

(13.035) (12.862) (14.421)
loggdp2 -0.072*** -0.071*** -0.080***

(-8.950) (-8.868) (-10.058)
logpop -0.012 -0.018 -0.007

(-0.839) (-1.178) (-0.462)
logtrade -0.129*** -0.114*** -0.116***

(-4.159) (-3.676) (-3.713)
logec 0.813*** 0.801*** 0.786***

(12.316) (11.645) (12.017)

Panel B: Indirect Effect
logcei 0.185** 0.196*** 0.059**

(2.225) (3.524) (2.070)
logcei ∗H 0.009 -0.003 0.016

(0.196) (-0.084) (0.983)
loggdp 1.605 0.594 -0.542

(1.054) (0.531) (-0.965)
loggdp2 -0.074 -0.028 0.027

(-0.899) (-0.459) (0.875)
logpop 0.156 0.047 0.036

(1.173) (0.463) (0.734)
logtrade 0.856*** 0.564** 0.174

(3.084) (2.378) (1.618)
logec 0.088 0.530 0.171

(0.152) (1.239) (0.808)

Notes: Numbers in ( ) are t-statistics. *, **, *** represent the significance at the 10%, 5%, and 1% level,

respectively.
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(a) CO2 emission, Year=2000 (b) Clean energy investment, Year=2000

(c) CO2 emission, Year=2018 (d) Clean energy investment, Year=2018

Figure A.1: Moran’s I scatter plots of CO2 emissions and clean energy investment with W2.
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(a) CO2 emission, Year=2000 (b) Clean energy investment, Year=2000

(c) CO2 emission, Year=2018 (d) Clean energy investment, Year=2018

Figure A.2: Moran’s I scatter plots of CO2 emissions and clean energy investment with W3.
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