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Abstract

Large firms can magnify aggregate fluctuations from microeconomic shocks.
However, it is not only the size level that exhibits heavy tails. Using Portuguese
census data we show that growth rates have: (i) heavy tails; (ii) volatility de-
creasing with size; (iii) kurtosis increasing with size. These shocks have ag-
gregate implications. Following evidence on earnings’ dynamics, we introduce
consumer heterogeneity into a CES-demand model to explain our findings qual-
itatively and quantitatively. Larger firms diversify their sales risk by selling to
more customers. However, customer concentration limits diversification and
increases tail risks. This explains the stronger responsiveness of small firms
and the heavier tails for larger firms.
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1 Introduction

“What causes aggregate fluctuations?” (Carvalho and Gabaix, 2013). Recent re-
search has demonstrated that with the observed granularity (very large firms), mi-
croeconomic shocks may generate aggregate fluctuations (Gabaix, 2016). Models
that ignore such amplification may deliver incorrect policy multipliers and misrepre-
sent the mechanism for shock transmission (Ascari, Fagiolo, and Roventini, 2015).

To explain business cycle fluctuations, the literature has either used firm size distri-
butions with heavy tails (Gabaix, 2011) or the asymmetry of input-output relations
(network structure) of the economy (Acemoglu, Carvalho, et al., 2012) to show that
“idiosyncratic shocks do not die out in the aggregate”. However, the existence of
either very large firms or networks is insufficient to obtain the tail risk for macroe-
conomic variables. Furthermore, “aggregating normally distributed shocks always
results in normally distributed shocks” (Acemoglu, Ozdaglar, and Tahbaz-Salehi,
2017). It is necessary to combine microeconomic tail risks with granularity (large
firms/sectors) to obtain a slower convergence rate for the law of large numbers. A
slow convergence implies that aggregating different tail risks at the micro level does
not (quickly) disappear at the macro level.1

Our contribution is two-fold: a set of empirical regularities and a theoretical micro-
foundation. We first use census data for Portugal to show that firm growth rates (i)
exhibit heavy tails, (ii) the volatility decreases with firm size, and (iii) the kurtosis
increases with firm size. The smaller volatility of large firms limits the potential
for the transmission of shocks (Yeh, 2021). However, the larger kurtosis counteracts
this and further amplifies the transmission of microeconomic shocks. Consequently,
besides the heavy tails in firm size distribution (levels) already documented in the
literature, we show that growth rates exhibit heavy tails that vary with firm size.2

The shocks have aggregate implications. For example, the kurtosis of firm-level
growth rates is strongly correlated with GDP growth (correlation of 0.78). When put
together, the results challenge the notion of risk diversification. Kramarz, Martin,
and Mejean (2020) find that the concentration of sales in a few large customers limits

1Technically, the conditions for Cramér’s theorem are violated, resulting in a much slower con-
verge of aggregate behavior.

2The results are robust to the exclusion of expansionary/recessive years, large/small firms, and
the definition of size.
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the potential for diversification, even for large firms. Because of granularity, large
positive and negative shocks may not cancel out. Since sales are concentrated in
a few top customers, increasing the number of firms leads to a smaller gain from
diversification. Our result suggest that besides volatility, one must also consider the
behavior of the tails. The larger magnitude of the shocks (kurtosis) counteracts the
potential attenuation of the reduction in volatility for the larger firms. As such,
larger firms do not have their risks substantially lowered, further contributing to
aggregate fluctuations.3

Our second contribution is to develop an heterogeneous consumer model that ex-
plains the heavy tails in the distribution of firm growth rates and the reduction
in volatility/increase in kurtosis for larger firms.4 Recent evidence shows that the
distribution of workers’ income volatility also exhibits large variances and kurtosis
(Guneven et al., 2021). We use this to motivate the introduction of customer level
shocks. Furthermore, in models with a representative consumer, any shock to indi-
viduals will generate proportional effects to firms, even if there is firm heterogeneity.
We must thus have heterogeneous consumers to generate asymmetric shocks. This
departure from the representative agent is important as it also addresses the Barro-
King criticism (Barro and King, 1984). Consumers’ asymmetric responses during
the business cycle can generate positive co-movement in employment, consumption
and production (Beaudry and Portier, 2014).

In a nutshell, microeconomic discreteness on the demand side coupled with a skewed
income distribution can explain our empirical findings. The volatility of shocks
decreases with firms that sell to more customers (Fact 2). It is not immediately
obvious why the kurtosis increases with firm size (Fact 3). Customer concentration
emerging from the income distribution is an important feature to explain this tail
behavior. As companies sell to more customers, volatility decreases. However, if sales
are concentrated in a few firms, the behavior of the tail becomes more prevalent, thus
leading to an increase in kurtosis.

The demand-side formulation is a departure from the standard real business cycle
3When the source of volatility is due to input-output linkages, we expect a larger volatility in

manufacturing (more intermediate input intensive) and smaller in services (less intermediate input
intensive) as in Moro (2012). We find no such effect. Volatility is stable across different levels of
intermediate input intensity.

4Technically, heavy tails emerge from a mixture of normally distributed shocks with varying
variances.
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literature. In this case, shocks to consumer preferences and choices can generate
and amplify fluctuations. While this formulation is consistent with recent empirical
findings (di Giovanni, Levchenko, and Mejean (2014)), this is still a departure from
the theoretical literature that has focused on the granularity of supply side shocks
as an explanation for business cycle fluctuations, following a long tradition on RBC
models (e.g. Carvalho and Grassi, 2019). In the standard supply side model, TFP
shocks scale across all of the firm’s production. Sales are proportional to TFP and,
in this setting, a larger firm will not have a smaller volatility or a larger kurtosis of
sales growth. However, there is a mismatch between theory and empirics (Mankiw,
1989). Measured productivity (or TFPR - total factor productivity in revenues) is
not a clean measure as the theory postulates (Foster, Haltiwanger, and Syverson,
2016). Measured TFP shocks are a mixture of demand and supply side shocks.
We thus reconcile theory and empirics by endogenizing firm sales volatility from
consumer heterogeneity and preference dynamics - a demand-driven real business
cycle model.

2 Empirical Results

Our data consists of yearly census data for non-financial firms in 2004-2019 (Statistics
Portugal, 2019b). The dataset is collected by the Statistics Portugal and can be
accessed by any accredited researcher (Statistics Portugal, 2019b). It contains over
5 million observations for about 300 to 380 thousand firms per year. This is a
particular advantage of our dataset given the difficulty (precision) in estimating
higher order moments in small samples. For each firm-year we obtain revenues,
labor costs, capital, and employment.5

2.1 Sales growth distribution

Fact 1. The distribution of sales growth exhibits heavy tails.

To describe the tail behavior, let ζ be the tail index of a power law variable with
cumulative distribution 1− F (x) ∼ Cx−ζ . This can be estimated by OLS in log-log
regression ln(1− F (x)) = c− ζ ln(x) as in Gabaix and Ibragimov (2011).

As reported in Figure 1, while the tail is well approximated with a linear function, it
also contains a slight curvature. The tail is estimated at about 3.3 using a threshold

5Further details about the data can be found in the replication file and appendix.
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Figure 1: Log-log and log-level density-growth plot and tail exponent estimates.

for sales growth set at -2/2 for the left/right tail. If we use a threshold of -1/1
for the left/right tail, we obtain a smaller coefficient, confirming the curvature.6

This suggests that the empirical tails decay faster than predicted by the power law
distribution: ζ is not constant.7

Besides the log-log plot (power-law), we also report a log-level (exponential) plot in
Figure 1.. The logarithm of the inverse CDF of an exponential distribution is linear
in levels. While the distribution is close to exponential, it presents slower decay. This
is consistent with heavy tails (the definition of heavy tails is that of a distribution
that decay slower than an exponential distribution). Furthermore, the kurtosis is
larger than 9, which is the kurtosis of the exponential distribution.

An alternative method to evaluate the “fatness” of a distribution is the probability
of a shock more than three standard deviations away from the mean (tail risk). In
the data this correspond to a probability of 2.6%, that compares to the probability
in the normal distribution of 0.27%.8 Large shocks (three standard deviations above
the mean) are much (10 times) more frequent than what we expect from the normal
distribution.

6Table A.3 reports the more detailed results.
7We also note that the shock distribution is similar across years with simultaneous long positive

and negative tails both in expansions as well as recessions (Figure A.2) with small overall shifts in
the cumulative density function (Figure A.3).

8Table A.4.
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2.2 Size-volatility

To analyze the size relation, we discretize size into 5% intervals thus creating 20 bins
{5%, 10%, .., 90%, 95%, 100%}. We use four definitions of size: sales, employment,
capital stock, and labor productivity. 9

Fact 2. Sales growth volatility decreases with firm size.

To compute volatility, we estimate the following dummy variable regression

[
dyit −

∑
s

µdy(s)1(i ∈ s)

]2
= c+

∑
s

αs1(i ∈ s) + ϵit

where s is a size bin, 1(i ∈ s) is a dummy equal to 1 if firm i is in bin s, µdy(s) is the
average sales growth of firms in bin s, ϵ is a residual, and c,{αs}Ss=1are parameters.
The regression estimates the variance for each bin. As reported in Figure 2, the
standard deviation of sales growth is not constant across firms of different size.
The pattern of heteroskedasticity is markedly size dependent, with small firms more
volatile than large firms.10

Sales growth volatility decreases from over 1.5 for the smallest 10% of firms to about
0.35 for the largest 10% firms. This is robust to the definition of size used (labor
costs or capital). The fall in volatility is slightly smaller if we use the capital stock
as a measure of size. This may signal the stock of capital is not aligned with firm
size, thus reflecting potential distortions in capital allocation.11 Finally, there is a
slight u-shaped relation between volatility and labor productivity. That is, volatility
decreases with labor productivity for firms in the bottom half of the productivity
distribution but increases with labor productivity for firms in the top half of the
productivity distribution. In particular, the largest firms have a sales volatility of
0.35 while the most productive firms have a sales volatility almost three times larger.
This suggests that (labor) productivity is not proportional to size.

Gabaix (2011) posits the following log-linear relation
9To avoid mean-reversion, for variable x, we show the results are robust to the use of symmetric

growth rates Haltiwanger, Jarmin, and Miranda (2013): 2(xt − xt−1)/(xt + xt−1), and the average
size: x̄ = (xt + xt−1)/2 (Figure A.6).

10Table A.7 contains regression results.
11This size effect is not driven by sectoral differences (Figure A.7).
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Figure 2: Volatility of sales growth, by percentile of firm size

ln std.dev(dy) = βσ − ασ lnY.

We calculate the standard deviation by aggregating across each of the 20 bins of firm
size. Estimating the slope of this line separately for smaller (sales below 150,000€)
and larger (sales above 150,000€) firms, we find the coefficient (ασ) varies between
-0.337 for smaller and -0.113 for larger firms.12 This rejection of the “Gibrat’s law for
variances” is consistent with the evidence from previous studies (Dunne, M. Roberts,
and Samuelson, 1989, Stanley et al., 1996, ). Given the samples used with different
firm sizes, it may also explain why the literature has found coefficients ranging from
-0.5 to -0.15. For example, Calvino et al. (2018) finds an elasticity of -0.18, while
Sutton (2007) finds an elasticity of -0.58. The closest result to ours is reported in
Yeh (2021), who explains that the “negative log-linear relationship between firm-
level volatility and its size is robust to a variety of specifications and the estimation
results indicate that some traditional conjectures can be ruled out for explaining
the size-variance relationship. This includes narratives on output, input or product
diversification, and firm learning”.

12Table A.5 and Figure A.5 in the Appendix.
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2.3 Size-kurtosis

We now evaluate the tail behavior for firms of different size using the kurtosis. The
kurtosis measures the fourth power of deviations normalized by the fourth power
of the standard deviation. The intuition is that shocks below one standard devia-
tion have very small weight when raised to the fourth power and shocks above one
standard deviation get a larger weight. While there is some debate if the kurtosis
measures the tails or the peakness, our results suggest strong correlations with the
tails. The correlations with the 1st and 99th percentiles of the growth rate per year
are 0.81 and 0.57, respectively.

Fact 3. The kurtosis of firm growth rates increases with firm size.

To compute the kurtosis, we estimate the following dummy variable regression[(
dyit −

∑
s µdy(s)1(i ∈ s)

)2∑
s σ

2
dy(s)1(i ∈ s)

]2
= c+

∑
s

αs1(i ∈ s) + ϵit

where s is a size bin (percentile), 1(i ∈ s) is a dummy equal to 1 if firm i is in bin
s, µdy(s) and σ2

dy(s) are the mean and variance of sales growth of firms in bin s, ϵ
is a residual, and c,{αs}Ss=1are parameters. This regression estimates the kurtosis
for each bin. As reported in Figure 3, the distribution of sales growth is leptokurtic
(kurtosis above 3) across all firm sizes. The pattern is markedly size dependent, with
the kurtosis increasing with firm size.13

The relation of kurtosis with firm size follows an inverse relation from the one ob-
served for the standard deviation: larger firms have larger kurtosis. Again, this is
true for any of the measures of firm size: sales, capital, labor costs, and labor pro-
ductivity. However, for the firms in the top 10% of the size distribution this excess
kurtosis peaks very strongly, particularly if we use labor costs as our measure of
firm size. The top 10% incorporates the very large firms and they are much larger
on average than the 9th decile. This suggests that large firms are more likely to
face more extreme shocks. Notice these shocks are not larger than shocks to smaller
firms. What the kurtosis measures is that shocks are more extreme when compared

13Table A.9 contains regression results.
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Figure 3: Kurtosis of sales growth, by percentile of firm size

to the “usual” shocks, as measured by the standard deviation (which is smaller for
larger firms).

We also investigate the existence of a log-linear relation between the kurtosis and
size14

ln kurtosis(dy) = βk + αk lnY.

Again, we calculate the kurtosis by aggregating across each of the 20 bins of firm size.
Estimating the slope separately for smaller (sales below 150,000€) and larger (sales
above 150,000€) firms, we find coefficient (αk) varying between 0.419 for smaller and
0.072 for larger firms. The relation for the larger firms is more noisy (only significant
at 5%), probably because of the lower precision for the estimated kurtosis.15

14To the best of our knowledge this has not been tested before.
15Table A.8 and Figure A.9.
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3 Aggregate Implications

3.1 Volatility

As shown in Gabaix (2011, p.738) , the standard deviation of GDP growth can be
written as

σGDP =

(∑
i

(
Yi,t−1

Yt−1

)2

σ2
i,t

)1/2

,

where Yit is revenues (or value added), Yt =
∑

i Yit is the aggregate value, and σ2
i,t is

the firm-level volatility of value added growth. If all firms have the same volatility,
σi = σ for all i and

σGDP = σ

(∑
i

(
Yi,t−1

Yt−1

)2
)0.5

.

where
(∑

i

(
Yi,t−1

Yt−1

)2)0.5

is the Herfindal. The estimated firm-level volatility is

σ̂ =

 1

N

∑
i,t

(
dvait −

1

N

∑
i,t

dvait

)2
0.5

= 0.847.

However, the formula is incorrect when firm-level volatility is not constant. Given
that volatility decreases with firm size, larger firms should carry more weight. This
correction reduces the overall estimate to16

σ̂w =

∑
i,t

Yit

Yt

(
dvait −

1

N

∑
i,t

dvait

)2
 = 0.610

To obtain the aggregate formula we must also calculate the sales Herfindal17

16An alternative correction is to calculate the volatility for each bin. In this case, σGDP =(∑
s

∑
i∈s

(
Yi,t−1

Yt−1

)2
σ2
s

)1/2

. However, this requires calculating one volatility terms for each bin.

Instead, the weighting correction requires only one volatility term.
17The value added Herfindal is similar, estimated at 0.038.
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Ĥ =

(∑
i

(
Yi,t−1

Yt−1

)2
)0.5

= 0.041.

We thus obtain an estimated aggregate volatility in the baseline case of

σ̂GDP = σ̂Ĥ = 0.847 ∗ 0.041 = 0.035

while with the size correction we obtain

σ̂GDP = σ̂W Ĥ = 0.610 ∗ 0.041 = 0.025.

Both of these compare with the actual volatility of GDP estimated at 0.024.18 We
obtain a biased estimate if we don’t use the correction. This illustrates the impor-
tance of obtaining representative samples. Using only the largest firms would result
in an incorrect estimate. Given that previous studies have used datasets with varying
degrees of firm size (mostly large firms), this difference may explain why they found
smaller firm-level volatilities (ranging from 12% to 50%).

3.2 Kurtosis

We now show how the tail associates with macroeconomic behavior. We start by
calculating the kurtosis across all firms for each year and compare it to GDP growth
in Figure 4. GDP growth and kurtosis vary year-on-year declining from 2007 to 2012
and recovering from 2012 to 2019. In particular, there are two relevant declines: in
2009 (subprime) and 2011-2012 (sovereign debt). Overall, there is a correlation of
0.78 between the GDP growth rate and the kurtosis, which reveals a positive associ-
ation between the existence of extreme events and GDP growth. As a comparison,
the correlation of GDP growth with volatility is -0.44, 0.88 with the 1st percentile,
and 0.72 with the 99th percentile of sales growth, thus confirming the relevance of
the tails for the aggregate.

18The macro volatility in Portugal has been stable in the last 15/30 years.
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Figure 4: Kurtosis of firm size growth vs. GDP growth.

4 Model

What can explain the results? Recent evidence shows that “the distribution of earn-
ings changes exhibits substantial deviations from log-normality, such as negative
skewness and very high kurtosis” (Guneven et al., 2021). This motivates our in-
troduction of consumer level shocks. We first provide the intuition for the role of
customers.

Regarding volatility, the number of customers in models with customer markets is
an implicit measure of firm size. For firms with a smaller customer base, the loss of
one customer represents a large fraction of total sales. Larger firms spread risks by
diversifying sales to a broader set of customers. Smaller firms are thus exposed to a
larger risk.

For kurtosis, it is less straightforward to understand what explains the tail behavior.
The distribution of shocks can be well approximated by a mixture probability con-
sisting of a standard normal distribution, where the variance is drawn from a gamma
distribution.19 While this generates the heavy-tails, it tells nothing about the size-

19The approximation is better than with other heavy tailed distributions (Laplace/Cauchy).
Section A.4.
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kurtosis relation. To obtain a kurtosis that increases with size, requires a skewed
customer distribution (large customers). In such case, even though the volatility
is spread across many customers, the shocks to the largest customers continue to
play a much larger role. Larger firms will thus have a smaller volatility and a larger
kurtosis.

We derive our model from consumer preferences, aggregate first at the firm-level and
next at the macroeconomic level. However, the baseline representative agent model
with standard “CES preferences” fails to account for the decreasing volatility. This is
because the consumer is representative and buys from all firms. So consumer shocks
are proportional to all firms. We use a slight variation of the model to account
for heterogeneity in a simple form: each customer has idiosyncratic income (y) and
instead of having all customers consuming all products, we introduce consideration
sets where each consumer only consumes Ni products.20 We can think about this
restriction emerging from location (travel) or information (search) frictions as in
marketing and industrial organization models (e.g. Van Nierop et al., 2010). The
main feature is the inexistence of a representative consumer. This exposes firms to
idiosyncratic risks. For example, during a financial collapse a hotel located in the
financial district will lose more customers than a beach resort. Its customers are
not the same. While we understand that consideration sets emerge endogenously,
to make progress we will take them as given (exogenous). The introduction of this
simple (yet realistic) form of consumer heterogeneity is sufficient to generate the
observed patterns.

There are i = 1, ...,M consumers with CES preferences. Each only consumes a subset
Ji (with size Ni) of all N products. There are j firms, each selling to Mj consumers.
There are more consumers than products: N << M . In equilibrium the number of
products demanded and produced are equal:

∑M
i=1Ni =

∑N
j=1Mj.

20The theory of consideration sets originates from the study of problem solving methods in Newell
and Simon (1972), and has been used in Marketing (J. Roberts and Lattin, 1991). Consumers cannot
cognitively evaluate all the products and must restrict to a subset.
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4.1 Consumer problem

4.1.1 Dynamic problem

We use a standard consumption-savings model with the introduction of preference
shifts {ξit}∞t=1 and assume perfect foresight. To prevent non-stationary behavior, we
restrict taste shocks to have zero expected growth: E(ln ξit

ξi,t−1
) = 0. The utility in

every period is ξitu(qit, 1−lit), where cit = pitqit is the CES basket, pit is a price index,
qit a consumption index (specified below), and the individual has one unit of time
either allocated to work (l) or leisure (1− l). The consumer first solves the dynamic
problem of consumption allocation over time by maximizing the value function

V (wit) = max
qit,lit

ξitu(qit, 1− lit) + βV (wi,t+1)

s.t : wi,t+1 = yi,t − pi,tqi,t + (1 + rt)wi,t, lim
T→∞

(1 + rT )
−TwiT ≥ 0, yit = αitΠt + ωtlit

where β is the discount factor, w is wealth that must be non-negative as T → ∞,
and the budget constraint must be satisfied. Income comes from employment (ωtlit)
or share of profits (αitΠt). The share of profits is exogenous and known to all agents.
The solution is the Euler equation21

ξituq(qi,t, 1− li,t)

ξi,t+1uq(qi,t+1, 1− li,t+1)
=

pit
pi,t+1

(1 + rt+1)β. (1)

determining a non-linear first-order Markov process for consumption. If we let
u(q, 1− l) = ln(q)+lnν(1− l), this simplifies

ci,t+1 = (1 + rt+1)β
ξi,t+1

ξit
cit (2)

and cit =
ξit
ξi0
ci0. Let ϵi,t+1 = ln

ξi,t+1
ξit

. Taking logs, we obtain a log-linear random
walk

21The first order condition is ξuq(q, 1 − l) = βpV ′(w′) where V ′(w) = ξuq(q, 1 − l)Q′(w) −
βpV ′(w′)Q′(w) + (1 + r)βV ′(w′) = (1 + r)βV ′(w′). However, from the optimum V ′(w) = (1 +
r)ξuq(q, 1− l)/p. The final solution is ξuq(q, 1− l) = β(1 + r′)ξ′uq(q

′, 1− l′)p/(p′).
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ln ci,t+1 = ln(1 + rt+1)β + ln cit + ϵi,t+1.

Finally, the no-ponzi condition must be satisfied ci0
ξi0

∑∞
t=0 ξit ≤

∑∞
t=0 yit +wi0, deter-

mining the starting level, ci0. The optimal labor supply satisfies

ν(1− l)

ν ′(1− l)
=

cit
ωt

.

4.1.2 Static problem

Let qijt denote the demanded quantity of product j, cit = pitqit the optimal consump-
tion basket defined above, and pjt the price. Choosing how to allocate the budget to
consumption22

max
{qijt}j∈Ji

(∑
j∈Ji

q
(η−1)/η
ijt

)η/(η−1)

s.t.
∑
j∈Ji

pjtqijt ⩽ cit = pitqit

Demand is the standard CES function

qijt =

(
pjt
pit

)−η
cit
pit

if j ∈ Ji, qijt = 0 otherwise

where the price index faced by consumer i is pit =
(∑

j∈Ji p
1−η
jt

)1/(1−η)

and the

consumption bundle qit =
(∑

j∈Ji q
(η−1)/η
ijt

)η/(η−1)

. All consumers face the same set
of prices but they consume different sets of products and thus face consumer specific
price indices.

4.2 Firm problem

Each firm sells to Mj consumers and qijt = 0 if j /∈ Ji. Using the consumer demand
derived above, firm-level sales are

qjt(pjt) =

Mj∑
i=1

qijt(cit, pjt).

22From monotonicity, this is equivalent to maximizing ξitu(qit, 1− lit).
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This representation is useful to calculate firm-level demand elasticity and set the
optimal price even in the presence of heterogeneous consumers without having to
keep track of each consumer. On the supply side, the sole input in production
is labor, supplied by consumers at wage rate ωt, with constant returns to scale:
qjt = ajtljt. The marginal cost of production is thus mcjt = ωt

ajt
. Firms then set

prices

max
pjt

pjtqjt −mcjtqjt,

foc : qjt + pjt
∂qjt
∂pjt

−mcjt = 0

We follow the usual assumption in monopolistic competition models and assume that
firms ignore the effect of own price on the price index.23 Formally, ∂pit

∂pjt
= 0. The

elasticity of demand is thus

∂qjt
∂pjt

=
M∑
i=1

∂qijt(cit, pjt, pit)

∂pjt
= −η

qjt
pjt

,

and we obtain the optimal pricing rule

pjt =
η

η − 1
mcjt.

Marginal costs are determined by the level of productivity and input prices. Firms’
revenues equal pjtqjt = ( η

η−1
)ωtljt.

4.3 Equilibrium

We now define the equilibrium for the labor, financial, and product markets. We
can solve the model at the aggregate level and abstract from specifying how wealth,
wages or capital returns are allocated to each consumer. Firms’ revenues are equal
to wages plus profits and equal to the income flow to individuals. Aggregating across
all consumers

23In our model, each consumer’s price index depends on the set of goods consumed. Given that
price indices are consumer specific, not assuming this would require the firms to keep track of each
consumer’s consideration set.
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M∑
i=1

yit =
M∑
i=1

(
η

η − 1
)ωtlit =

M∑
i=1

∑
j∈Ji

pjtqijt.

This determines the equilibrium labor market clearing wage24

ωt =
η − 1

η

∑N
j=1 pjtqjt∑M

i=1 lit
.

In this economy there is no investment and we assume perfect capital markets. Each
consumer can lend and borrow freely at the interest rate, rt. Market clearing implies
that the supply of funds must equal the demand for funds:

∑M
i=1wit = 0 at all

periods, t. From the budget constraint, consumption equals income,
∑

i yi,t−ci,t = 0.
Finally, this implies that aggregate supply equals aggregate demand and the product
market clears25

N∑
j=1

pjtqjt =
M∑
i=1

cit.

4.4 Discussion

Before presenting the computational results, we discuss two concerns. The first
is how can there be consumption shocks at the aggregate level without changing
productivity (or inputs). The second is that the model predicts a similar volatility
for consumption and income, while this is at odds with empirical evidence.

In a closed economy, agents can only consume what they produce. So how can
consumption increase without changing productivity? To answer this, notice that
heterogeneity implies that aggregate consumption and aggregate labor supply can
either be positively or negatively correlated (or uncorrelated). This is because with
heterogeneity, the agents that increase consumption are not the same that increase

24By leaving the parametric form of (ν(1 − l)) unspecified, we sidestep the debate on the labor
supply elasticity (e.g. King and Rebelo, 1999 and Chetty et al., 2011). Labor market clearing implies
that, at the given wage, supply equals demand:

∑M
i=1 lit =

∑N
j=1 ljt. The model is compatible

with: (i) fixed labor supply, in which case trivially
∑M

i=1 lit = l̄ or (ii) fully flexible labour supply

(exogenous wages),
∑M

i=1 lit =
η−1
η

∑N
j=1 pjtqjt

ωt
.

25Aggregate income equals aggregate revenues
∑M

i=1 yit =
∑M

i=1

∑
j∈Ji

pjtqijt, while from perfect
capital markets

∑M
i=1 yit =

∑M
i=1 cit and the result follows.
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labor supply. Because of granularity, these are not canceled by aggregation. For
example, individuals with large wealth may increase consumption while individuals
with low wealth increase labor supply. This breaks the representative agent model’s
prediction of Barro and King (1984) that aggregate consumption and labor supply
must be negatively correlated as a response to a demand shock.

Besides the theoretical implication, there is also an empirical implication that results
in mismatch between the model and the data. To understand this, it is important
to distinguish again measured TFP (TFPr) from technical TFP (TFPq). While
technical TFPq may stay fixed, measured TFPr will be endogenously determined.
Empirically, productivity shocks are still at the center of the fluctuations as in stan-
dard Real Business Cycle models but, due to mismeasurement, these shocks have
a demand origin. Researchers that estimate the shocks will misinterpret them as
supply side shocks. Translating to our model, there are two polar cases to consider
depending on labor supply. If labor supply is inelastic (e.g. long run), TFPq stays
constant while wage and price increases generate an increase in measured TFPr. If
labor supply is infinitely elastic (e.g. short run, particularly at the intensive margin),
wages are given, TFPq stays constant, while employment increases. For anything
in between, there is a combination of the two. Given the empirical evidence of
small firms’ price responses to demand shocks (Bonomo et al., 2020; DellaVigna and
Gentzkow, 2019; Santos, Costa, and Brito, 2022), this is consistent with a model of
elastic labor supply. Particularly, if we consider the intensive margin, where worker
effort can vary (to some extent) so that the same number of workers can actually
translate into more effective labor units resulting in a measured TFPr increase. This
is one reason why intermediate inputs are a better proxy to measure marginal costs
(and markups) than either labor or capital.

The second concern is the prediction that the volatility of consumption and income
are the same. We can reconcile this with the empirical evidence by considering the
extension to two types of goods: consumption (e.g. food) and investment (e.g. car).
In this case shocks to preferences for investment goods are more volatile than shocks
to preferences for consumption goods. I.e., purchases of investment goods (e.g. cars)
are more volatile than purchases of consumption goods (e.g. food).
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4.5 Computational results

From equation 1, take a log-linear approximation to the Euler equation of consumer
i

ln cit = ρ0 + ρ1 ln ci,t−1 + ϵit.

The process is the same for all consumers and let rt be constant. Assume the shock
(ϵit = ln

ξi,t
ξi,t−1

) is drawn from a variance-gamma distribution - a mixture of a zero-
mean normal with variance drawn from a gamma distribution (Gamma(k, θ)). This
gives log-normal customer sales with heavy-tailed shocks. The distribution of con-
sumption becomes skewed and customer sales become concentrated. Together with
consideration sets, this guarantees that when we sum across customers, the volatility
and kurtosis of growth rates will vary with firm size. This matches the firm-level
distributions observed in our data and will be fundamental to generate an increasing
kurtosis. The process is stationary if |ρ1| < 1. We calibrate our parameters to

M N η
η−1

mc ρ0 ρ1 k θ

123.4 million 350,000 1 1.3 0.8 3.2 0.25

The model is simulated for T = 150 periods with a burn-in of 50 periods. To obtain
similar aggregation effects, we set the number of firms (N) to be approximately equal
to the Portuguese economy: 350,000. We then split the firms into 10 bins of equal size
and for each we set the number of customers equal to Mj ∈[4, 9, 15, 22, 32, 45, 70, 110,
220, 3000]. The number of customers is not obtained from data but is instead cali-
brated to obtain a similar average sales per decile observed in the data. As a simpli-
fication, we will assume that each consumer only buys one product so that Ni = 1

(imagine that consumers have multiple selves). This gives a total of M = 123.4 mil-
lion individual consumption decisions (e.g. 12.3 selves for a Portuguese population
of 10 million). We assume that all firms face the same marginal cost and normalize
η

η−1
mc = 1. This allows us to normalize all prices equal to 1 and simplify the nota-

tion so that qijt =
cit
Ni

. Finally, the dynamic parameters (ρ0, ρ1, k, θ) are calibrated
to replicate the standard deviation and kurtosis across the 10 deciles of firm size.

Qualitatively, Table 1 shows that the model replicates the patterns for standard
deviation and kurtosis from empirical facts 1 to 3. Quantitatively, we obtain good
approximations for the volatility (except for the very small firms in the first two
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deciles) and we slightly underestimate the kurtosis at almost all size levels. At the
aggregate level, the model generates an aggregate volatility of sales of 3.7% that
compares with an aggregate volatility of sales in the data of 5.3%.

While the reduction in volatility for larger firms is straigthforward to understand
as a simple diversification argument, the increase in kurtosis in this model depends
on the level of customer concentration. We show this by limiting the size of each
customer and imposing an upper bound to the consumption of each individual. We
use 3 different values: cit < {106, 107, 108}. The results in Table 1 show how the
results change with different bounds on customer size. The kurtosis decreases as we
reduce the size of the largest customers. Furthermore, the volatility is also reduced,
confirming that risk diversification is limited by the existence of large customers. If
we impose a sufficiently small limit to the size of the largest customer, the kurtosis
no longer increases with firm size as reflected in column (v). This demonstrates the
importance of large customers to match the empirical results regarding the volatility-
kurtosis-size relation.

5 Concluding remarks

In this article, we have shown that both the volatility and kurtosis of the growth rate
of sales varies with firm size. This has implications for the aggregate responsiveness
to the business cycle. We have microfounded the observed firm-level shocks with
demand side heterogeneity. Obtaining the theoretical microfoundations requires two
conditions: (i) each customer buys from a small set of firms, and (ii) the shocks to
individual customers are normally distributed with varying variances. This guar-
antees that the model is able to replicate the empirical results qualitatively and
quantitatively.

The model has several economic implications. For example, the magnification chan-
nel of the consumption side means that what may start as a small supply side shock
(e.g. oil prices) is amplified through the effect to the agents consumption decisions
(e.g. postponing the purchase of a new automobile). A credit crunch is also po-
tentially amplified. In the model, credit is allocated from customers with negative
demand shocks to customers with positive demand shocks. As credit is restricted,
customers with a positive demand shock (e.g. that need to buy a car) cannot bor-
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row from the customers with a negative demand shock (e.g. that want to sell a
house). This leads to an overall depression in aggregate demand. Changes to agents’
expectations can have similar amplification effects.

We have been able to replicate the main microeconomic empirical features in the
data, despite the fact that we have abstracted from any type of cost side shocks,
labor or capital market frictions, and input-output linkages. These are important
mechanisms of the Portuguese economy that may further amplify the transmission
of shocks. For example, shocks may be correlated at the customer level due to either
aggregate events or networks (input-output linkages). If we allow for input-output
linkages, the (unweighted) volatility of GDP using Domar weights (sales divided by
GDP) becomes 0.065, almost twice the estimated volatility of 0.035 using revenue
weights. This suggests an amplification of almost two times originated from input-
output linkages.

We highlight some topics for future research. First, preference/consumption shocks
are the drivers of fluctuations in our model. There is evidence of income shocks that
are consistent with the formulation we attribute to preference/consumption shocks,
namely, the large kurtosis (Guneven et al., 2021). However, consumption dynamics
may be different from income dynamics. Hence, it is important to understand if
shocks to consumption also exhibit similar heavy tails. This requires consumption
data. Second, our simple model of firm dynamics with customer heterogeneity allows
a link of business cycles with economic growth through productivity dynamics (e.g.
Luttmer, 2007). We believe that models of granularity can help in the development
of new theories of endogenous business cycles.
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A Online Appendix

A.1 Data Description

Our dataset consists of yearly census level data for all non-financial firms over the
period 2004-2019, covering the two main crisis - sub-prime and euro sovereign debt.
It contains balance sheet, P&L and employment information. The dataset is col-
lected by the national statistics office (INE) and can be accessed by any accredited
researcher (Statistics Portugal, 2019b). We then obtain for each individual firm the
following variables: Sales, intermediate inputs, labor costs, value added (sales minus
intermediate inputs), employment (number of workers), and capital stock. Capital
stock is the only variable that has to be constructed. We use data on investment and
fixed assets to reconstruct the capital stock using the perpetual inventory formula.26

Finally, we obtain aggregate data for the real GDP from Statistics Portugal (2019a).

Table A.1: Descriptive statistics
Variable Obs Mean Std. Dev. Min Max
Sales 4,290,567 1,121,813 24,300,000 1 9,630,000,000
Intermediate inputs 4,290,567 871,240 22,000,000 0 9,220,000,000
Capital Stock 4,284,586 724,535 31,000,000 1 10,700,000,000
Employment 4,290,567 9 95 1 26,857
Labor costs 4,290,567 162,358 2,107,706 0 694,000,000
Sales growth rate (ln) 4,290,567 0.02 0.78 -17.70 14.11
Notes: All variables in euros except for employment (number of workers). Sales
growth rate is calculated as the time-difference of log sales.
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Table A.2: Aggregate statistics
Year Real GDP - Sales - average Number

growth rate growth rate of firms
2004 - - 291,924
2005 0.78% 2.01% 300,783
2006 1.62% 1.82% 304,373
2007 2.51% 5.38% 308,218
2008 0.32% 0.37% 311,075
2009 -3.12% -5.85% 307,780
2010 1.74% 0.69% 319,079
2011 -1.70% -9.13% 318,351
2012 -4.06% -12.17% 310,430
2013 -0.92% -1.98% 309,873
2014 0.79% 4.05% 316,575
2015 1.79% 5.41% 323,897
2016 2.02% 5.34% 331,716
2017 3.51% 9.42% 343,008
2018 2.85% 6.97% 357,713
2019 2.68% 7.17% 379,626
Notes: Sales growth rates calculated as log differences.

Figure A.1: Distribution of sales growth and normal density.
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Table A.3: Tail exponent estimates
(i) (ii) (iii)

Rank Rank-corrected Rank
Right tail exponent estimate -3.279 -3.280 -2.273

s.d. 0.0022 0.0022 0.0012
Left tail exponent estimate -3.132 -3.128 -2.205

0.0023 0.0023 0.0012
Notes: Tail exponent OLS. Columns (i) and (iii) use rank regression with sales growth threshold
of 2 and 1 (-2 and -1 for the left tail), respectively. Column (ii) uses the rank regression
with the Gabaix and Ibragimov (2011) correction.

Table A.4: Tail risk
Data Normal distribution Ratio

2004 2.595% 0.268% 9.68

Notes: Probability of a shock three standard
deviations away from the mean.

Figure A.2: Distribution of sales growth and normal density, by year.
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Figure A.3: CDF of sales growth, grouped by years.

Figure A.4: Weibull plot
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Sales Sales
Below 150,000€ Above 150,000€

Slope -0.3378*** -0.1129***
s.d (0.0052) (0.0042)

Intercept 3.3715*** 0.7645***
s.d. 0.0549 (0.0551)

R-squared 0.9979 0.9906
N 11 9

Table A.5: OLS results for the relation of between standard deviation and sales

Figure A.5: Volatility of sales growth vs. firm size (in logarithms).
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A.2 Heavy tails of sales growth distribution

A.3 Size-volatility relation

A.3.1 Volatility of sales growth using log difference growth rates

Figure A.6: Volatility of sales growth (log differences), by percentile of firm size

A.3.2 Volatility of sales growth by 3 digit CAE code

The standard deviation of sales growth can be computed for individual sectors. Over-
all, Figure A.7 shows that there is no pattern. That is, services are not more/less
volatile than industry. We isolate two particular industries which contain many firms
and that exhibit a large volatility: 411 - Property development and 681 - Commerce
of real estate. Both are related to the real estate sector and exhibit a sales growth
volatility above 0.9. Removing these two industries does not alter the main results
as reported in Figure A.8.

26The formula for the capital stock is Kt =(1−δ)Kt−1+It, where we use an estimated depreciation
rate δ = 0.058, K1 is the first observation of the capital stock of firm i equals fixed assets and I is
the net investment (investment minus disinvestment).
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Figure A.7: Volatility of sales growth - by 3 digit sector.

Figure A.8: Volatility of sales growth - by size (all firms and excluding real estate
sectors 411 and 681).
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Dependent variable: |dy − µdy|
Percentiles of: Sales Labor Costs Capital Labor Productivity
5th percentile 1.209*** 0.685*** 0.770*** 0.859***

(308.18) (290.03) (306.24) (314.90)
10th percentile 0.731*** 0.602*** 0.847*** 0.621***

(258.82) (181.78) (298.00) (267.01)
15th percentile 0.584*** 0.767*** 0.566*** 0.491***

(256.35) (312.53) (263.47) (253.24)
20th percentile 0.516*** 0.538*** 0.488*** 0.437***

(261.08) (263.37) (253.39) (251.99)
25th percentile 0.465*** 0.479*** 0.442*** 0.401***

(264.26) (260.01) (247.48) (253.12)
30th percentile 0.425*** 0.476*** 0.410*** 0.376***

(262.51) (266.49) (243.22) (255.01)
35th percentile 0.390*** 0.446*** 0.391*** 0.358***

(260.89) (260.78) (243.90) (255.26)
40th percentile 0.363*** 0.404*** 0.376*** 0.348***

(258.41) (255.59) (242.82) (255.16)
45th percentile 0.342*** 0.380*** 0.367*** 0.341***

(257.38) (253.16) (238.44) (257.12)
50th percentile 0.324*** 0.365*** 0.353*** 0.336***

(254.25) (247.96) (236.44) (254.72)
55th percentile 0.315*** 0.348*** 0.346*** 0.333***

(255.28) (243.44) (231.52) (255.19)
60th percentile 0.302*** 0.332*** 0.337*** 0.328***

(252.42) (238.73) (224.81) (252.63)
65th percentile 0.293*** 0.320*** 0.327*** 0.329***

(251.22) (235.81) (222.33) (252.32)
70th percentile 0.289*** 0.304*** 0.321*** 0.324***

(244.87) (234.33) (215.54) (245.34)
75th percentile 0.285*** 0.295*** 0.314*** 0.322***

(243.27) (224.34) (208.67) (238.08)
80th percentile 0.279*** 0.281*** 0.306*** 0.325***

(236.24) (214.40) (199.11) (228.54)
85th percentile 0.270*** 0.271*** 0.300*** 0.333***

(230.68) (202.98) (189.29) (220.32)
90th percentile 0.253*** 0.256*** 0.297*** 0.341***

(222.63) (194.50) (178.69) (204.84)
95th percentile 0.231*** 0.246*** 0.285*** 0.367***

(207.94) (182.64) (170.30) (192.12)
100th percentile 0.193*** 0.216*** 0.259*** 0.492***

(191.74) (168.75) (142.23) (171.64)
Observations 4290591 4290591 4278746 4290591
Notes: OLS results for the regression of absolute deviation of log sales
growth on percentiles of size class (defined by sales, labor costs,
capital and labor productivity). Standard errors clustered at the
firm-level. 95% CIs reported.

Table A.7: Volatility of sales growth - by size
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Sales Sales
Below 150,000€ Above 150,000€

Slope 0.4193*** 0.0724**
s.d (0.0163) (0.0289)

Intercept -1.6345*** 2.3631***
s.d. (0.1729) (0.3832)

R-squared 0.9865 0.4721
N 11 9

Table A.8: OLS results for the relation of between kurtosis and sales

A.4 Size-kurtosis relation

A.5 Distributional approximation

The financial literature has long studied the existence of (semi-)heavy tails for the
distribution of returns on financial assets. These distributions are different from
strong heavy tailed distributions, such as the Cauchy distribution, because they
have well defined moments. For example, the heavy-tailed Cauchy distribution may
not even have a first moment. We have shown before in Figure 1 that the tail of the
growth rate distribution slightly departs from a power law distribution. Instead, it
seems a more moderate distribution with tails just slightly larger than the exponential
(and smaller than a Weibull). In Figure A.10 we compare it with a two parameter
variance mixing distribution. In this case, we mix a standard normal distribution
(N(0, 1)) with a gamma distribution (Γ(0.8, 0.65) for the variance. This is also
known as a variance-gamma distribution, a special case of the generalized hyperbolic
distribution. The quality of the specification is quite impressive given that this
is a two parameter distribution as reflected by the quantile plot in Figure A.10
containing 99.5% of the data and confirmed in Figure A.11 reporting the quantile
plot for 99.999% of the data. This is a convenient specification where growth rate
shocks are still drawn from a normal distribution while the variance is nonconstant.27

27As a comparison we also report a Cauchy distribution in Figure A.12 and a Laplace distribution
in Figure A.13. The Cauchy distribution has two parameters the location x0 and scale γ. We com-
pute the parameters of the Cauchy distribution from the median x0 = median and the interquartile
range γ = IQR/2. A Laplace distribution also shares some features with the data, such as the
heavy tails, with the benefit of having well defined first and second moments. We compare the data
with a Laplace distribution with the same mean and variance as our data. The Cauchy distribution
reproduces very closely all the percentiles of the growth rate distribution (see the qq plot), while
the Laplace distribution is not a good approximation. In particular, the Laplace distribution tends
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Figure A.9: Kurtosis of sales growth vs. firm size (in logarithms).

Figure A.10: Distribution of sales growth vs. generalized hyperbolic density and
quantile-quantile plot (truncated at 0.25% for each tail).
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Figure A.11: Quantile-quantile plot for data vs. generalized hyperbolic distribution
(truncated at 0.0005% for each tail).

Figure A.12: Distribution of sales growth and Cauchy distribution and quantile-
quantile plot.

to have tails that are much finer than in the data. While the Cauchy distribution approximates the
data well, it performs poorly at the extreme tails (0.1% and 99.9%). Another disadvantage of the
Cauchy distribution is that it may produce no defined mean or variance.
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Figure A.13: Distribution of sales growth and Laplace density.

A.6 Calculation of the growth rates of demand and markup

In the case of a Cobb-Douglas production function, markups can be recovered up
to a constant by calculating the inverse of the input share. This is because at the
optimum, the input share must equate the output elasticity. Deviations from this
equality reveal a product-level wedge (Chari, Kehoe, and McGrattan, 2007). Using
intermediate inputs as the flexible input, we can thus write the markup

µ = θM
PQ

PMM

where P is the price, Q the quantities, PM the price of intermediate inputs, M the
quantity of intermediate inputs used, and θM is the input elasticity.

Santos (2020) shows how the demand shock can be recovered as a function of the
flexible and pre-determined inputs. The logic is that the variation in the ratio signal
unexpected shocks to the demand. As such, one can write the demand shock as a
function of the input expenditures and the marginal rate of technical substitution.
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ν =
θL

θM
PMM

wL

where w is the wage, L the employment level, and β the input elasticity of labor.

Finally, TFP in revenues can be calculated in the Cobb-Douglas case using

a = ln(PQ)− αk lnK − αl lnL− αm lnPMM

where the input shares αj are estimated as the share of revenues for every 2 digit
industry αl =

∑
i∈2dig wLi∑
i∈2dig PQi

, αm =
∑

i∈2dig PMMi∑
i∈2dig PQi

and imposing constant returns to scale
αk = 1− αl − αm. Finally, TFPq is calculated as the residual from the regression of
TFPr on the markups and demand shocks.

A.7 Some robustness checks

A.8 The role of adjustment costs

In this section we investigate the role of adjustment costs in explaining the evidence.
One reason why smaller firms have more volatile sales could be that smaller firms
face less frictions in adjusting production. This is true independently of the origin
of the shock. That is, it would be true for the adjustment to a supply or a demand
shock. Let us now consider the volatility patterns for the productive inputs (capital,
labor costs, intermediates) in this case. As a baseline reference, in the frictionless
case under constant markups and Cobb-Douglas production technology, optimality
conditions from the cost minimization imply that volatility of costs (e.g. expenditure
in materials, total labor costs, or user cost of capital) should be proportional to the
revenues. (De Loecker, 2011; De Loecker et al., 2016).

Figure A.14 shows that growth rate of labor costs, intermediates, and capital all
exhibit a similar pattern to overall sales (decreasing volatility with firm size). In
particular, the standard deviation of the growth rate is almost the same at about
0.3 to 0.35 for the largest 5% of firms, as expected in the frictionless baseline model.
However, for the smaller firms, while the volatility of sales and intermediates is
similar, capital is much less volatile and labor costs are much more volatile. This
suggests that small firms depart from their optimal technical efficiency as a response
to shocks, moving the capital-labor ratio (wL/rK) away from its optimal value.
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Dependent variable: [(dy − µdy)/σdy]
4

Percentiles of: Sales Labor Costs Capital Labor Productivity
5th percentile 6.514*** 11.74*** 10.79*** 7.031***

(48.71) (44.26) (39.42) (53.54)
10th percentile 9.494*** 12.09*** 8.300*** 10.96***

(44.36) (22.56) (42.77) (37.39)
15th percentile 12.17*** 8.718*** 12.97*** 15.05***

(32.04) (40.84) (30.06) (29.58)
20th percentile 15.01*** 13.32*** 15.15*** 17.30***

(26.28) (31.41) (26.99) (26.77)
25th percentile 15.76*** 16.08*** 17.00*** 19.30***

(29.96) (28.15) (29.19) (23.17)
30th percentile 17.43*** 16.00*** 19.15*** 22.51***

(24.51) (30.89) (21.92) (19.23)
35th percentile 20.04*** 17.60*** 20.64*** 24.22***

(21.37) (24.33) (24.20) (18.86)
40th percentile 21.77*** 20.72*** 21.45*** 25.56***

(20.85) (24.00) (24.12) (17.35)
45th percentile 22.25*** 21.87*** 22.38*** 27.75***

(23.43) (24.30) (27.23) (17.76)
50th percentile 26.63*** 26.26*** 25.12*** 27.63***

(15.14) (20.55) (17.45) (20.17)
55th percentile 25.56*** 27.56*** 27.06*** 29.14***

(19.28) (16.90) (14.21) (16.02)
60th percentile 28.27*** 30.48*** 28.56*** 29.18***

(15.22) (20.08) (20.79) (18.32)
65th percentile 26.41*** 30.57*** 29.69*** 28.66***

(17.30) (16.45) (17.71) (16.45)
70th percentile 27.78*** 33.64*** 30.46*** 30.44***

(16.91) (16.81) (14.17) (16.42)
75th percentile 25.51*** 40.32*** 31.70*** 31.82***

(18.05) (12.96) (21.08) (16.78)
80th percentile 26.74*** 42.41*** 33.80*** 32.57***

(14.81) (14.31) (17.99) (18.36)
85th percentile 24.95*** 51.10*** 39.28*** 31.22***

(17.12) (12.63) (13.27) (17.49)
90th percentile 24.23*** 54.75*** 41.23*** 30.53***

(19.17) (12.95) (12.22) (23.61)
95th percentile 30.28*** 65.17*** 43.42*** 28.26***

(14.68) (11.33) (15.84) (25.73)
100th percentile 36.44*** 89.05*** 62.33*** 25.12***

(12.95) (7.87) (11.12) (26.76)
Observations 4290591 4290591 4278746 4290591

Notes: OLS results for the regression of the forth power of log
sales growth divided by the square of the variance on percentiles of size
class (defined by sales, labor costs, capital and labor productivity).
Standard errors clustered at the firm-level. 95% CIs reported.

Table A.9: Kurtosis of sales growth - by size
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Figure A.14: Volatility of growth rate of sales, labor costs, capital, and intermediates
- by percentile of sales

This is consistent with the macro-evidence (Chari, Kehoe, and McGrattan, 2007,
Karabarbounis, 2014). On the one hand, capital is less volatile than sales. On
the other hand, the fluctuations in production are adjusted by a large volatility
of intermediate inputs and labor costs. This difference is particularly large for the
smallest firms while for larger firms all the inputs and costs exhibit a similar volatility.

Given all the literature on adjustment costs and labor hoarding it is surprising to
see labor costs adjusting so flexibly. We can investigate the individual components
of labor adjustment using a subsample covering the period 2004-2009, for which we
also observe hours worked. Figure A.15 shows that while employment/number of
workers (extensive margin) is less volatile, hours worked (intensive margin) are more
volatile than labor costs (labor hoarding). That is, firms seem to adjust to shocks
using the intensive, rather than the extensive margin.

Summarizing, the evidence is therefore consistent with firms facing adjustment costs
to capital (and the extensive margin of labor) which results in a smaller volatility
for these inputs. To compensate this, intermediate inputs and hours worked have
larger volatility. These differences are particularly noticeable for the smaller firms,
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Figure A.15: Volatility of growth rate of labor costs, employment and hours - by
percentile of sales

while large firms seem to behave as predicted by the frictionless model and adjust
their costs more in line with their revenues. How the volatility of the different
inputs vary with firm size is consistent with the baseline predictions above if we
allow for adjustment costs (wedges) to capital and labor (extensive margin/hiring
and firing costs). However, we also observe the same pattern of decreasing volatility
for intermediates, that are unlikely to face adjustment costs. Hence, it seems that
adjustment costs are insufficient to explain why volatility decreases with firm size.
Furthermore, adjustment costs cannot explain the observed increase in kurtosis with
firm size.
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