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Abstract

We show that under standard assumptions the elements of the impact matrix of the
structural vector autoregression (SVAR) are always at least set identified and bounded
by the standard deviations of the corresponding reduced form errors. This result
facilitates valid Bayesian inference without additional restrictions when only some (or
none) of the columns of the impact matrix are point identified due to non-Gaussianity
or heteroskedasticity. Moreover, the properties of the shocks can be assessed to find
out which of them (if any) are point identified. We expand identification results put
forth in the previous literature to models where all or part of the structural shocks
are orthogonal but mutually dependent. To exploit deviations from Gaussianity, we
propose using versatile error distributions and discuss their implementation in Bayesian
analysis. Simulation results and an empirical application to U.S. fiscal policy lend

support to the usefulness of efficiently accounting for non-Gaussianity.
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1 Introduction

Utilisation of the statistical properties of data in identification has become increasingly popu-
lar in the recent literature on structural vector autoregressive (SVAR) models. In particular,
sufficient non-Gaussianity has been shown to guarantee global and local identification of the
parameters of the model and, hence, to facilitate valid statistical inference on the effects of
the structural shocks. This is also the case with certain forms of heteroskedasticity. In ad-
dition to sharpening identification by restrictions based on economic theory or institutional
knowledge, statistical properties of the data can be exploited to assess such restrictions and,
hence, to preclude false or misleading conclusions.

Point identification of the parameters of the SVAR model (up to ordering and signs
of the shocks) can be shown when at most one of the independent structural shocks is
Gaussian (see, e.g., Lanne, Meitz, and Saikkonen, 2017). As we show in Section , when the
structural shocks are mutually uncorrelated, irrespective of their distribution, the elements
of the impact matrix of the SVAR model are always at least set identified and bounded by
the standard deviations of the errors of the corresponding reduced form VAR model. This
result is not surprising, but it is important in that it guarantees valid Bayesian inference
even when only part or none of the structural shocks are point identified, and an improper
constant (or proper but vague) prior is used on the elements of the impact matrix. This
is because the marginal posterior distributions of its elements have a bounded support also
when based on vaguely informative or non-informative priors. It is also worth noting that
because the posterior distribution can be obtained by simulation even when none of the
structural shocks are point identified, conventional sign restrictions can be imposed in a
straightforward manner by restricting the domain of the posterior according to the given
restrictions.

The significance of the set identification result is emphasised in the relatively common
situation where only some of the structural shocks are statistically identified, or we are
not even interested in the effects of all shocks. In contrast, in the frequentist setup, valid
asymptotic inference calls for additional restrictions on the columns of the impact matrix

corresponding to the non-identified shocks in that case (see, Maxand, 2020; Guay, 2021; and



Bertsche and Braun 2022), and if these extra restrictions are incorrect, they may adversely
affect the properties of estimators. Moreover, pre-testing for the number and location of
identified shocks is avoided in the Bayesian setup, as the properties of all shocks can be
assessed after estimation. Frequentist estimators are also hampered by weak identification
due to (some of) the shocks being nearly Gaussian or homoskedastic. Due to the fact that
Bayesian analysis of a model is possible as long as the posterior distribution of its parameters
is proper (see, e.g., Poirier, 1998), Bayesian methods are robust with respect to such weak
identification, whereas standard asymptotic inference for frequentist estimators, in general,
fails.

The assumption of mutually independent structural shocks made in a large part of the
previous statistical identification literature may be restrictive and can be relaxed under cer-
tain additional assumptions (cf., Lewis, 2021; Guay, 2021; Lanne and Luoto, 2021; and
Lanne, Liu, and Luoto, 2022). Lanne, Liu, and Luoto (2023) show that if the orthogonal
but mutually dependent shocks have zero co-skewness, only the skewed shocks are identi-
fied. Moreover, if at most one of the shocks exhibits no skewness or persistent time-varying
volatility, they are all identified. Building upon the former result, we show that, under the
zero co-skewness assumption, the uncorrelated skewed shocks are point identified, while the
shocks with zero skewness are at least set identified with bounds given by the standard devi-
ations of the errors of the corresponding reduced form VAR model. This result is important
because it facilitates valid Bayesian inference also in the case of dependent conditional vari-
ance processes. We also derive identification results for the case where only a subset of the
structural shocks are mutually independent and independent of the rest of the shocks that
are only mutually orthogonal. Hence, coupled with the set identification result mentioned
above, our results cover a wide range of commonly encountered situations that can be tackled
by Bayesian methods.

In order to efficiently exploit different kinds of deviations from Gaussianity as well as
heteroskedasticity in identification, sufficiently versatile error distributions must be allowed
for in estimation. Besides facilitating identification, accounting for these features is also
important from the viewpoint of avoiding misspecification. However, complications may arise

in practice due to complicated specifications and also because the ordering of the shocks is



not fixed by the statistical properties of the data. In Section 3] we discuss the implementation
of the methods in detail. In particular, we recommend using the skewed ¢-distribution and
estimating the SVAR model by means of Hamiltonian Monte Carlo methods.

To gauge the finite sample performance of the methods we report the results of two sim-
ulation experiments. First, we generate data from a trivariate SVAR model with mutually
independent error terms, two of which are Gaussian. The third error term features either
skewness, excess kurtosis, conditional heteroskedasticity or exhibits all of these properties,
and it is hence point identified. In estimation, each of the errors is assumed to follow a
skewed t-distribution that is capable of capturing the different deviations from Gaussian-
ity. The general conclusion is that the parameters are estimated quite accurately even in
relatively small samples by exploiting any of the non-Gaussian features, and accuracy is
improved in the presence of all of them. Our second simulation experiment illustrates how
simulation from the posterior and prior can help to assess the strength of identification.
We recommend conducting similar simulation experiments following any empirical analysis,
when computationally feasible.

We illustrate the methods in an empirical application to estimating U.S. fiscal multipliers.
In particular, we consider a trivariate SVAR model for tax revenue, government spending
and the GDP. At least two of the identified structural shocks turn out to be non-Gaussian,
indicating point identification of the impact matrix. Two of the shocks can be labeled as
the government spending and tax shocks by inspecting their impulse responses and forecast
error variance decompositions as well as narrative records. The tax and spending multipliers
are found similar to those of Lewis (2021), who also makes use of the statistical properties
of the data, namely heteroskedasticity, in identification, but quite different from those in the
earlier literature, mostly ignoring such information.

The rest of the paper is organized as follows. Section [2| contains the identification results.
First, we show that set identification of the impact matrix is achieved even if the struc-
tural errors are Gaussian, whereas the independent shocks exhibiting non-Gaussianity are
point identified, and the fact that the remaining shocks are set identified with appropriate
bounds facilitates valid Bayesian inference. Next, making use of the set identification result,

we expand the results for identification in the presence of orthogonal but not independent



shocks put forth in the previous literature. In Section [3| Bayesian inference is discussed. In
particular, we consider estimation in the presence of complicated error distributions and het-
eroskedasticity that facilitate capturing versatile deviations from Gaussianity to strengthen
identification. The finite sample performance of the methods is studied in Section [4] while
Section [5] contains the empirical application to U.S. fiscal multipliers. Finally, Section [

concludes.

2 Identification of SVAR Models

We build upon the literature on statistical identification of structural vector autoregressive
(SVAR) models (for a survey, see Kilian and Liitkepohl, 2017, Chapter 14). Let us consider
the n-variate SVAR model of order p,

y=a+ Ay + ... + Apyr—p + Bey, (1)

where y; is the n-dimensional time series of interest, a is an (n X 1) intercept term, and
A, ..., A, are (n x n) parameter matrices. The (n X n) nonsingular matrix B defines the
(n x 1) vector of reduced-form errors u; as a linear combination of the mutually uncorrelated
structural errors g, i.e., u; = Begy. Thus, the (unconditional) covariance matrix of the
reduced-form errors, assuming it exists, is given by Q = E(usu}) = BE.B’, where 3 = E(g;¢}).
We denote the (i, j) elements of @ and ¥ by w;; and o;;, respectively.

Following the literature, we assume that the components of ¢, are not only mutually
uncorrelated but independent. In particular, we make the following assumption regarding

the structural errors, adapted from Assumption 1* in Lanne, Meitz, and Saikkonen (2017).

Assumption 1

(i) The error process ey = (€14, ...,Ent) 1S a sequence of stationary random vectors with

each component €, © = 1,...,n, having zero mean and a finite positive variance o .

(i) The component processes €, i = 1,...,n, are mutually independent.



(111) For alli = 1,...,n, the components ; are serially uncorrelated: Covle;s,€;11] = 0

for all k # 0.

Assumption (1| contains no strong distributional assumptions. In particular, in addition to
Gaussian and homoskedastic structural errors, it covers a wide variety of non-Gaussian dis-
tributions and allows each component ¢;; to follow a univariate conditionally heteroskedastic
process. The independence assumption [I[(#) is standard in the related literature, and also
more generally in the SVAR literature where Gaussianity and mutual orthogonality of the
errors are typically assumed, resulting in independent shocks.

In the related statistical identification literature, it is assumed that either (i) at most
one component of ¢, is marginally Gaussian or (ii) at least n — 1 components of &, are het-
eroskedastic with autocorrelated time-varying volatility. Under either of these assumptions,
coupled with Assumption [I global identification of the impact matrix B (up to sign rever-
sals and permutation of its columns) can be established (see, Lanne, Meitz, and Saikkonen,
2017). Only the existence of the first two moments of €, i« = 1,...,n, is required, while
empirical estimation of higher moments is not, in general, involved.

It is only if identification is based on conditional heteroskedasticity, or Assumption (z’z’)
is relaxed to allow the structural shocks to be mutually dependent that the existence of
higher moments is required to show the corresponding identification results. In the former
case, finite second, third, and fourth moments of ;, i = 1,...,n must be assumed (see,
e.g., Lewis, 2021), while in the latter case the existence of their second and third moments
is called for. In contrast, identification via a non-Gaussian parametric distribution need
not depend on higher moments per se. This is important because some authors, including
Montiel Olea, Plagborg-Mgller, and Qian (2022), have been worried about potential weak
identification of non-Gaussian SVAR models due to an insufficient amount of data often
available to accurately estimate the third and higher moments that some approaches rely
on.

Even if fewer than n — 1 of the shocks are non-Gaussian or heteroskedastic, partial
identification is possible. In particular, as shown in Section [2.2] under the independence

assumption, as stated in Assumption (2’2’), the ith column of the impact matrix B is globally



identified (up to its sign reversal), when &; is non-Gaussian and/or displays time-varying
volatility, despite the remaining n — 1 shocks being Gaussian and homoskedastic. Partial
identification can also be shown even when the independence assumption is appropriately
relaxed. In particular, in Section [2.3] it is shown that the skewed structural errors are point
identified (up to their sign reversals and ordering) in the presence of mutually dependent
structural errors. Moreover, as shown in Section [2.1] B is always at least set identified, such

that the SVAR model can be analysed by Bayesian methods.

2.1 Set Identification

In much of the SVAR literature, the components of the structural error vector ¢; are assumed
to be Gaussian and homoskedastic. In light of the discussion above, it is clear that under
this assumption, point identification of none of the shocks, or equivalently, columns of the
impact matrix B is achieved without additional restrictions. It is, nevertheless, instructive
to consider this worst-case scenario from which even the smallest deviation strengthens
identification. While point identification is in this case not achieved, under Assumption|[I} the
SVAR model in is set identified, meaning that multiple values of its parameters, collected
into a (d x 1) vector § = (a, vec(Ay, ..., 4,), vec(B)') [ are observationally equivalent, but
the set of the observationally equivalent parameter values is not unconstrained.

To give a formal definition of set identification, let us first define spaces for the parameter
vector € and data sample Y, and be more specific about the conditional distribution of Y
given 6, and its density (the likelihood function). Let © be a measurable space of § € © C R,
and Y a measurable space of Y € Y C RT*" generated by the SVAR model . Let us also
assume that © and g; are such that the conditional distribution of Y given 6 exists and has
a probability density function f(y | ) at every § € ©, where y € Y is the observed data.

Then set identification can be defined as follows:

Definition 1 The model is called set identified, if for any 61,05 € © and ally € Y, there
erists © C O, such that whenever fyl|61) = f(yl62), then 64,05 € ©. That is, any set of

"'We normalize the unconditional error variances o;; (i = 1,...,n) to unity to retain the elements of B
unconstrained



observationally equivalent points in © is a strict subset of © and the subset O is called the

identified set.

Our definition of set identification is consistent with the typical notion of set identification
in the literature (see, e.g., Lewbel, 2019). Importantly, point identification is just a special
case of set identification where the identified set © is a singleton and consequently 6; =
f>. The latter takes place under the conditions of non-Gaussianity and heteroskedasticity;,
as discussed above, while if the structural errors are Gaussian and homoskedastic, point
identification is not achieved without additional restrictions. However, it is possible to find
lower and upper bounds for each (i, j) element B;; of the impact matrix B in the identified set
even in that case. These bounds, given in Proposition [ are derived under the assumption
that the components of ¢; are mutually uncorrelated, and they are obtained from the equation
2 = BB’, where the unconditional variances of the elements of &; are normalized to unity.
Together with the fact that @ and A; (i = 1,...,p) in (1) are unique (see, e.g., Lanne, Meitz,
and Saikkonen, 2017), they obviously ensure boundedness of the identified set ©. The proof

of the proposition can be found in [Appendix Al

Proposition 1 A SVAR model characterized by is always at least set identified, and
the bounds of the elements of B in the identified set © cannot exceed the bounds that are

characterized by the following inequalities,

—Cx.)-l-/Z < Bi]’ S w,

k23 —

1/2

w0

,7=1,...,n.

In particular, Bizj =wy (i,7=1,....,n)if and only if By =0 for allk =1,....,n, k # j

(i.e., the case where wizl/Zuit =¢j), and Bin <wy (j=1,...,n) otherwise.

It thus turns out that the identified set © is always bounded by the standard deviations
of the reduced-form errors, which has interesting implications. In particular, propriety of
the posterior distribution of 6 can be established (i.e., it can be shown that it has a finite
integral with respect to #) even when point identification is not achieved, and an improper

constant prior is used on the elements of B (however, proper priors may be needed for some



other elements of € to ensure propriety of the posterior)ﬂ This result follows from a suitable
fundamental theorem of vector calculus and the fact that within the set © the marginal
posterior of B is equal to its (constant) prior. Hence, valid Bayesian inference is facilitated,
as it only requires a proper posterior (see, e.g. Poirier, 1998). Moreover, the marginal
posterior distributions of the set-identified parameters are expected to behave well enough
for a convenient posterior analysis because they have a bounded support even if an improper
constant (or proper but vague) prior is imposed on the elements of B. As a result, the
posterior distribution of # can be obtained by simulation methods even under the worst-case
scenario of Gaussian Y and a constant (or proper but vague) prior.

While improper (or proper but vague) priors can be used, in most cases we recommend
using proper (informative) priors that also alleviate computational problems due to the fact
that statistical identification only up to the ordering of the shocks can be achieved (see
Section . Nevertheless, the possibility to employ improper (or proper but vague) priors
might be useful for assessing the effect of different priors on the posterior distribution of the
parameters. Also, improper (or proper but vague) priors could, for instance, in some cases
be used for maximum comparability to results obtained using frequentist approaches (see,
e.g., Section [5).

In the Gaussian case, the strength of data-based identification corresponds to that of
a traditional sign-restricted SVAR model, which is obtained by an appropriate choice of
priors. Of course, identification can be strengthened (or achieved), for example, by external
instruments, each of which is correlated with one of the shocks and uncorrelated with the
rest. A potential problem with this approach due to Stock (2008) is that only instruments
weakly correlated with the shock of interest may be found (see, e.g., Montiel Olea, Stock, and
Watson, 2021), implying that only little can be learned from the data. In addition to external
information, identification can be strengthened by different kinds of restrictions, including
short-run restrictions on B, long-run response restrictions, or sign restrictions on impulse
responses. However, in any case, we recommend using a highly flexible error distribution

to capture most deviations from normality. This way, the researcher can efficiently learn

2For instance, as shown in Bauwens and Lubrand (1998)} in the case of Student’s ¢ distributed errors,
sufficient prior information on the degrees of freedom parameter is required to ensure the propriety of the
associated posterior.



from the data Y to achieve strong identification when the structural errors exhibit non-
Gaussianity. However, the restriction-based approaches should not be seen as substitutes
for statistical identification but complements. Indeed, in Section [3] we provide a practical
framework for the estimation of Bayesian SVAR models that allows for sign restrictions (cf.,
the discussion below) as well as almost any other type of a priori restrictions.

Because the posterior distribution can be obtained by simulation even in the case of
Gaussian data and a constant prior, sign restrictions can be imposed in a straightforward
manner by restricting the domain of the posterior distribution by any given restrictions (recall
that impulse responses are functions of #). The resulting truncated posterior distribution
is easily obtained from the estimated (unrestricted) posterior distribution by discarding the
values of # that violate the sign restrictions. It is important to realize that when the data are
Gaussian, the (unrestricted) posterior contains the identified set (at least asymptotically),
and, hence, the latter procedure results in a posterior that is very close to that obtained by
the traditional sign restriction methods[]

Robustness to weak identification in Bayesian estimation is another important impli-
cation of Proposition If some (or all) of the structural errors are nearly Gaussian and
homoskedastic, they may be only weakly identified without additional restrictions. Nev-
ertheless, according to Proposition [T} even in this case, perfectly valid, albeit not very in-
teresting (in the sense that the prior densities are not updated within the identified set),
marginal posterior densities and credible intervals would be obtained. Hence, Bayesian esti-
mation guarantees robustness to weak identification (see Drautzburg and Wright (2023)| for
a related frequentist approach). The significance of this feature is emphasized in the case
of partial identification (see Section because it facilitates valid inference on the effects
of the point-identified shocks of interest despite the rest of the shocks being weakly (or set)
identified.

In the following two subsections, we provide full and partial identification results under

different sets of assumptions that cover practically all situations encountered in realistic

3As noted by Baumeister and Hamilton (2015), the traditional sign restriction methods impose implicit
informational priors on the elements of B (and consequently on impulse responses), and under those specific
priors, our truncated posterior coincides with the posterior obtained by traditional sign restriction methods.
However, our Bayesian approach requires formulating a prior distribution of B explicitly, be it improper or
not, making it impossible to impose implicit priors on B by accident.



empirical applications. They can be seen as generalizations of the identification result of
Lanne, Meitz, and Saikkonen (2017)| to cases where only some of the structural errors are
non-Gaussian, or at least part of the components of €, are mutually dependent. Compared
to the previous literature, the main novelty of these results is that all structural errors
(and hence columns of the impact matrix B) are at least set identified with bounds given
by the standard deviations of the errors of the corresponding reduced form VAR model
in all conceivable scenarios, which facilitates valid Bayesian inference under partial (point)

identification.

2.2 Partial Identification

Even if only one of the structural errors has a non-Gaussian distribution (and the other
structural shocks are Gaussian and homoskedastic), the corresponding column of the B
matrix is globally point identified (up to its sign), while the remaining n — 1 columns are set
identified. This partial identification result in general form is stated formally as Proposition
below, and it provides a considerable practical improvement over Theorem 2 in Rubio-
Ramirez, Waggoner, and Zha (2010), according to which partial identification of SVAR
models can be achieved only with admissible restrictions on 6. Of course, the latter result
is based on the assumption of Gaussian data, but in practice any conceivable empirical
application is likely to involve sufficient non-Gaussianity to facilitate invoking our Proposition
[2l This result is also more general than the partial identification results for non-Gaussian
data in the recent literature (see, Maxand, 2020; Guay, 2021; Bertsche and Braun, 2022) in
that it enables valid Bayesian statistical inference, while the asymptotic distributions of the
estimators in the latter papers remain unknown unless sufficient admissible restrictions are

imposed on 6.

Proposition 2 Suppose &, = B tu, satisfies Assumption |1 such that r (0 < r < n —1)
components of ¢, are non-Gaussian, and each of the remaining n — r components has a
Gaussian marginal distribution. Assume that these n—r components are ordered last (without
loss of generality). Let B = [By, Bs] with By (nx1) and By (n X (n—r)) matrices. Then, the

(n X r) matriz By, corresponding to the r non-Gaussian components of €;, is globally point
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identified up to sign reversals and ordering of its columns, while the (n x (n — 1)) matriz By

is set identified with bounds given in Proposition [1]

The proof of Proposition [2] found in is straightforward, and its essential parts
are based on the ideas in Maxand (2020)| and Proposition It exploits the properties of
independent Gaussian random variables (see Lemma 9 in Comon (1994)) together with the
well-known Skitovich-Darmois theorem (see Lanne, Meitz, and Saikkonen (2017))). It turns
out that for point identification of any exogenous shock that is mutually independent of the
other shocks, only non-Gaussianity of that shock itself is required. An important implication
of Proposition [2]is that because the identified set of By is bounded, the posterior distribution
of f has a bounded support and, hence, it can in practice be obtained by simulation methods,

as discussed in Section [2.1]

2.3 Mutual Dependence in Error Process

The global point identification results in Lanne, Meitz, and Saikkonen (2017) and in Propo-
sition [2] are based on mutual independence (Assumption [If(ii)). However, full and partial
identification can be shown even when this assumption is appropriately relaxed. In particu-
lar, we next replace Assumption [1| by the following assumption, which, among other things,

allows for dependence in the volatility processes of the components of &;:

Assumption 2

(i) The error process e, = (€14y---,Ent) 1S a Sequence of stationary random vectors with
each component €, 1 = 1,...,n, having zero mean, a finite positive variance, and a

finite third moment.

(i) The component processes €, i = 1,...,n, are orthogonal and have zero co-skewness.
(i1i) For alli = 1,...,n, the components € are serially uncorrelated: Covlg;s,€;1x] = 0
for all k # 0.

Parts (7) and (4ii) of Assumption [2| are identical to those of Assumption |I| with the ex-

ception that Assumption (z) is augmented with the requirement that each component of ¢,
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has a finite third moment. The latter allows for replacing Assumption [Ij(#) (independence)
with a clearly less restrictive assumption that the components of ; are only mutually un-
correlated and have zero co-skewness: E(eycjer) = 0 for all 7,75,k = 1,...,n, excluding
i = j = k. However, no restrictions are imposed on the fourth (co-)moments of &;, so the
conditional variance processes of the components of ¢; can be dependent.

The partial and full identification results, based on Assumption [, are formalized in
Proposition 3| below. Part (i) complements Proposition 1 in Lanne, Liu and Luoto (2023)
by the set identification result in Proposition [I} and its proof that closely follows the proof
of Proposition 1 in Lanne, Liu and Luoto (2023), is found in [Appendix A}l Notice that
Assumption [2| covers stochastic volatility (SV) and autoregressive conditional heteroskedas-
ticity (ARCH) type models (cf. Assumption A of Lewis, 2021). Hence, any time-varying
volatility captured by these models can be used to strengthen identification, provided the

fourth co-moments of the components of ¢; exist (see Assumption C of Lewis, 2021).

Proposition 3 Suppose e, = B~ 1w, satisfies Assumption @ Let h (0 < h <n) components
of e, have non-zero skewness, and the remaining n — h (when h < n) components of €, have

zero skewness. The latter n — h components are ordered last (without loss of generality), and

B = [By, By] with By (n X h) and By (n x (n — h)) matrices.

(i) If h < n — 1, the (n X h) matriz By, corresponding to the h components of &, with
nonzero skeweness, is globally point identified up to sign reversals and ordering of its
columns, while the (n x (n — h)) matriz By is set identified and the bounds for this set

cannot exceed the bounds given in Proposition[1].

(i1) If at least n —1 (h € {n—1,n}) elements of e, have non-zero skewness and/or display
time-varying volatility with non-zero autocovariance, the full matriz B is globally point

wdentified up to sign reversals and ordering of its columns.

According to part (i) of Proposition the skewed structural errors (and the corresponding
columns of B) are globally point identified up to sign reversals and ordering even in the
presence of mutually dependent structural errors, while the remaining errors are at least

set identified. When at most one of the components of the structural error vector exhibits
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zero skewness, the entire impact matrix B is identified, as stated in part (ii). This is also
the case when at most one component of ¢; is homoskedastic. Then, a parametric volatility
process may be entertained to enhance identification under the additional assumption that
E;, [vec (g,2}) vec (g4e})'] < oo for every t. Dependent volatility processes are the likeliest
source of dependence among the components of the structural error vector, so this is indeed
a viable optionﬁ

It is, of course, possible that only some components of the structural error vector are
mutually dependent. For instance, the volatility processes of closely related financial shocks
may easily be dependent, but it is unlikely that the volatility processes of all shocks in a SVAR
model are dependent. In these cases, the dependent and independent components can be
treated separately by partitioning the B matrix to columns corresponding to each group. In
particular, building upon the identification result in Lanne, Meitz, and Saikkonen (2017) and
Propositions it is stated in Proposition 4] below that if at most one of the independent
errors is Gaussian, they are all identified (up to sign reversals and ordering); otherwise only
the independent non-Gaussian errors are point identified, while the independent Gaussian
errors are set identified. Likewise, analogously to Proposition [3] the skewed dependent shocks
are identified, whereas the remaining shocks are set identified. In each case, the bounds of
the identified set are those given in Proposition [I} The proof of Proposition [ is provided in
and it is based on the fact that independent random variables cannot generally

be obtained as linear transformations of uncorrelated but dependent random variables.

Proposition 4 Suppose e, = B, satisfies Assumption |9 such that the last n — g (0 <
g < n) components of e, are dependent, and the first g components of ¢, are independent of
each other and of the last n — g dependent components of €; (the ordering of the shocks is

without loss of generality). Let B = [By, Bs] with By (n X g) and By (n X (n— g)) matrices.

(i) If at most one of the independent components of €, has a Gaussian marginal distribu-

tion, the (n X g) matriz By corresponding to the g independent components of e, is

4Skewness and time-varying volatility are not mutually exclusive. For instance, if stochastic volatil-
ity is present in the structural errors, their marginal distributions are non-Gaussian even when their
conditional distributions are Gaussian. Specifically, consider the case where ¢, = Ztl/ 2771:, where ¥, =
diag(exp(oly,...,00,)), 07 = ¢iop 1 + €it, € = (€14, €n) ~ N(0,5), and n ~ N(0,1,)). If the
innovations 7;; and €;; are correlated, the marginal distribution of €;; is skewed and leptokurtic (see, e.g.,
Yang, 2008).
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globally point identified up to sign reversals and ordering of its columns.

(i) If at most g—r (0 <r < g—1;9 > 3) of the independent components of ¢, have Gaus-
sian marginal distributions, the r columns of By corresponding to the non-Gaussian
independent components of €, are globally point identified up to sign reversals and or-
dering, whereas the columns of By, corresponding to the Gaussian components of €,

are set identified and the bounds of this set are given in Proposition [1}

(11i) The columns of the (n X (n — g)) matriz By, corresponding to the skewed dependent
components of €; are globally point identified up to sign reversals and ordering, while
the remaining columns of By, corresponding to the symmetric dependent components

of €1, are set identified with bounds given in Proposition 1]

Finally, it is worth noting that the strength of identification can be assessed (ex post) by
inspecting properties of the structural shocks using tests of normality and independence (see
Maxand, 2020, and Montiel Olea, Plagborg-Mgller, and Qian, 2022 for a discussion). For
instance, if only part of the estimated structural shocks are deemed independent and only
one of these independent shocks is non-Gaussian, based on Proposition [4} this non-Gaussian
shock is point identified. Alternatively, identification can be assessed by inspecting the
marginal posterior distributions of the parameters controlling their shape, and this is the

approach used in our empirical application in Section [5]

3 Bayesian Inference

While much of the literature on non-Gaussian SVAR models employs frequentist estimators,
we estimate € comprising the parameters of by Bayesian methods, not least because
a Bayesian analysis of a model is possible even if the model is not identified (or, in other
words, is set identified), as long as the posterior distribution of its parameters is proper. As
discussed in Section [2.1], a proper posterior distribution of § can be obtained also when an
improper constant prior on the elements of B is used and only set identification is achieved,

but informative priors for some other parameters may be required. Obviously, also, the
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distribution of €; must be such that the conditional distribution of data Y given 6 exists and
has a probability density function f(y | #) for every § € ©. In Subsection we discuss the
distribution of £;, and in Subsection we provide the likelihood function of .
Although a proper posterior distribution of # can be obtained also when the SVAR model
in (1) is non-identified (or set identified), identifying restrictions stemming from economic
theory and institutional knowledge can be imposed on 6 to strengthen the identification, as
already discussed. However, such restrictions are rarely indisputable and the Bayesian ap-
proach allows for incorporating soft identifying restrictions in the form of a prior distribution
p(0) (see, e.g., Baumeister and Hamilton (2015)| for a discussion). Such an informative prior
distribution is recommendable also because it very likely enhances the performance of the
estimation algorithm, especially when more than one of the components of ¢, are Gaussian
and homoskedastic (i.e., when some columns of B are only set identified) and because it may
help in providing the shocks with economic labels. The labelling problem is discussed in de-
tail in Subsection [3.3] while the description of our prior distribution is deferred to

[B] to save space. Finally, Subsection contains a short discussion on the posterior sampler.

3.1 Distribution of structural errors

To be able to apply the identification result in Proposition[2, Assumption [I|must be satisfied,
while for Propositions [3| and [ Assumption [2] must hold. Hence, to facilitate strong identi-
fication, the error distribution should be sufficiently flexible to enable capturing the salient
features of the data. To allow for mutually dependent errors with time-varying volatility (cov-
ered by Assumption , let us reparameterize ¢; as follows: ¢, = Etl / 277t, where each element
of n = (M4, - - -, Mue)’ has zero mean and unit variance, and Var(ei|oy, F 1] = 3y = diag(o?),
02 =0, 0y, 00 = (014, y0n)s Feo1 = {€1,...,81,01,...,0,1}. While the conditional
variances o2 of the components of ; may be mutually dependent, the elements of 7; are
assumed mutually and temporally independent. Also, o, and 7, are assumed independent of
each other. In case ¥, is constant in time, the components of ¢, are then independent.

The error term &, can be heteroskedastic, and to avoid misspecification, its volatility

should be appropriately accounted for. Besides following a wide variety of volatility pro-

cesses (cf. Lewis, 2021), including stochastic volatility (SV) and autoregressive conditional
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heteroskedasticity (ARCH) type processes, ¢; can be unconditionally heteroskedastic in dif-
ferent ways. For instance, there may be fixed volatility regimes in time, akin to Brunnermeier
et al| (2021), each with their own value of o, estimated from the data. While ARCH and
SV processes facilitate capturing mutual dependence in the components of ¢, it may also be
imposed in another way. For example, one particularly parsimonious alternative to that end
would be to set the elements of o, equal and then let a single predefined equation control
their law of motion, so that the volatility of all the shocks follows the same process.

The distribution of 7; should ideally be such that ¢; = Etl/ Qnt covers the shape of the
‘true’ error distribution of , but, in practice, we need to strike a fine balance between
parsimony, flexibility and computational feasibility. For these reasons, the space of possible
error distributions needs to be restricted to a set of reasonable alternatives with sufficient
flexibility to facilitate capturing most of the potential deviations from Gaussianity. Other-
wise, identifying information would be unnecessarily left unexploited and the model would
be misspecified, unless the data were actually Gaussian. One viable alternative is the ex-
tended ¢-distribution family, or more specifically, the skewed generalized t-distribution (sgt)
of Theodossiou (1998) The sgt-distribution offers a great balance between flexibility, par-
simony, and interpretability, and it has a wide variety of well known univariate probability
distributions from the normal distribution to the Laplace-distribution and the ¢-distribution
(including their skewed and/or generalized versions) as its special cases[]

In the empirical application of Section [5] we assume that each component of 7, in-
dividually follows a skewed t-distribution, which is a special case of the sgt-distribution
with comparable flexibility (and it also nests the Gaussian distribution as a limiting case),
but compared to the sgt-distribution has one parameter fixed. We choose the skewed t-
distribution because it is computationally more convenient than the sgt-distribution, yet
allows for both skewness and fat tails, which both are characteristics commonly observed in
macroeconomic and financial time series.

Finally, while we find the skewed ¢-distribution quite capable of capturing the salient fea-

tures of economic data, other distributions could be entertained for 7,. In particular, even

5We refer the reader to for further discussion on the details of the sgt-distribution, such as
its point density function.
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more flexibility could be afforded by non- or semi-parametric approaches (see, e.g., Braun,
2021, and Hoesch, Lee, and Mesters, 2022), but our approach is obviously more efficient
than these alternatives, if the skewed t¢-distribution encompasses the true error distribution
of a SVAR model, which may easily be the case. Furthermore, based on the arguments in
Gouriéroux, Monfort, and Renne (2017) concerning pseudo maximum likelihood (PML) esti-
mator, we expect our method to be more efficient than non- or semi-parametric alternatives

also when the skewed t-distribution is sufficiently close to the true error distribution.

3.2 Likelihood function

We derive the likelihood function in the case of the sgt-distribution, which has the skewed
t distribution as a special case. Let us collect the parameters controlling the law of motion
of 0y and the shape of n; (i =1,...,n) into the vectors § and 7; (¢ = 1,...,n), respectively.
Then, substituting &, for 3, / *n, in (1)) and recalling the mutual (and temporal) independence
of the elements of 7, we can write the density function of the distribution of the data

y=(y1,...,yy), ie., the likelihood function, as

n T

p(yl0) = |det (B)| " [[ [ [ oic filois i Bus(m)i i), (2)

i=1t=1

where 0 = (7', vec(B)',0",v"), m = vec(a, Ar,..., A)', v = (71,---,7,) s ti is the ith unit
vector, uy(m) =yt —a — Aryi—1, -+, Apyr—p, and f;(+) (i = 1,...,n) is the density function
of n;. Notice that to retain the elements of B unconstrained, the unconditional variances
of g are normalized to unity: E(e?) = E(0%) = 05 =1 (i = 1,...,n). Alternatively, the
diagonal elements of B can be normalized to unity, in which case we assume that o; > 0

(1=1,...,n).

3.3 Shock permutations

As discussed in Section 2, the SVAR model in ([I)) can, in general, only be identified up to
sign reversals and ordering of the elements of ¢; (or equivalently up to signed permutations

of the columns of B). In other words, there are 2"n! different models corresponding to
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the same likelihood function. While this is not a problem (in principle at least) from the
point of view of Bayesian inference (as long as the posterior distribution of € is proper), a
meaningful analysis of the SVAR model (e.g., analysis of impulse response functions) may
require pinning down a specific model (i.e., a specific permutation of structural errors with
fixed signs). This issue is similar to the well known label switching problem with mixture
models (see, e.g., Stephens, 2000), yet there are important subtleties where the problems
differ.

In point estimation (e.g. by the method of maximum likelihood or the generalized method
of moments), the issue is easily dealt with. In particular, as any ordering of the structural
errors is valid, the choice between the different optima is irrelevant, and the parameter
space can be restricted a priori without loss of generality such that necessarily only one
optimum remains (see, e.g., Lanne, Meitz, and Saikkonen, 2017). However, in Bayesian
analysis, the object of interest is the whole distribution of parameters, not a single point
in the parameter space, which complicates matters. If a prior distribution is exchangeable
(that is, ‘permutation agnostic’), there are trivially symmetric disjoint posterior volumes of
high probability mass, corresponding to different permutations. Because the shape of the
posterior distribution is unknown a priori, there is no way to restrict the parameter space
a priori such that one specific disjoint volume of high posterior probability mass would be
necessarily preserved, while the rest of the parameter space would be discarded. Indeed, in
practice, any a priori restriction would almost certainly leave out some parts of the parameter
space corresponding to the permutation of interest, and, hence, contaminate the posterior
sample ]

Nevertheless, there are various ways to alleviate the issue in practice. First, near multi-
collinearity in the time series should be avoided, as it might imply nearly indistinguishable
or even degenerate structural errors. Second, the more flexible the chosen error distribu-

tion is, the more ways there are in which the structural errors can deviate from each other,

SNote that, in principle, the symmetry of the posterior volumes of high probability mass could be
used to map posterior draws from the unrestricted parameter space to the a posteriori restricted space
corresponding to a specific permutation of the shocks, even if the posterior sample consisted of draws from
multiple volumes of high probability mass. However, such an approach has not been studied before, and
jumps between different volumes would in any case most probably pose a significant computational challenge
regardless of the estimation algorithm used.
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and consequently the more disjoint are the posterior volumes of high probability mass (pro-
vided the ‘true’ error distributions lie sufficiently far from each other). From this point of
view, a skewed t-distribution is preferable to a mere ¢-distribution, and a skewed generalized
t-distribution may be even better.

Finally, non-exchangeable prior information related to each shock breaks down the sym-
metry of the different posterior volumes and may be used to the extent of suppressing the
permutation issue altogether, and this is the approach used in our empirical application in
Section In particular, following Brunnermeier et al. (2021), we shrink B towards a suitably
scaled diagonal matrix to reflect the notion that each structural shock is the main driver of
unexpected changes in one specific variable (for instance, the monetary policy shock could be
thought of as the main driver of a policy interest rate). This approach seems appropriate in
most cases (see for details), and we recommend the practice as a general solution
to the permutation issue. However, if the structural shocks are sufficiently distinguishable
for the posterior volumes to be disjoint enough (as is actually the case in the empirical ap-
plication of Section , then non-exchangeable prior information is not necessarily needed in

practice

3.4 Estimation algorithm

The model can be straightforwardly estimated by generating draws from the posterior dis-
tribution of the parameters 6: p(6ly) o p(y|6)p(8), where p(y|f) is given in (2), and p(6) is a
prior density (see for a discussion). To this end, any typical Markov chain Monte
Carlo (MCMC) algorithm could be used. However, SVAR models are not parsimonious, and
if more than a few variables and lags are included, the number of free parameters is likely to

be beyond the practical capabilities of most estimation algorithms availableﬁ In Anttonen,

"Notice also that if the volumes of high probability mass are not sufficiently disjoint, then even a non-
exchangeable prior may not be able to prevent the estimation algorithm from jumping between the different
volumes. Fortunately, any consequential failure of the algorithm to stay in one volume, would necessarily
manifest itself as either (i) inability of separate posterior chains to converge to the same stationary dis-
tribution or (ii) mutually indistinguishable impulse responses, and, hence, such behaviour would be easily
spotted by the researcher. Anttonen, Lanne, and Luotd (2022)| offer a thorough discussion on diagnosing
such permutation jumps.

8The number of free parameters in m and B alone is n?(p + 1) + n, where n and p are the number of
variables and lags in the model, respectively.
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Lanne, and Luoto (2022), a model very similar to that in this paper was estimated using
the differential evolution Markov chain (DE-MC) algorithm of Ter Braak and Vrugt (2008).
The DE-MC algorithm is, however, essentially an adaptive Metropolis-Hastings algorithm
with random walk proposals, which are known to be inefficient in high dimensional cases,
although the adaptive capabilities of the algorithm, coupled with the computational power
of modern computers, make it sufficiently efficient for estimation of at least medium scale
SVAR modelsF]

Nevertheless, we propose to estimate the parameters 6 of the model using the No-U-
Turn Sampler (NUTS) of Gelman and Hoffman (2014)@, or more specifically, the version of
the algorithm as implemented in Carpenter et al| (2017). The NUTS is a state-of-the-art
Hamiltonian Monte Carlo (HMC; see, e.g., Neal, 2011) algorithm for estimation of Bayesian
open-ended problems, and it has proven itself capable of tackling a wide variety of models
of all shapes and sizes with little to no user intervention (see, e.g., Gelman et al., 2020).

The NUTS, as any other HMC algorithm, uses information in the gradient of the log-
posterior to efficiently move around the continuous probability space of the parameters. The
analytic computation of the gradient would be tedious at best, but fortunately it can be
avoided altogether by the use of automatic differentiation (see, e.g., Griewank and Walther,
2008). The gradient is used to simulate Hamiltonian dynamics in the parameter space, as
opposed to a random walk, resulting in proposals with close to 100 percent acceptance rate
and low autocorrelation. For a detailed exposition of the estimation algorithm, see Gelman
and Hoffmar| (2014)|, Betancourt (2017) and Carpenter et al| (2017), In[Appendix B| we also

discuss some practicalities related to the estimation algorithm in the context of our paper.

4 Simulation Experiments

In this section, we conduct two simulation studies to better understand the finite sample

performance and properties of the methods discussed. First, we consider a simple trivariate

9The model estimated in Anttonen, Lanne, and Luotg (2022), for instance, features six variables and
twelve lags, the total number of free parameters in 7 and B alone being 468.

0For a detailed discussion on the NUTS algorithm and associated diagnostics, we refer the interested
reader to Gelman and Hoffmarn (2014)| and Gelman et al} (2020)L
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case with two Gaussian shocks and one non-Gaussian shock. By Proposition [2, the non-
Gaussian shock is point identified, whereas the two Gaussian shocks remain set identified.
We illustrate how different non-Gaussian features, together or alone, lead to fairly strong
identification and precise estimates even in relatively small samples.

In the second simulation study, we take the empirical application of Section [5 as our
starting point. We simulate data using draws from both the prior and posterior distributions
of the parameters. Essentially, simulation studies based on draws from the prior distribution
are useful in assessing whether the parameters of the model can be accurately estimated from
data under the assumptions of the model. In particular, they should be useful in detecting
issues related to identification and the validity of inference. Simulations based on draws
from the posterior distribution of the parameters, in turn, enhance our understanding of
where the data (of interest) might be especially informative and, on the other hand, which
parameter estimates remain largely affected by the prior. Hence, posterior based simulations
can help to assess the strength of identification in the data, provided there are no issues in
the model, such as misspecification and lack of identification, or problems in the estimation
procedure. For instance, if the data turn out to be informative regarding the elements of a
particular column of B, we expect identification of the related shock to be strong. However,
this assessment is feasible only if there are no issues in the model or inference, and this can

be checked using the prior based simulation studies.

4.1 Partially Identified Trivariate System

For simplicity, we consider a trivariate system without lags or a constant. Specifically, we

generate the data from the following model:

Yt = Bey, (3)
1 03 0.3
B=103 1 03], (4)
0.3 03 1
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where g; = (14, €91, €3¢)" is the vector of mutually independent structural shocks of which the
first two are Gaussian, and the third shock is non-Gaussian. Then, by Proposition [2], the
third column of B is point identified, i.e. the effect of the only non-Gaussian shock on the

variables of the system is identified.

Specification 1; Only Skewness

T = 200 T = 500 T = 2000
Bis -0.02 (0.27) -0.01 (0.17) 0 (0.07)
Bos -0.02 (0.27) 0 (0.17) 0.01 (0.07)
Bss -0.07 (0.16)  -0.02 (0.09) 0 (0.03)
A3 0.01 (0.11) 0 (0.07) 0 (0.03)
log g3 —oo (0.31) —o0 (0.31) —oo (0.29)

Specification 2; Only Excess Kurtosis

T = 200 T = 500 T = 2000
Bis -0.02 (0.28) 0 (0.17) -0.01 (0.06)
Bog -0.02 (0.27) 0 (0.16) 0 (0.07)
Bss -0.09 (0.16) -0.03 (0.09) -0.01 (0.04)
A3 0 (0.12) 0 (0.06) 0 (0.03)
loggs  0.37 (0.47)  0.16 (0.30)  0.04 (0.14)

Specification 3; Only Heteroskedasticity

T = 200 T = 500 T = 2000
Bis -0.02 (0.25) 0 (0.13) 0 (0.05)
Bog -0.01 (0.25) 0.01 (0.13) 0 (0.06)
Bss -0.06 (0.16) -0.01 (0.08) 0 (0.03)
A3 0 (0.13) 0 (0.07) 0 (0.03)
log g3 —oo (0.29) —o0o (0.29) —o0 (0.29)
as 0.11 (0.06) 0.07 (0.05) 0.02 (0.04)
B3 -0.05 (0.06) -0.03 (0.04) -0.01 (0.02)

Specification 4; All of the above

T = 200 T = 500 T = 2000
B3 -0.02 (0.15)  -0.01 (0.08) 0 (0.04)
Bas -0.03 (0.16) -0.01 (0.08) 0 (0.04)
Bas -0.08 (0.13)  -0.03 (0.07)  -0.01 (0.04)
As 0.01 (0.10) 0 (0.06) 0 (0.03)
log g3 0.47 (0.47) 0.21 (0.29) 0.06 (0.13)
as 0.1 (0.06) 0.06 (0.06) 0.02 (0.04)
B3 -0.05 (0.06) -0.03 (0.04) -0.01 (0.02)

Table 1: Estimated bias and standard deviation (in parentheses) for the point estimates under all
the specifications considered (see the text for details) over 1000 replications. For the specifications
where the third shock only exhibits skewness or conditional heteroskedasticity, logqs = oo and
therefore the bias is obviously —oo.
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We consider four different forms of non-Gaussianity of the third shock, and label the
resulting data generating processes (DGP) Specifications 1 to 4. In Specification 1, the
third shock is assumed to be only skewed (i.e. to follow a skewed Gaussian distribution),
whereas in Specification 2 it is assumed to feature only excess kurtosis (i.e. to follow a
t-distribution). In Specification 3, the third shock is assumed to be conditionally Gaussian,
but heteroskedastic. Finally, in Specification 4, we let the shock have all these features,
which, to no surprise, results in much stronger identification than any of the features alone.
This finding underlines the importance of allowing for multiple forms of non-Gaussianity.

All the specifications can be cast using the skewed ¢-distribution discussed in Section
and also employed in the empirical application in Section 5 The extent of non-Gaussianity
of any specification is set to reflect plausible values in the context of macroeconomic time
series (see, e.g., Figure || related to the empirical application of Section . For the skewed
shock we set A3, the parameter controlling the skewness of £3;, equal to 0.3 (moderate positive

skewness), for the ¢-distributed shock we set the degree-of-freedom parameter equal to 6 (i.e.,

log g3 = log 3 =~ 1.1; see |Appendix B.2| for details). Finally, we impose heteroskedasticity by

letting the volatility of the third shock, o3, follow a first order GARCH-process
U?z),t = 032, + O‘3U§,t—1 + ﬁ35§,t—17

where a3 = 0.7, B3 = 0.2 and €3, is either normally distributed (Specification 3) or skewed
t-distributed (Specification 4) with mean zero and variance unity. Hence, the shock volatility
process is moderately persistent.

We employ an improper constant prior on the elements of B. Our priors for \;, ¢,

a; and (; are described in Figure [B.1| in [Appendix B.2| (see [Appendix B.2| for a detailed

discussion). In addition, we only concentrate on the point estimates of these parameters,
which can be interpreted as the values at the posterior mode, or equivalently, as penalized
maximum likelihood estimates. We thus report the bias as the average difference between
the real value and the point estimate over the simulations, and the standard deviation of
these point estimates over the replications.

Table [1] summarizes the results based on 1000 simulated datasets for three sample sizes
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(T = 200,500,2000). In general, the parameters are quite accurately estimated already in
samples of 200 observations, and the biases and standard deviations get smaller as the sample
size increases. As expected, the fact that g3 (the degree-of-freedom parameter) in the DGP
differs from its prior mean induces a slight finite sample bias in the scale of the estimates of
B3, Bos and ngE] The bias is however not huge and seems almost non-existent already for
T = 500.

Evidently, precise estimation of the tail behaviour of the shock is challenging with the
length of time series typically available, and hence the parameter uncertainty related to
log g3 remains large. This highlights the importance of integrating over all the parameter
uncertainty (Bayesian approach) as opposed to point estimation only. On the other hand,
the estimates of the skewness parameter A3 seem precise and practically unbiased regardless
of the number of observations. This is quite remarkable especially in the first and fourth
specifications (the ones with skewed e3;), as in those cases there is a clear disparity between
the prior and the real parameter value (the prior shrinks estimates of A3 towards zero whereas
the real value of A3 is 0.3). The precision of skewness estimation well matches our overall
experience of significantly stronger identification of impulse responses in the presence of even
slight skewness in the shocks, highlighting the huge potential benefits of allowing for (and
exploiting) the skewness in the structural shocks.

Finally, as expected, the addition of more than one non-Gaussian feature in the shock (the
fourth specification) results in even more precise estimates of B as judged by the lower stan-
dard deviation of the point estimates. Thus, although point identification may be obtained
by exploiting only, say, heteroskedasticity, stronger identification is obtained by exploiting,

not some, but all the non-Gaussian features in the data.

4.2 Posterior and Prior Simulations

Next we consider the baseline specification of the empirical application of Section [5| The

data (with 228 observations) are thus generated from a trivariate SVAR model with each of

"The variance of shock i is a function of ¢; (the degree-of-freedom parameter) and the shocks are nor-
malized to have unit variance. Hence, if the estimated ¢; differs from the value of ¢; in the DGP, the scale
of the elements of B will be different from those of the DGP due to this normalization.
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the structural errors following a skewed t-distribution and displaying time-varying volatility
(a univariate GARCH(1,1)-process is considered for each individual error, see (f])). The
parameter values of the data-generating process are based on either the posterior or prior
distribution of the parameters.

Let us begin with simulations based on the posterior distribution of parameters. Over
1000 replications, we first draw a set of parameters from their posterior distribution and
then, conditional on those parameter values, we simulate a new data set and re-estimate
the model from the simulated data. That is, we apply exactly the same specification (priors
included) as in the original empirical application to the new data set simulated using the
posterior distribution of parameters.

Table [2| reports the estimated bias and standard deviation over the replications. The
estimates are biased by design, since we have not generated the data from the prior, but
from the posterior. For instance, consider a parameter for which the posterior values hover
mostly around, say, 0.4, but the prior shrinks the estimates towards zero. The estimates will
obviously be biased, the amount of bias depending on the strength of the prior relative to
the data.

Thus, simulation of data from the posterior allows us to assess the relative importance
of the data and the prior for our posterior estimates. Biases close to zero (for parameters
which the prior and posterior estimates do not coincide) imply that the prior information is
inconsequential for the posterior estimate, whereas larger biases indicate greater sensitivity to
the prior (as well as disparity of the prior and the posterior). The posterior based simulation
study thus provides an excellent tool for the assessment of prior sensitivity and strength of
identification.

For instance, in our empirical application, the data seem very informative regarding the
elements of the second and third columns of B as well as the off-diagonal elements of the
first column of B, and they do not seem sensitive to the prior at all: there are no significant
biases and the coverage of the posterior intervals matches the nominal coverage. This is
especially the case for B3 for which the posterior simulation study suggests practically no
bias at all, but for which the posterior mean, 0.42, lies far from the prior mean of zero. The

first diagonal element of B, on the other hand, is clearly affected by the prior of log ¢; (see the
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Simulation bias Coverage (90%) Posterior mean

B
-0.38 (0.43) 0 (0.06) -0.01 (0.06) 0.56 0.93 0.87 1.28 (0.49)  -0.03 (0.06)  0.42 (0.07)

-0.02 (0.08) 0 (0.11)  0.01 (0.08) 0.85 0.86 0.94 0.07 (0.10)  0.86 (0.12)  0.05 (0.07)

0.01 (0.08)  -0.01 (0.08) 0 (0.10) 0.86 0.94 0.85 -0.01 (0.09) 0.1 (0.08)  0.85 (0.10)

A 0 (0.09) -0.01 (0.10) 0 (0.10) 0.89 0.9 0.91 0.05 (0.09)  0.06 (0.10)  -0.03 (0.10)
logqg  0.33 (0.26)  0.52 (0.47)  0.41 (0.51) 044 0.8 0.86 0.26 (0.12)  1.16 (0.35)  1.58 (0.57)
o 0.08 (0.10) -0.02 (0.07) -0.03 (0.05) 0.78 0.92 0.94 0.65 (0.11)  0.85 (0.08)  0.85 (0.06)

B -0.08 (0.08) 0 (0.04)  -0.01 (0.05) 0.68 0.92 0.91 0.27 (0.08)  0.09 (0.05)  0.13 (0.05)

Table 2: Results of the posterior simulation study based on 1000 replications. The leftmost panel
contains the average bias and standard deviation (in parentheses) for each parameter, using the
posterior mean as the point estimate. The middle panel contains the fraction of simulations with the
real value of each parameter lying within the (marginal) central 90% posterior interval (i.e., the ideal
value is 0.90). The rightmost panel contains the means and standard deviations (in parentheses) of
the posterior used to generate the data (i.e., the posterior distribution of the Baseline specification

from Section [5)).

discussion in the previous subsection and Footnote 11). The latter point is well illustrated
in Figure [5| in Section [5| depicting a clear disparity between the prior and posterior of the
degree-of-freedom parameter (recall that for a skewed ¢-distribution the degree of freedom
parameter equals 2¢;). Specifically, the data suggest that the tails of the shock distributions
are much further from those of a Gaussian distribution than our relatively conservative prior.

In sum, according to the posterior based simulations, we expect identification of at least
two of the shocks, corresponding to the second and third columns of B, to be particularly
strong. However, as already discussed, this assessment is sensible only if there are no issues
in the model related to, for instance, identification. Also, posterior based simulations tell
us relatively little about the validity of inference, but potential issues related to the model
and/or estimation procedure can be detected by a prior based simulation study. Therefore,
we repeat the exercise with draws from the prior instead of the posterior. Given that there
are no issues in the estimation procedure or in the model regarding, say, identification of the
parameters, this should result in zero bias and correct nominal coverage of all the posterior
intervals.

There are some practical considerations to take into account when carrying out prior
based simulation studies. The priors used in practice (e.g. in Section may be impractically

weak for the purposes of generating data to be used for estimation. This would, of course,
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also suggest the priors to be unnecessarily weak in the first place.E In practice, it is, however,
often best to mitigate the risk of model misspecification by erring on the side of caution with
prior choices, i.e. by preferring too weak priors over too strong ones.

For these reasons, in our prior simulation study we use slightly stronger priors than in the
empirical application of Section . Specifically, we fix the hyperparameter x; (the amount
of shrinkage on autoregressive parameters) to 0.2, set the prior means of the elements of a
and A; (i =1,...,p) in (1)) equal to zero to avoid explosive dynamics and fix the prior mean
and standard deviation of B as reported in the rightmost panel of Table [3[ (log-normal prior
on diagonal elements, normal prior on non-diagonal elements). All the other priors are as in

the empirical application.

Simulation bias Coverage (90%) Prior mean

B
0.01 (0.09) 0 (0.10)  -0.01 (0.10) 091 0.91 0.89 1.10 (0.28) 0 (0.20) 0 (0.20)
0 (0.10)  0.01 (0.10) 0 (0.10) 0.90 0.89 0.90 0 (0.20)  1.10 (0.28) 0 (0.20)
0.01 (0.11) 0 (0.11)  0.01 (0.10) 0.89 0.89 0.87 0 (0.20) 0 (0.20)  1.10 (0.28)
A 0.01(0.10)  0.01 (0.10) 0 (0.10) 0.90 0.89 0.89 0 (0.33) 0 (0.33) 0 (0.33)
logq -0.04 (0.69) -0.02 (0.68) -0.03 (0.69) 0.90 0.91 0.89 2.18 (0.85)  2.18 (0.85)  2.18 (0.85)
o 0 (0.09) 0 (0.09) 0 (0.09) 0.89 0.89 0.89 0.83 (0.10)  0.83 (0.10)  0.83 (0.10)
8 0 (0.05) 0 (0.05) 0 (0.04) 0.90 0.90 0.90 0.08 (0.08)  0.08 (0.08)  0.08 (0.08)

Table 3: Results of the prior simulation study based on 1000 replications. The leftmost panel con-
tains the average bias and standard deviation (in parentheses) for each parameter, using posterior
mean as the point estimate. The middle panel contains the fraction of simulations with the real
value of each parameter lying within the (marginal) central 90% posterior intervals (i.e. the ideal
value is 0.90). The rightmost panel contains the means and standard deviations (in parentheses)
of the prior distributions used to generate the data (elaborated in the text).

The results of the prior simulation exercise in Table [3|indicate that there are no significant
biases and the coverage of the posterior intervals match the nominal coverage, as they should.
Nevertheless, there seems to be room for improvement in our estimation procedure. The
estimates of log ¢ have a slight negative bias, and as the marginal posteriors of log ¢ tend to
feature relatively long right tails, this suggests that the estimation algorithm fails from time
to time in exploring these right tails. The bias is luckily small, but the observation of such
a bias does illustrate the capabilities of prior simulation studies to unveil the kind of issues

that would otherwise easily go unnoticed, including identification related issues seriously

12Tdeally, the prior should be such that the probability of unreasonable data generated by means of prior
draws is zero, or at least close to zero.
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affecting the inference.

5 Empirical Application: Fiscal Multipliers

We illustrate the proposed methods by estimating and analysing a trivariate model used to
study fiscal multipliers in the seminal paper of Blanchard and Perotti (2002). The model was
later extended by Mertens and Ravn (2014), and more recently considered by Lewig (2021),
We find our estimates to be very similar to those reported in Lewis (2021), apart from
slightly stronger identification (due to our ability to exploit more information in the data).
As in Lewis (2021), we conclude that the unnecessary identifying restrictions employed in
Blanchard and Perotti (2002)] and Mertens and Ravn (2014) lead to unrealistically high
estimates for fiscal multipliers.

The trivariate fiscal policy SVAR illustrates how well data based identification works
even in the presence of relatively symmetric and not especially fat-tailed structural shocks,
especially when identification is strengthened by allowing for conditionally heteroskedas-
tic shocks. Obviously, if all the shocks are exactly or even approximately Gaussian and
homoskedastic, we can draw no interesting conclusions regarding the fiscal multipliers. Nev-
ertheless, the validity of the analysis would not be violated, and we would learn that the
shocks are Gaussian and homoskedastic, so no further conclusions could be drawn without

additional assumptions (restrictions).

5.1 Model Specification

Our model is defined as in Equation (I) with y; consisting of tax revenue, government
spending and the GDP (in this order), and it slightly differs from that in Lewis (2021) in
that we impose no deterministic trend, as is customary in the Bayesian VAR literature. As
discussed in Subsection , we reparametrize €, as Ei/ 277,5, where the structural shocks are
assumed to follow a skewed t-distribution['¥] To better understand the sensitivity of the

results with respect to some of the modeling choices, we consider three specifications, two

13We also estimated the model using an even more flexible skewed generalized t-distribution and obtained
essentially identical results.
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of which exhibit conditionally heteroskedastic structural shocks. Instead of the stochastic
volatility process assumed by Lewis (2021), we model the conditional heteroskedasticity by
more parsimonious GARCH-processes[”] Specifically, we fix the unconditional variances of

the structural shocks e;; (i = 1,...,n) to unity, and define the diagonal elements of ¥, as

0}, =07+ aiop_y + Biel,y, i=1,...,n, (5)
where we restrict both «; and f3; to be positive. Thus, the vector of the parameters controlling
the conditional error variances is 0 = (aq, f1, ..., &y, B,). In addition, in order to keep the
volatility processes stationary, we conveniently fix the unconditional shock variance to unity
by setting 02 = 1 — a; — ;. Moreover, as this is equivalent to 0? + o; + 3; = 1, we impose
Dirichlet priors that are consistent with this restriction.

In all specifications, we use non-exchangeable prior on the parameter matrix B to suppress

the permutation issue discussed in Section [3.3] In particular, we follow Brunnermeier et

al| (2021) and shrink B towards a suitable scaled diagonal matrix (see |[Appendix B.3] for

a detailed discussion). For our baseline specification (Baseline), we impose the commonly
used Minnesota prior on the autoregressive parameters (see, e.g., Litterman (1986) and Doan,
Litterman, and Sims (1984)). A detailed description of this prior is provided in
. Importantly, we do not fix the amount of shrinkage imposed (i.e. the tightness of the
prior) on the autoregressive parameters (and on B), but estimate it from the data. For
the elements of the vectors of the parameters controlling the law of motion of conditional
volatility (d) and the shapes of the error distributions (7), we use the default priors explained
in [Appendix B.2| (see also the discussion in Section [4.1]).

To gauge the sensitivity of the results to the shrinkage in the autoregressive parameters,
and for maximum comparability to earlier mostly non-Bayesian literature, our second model
specification (No shrinkage) differs from the first in that we impose an improper constant
prior on the autoregressive parameters (i.e. no shrinkage). Imposing the above discussed

shrinkage prior instead of an improper constant prior on B proved to be practically inconse-

4Tn our framework, modeling conditional heteroskedasticity via GARCH-processes is much more conve-
nient than by latent stochastic volatility processes. The difference between these approaches is likely to be
much smaller than when, say, Gaussian shock distributions are assumed because we allow the tails of the
shock distributions to partly absorb any sudden changes in volatility.
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quential™®} and hence, the results based on the improper prior on B are not reported. Note
however, that as Proposition [l suggests, a proper posterior distribution is obtained, even
under the improper prior on B, making such an assessment of prior sensitivity possible in
the first place.

The third specification (Homoskedastic) differs from the baseline specification only in
that the shocks are assumed homoskedastic (i.e. the conditional heteroskedasticity in the

shocks is not modelled and hence cannot be exploited for identification).

5.2 Estimation and Labeling Shocks

We estimate the models from a quarterly U.S. data set from 1950Q1 to 2006Q4 (228 obser-
vations), consisting of federal tax revenue, federal government consumption and investment,
and the GDP. The data are as provided in Lewig (2021), apart from scale transformations
of the time series that are more thoroughly discussed in [Appendix B|

We generate four chains, each consisting of two thousand draws, using the NUTS algo-
rithm discussed in Section [3.4] The first half of each chain was used for automatic tuning
of the algorithm, and the close to ideal values of the R convergence diagnostic suggest nice
convergence["| The final posterior sample hence consists of four thousand only slightly au-
tocorrelated draws. The estimated effective posterior sample size is between one and four
thousand draws with respect to almost every parameter in the model, and the sampling took
less than a minute on a desktop computer for all the specifications.

As statistical identification of the shocks offers no economic interpretation, the shocks
of interest need to be labeled after the estimation of the model. Here we are interested
in labeling two different fiscal shocks, the government spending shock and the tax shock.
Ideally, this step also includes the assessment of whether the labels of the shocks of interest
are supported by the data at all (for a formal approach in the context of sign restrictions see

e.g. Lanne and Luoto, 2020). However, we employ a less formal procedure, and make use

15As our system is relatively small, we have enough observations for the posterior distribution of the
3 x 3 parameter matrix B to be mostly determined by the data, rendering the prior choice practically
inconsequential. This is most likely not the case for larger models.

16For the R convergence diagnostic, values close to unity imply convergence, see, e.g., Vehtari et al} (2021).
For all of the three specifications, all values of R turned out to be well below the threshold of 1.01.
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of the impulse responses (reported in [Appendix D) and the forecast error decompositions of
the statistically identified shocks (reported in [Appendix C]). The only potential candidate

for a government spending shock is the second structural shock since (for all specifications)
it is the only shock having a significant immediate impact on government spending. Another
distinctive feature of this shock is the slightly positive short term response in output, which
lends additional support to it being the government spending shock.

For a tax shock there are two candidates as both the first and third shocks have a signifi-
cant immediate effect on the tax revenue. The third shock, however, has an implausibly great
effect on output to be a tax shock, as according to to forecast error variance decomposition,
it accounts for over 90% of the unexpected changes in output in the short to medium term
(hence, we refer to it as the output shock) and would consequently also imply implausibly
high fiscal multipliers. The response of output to the only remaining candidate for a tax
shock, the first shock, also matches the typical characteristics of a tax shock as a negative
shock induces a positive response, especially in the long term.

The results obtained under all three specifications are similar. As expected, the Min-
nesota prior seemed to dampen the dynamics of the system. More interestingly, even under
the homoskedastic model (Homoskedastic), we are able to identify the same structural shocks
and reach the same conclusions, although the probable misspecification of the model resulted
in some differences in certainty and magnitude of the exact estimates. Thus, it seems that for
the identification of the structural shocks, just letting the shocks to deviate from Gaussian
might be enough. However, allowing for conditional heteroskedasticity in the shocks is likely
to result in lesser misspecification and more accurate conclusions]"]

As noted in Anttonen, Lanne, and Luotg (2022)| narrative records can also be used to
guide the labeling of the shocks, and those discussed in Lewiq (2021) indeed lend over-
whelming support to labeling the first shock as the tax shock. Figure [1| plots the posterior
distribution of the identified tax shock in the Baseline specification as a function of time.

The vertical dashed lines mark negative tax shocks as implied by the narrative recordsm

1"We also estimated a model with dependent shocks, all following the same GARCH process. If this is
the correct specification, Proposition [3| guarantees identification. However, the results are similar to those
based on the specifications assuming independent shocks, and therefore, to save space, they are not reported
in detail, but they are available upon request.

18The narrative records considered here are the same periods listed and considered in Lewis (2021),
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Evidently, the estimated posterior probability of the identified tax shock conforming with
the narrative records, i.e., of its being negative at the given dates, is approximately 100
percent.

A similar assessment of the government spending shock is slightly more challenging due
to a greater ambiguity in the timing of such shocks (see, e.g., Ramey, 2011). However, at
least the posterior probability of a positive government spending shock corresponding to
Bush’s Job Creation and Worker Assistance Act of 2002:Q1 is almost 100 percent. This
is the one narrative record listed in Lewis (2021) that could be considered as primarily a

government spending shock.

Tax shock

T T — T ’ T T T
1950 1960 1970 1980 1990 2000

Figure 1: 68% and 90% point-wise credible sets of the identified tax shocks over time for the
Baseline specification. Vertical dashed lines correspond to quarters for which narrative records
suggest negative tax shocks (i.e. tax cuts). The narrative records have not been used in the
identification and estimation of the model in any way.

5.3 Fiscal Multipliers

Figure [2| depicts the dynamic multipliers of expansionary fiscal policy shocks, i.e., a negative
tax shock and a positive government spending shock, based on the three specifications. In
particular, they are the estimated responses in approximate dollars to a one dollar tax cut
and a one dollar spending shock (approximate since the data are defined in log-levels, not in

dollar terms). Following some of the previous literature, the approximate dollars are defined

apart from Truman’s Revenue Act of 1951:QQ1, which falls just outside our sample (we have a posterior
distribution for the shocks starting from 1951:Q2. The five negative tax shocks considered are then, Johnson’s
Revenue Act of 1964 (1964:Q2), Excise Tax Reduction Act of 1965:Q3, Ford’s Tax Reduction Act of 1975:Q2
(incorrectly timed in Lewis (2021) to Q3), Bush’s Economic Growth and Tax Relief Reconciliation Act of
2001:Q3, and Bush’s Jobs and Growth Tax Relief Reconciliation Act of 2003:Q3.
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using the average ratios of the tax and government spending variables to the GDP over the
entire sample. In discussing the results, we rely on comparisons to the previous literature,
especially to Lewis (2021), whose results are based on a related frequentist approach. The

upper and lower row of Figure [2] correspond to his Figures 3 and 4, respectively.

Baseline No shrinkage Homoskedastic

05 1.0 15 20 25
05 1.0 15 20 25

Neg. Tax Shock

-0.5
1
-0.5

Govt. Spending Shock

-1

-2

T T T T T T T T T T T T T T T
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Figure 2: 68% and 90% point-wise credible sets and posterior medians of the dynamic multipliers
of a negative tax shock and a positive government spending shock. Each pane depicts the response
of output (in approximate dollars) to a one dollar tax cut (top row) and a one dollar government
spending shock (bottom row) for one specification (columns). The vertical axis is defined in ap-
proximate dollars and the sizes of the tax and spending shocks are fixed to have a unit impact
effect on the tax and government spending variables, respectively.

In line with the previous literature, we find the response of output to a negative tax
shock to remain approximately zero for the first few quarters, after which the posterior
probability of a positive response in any given period rises to at least 85 percent, the exact
posterior probability depending on the model specification. Because our models contain no
deterministic trend and we are able to accurately capture parameter uncertainty in a finite
sample due to Bayesian inference, the posterior distribution of impulse responses indicates
greater parameter uncertainty in the medium to long term than much of the corresponding

frequentist results in the previous literature (see, e.g., Figure 3 in Lewis, 2021)E| Of course,

19 Although our posterior distribution gives high posterior probability to a positive response of output to
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Bayesian credible intervals and frequentist confidence intervals are not directly comparable.
Our posterior means, medians and modes are very close to the point estimates of the dynamic
multipliers reported in Lewis (2021), peaking after around 8 quarters (or later) and, with
the exception of the most likely misspecified homoskedastic specification, they get close to
but stay below one.

Our estimates of the dynamic government spending multiplier differ slightly more from
the previous literature than those of the tax multiplier. Most importantly, by exploiting
more efficiently the information in the data, we are able to identify a government spending
shock that has a clear, yet not an implausibly large, positive contemporaneous impact on
output. It is positive with posterior a probability from around 90% to 97%, depending on the
specification (for a comparison, see Figure 4 in Lewis, 2021). Despite the significant positive
short term response, after two quarters, any point estimates derived from our posterior,
however, fall quickly close to zero, and parameter uncertainty increases to the extent that
after 8 quarters the dynamic multiplier is equally likely to be positive or negative. According
to our posterior distributions, government spending thus has only a short term effect on the
output with the dynamic multiplier between zero and one during the first few quarters.

In addition to the dynamic multipliers, it is natural to compare the cumulative multi-
pliers as well, as they might be more relevant in the policy analysis. We map our posterior
distribution of the parameters to the posterior distribution of the present value cumulative
multipliers as defined in Mountford and Uhlig (2009) and reported in Lewis (2021), and plot
the associated marginal posterior distributions in Figure (3. The cumulative multipliers are
qualitatively somewhat similar to those reported in Lewis (2021). In particular, while the
spending shock has a greater fiscal multiplier in the short term, the cumulative multiplier of
the tax shock is greater in the long term.

The cumulative multiplier of tax cuts is very close to zero in the short term, but after
3 to 5 years it has turned positive with 85 to 90 percent posterior probability, the most
probable values in the long term lying between one and two. However, the distribution of

the cumulative multiplier of the tax shock is highly skewed, and uncertainty is so high that

an exogenous one dollar tax cut, the posterior probability of a negative response is significant as well (10 to
15 percent for Baseline and No shrinkage).

34



Baseline No shrinkage Homoskedastic

Neg. Tax Shock on Output

Govt. Spending Shock on Output
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0 5 10 15 20 0 5 10 15 20 0 5 10 15 20

Figure 3: 68% and 90% point-wise credible sets and posterior medians for present value cumulative
multipliers for negative tax shock and positive government spending shock as defined in Mountford

and Uhlig (2009). The y-axis is defined as in Figure

no definite statements regarding even the sign of the multiplier can be made. These features
of the posterior distribution of the cumulative multiplier emphasize the fact that reporting
only point estimates may be misleadingﬂ

The posterior distribution of the cumulative spending multiplier seems much more sym-
metric, and regardless of the high parameter uncertainty, in the short term (during the first
year), the cumulative multiplier is most likely positive, the point estimates (posterior mean,
median or mode) being close to but less than one. In accordance with the previous literature,
we find the cumulative multiplier of the spending shock to be much smaller than that of the
tax shock in the long term. However, our results slightly differ from the previous literature
(see, e.g., Table 2 in Lewis, 2021) in that we find the government spending multiplier to
increase more slowly in the long term. It also falls towards zero (or even turns negative)

with a high probability. This is due to our government spending shock having a much more

20For example, the estimated cumulative multiplier (2.06) for the horizon of 20 quarters reported in Lewis
(2021) almost exactly coincides with the posterior mean of our No shrinkage specification (2.02) that comes
closest to Lewis’s (2021) specification. Due to the high skewness of the distribution, this is, however, markedly
greater than, say, the median or the mode, and reporting only this point estimate would be misleading.
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persistent effect on government spending than on output. In contrast, the effect of the tax
shock on the tax revenue seems temporary, whereas its effect on output is persistent.

In conclusion, apart from relatively minor details, our results are very much in accordance
with those reported in Lewis (2021), where only conditional heteroskedasticity of the shocks
is used for identification. On the other hand, they suggest that the estimated fiscal multi-
pliers reported in both Blanchard and Perotti (2002) and Mertens and Ravn (2014)| (where
identifying restrictions on the effects of structural shocks are imposed) are unreasonable and
not supported by the data, as concluded by Lewis (2021)| as well.

The similarity of our results to those of Lewi§ (2021), and, on the other hand, the
dissimilarity to those in Blanchard and Perotti (2002) and Mertens and Ravn (2014 )|is well
depicted in Figure [4] in which the estimated marginal posterior distributions of the two key
parameters (the automatic stabilizer for tax revenues, 6y, and the instantaneous response of
output to tax revenues, {7) as well as the point estimates of Lewis (2021)| and Blanchard and
Perotti (2002)| are drawn. For ease of comparison to the previous literature, we have defined
these parameters as in Lewig (2021), and for a more elaborate discussion on these parameters
we refer the reader to that paper[’] Clearly, the posterior distributions of both 6y and &7
are very much in accordance with the point estimates reported in Lewis (2021). Also, the
differences between our three specifications are minor, corroborating the robustness of our
results. While the point estimates reported in Blanchard and Perotti (2002) can be found at
the tails of our posterior distribution, thus being hugely improbable, yet remotely possible,
the point estimates reported in Mertens and Ravn (2014)| (3.13 and -0.35) fall far outside
the support of our posteriors. If the identifying restrictions of Blanchard and Perotti (2002)
and Mertens and Ravn (2014) were valid, their point estimates should lie well within the
support of the posterior distribution obtained via statistical identification. The fact that
this is clearly not the case, can be interpreted as evidence against these results . Hence, we

can conclude that the fiscal multipliers in those papers are clearly overestimated.

21The mapping between these parameters and B as defined in this paper is obtained as follows. First,
define H as a result of normalizing the columns of B such that unit diagonal remains (i.e., #’th column of B

is divided by Bj;, for i =1,2,3.). Then, fy = Hy3 and &p = Zuglszla
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Figure 4: Marginal posterior distributions of the automatic stabilizer for tax revenues, 6y, and the
instantaneous response of output to tax revenues, &p. For the exact definition of these parameters,
see Lewig (2021). Vertical lines depict the point estimates of these parameters as reported in the
previous literature. The smoothed posterior densities are constructed from the posterior sample
with Gaussian kernels.

5.4 Checking for Identification

As already discussed, the strength of identification depends on the properties of the struc-
tural shocks. In particular, the results in Section [2| state that identification of all or part
of the shocks is achieved under deviations from normality and in the presence of depen-
dent heteroskedasticity. Therefore, it is of special interest to assess the marginal posterior
distribution of the parameters that controls for these aspects.

Figure [5| depicts the the 68% and 90% posterior intervals of the skewness and degree-of-
freedom parameters for each structural shock for the Baseline specification (and a common
prior) 2] The shocks are assumed to follow a skewed t-distribution, but according to the
left panel of Figure [5 they do not exhibit much skewness that would provide identifying
information.

On the other hand, the marginal posterior distributions of the degree-of-freedom param-
eter depicted in the right panel of Figure |5| clearly suggest that the shocks are not Gaussian,
even after accounting for conditional heteroskedasticity. The posterior distributions of the
parameters clearly involve much smaller values of the degree-of-freedom parameter than the

prior which gives a fairly large prior probability to approximately Gaussian shocks as well@

22The results for the other specifications are very similar and hence not reported, but they are available
upon request.

23That is, Gaussian conditional on zero skewness. For shocks to be Gaussian, the degree-of-freedom
parameter of a (skewed) t-distribution should tend to infinity, but already for values as small as 30, the tails
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Figure 5: 68% and 90% posterior and prior intervals for the parameters controlling for skewness (left
panel) and excess kurtosis (right panel; degree-of-freedom parameter) of the ¢-distributed shocks
of the Baseline specification.

Especially the tax shock seems to feature significant excess kurtosis (i.e., a small value of the
degree-of-freedom parameter) indicating strong identification of that shock. According to
Proposition [2], the excess kurtosis of the tax shock alone is sufficient for identification of that
shock. In addition, the government spending shock also certainly features sufficient excess
kurtosis for us to conclude that, with two of the three shocks being non-Gaussian, there is
enough information for the identification of the whole system.

While we have concluded excess kurtosis of the shocks to contain enough information for
the identification of the system, it might be strengthened by conditional heteroskedasticity.
Figure @ depicts the posterior distributions of the conditional volatility (o;;) of each shock
over time for the baseline specification (the results for the No Shrinkage specification are
similar).

The volatility of each shock exhibits distinct properties. Whereas the tax shock seems to
feature prominent short term spikes, the changes in the conditional volatility of the output
shock seem much more persistent. The government spending shock, on the other hand, seems
surprisingly homoskedastic, featuring almost no changes in the conditional volatility*¥] By
Proposition (3|, dependent time-varying volatility of all but one shock is sufficient to achieve
full identification, provided the shocks have finite fourth moments. Because the value of the

degree-of-freedom parameter of the tax shock might very well be less than four (see Figure 5)),

of the distribution can be considered approximately Gaussian for all practical purposes.
24The early spike in the volatility of the government spending shock is explained by the disproportionately
large movements in government spending at the very beginning of the data.
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Figure 6: 68% and 90% point-wise credible sets and posterior medians (dashed lines) of the condi-
tional shock volatilities starting from 1951Q2. Baseline specification.

the latter condition is hardly satisfied, and, hence, identification is not necessarily achieved
via heteroskedasticity. This is not a problem as the excess kurtosis of two of the shocks
guarantees full identification, but conditional volatility should still be incorporated into the

SVAR model to avoid misspecification and to potentially strengthen the identification.

6 Conclusion

It is well known that if at least n—1 of the independent structural shocks in an n-dimensional
SVAR model are non-Gaussian or suitably heteroskedastic, the impact matrix is point iden-
tified (up to permutation and signs of its columns). However, if more than one shock is
Gaussian, only the columns corresponding to the non-Gaussian shocks are point identified,
and to conduct asymptotic inference in the frequentist setup, additional ad hoc restrictions
are needed. Moreover, to find the (number of) identified shocks, pre-testing is required. In

contrast, when Bayesian methods are used, valid inference is guaranteed by the main result
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of this paper, which states that the elements of the impact matrix are always at least set
identified under standard assumptions and the bounds of the set cannot exceed the standard
deviations of the corresponding reduced-form errors. Importantly, this is the case even when
an improper prior on the elements of the impact matrix is used. In addition, the strength
of identification can be assessed in a straightforward manner by inspecting the properties
of the structural shocks. We also extend the identification results for SVAR models with
orthogonal but mutually dependent errors put forth in the previous literature and show that
under certain additional assumptions, valid Bayesian inference can be conducted even when
all or some of the shocks are dependent.

Efficient utilisation of deviations from Gaussianity requires versatile error distributions,
whose implementation calls for advanced computational tools. We propose some suitable
distributions and discuss the implementation of the methods in the case of SVAR models.
According to simulation experiments, the methods perform well in finite samples. In particu-
lar, not surprisingly, simultaneously exploiting multiple different deviations from Gaussianity
improves estimation accuracy. We also demonstrate how simulation experiments based on
data generated from the prior and posterior can be helpful in the assessment of the strength
of identification.

The use of the methods is illustrated in an empirical application to the effects of U.S.
fiscal policy. In a trivariate SVAR model for tax revenue, government spending and the GDP,
at least two of the identified structural shocks turn out to be non-Gaussian, indicating point
identification of the impact matrix. By inspection of the impulse responses and forecast
error variance decompositions of the shocks and by the use of narrative records, two of the
shocks are labeled the government spending and tax shocks. The resulting fiscal multipliers
are similar to what Lewiq (2021) obtained, but differ considerably from those in the previous
literature. Lewis based identification on heteroskedasticity, while we exploited (also) non-
Gaussian features of the data. In contrast, statistical properties of the data were not made

use of in identification in the earlier literature.
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Appendix A Proofs

Proof of Proposition 1. We begin by proving Proposition [I] under Assumption [I] with
mutual independence in Assumption [I|(é) relaxed to orthogonality. Recall that the (uncondi-
tional) reduced-form covariance matrix is given by Q = E(wu;) = BXB’, where ¥ = E(g;¢}).
We denote the ij-elements of 2 and ¥ by w;; and o;;, respectively. Under the orthogonality
of the elements of ¢;, 0;; = 0 for all # # j. Furthermore, to retain the elements of B uncon-
strained, we normalize the unconditional variances o;; (i = 1,...,n) of the elements of ¢; to

unity. These imply Q = BB’, from which, we obtain
j=1

This means that for any ¢ = 1,...,n, B}, = w; if and only if By = 0 for all k = 1,...,n,
k # 7, and ij <wy (j=1,...,n) otherwise. Thus,

—wi? < Bj; <wll’ (A.2)

[ 2 — w0

must hold for all 4,7 =1,....,n. =

Proof of Proposition 2. Let us partition ¢, as ¢, = (¢}, ¢?)’, where the (r x 1) and
((n — r) x 1) vectors ¢} and &? contain the non-Gaussian and Gaussian components of
¢, respectively. Without loss of generality, we normalize each element of ¢; to have unit
(unconditional) variance. Consider an observationally equivalent SVAR process defined by
B* = BQ and ¢} = Q'&;, with Q an (nxn) orthogonal matrix, where the first 7 components
of e7 have non-Gaussian marginal distributions, and the last n—r (0 < r < n—1) components
have Gaussian marginal distributions. We partition € accordingly: ef = (£}, /') with &}
(rx1)and &? ((n—r) x 1).
Partitioning @) as
Q1 Q2
Qs Qu
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with Q1 (r x 1), Q2 (rx (n—r)), Qs (n—7r) x7)),and Q4 ((n —7) X (n — 1)), we obtain

In = QQ/
(o @) (o @
Qs Qu) \Qy Q)

_ [ @i+ @Q2:Qy 1Q5 + e . (AA)

Q3Q) + Q4@ QsQ% + QuQ)
Using (A.3) in &f = Q'&;, we can write £7 = Qze;' + Q4e;%. By the mutual independence of
the elements of ¢}, it follows from Lemma 9 in Comon (1994) that Q)3 corresponding to the

non-Gaussian part ' of ef must be zero. Substituting Q3 = 0,,_,., into (A.4), we obtain

/ + / /
L oo - @@ @ e )

Q1Q5 Q1@
Because Q4@ = I,,_., Q4 is an orthogonal matrix. By the orthogonality of @4, it follows
that @4 is of full rank, and, hence, the conditions Q4Q) = 0,_,x, and Q20 = Orxp_r,
provided by (A.5)) above, hold if and only if Q2 = 0,x,,—,. Based on these results, (A.3]) can

be rewritten as

Q _ Ql Orxnfr ' (A6)
Onfrxr Q4

From e = Q~'&;, we hence obtain e} = Q&}! and €2 = Q4&;?, where Q4 is an ((n—r)x (n—r))
orthogonal matrix, as shown above. Also, (); is an (r X r) orthogonal matrix, which can be
seen from using the result Q2 = 0,5y,

Next, recall that the elements of ¢} are mutually independent. Also, the elements of
efl are mutually independent, and all of them have non-Gaussian marginal distributions.
Therefore, Lemma A.1 of Lanne, Meitz, and Saikkonen (2017)| implies that each column of
(1 contains at most one nonzero element. By the orthogonality of ()1, it thus follows that
each column of (); has exactly one nonzero element equal to £1. And, for the same reason,
also each row of (1 has exactly one nonzero element equal to £1. Thus, @), is a signed (r X r)

permutation matrix, and hence, given the signs, the first r structural errors are identified up
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to their order, whereas the Gaussian part 7 of ; is only set identified, as @4 is an orthogonal
matrix.

Similarly, if we partition B as B = [By, Bs] with By (n x r) and By (n x (n — 1)), by
substituting into B* = BQ, we immediately see that

B} = B1Qq, (A.7)
B = ByQy, (A.8)

where B* = [B}, B3] with Bf (n x r) and By (n X (n —r)). The fact that @y is a signed
permutation matrix, as shown above, implies that B; is identified up to permutations and
sign reversals of its columns, whereas Bs is only set identified, as (), is an orthogonal matrix.
However, the result in ({A.2)) must hold for any mutually uncorrelated structural error process,

1/2

)

and hence it must be that —w/> <Bj<w

0"

(i,j =1,...,n), as stated in Proposition .

Proof of Proposition 3. Let B* = BQ and ¢; = Q ', with Q an (n x n) orthogonal
matrix define observationally equivalent SVAR processes, where also ¢} satisfies Assumption
such that A components of € have nonzero skewness. To retain the elements of B uncon-
strained, we normalize the unconditional variances o;; (i = 1,...,n) of the the elements of
€ to unity.

Let us consider the quantity Ele; &, = L'iji. By €] = Q'e,, it can be expressed as

Fz’jk =E (Z Qip5;7t> (Z qugz,t> <Z rigit) ]
L \p=1 g=1 r=1
=E Z Z Z Qinijkrg;,tgz,teit]

Lp=1 ¢g=1 r=1

n n

=D D) QuQiQuly (A.9)

p=1 g=1 r=1

where T, = E[ej,e},e5 ], €f; is the ith, i = 1,...,n, element of ¢}, and Qy; is the (i, j)-

element, i,j5 = 1,...,n, of (). Assumption (zz) implies that Elejeter,] = Ele)?] when
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i = j = k and zero otherwise. Therefore, ((A.9)) above, can be written as

Fijk = Z Z Z Qinijk'rF;qr

p=1 gq=1 r=1

- Z Qinijka;pp' (AIO)
p=1

We proceed by considering the following sum of the squared I';;:

Sy Y (S Y a0, )

i=1 j=1 k=1 i=1 j=1 k=1 \p=1 ¢=1 r=1

n nmn n o n n n m n n
=2.2.2.2.2.2.2.0 0 QuisQuQuQiyQeThy Iy
i=1 j=1 k=1 p=1 ¢=1 r=1 z=1 y=1 z2=1
n n n n

- Z Z Z Z Z Z Z Z Z QinijkrQiszkazF;qu;yz, (All)

p=1 ¢g=1 r=1 z=1 y=1 2=1 i=1 j=1 k=1

where the first equality follows from (A.9). By the orthogonality of @, we have
Z QipQig = Opg = (A.12)
i=1

Using (A.12) above, (A.11)) simplifies to

222 Th=2.2_2.2 .0 2 0Ty Ty

i=1 j=1 k=1 p=1 ¢g=1 r=1 z=1 y=1 z=1

S B! a1
p=1 g=1 r=1
Recall that based on Assumption [(ii), T';j, = Eleucjier] = E[e}] when i = j = k and zero
otherwise. Therefore, (A.13]) reduces to

n

Zn: Fzzn = Z F;k7,27, <A~14)
i=1

=1
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Using (A.10]), (A.14) can be written as

i (i Q?pr;;pp> Z Fzm? <A15)
=1 p=1

or equivalently,

> (Z o Ekﬁ) =D _BED (A.16)

From Lemma 15 of Comon (1994), we obtain

Z (ZQ Epi ) < ZE[gi‘,‘i’F- (A.17)

=1 p=1

Combining and , we have
2 (Z Qi !E[e;;in) <> (Z @?pE[s;;i]) , (A.18)
i=1 \p=1 i=1 \p=1

On the other hand, by the orthogonality of @, it must be that |(Q);;| < 1foralli,j =1,...,n,
and hence QF; > Qj;. This implies that Q7 B3] > |Q%] B3] > Q% Eler?] for all
i,p=1,...,n, and, hence

Z(ZQ pt)>z(z\@\m \)2 zi(ZQ ) (A1)

p=1

By (A.18) and (A.19), it must thus be that

Z(Z@?p|E[e;iH> Z(Z\@HE ) =Z<Z@?pE[€Zil>, (A.20)

=1 p=1 =1 p=1 =1 p=1

from which, we obtain Q ‘E ‘ ‘Q } ‘E } or equivalently

2(1Qul - DIBE = 0. ij=1,..,n (A.21)
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Now, let us assume that at least one structural error has nonzero skewness. Suppose
53‘?; # 0. Then, by , Q;; must be either zero or £1 for all ¢ = 1,...,n. By the
orthogonality of @, it hence follows that the jth column of () has exactly one nonzero
element equal to 41, and for the same reason this nonzero element +1, is the only nonzero
element in the corresponding row of Q). As a result, e = Q '¢; implies that gj; must be
equal to one of the elements of ¢, say the kth, multiplied by +1. By B* = BQ, also
means that the jth column of B* is equal to the kth column of B corresponding to the kth
structural error €. Obviously, if the number of the skewed structural errors A > 1, then
and the orthogonality of () ensure that each of the h columns of ) has exactly one
nonzero element equal to £1, and they also ensure that each row corresponding to these
nonzero elements has exactly one nonzero element. Thus, i elements of €} are equal to the
h skewed structural errors in ¢4, and also h columns of B* are equal to the h columns of B
corresponding to these h skewed structural errors in &;.

In other words, if the h skewed errors are ordered first in both ¢, and €}, then

P 0
Q= (A.22)
0 D

with some (h x h) signed permutation matrix P, and an ((n—h) x (n—h)) orthogonal matrix
D (notice that QQ" = I,, together with (A.22)), implies that DD’ = I,,_;). This means that
if we partition B as B = [By, By| with By (n x h) and By (n x (n — h)), by substituting
into B* = B(Q, we immediately see that

B! = B, P, (A.23)

B; = B,D, (A.24)

where B* = [Bf, B3] with B} (n x h) and By (n x (n — h)). The fact that P is a signed
permutation matrix, as shown above, implies that B; is identified up to permutation and
sign reversals of its columns, whereas B, is only set identified, as D is an orthogonal matrix.

However, Propostion [I| must hold for any mutually uncorrelated structural error process,
1/2

and hence it must be that —w./* < Bi; < w

(2 —

(1,7 =1,...,n). This completes the proof of
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part (7).

To prove part (i), suppose first that only one component of ¢, say, €;; has zero skewness,
and the other components of ¢, have nonzero skewness. Then, by , Q;; must be either
zero or +1 for all 4,7 = 1,...,n, j # [, and therefore, by the orthogonality of ), we know
that each column of ) except the [th has exactly one nonzero element equal to £1. Similarly,
because of the orthogonality of @, @Q;Q; =0 (i # j), and hence the n x (n — 1) matrix (),
obtained by dropping @; from @), has exactly one zero row, and each of its remaining rows has
exactly one nonzero element equal to +1. Therefore, from Q’Q; =0 for j =1,...,n, j #1,
it follows that (); has at most one nonzero element (corresponding to the zero row of Q_;),
and as @;Q; = 1, this element must equal +1. Thus, ) = P, an (n x n) signed permutation
matrix. Obviously, if all components of ¢; have nonzero skewness, by the orthogonality of ()
and , (2 must be a signed permutation matrix, so B is identified by sign reversals and
ordering of its columns.

Finally, based on Corollary 2 of Lewis (2021), if at least n — 1 components of &, display
time-varying volatility with non-zero autocovariance, B is identified up to sign reversals and
ordering of its columns.

Proof of Proposition 4. Let us partition ¢, as ¢, = (¢},¢?')’, where the (g x 1) and
((n — g) x 1) vectors ¢} and &7 contain the independent and dependent components of
¢, respectively. Without loss of generality, we normalize each element of ¢; to have unit
(unconditional) variance. Consider an observationally equivalent SVAR process defined by
B* = BQ and g} = Q'&;, with Q an (n xn) orthogonal matrix, where the first g components
of e} are independent of each other and of the remaining n — g dependent components. We
partition €* accordingly: ef = (¢, &%) with &' (¢ x 1) and €% ((n — g) x 1).

Partitioning @) as

oo [@ @) o)

Q3 Qu
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with Q1 (9 x 9), Q2 (9 x (n—g)), Qs ((n—g) x g)), and Q4 ((n — g) x (n — g)), we obtain

In = QQ/
(o @) (o @
Qs Qu) \Qy Q)

_ Qi@+ @Q:Qy Q1Q5 + . (A.26)

Q3Q) + Q4Q; Qs3Q% + QuQ)

Notice that independent random variables cannot generally be obtained as linear trans-
formations of uncorrelated but dependent random variables. Recall that the elements of &}
are independent of each other and of those in £?, whereas the elements of £;% are dependent.
Therefore, e, = Qe; implies that either Q2 = 0,,_, or, alternatively, at most one row of @),
contains nonzero element(s). However, in the latter case, Q)4 = 0,,_y,—, because if ()2 has
even one nonzero element, the corresponding element of &} cannot be independent of the
elements of €? as long as they contain even one of the elements of £}?, as its elements are
dependent.

Suppose the kth (1 < k < g) row of ()2 has at least one nonzero element. Then, for
the corresponding element of £; (i.e., ;) to be independent of those in €7, it must be that
Q1 = 0,,_y n—g. This means that one of the nonzero elements in the kth row of (), is the only
nonzero element in the corresponding column of ). By the orthogonality of (), it is equal to
+1, and hence it must also be the only nonzero element in the kth row of ()5. This together
with Q4 = 0,,_gxn—g, in turn, implies that [Q5, Q)] contains columns with all elements equal
to zero, but because () is orthogonal, this leads to a contradiction.

Thus, it must be that Q2 = Ogxp—g. Substituting Q2 = 0yx,—, into (A.26), we obtain

L_og- (@@ @@ ) e

@3Q7 @3Q% + Q@)

Because (1Q)] = I,, 1 is an orthogonal matrix of full rank, and, hence, the conditions

Q3@ = 0p_gxy and Q1Q% = Oyxn—y in (A.27) above, hold if and only if Q5 = 0,—gxg-
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Therefore,

Ogxn_
Q = Ql g g . <A28>
0n—g><g Q4

From ¢; = Qc}, we hence obtain e} = Q&;! and &7 = Q,&;?, where Q; is a (g X g) orthogonal
matrix, as shown above. Also Q4 is an ((n — g) x (n — g)) orthogonal matrix, which can be
seen from ([A.27)), using the result Q3 = 0,_gx-

Next, recall that the elements of ¢} are mutually independent, and @, is invertible (be-
cause it is orthogonal). Also the elements of ;! are mutually independent. Thus, based
on Proposition 1 of Lanne, Meitz, and Saikkonen (2017), if at most one element of &] has a
Gaussian marginal distribution, (J; must be a (g x ¢g) permutation matrix, which implies that,
given their signs, the first ¢ independent structural errors are identified up to their order,
whereas the dependent structural errors in €2 are only set identified, as @4 is an orthogonal
matrix. This completes the proof of part (7).

To prove part (i7), notice that if more than one (g —1) (1 < r < g—1) of the elements of
et are Gaussian (when g > 3), Proposition [2 implies that the r non-Gaussian elements of &}
are globally point identified up to their ordering and sign reversals, and the remaining g — r
Gaussian components of ¢] are set identified. In particular, ordering the 7 non-Gaussian

components of €} first, we can further partition Q; as

P Opxgr
Q1 = AR (A.29)
Og—r><7“ D

with P an (r X r) permutation matrix, and D an ((g —r) x (¢ — r)) orthogonal matrix.
Thus, if we partition B as B = [By, By] with By (n x r) and By (n x (n —r)), by
substituting (A.28) into B* = BQ and using (A.29)), we immediately see that

B =B,P (A.30)

_ D 0y rn
B = B, R (A.31)

On—gxg—r Q4
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where B* = [B}, B3] with B} (n x r) and B} (n x (n —7)). As P is a signed permutation
matrix, B; is identified up to permutation and sign reversals of its columns, whereas B, is

only set identified since (4 and D are orthogonal matrices. However, Proposition 1| holds
1/2

i

for any mutually uncorrelated structural error process, and hence —wili/ 2 < B < w
(1,7 = 1,...,n), as stated in Proposition Also, the result in Proposition [3[ implies that
the columns of By corresponding to the skewed components of £? are point identified.

Part (iii) follows directly from Proposition 3 The case where g and n — g components

of ; are independent and dependent, respectively, is a special case of Assumption [2] and

therefore, the skewed elements of €7 are identified. ®

Appendix B Priors and Practical Implementation

In this appendix, we describe in detail the priors used in Section 5| and recommended in
general. We also touch upon the subject of practical implementation of the framework

discussed in the paper.

Appendix B.1 On Priors and Hyperparameters

Given the likelihood function in , the posterior distribution of the parameters is propor-
tional to the product of the likelihood and the prior,

p(0ly) o< p(y|0)p(0), (B.1)

where p(#) is the density of the prior probability distribution of the parameters 6. Notice
that although the notation has been suppressed in , the prior often depends on hy-
perparameters controlling, say, the amount of shrinkage imposed by a Minnesota type prior
(see on the autoregressive parameters, or the variance of the prior on the ele-
ments of the matrix B. Such hyperparameters are difficult to fix a priori since the optimal
amount of shrinkage is actually a feature of the data (as well as of the prior), not something
known in advance. Fortunately, the hyperparameters lend themselves to a straightforward

full Bayesian treatment (see, e.g., Giannone, Lenza, and Primiceri (2015) or Ghosh, Khare,
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and Michailidis (2019), for a discussion), which in our framework comes with little to no
additional computational cost in many cases.ﬁ In particular, instead of fixing the values of

the hyperparameters, denoted by k, a priori, implying

p(Oly, k) o< p(yl0)p(0]r), (B.2)

we may consider the joint posterior distribution of # and  given by

p(0, kly) o p(yl0)p(0]x)p(x), (B.3)

where p(k) is the density of the prior distribution of the hyperparameters (commonly known
as the hyperprior), which in practice may or may not be proper, depending on the model at
hand. Although, ideally p(x) should be chosen with care, we have found in many cases the
data to be extremely informative of the hyperparameters in k (e.g., with Minnesota type
shrinkage), and hence the exact hyperprior is not necessarily of much practical importance,
even to the extent that it makes no difference whether it is proper or improper. Under an
improper constant p(x), the full Bayesian treatment of the hyperparameters s has actually
an attractive interpretation as minimizing the one-step-ahead out-of-sample forecasting error
of the model (in a sense), as discussed in Giannone, Lenza, and Primiceri (2015) In our
framework, the treatment of the hyperparameters £ comes with no additional computational
complexity, since in practice the typically low-dimensional vector of hyperparameters, &,
can merely be appended to the vector of parameters to be estimated from the data (after
appending the hyperprior p(k) to the posterior density, of course).

Although the prior on # can obviously be set in any way that best suits the problem
at hand (as long as it ensures the propriety of the posterior), we have found some default

practices to work well in most, if not all, circumstances. The specifics of the prior on ~

25The computational cost of a full Bayesian treatment of hyperparameters in our framework depends on
the strength of dependencies between the hyperparameters and the rest of the model parameters. More
complex dependencies result in more complex posterior geometries and consequently slower exploration
by the estimation algorithm. For instance, in our experience the overall shrinkage towards random walk
behaviour can be estimated with practically zero computational cost, whereas the estimation of the relative
importance of cross equation lags can be computationally very burdensome especially in large models.
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depend, of course, on the distributional assumptions,@ but in this appendix we provide some
recommendations and details on the default priors used throughout Section |5 Importantly,
the prior on v should be proper, as although propriety of the posterior may be obtained with
improper priors on 7 in some cases, only propriety of the prior on v guarantees the propriety
of the posterior. As for the matrix B, in practice, an improper constant prior tends to work
well in many cases, but if so required, a prior shrinking the elements of B towards a diagonal
matrix (as discussed in the previous subsection) is a natural alternative for a default prior.
Note that the amount of shrinkage of such a prior can also be treated as a hyperparameter to
be estimated from the data. Moreover, it is our experience that such a data driven shrinkage
of B tends to result in sufficiently informative priors for the permutation issue discussed
above to be suppressed altogether.

As for the autoregressive parameters and intercept term in 7, there exist well established
practices regarding the use of Minnesota type priors in the literature on Bayesian vector
autoregressions (see, e.g., Banbura, Giannone, and Reichlin (2010), and Giannone, Lenza,
and Primiceri (2015)). Such priors typically shrink the parameters towards unit root (or

white noise) processes. Further details on our recommended Minnesota type prior used

throughout Section |5| are discussed below in [Appendix B.4. For now, we merely note that

our treatment of hyperparameters efficiently takes care of the Achilles’ heel of the Minnesota
type priors that the choice of the hyperparameters controls for the amount of shrinkage

applied.

Appendix B.2 Shock Distribution and Prior of its Parameters

Before further discussion on priors, we first discuss the point density function of each of the

structural shocks. In Section [5| we employ a skewed ¢-distribution as the distribution of the

26Distributional assumptions, such as whether we employ a skewed t-distribution or an unrestricted sgt-
distribution, or if we fix the scale or the variance of the shock distribution (and consequently assume a well
defined variance, effectively discarding the possibility of a vast set of fat-tailed probability distributions),
may themselves be interpreted as priors on v. For example, employing a t-distributed shock is equivalent
to imposing a degenerate prior with unit mass on the parameter controlling the skewness of a skewed
t-distribution, whereas assuming the shocks to follow a normal distribution would equate to setting yet
another degenerate prior on the degree-of-freedom parameter of the ¢-distribution. Not assuming structural
shocks to be Gaussian can then merely be interpreted as applying better justified less restrictive priors on
the distribution of the structural shocks.
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structural shocks (that is, of the independent elements in 7). The skewed ¢-distribution can
be parameterized in a number of ways, but we choose to stick to the parameterization of
the sgt-distribution of Theodossiou (1998), as in Anttonen, Lanne, and Luoto (2022), for
flexibility. This parametrization facilitates conveniently obtaining the skewed generalized
and Student’s ¢-distributions as well as relaxing the assumption of a well-defined variance
to allow for fat tails.

The point density function of the sgt-distribution can be written as

Di
fi (mt;% = ()‘ivpia%')) = 1 ) (B-4)

——+ai

Apip (1 |mis+mi|Pi P
2vig;" B (Pi’qz> <‘Zivfi()\iSign(nit+mi)+1)pi * 1)

where B() denotes the beta function and to obtain a skewed t-distribution we set p; = 2.

When

the expectation of 7;; equals zero, and when

Vi = 4q; i (3A\7 +1) ( g " — 4N g 1 ')pz )

(5 @)

its variance equals unity.

Two free parameters, \; and ¢; control the shape of the distribution. \; € (—1,1) controls
the skewness of the distribution with negative (positive) values for negative (positive) skew-
ness, whereas g; controls the excess kurtosis analogously to the degree-of-freedom parameter,
dp;, of the t-distribution. Particularly, dy; = p;q; or as p; = 2, simply dy,; = 2¢;.

The exact prior for )\; is not particularly important in practice since in our experience, the
data seem to be very informative regarding its values. A symmetric Beta prior (with equal
shape parameters) on 2\; — 1 is an obvious choice, giving a slightly higher prior probability
to symmetric rather than extremely skewed distributions. We set the value of the shape
parameter of the prior at four (see Figure . If it were unity, the prior would be uniform
(as in Anttonen, Lanne, and Luoto (2022)).
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An appropriate prior for ¢;, or dy;, is of more importance for both practical implemen-
tation and non-biased results. The prior should both allow for an approximately Gaussian
distribution, in order not to force non-Gaussianity incorrectly, but also to sufficiently tame
the posterior geometry (the closer to Gaussian the posterior geometry is, the easier it is for
the estimation algorithm to explore it efficiently). As the distribution of ¢; is necessarily very
skewed and has only a positive support and a long tail, sampling from the posterior should
obviously happen in terms of log ¢;. More specifically, as we also require 2¢; = dp; > 2
for well defined variances, we set a normal prior (with unit mean and standard deviation
equal to 2) on log(g; — 1) resulting in the shifted log-normal prior on the degree-of-freedom
parameter do; depicted in Figure [B.1} This all results in efficient posterior geometry, gives
significant prior probability to an approximately Gaussian shock distribution and reflects

our prior notion of reasonable values of dy;.
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Figure B.1: Prior densities of the skewness parameter (J;), the degree-of-freedom parameter (do ;)
and the parameters controlling the shock volatility processes («; and ;).

As for the parameters «; (persistence) and f; (effect of shocks to volatility) controlling
the volatility processes, we deemed it appropriate to impose priors that favour relatively
persistent volatility processes. As discussed in Section , 0% + a; + B; = 1, where o? refers

to the constant part of the volatility process. Hence, a Dirichlet prior on these parameters
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is an obvious choice. Moreover, this implies marginal beta (distributed) priors on «; and f;,
and we may tailor the parameters of the prior distribution such that the prior favours values
of a; close to unity (giving a higher prior probability to persistent volatility processes). We
set the prior such that the marginal prior on «; coincides with a beta distribution with the

shape parameters equal to 10 and 2, and for §; with them equal to 1 and 11. Both priors
are depicted in Figure [B.1]

Appendix B.3 Impact Matrix B

Sampling from the posterior can be done either in terms of B or B~!. The latter is compu-
tationally more efficient, especially when B gets large, as likelihood evaluation requires only
the knowledge of B~!. On the other hand, the parameterization in terms of B has other
desirable properties, such as easier interpretation. Moreover, it facilitates a straightforward
implementation of exclusion and sign restrictions directly on B. As the model in Section
is not large, we choose to sample directly in terms of B.

The efficient implementation of of the NUTS algorithm may require scaling the elements
in B. As the error terms can be of different scale, in our experience, satisfactory sampling
efficiency with NUTS cannot be obtained without transforming either the parameters or the
data. The easiest way achieve sufficiently uniform scales for the elements in B is to rescale
the data prior to estimation. Due to linearity, the posterior distribution of the parameters
is obviously invariant to such rescaling, and mapping the resulting posterior sample back to
the unscaled posterior, if required, is trivial.

To be specific, in Section 5] prior to estimation, we demean the time series, after which we
multiply each series by a factor that results in residual series with unit variance, conditional
on our prior mean of the autoregressive parameters.m Consequently, the elements of B are of
roughly similar scaleﬁ This elementary data transformation not only allows for sufficiently
efficient posterior sampling, but also makes it much easier to scale our prior distribution

for the parameter matrix B. With no cross equation correlations, the data transformation

27 Alternatively, OLS-estimates could be used.
28 Although this elementary data transformation procedure results in efficiency sufficient for posterior
sampling, there is without doubt room for improvement.
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results in B that approximately equals an identity matrix, giving us a natural candidate for
the prior mean.

We also employ an almost trivial positive sign restriction on the diagonal elements of B.
Although this technically restricts the parameter space to some extent, in our experience,
it rarely has any effect on the posterior distribution at all. However, it greatly alleviates
the occasional practical difficulties related to trivially symmetric shock permutations (see
Section . After imposing the positivity restriction on the diagonal elements, we set a
log-normal prior with a sufficiently large log-variance (4) to avoid excessively restricting the
scale of the diagonal elements.

As for the off-diagonal elements of B, the amount of shrinkage applied is much more
important, and it has the potential to affect the identification of shocks to a large extent.
However, for small models (such as that in Section , the data can be sufficiently informative
for the prior to be of lesser importance. In such cases even improper constant priors on B
might be appropriate, as suggested by Proposition[I] This does not, however, hold generally.

Especially for larger models, an appropriate amount of regularization by means of shrink-
age can offer substantial benefits in finite sample performance, alleviating the danger of
over-fitting and even turning computationally challenging problems from infeasible to con-
venient. The appropriate amount of shrinkage is, however, not only a function of the model
(including the prior), but also of the data. Therefore, it is ideal to treat the hyperparameters
controlling for any prior shrinkage as a set of parameters to estimate, instead of fixing them

a priori. This is conveniently carried out in a hierarchical fashion, which requires so called

hyperpriors for the shrinkage parameters (see Section [Appendix B.1)).

We set a standard log-normal hyperprior for the standard deviation of the prior of the
off-diagonal elements of B. Such a hyperprior gives a significant prior probability to standard
deviations close to, but above, zero, with the mode of the hyperprior equaling e™! ~ 0.37.
This seems sensible given that the prior on the diagonal elements of B gives the most proba-
bility mass to the diagonal elements around unity (which is also what the data transformation
discussed above approximately leads to). Importantly, this does not fix the prior of the ele-
ments of B, but it can be interpreted as a sort of a suggestion for a sensible prior, and the

prior itself is updated if it contradicts the data to a sufficiently large extent.
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Appendix B.4 Minnesota Prior

Minnesota priors have been the standard for the autoregressive parameters of Bayesian vector
autoregressive models in the literature since Litterman (1986) and Doan, Litterman, and
Sims (1984). The essence of the Minnesota prior is to shrink the autoregressive parameters
towards a unit root process (or some other equally parsimonious process), the shrinkage being
stronger for the coefficients on higher lags. Originally, the Minnesota prior also involved
stronger shrinkage on cross-equation coefficients, but most of the recent literature lacks this
feature albeit its potential benefits are undeniable. This is because the computationally
convenient approach of Banbura, Giannone, and Reichlin (2010)| (dependent on a structure
based on the Kronecker product, not allowing for this feature) has become the standard in

the context of Gaussian vector autoregressions.

As already discussed in Section [Appendix B.1| the exact way of setting the shrinkage

has remained a challenge. We partly circumvent this issue by treating the hyperparameters
controlling for the amount of shrinkage as any other parameters in the model, akin to the
approach of Giannone, Lenza, and Primiceri (2015)l The Minnesota prior we consider here

is marginally independent, Gaussian and characterized by the following equations:

Eo[A] = J (B.5)
Eo[Apn] = Opxpn, for h >2 (B.6)
2
L if i = j
Varg[Api;] = (%) (B.7)

2 s ep - .
(,21’523) % le%j,

where J is the n X n identity matrix for the random walk prior used in the empirical appli-
cation of Section [} but could be set in any way seen suitable for the application at hand.
Evidently x; > 0 controls for overall tightness of the prior (k; = 0 would imply a random
walk process whereas the case of no shrinkage is approached as k; — c0), k2 > 0 controls
for how much tighter the prior is for higher lags (greater values imply faster decay of the co-
efficients towards zero) and k3 € [0, 1] controls the additional cross-equation shrinkage. For

univariate dynamics k3 = 0 (the most parsimonious model), and for no additional shrinkage
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on cross-equation coefficients k3 = 1 (the least parsimonious model).

:j” , accounts for the different scales of the time series included, and in the

The fraction,

previous literature, this term has been usually approximated a priori by the estimated vari-
ances of univariate autoregressive processes. Strictly speaking, this fraction is not necessarily

needed at all, as we have already scaled our data such that w;; ~ wj;, for all 4,7 = 1,...,n

(see the discussion in [Appendix B.BI) and consequently :j—” ~ 1. However, QQ = BB’  and we

may define the Minnesota prior conditional on B in which case the real value of % can be
77

used directly. To be specific, let us define A = (A, ..., A,) and consider the case § = (A, B)

(a slight abuse of notation for illustrative purposes). The prior can then be written as

p(0) = p(A, B) = p(A|B)p(B), (B.8)

where p(A|B) is our Minnesota prior conditional on B.

In Section [5, we fix ko = 1 and k3 = 0.5 for simplicity and convenience and only estimate
the unarguably most important hyperparameter x;, from the data. In our experience, this is
often sufficient and already a huge improvement over most approaches that fix x; a priori.
The common rule-of-thumb value for k; = 0.2, originally from Sims and Zha (1998), seems a
sensible starting point for the initial value of the hyperparameter as well as for the hyperprior.
It actually turns out, that much of the time for small to medium-dimensional models, k; = 0.2
is well within the positive support of the posterior distribution (see, e.g., Figure . We
employ a log-normal prior for x; with log-mean of 0.65 and log-variance of 1.52, the hyperprior
mode thus being around 0.2. As Figure depicts, in the empirical application of Section
most of the estimated posterior probability mass for x lies between the values from 0.1 to 0.2
for both specifications, implying on average only slightly tighter priors than the commonly
used rule-of-thumb value of 0.2. Hyperparameter uncertainty is, however, very large, and
ignoring such uncertainty has most certainly the potential to affect the results. On the other
hand, the data seem to be very informative of the most appropriate hyperparameter values,
since the marginal posteriors are much more tightly concentrated around specific values than
the weakly informative log-normal hyperprior.

Something that we do not consider in this paper, are the refinements to the Minnesota

62



—— Baseline
—— Homoskedastic
—— Hyperprior (scaled)

Density
4
J

I I I I I
0.0 0.1 0.2 0.3 0.4

Figure B.2: Posterior and prior densities for the hyperparameter ki controlling for the overall
shrinkage of the Minnesota prior in Section [5| The log-normal hyperprior density is scaled (mul-
tiplied by a factor of ten) for illustrative purposes. Smoothed posterior densities are constructed
from the posterior sample with Gaussian kernels, also for illustrative purposes.

prior that further ”favour unit roots and cointegration” (Sims and Zha, 1998). These priors,
namely, the sum-of-coefficients prior of Doan, Litterman, and Sims (1984) and the dummy-
initial-observation prior of Sims (1993), have become the standard in the literature as they
have been found to improve the forecasting performance of Bayesian vector autoregressive
models (for a description of these priors see, e.g., Giannone, Lenza, and Primiceri, 2015).
However, they are typically implemented through additional dummy observations and conse-
quently are directly applicable only in the Gaussian case. The design and implementation of
similar priors should be fairly straightforward, as our framework in principle sets no restric-
tions whatsoever on what kind of priors can be imposed. However, we leave such explorations

for future work.

Appendix B.5 Efficient Model Evaluation and Estimation

The likelihood evaluation essentially comprises (i) a handful of matrix operations that return

the structural shocks over the sample, conditional on a set of parameters, and (ii) a loop
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over the point density function evaluations at those values (see Equation . For efficient
implementation it is of utmost importance that the latter is carried out efficiently. For
instance, for every shock, the bulk of the point density function evaluation only needs to be
done once (i.e., the part of the point density function (see Equation (B.4])) that does not
depend on 7; (the observed values) needs to be evaluated n times, whereas only the part
that depends on 7;; needs to be evaluated nT times). Also, parallel computing can speed up
the likelihood evaluation even for the smallest of models.

Obviously, all the likelihood and prior computations need to be carried out in log-
probabilities, the target function supplied to the estimation algorithm being the sum of
the (natural) logarithm of the prior probability density and the log-likelihood. Note also
that any hyperparameters can be treated exactly as any other parameters in the model
((B.3)) can be written as by considering k as a subset of 6), whereas the hyperpriors
can be treated exactly as any other priors, making the hierarchical treatment extremely easy
in practice.

Any additional identifying restrictions can be implemented within the prior or the likeli-
hood. For instance, exclusion restrictions should be implemented by fixing the appropriate
element to zero within the likelihood, leaving the vector of parameters to be estimated
shorter. Sign restrictions, in turn, are best implemented by augmenting the prior with
whatever parts necessary, e.g. by just setting p(6) = 0 (zero prior probability), whenever
the impulse response function ©5(f) is not in accordance with the sign restrictions for any
h > 0.

The whole model is comprised of a single target function, that is the unnormalized log

posterior probability of the parameters, i.e. the sum of the log-prior and the log-likelihood:

—_—

log p(0 | y) =log p(6 | y) + log p(y) = log p(y | #) + log p(6). (B.9)

Once this function includes everything deemed necessary, it can be provided together with
the data to whatever estimation algorithm deemed appropriate. This effectively makes the
business of model building much less dependent on the task of estimating the parameters.

Because the estimation procedure stays exactly the same regardless of the changes in model
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design, the researcher has much more freedom in designing and adapting the model to the
problem at hand (cf. most Bayesian algorithms used in macroeconometrics, e.g. approaches
based on Gibbs sampling and/or typical sign restriction algorithms). Specifically, it is this
feature that allows us to switch between fixing the hyperparameters controlling for shrinkage
and estimating them from the data (as discussed in , without having to modify
the estimation procedure (cf. the approach discussed in Giannone, Lenza, and Primiceri,
2015).

For estimation, we use in this paper (and recommend others to use as well) the actively
developed state-of-the-art implementation of the NUTS algorithm in Stan (Carpenter et al.,
2017), although in principle any MCMC-algorithm could, of course, suffice.

The NUTS is conveniently readily implemented in an open-source Bayesian inference
package called Stan (see, Carpenter et al., 2017) with user friendly interfaces to all the com-
monly used computing environments, making it highly accessible to practitioners of different
technical backgrounds. Moreover, accompanied with this paper, we intend to provide an R-
package (see, R Core Team, 2022) that takes care of any tedious technical details regarding
priors, likelihood specifications and data transformations. It contains various ready-made
tools for the analysis of SVAR models, making the framework proposed in this paper both
fast and easy to implement and accessible to all practitioners, regardless of their technical

background.

Appendix B.6 Initial Parameter Values

Regardless of the estimation algorithm used, initial parameter values are most probably
required, and initializing MCMC-chains from a point as close as possible to, or ideally within,
the typical set of the posterior distribution, can significantly speed up convergence. In the
context of large models, good and bad initial parameter values can even determine the kind
of models that are computationally feasible.

We suggest looking for good initial parameter values by starting from the autoregressive
parameters and then looking for the optimal values (in some sense) of the remaining param-
eters conditional on them. The prior mean (Minnesota prior) is typically a good choice for

the initial values of the autoregressive parameters. In the case of weakly informative or even
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improper priors, OLS-estimates can also be considered. Conditional on the initial autore-
gressive parameter values, an estimate of the covariance matrix of the reduced form errors,
(2, can then be computed. Because {2 = BB’ (assuming unit variances for the elements of &),
a number of different matrix decompositions can be employed to obtain a reasonable guess
for the initial parameter matrix B. The Cholesky decomposition is one obvious alternative,
but because the exclusion restrictions implied by it may not be particularly plausible, we
opt for a Schur decomposition based approaChP_g]

Conditioning on the initial values of both the autoregressive parameters and B, we obtain
initial estimates of the values of the structural shocks, &;, for all ¢. These values can be used
to fit skewed ¢-distribution (or any other distribution) for each shock to obtain initial values
for the parameters controlling the skewness and kurtosis of the shocks.

Sensible initial parameter values for any other parameters can be obtained by following
a similar procedure, or alternatively, especially if the priors are informative enough, it may
suffice to use prior means, modes or medians. For instance, for the parameters controlling
the conditional volatility processes we simply use the prior modes as the initial parameter
values.

While the resulting values from the procedure just described can very well be used to ini-
tialize the posterior chains on most occasions, it is possible to do even better. The automatic
differentiation of Stan (Carpenter et al., 2017) not only enables efficient NUTS implemen-
tation, but strikingly time efficient point estimation via (Quasi-) Newtonian optimization
methods (e.g. the BFGS-algorithm). Thus, the initialization of such optimization algo-
rithms with the initial values just discussed, results in new initial values necessarily closer
to (or even at the) mode of the posterior. We have indeed found the additional optimization
step to result in more time efficient estimation, the time including both the initial value
optimization and posterior sampling.

Importantly, the role of the initial parameter values is just to make the estimation proce-
dure more efficient and they have no effect whatsoever to the resulting posterior distribution
per se. Hence, the exact accuracy of these approximations has no effect on the validity of

the inference and the initial values should merely be within the realm of possible values.

29More specifically, we have used sqrtm function from R-package expm by Goulet et al| (2021),
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Appendix B.7 Convergence Diagnostics

For any chain attained by means of MCMC-algorithms to be representative of a sample
from the posterior distribution of the parameters, the chain needs to have converged to the
target distribution. The lack of such convergence may be diagnosed by assessing the within-
and between variances of splitted chains. Although the splitting allows for such assessment
for single chains as well, the convergence diagnostics are not considered especially reliable
without at least two separate chains (see, e.g., Vehtari et al., 2021, who actually recommend
a minimum of four chains). Generating multiple chains is also the most efficient way to
exploit the parallel processing capabilities of modern computers and to build up the efficient
posterior sample size.

The most commonly employed of such convergence diagnostics is the R convergence
diagnostic of Gelman et al| (2013)}, also known as the potential scale reduction factor. This
statistic is computed for every scalar of interest (e.g. for every parameter in the model)
and its values below a certain threshold are considered to indicate convergence. Although
the commonly used reference, Gelman et al| (2013), recommends a threshold of 1.1 to be
sufficient, Vehtari et al| (2021)| point out that the statistic may very well dip below that
threshold before convergence only to rise above after further sampling. Therefore, they
recommend a much tighter threshold of 1.01 to be used in practice. As they emphasize,
regardless of the threshold used, the potential scale reduction factor is not infallible, but
it should be considered perhaps a necessary, but by no means a sufficient, indicator of
convergence and additional sanity checks for the posterior chains are always recommended.

In practice, we have found the threshold of 1.01 to work well and to be practically
attainable on most occasions. In the context of vector autoregressive models considered in
this paper we recommend aiming for values less than 1.01 of the potential scale reduction
factor with respect to every parameter in the model. However, if the computational resources
are otherwise exhausted, the laxer threshold of 1.1 could be allowed for the more slowly
mixing parameters (e.g. the shrinkage hyperparameters; nevertheless, especially in these
cases a sufficient efficient sample size should be ensured). In our experience, values of the

scale reduction factor exceeding the threshold 1.1 should never be allowed for any scalar of
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interest, as they very probably indicate of a lack of sufficient convergence to the posterior

distribution of the parameters/”

Appendix C Forecast Error Variance Decompositions

Tax Revenues Govt. Spending Output
Horizon Shock 1 Shock 2 Shock 3 Shock 1 Shock 2 Shock 3 Shock 1 Shock 2 Shock 3
0 0.869 0.004 0.127 0.019 0.970 0.011 0.010 0.023 0.967
4 0.766 0.008 0.225 0.023 0.964 0.013 0.029 0.018 0.954
8 0.696 0.020 0.284 0.043 0.944 0.014 0.070 0.020 0.910
12 0.643 0.036 0.321 0.067 0.918 0.015 0.109 0.025 0.866
16 0.604 0.049 0.347 0.089 0.895 0.016 0.141 0.031 0.828
20 0.575 0.06 0.365 0.106 0.878 0.016 0.166 0.036 0.797

Table 4: Posterior means of the Forecast Error Variance Decomposition (FEVD) for the specifica-
tion Baseline from the empirical application of Section

Tax Revenues Govt. Spending Output
Horizon Shock 1 Shock 2 Shock 3 Shock 1 Shock 2 Shock 3 Shock 1 Shock 2 Shock 3
0 0.888 0.003 0.109 0.036 0.956 0.008 0.015 0.035 0.95
4 0.695 0.007 0.297 0.061 0.923 0.016 0.063 0.023 0.915
8 0.614 0.020 0.366 0.089 0.888 0.023 0.130 0.023 0.846
12 0.562 0.037 0.401 0.140 0.832 0.028 0.170 0.027 0.803
16 0.526 0.051 0.423 0.185 0.785 0.030 0.195 0.032 0.773
20 0.501 0.060 0.440 0.216 0.752 0.032 0.213 0.037 0.750

Table 5: Posterior means of the Forecast Error Variance Decomposition (FEVD) for the specifica-
tion No Shrinkage from the empirical application of Section

Tax Revenues Govt. Spending Output
Horizon Shock 1 Shock 2 Shock 3 Shock 1 Shock 2 Shock 3 Shock 1 Shock 2 Shock 3
0 0.787 0.012 0.201 0.019 0.960 0.021 0.006 0.020 0.974
4 0.645 0.021 0.333 0.022 0.951 0.027 0.035 0.020 0.945
8 0.558 0.035 0.407 0.034 0.937 0.028 0.110 0.025 0.865
12 0.500 0.050 0.450 0.057 0.914 0.028 0.186 0.030 0.784
16 0.466 0.060 0.474 0.081 0.891 0.029 0.246 0.035 0.719
20 0.447 0.067 0.486 0.099 0.873 0.029 0.291 0.040 0.670

Table 6: Posterior means of the Forecast Error Variance Decomposition (FEVD) for the specifica-
tion Homoskedastic from the empirical application of Section @

30For instance, we would be very careful with inferences based on the posterior draws used in Brunnermeier
et al) (2021), as they report the scale reduction factor to be well above the threshold of 1.1 for a significant
portion of the parameters in their model for all the specifications considered.
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Appendix D Impulse Response
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Figure D.1: 68% and 90% point-wise credible sets and posterior medians for all the impulse response
functions in the empirical application of Section |5| (Baseline specification). The vertical axis is
defined in approximate dollars (see text) and the size of the i’th shock is normalized to have a unit
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