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Abstract

We introduce a solution concept for dynamic one-sided matching models,

called the Dynamic Core. The Dynamic Core is defined for a general class

of dynamic markets where agents and objects arrive over time, and objects

can be privately or collectively owned. We prove that the Dynamic Core

is not empty and discuss the relation with the static notions of Core and

Strong Core. We show that the output of a dynamic extension of the Top

Trading Cycle algorithm, the Intertemporal Top Trading Cycle (ITTC), is

in the Dynamic Core and the mechanism induced by the ITTC is efficient

and group strategy-proof. In private economies the output of the ITTC can

be supported as a dynamic competitive equilibrium.
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 Introduction

In this paper we study the allocation and exchange of indivisible objects with-

out monetary transfers in a dynamic model in which agents and objects arrive

over time.

Our dynamic model entails several nuances that are absent in a static setting.

First, agents face inter-temporal trade-offs. Second, consumption and exchange

are different choices and, while consumption is irreversible, agents may choose to

exchange repeatedly. Third, agents make conjectures about how the market may

evolve in the future.

Our primary interest is to propose a notion of stability, the Dynamic Core, that

is coherent with the inherently dynamic structure of the problem. The Dynamic

Core is defined for a general model of one-sided matching in which objects enter

the market owned by a single agent or collectively owned. Hence, our model can

be interpreted as a dynamic version of the housing market with existing tenants

(Abdulkadiroğlu and Sönmez, 1999) encompassing as special cases a dynamic ver-

sion of the housing market (Shapley and Scarf, 1974) and of the house allocation

model (Hylland and Zeckhauser, 1979).

The Dynamic Core builds over the notion of period-t blocking. An allocation

in this dynamic economy specifies which objects agents exchange in each period

and when they consume. An allocation is period-t blocked if there is no effective

coalition of agents who strictly prefer the alternative of exchanging their endow-

ments among themselves over the allocation. Agents in the blocking coalition can

(i) either consume their new endowments or (ii) wait in the market for a better

trade, with the prediction that only allocations that cannot be period-t1 blocked

at any t1 ě t may realize in the future. The Dynamic Core is the set of allocations

that cannot be period-t blocked at any period.

The Dynamic Core has a recursive structure that exhibits three properties.

The Dynamic Core incorporates a strong perfection requirement1 which ensures

1In dynamic matching, Kotowski (2019) attributes a “perfection requirement” to those sta-
bility notions which assess the “plausible” continuation within the solution concept. Examples
are Corbae, Temzelides and Wright (2003); Kotowski (2019); Liu (2020); Doval (2022).
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the credibility of the period-t blockings. Agents in the blocking coalition restrict

the set of future allocations that are taken into consideration to those that will

be unblocked. A major feature of our perfection requirement is that agents form

rational conjectures about the set of future allocations that start at the period

in which the blocking takes place. In Section 3 we argue that this is a main

novelty with respect to previous models of dynamic exchange which exhibit a

weaker perfection requirement.

Next, the Dynamic Core is a farsighted2 solution: Agents can trade an object

they own for one they like less in order to trade again in the future if this chain of

exchanges entails a welfare improvement. Finally, the Dynamic Core is conserva-

tive3: only alternatives which give an improvement with certainty are eligible for

the blocking coalition.

Our main result establishes that the Dynamic Core is not empty. We show

that the output of a dynamic extension of the Top Trading Cycle algorithm, the

Intertemporal Top Trading Cycle (ITTC), is in the Dynamic Core4.

We then turn the attention to two polar cases in which we compare the Dy-

namic Core with standard Core notions. In private economies in which every

object is owned by a single agent, the Strong Core is essentially unique and has

a non-empty intersection with the Dynamic Core, which is in turn unrelated with

the Core. In particular, we show that in a dynamic setting the Strong Core is too

restrictive while the Core is too permissive. By contrast, the Dynamic Core offers

consistent predictions. In public economies in which every object is collectively

owned, we show that the Dynamic Core and the Strong Core are unrelated.

We also discuss the notion of Dynamic Strong Core by introducing a notion

of weak period-t blocking. We prove that the Dynamic Strong Core is a subset,

2This assumption is pervasive in the coalition theory literature. Prominent examples are in
Ray and Vohra (2015, 2019).

3Many economic models tend to take conservative views. This idea is manifested already
in the seminal work of von Neumann and Morgenstern (1944) where the value of the coalition
can be determined by playing a minimax game against the complementary coalition; Another
classic example is Aumann and Peleg (1960) which explicitly assume that an acting coalition
must expect the worst from the complementary coalition.

4The recursion used to define the Dynamic Core is different from the usual recursion based
on the natural numbers, thus the proof of the non-emptiness of the Dynamic Core is based on
a strong double induction argument, see Section 3.
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possibly empty, of the Dynamic Core. In fact, the Dynamic Strong Core can be

empty even in private economies with strict preferences. In public economies the

Dynamic Strong Core is not empty and is unrelated to the Strong Core.

Finally, we show that the mechanism induced by the ITTC algorithm is Pareto

efficient and (group) strategy-proof and, in private economies, its output can be

supported as a dynamic competitive equilibrium.

Related Works

The literature on dynamic matching is rapidly growing in the last years. Most

of the existing contributions in one-sided markets focus on the design of dynamic

efficient mechanisms, rather than on their stability. Prominent examples are

Gershkov and Moldovanou (2010); Unver (2010); Kurino (2014); Bloch and Can-

tala (2017); Andersson, Ehlers and Martinello (2018); Baccara and Yariv (2020);

Leshno (2022). Notably, Abdulkadiroğlu, and Loertscher (2007) study a dynamic

housing allocation problem where a mass of homogeneous objects must be allo-

cated to a mass of agents over two periods. Authors design a dynamic mechanism

where agents decide whenever to apply for the goods or to opt out. Those who

apply for the goods gain priority in the first period while the other agents gain

priority in the second period. They characterize the set of equilibria of this game.

To the best of our knowledge, we are the first to study a solution concept for

a general class of dynamic one-sided matching with arrivals.

More prolific in this sense is a recent stream of literature in dynamic two-sided

matching. Our solution concept, the Dynamic Core, has been inspired by the pre-

vious contributions of Kadam and Kotowski (2018); Kotowski (2019); Liu (2020)

and Doval (2022) which provide a recursive notion of dynamic stability for two-

sided markets where the “plausible” continuations of the market are addressed

within the stability notion. This translates into a perfection requirement, a fea-

ture shared by our work. However, there are substantial differences. One above

all, as argued in Section 3, our solution concept relies on stronger rationality as-

sumptions which ensures the credibility of the blocking. In particular, we assume

3
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that agents in a blocking coalitions form rational expectation about how the mar-

ket may evolve in the future already starting from the same period they block.

This differs from previous models where agents form rational expectation only

starting from the subsequent period they block. Moreover, differently from Liu

(2020) and Doval (2022), we allow agents to match repeatedly and differently from

Kadam and Kotowski (2018) and Kotowski (2019), that define agents’ preferences

over sequences of matching, we assume that agents only care about their final

consumption. The latter feature makes our work widely related to the literature

on farsighted one-sided matching (Kamijo and Kawasaki, 2009; Kawasaki, 2010;

Klaus, Klijn and Walzl, 2010; Atay, Mauleon and Vannetelbosch, 2022) where

agents decide to match or not, having in mind only the ultimate consequences of

their choices.

Pereyra (2013) and Kennes, Daniel Monte and Tumennasan (2014) propose

solution concepts for dynamic school choice models in which new cohorts of agents

enter every period and study mechanisms that return fair and stable outcomes.

In their settings agents do not face intertemporal tradeoffs and cannot exchange

repeatedly, and therefore our concept of stability is distinct to ours.

Finally, our work contributes to the analysis of Core notions in dynamic ex-

change economies, a field that has always attracted the interest of economists. Gale

(1978) introduces a notion of the Core for finite horizon Arrow-Debreu model with

dated goods, and Becker and Chakrabarti (1995) propose a notion of the Core for

an infinite horizon capital accumulation model. More recently, Kranich, Perea,

Peters (2005); Habis and Herings (2010); Predtetchinski, Herings, Perea (2006)

study Cores of sequences of characteristic function games. We complement the

literature by providing a notion of the Core in dynamic markets without side

payments.

Synopsis

The structure of the paper is as follows. Section 2 illustrates the general

framework of dynamic one-sided matching. Section 3 introduces the Dynamic

4
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Core, proves that it is not empty, and discusses how it differs from other existing

notions of stability in dynamic models. A rifenement of the Dynamic Core, namely

the Dynamic Strong Core, is discussed in Section 4. Section 5 discusses the

relation between the Dynamic Core and the (strong) Core in private and public

economies. Section 6 describes the Intertemporal Top Trading Cycle and shows

that satisfies desirable normative properties. Section 7 concludes. All proofs are

relegated to the Appendix A.

 The Model

We consider a dynamic one-sided market with indivisible objects where agents

and objects arrive over time. There are n P N` periods. For any period t ă n, the

set of agents and the set of objects entering at t are labelled At ” ta1, ..., amu

and Ht ” th1, ..., h`u, respectively. A coalition S is any non-empty subset of

agents. We write Aďt ”
Ťt
k“1Ak and Hďt ”

Ťt
k“1Hk, to denote all the agents

and objects arrived in the market up to period t. Thus, A ” Aďn and H ” Hďn are

the entire sets of agents and objects5. Abusing notation, we write Aąt ” AzAďt

and Hąt ” HzHďt to denote the agents and the objects entering in the market

from period t` 1 onward. We say that a pair ph, tq is feasible for the agent a if

the agent a and the object h are in the market in period t. Each agent a P A has a

strict6 preference relation ąaover the feasible pairs ph, tq and an outside option

0{, which is the last choice for each agent. For all a P A, we write ph, tq ąa ph
1, t1q

if agent a strictly prefers object h in period t than object h1 in period t1. We

assume that agents’ preferences exhibit impatience7: for all a P A and h P H,

ph, tq ąa ph, t
1q ðñ t1 ą t.

Objects can be owned either by a single agent or by the entire society. An

object owned by a single agent is called private and common otherwise. An

ownership structure establishes who are the owner(s) of an object when it

5We exclude the trivial cases A “ H
Ž

H “ H
6As usual, we denote by ľ the induced weak preference relation and we write ph, tq Áa

ph1, t1q ðñ ph, tq ąa ph
1, t1q

Ź

ph, tq “ ph1, t1q.
7This assumption is not necessary and can be relaxed since in our model there is no cost to

retain an object.

5
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enters the market.

Definition 1. An ownership structure is a map ω : H ÝÑ AYtAu satisfying

two properties:

Single Private Object: for all h, h1 P H, ωphq “ ωph1q ùñ ωphq “ A

Synchronous Entry: for all t ď n, if h P Ht and ωphq ‰ A then ωphq P At.

The first condition says that an agent can own at most a single private object.

The second condition ensures that a private object and its initial owner enter in

the economy at the same period. Note that this last condition implies that the

pair ph, tq is always feasible for the owner of the private object h.

An economy is, thus, a tuple

E “
B

pAt, Htq
n
t“1, ω

F

consisting of a collection of agents and objects entering over time together

with an ownership structure. An economy E “ xpAt, Ht, q
n
t“1, ωy is private if for

every h P H, ωphq ‰ A and public if for every h P H, ωphq “ A. The special

cases of private and public economies are the dynamic extensions of the housing

market (Shapley and Scarf, 1974) and the house allocation problem (Hylland and

Zeckhauser, 1979) respectively.

Objects can be exchanged in more than one periods, but their consumption

is irreversible and can be made only by an individual agent at a given period.

To keep track of the exchanges made at any period t we introduce the notion of

period-t exchange, a map specifying the owner of each object after that all the

exchanges in period t took place.

Definition 2. A period-t exchange is a map σt : Hďt ÝÑ AďtYtAu such that

� for all h, h1 P H, σtphq “ σtph
1q ùñ σtphq “ A

The condition restates the Single Private Object property, that is, at the end of

any period t, each agent owns at most one private object. Hence, σtphq represents

6
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either the agent or the society owning the object h in period t. Also, for convention,

we write σ0 “ ω and for all h P Hąt, σtphq “ ωphq. Let Σt be the set of all period-t

exchanges.

We now define the consumption choice of an agent. If agent a is consuming

object h in period t we write µtpaq “ h. If agent a does not consume any object

in period t then we write µtpaq “ h0.

Definition 3. A period-t consumption choice is a map µt : Aďt ÝÑ Hďt Y

th0u such that µtpaq “ h0 for all a P Aąt.

We also write µtpaq “ h0 whether t “ 0, or a P Aąt. Let Mt be the set of all

period-t consumption choices.

Next we define the notion of allocation for an economy.

Definition 4 (Allocation). Given an economy E “ xpAt, Htq
n
t“1, ωy, an alloca-

tion is a pair pσ, µq where σ ” pσ1, ..., σnq is a list of period-t exchanges and

µ ” pµ1, ..., µnq a list of period-t consumption choices such that for all a P Aďt, if

µtpaq ‰ h0 then the following conditions hold:

Consumption Rivalry: σt ˝ µtpaq “ a;

Consumption Irreversibility: for all t1 ą t, σt1 ˝ µtpaq “ a and µt1paq “ µtpaq.

The first condition requires that agents can only consume the private object

they own, thus objects, private and common, are rivalrous. The second condition

establishes that consumption is irreversible.

Given the allocation pσ, µq, we write µpaq the object that agent a consumes

and tpa, µq the period when it is consumed by a.

Remark 1. Note that, the property of Consumption Irreversibility implies that:

µpaq “ µnpaq; and that for all a, a1 P A with a ‰ a1, µpaq “ µpa1q ùñ µpaq “ h0.

We close the model by extending each preference ąa to a preference over the

set of allocations in the following way:

pσ, µq ąa pτ, νq ðñ pµpaq, tpa, µqq ąa pνpaq, tpa, νqq.

7
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 The Dynamic Core

Several aspects that are well-defined in a static setting, must be clarified when

proposing a dynamic framework: (a) which coalitions of agents can block at a

given period? (b) which objects a blocking coalition can redistribute among its

members? and (c) which are the final consequences of blocking an allocation?

First, to answer question (a), it seems natural to require that only agents who

are already present in the market in period t, and did not consume yet, can form

a blocking coalition at this period. Therefore, at any period t a blocking coalition

S must belong to At ” ta P Aďt|µt´1paq “ h0u.

Second, to answer question (b), we have to specify which objects are avail-

able for a blocking coalition S Ď At at any period t. Let Ht ” th P Hďt|h ‰

µt´1paq, @a P Aďtu denote the set of objects that are in the market in period t

and have not been previously consumed. The following notion of period-t endow-

ment extends the usual notion of endowment to a dynamic setting, specifying the

objects any blocking coalition can exchange among its members.

Definition 5. A period-t endowment ωt : 2At ÝÑ 2Ht is a map such that for

all S P 2AďtzH,

ωtpSq ”

$

’

&

’

%

Ht if S “ At,

th P Ht|σt´1phq P Su if S Ĺ At.

The endowment of a coalition S in period t equals the set of all available objects

at t if S contains all the available agents at t, otherwise it contains the objects

obtained by the elements of S at previous period.

Then, at any period t, a coalition S Ď At can block an allocation pσ, µq by

proposing a period-t exchange τt and a period-t consumption choice νt. We impose

that the set of admissible period-t exchanges for S consists of

ΣtpSq ”

$

&

%

τt P Σt

τtphq P S _ τtphq “ A, @h P ωtpSq,

τtphq “ σt´1phq, @h P HďtzωtpSq.

,

.

-

8
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The first constraint requires that the blocking coalition can only redistribute their

endowment among themselves; the second constraint requires that the blocking

coalition cannot interfere with the exchange of the objects that do not belong to

them. We also impose that the set of admissible period-t consumption choice for

S is restricted to

MtpSq ” tνt P Mt|νtpaq “ µt´1paq, @a P AďtzSu.

which states that agents outside the coalition who haven’t consumed up to t ´ 1

can freely choose their the consumption choices in period t.

Finally, we answer to question (c). In our setting, agents can form a blocking

coalition without necessarily consuming the objects that they get at the period

they block, in order to further exchange them in the future. It follows that blocking

agents should form conjectures about which will be the final consequences of their

block. This will depend not only on how contemporary agents outside the coalition

will react, but also on the behavior of those agents who enter in the market in

the following periods. The notion of continuation economy frames this idea. Let

Sw ” ta P s|νtpaq “ h0u be the agents in the blocking coalition S who stay in the

market without consuming. A continuation economy EětpS, τt, νtq consists of

B

pAtzS,HtzωtpSq, pAt`1 Y S
w, Ht`1 Y ωtpSqzνtpSqq, ..., pAn, Hnq, τt|HzνtpAďtqq

F

.

Agents in the period-t blocking coalition S form expectations on which al-

locations defined over the continuation economy will realize. The continuation

economy starts in period t with the ownership structure τt|HďtzνtpAďtq.

More precisely, agent in the blocking coalition only take under consideration

the allocations in the continuation economy that are not blocked themselves.

Moreover, every agent in the blocking coalition S should strictly improve. This

defines our notion of period-t blocking.

Definition 6 (Period-t Blocking). Let pσ, µq be an allocation of the economy

E “ xpAt, Ht, q
n
t“1, ωy. A coalition S Ď At can period-t block pσ, µq if there

9
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exists a pair pνt, τtq P ΣtpSq
Ś

MtpSq such that:

� pνtpaq, tq ąa pσ, µq for all a P SzSw

� pυ, ξq ąa pσ, µq for all a P Sw and all allocations pυ, ξq of the economy Eět
that cannot be period-t1 blocked at any t1 ě t.

The Dynamic Core of an economy E “ xpAt, Htq
n
t“1, ωy is the set of alloca-

tions that cannot be period-t blocked in any period, by any coalition.8

The following theorem states our main result.

Theorem 1. For any economy E “ xpAt, Htq
n
t“1, ωy the Dynamic Core is not

empty.

Remark 2. The proof of Theorem 1 is constructive and relies on an algorithm

that is a modification of the Top Trading Cycle in our dynamic economy, and

is described in Section 6. On a more technical level, the strategy of the proof

of Theorem 1 is based on a strong form of double induction over the number

of periods and number of agents entering in the first period. The strong double

induction employed in the proof is discussed in the Appendix A.

Remark 3. The Dynamic Core might contain more than one allocation. Exam-

ple 2 in Section 4 makes this point.

Example 1. We want to illustrate our solution concept with an example. Con-

sider a 2-period private economy with four agents, a1, ..., a4, and four objects,

h1, ..., h4. Without loss of generality, assume that object hi belongs to agent ai.

Agents a1, a2, a3 enter in period 1 while agents a4 enters in period 2. Agents’ pref-

erences are depicted in Figure 1. If ph`, 1q appears before than phj, 2q in agent

i’s ranking, then she prefers being matched with object h` in period 1 than object

hj in period 2.

8 The definition of the solution concept embeds a recursion. The recursion is well defined since,
in the definition of period-t blocking, at any t the continuation economy Eět is “smaller”than
the economy E . Indeed, either Eět has less number of periods than E if the blocking occurs at
t ą 1, or it has the same number of periods than E but it has less agents in the first period
because the agents in S enter in the following period. Note that the recursion employed here
builds over number of periods and number of agents; This makes it different from the usual
notion of recursion which is defined over the set of natural numbers.

10
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t “ 1 t “ 2
a1 a2 a3 a4
h2, 1 h3, 1 h4, 2 h2, 2
h4, 2 h1, 1 h1, 1 h4, 2

h1, 1 h2, 1 h1, 2
...

...
... h3, 1

...
...

...
...

...

Figure 1: Agents’ preference profile.

To make the reader more familiar to the machinery of period-t blocking, we

find convenient first to discuss an allocation which is not in the Dynamic Core.

Consider the allocation pσ, µq described in Figure 2. In period 1, a1 and a2

exchange their endowments and consume, agent a3 consumes her endowment; in

period 2, a4 consumes her endowments.

pσ, µq “

¨

˚

˚

˝

a1 “ σ1ph2q µ1pa1q “ h2
a2 “ σ1ph1q µ1pa2q “ h1
a3 “ σ1ph3q µ1pa3q “ h3
a4 “ σ2ph4q µ2pa4q “ h4

˛

‹

‹

‚

pσ1, µ1q “

¨

˚

˚

˚

˚

˝

a1 “ σ11ph1q µ11pa1q “ h1
a2 “ σ11ph3q µ11pa2q “ h3
a3 “ σ11ph2q µ11pa3q “ h0
a3 “ σ11ph4q µ11pa3q “ h4
a4 “ σ12ph2q µ12pa4q “ h2

˛

‹

‹

‹

‹

‚

Figure 2: The allocation pσ, µq is period-1 blocked by coalition ta2, a3u via
pτ1, ν1q. The allocation pσ1, µ1q is in the Dynamic Core.

We claim that the allocation pσ, µq is period-1 blocked by coalition ta2, a3u via

pτ1, ν1q P Σ1pta2, a3uq
Ś

M1pta2, a3uq which is described below.

pτ1, ν1q “

¨

˚

˚

˚

˝

a1 “ τ1ph1q ν1pa1q “ h0

a2 “ τ1ph3q ν1pa2q “ h3

a3 “ τ1ph2q ν1pa3q “ h0

˛

‹

‹

‹

‚

According to pτ1, ν1q, a2 exchanges with a3 and consumes h3, while a3 remains

in the market with her new endowment h2. Since τ1 P Σ1pta2, a3uq, by defini-

tion of ΣtpSq, a1, who does not belong to the blocking coalition, keeps its initial

11
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endowment h1. The continuation economy Eětpta2, a3u, τ1, ν1q consists of

B

pta1u, th1uq, pta3, a4u, th2, h4uq, τ1ph1q “ a1, τ1ph2q “ a3, τ1ph4q “ a4,

F

,

where a1 enters in period-1 with her initial endowment h1; a3 enters in period-2

with her new endowment h2; a4 enters in period 2 with her initial endowment h4.

The continuation economy Eětpta2, a3u, τ1, ν1q contains two allocations that are

not blocked in any period t1 ě 1. An unblocked allocation is such that a1 consumes

her endowment in period 1, and a3, with her new endowment h2, exchanges with a4

in period 2. The other unblocked allocation is such that a1 remains in the market

in period 1 and the cycle of exchanges pa1, a4, a3q is formed in period 2. Those two

alternatives are illustrated in Figure 3. Note that, agents a2, a3 are better off

in pτ1, ν1q. Indeed, a2 consumes h3 in period 1, her most preferred object, while

a3 consumes either h1 or h4 in period 2 and both options are strictly preferred to

consuming h3 in period 1.

a1

a2

a3

a4

a1

a2

a3

a4

a1

Figure 3: The figure illustrates the period-1 blocking pτ1, ν1q performed by coali-
tion ta2, a3u; in bold the exchange between ta1, a2u required by the allocation
pσ, µq; in dashed the exchange performed by ta2, a3u according to pτ1, ν1q; in dot-
ted the two unblocked exchanges that can take place in period 2.

Finally, we claim that the allocation pσ1, µ1q in the Dynamic Core. According

to this allocation depicted in Figure 2, in period 1 a1 consumes her endowment,

a2 and a3 exchange, a2 consumes and a3 remains in the market; in period 2 a3

exchanges with a4 and they consume. In this allocation every agent consumes

her most preferred object with the exception of a1. It follows that a1 can block

by remaining in the market.9 The continuation economy generated by the latter

9Agent a1 can block pσ1, µ1q via pτ 11, ν
1
1q “

¨

˝

a1 “ τ 11ph1q ν11pa1q “ h0
a2 “ τ 11ph2q ν11pa2q “ h0
a3 “ τ 11ph3q ν11pa3q “ h0

˛

‚.

12
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blocking,10 has two unblocked allocations: in both of them, a2 and a3 still exchange

their endowments in period 1 and a4 consumes h2 in period 2. In the first one a1

consumes h4 and a3 consumes h1, in the second one the opposite occurs. For agent

a1 consuming h1 in period 2 is a worst outcome than consuming h1 in period 1,

therefore remaining in the market is not a period-1 blocking for the coalition ta1u.

Remark 4. Our notion of stability is in the same spirit of other dynamic solutions

defined in matching theory. In particular, our solution has similarities with the

perfect α-Core (Kotowski, 2019) and dynamic stability (Doval, 2022) defined for

two-sided matching. However, as we already pointed out, an essential character-

istic of our stability notion is that the deviating agents form expectations already

starting over the same period they block—the continuation economy starts from

the same period of the blocking. Such a property, that we call strong perfection, is

formally captured by a general form of recursion discussed in Footnote 8. This as-

pect distinguishes our stability notion from previous ones. For example, in Doval

(2022) the deviating agents in period t may form non-rational expectation at t,

and in Kotowski (2019) they do not form expectation at all about how the other

agents react in period t.

The following example shows that our stronger requirement of rationality may

return finer predictions. Consider a 2-period private economy with three agents.

Agents 1 and 2 enter in period 1 with objects h1 and h2. Agent 3 enters in period

2 with h3. Preferences are depicted in Section 3

t “ 1 t “ 2
a1 a2 a3
h3, 2 h2, 1 h2, 2
h1, 1 h3, 2 h1, 2

... h2, 2
...

Figure 4: Agents’ preference profile.

Consider the allocation such that every agent consumes her endowment as

10The continuation economy Eětpta1u, τ
1
1, ν

1
1q induced by the blocking consists of

B

pta2, a3u, th2, h3uq, pta1, a4u, th1, h4uq, τ
1
1ph1q “ a1, τ

1
1ph2q “ a2, τ

1
3ph3q “ a3, τ

1
1ph4q “ a4,

F

.
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soon as she enters in the market, (agents 1 and 2 consume their endowments in

period 1 and agent 3 in period 2). Such prediction is unsatisfactory since agent

1 could block by waiting the next period to exchange with agent 3. However,

the blocking of agent 1 takes place only if she has rational expectations over

agent 2’s behavior in period 1. Suppose her expectations admit that agent 2

could wait for exchanging with agent 3 in period 2. These beliefs would prevent

agent 1 from blocking by waiting without consuming in period 1. Since agent

2 prefers consuming her endowment in period 1 to consuming h3 in period 2,

these expectations are not rational. The only rational expectations that agent 1

may have over the continuation economy after the blocking are such that agent

2 consumes in period 1 and agent 3 agrees to exchange in period 2. Therefore

the allocation such that agents 1 and 2 consume their endowments in period 1 is

period-1 blocked by agent 1.

Remark 5. A key element in a theory of dynamic one-sided matching is to allow

agents to exchange and remain in the market for a better trade in the future.

Example 7 in the Appendix B shows that the Dynamic Core may be empty

otherwise. Using the same example one can easily show that also the (strong)

Core11 may be empty in a dynamic economy with t ą 1.

 The Dynamic Strong Core

The Dynamic Core is in the same spirit of the weak Core for housing matching

market (Shapley and Scarf, 1974), where a coalition deviates from a given alloca-

tion only if every member of the coalition is better off. Indeed, it is straightforward

to see that for n “ 1 the Dynamic Core reduces to the Core.

An alternative solution concept in housing matching markets is the Strong

Core (Roth and Postlewaite, 1977), which relies on a weaker notion of blocking:

a coalition weakly blocks if all members are weakly better off, and at least one

individual is strictly better off. Indeed, in housing markets when preferences are

strict, the Strong Core is not empty, unique, and identified by the Gale’s Top

11The notion of (strong) Core for a dynamic economy is introduced in Section 5.
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Trading Cycle. In what follows, we present a natural extension of the Strong Core

to a dynamic setting, and then we show why such an extension is problematic.

Definition 7 (Weak Period-t Blocking). Let pσ, µq be an allocation over the

economy E “ xpAt, Ht, q
n
t“1, ωy. A coalition S Ď At can weakly period-t block

pσ, µq if there exists a pair pτt, νtq P ΣtpSq
Ś

MtpSq such that:

� pνtpaq, tq Áa pσ, µq for all a P SzSw

� pυ, ξq Áa pσ, µq for all a P Sw and for all allocations pυ, ξq of the economy

Eět that cannot be weakly period-t1 blocked at any t1 ě t,

and

� either pνtpaq, tq ąa pσ, µq for some a P SzSw,

� or for all allocations pυ, ξq over the economy Eět that cannot be weakly

period-t1 blocked at any t1 ě t, pυ, ξq ąa pσ, µq for some a P Sw.

The Dynamic Strong Core of an economy E “ xpAt, Htq
n
t“1, ωy is the set of

allocations that cannot be weakly period-t blocked in any period by any coalition.

Theorem 2. For any economy E “ xpAt, Htq
n
t“1, ωy, the Dynamic Strong Core is

a subset (possibly empty) of the Dynamic Core.

Theorem 2 states that the Dynamic Strong Core is contained in the Dynamic

Core allocations. However, differently than the Strong Core in static markets,

the Dynamic Strong Core may be empty even in private economies when agents’

preferences are strict. The following example makes the point.

Example 2. There are four agents a1, a2, a3, a4, each agent endowed with an ob-

ject. Agents a1, a2, a3 enter in period 1, a4 enters in period 2. Agents’ preferences

are depicted below.

The Dynamic Core consists of the following three allocations.
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t “ 1 t “ 2
a1 a2 a3 a4
h3, 1 h3, 1 h4, 2 h1, 2

h1, 1 h2, 1
... h2, 2

...
...

... h3, 2
...

...
... h4, 2

Figure 5: An example of a 2-period economy in which the Dynamic Strong Core
is empty

pσ, µq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1 “ σ1ph3q µ1pa1q “ h3

a2 “ σ1ph2q µ1pa2q “ h2

a3 “ σ1ph1q µ1pa3q “ h0

a3 “ σ2ph4q µ2pa3q “ h4

a4 “ σ2ph1q µ2pa4q “ h1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

pσ1, µ1q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1 “ σ1ph1q µ1pa1q “ h1

a2 “ σ1ph3q µ1pa2q “ h3

a3 “ σ1ph2q µ1pa3q “ h0

a3 “ σ2ph4q µ2pa3q “ h4

a4 “ σ2ph2q µ2pa4q “ h2

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

pσ2, µ2q “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

a1 “ σ21ph1q µ21pa1q “ h1

a2 “ σ21ph2q µ21pa2q “ h2

a3 “ σ21ph3q µ21pa3q “ h0

a3 “ σ22ph4q µ22pa3q “ h4

a4 “ σ22ph3q µ22pa4q “ h3

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

However, none of these is in the Dynamic Strong Core. To see this, note that

whatever object agent a3 owns at the end of period 1, she can exchange with agent

a4 in period 2, since agents 1 and 2 always consume in period 1. Therefore, a3 is

indifferent whether keeping her initial endowment, or exchanging it with agent a1

or agent a2. In both cases he consumes h4 in period 2. This indifference impairs

the existence of the Dynamic Strong Core. Consider, for example, the allocation

pσ, µq. It is weakly period-1 blocked by coalition ta2, a3u that exchanges their

endowments in period 1. Applying the same logic, pσ1, µ1q and pσ2, µ2q are not in

the Dynamic Strong Core either.
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We have showed in the previous example that the Dynamic Strong Core of

an economy can be empty. This fact has undesirable implications. Consider the

following modification of the Example 3. Suppose that there is a time t “ 0 in

which agents 1,2 and 3 enter in the economy with their endowment. Suppose

that consuming the endowment at time t “ 0, phi, 0q, is the preferred alternative

for each i “ 1, 2, 3. We should expect that the allocation in which every agent

consumes her endowment as soon as enters in the market is in the Dynamic Strong

Core. However, this allocation is not in the Dynamic Strong Core because it can

be blocked by the coalition of agents pa1, a2, a3q who wait for, without consuming

at time t “ 0. Since the Dynamic Strong Core in the continuation economy

(Example 3) is empty such coalition period-0 blocks the allocation. In fact the

definition requires that all agents in Sw should prefer every allocation that cannnot

be period-t1 blocked at any t1 ě 0 to the original allocation. Since the set of such

allocations is empty, the requirement is (vacuously) satisfied.12

We can conclude that the definition of Dynamic Strong Core is somehow too

demanding and allocations that seem very natural outcomes of a dynamic economy

are ruled out.

 The Dynamic Core and the Core in Private

and Public Economies

As we pointed out, the theory we present encompasses both private and public

economy as special cases. This section studies the relation between the Dynamic

Core and the existing solution concepts for housing market (Shapley and Scarf,

1974) and house allocation problem (Hylland and Zeckhauser, 1979).

The application of standard solution concepts in a dynamic matching envi-

ronment with arrivals is not immediate. A way to approach the problem is to

ignore the dynamics and assume a pre-stage game in which all the agents can

make binding agreements about the allocations that will realize in the original

12A possible solution to this problem could be a modification of the definition such that
a coalition cannot block if in the continuation economy the Dynamic Strong Core is empty.
However, this definition would also generate odd predictions.
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economy13.

Suppose that pσ, µq is an allocation in the pre-stage game. Then, pσ, µq is

weakly blocked if there is a coalition S Ď A and an allocation pτ, νq such that

all agents in S prefers pτ, νq over pσ, µq with a strict improvement for at least one

agent, i.e., pτ, νq ľa pσ, µq for all a P S and pτ, νq ąa pσ, µq for some a P S, and S

is effective for the allocation pτ, νq, i.e., tνpaq|a P Su Ď ω´1pSq.

The Strong Core of an economy E “ xpAt, Htq
n
t“1, ωy consists of the set of all

allocations that cannot be weakly blocked.

It can be show that in any Strong Core allocation the consumption choice is

the same for every agents. Given an economy E “ xpAt, Htq
n
t“1, ωy and allocation

pσ, µq, we denote by rσ, µs “ tτ, ν|νpaq “ µpaq, @a P Au the equivalent class of

pσ, µq with respect to µ. Let pσ, µq be a Strong Core allocation of an economy E .

Then, the Strong Core of E is said to be essentially unique if every allocation in

the Strong Core belongs to rσ, µs.

Theorem 3. Let E “ xpAt, Htq
n
t“1, ωy be a private economy. Then, the Strong

Core of E is essentially unique.

In light of Theorem 3, the following result “almost” characterizes the Strong

Core as a refinement of the Dynamic Core, when economies are private.

Theorem 4. In private economies, there exists a Strong Core allocation which is

in the Dynamic Core.

However even if for dynamic private economies the Strong Core always exists,

it may be considered too restrictive. Recall Example 2. It can be easily shown that

the Strong Core consists of the allocation pσ, µq. In fact, in pσ, µq all agents except

a2 get their most preferred objects. However, such an allocation is not necessarily

the only reliable prediction of the economy. Indeed, agent a3 could decide either

to exchange with agent a2 in period 1 or to keep her endowment, as predicted by

the Dynamic Core with the allocations pσ1, µ1q and pσ2, µ2q respectively.

13This approach is analogous to dynamic matching with contracts: a contract specifies which
exchanges will realize, the time at which they occur and the consumption choice of each agent.
See for example Dimakopoulos and Heller (2019).
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Another prominent solution concept in static private market is the (weak)

Core, which builds on a stronger notion of blocking by requiring a strict improve-

ment for all members of the blocking coalition14. The following examples show

that, in private economies, the Dynamic Core and the Core are unrelated. Ex-

ample 3 shows that an allocation in the Dynamic Core may not be in the Core.

Example 3. Consider a private economy with 4 agents and 4 objects. Agents a1

and a2 arrive in period 1, agents a3 and a4 in period 2. Each agent is endowed

with an object. Preferences are depicted in the table on the left-hand side, while

the allocation pσ, µq on the right-hand side is in the Dynamic Core.

t “ 1 t “ 2
a1 a2 a3 a4
h3, 2 h3, 2 h4, 2 h1, 2

h2, 1 h1, 1
... h2, 2

...
...

... h4, 2
...

...
...

...

pσ, µq “

¨

˚

˚

˝

a1 “ σ1ph2q µ1pa1q “ h2
a2 “ σ1ph1q µ1pa2q “ h1
a3 “ σ2ph3q µ2pa3q “ h3
a4 “ σ2ph4q µ2pa4q “ h4

˛

‹

‹

‚

Figure 6: An example of an allocation in the Dynamic Core that is not in the
Core.

To check that pσ, µq is in the Dynamic Core consider any possible blocking

coalition S. Suppose first that S “ ta1u period-1 blocks pσ, µq by waiting with

her initial endowment. This deviation is deterred by the fact that, agent a2 may

react by waiting for the next period and form a cycle of exchanges pa2, a3, a4q.

This allocation is in the Dynamic Core of the continuation economy (both a2

and a3 get their most preferred object) and is worse for agent 1 than the original

allocation since agent a1 consumes her initial endowment at t “ 2 instead of at

t “ 1. Similar argument applies if a2 alone deviates in period 1. However pσ, µq

is not in the Strong Core. Indeed, in the pre-stage game, coalition ta1, a3, a4u can

agree to exchange their objects in period 2.

14An allocation pσ, µq in the pre-stage game is blocked if there is a coalition S Ď A and an
allocation pτ, νq such that all coalitional members strictly prefers pτ, νq over pσ, µq, i.e., pτ, νq ąa

pσ, µq for all a P S, and S is effective for the allocation pτ, νq, i.e., tνpaq|a P Su Ď ω´1pSq. The
Core of an economy E “ xpAt, Htq

n
t“1, ωy consist of the set of all allocations that cannot be

blocked.
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The next example shows an allocation that is in the Core but not in the

Dynamic Core.

Example 4. Consider a private economy with 3 agents and 3 objects. Agents

a1 arrives in period 1 together with its object h1 and agents a2 and a3 arrive in

period 2 together with their objects h2 and h3. Preferences are on the left-hand

side of the figure. The allocation pσ, µq is in the Core. To see that there are no

blocking coalition in the pre-stage game, note that agents a1 and a2 alone cannot

form a blocking coalition and in any blocking coalition agent containing a3, she

must exchange with a2 otherwise she is worse off. However, such an allocation is

not in the Dynamic Core. Indeed, agent a1 can period-1 block by waiting with

her endowment in period 1. This implies that in period 2 the grand coalition form

and every agent gets her most preferred object.

t “ 1 t “ 2
a1 a2 a3
h3, 2 h1, 2 h2, 2
h1, 1 h3, 2 h1, 2
h2, 2 h2, 2 h3, 2

h1, 2
...

...

pσ, µq “

¨

˝

a1 “ σ1ph1q µ1pa1q “ h1
a2 “ σ2ph3q µ2pa2q “ h3
a3 “ σ2ph2q µ2pa3q “ h2

˛

‚

Figure 7: An example of an allocation in the Core that is not in the Dynamic
Core.

The antipodes of a private economy is a public economy, where all objects are

collectively owned (recall that an economy is public if for every h P H, ωphq “ A).

Section 5 illustrates how, in public economies, a Strong Core allocation might

be not in the Dynamic Core. This, together with the established fact that for t “ 1

the Core is not contained in the Strong Core, proves that, for public economies,

the Dynamic Core and Strong Core are unrelated.

Example 5. There are 2 agents and 1 public object. Agents a1 arrives in period

1 together with the common object h1 and agent a2 arrive in period 2. Preferences

are on the left-hand side of the figure. The allocation pσ, µq such that the object
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t “ 1 t “ 2
a1 a2
h1, 1 h1, 2

h1, 2
...

...
...

pσ, µq “

¨

˝

A “ σ1ph1q µ1pa1q “ h0
A “ σ2ph1q µ2pa1q “ h0

µ2pa2q “ h1

˛

‚

Figure 8: An example of an allocation in the Strong Core that is not in the
Dynamic Core.

is consumed by a2 is in the Strong Core but not in the Dynamic Core. Indeed,

agent a1 can period-1 block pσ, µq by consuming h1 in period 1.

In the previous section, we argued that the Dynamic Strong Core can be empty.

However, for the special case of public economies, it is not empty.

Theorem 5. In public economies, the Dynamic Strong Core is not empty.

We conclude this section by showing that in public economies, the Dynamic

Strong Core is unrelated to the Strong Core. Note that since the Core allocation

in is not in the Dynamic Core, then it is not in the Dynamic Strong Core. It

remains to show that an allocation in the Dynamic Strong Core might lie outside

the Strong Core. The following example fills the gap.

Example 6. There are 3 agents and 2 public objects. Agents a1 arrives in period

1 together with the public object h1 and agents a2, a3 arrive in period 2 with the

public object h2. Preferences are on the left-hand side of the figure. The allocation

pσ, µq such that h1 is consumed by a1 in period 1 and h2 is consumed by a2 in

period 2 is in the Dynamic Strong Core. Indeed, only agent a1 could weakly block

by waiting for until period 2. However, her deviation is deterred by the fact that

there is a continuation economy in which all the objects are assigned to the other

agents. Clearly, pσ, µq is not in the Strong Core

 The Intertemporal Top-Trading Cycle

The Top Trading Cycle, first described by Shapley and Scarf (1974) and at-

tributed to David Gale, is one of the most influential algorithms in matching
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t “ 1 t “ 2
a1 a2 a3
h2, 2 h1, 2 h2, 2
h1, 1 h2, 2 h1, 2

h1, 2
...

...
...

...
...

pσ, µq “

ˆ

A “ σ1ph1q µ1pa1q “ h1
A “ σ2ph2q µ2pa2q “ h2

˙

Figure 9: An example of an allocation in the strong Dynamic Core which is not
in the Strong Core.

Private Economies

‚ SC is essentially unique
‚ sc P Dynamic Core
‚ C ‰ Dynamic Core

Public Economies

‚ SC ‰ Dynamic Core
‚ SC ‰ Dynamic Strong Core
‚Dynamic Strong Core is non-empty

Figure 10: We summarize the comparison results with the Core (C) and the
Strong Core (SC) for private and public economies. For private economies, SC is
essentially unique and an SC allocation (sc) always belongs to the Dynamic Core.
C and Dynamic Core are unrelated. For public economies, SC is unrelated with
the Dynamic Core and the Dynamic Strong Core. The latter is non-empty.

theory. The Top-Trading Cycle is declined in several matching environments with

the scope to identify a stable allocation. A Top-Trading Cycle consists of an iter-

ative procedure which constructs a directed graph as follows: each agent points to

her most preferred object among those available and each object points to either

her owner or the agent with the highest priority. As there are a finite number of

agents, there must exist a cycle and objects are allocated accordingly.

In this section, we provide an extension of the Top-Trading Cycle, called In-

tertemporal Top Trading Cycle, hereafter ITTC, to our dynamic setting that

identifies an allocation in the Dynamic Core.

To provide an intuition on how the ITTC algorithm works consider a 2-period

private economy.

Pointing: Each agent points to the object belonging to her preferred feasible pair

and each object points to its owner.

Clearing: Consider any cycle composed only by agents and objects that are

present at time t “ 1, and perform the exchanges accordingly; every agent con-
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sumes at time t “ 1 the object she points. Remove agents and objects.

Trimming and Clearing: Consider any cycle involving some agents (and ob-

jects) that enter in period 1 and some that enter in period 2. Identify each chain

starting from an object entered in period 1 that ends with an agent who points to

an object that enters in period 2. Perform the exchanges along the chain accord-

ingly, and assign the first object of the chain to the last agent in the chain. All

agents in the chain except the last one consume at t “ 1 the object they point.

Remove all agents who consume and objects that are consumed.

Repeat this procedure until it exhausts all exchanges performed in period 1,

that is until every agent entered in period 1 either consumes at t “ 1 or points to

an object that enters in period 2.

Every agent who is still present in period 2 points to her preferred remaining

object, and each object points to its current owner. Any time a cycle is formed,

an agent consumes at time t “ 2 the object is pointing. At this stage the ITTC

works as the TTC.

We prove that the outcome of the ITTC algorithm is an allocation in the

Dynamic Core.

Now, we formally define the ITTC. A preference profile ą” pąaqaPA is a

collection of preferences, one for each agent. Let L be the domain of all preference

profiles ą. Given an economy E “ xpAk, Hkq
n
k“1, ωy and a preference profile ąP L,

a direct mechanism φ is a map which associates an allocation pσ, µq to each

preference profile ąP L. The ITTC mechanism is a direct mechanism whose

selected allocation is identified by the Intertemporal Top-Trading Cycle algorithm,

hereafter ITTC algorithm. In what follows, we introduce the main ingredients of

the algorithm.

We write aBh b to say that agent a has a priority over b for the object h. A pri-

ority for an object h describes pre-existing social, legal, or economic relationships

among agents. The priority ordering for each object respects the order according

to which agents enter in the economy: an agent who enters in period t has priority

on any objects that is present in period t over any agent who enters at any period
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t1 ą t. Next definition formalizes the notion of priority ordering.

Definition 8 (Priority). A priority Bh is a strict linear order over the set of

agents such that for all h P H and t1 ă t2 if a P At1 and b P At2 then a Bh b. A

priority structure B ” pBhqhPH is a profile of priority orders.

A cycle C “ phi, aiq
m
i“1 with m P N` is an ordered list of objects and agents

such that object h1 points to agent a1, agent a1 points to object h2,....,object hm

points to agent am, and agent am points to object h1. A subcycle C 1 of C is a

cycle whose elements are contained in C and listed in the same order as in C.

We say that a cycle is intertemporal at time t if there exists at least one

element that is not present at time t.

A period-t chain Ct “ phi, aiq
`
i“1 with ` P N` is an ordered list of agents and

objects that are present at time t such that object h1 points to agent a1, agent

a1 points to object h2,....,object h` points to agent a`, and agent a` points to an

object h that is not available in period t. With abuse of notation, let Ct
A and Ct

H

the agents and the objects involved in Ct, respectively.

A period-t chain is a subset of consecutive elements of a cycle that are all

present at time t. A maximal period-t chain is a period-t chain that is maximal

with respect to set inclusion.

Definition 9 (IITC). An ITTC algorithm constructs a pair pσt, µtq in any

period t “ 1, ..., n via k ě 1 iterations. Let At,1 ” At YAąt and H t,1 ” Ht YHąt.

The priorities over objects may change during time. Let B1
h “ Bh. In Step pt, kq

proceeds as follows with inputs At,k, H t,k, and Bt.

Step pt, kq. Let At,k and H t,k be the sets of available agents and objects at Step

pt, kq. Each agent a points to the object belonging to her favorite feasible

pair among those composed of an object in H t,k and a period greater or

equal than t. Each object h points to its owner if she belongs to At,k, to

the Bth-maximal element of At,k otherwise. Since the numbers of agents and

objects are finite, there is at least one cycle, namely Ct,k. [Pointing]
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Case 1. If the cycle Ct,k is not intertemporal then each agent ai P C
t,k
A is

assigned to and consumes the object hi`1 P C
t,k
H . [Clearing]

Case 2. If the cycle Ct,k is intertemporal then, for every maximal period-t

chain, each agent, with the exception of the last one in the chain, is assigned

to and consumes the subsequent object [Trimming and Clearing], and

2.1 If the chain starts with an agent ai, the last agent in the chain becomes

the Bt`1hi
-maximal agent and does not consume at time t.

2.2 If the chain starts with an object hi and there exists at least one agent

in the chain, the last agent of the chain aj gets the ownership of object

hi and does not consume at time t.

2.3 If the chain is formed by a single object hi, the object hi is made

common (σtphiq “ A) with ai as the Bt`1hi
-maximal element.

Remove all agents and objects in the cycle from At,k and H t,k to get At,k`1

and H t,k`1, respectively. If At,k`1 “ H or H t,k`1 “ H proceed to Step

pt ` 1, 1q, otherwise proceed to Step pt, k ` 1q. At Step pn ` 1, 1q the

algorithm ends.

At the end of time t, when no more cycle can be created, every agent a which

does not belong to any cycle at t waits for the next period (µtpaq “ h0) and every

object which does not belong to any cycle at t, is made public (σtphq “ A).

Remark 6. It is possible to show that if a cycle C is formed at some step t

and if an agent remains in the market for some of the following steps, then all

the cycles to which he/she belongs are contained in C. Moreover, in the ITTC

algorithm, the cycles formed at Step p1, kq drive the entire procedure. Indeed,

each agent, in all cycles which she belongs to, points to the object she pointed to in

the cycle formed at Step p1, kq. These observations implies that agents consume

their most preferred object among those available at Step p1, kq. In the technical

Appendix A, Lemma 2, Lemma 3, Lemma 4, Corollary 1, Corollary 2,

and Corollary 3 make this point.
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Suppose that φBpą, Eq is the output of the ITTC at some profile ąP L. The-

orem 6 proves that φBpą, Eq consists of an allocation in the Dynamic Core of

E .

Theorem 6. Let E “ xpAt, Htq
n
t“1, ωy be an economy. Then, the output of any

ITTC is an allocation in the Dynamic Core of the economy E.

We conclude this section illustrating how the IITC algorithm works in a 2-

period economy with four agents and four objects: hc1 and hc2 are collectively

owned objects, h2 and h4 are private and they are owned by a2 and a4, respectively.

Agents a1 a2 and a3 enter in period 1, a4 in period 2; private objects enter with

their owner, common object hc1 enters in period 1 while hc2 in period 2. Agents’

preferences and objects’ priorities are described in Figure 11.

t “ 1 t “ 2
a1 a2 a3 a4

hc1, 1 h4, 1 h4, 2 hc2, 2
...

... h2, 1
...

...
...

...
...

t “ 1 t “ 2
Bh2 Bhc1 Bhc2 Bh4
a2 a2 a1 a4

a3 a3 a3
...

...
...

...
...

Figure 11: Agents’ preferences in the motivating example of Section 2.

The ITTC mechanism for this economy consists of four Steps: p1, 1q, p1, 2q, p2, 1q.

Step p1, 1q constructs a graph cycle where each private object points to its owner,

each common object points to its B1-maximal element (where B1
h “ Bh for each

h), and each agents points her most preferred object (see Figure 12). There

exists a cycle C1,1 “ phc2, a1, hc1, a2, h4, a4q. This is an intertemporal cycle since

a1, a2, a3, hc1 enter in period 1, while a4, hc2, h4 enter in period 2. Then, Case 2

of the algorithm applies. Trim and clear the cycle C1,1 “ phc2, a1, hc1, a2, h4, a4q

by assigning hc1 to a1 and by making a2 the B2
hc2

-maximal element—from now on

a2 has the highest priority over the common object hc2.
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hc2

a1 hc1

a2

h4a4

h2

a3

hc2

a1 hc1

a2

h4a4

h2

a3

Figure 12: Upper part of the figure illustrates the pointing procedure of Step
(1,1): Each private object points to its owner and each common object points to
the agent having the highest priority. The cycle C1,1phc2, a1, hc1, a2, h4, a4q forms.
Since C1,1 is intertemporal at t “ 1 then the cycle is trimmed. This is illustrated
by the bottom part of the figure: agent a1 consumes the assigned objects and is
removed. Agent a2 receives priority for object hc2 that will arrive in period 2—a2
is the B2

hc2
maximal element. In Step (1,2), agents outside C1,1 forms a cycle

C1,2 “ ph2, a3q. Indeed, according to priority Bh2 , the object h2 points now to a3,
since its owner is in an another cycle.

Step p1, 2q constructs a direct graph using the set of agents and objects not

in C1,1 that is, A1,2 “ ta3u and H1,2 “ th2u. Note that the initial owner of h2

does not belong to A1,2, thus, according the the ITTC algorithm, it points to its

Bh2-maximal element in A1,2, that is a3. Then, the cycle C1,2 “ ph2, a3q forms.
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hc2 a2

h4a4

Figure 13: The figure illustrates Step (2,1): the cycle C2,1 “ phc2, a2, h4, a4q is
created. Since it is not intertemporal at t “ 2, it is cleared accordingly.

Since both h2 and a3 are present in period 1, h2 is assigned to a3 who consumes.

Steps (1,1) and (1,2) are illustrated in Figure 12.

This results in the following “partial assignment”

pσ1, µ1q “

¨

˚

˚

˚

˝

a1 “ σ1phc1q µ1pa1q “ hc1

µ1pa2q “ h0

a3 “ σ1ph2q µ1pa3q “ h2

˛

‹

‹

‹

‚

Since there are no more cycles that can be formed, the algorithm proceeds to

Step p2, 1q which generates the cycle C2,1 “ phc2, a2, h4, a4q. Since C2,1 is not

intertemporal at t “ 2, then Case 1 of the algorithm applies and the cycle is

cleared accordingly. This results in the following “partial assignment”:

pσ2, µ2q “

¨

˝

a2 “ σ2ph4q µ2pa2q “ h4

a4 “ σ1phc2q µ1pa4q “ hc2

˛

‚

This final step is illustrated in Figure 13. The output of the algorithm is the

allocation pσ1, σ2, µ1, µ2q.

Note that for private economies, the algorithm can be run without the use of

objects’ priorities. For an example, we refer the reader to the Appendix B.

Properties of the ITTC

We have shown that the ITTC mechanism identifies an allocation in the Dy-

namic Core at every preference profile. In this section we show that the ITTC

mechanism also satisfies desirable normative properties.
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Definition 10 (Pareto efficiency). An allocation pσ, µq is Pareto efficient if

there is no allocation pτ, νq such that pτ, νq Áa pσ, µq for all a P A with strict

preference for at least one agent. A mechanism is Pareto efficient if its output is

Pareto efficient at every preference profile.

Theorem 7. The ITTC mechanism is Pareto efficient.

An additional important property of a mechanism for implementation purpose

is that agents do not have incentive to misreport their preferences (Roth, 1982),

even when they can coordinate their misrepresentation.

Definition 11 (Group strategy-proofness). Given the economy E “ xpAt, Htq
n
t“1, ωy,

the mechanism φB is group strategy-proof if for all ąP L there is no S Ď A

and ą1 such that

φBpą
1
S,ąAzS, Eq ąa φBpą, Eq @a P S

Theorem 8. The ITTC mechanism is group strategy-proof.

We conclude with another important observation when we restrict the attention

to private economies. The allocation induced by the ITTC can be supported by

a dynamic competitive equilibrium. Let p P R|H|` denote a price vector and ph the

price of the object h with pH “ 0.

Definition 12. Given a private economy E “ xpAt, Htq
n
t“1, ωy an allocation pσ, µq

can be supported as dynamic competitive equilibrium for a profile ąP L if there

exists a price vector p such that for all a P A the following conditions hold:

1. pσ´1
t paq ď pσ´1

t´1paq
for all t P t1, ..., nu

2. if pτ, νq ąa pσ, µq then pτ´1
t paq ą pτ´1

t´1paq
for some t P t1, ..., nu

Theorem 9. In private economies, the output of the ITTC can be supported as a

dynamic competitive equilibrium.
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 Final Discussions

We provide a novel solution concept, the Dynamic Core, for dynamic one-sided

matching models in which agents and object arrive over time, and objects are

either privately or collectively owned. We prove that the Dynamic Core is always

non-empty. We present a dynamic version of the Gale’s TTC mechanism, named

the Intertemporal Top-Trading Cycle (ITTC). The ITTC identifies an allocation

in the Dynamic Core at every preference profile, it is Pareto efficient, and group

strategy proof. For private economies, its outcome can be supported as a dynamic

competitive equilibrium.

A real-life problem in which our model can be applied is kidney transplantation.

The problem has an inherently dynamic structure and the ownership structure

resembles the one of the model. New patients and organs continuously arrive

over time, and often patients waiting for a transplant face intertemporal tradeoffs

having to decide whether to accept the kidney for transplantation, or decline the

offer and rejoin the candidate pool for a future reassignment (Agarwal et al., 2021).

Organs available for transplantation are either collectively owned, deceased donor

organs and organs from Samaritan donors15, or privately owned, living donors of

incompatible pairs who participate to kidney exchange programs16.

The ITTC algorithm can be used to incorporate recent proposals to merge

allocation programs that allocate deceased donor organs with kidney exchange

programs (Sonmez, Unver and Yemez, 2020; Furian et al., 2019, 2020).

Consider the following example. Suppose that Ann and Bob are in dialysis.

Ann immediately needs a kidney transplant because her health conditions are

deteriorating, while Bob’s health conditions are still good. They both have an

incompatible living donors, and Bob’s donor is compatible with Ann, while Anna’s

donor is not compatible with Bob. Carla has a chronic kidney disease and she will

need a kidney transplant in a year. Carla is compatible with Ann’s donor and Bob

15Samaritan donors are living donors who anonymously donate a kidney to a patient waiting
for a transplant.

16Kidney exchange programs allow patients with incompatible living donors to swap their
living donors so each recipient receives a compatible transplant (see Roth, Sömnez and Ünver,
2003).
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is compatible with Carla’s donor. An intertemporal paired exchange program that

uses the ITTC algorithm is such that Ann immediately receives Bob donor’s kidney

and Ann’s donor becomes Bob’s new “endowment”. In a year Bob will perform a

kidney paired exchange with Carla, so Carla will eventually receive original Ann

donor’s kidney and Bob receives Carla donor’s kidney. Since Ann’s donor could

renege after she received the organ or Carla could become not anymore eligible for

a transplant, Bob could be insured against this risk with an increased priority in

the deceased donor waiting list in case any of these events would occur (Sonmez,

Unver and Yemez, 2020). In the algorithm this corresponds to assigning Bob

the highest priority over a deceased donor organ that enters the market in the

following period.

This discussion suggests that an important direction towards which the analysis

of allocations that are dynamically stable should be extended, is the inclusion of

uncertainty in the model. Uncertainty could regard which agents and objects will

enter the market in the future, as also which preferences future agents may have.

References
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Appendix A

The following notation will be used thereafter. Denote by Ct,k the cycle gen-

erated by the algorithm at Step pt, kq, and by mptq the number of iterations

produced at any period-t.

For any economy E , we denote by qpEq the number of agents entering in the

first period of the economy. To maintain the notation simple, we only write q.

Then, we refer to pn, qq17 as the size of an economy. Sizes are ordered lexicograph-

ically. Thus, pn1, q1q is ranked below pn, qq if either n1 ă n or n1 “ n and q1 ă q.

We say that for any two economies E and E 1 with sizes pn, qq and pn1, q1q, E 1 is

“smaller”than E if pn1, q1q is ranked below pn, qq.

Next, since our main results rely on a double induction argument, we find

convenience to introduce such a mathematical instrument in details.

Theorem 10 (Strong Double Induction). Let P pn, qq a statement over every

economy E having size pn, qq.

If

� For all pn, qq P N` ˆ N, if for all pn1, q1q P N`
Ś

N ranked below pn, qq

P pn1, q1q holds, then P pn, qq holds

then P pn, qq is true for every pn, qq P N`
Ś

N.

That is, if the statement holds for every economy of size p1, 1q and if we can

prove it for every economy of size pn, qq, given that the statement holds for every

economy of smaller size, then the statement holds for every economy of any size.

This version of strong double induction can be found in Hrbacek and Jech

(1978). Its proof is left as an exercise. For the sake of completeness, we include

17Remember that n is the total number of periods of the economy.
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here a proof of its validity.

Proof of Theorem 10. Let ĺ` be the lexicographic order over N`
Ś

N. First,

note that pN`
Ś

N,ĺ`q is a well-ordered set. The ordered set pN` ˆ N,ĺ`q is

well-ordered since it is total ordered and it is such that every non-empty set

C Ď N`
Ś

N has a minimal element18 of C according to ĺ`. Indeed, given any

C Ď N` ˆ N, a minimal element of C is the element with the minimal first

component, and, in case of a tie, the one with the minimal second component

among the elements with a minimal first component.

Next, suppose toward a contradiction, that the set

D :“ tpn, qq P N`
ą

N|P pn, qq does not hold u

is non-empty. Let pn˚, q˚q be its minimal element. Since pn˚, q˚q is a minimal

element of D, then for all pn1, q1q P N`
Ś

N ranked below pn˚, q˚q, we have

pn1, q1q R D. Therefore, P pn1, q1q holds and, by inductive hypothesis, P pn˚, q˚q

holds as well, which led to a contradiction. �

Remark 7. The reader who is interested in this type of exercise can now verify

that the strong double induction is equivalent to a strong transfinite induction.

Indeed, there is a natural order isomorphism φ between pN`
Ś

N,ĺ`q and the

ordinal ω2, that is φpn, qq :“ pn´ 1qω ` q.

The following lemma will be used thereafter.

Lemma 1. For any economy E and any t ď n, a continuation economy Eět is

smaller than E

Proof of Lemma 1. Let E be an economy of size pn, qq, pσ, µq be an allocation

over E , and S be a coalition which period-t blocks pσ, µq via pτt, νtq for some t ď n.

We have that either t “ 1 or t ą 1. If t ą 1, then the continuation economy Eět,
18A minimal element of a set A with respect to ĺ` is an element m P A such that if s P A,

satisfies s ą m then necessarily m ď s.
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has size pn ´ t ` 1, q1q, thus it is smaller than E . If t “ 1, we claim that the

continuation economy Eět has size pn, q1q with q1 ă q. Indeed, the agents in the

coalition S, that are present in t “ 1 of E , are absent in t “ 1 of Eět. To see this,

note that, by definition of period-t blocking, agents in S either leave the economy

to consume or they wait in the continuation economy from period 2. Moreover,

no other agents enter in the continuation economy until period 2. �

Proof of Theorem 1. The result is implied by Theorem 6 �

Proof of Theorem 2. We proceed by strong double induction. Define P pn, qq

as “the Dynamic Strong Core is a subset of the Dynamic Core for every economy

of size pn, qq”. To prove the inductive step, fix any size pn, qq and suppose, by

inductive hypothesis, that the statement P holds for every economy of smaller

size. We must show that P pn, qq is true. Take any economy E of size pn, qq and

consider any allocation in E , namely pσ, µq, which is period-t blocked for some t

by a coalition S via pτt, νtq. We proceed by showing that the same coalition S can

weakly period-t block pσ, µq via pτt, νtq. First, note that by definition of period-t

blocking we have that pνtpaq, tq ąa pσ, µq for all a P SzSw. This implies that

pνtpaq, tq Áa pσ, µq for all a P SzSw with at least one strict inequality for some

agent in SzSw. Moreover, by same argument we have that pυ, ξq ąa pσ, µq for all

a P Sw and all allocations pυ, ξq in the Dynamic Core of the economy Eět. Thus

pυ, ξq Áa pσ, µq for all a P Sw and all allocations pυ, ξq in the Dynamic Core of the

economy Eět with at least one strict inequality for some agent in Sw.

By Lemma 1, the continuation economy Eět is smaller than E . Then, by the

inductive hypothesis, the Dynamic Strong Core is a subset of the Dynamic Core

in the continuation economy Eět. It follows that pυ, ξq Áa pσ, µq for all a P Sw

with at least one strict inequality for some agent in Sw and all allocations pυ, ξq

in the Dynamic Strong Core of the economy Eět.

Therefore, since any allocation that is period-t blocked is also weakly period-t

blocked, it must be that the set of allocations that is not in the Dynamic Core is
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neither in the Dynamic Strong Core. By strong double induction, this must hold

for every economy of any size. �

The proof of Theorem 6 builds on the following lemmas and corollaries

Lemma 2. For any ąP L, the output φBpą, Eq is an allocation.

Proof of Lemma 2. Fix any economy E “ xpAt, Htq
n
t“1, ωy with preference pro-

file ąP L and let φBpą, Eq ” pσ, µq be the outcome of ITTC at ą for some priority

structure B. Note that, by construction, σ is an n-list of period-t exchange and

µ an n-list of period-t consumption choices. We only need to show that for every

t ď n the properties of consumption rivalry and irreversibility hold for pσt, µtq.

Since at any Step pt, kq, agents consume only the object they are assigned to,

then the property of consumption rivalry is satisfied for any σt, µt. Moreover, by

construction of the ITTC, at any time t agents can consume only once and at

the end of any time, every agent that consumed is removed from the procedure.

Therefore, the property of consumption irreversibility is satisfied for any pσt, µtq. �

Lemma 3. If a maximal period-t chain ends with an object, then it is composed

by that object alone.

Proof of Lemma 3. We will prove the lemma by contradiction. Let’s consider

a maximal period-t chain that ends with the object hi and that is not composed

by hi alone. This means that ai´1 is present in period t and that ai is not present

in period t. It follows that ai is not the owner of hi but the Bthi-maximal agent.

Therefore, agent ai has higher priority over hi than ai´1 who is already present in

period t, This contradicts the definition of priority structure (Definition 8). �

Lemma 4. Let pt, kq and pt1, k1q with t ă t1 be two steps of the ITTC algorithms.

If there exists an agent a P A such that a P Ct,k
A X Ct1,k1

A , then Ct1,k1 is the only

subcycle of Ct,k among the cycles formed at t1.
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Proof of Lemma 4. Let pt, kq and pt1, k1q with t ă t1 be two steps of the ITTC

algorithms. Suppose that there exists an agent a P A such that a P Ct,k
A X Ct1,k1

A .

We show that Ct1,k1 is the only subcycle of Ct,k among the cycles formed at t1.

First we show that the statement hold for t1 “ t` 1 and k “ 1

Since, by assumption, agent a belongs to Ct,1 and to Ct`1,k1 then Ct,1 must

be intertemporal, otherwise no agent would belong to Ct`1,k1 since they would

consume in period t.

To prove that Ct`1,1 is the only subcycle of Ct,1 is sufficient to show that at Step

pt` 1, 1q the following conditions hold:

[a] If an agent ai P C
t,1
A is still present in period t` 1, then he/she points to hi`1,

[b] If an object hi P C
t,1
H is present in period t`1, then it points to the first agent

in Ct,1 after hi who is still present in period t` 1.

To prove ras, suppose that an agent ai in Ct,1
A is present in period t ` 1 and let

phi`1, t
2q be her preferred feasible pair. First note that phi`1, t

2q is feasible for

ai. Indeed, it cannot be that t2 “ t, otherwise agent ai would have consumed in

period t and she would be not present in period t ` 1. Since the set of feasible

pairs at Step pt`1, 1q is a subset of the set of feasible pairs at step pt, 1q, then we

have that phi`1, t
2q is still the preferred feasible pair for agent ai at Step pt`1, 1q.

To prove rbs, consider any object hi P C
t,1
H which is present in period t` 1. There

are two cases to consider: either ai is present at Step pt` 1, 1q or he is not.

Case 1: Agent ai is still present at Step pt ` 1, 1q. In this case, either hi is

private and ai is its owner or hi is public and ai is the agent with the highest

priority. In both, hi still points to ai at Step pt` 1, 1q.

Case 2: Agent ai is not present at Step pt ` 1, 1q. This happens when ai

consumes at time t object hi`1. Thus, ai is the first agent of a chain at Step

pt, 1q. If hi P Hďt, the owner of hi at Step t` 1, 1 is the last agent a` of the

chain initiated by agent ai. If hi R Hďt, the algorithm makes a` the agent

with the highest priority for hi at Step pt ` 1, 1q. In both cases hi points
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to a` at Step pt` 1, 1q who is the first agent in Ct,1 after hi still present in

period t` 1.

Next, fix t1 “ t` 1 and k1 “ 2. The proof of the statement follows the same logic

as in the previous argument. Although there are two caveats:

� Ct`1,2 is formed either at Step pt ` 1, 1q, if all agents and objects in Ct,1

are present in period t, or at Step pt` 1, 2q after the cycle Ct`1,1 is formed

at Step pt ` 1, 1q. In the latter case we proved that Ct`1,1 is a subcycle of

Ct,1 comprising all agents and objects in Ct,1 still present in period t ` 1.

Thus, for every agent in Ct,2 who does not consume in Step pt, 2q the set

of feasible pairs at Step pt ` 1, 2q is a subset of the set of feasible pairs at

Step pt, 2q.

� There might exist some objects in Ct,2 that are private and their owners

belong to Ct,1
A . These objects behave exactly as public objects in this case.

By iterating the same argument we can prove the statement for all cycles Ct,k

until they are cleared. �

The following Corollary 1 states that cycles formed at step 1 drive the

entire procedure. Namely, each agent, in all cycles which she belongs to, points

to the object she pointed to in the cycle formed at Step (1, k).

Corollary 1. Let p1, kq and pt1, k1q with 1 ă t1 be two steps of the ITTC algo-

rithms. If ai, hi`1 P C
1,k and ai P C

1,k
A X Ct1,k1

A , then ai, hi`1 P C
t1,k1

Moreover, the output of the ITTC mechanism is such that each agent consumes

the object she points. This observation is a further corollary to Lemma 4.

Corollary 2. For all cycle Ct1,k1, if ai, hi`1 P C
t1,k1 then µtpaiq “ hi`1 where t

is the first period when ai and hi`1 are both present in the economy.

It follows that, according to the ITTC, each agent consumes the object she

points in the cycle formed at Step (1, k).
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Corollary 3. For any cycle C1,k1, If ai, hi`1 P C
1,k1, then µtpaiq “ hi`1 where t

is the first period when ai and hi`1 are both present in the economy.

Proof of Theorem 6. We proceed by strong double induction. Define P pn, qq

as “In every economy of size pn, qq the outcome of the ITTC is in the Dynamic

Core”.

Fix an economy E “ xpAt, Htq
n
t“1, ωy of size pn, qq, a preference profile ąP L

and let φBpą, Eq ” pσ, µq be an allocation induced by the ITTC for some priority

structure B.

By inductive hypothesis, suppose that for all economies E 1 “ xpA1t, H 1
tq
n1

t“1, ω
1y

of smaller size, each allocation pσ1, µ1q induced by an ITTC is in the Dynamic Core

of E 1.

We prove that the outcome pσ, µq is in the Dynamic Core of E . Suppose,

toward a contradiction, that there exists a coalition S Ď At that period-t blocks

pσ, µq via pτt, νtq P ΣtpSq
Ś

MtpSq. Then, by definition of period-t blocking

� pνtpaq, tq ąa pσ, µq for all a P SzSw

� pυ, ξq ąa pσ, µq for all a P Sw for all allocations pυ, ξq over the economy Eět
that are in the Dynamic Core

Note that, the property Consumption Rivarly (Definition 4) together with the

fact that τt P ΣtpSq, implies that νtpaq P ωtpSq Y th0u.

Let k be the smaller number such that S X Ct,k
A ‰ H if it exists. Otherwise

k “ mptq ` 119. Consider any agent a P S XCt,k
A . There are two cases to consider,

both of them led to a contradiction.

Case 1: a P SzSw and pνtpaq, tq ąa pσ, µq. Note that agent a points to the

object that belongs to the most preferred feasible pair, that is pµpaq, tpµ, aqq,

among those composed of object in H t,k in accordance with the ITTC.20 By

Corollary 2, agent a consumes object µpaq as soon it arrives in the market,

that is at tpµ, aq.

19This is the case in which there are more agents than objects and all the members of the
coalition do not belong to any cycle and they are not receiving any object in the end.

20If k “ mptq ` 1, then H “ t, h is empty and any object is better for a.
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Since pνtpaq, tq ąa pµpaq, tpµ, aqq and pνtpaq, tq is feasible, it must be that

νtpaq is not in H t,k. This implies that νtpaq must belong to one of the

previous cycles. Let Ct,j be the cycle such that νtpaq P C
t,j
H where j ă k

and let a1 be the agent toward which νtpaq points in Ct,j. Note that there

are three cases under which an object points to an agent: either the object

is private and the agent is its owner, or the object is private and the agents

is the one with the highest priority among those still unassigned, or the

object is public. We show that is all such a cases it holds that S ‰ At and

νtpaq R ωtpSq, a contradiction.

� νtpaq is private in period t and a1 is its owner in Ct,j. Note that a1

is not in S but she is present in period t (private objects enter in the

economy with their owner and objects cannot be left to agents not yet

in the market). Therefore, S ‰ At and νtpaq R ωtpSq.

� νtpaq is private but its owner does not belong to At,j and a1 is the agent

with the highest priority among those in At,j. This means that the

owner belongs to a previous cycle than Ct,j, and thus she is not in S,

but she is present in period t (private objects enter in the economy with

their owner and objects cannot be left to agents not yet in the market).

Thus S ‰ At and νtpaq R ωtpSq.

� νtpaq is public in period t and a1 is the agent with the highest priority

among those in At,k. In this case a1 cannot enter the market after a,

otherwise a would have a higher priority than a1 according to νtpaq.

Thus S ‰ At and, since νtpaq is public, it does not belong to ωtpSq.

Case 2: a P Sw. The contradiction arises from the fact that there exists an

allocation pυ, ξq in the economy EětpS, τt, νtq which is in the Dynamic Core

and such that not pξpaq, tpa, ξqq ąa pσ, µq. To see this, let pυ, ξq be the

outcome of the mechanism φBtpą, Eětq. Note by Lemma 1, the continuation

economy EětpS, τt, νtq has a smaller size than the economy E . Then, by the

inductive hypothesis, pυ, ξq is in the Dynamic Core of EětpS, τt, νtq. Since a
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improves in the continuation economy with respect to pσ, µq, then ξpaq must

belong to a previous cycle, Ct,j with j ă k, otherwise a would have pointed

toward ξpaq at Step pt, kq.

First, we show that objects belonging to previous k´ 1 cycles do not belong

to ωtpSq. Indeed, for private objects, their owners belong to CăkA and thus

not to S. Then, private objects cannot belong to ωtpSq. For public object,

let us suppose there exists a public object hp in the first k´ 1 cycles that is

part of a cycle at Step pt, jq with j ă k. At Step pt, jq, hp points toward

an agent a1 who is part of the cycle Ct,j. Recall that a is part of a cycle

in a later step pt, kq and she belongs to At,k. Since by construction of the

algorithm is true that At,k Ă At,j, then a belongs to At,j as well. Hence,

a must have a lower priority than a1 on hp. This implies that a1 enters in

the economy before or at same period than aTherefore, a1 P AtzS, S is not

composed by all the agents in At and public objects as hp does not belong

to ωtpSq.

Next, we show that the outcome of the ITTC φBtpą, Eětq “ pν, ξq equals

pσ, µq for the agents in the first k ´ 1 cycles. Indeed, all agents and objects

in the first k ´ 1 cycles are present in the first period of the continuation

economy, that is at t. In particular, all the agents and objects in Ct,1 are

present at Step pt, 1q of the ITTC algorithm applied to the continuation

economy. Since we are using the same priority Bt and initial ownership σt´1

and agents have the same preferences ą21 then those agents and objects

point to the same object or agent. This implies that the same cycle Ct,1 is

formed and the same agents and objects are removed. For the same reason,

if k ą 2 at Step pt, 2q the same cycle is formed. Iterating the argument, the

same holds until step pt, k ´ 1q.

Recall that, by Corollary 3, the final consumption of these agents are the

objects they point to in the first period. Then, the agent that precedes the

object ξpaq in Ct,j, a1, consumes it. Thus, by the property of Consumption

21τt coincides with σt´1 outside ωtpSq.
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Rivalry it must be that a1 “ a, a contradiction.

Proof of Theorem 4. Let E “ xpAt, Htq
n
t“1, ωy be an economy. Fix any ąP L

and let pσ, µq be the output of the ITTC. By Theorem 6, pσ, µq is in the Dynamic

Core of the economy. To prove the claim, we show that pσ, µq is also in the Strong

Core. We list the first mp1q cycles: C1,1, C1,2..., C1,mp1q. Let Ap1q, ..., Apmp1qq be

the corresponding set of agents, where Ap1q is the set of agents involved in the

cycle C1,1, Ap2q is the set of agents involved in the cycle C1,2, and so on. Suppose,

toward a contradiction, that pσ, µq is weakly blocked by a coalition S. Moreover,

let us assume that S is minimal, i.e., there is no blocking coalition S 1 strictly

contained in S. Note that, since A is finite, if there exists a blocking coalition, the

there exists a minimal one. Note also that, since Theorem 7 implies that pσ, µq

is Pareto efficient, then S must differ from A and hence any exchanges among

agents in S must involve private objects only. So S Ă A, pτ, νq ľa pσ, µq for all

a P S, pτ, νq ąa pσ, µq for some a P S, and tνpaq|a P Su Ď ω´1pSq.

Consider the first j ď mp1q such that Apjq X S ‰ H if exists. Otherwise

j “ mp1q ` 1. We have that either there exists an agent a P Apjq X S such that

pτ, νq ąa pσ, µq or not.

Suppose the former case. Since, by Corollary 2, agent a is already con-

suming in pσ, µq the most preferred object that is feasible to him among those

in H1,j, it must be that νpaq have been traded in some cycle C1,j1 with j1 ă j.

Since νpaq is private, it belongs to ω´1pApj1qq. However S is effective for pτ, νq,

so νpaq P ω´1pSq. It follows that Apj1q X S ‰ H. This contradicts the assumption

that j was the smallest integer such that with Apjq X S ‰ H.

Suppose now that such an agent a does not belong to Apjq. This means that

for all a P Apjq X S, pσ, µq „a pτ, νq and since no agents are indifferent between

two goods, we have that µpaq “ νpaq for all a P Apjq X S. Take any a P Apjq X S.

Since νpaq “ µpaq, it holds that µpaq P ω´1pSq (µpaq is a private object, thus

its owner belongs to S. There are two possibilities to consider. (1) The owner

of µpaq belongs to a previous cycle j1 ă j. Then, S X Apj1q ‰ H, and j is not

the smallest integer such that S X Apjq ‰ H, a contradiction. (2) The owner of
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µpaq does not belong to a previous cycle, and thus she is pointed by µpaq in C1,j.

Since µpaq is pointed by a in C1,j, the agents following a in C1,j belongs to S and

this holds for every a P S X Apjq, and thus S X Apjq is closed under successor in

Apjq. There are only two subsets A1pjq of Apjq closed under successor: Apjq itself

and the empty set. Since Apjq X S ‰ H, then Apjq X S “ Apjq and Apjq Ď S.

Thus νpApjqq “ µpApjqq “ ω´1pApjqq, so νpSzApjqq Ď ω´1pSzApjqq which means

that SzApjq is effective for pτ, νq. This together with the fact that there exists at

least one agent in SzApjq that strictly improve in pτ, νq implies that SzApjq is a

blocking coalition, which contradicts the assumption that S is minimal.

�

Proof of Theorem 5. Let E “ xpAt, Htq
n
t“1, ωy be a public economy. We show

that a Dynamic Strong Core allocation exists. We proceed constructively. Let us

consider a serial dictatorship type of rule. We impose a priority order B over the

set of agents A which we require to be period consistent, i.e., agents that enter

in the market in previous periods always have a higher priority than agents that

enter later. The algorithm works as the usual serial dictatorship: every agent, in

priority order, chooses the best object still unchosen and, as soon as they are both

in the market, she consumes it. First, note that the output of this algorithm is an

allocation of the economy E . Let pσ, µq be such an allocation. We claim that pσ, µq

is in the Dynamic Strong Core. We prove the claim by strong double induction. We

prove the inductive step by contradiction. Suppose that there exists an economy

E of size pn, qq and a coalition S which weakly period-t blocks pσ, µq with pξt, νtq.

There are two possibilities. There is at least one agent in S who improves in period

t or not. Suppose the former case. Let a be the agent with the highest priority

among those who strictly improves in period t. Note that νtpaq is public object that

was assigned to some agent a1 with a higher priority than a (otherwise a cannot

improve), i.e., µpa1q “ νtpaq. Since νtpaq is public and νtpaq P ωtpSq, then S “ At.

Since B is period consistent then a1 enters in the economy at the same period as

or before a, and she has not consumed yet in period t—otherwise νtpaq would not
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be in the economy. This implies that a1 P At “ S. Let a1, a2, ..., am be the agents

in S in priority order. Note that agent a1 consumes µpa1q either according to νt

or in every allocation in the Dynamic Strong Core of the continuation economy.

Indeed, every other preferred object has been previously consumed by an agent

with an highest priority. Similar argument applies to a2. In addition, agent a2

cannot consume µpa1q nor according to νt nor in any allocation in the Dynamic

Strong Core of the continuation economy since it is consumed by a1, by previous

argument. Thus, a2 consumes µpa2q either according to νt or in every allocation in

the Dynamic Strong Core of the continuation economy. By iterating the argument,

we have that a1 consumes µpa1q either according to νt or in every allocation in the

Dynamic Strong Core of the continuation economy. A contradiction, since we

stated that µpa1q “ νtpaq.

Suppose now that no such agent a P S exists. By inductive hypothesis, the

allocation on the continuation economy induced by the serial dictatorship is in

the Dynamic Strong Core. Without loss of generality let us consider S com-

posed only by agents who change their consumption with respect to µ, that is

S “ ta P At|µtpaq ‰ νtpaqu. Take the agent a in S with the highest priority.

By definition of weak blocking, she is weakly better off in every allocation in the

Dynamic Strong Core of the continuation economy. However, since νtpaq ‰ µtpaq

and the fact that she was consuming in µt, she cannot be indifferent in the con-

tinuation economy Eětpτt, νtq. Thus, in every allocation in the Dynamic Strong

Core of the continuation economy, she consumes an object µpa1q for some a1 with

a higher priority. However, by applying the serial dictatorship algorithm to the

continuation economy using the same priority B, we obtain an allocation in the

Dynamic Strong Core where all the agents with a priority higher than a consume

the same object as in pσ, µq, a contradiction. �

Proof of Theorem 7. Let E “ xpAt, Htq
n
t“1, ωy be an economy. Fix any ąP L

and let pσ, µq be the output of the ITTC.

We list the first mp1q cycles: C1,1, C1,2..., C1,mp1q. Let Ap1q, ..., Apmp1qq be the
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corresponding set of agents, where Ap1q is the set of agents involved in the cycle

C1,1, Ap2q is the set of agents involved in the cycle C1,2, and so on.

Suppose toward a contradiction that pσ, µq is not Pareto efficient. Then there

is an allocation pτ, νq such that pνpaq, tpa, νqq Áa pµpaq, tpa, µqq for all a P A with

strict improvement for at least one agent.

We claim that for any k ď mp1q, µpaq “ νpaq and tpa, µq “ tpa, νq for all

a P Apkq. To prove the claim we proceed by induction. First note that for

all a P Ap1q it must be that µpaq “ νpaq and tpa, µq “ tpa, νq. Indeed, by

Corollary 3 each a P Ap1q consumes his first choice at pσ, µq the same has to

be under pτ, νq.

Next, fix any positive integer k ă mp1q. Suppose µpaq “ νpaq for all a P
Ťk
i“1Apiq. We show that µpaq “ νpaq for all a P Apk ` 1q. To see this, note

that by inductive hypothesis whether under pσ, µq or under pτ, νq every agent in

Apk ` 1q can obtain their favorite object among those that are not consumed by

agents in
Ťk
i“1Apiq. Since, by Corollary 3 each agent a P Apk ` 1q consumes

his first choice among the available objects under pσ, µq, the same has to be under

pτ, νq. Then, µpaq “ νpaq and tpa, µq “ tpa, νq for all a P Apk ` 1q.

Since the number of cycle is finite, the inductive reasoning proves our claim.

Finally, note that, our claim together with the fact that A “ C1Y ...YCm implies

that µT paq “ vT paq and tpa, µq “ tpa, νq for all a P A, a contradiction. �

Proof of Theorem 8. Let E “ xpAt, Htq
n
t“1, ωy be an economy. Fix any ąP L

and let pσ, µq be the output of the ITTC for some B.

As usual, we list the firstmp1q cycles: C1,1, C1,2..., C1,mp1q and letAp1q, ..., Apmp1qq

be the corresponding set of agents.

We show that there is no S Ď A and ą1P L with ą1“ pą1
S,ąAzSq such that

φBpą
1, Eq ąa φBpą, Eq for all a P S. We prove the claim inductively by showing

that for all k P t1, ...,mp1qu it holds that Apkq X S “ H and that φBpą
1, Eq

generates the same cycles as in φBpą, Eq.

First note that, by Corollary 3, for all a P Ap1q it holds that all agents in
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the cycle C1,1 get already their top alternatives. Therefore, S X Ap1q “ H and

C1,1 can be the first cycle generated by φBpą
1, Eq.

Next, fix any positive integer k ă mp1q. Suppose that for all ` P t1, ..., ku, that

Ap`qXS “ H and C1,` is generated by φBpą
1, Eq also. We show that C1,k`1XS “ H

and C1,k`1 is generated by φBpą
1, Eq.

By the fact that for all ` ď k C1,` is generated by φBpą
1, Eq, it descends that

HzHk`1 are consumed by the agents in
Ť

iďk Apiq. Then, Corollary 3 applies

and for all a P Apkq it holds that φBpą, Eq Áa φBpą
1, Eq for all a P S and for

any ą1P L, that is all agent in Apk ` 1q get their top items among those that are

not exchanged by agent in Ap`q for some ` ď k. Therefore, S X Apk ` 1q “ H

and Ck`1,1 is generated by φBpą
1, Eq. Note that all agents who do not belong

to any cycles under φBpą, Eq continue to do not belong to any cycles also under

φBpą
1, Eq thus they have no incentives to misreport their preferences. Therefore,

the inductive reasoning proves that such a coalition S does not exist. �

Proof of Theorem 9. Let E “ xpAt, Htq
n
t“1ωy be a private economy and fix

any preference profile ąP L. Let pσ, µq ” φBpą, Eq be the allocation induced by

the ITTC algorithm. As in the proof of Theorem 4, denote by Ap1q, ..., Apmp1qq

an ordered list corresponding to the set of agents involved in the algorithm’ cycles

formed in period 1. By similar argument, denote by Hp1q, ..., Hpmp1qq an ordered

list corresponding to the set of objects involved in the algorithm’ cycles in period

1. Pick a decreasing sequence p1, ..., pmp1q and let pi be the price of all objects in

Hpiq, for all i “ 1, ...,mp1q.

We claim that such a p1, ..., pmp1q supports pσ, µq as a dynamic competitive

equilibrium. First, we prove that in any period the exchanges tracked by σ are

feasible. Fix any j ď mp1q and any agent a P Apjq. Then, a owns an object that

is worth pj and, in period 1, it can only afford objects in Hpjq Y ... Y Hpmp1qq.

By Lemma 4, at any period-t, agent a can only trade objects that are contained

in Hpjq with agents in Apjq. Therefore, any exchange for a will occur at price

pj. Finally we show that for agent a, µpaq is the most preferred object among
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those with an affordable price. To see this, let h P Hpjq be the object that he

points in the cycle, that is the a’most preferred object among the feasible ones. By

Corollary 1, agents continue to point h in any cycle he might belong to. There-

fore, it must be that pµpaq ď pj. Finally, according to Corollary 3, at pσ, µq

agent a consumes h at the time he prefers to. Since the choice of j and a was

arbitrarily, we conclude that the same holds for any other agent in the economy. �

Appendix B

Example 7. Let us consider a private economy which lasts two periods. There

are five agents, a1, ..., a5, and five objects, h1, ..., h5. Without loss of generality,

assume that object hi belongs to agent ai. Agents a1, a2, a3 enter in period 1 while

agents a4, a5 enter in period 2. Agents preferences are depicted in Figure 14

below. If ph`, 1q appears before than phj, 2q in agent i’s ranking, then she prefers

being matched with object h` in period 1 than object hj in period 2. Suppose that

agents can wait only worth their own endowment, that is when they exchange they

also consume.

t “ 1 t “ 2
a1 a2 a3 a4 a5
h2, 1 h3, 1 h5, 2 h3, 2 h1, 2
h4, 2 h1, 1 h2, 1 h4, 2 h5, 2

h1, 1 h2, 1 h3, 1
...

...
...

...
...

...
...

Figure 14: Preference list

We claim that no Dynamic Core allocations exist. Consider the allocation in

which, in period 1, no agent exchanges and agent a2 consumes her endowment; in

period 2, a1 gets object h4, agent a4 gets object h3, agent a3 gets object h5, agent

a5 gets object h1. This cycle is depicted in Figure 15.

The allocation obtained through these exchanges is period-1 blocked by agents

ta1, a2u who can exchange and consume their endowments already in period 1. By
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t “ 1 t “ 2
a1 a2 a3 a4 a5
h2, 1 h3, 1 h5, 2 h3, 2 h1, 2

h4, 2 h1, 1 h2, 1 h4, 2 h5, 2

h1, 1 h2, 1 h3, 1
...

...
...

...
...

...
...

a1 a4

a3a5

a2

Figure 15: The allocation (in bold) obtained when all exchanges occur in period
2 and the blocking coalition (dashed).The allocation where a1, a3, a4, a5 exchange
their objects is period-1 blocked by the couple a1, a2.

a similar argument, in any other allocation in which no exchange occurs in period

1 there is a period-1 blocking.

Next, consider any allocation involving an exchange in period 1. Notice that

there is not an allocation in which agents a1, a2, a3 are all involved in a cycle

in period 1 and get an object better than their endowment. Consider then any

allocation with a pairwise exchange among agents in period 1. Note that, under

the assumption that agents can exchange only once, only exchanges between a1 and

a2 and between a2 and a3 are profitable (a1 and a3 cannot perform any mutually

advantageous trade since they prefers their endowments to exchange each others).

Suppose that agents a1 and a2 exchange their endowments in period 1. Given that

a1 and a2 are now out of the market, the other agents are not able to perform

any further trade and remain with their endowments. A careful reader can note

that this allocation can be period-1 blocked by agents a2 and a3 who can both

gain by exchanging and consume their endowment in period 1. Figure 16 is an

illustration.

Suppose now that agents a2 and a3 exchange their endowments in period 1.

Given that a2 and a3 are now out of the market, the others agents are not able to

perform any further trade and remain with their endowments. This allocation is

challenged by agents ta1, a3u, who can wait together to exchange with a4 and a5 in

period 2. Agents 1 and 3 form rational expectations on the allocations they could

get in the continuation economy. In any allocation of the continuation economy
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t “ 1 t “ 2
a1 a2 a3 a4 a5

h2, 1 h3, 1 h5, 2 h3, 2 h1, 2

h4, 2 h1, 1 h2, 1 h4, 2 h5, 2

h1, 1 h2, 1 h3, 1
...

...
...

...
...

...
...

a1 a4

a3a5

a2

Figure 16: The allocation where a1, a2 exchange their objects is period-1 blocked
by the couple a2, a3.

that cannot be period-t1 blocked for t1 ě 1, agent 2 consumes her endowment in pe-

riod 1, because she prefers consuming her endowment in period 1 than consuming

any other object in period 2. In period 2 the only allocation that is not period-2

blocked by any coalition is the one in which the cycle of exchanges pa1, a4, a3, a5q is

performed. It follows that the coalition ta1, a3u can period-1 block the allocation

in which agents 2 and 3 exchange their endowment in period 1.

The emptiness of the Dynamic Core in this example is driven by the assumption

that agents can exchange only once. By relaxing this assumption, it is possible

to restore the non-emptyness of the Dynamic Core. Suppose that agents a1, a2, a3

form a cycle and exchange their goods; agents a1 and a2 consume and leave the

market, while agent a3 does not consume the object she received and remains in

the market together with her new endowment h1. Agent a3 can now exchange

with a5 in period 2. In this allocation everyone except a4 gets her most preferred

object and agent a4 consumes her endowment. Therefore no coalition of agents

can improve upon it.

We find illustrative to apply the ITTC algorithm to the simple private econ-

omy discussed in Example 7. The ITTC mechanism for this economy consists

of four Steps: p1, 1q, p1, 2q, p2, 1q, p2, 2q. Step p1, 1q constructs a cycle C1,1 “

pa1, h2, a2, h3, a3, a5, h1q where each private object points to its owner and each

agents points her most preferred object (see Figure 17).

This is an intertemporal cycle since a1, a2, a3 enter in period 1, while a5 enters

in period 2.
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h1

a1 h2 a2

h3

a3h5a5

a4

h4

Figure 17: Step (1,1) The cycle C1,1 “ pa1, h2, a2, h3, a3, a5, h1q forms.

h1

a1 h2 a2

h3

a3h5a5

a4

h4

Figure 18: Step (1,1). Since C1,1 is intertemporal at t “ 1 then the cycle is
trimmed and agents a1 and a2 consume the assigned objects and are removed.
Agent a3 receives object h1 and remains until period 2.

Then Case 2 of the algorithm applies. Trim and clear the cycle C1,1 “

pa1, h2, a2.h3, a3, a5, h1q by assigning h2 to a1, h3 to a2 and h1 to a3. Agents a1

and a2 consume the object assigned to them and are removed, agent a3 does not

consume h1 that becomes her endowment in period 2. All other agents remain

with their endowment. This results in the following “partial assignment”

pσ1, µ1q “

¨

˚

˚

˚

˝

a1 “ σ1ph2q µ1pa1q “ h2

a2 “ σ1ph3q µ1pa2q “ h3

a3 “ σ1ph1q µ1pa3q “ h0

˛

‹

‹

‹

‚

This step is illustrated in Figure 18.

‘

Step p1, 2q constructs a direct graph using the set of agents and objects not

in C1,1 that is, in this case, only A1,2 “ ta4u and H1,2 “ th4u. The cycle C1,2 “

ph4, a4q is intertemporal at t “ 1 since a4 is not in the market at time 1. Then
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Case 2 of the algorithm applies. Since there are no maximal open chain, there is

no change in priorities, ownership nor consumption. Since there are no more cycles

that can be formed, the algorithm proceeds with Step p2, 1q which generates one

cycle between ph5, a5, h1, a3q and ph4, a4q. Let C2,1 “ ph5, a5, h1, a3q. Since C2,1 is

not intertemporal at t “ 2 then Case 1 of the algorithm applies and the cycle is

cleared accordingly. This results in the following “partial assignment”:

pσ2, µ2q “

¨

˚

˚

˚

˝

a3 “ σ2ph5q µ2pa3q “ h5

a4 “ σ1ph4q µ1pa4q “ h4

a5 “ σ1ph1q µ1pa5q “ h1

˛

‹

‹

‹

‚

h1

a3h5a5

a4

h4

Figure 19: Step (2,1) and Step (2,2). Cycles C2,1 “ ph5, a5, h1, a3q and
C2,2 “ ph4, a4q are created. Since both are not intertemporal at t “ 2 then they
are cleared accordingly.

Finally, in Step p2, 2q the cycle C2,2 “ ph4, a4q forms. The cycle is not in-

tertemporal at t “ 2 and is cleared according to Case 1 of the algorithm. This

final step is illustrated in Figure 19. The output of the algorithm is the allocation

pσ1, σ2, µ1, µ2q.
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