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1 Introduction

This paper presents a dynamic stochastic general equilibrium model of Ricardian business

cycles. Our model is Ricardian because countries (or, equivalently, economic regions) trade

to take advantage of their comparative advantages: within each economic sector of a country,

there are firms with high relative production efficiency, which export, and firms with low

relative production efficiency, which either do not export (due to trade costs) or do not

produce. The firms’ relative efficiencies, however, change over time stochastically. Similarly,

country-specific shocks to demand, supply, and trade costs induce countries to engage in

intra- and intertemporal substitutions in non-durable consumption, investment, services,

and trade, generating business cycles (notice that we do not impose balanced trade period

by period, only that the intertemporal budget constraints of each country is satisfied). Finally,

all agents have rational expectations about the stochastic components of the model and act

accordingly.

Analyzing the interaction between time-varying comparative advantages and demand,

supply, and trade cost shocks is key to understanding many questions in international trade

and macroeconomics. Among many others: How do supply shocks change the composition

between consumption and investment when each activity has different international trade

structures? How do trade patterns react to demand shocks such as those triggered by fiscal

and monetary policies? What are the global effects of country-specific shocks? What is the

role of trade costs in the transmission of shocks? What are the effects of uncertainty shocks

on world output and trade?

However, relatively little progress has been made in answering these questions quantita-

tively because considering both intra- and intertemporal aspects of international trade in a

stochastic environment is challenging.1 First, we face a problem with high dimensionality.

Even considering just three countries, our model has 32 states. Furthermore, the states are

random, there are non-linearities in the equilibrium functions, and the ergodic sets of states

present irregular geometries. Thus, this is an environment where classical solution methods,

such as perturbations and projections, are likely to fail or be of limited accuracy.
1 There has been some important work using perfect-foresight equilibria, such as in Eaton et al. (2016a) and

Álvarez and Lucas (2007), but not with stochastic shocks. We will return to these papers below.
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To get around this challenge, we use deep equilibrium nets (Azinovic et al., 2022), a deep-

learning-based method to compute the recursive equilibrium of the model as characterized

by the associated social planner’s problem of the world economy. Nothing essential depends

on approximating the social planner’s problem instead of the competitive equilibrium. At

the cost of some extra notation, we could solve directly for the competitive equilibrium.

Intuitively, deep neural networks are a series of geometric operations (linear transla-

tions and transformations by activation functions) that move the functional approximation

problem from its original formulation into a more convenient geometric space (Bronstein

et al., 2021). By doing so, deep neural networks can tame the “curse of dimensionality”

and approximate functions arbitrarily well, even in the most challenging scenarios that

defeat alternative methods. Furthermore, deep neural networks are easy to implement us-

ing standard libraries such as (in this paper) TensorFlow and easily amenable to multicore

programming and co-processor acceleration (Cheela et al., 2022).

We calibrate our model to three regions: the U.S., China, and the Eurozone (which,

for convenience, we will often refer to as “Europe”). Jointly, these three regions produce

nearly 50% of the world’s output. We will study two alternative calibrations. In the first

calibration, trade costs are symmetric across all three regions. This calibration captures the

behavior of a highly integrated world economy. In the second calibration, trade costs are

asymmetric, with China nearly excluded from trade with the U.S. and Europe due to high

trade costs. This calibration aims at simulating an environment where China disengages

from the world economy, a possibility suggested by current events (trade war between the

U.S. and China, China’s zero COVID policy, etc.). However, in general, this calibration allows

us to understand how asymmetries in the world economy operate.

Our main findings when trade costs are symmetric are as follows. First, we show how a

productivity shock in one region has asymmetric effects on other regions, even though trade

costs are symmetric. In particular, a shock to productivity in the U.S. has a more persistent

effect in the Eurozone than in China. The reason is that, since the internal shocks in the

Eurozone are more persistent than in China, the representative household in the Eurozone

also responds differently to outside shocks: an outside shock today will be followed, in

distribution, by some inside shock tomorrow. In comparison, a shock to productivity in

China has roughly the same effects in the U.S. and the Eurozone.
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Second, a shock that shifts relative world demand toward the U.S. increases output in the

U.S., but it reduces output in China and the Eurozone.2 Interestingly, under the symmetric

calibration, this shock reduces total world output. This somewhat surprising result has,

however, a simple explanation. In our calibration, China is the economy that can produce

the cheapest goods due to its large population that drives local wages down. By shifting

the world demand toward the U.S. (and given positive trade costs), production in the world

economy becomes, on average, more expensive.

Third, a shock to one sector in the U.S. lowers output in the U.S. (as it makes it harder to

equate production across different sectors), but increases output in China and the Eurozone,

as these two regions can export more to the U.S.

The main findings change when trade costs become asymmetric. For example, an increase

in productivity in the U.S. still expands output in the Eurozone (in fact, even more than with

symmetric trade costs), but the effect is minimal in China, which is largely isolated from the

rest of the world. Conversely, a productivity shock in China has a large effect on Chinese

output but a very small effect on the U.S. and European GDP. We document similar results

for other shocks in this calibration. In other words: trade costs matter for the transmission

of shocks in the world economy.

Beyond our quantitative results, our methodological contribution opens the door to a

much larger set of quantitative experiments than those we can report in this paper due to

space constraints. The use of deep neural networks allows researchers to tackle a wide set

of questions in international economics that were, so far, hard to analyze. Additionally, our

methodology opens the door to the validation of Ricardian models of trade in terms of their

responses to different shocks; again, a task that is beyond the scope of our paper.

Our paper is related most closely to Eaton et al. (2016a), who build a Ricardian model in

the tradition of Eaton and Kortum (2002) (see also Eaton et al., 2016b). Our main difference is

the use of rational expectations instead of perfect foresight. By doing so, we can document,

for instance, the important role of the persistence of inside shocks in gauging the effect of an

outside shock. We are also close to Álvarez and Lucas (2007), who analyze the determinants

of the cross-country distribution of trade volumes in a general equilibrium version of Eaton
2 One can interpret this shock as an increase in U.S. demand, for example, triggered by expansionary fiscal

or monetary policies that we do not model explicitly.
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and Kortum (2002) with balanced trade and deterministic transition dynamics. Caliendo

et al. (2019) use a related environment to study how dynamic trade interacts with spatially

distinct labor markets facing varying exposure to international trade. Ravikumar et al.

(2019) compute welfare gains from trade in a dynamic, multicountry model with capital

accumulation and trade imbalances by computing the exact transition paths following trade

liberalization.

The models in Eaton et al. (2016a), Álvarez and Lucas (2007), and in our paper depart

from older literature that relies on dynamic two-country models. Important milestones in

this literature include Stockman and Tesar (1995) and Alessandria et al. (2010), among many

others. One key advantage of having more than two countries is that we can explore the

asymmetric responses to the same shocks across different regions. As we document in the

paper, these asymmetric responses tell us much about the dynamics of the world economy.

For instance, the effects of a U.S. domestic shock in Europe are very different than in China.

In terms of business cycles, we follow the tradition of models of international business

cycles driven by real shocks and where countries exchange goods (Backus et al., 2020). Our

main advance is the focus on multiple countries and the modeling of Ricardian compara-

tive advantage. We also connect with the literature on uncertainty shocks in international

business cycles. Although our model does not have uncertainty shocks, we could extend

it to incorporate them, and the results in Fernández-Villaverde et al. (2011) suggest that

uncertainty, in itself, is an important driver of the international transmission of shocks.

We are also related to a booming literature that shows how to use deep learning to solve

highly-dimensional models in economics. Among others, see Duffy and McNelis (2001),

Norets (2012), Maliar et al. (2021), Duarte (2018), Fernández-Villaverde et al. (2019), Villa and

Valaitis (2019), Han et al. (2021), and Ebrahimi Kahou et al. (2021). Our main methodological

contribution is to solve a “real-life” application with as many as 32 economic state variables,

not a “proof-of-concept” scenario.

The remainder of this article is organized as follows. In Section 2, we outline the model.

In Section 3, we briefly describe our deep-learning-based global solution method to tackle

the trade model. Thereafter, Section 4 details the calibration of the model, whereas Sections 5

and 6 present the results of our numerical experiments. Section 7 concludes. An Appendix

presents further details about the model and its implementation.
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2 A model of Ricardian Business Cycles

In this section, we present a dynamic stochastic general equilibrium model of Ricardian

business cycles. We build on previous work by Eaton et al. (2016a) and use a similar

framework. Our main point of departure with respect to the existing literature is that we

endow our agents with rational expectations about the random demand and supply shocks

that hit the economy instead of staying with the assumption of perfect foresight.

Our model works in discrete time and features an arbitrary number of countries or

regions. In what follows, we use “regions” and “countries” interchangeably. The key goal

is to capture the notion that economic activity is located in different locations in space. We

index countries by 𝑛 = 1, . . . ,𝒩 . In each country, there is a representative household and

three sectors: a non-durable sector (𝑁), a service sector (𝑆), and a durable sector (𝐷). We

understand the output of the durable sector as a good that can be added to the stock of

(physical) capital, either in the home country or abroad. Capital itself can be used to provide

durable goods services (e.g., cars, dwellings) or be employed as input in the production of

other goods and services (e.g., delivery vehicles, office space). For later convenience, let

Ω = {𝑁, 𝑆, 𝐷} denote the set of these three sectors.3

The economy will be hit by demand, supply, and trade shocks. We model demand shocks

as i) shocks to the discount factor of the representative household in each country and ii)

shocks to the relative weight of tradable vs. non-tradable goods in the preferences of the

representative household within a country. We model supply shocks as i) shocks to the

productivity of firms in each sector and ii) a shock to investment. We model trade shocks

as shocks to the iceberg transportation costs of moving goods across countries. These five

shocks will give us a wide range of aggregate dynamics and time-varying patterns of trade.

2.1 Preferences

In each country 𝑛, there is a representative consumer with a weight 𝜔𝑛 in the world economy,

which can be read as a relative population size.
3 Our methodology is very general and, in principle, allows us to incorporate many sectors within each

country. However, three sectors strike a good balance between the richness of mechanisms at work and
transparency.
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At each date 𝑡, this representative household consumes the final output of the non-durable

and services sectors in amounts𝐶𝑁𝑛,𝑡 and𝐶𝑆𝑛,𝑡 , respectively. The household also consumes the

services yielded by the stock of capital in the amount 𝐾𝐻,𝐷𝑛,𝑡 . The utility function aggregates

these flows of consumption with positive Cobb-Douglas weights, where 𝜓𝑁
𝑛,𝑡 +𝜓𝑆𝑛,𝑡 +𝜓𝐷

𝑛 = 1.

Thus, the lifetime utility of the representative household in country 𝑛 is given by:

𝑈𝑛,0 = E0

[ ∞∑
𝑡=0

𝜌𝑡𝜙𝑛,𝑡
(
𝜓𝑁
𝑛,𝑡 ln𝐶𝑁𝑛,𝑡 + 𝜓𝑆𝑛,𝑡 ln𝐶𝑆𝑛,𝑡 + 𝜓𝐷

𝑛 ln𝐾𝐻,𝐷𝑛,𝑡

)]
, (1)

where E0 is the expectation operator as of time 0, 𝜌 < 1 is a constant discount factor, and

𝜙𝑛,𝑡 is a shock to inter-temporal preferences for the representative household in country 𝑛

at date 𝑡, which we interpret as a stand-in aggregate demand shock encoding more complex

shocks that we do not model explicitly (e.g., fiscal and monetary policy shocks, demographic

shocks, financial frictions shocks).

We restrict aggregate demand shocks to have no global component. In particular, for

𝒩 − 1 countries 𝜙𝑛,𝑡 evolves as:

ln 𝜙𝑛,𝑡 = 𝜌𝜙𝑛 ln 𝜙𝑛,𝑡−1 + 𝜀𝜙𝑛 ,𝑡 ,

where 𝜀𝜙𝑛 ,𝑡 ∼ 𝑁(0, 𝜎𝜙,𝑛). Moreover, for the𝒩-th country 𝜙𝑁,𝑡 is determined as:

𝜙𝒩 ,𝑡 = 𝒩 −
𝒩−1∑
𝑛=1

𝜔𝑛𝜙𝑛,𝑡 .

In such a way, we analyze differential variations in aggregate demand across countries,

instead of focusing on worldwide changes to aggregate demand (although incorporating

the latter into our model would be straightforward). Additionally, the calibrated value

of 𝜎𝜙,𝑛 will be small enough that in the simulation, we do not need to worry about the

possibility that 𝜙𝒩 ,𝑡 < 0.

Furthermore, the stochastic Cobb-Douglas weights on non-durables and services allow

for country-specific shifts between these two sectors over time. Since 𝜓𝐷
𝑛 is a constant

parameter and 𝜓𝑁
𝑛,𝑡 + 𝜓𝑆𝑛,𝑡 + 𝜓𝐷

𝑛 = 1 needs to hold, specifying a law of motion for either 𝜓𝑁
𝑛,𝑡
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or 𝜓𝑆𝑛,𝑡 is sufficient. Thus, we assume that 𝜓𝑁
𝑛,𝑡 follows:

𝜓𝑁
𝑛,𝑡 =

(
1 − 𝜌𝜓𝑛

) 1 − 𝜓𝐷
𝑛

2 + 𝜌𝜓𝑛𝜓
𝑁
𝑛,𝑡−1 + 𝜀𝜓𝑛 ,𝑡 ,

where 𝜀𝜓𝑛 ,𝑡 ∼ 𝑁(0, 𝜎𝜓𝑛 ). We will also calibrate the standard deviation 𝜎𝜓𝑛 to be small enough

for 𝜓𝑁
𝑛,𝑡 to always be in the interval [0, 1 − 𝜓𝐷

𝑛 ] in our simulations.

Two points are worth mentioning. First, the utility function (1) includes a rational

expectation E0 because we have random shocks in the economy. While accounting for the

expectation operator is computationally non-trivial, algebraically In fact, only the investment

Euler equation changes (see equation (9) below). Second, we allow for country-specific shifts

between non-durables and services over time, but we treat the weights on household capital

services as fixed across countries and over time. As we will see below, the goods in the

non-durable sector are tradable, but not those in the services sector. Thus, we can trace

the consequences of changing preferences (or policies) between tradable and non-tradable

goods within a country and the spillovers of these changes to other countries.

2.2 Technology

At period 𝑡, country 𝑛 has a labor endowment 𝐿𝑛 and a stock 𝐾𝐷𝑛,𝑡 of capital. Following the

tradition of trade models since Ricardo (1821), these endowments of labor and capital are

not traded internationally.

There is a perfectly competitive firm in each sector 𝑗 ∈ Ω that produces a final (sector)

output by aggregating a continuum of sector-specific goods using a CES production function

with an elasticity of substitution 𝜎:

𝑥
𝑗

𝑛,𝑡 =

(∫ 1

0
𝑥
𝑗

𝑛,𝑡(𝑧)
(𝜎−1)/𝜎𝑑𝑧

)𝜎/(𝜎−1)
,

where 𝑥 𝑗𝑛,𝑡(𝑧) can either be produced locally or imported.

The good 𝑧 in sector 𝑗 in country 𝑛 is produced by a perfectly competitive firm that

combines the services of labor, 𝐿 𝑗𝑛(𝑧), the services of capital, 𝐾 𝑗𝐷𝑛,𝑡(𝑧), and –as intermediates–

the final output from each of the three sectors. We call 𝑀 𝑗 𝑗′

𝑛,𝑡(𝑧) the intermediates from sector

8
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𝑗′ used to make good 𝑧 in sector 𝑗. When no ambiguity occurs, we use 𝑧 to denote both the

firm and the good.

More concretely, firm 𝑧 in sector 𝑗 in country 𝑛 at period 𝑡 has access to a Cobb-Douglas

function with constant returns to scale:

𝑦
𝑗

𝑛,𝑡(𝑧) = 𝑎
𝑗

𝑛,𝑡(𝑧)
(
𝐿
𝑗
𝑛(𝑧)
𝛽
𝐿,𝑗
𝑛

)𝛽𝐿,𝑗𝑛 (
𝐾
𝑗𝐷

𝑛,𝑡(𝑧)

𝛽
𝐾,𝑗𝐷
𝑛

)𝛽𝐾,𝑗𝐷𝑛 ∏
𝑗′∈Ω

©­«
𝑀

𝑗 𝑗′

𝑛,𝑡(𝑧)

𝛽
𝑀,𝑗 𝑗′
𝑛

ª®¬
𝛽
𝑀,𝑗 𝑗′
𝑛

.

The output elasticities in country 𝑛 and sector 𝑗 of labor, capital, and intermediates from

sector 𝑗′ are given by 𝛽
𝐿,𝑗
𝑛 , 𝛽

𝐾,𝑗𝐷
𝑛 , and 𝛽

𝑀,𝑗 𝑗′

𝑛 for 𝑗 , 𝑗′ ∈ Ω.

The efficiency of the firm, 𝑎 𝑗𝑛,𝑡(𝑧), is the realization of a random variable 𝑎
𝑗

𝑛,𝑡 with a

distribution:

𝐹
𝑗

𝑛,𝑡(𝑎) = Pr
[
𝑎
𝑗

𝑛,𝑡 ≤ 𝑎
]
= exp

−
(

𝑎

𝛾𝐴
𝑗

𝑛,𝑡

)−𝜃 , (2)

which is drawn independently for each 𝑗, 𝑧, and 𝑡 across countries 𝑛. Here, 𝐴 𝑗

𝑛,𝑡 > 0 reflects

country 𝑛’s overall productivity in sector 𝑗. In turn, 𝐴 𝑗

𝑛,𝑡 = (1/𝛾)
(
𝑇
𝑗

𝑛,𝑡

)1/𝜃
, where:

ln𝑇 𝑗𝑛,𝑡 = 𝜌𝑇 𝑗𝑛 ln𝑇 𝑗
𝑛,𝑡−1 + 𝜀

𝑇
𝑗
𝑛 ,𝑡

and 𝜀𝑇 𝑗𝑛,𝑡 ∼ 𝑁(0, 𝜎𝑇 𝑗𝑛 ). The variable 𝑇 𝑗𝑛,𝑡 captures temporary differences in the comparative

advantage of countries in each sector, with possible differences in persistence and volatility

across sectors.

The parameter 𝜃 is an inverse measure of the dispersion of efficiencies, and 𝛾 is related

to the gamma function:

𝛾 =

[
Γ

(
𝜃 − 𝜎 + 1

𝜃

)]−1/(𝜎−1)
.

The goods 𝑧 from the non-durable and durable sectors can be traded internationally.

Thus, we call these two sectors the tradable sectors, 𝑗 ∈ {𝑁, 𝐷}. This trade incurs standard

(finite) iceberg trade costs so that delivering one unit of a good from country 𝑖 to country

9
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𝑛 requires shipping 𝑑 𝑗
𝑛𝑖,𝑡
≥ 1 units. Services cannot be traded, which implicitly means that

corresponding iceberg costs, 𝑑𝑆
𝑛𝑖,𝑡

, are infinite for 𝑖 ≠ 𝑛. The iceberg trade costs of sector

𝑙 ∈ {𝐷, 𝑁} for 𝑖 ≠ 𝑛 evolve as:

ln 𝑑𝑙𝑛𝑖,𝑡 =
(
1 − 𝜌𝑑𝑙

𝑛𝑖

)
𝑑̄𝑙𝑛𝑖 + 𝜌𝑑𝑙

𝑛𝑖
ln 𝑑𝑙𝑛𝑖,𝑡−1 + 𝜀𝑑𝑙

𝑛𝑖
,𝑡

where 𝜀𝑑𝑙
𝑛𝑖
,𝑡 ∼ 𝑁(0, 𝜎𝑑𝑙

𝑛𝑖
) and for 𝑖 = 𝑛, we set

ln 𝑑𝑙𝑛𝑛,𝑡 = 0, (3)

that is, there is no iceberg cost of trading with itself. Given our calibrated 𝑑̄𝑙
𝑛𝑖

and 𝜎𝑑𝑙
𝑛𝑖

, in

our simulations we will have that, indeed, 𝑑 𝑗
𝑛𝑖,𝑡
≥ 1 holds. Additionally, notice that we allow

the trade costs to be non-symmetric (i.e., 𝑑 𝑗
𝑛𝑖,𝑡

≠ 𝑑
𝑗

𝑖𝑛,𝑡
). This non-symmetry might reflect, for

instance, different tariffs across countries.

The final output of the non-durable and service sectors can be consumed by the repre-

sentative household or used as an intermediate input. The output of the durable sector can

be used as investment 𝐼𝐷𝑛,𝑡 to accumulate capital and as an intermediate input. In particular,

the law of motion for capital is 𝐾𝐷
𝑛,𝑡+1 = 𝜒𝐷𝑛,𝑡

(
𝐼𝐷𝑛,𝑡

)𝛼𝐷 (
𝐾𝐷𝑛,𝑡

)1−𝛼𝐷
+

(
1 − 𝛿𝐷

)
𝐾𝐷𝑛,𝑡 , where 𝜒𝐷𝑛,𝑡 is

an investment-specific technological shock. This shock evolves as:

ln 𝜒𝐷𝑛,𝑡 = 𝜌𝜒𝐷𝑛
ln 𝜒𝐷𝑛,𝑡−1 + 𝜀𝜒𝐷𝑛 ,𝑡 ,

where 𝜀𝜒𝐷𝑛 ,𝑡 ∼ 𝑁(0, 𝜎𝜒𝐷𝑛 ).
While, in the interest of space, we are not explicit about the intertemporal budget con-

straint of each country (and the corresponding transversality condition), it is important to

notice that countries can engage in intertemporal trade. In other words, we are not enforcing

balanced trade in each period.

2.3 Equilibrium Relationships

In what follows, we briefly discuss the solution of the model and associated equilibrium

conditions. In addition, Appendix A contains more detailed derivations of the model
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solution.

2.3.1 Prices and Trade Shares

Given a wage 𝑤𝑛,𝑡 , a rental rate of capital, 𝑟𝑛,𝑡 , and prices for intermediaries 𝑝 𝑗𝑛,𝑡 , the cost 𝑐 𝑗𝑛,𝑡
of a bundle of inputs in country 𝑛 for producing good 𝑧 in sector 𝑗 is:

𝑐
𝑗

𝑛,𝑡 = (𝑤𝑛,𝑡)
𝛽
𝐿,𝑗
𝑛 (𝑟𝑛,𝑡)𝛽

𝐾,𝑗𝐷
𝑛

∏
𝑗′∈Ω

(
𝑝
𝑗′

𝑛,𝑡

)𝛽𝑀,𝑗 𝑗′
𝑛

. (4)

The associated price index for sector 𝑗 in country 𝑛, combining production costs in each

country equals:

𝑝
𝑗

𝑛,𝑡 =


𝒩∑
𝑖=1

©­«
𝑐
𝑗

𝑖 ,𝑡
𝑑
𝑗

𝑛𝑖,𝑡

𝐴
𝑗

𝑖 ,𝑡

ª®¬
−𝜃
−1/𝜃

. (5)

The share of country 𝑛’s absorption of sector 𝑗 imported from country 𝑖 reads:

𝜋
𝑗

𝑛𝑖,𝑡
=

©­«
𝑐
𝑗

𝑖 ,𝑡
𝑑
𝑗

𝑛𝑖,𝑡

𝐴
𝑗

𝑖 ,𝑡
𝑝
𝑗

𝑛,𝑡

ª®¬
−𝜃

. (6)

2.3.2 Household Spending

The household spending on consumption of good ℎ ∈ {𝑁, 𝑆} is:

𝑝ℎ𝑛,𝑡𝐶
ℎ
𝑛,𝑡 = 𝜔𝑛𝜙𝑛,𝑡𝜓

ℎ
𝑛,𝑡 , (7)

whereas the household spending on renting capital 𝑘 is:

𝑟𝑛,𝑡𝐾
𝐻,𝐷
𝑛,𝑡 = 𝜔𝑛𝜙𝑛,𝑡𝜓

𝐷
𝑛 . (8)

Summing these two expressions across all sectors and countries, our restriction on global

aggregate demand shocks, together with our normalization of the 𝜓’s, implies that the value

of world consumption is 1, which serves as our numéraire.
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2.3.3 Investment

The investment in capital satisfies the Euler equation:

𝑝𝐷𝑛,𝑡

𝜒𝐷𝑛,𝑡

(
𝐼𝐷𝑛,𝑡

𝐾𝐷𝑛,𝑡

)1−𝛼𝐷

= 𝜌𝛼𝐷E𝑡

𝑟𝑛,𝑡+1 +
(
1 − 𝛼𝐷

)
𝑝𝐷
𝑛,𝑡+1𝐼

𝐷
𝑛,𝑡+1

𝛼𝐷𝐾𝐷
𝑛,𝑡+1

+
(
1 − 𝛿𝐷

)
𝑝𝐷
𝑛,𝑡+1

𝛼𝐷𝜒𝐷
𝑛,𝑡+1

(
𝐼𝐷
𝑛,𝑡+1

𝐾𝐷
𝑛,𝑡+1

)1−𝛼𝐷 . (9)

The left-hand side in (9) is the sacrifice in period 𝑡 required to attain another unit capital in

period 𝑡 + 1. The right-hand side is the expected benefit of another unit of capital in period

𝑡+1. Notice the role of the investment-specific shock, 𝜒𝐷𝑛,𝑡 , in moving the left- and right-hand

side of this equation.

2.3.4 Market Clearing

Next, we define the value of country 𝑛’s spending on sector 𝑗 as 𝑋 𝑗

𝑛,𝑡 = 𝑝
𝑗

𝑛,𝑡𝑥
𝑗

𝑛,𝑡 . Defining

𝑌
𝑗

𝑛,𝑡 as the value of country 𝑛’s gross production in sector 𝑗, world goods-market clearing

implies that:

𝑌
𝑗

𝑛,𝑡 =

𝒩∑
𝑚=1

𝜋
𝑗

𝑚𝑛,𝑡𝑋
𝑗

𝑚,𝑡 . (10)

We denote final spending on sector ℎ in country 𝑛 as 𝑋𝐹,ℎ
𝑛,𝑡 = 𝑝ℎ𝑛,𝑡𝐶

ℎ
𝑛,𝑡 for ℎ ∈ {𝑁, 𝑆} and

𝑋𝐹,𝐷
𝑛,𝑡 = 𝑝𝐷𝑛,𝑡 𝐼

𝐷
𝑛,𝑡 for sector 𝐷. Total spending on sector 𝑗 output is the sum of country 𝑛’s final

spending on sector 𝑗 plus the use of sector 𝑗 output as intermediates by each sector 𝑗′, i.e.,

𝑋
𝑗

𝑛,𝑡 = 𝑋
𝐹,𝑗

𝑛,𝑡 +
∑
𝑗′∈Ω

𝛽𝑀,𝑗′ 𝑗𝑌
𝑗′

𝑛,𝑡 . (11)

Market clearing for country 𝑛’s labor implies that labor income equals labor demand

across sectors:

𝑤𝑛,𝑡𝐿𝑛 =
∑
𝑗∈Ω

𝛽
𝐿,𝑗
𝑛 𝑌

𝑗

𝑛,𝑡 , (12)
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whereas clearing in the market for capital implies that:

𝑟𝑛,𝑡𝐾
𝐷
𝑛,𝑡 =

∑
𝑗∈Ω

𝛽𝐾,𝑗𝐷𝑌
𝑗

𝑛,𝑡 +
𝜓𝐷
𝑛

1 − 𝜓𝐷
𝑛

(
𝑋𝐹,𝑁
𝑛,𝑡 + 𝑋

𝐹,𝑆
𝑛,𝑡

)
. (13)

The equations in Section 2.3 determine paths of the endogenous variables, which include

wages 𝑤𝑛,𝑡 , rental rates 𝑟𝑛,𝑡 , trade shares 𝜋𝑙
𝑛𝑖,𝑡

for sectors 𝑙 ∈ {𝑁, 𝐷}, prices 𝑝 𝑗𝑛,𝑡 , total

spending 𝑋 𝑗

𝑛,𝑡 , final spending 𝑋𝐹,𝑗

𝑛,𝑡 , and output 𝑌 𝑗𝑛,𝑡 for sectors 𝑗 ∈ Ω. We write the law of

motion for the capital stocks 𝐾𝐷𝑛,𝑡 as:

𝐾𝐷𝑛,𝑡+1 = 𝜒𝐷𝑛,𝑡

(
𝑋𝐹,𝐷
𝑛,𝑡 /𝑝

𝐷
𝑛,𝑡

)𝛼𝐷 (
𝐾𝐷𝑛,𝑡

)1−𝛼𝐷
+

(
1 − 𝛿𝐷

)
𝐾𝐷𝑛,𝑡 , (14)

where 𝐼𝐷𝑛,𝑡 = 𝑋𝐹,𝐷
𝑛,𝑡 /𝑝𝐷𝑛,𝑡 .

2.3.5 Competitive Equilibrium

A competitive equilibrium is characterized by a collection of prices, {(𝑝 𝑗𝑛,𝑡 , 𝑤𝑛,𝑡 , 𝑟𝑛,𝑡)𝒩𝑛=1}∞𝑡=0

for 𝑗 ∈ Ω, and controls {(𝐶ℎ𝑛,𝑡 , 𝐾
𝐻,𝐷
𝑛,𝑡 , 𝐼

𝐷
𝑛,𝑡)𝒩𝑛=1}∞𝑡=0 for ℎ ∈ {𝑁, 𝐷}, such that equations (4)-(9)

hold and goods, labor, and capital markets clear, i.e., equations (10)-(14) are satisfied.

2.4 The Social Planner’s Problem

Since we have assumed that markets are complete and perfectly competitive, we can fol-

low Lucas and Prescott (1971) and solve for the market allocation implied by the previous

definition of competitive equilibrium as the solution to a world planner’s problem. The

social planner’s problem also makes some of the aggregate constraints more transparent

and, therefore, of interest in itself.

The world planner is utilitarian and uses the population weight 𝜔𝑛 to aggregate the

welfare of each representative household. The weights 𝜔𝑛 encode the social planner’s

relative preferences across households. In both interpretations, the planner’s objective at

date 0 is to maximize:

𝑊 =

𝒩∑
𝑛=1

𝜔𝑛𝑈𝑛,0,
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where the planner takes as given the initial stocks of each type of capital in each country

𝑛, 𝐾𝐷
𝑛,0.

The social planner is subject to the following nine constraints (which, given the utility

function we assume, will hold with equality):

1. The sum of labor assigned to production for each good 𝑧 in each sector 𝑗 in country 𝑛

at date 𝑡 , 𝐿𝑗𝑛(𝑧), must be equal to the labor endowment 𝐿𝑛 , that is:

∑
𝑗∈Ω

∫ 1

0
𝐿
𝑗
𝑛(𝑧)𝑑𝑧 = 𝐿𝑛 .

2. The sum of capital assigned to production of each good 𝑧 in each sector 𝑗 in country 𝑛

at date 𝑡 , 𝐾 𝑗𝐷𝑛,𝑡(𝑧), along with capital used by the households to render durable goods

services, must be equal to the capital endowment 𝐾𝐷𝑛,𝑡 , that is:

∑
𝑗∈Ω

∫ 1

0
𝐾
𝑗𝐷

𝑛,𝑡(𝑧)𝑑𝑧 + 𝐾
𝐻,𝐷
𝑛,𝑡 = 𝐾𝐷𝑛,𝑡 .

3. In each country 𝑛 at each date 𝑡, the output 𝑦 𝑗𝑛,𝑡(𝑧) of good 𝑧 in sector 𝑗 is given by:

𝑦
𝑗

𝑛,𝑡(𝑧) = 𝑎
𝑗

𝑛,𝑡(𝑧)
(
𝐿
𝑗
𝑛(𝑧)
𝛽
𝐿,𝑗
𝑛

)𝛽𝐿,𝑗𝑛 (
𝐾
𝑗𝐷

𝑛,𝑡(𝑧)

𝛽
𝐾,𝑗𝐷
𝑛

)𝛽𝐾,𝑗𝐷𝑛 ∏
𝑗′∈Ω

©­«
𝑀

𝑗 𝑗′

𝑛,𝑡(𝑧)

𝛽
𝑀,𝑗 𝑗′
𝑛

ª®¬
𝛽
𝑀,𝑗 𝑗′
𝑛

,

where 𝑀 𝑖 𝑗′

𝑛,𝑡(𝑧) are intermediates from sector 𝑗′ used to make good 𝑧 in sector 𝑗.

4. The world’s use of the output of good 𝑧 in sector 𝑗 from country 𝑛 at date 𝑡 must be

equal to what 𝑛 produces, that is:

𝒩∑
𝑚=1

𝑑
𝑗

𝑚𝑛,𝑡𝑥
𝑗

𝑚𝑛,𝑡(𝑧) = 𝑦
𝑗

𝑛,𝑡(𝑧),

where 𝑥 𝑗𝑚𝑛,𝑡(𝑧) is country 𝑚 ’s absorption of good 𝑧 in sector 𝑗 from country 𝑛. Notice

that the social planner still needs to pay the iceberg costs, since these are physical

transportation costs.
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5. Country 𝑛’s total absorption of good 𝑧 in sector 𝑗 , 𝑥 𝑗𝑛,𝑡(𝑧), must be equal to what it

absorbs from each source 𝑖:

𝑥
𝑗

𝑛,𝑡(𝑧) =
𝒩∑
𝑖=1

𝑥
𝑗

𝑛𝑖,𝑡
(𝑧).

6. Absorption from each sector 𝑗 in country 𝑛 (for final use as investment or consumption

or for intermediate use) 𝑥 𝑗𝑛,𝑡 aggregates across the goods for that sector:

𝑥
𝑗

𝑛,𝑡 =

(∫ 1

0
𝑥
𝑗

𝑛,𝑡(𝑧)
(𝜎−1)/𝜎𝑑𝑧

)𝜎/(𝜎−1)
.

7. The consumption of households and the usage of intermediates in sector ℎ ∈ Ω in

country 𝑛 must be equal to country 𝑛’s absorption from the same sector:

∑
𝑗∈Ω

∫ 1

0
𝑀

𝑗ℎ

𝑛,𝑡(𝑧)𝑑𝑧 + 𝐶
ℎ
𝑛,𝑡 = 𝑥ℎ𝑛,𝑡 .

8. What firms invest and what they use as intermediates must equal country 𝑛’s absorp-

tion from sector 𝐷, that is,∑
𝑗∈Ω

∫ 1

0
𝑀

𝑗𝐷

𝑛,𝑡(𝑧)𝑑𝑧 + 𝐼
𝐷
𝑛,𝑡 = 𝑥𝐷𝑛,𝑡 .

9. The capital available in country 𝑛 at date 𝑡 + 1 follows its law of motion:

𝐾𝐷𝑛,𝑡+1 = 𝜒𝐷𝑛,𝑡

(
𝐼𝐷𝑛,𝑡

)𝛼𝐷 (
𝐾𝐷𝑛,𝑡

)1−𝛼𝐷
+

(
1 − 𝛿𝐷

)
𝐾𝐷𝑛,𝑡 .

For a more detailed discussion of the solution to the planner’s problem as a problem of

intertemporal constrained optimization, we refer the interested reader to Appendix A. The

first-order conditions, together with the distributional assumption in equation (2), deliver

expressions for sectoral allocations and shadow prices on the constraints outlined above. In

the last step, we replace the relevant shadow prices with corresponding competitive prices.

In particular, we let 𝑝 𝑗𝑛,𝑡 = 𝜆
𝑗

𝑛,𝑡 , 𝑤𝑛,𝑡 = 𝜆𝐿𝑛,𝑡 , and 𝑟𝑛,𝑡 = 𝜆𝐾𝑛,𝑡 .
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3 Solution Method

We numerically approximate a recursive equilibrium (Stokey et al., 1989; Ljungqvist and

Sargent, 2004) of our model, that is, a function mapping the states of the economy to the

optimal choices that fulfill the equilibrium conditions derived in Section 2.3. Following Spear

(1988), we call this a “functional rational expectations equilibrium” (FREE). In such an

equilibrium, a potentially high-dimensional state variable x ∈ 𝑋 ⊂ R𝑀 represents the state of

the economy, 𝑀 is the dimensionality of the state space, and a time-invariant optimal policy

function p : 𝑋 → 𝑌 ⊂ R𝐾 , the desired unknown, captures the model dynamics and can be

characterized as the solution to a functional equation (Fernández-Villaverde et al., 2016):

ℋ(p) = 0. (15)

This abstract description nests various characterizations of recursive equilibria, and in par-

ticular, the widespread case where the operator ℋ captures discrete-time first-order equi-

librium conditions. In our formulation of the model, the state of the economy is:

x ∈ R𝑀 :=
(
𝐾𝐷𝑛,𝑡 , 𝑇

𝑁
𝑛,𝑡 , 𝑇

𝑆
𝑛,𝑡 , 𝑇

𝐷
𝑛,𝑡 , 𝜒

𝐷
𝑛,𝑡 , 𝜙𝑛,𝑡 ,𝜓

𝑁
𝑛,𝑡 , 𝑑

𝑁
𝑛𝑖,𝑡 , 𝑑

𝐷
𝑛𝑖,𝑡

)
, (16)

whereas the policy vector is:

p ∈ R𝐾 :=
(
𝑝𝑁𝑛,𝑡 , 𝑝

𝑆
𝑛,𝑡 , 𝑝

𝐷
𝑛,𝑡 , 𝐶

ℎ
𝑛,𝑡 , 𝑟𝑛,𝑡 , 𝐾

𝐻,𝐷
𝑛,𝑡 , 𝑌

𝑁
𝑛,𝑡 , 𝑌

𝑆
𝑛,𝑡 , 𝑌

𝐷
𝑛,𝑡 , 𝑤𝑛,𝑡 ,

𝑋𝐹,𝑁
𝑛,𝑡 , 𝑋

𝐹,𝑆
𝑛,𝑡 , 𝑐

𝑁
𝑛,𝑡 , 𝑐

𝑆
𝑛,𝑡 , 𝑐

𝐷
𝑛,𝑡 ,𝜋

𝑁
𝑛𝑖,𝑡 ,𝜋

𝐷
𝑛𝑖,𝑡 , 𝑋

𝑁
𝑛,𝑡 , 𝑋

𝑆
𝑛,𝑡 , 𝑋

𝐷
𝑛,𝑡 , 𝐼

𝐷
𝑛,𝑡

)
, (17)

and where both for the states and policies, 1 ≤ 𝑛, 𝑖 ≤ 𝒩 are the indices over coun-

tries/regions, and where both 𝑀 and 𝐾 scale ∝ 𝒩2. For example, with just three coun-

tries/regions (as we will have in our calibration), the economy has 32 states.

There are substantial computational challenges in solving this model globally because of

a) the presence of random shocks, b) a high-dimensional state space, c) strong non-linearities

in the equilibrium functions, and d) irregular geometries of the ergodic set of states.4 In
4 A global solution adheres to the model equilibrium conditions throughout the entire state space, that is, the

computational domain, whereas a local solution is only concerned with the local approximation around a point,
typically the deterministic steady state of the model.
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the presence of these four features, the curse of dimensionality (Bellman, 1961) imposes a

considerable roadblock.

While there are methods that can handle a subset of a), b), c), and d), most of them fail at

matching all four requirements. Perturbation methods (see, e.g., Schmitt-Grohé and Uribe,

2004; Adjemian et al., 2018, and references) do not allow us to study large shocks or obtain

global solutions. Computational methods designed to approximate policy functions in high-

dimensional nonlinear settings, such as Smolyak sparse grids and adaptive sparse grids, fail

if the dimensionality of the state space exceeds around 20 and require regular geometries

of the ergodic set of states.5 Finally, standard Gaussian processes (e.g., Scheidegger and

Bilionis, 2019) face problems with strong non-linearities.

Currently, the only tractable method that jointly addresses all four features relies on

neural networks. To this end, we describe in the following Subsection 3.1 how the recently

introduced solution method called “Deep Equilibrium Nets” (DEQNs, see Azinovic et al.,

2022) can be adopted to compute global solutions for our model. By doing so, we follow

previous applications of neural networks in economics (see, e.g., Duffy and McNelis (2001),

Norets (2012), Maliar et al. (2021), Duarte (2018), Fernández-Villaverde et al. (2019), and Villa

and Valaitis (2019)).

3.1 Using “Deep Equilibrium Nets” to solve our Model

We apply the recently developed DEQN solution method to compute the FREE, which is

characterized by the equations (4)-(14) and which formally correspond to the functional

equation (15).6 From an abstract perspective, DEQNs are deep neural networks that ap-

proximate the policy function p and are trained in an unsupervised fashion to satisfy all

equilibrium conditions along simulated paths of the economy.7

At its core, the DEQN algorithm consists of four building blocks: i) deep neural networks

for approximating the equilibrium policies; ii) a suitable loss function measuring the quality

of a given approximation at a given state of the economy; iii) an updating mechanism to
5 For more details on Smolyak and adaptive sparse grids, see for instance Krueger and Kubler (2004);

Fernández-Villaverde et al. (2015); Judd et al. (2014); Brumm and Scheidegger (2017); Brumm et al. (2021).
6 The corresponding equality conditions used in the DEQN algorithm are summarized by the equations (25)-

(43) below. Furthermore, the corresponding dynamics for the state transition is given in Appendix C.3.
7 We implemented DEQN in Tensorflow v2.4, which can be downloaded from tensorflow.org.
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improve the quality of the approximation; and iv) a sampling method for choosing states

for updating and evaluating of the approximation quality. We next outline each of the four

components separately for clarity, thereby closely following Azinovic et al. (2022). For more

details on the concrete implementation, we refer the interested reader to Appendix B.

3.1.1 Deep Neural Networks as Function Approximators

The objective of the DEQN algorithm is to approximate the equilibrium functions by a deep

neural network, that is, p(x) ≈ ℱν(x). In particular, we use so-called densely connected feed-

forward neural networks for approximating the equilibrium policies because they combine

a set of desirable qualities. Neural networks are universal function approximators (Hornik

et al., 1989); that is, they can resolve highly non-linear features and can handle a large

amount of high-dimensional input data.8 The intuition behind these properties is that deep

neural networks transform the functional approximation problem from its original complex

geometry to a much simpler geometric space thanks to the successive application of linear

translations and nonlinear transformations.

More precisely, given the hyper-parameters
{
𝜅, {𝑚𝑖}𝜅𝑖=1, {µ𝑖(·)}

𝜅
𝑖=1

}
and the trainable pa-

rameters ν, a neural network ℱν encodes the map:

x→ ℱν(x) = µ𝜅(W𝜅 ...µ2(W2µ1(W1x + b1) + b2)... + b𝜅),

where W𝑖 ∈ R𝑚𝑖+1×𝑚𝑖 are the weight matrices, and b𝑖 ∈ R𝑚𝑖+1 are the bias vectors.

Let us discuss each of the previous elements. The hyper-parameter 𝜅 is the number

of layers of the neural network, and 𝑚𝑖 is the number of nodes in layer 𝑖. The nonlinear

functions 𝜇𝑖 are the activation functions and are applied element-wise to each entry of a

vector, that is, µ𝑖(x) = [µ𝑖(𝑥1), . . . ,µ𝑖(𝑥𝑚𝑖+1)]𝑇 . Finally, the vector ν collects all entries of

the weight matrices and the bias vectors. As we pointed out before, a densely connected

feedforward neural network is, hence given by a sequence of matrix-vector multiplications

followed by the application of an activation function.
8 See Goodfellow et al. (2016) for an excellent introduction to deep learning, and (Bronstein et al., 2021) for

a more advanced treatment focused on the geometric properties of the deep networks.
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3.1.2 An “Economic” Loss Function to train the Deep Neural Network

The selection of hyper-parameters
{
𝜅, {𝑚𝑖}𝜅𝑖=1, {µ𝑖(·)}

𝜅
𝑖=1

}
is known as the architecture se-

lection. This is usually done by exploring some common alternatives and checking how

the resulting deep neural network approximates the function of interest. Approaches to

determine these hyper-parameters include using prior experience, manual, random, or grid

search, as well as methods such as Bayesian optimization (see, e.g., Bergstra et al., 2011).

The determination of the values of ν is known as training the network. This training is

implemented by minimizing a loss function that measures how close ℱν(x) is to p(x).
If the neural network ℱν encoded the true equilibrium functions p exactly, equations (25)-

(43) would evaluate to zero for all states x of the economy (cf. equation (15)). Hence, a natural

loss function quantifies the extent to which the equations (25)-(43) differ from zero when

evaluated at a given state x. The points at which we perform this evaluation are commonly

referred to as the training set, which we denote as𝒟train.9

Given parameters ν and a set of states𝒟train, the loss function in the DEQN is defined as

the mean-squared error of all equilibrium conditions whose policies are parameterized by

the deep neural network with trainable parameters ν, and which are evaluated at a given

state x𝑖 :

ℓ𝒟train(ν) := 1
|𝒟train |

∑
x𝑗∈𝒟train

((
eq. (25)x𝑗 (ν)

)2
+ · · · +

(
eq. (43)x𝑗 (ν)

)2
)
. (18)

3.1.3 Updating Mechanism

The loss function above is defined such that smaller values correspond to lower mean-

squared errors in the equilibrium conditions. Consequently, trainable parameters are

deemed “good" if they minimize the loss function. Due to the functional structure of deep

neural networks, variants of gradient descent are typically used to optimize the parameters

ν. Gradient descent updates the parameters step-wise in the direction in which the loss
9 Checking the Euler equation also requires the evaluation of the expectation operator. We do so by either

implementing a simple monomial quadrature rule that scales linearly with the number of continuous state
variables (see, e.g., Judd, 1998, and references therein) or by using an efficient, “DEQN-compatible” Monte-
Carlo approach.
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function decreases:

νnew
𝑘

= νold
𝑘
− 𝛼learn 𝜕ℓ𝒟train(νold)

𝜕νold
𝑘

∀𝑘 ∈ {1, . . . , 𝑙𝑒𝑛𝑔𝑡ℎ(ν)}. (19)

The learning rate 𝛼learn > 0 governs by how much the parameters are adjusted with each

gradient descent step. Some popular variants of gradient descent can speed up the learning

process. In particular, we use Adam (see Kingma and Ba, 2014) together with mini-batch

gradient descent (for more details, see Appendix B below).

3.1.4 Sampling

We generate our training set𝒟train by sampling from the ergodic set of states of the economy.

In that way, we will train the DEQN in the region where the economy is going to spend most

of its time, and our approximated equilibrium functions will be most accurate where we

need them to be, e.g., the states visited on the simulated path of the economy.

First, we start with an arbitrary (but feasible given the technology and preferences of the

economy) state x0
1, and randomly initialized ν. Then, we simulate 𝑇 − 1 periods forward

based on the approximated equilibrium functions given by the neural network, and the

model-implied dynamics of the endogenous and exogenous states (see, e.g., Section C.3).

Since DEQN approximates the equilibrium functions directly, simulating the evolution of

the economy is computationally cheap. The resulting 𝑇 simulated states of the economy

constitute our dataset 𝒟0
train = {x0

1 . . . , x
0
𝑇
}. We call the set of 𝑇 simulated periods 𝒟train an

episode.

Second, we split this input data into mini-batches –smaller subsets of size𝑚 with random

membership– and perform gradient descent steps on each subset as given in equation (19).

Consequently, each simulated state is only used for a single gradient descent step, which

guards our algorithm against overweighting one particular data point. A completion of an

epoch is defined as when the whole dataset𝒟train is passed through the algorithm. Per epoch,

the neural network parameters are updated 𝑇/𝑚 times.

Third, we set x1
1 = x0

𝑇
and use the updated parameters of the neural network to simulate

𝑇 − 1 periods forward, generate a new training set 𝒟1
train = {x1

1, . . . , x
1
𝑇
}, and repeat the
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process. The error on a new set of simulated states is an out-of-sample error and can be

used to judge the out-of-sample quality of the approximation. Since we can generate a large

amount of training data in this setting, data availability is not a primary concern. In fact,

our method allows us to train the neural network on more than a billion simulated states.

As the neural network learns better parameter values, the simulated states become better

representatives of the ergodic set of states of the economy.

Finally, notice that Ebrahimi Kahou et al. (2022) show how deep learning algorithms

yield solutions that fulfill the transversality conditions of equilibrium models. Deep learn-

ing has a built-in “inductive bias” toward smooth solutions (in the appropriate sense of

functional approximation smoothness), which are precisely the solutions that satisfy those

transversality conditions.

Algorithm 1 provides the pseudo-code of the DEQN we just described. For notational

simplicity, the pseudo-code implements gradient descent rather than mini-batch gradient

descent.
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Algorithm 1: Algorithm for training deep equilibrium nets.
Data:
𝑇 (length of an episode), 𝑁epochs (number of epochs on each episode), 𝑁 iter

(maximum number of iterations),
𝜏mean, 𝜏max (the desired threshold for mean and max error, respectively),
𝜖mean = ∞, 𝜖max = ∞ (starting value for current mean and max error, respectively),
ν0 (initial parameters of the neural network), x0

1 (initial state to start simulations
from), 𝑖 = 0 (set counter),
𝛼learn (learning rate)
Result:
success (boolean if thresholds were reached)
νfinal (final neural network parameters)
while ((𝑖 < 𝑁 iter) ∧ ((𝜖mean ≥ 𝜏mean) ∨ (𝜖max ≥ 𝜏max))) do
𝒟 𝑖

train← {x𝑖1, x
𝑖
2, . . . , x

𝑖
𝑇
} (generate new training data)

x𝑖+1
0 ← x𝑖

𝑇
(set new starting point)

𝜖max← max
{
maxx∈𝒟 𝑖

train
|𝑒 . . .

x (ν)|
}
, 𝜖mean← max

{
1
𝑇

∑
x∈𝒟 𝑖

train
|𝑒 . . .

x (ν)|
}

(update
errors)

for 𝑗 ∈ [1, ..., 𝑁 epochs] do
(learn 𝑁epochs on data)
for 𝑘 ∈ [1, ..., length(ν)] do

ν 𝑖+1
𝑘

= ν 𝑖
𝑘
− 𝛼learn

𝜕ℓ𝒟 𝑖
train
(ν 𝑖)

𝜕ν 𝑖
𝑘

(do a gradient descent step to update the network parameters)
end

end
𝑖 ← 𝑖 + 1 (update episode counter)

end
if 𝑖 = 𝑁 iter then return (success← 𝐹𝑎𝑙𝑠𝑒 , νfinal← ν 𝑖) ;
else return (success← 𝑇𝑟𝑢𝑒, νfinal← ν 𝑖) ;
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4 Calibration

We calibrate our model to replicate a world economy with three economic regions, that

is, 𝒩 = 3: the U.S. (US), China (CH), and the Eurozone (EU). These are the three largest

economic regions of the world, accumulating among them nearly 50% of the world GDP.

Additionally, by having three regions, we can evaluate the asymmetric effects of shocks

among different regions while keeping the model sufficiently tractable for building intuition

about our economic findings. Table 1 lists all parameters in our model calibration.

In terms of moments to match, we target the relative size of each of the three regions as

well as their corresponding productivity processes. First, we ensure that the three model

regions’ relative GDP is consistent with the data. To that end, we calculate country-specific

GDP in the model, which is defined as follows

𝑌𝑛,𝑡 = 𝑤𝑛,𝑡𝐿𝑛 + 𝑟𝑛,𝑡
(
𝐾𝐷𝑛,𝑡 − 𝐾

𝐻,𝐷
𝑛,𝑡

)
,

where labor income 𝑤𝑛,𝑡𝐿𝑛 is given by (12) and capital income 𝑟𝑛,𝑡𝐾𝐷𝑛,𝑡 by (13). To avoid val-

uation problems, we exclude rental payments by households on durables from our measure

of GDP. We then calibrate the relative size of the local labor markets based on the number

of employed persons aged over 16 years in 2021 (153 million in the U.S., 747 million in

China, and 195 million in the Euro area). By normalizing 𝐿𝑈𝑆 to one, we set 𝐿𝐶𝐻 = 4.88 and

𝐿𝐸𝑈 = 1.27.

Second, we calibrate the productivity parameters in line with the empirical evidence of

country-specific TFP. For the U.S. and the Eurozone, we align the persistence and shock size

of country-specific TFP with estimated counterparts in Smets and Wouters (2007) and Smets

and Wouters (2010). For China, we calibrate productivity parameters based on time series

RTFPNACNA632NRUG from the St.Louis Federal Reserve. While productivity in all three

countries is fairly persistent, it is most persistent in the United States. In contrast, shocks to

the persistent TFP process are the largest by far for China, while the United States and the

Eurozone are comparable in size.

Third, the rest of the parameters are set to standard values from the literature or, alter-

natively, to very conservative values. For instance, we set the discount factor, 𝜌, to 0.987 to
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Parameter Description Value Source
A. Preferences
𝜌 quarterly discount factor 0.987 Eaton et al. (2016a)
for𝒩 − 1 = 2 countries: 𝜌𝜙𝑛 persistence demand shocks 0.84 Primiceri and Jusiniano (2008)
𝜎𝜙𝑛 (in %) volatility demand shocks 3.13 Primiceri and Jusiniano (2008)
𝜓𝐷
𝑛 1/3

𝜌𝜓𝑛 persistence sector preference 0.84
𝜎𝜓𝑛 (in %) volatility sector preference 1.57
𝜔𝐸𝑈 weight social planner 0.21 (1/3) Population share
𝜔𝑈𝑆 weight social planner 0.15 (1/3) Population share
𝜔𝐶𝐻 weight social planner 0.64 (1/3) Population share
B. Technology
𝜃 trade elasticity 2.00 Eaton et al. (2016a)
𝜎 elasticity of substitution 2.50 Eaton et al. (2016a)
𝛽𝐿,𝑁 , 𝛽𝐿,𝑆, 𝛽𝐿,𝐷 output elasticities of labor 2/3
𝛽𝐾,𝑁𝐷 , 𝛽𝐾,𝑆𝐷 , 𝛽𝐾,𝐷𝐷 output elasticity of capital 1/12
∀𝑗 , 𝑗′ ∈ {𝑁, 𝑆, 𝐷}: 𝛽𝑀,𝑗 𝑗′ output elasticities intermediates 1/12
𝛼𝐷 capital adjustment cost 0.55 Eaton et al. (2016a)
𝛿 quarterly depreciation rate 0.026 Eaton et al. (2016a)
C. Trade
𝑑𝑙𝑛𝑛 1
𝜌𝑑𝑛𝑖 where 𝑖 ≠ 𝑛 persistence trade cost shocks 0.85
𝜎𝑑𝐷

𝑛𝑖
, 𝜎𝑑𝑁

𝑛𝑖
(in %) where 𝑖 ≠ 𝑛 volatility trade cost shocks 1.00

Case 1: Symmetric Trade Costs:
𝑑̄𝐷
𝑛𝑖

, 𝑑̄𝑁
𝑛𝑖

where 𝑖 ≠ 𝑛 iceberg trade costs ln(1.2) Irarrazabal et al. (2015)

Case 2: Asymmetric Trade Costs:
𝑑̄𝑙
𝑈𝑆_𝐸𝑈 , 𝑑̄𝑙

𝐸𝑈_𝑈𝑆𝐴 iceberg trade costs ln(1.2) Irarrazabal et al. (2015)
𝑑̄𝑙
𝐶𝐻_𝐸𝑈 , 𝑑̄𝑙

𝐸𝑈_𝐶𝐻 iceberg trade costs ln(5)
𝑑̄𝑙
𝑈𝑆_𝐶𝐻 , 𝑑̄𝑙

𝐶𝐻_𝑈𝑆 iceberg trade costs ln(5)
D. Stochastic Processes
𝜌𝜒𝑛 persistence investment efficiency 0.81 Primiceri et al. (2011)
𝜎𝜒𝑛 (in %) volatility investment efficiency 5.78 Primiceri et al. (2011)
𝜌𝑇𝐷𝑈𝑆 , 𝜌𝑇𝑁𝑈𝑆 , 𝜌𝑇𝑆𝑈𝑆 persistence sector productivity U.S. 0.95 Smets and Wouters (2007)
𝜌𝑇𝐷𝐸𝑈 , 𝜌𝑇𝑁𝐸𝑈 , 𝜌𝑇𝑆𝐸𝑈 persistence sector productivity EU 0.83 Smets and Wouters (2010)
𝜌𝑇𝐷𝐶𝐻 , 𝜌𝑇𝑁𝐶𝐻 , 𝜌𝑇𝑆𝐶𝐻 persistence sector productivity China 0.81 TFP Data
𝜎𝑇𝐷𝑈𝑆 , 𝜎𝑇𝑁𝑈𝑆 , 𝜎𝑆𝐷𝑈𝑆 (in %) volatility sector productivity U.S. 0.45 Smets and Wouters (2007)
𝜎𝑇𝐷𝐸𝑈 , 𝜎𝑇𝑁𝐸𝑈 , 𝜎𝑆𝐷𝐸𝑈 (in %) volatility sector productivity EU 0.61 Smets and Wouters (2010)
𝜎𝑇𝐷𝐶𝐻 , 𝜎𝑇𝑁𝐶𝐻 , 𝜎𝑆𝐷𝐶𝐻 (in %) volatility sector productivity China 1.21 TFP Data

Table 1: Calibration of the three country model.

get a net annual return on capital of around 5% (given the structure of our model, we want

to match the net return on all capital, not the return on bonds). Similarly, the persistence

of demand shocks, 𝜌𝜙𝑛 = 0.85, and its volatility, 𝜎𝜓𝑛 = 0.03 is taken from Primiceri and

Jusiniano (2008).

However, it is important to notice that, unless there is a compelling reason to do oth-

erwise, we set identical parameter values across countries. In that way, we can focus on
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the heterogeneity in terms of GDP and productivity across countries triggered by different

shocks instead of the heterogeneity caused by ex-ante differences.

Fourth, we will have two different calibrations of the trade costs: one with symmetric

costs and one with asymmetric costs. In the symmetric costs case, 𝑑̄𝐷
𝑛𝑖

= 𝑑̄𝑁
𝑛𝑖

= 𝑙𝑛(1.2), that is,

we have iceberg costs of around 18% for all international exchanges. This number is based

on the results of Irarrazabal et al. (2015). These authors report a median iceberg cost of 14%,

but they emphasize that their methodology can only identify additive trade costs relative to

multiplicative costs. Thus, their estimates are a lower bound of the true value of additive

costs. We correct this bias by increasing the costs by another 4%.

In the asymmetric cost case, trade between the U.S. and the Eurozone still has iceberg

costs of around 18% but now trade with China is prohibitively expensive, with iceberg costs

of 61%. In comparison, the Trump administration ad valorem tariffs on Chinese goods ranged

between 7.5% and 25%. Thus, our goal is not to capture, with this second calibration, an

observed situation but to have a formal comparison between a scenario where the three

regions are integrated and a scenario where one region is (mostly) excluded from the trade

block formed by the other two.

5 Quantitative Results: Symmetric Trade Costs

Since we solve our model globally, we can study its stochastic properties and the model-

implied dynamics.10 In this section, we provide some summary statistics to get a sense

of the behavior of the model and, next, report the impulse-response functions (IRFs) to a

variety of different three-standard-deviation shocks. All of our results come from the case

with symmetric trade costs. In Section 6, we will repeat these exercises in the asymmetric

cost case.
10 We compute the “FREE” on a Laptop with 12 GB Ram and 4 CPUs (Intel(R) Core(TM) i7-5600U CPU @

2.60GHz) and obtain solutions with average Euler Equation errors as low as 0.004% within approximately 2
hours of run-time. This run-time, however, is only indicative if one solves a model from scratch, where no
prior knowledge nor a good initial guess for the policy functions exists. In contrast, one can benefit from
pre-training if one wants to re-run a model with slightly changed parameters. That is, by re-starting the model
(with changed parameter settings) from a known solution, solution times can reduce to a few minutes. See
Appendix B for implementation details.
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5.1 Summary Statistics

The left panel of Figure 1 plots a histogram of the U.S. output along a simulated path for the

symmetric trade cost case (simulation length is 10,000 periods), while the right panel plots

200 periods of this simulation. The average output is 0.281, with a standard deviation of

0.008, or 2.7 percentage points, close to the historical volatility of the observed U.S. output

after World War II (Stock and Watson, 2003).
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Figure 1: Left panel: histogram of the U.S. output over a 10,000-period simulation. Right
panel: the evolution of the U.S. output along a simulated path (simulation length is 200
quarters).

It is instructive to inspect the international trade block of the model. We start with the

histogram of import shares of non-durables. The left panel of Figure 2 plots the histogram of

𝜋𝑁
𝐸𝑈,𝑈𝑆

over the same simulation of 10,000 periods that we used above. The mean is 29.1%,

and the standard deviation is 0.9%. The right panel repeats the same exercise for the case

𝜋𝑁
𝐶𝐻,𝑈𝑆

, with a mean of 29.2% and standard deviation of 0.9%.

Similarly, Figure 3 plots the histograms of the import shares 𝜋𝐷
𝑛,𝑈𝑆𝐴

of durables. In terms

of basic statistics, for European imports from the U.S., we have a mean of 29.1% and a

standard deviation of 0.9%, while for Chinese imports from the U.S., the mean is 29.2% and

a standard deviation of 0.9%

For completeness, Table 2 reports some of the other summary statistics of the model

(columns two and three for the case with symmetric trade costs) for the sector of durables.

As expected, the production costs are lowest in China due to its larger endowment of labor
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Figure 2: Histogram of import shares 𝜋𝑁
𝑛,𝑈𝑆𝐴

of non-durables (EU,USA) (left panel) and (CH,
USA) (right panel) along a simulated path (simulation length is 10,000 periods).
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Figure 3: This figure shows the histogram of the evolution of import shares of durables
(EU,USA) (left panel) and (CH, USA) (right panel) along a simulated path (simulation length
is 10,000 periods).

and highest in the U.S. Not surprisingly, the patterns of trade inherit the symmetry of trade

costs.
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Table 2: Model-implied Moments

Variable Symm. Trade Cost Asymm. Trade Cost

Mean Std Mean Std
A. Prices in sector D
𝑝𝐷
𝑈𝑆

0.233 0.005 0.304 0.007
𝑝𝐷
𝐸𝑈

0.195 0.004 0.255 0.006
𝑝𝐷
𝐶𝐻

0.073 0.003 0.123 0.007

B. Costs in sector D
𝑐𝐷
𝑈𝑆

0.153 0.003 0.169 0.004
𝑐𝐷
𝐸𝑈

0.128 0.003 0.142 0.003
𝑐𝐷
𝐶𝐻

0.048 0.002 0.054 0.003

B. Import shares in sector D
𝜋𝐷
𝑈𝑆,𝑈𝑆

0.419 0.007 0.576 0.008
𝜋𝐷
𝑈𝑆,𝐸𝑈

0.291 0.009 0.401 0.009
𝜋𝐷
𝑈𝑆,𝐶𝐻

0.291 0.009 0.023 0.001
𝜋𝐷
𝐸𝑈,𝑈𝑆

0.291 0.009 0.400 0.009
𝜋𝐷
𝐸𝑈,𝐸𝑈

0.418 0.006 0.576 0.008
𝜋𝐷
𝐸𝑈,𝐶𝐻

0.290 0.009 0.023 0.001
𝜋𝐷
𝐶𝐻,𝑈𝑆

0.292 0.009 0.037 0.001
𝜋𝐷
𝐶𝐻,𝐸𝑈

0.290 0.008 0.037 0.001
𝜋𝐷
𝐶𝐻,𝐶𝐻

0.419 0.007 0.924 0.004

28

Electronic copy available at: https://ssrn.com/abstract=4278274



5.2 Impulse-Response Functions

We move now to analyze the IRFs of the model. Our first experiment traces the consequences

of a three-standard-deviation productivity shock in the U.S.11 In Figure 4, we see that 𝐺𝐷𝑃

increases in the U.S. by 0.12% (solid line).12 In comparison, the effect at impact is only

about half in Europe (dashed line) and China (dotted line). The intuition is simple: higher

productivity in the U.S. mainly benefits the U.S. but, through international trade, induces

growth in output in its trading partners. The effect is more persistent in Europe than in

China. Since a potential future productivity shock in Europe is more persistent than in

China, higher productivity in the U.S. creates more incentives for investment in Europe than

in China.
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Figure 4: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected productivity shock across all three
sectors (durables, non-durables, services) in the U.S.

Interestingly, this asymmetric response is quite different when the productivity shock hits

another region. For example, Figure 5 plots the country-specific IRFs to a three-standard-

deviation productivity shock in China. In this case, China’s 𝐺𝐷𝑃 increases by about 0.33%.

Moreover, the differences in the persistence of the shocks are much less pronounced com-

pared to Figure 4. These two figures show that, for the dynamics of our model, the region

where the productivity shock hits is crucial.
11 Following the convention in the literature on uncertainty shocks, we plot IRFs to three-standard-deviation

shocks because they highlight better the non-linear aspects of the model. Technically speaking, we are dealing
with generalized impulse-response functions (GIRFs) because their shape depends on the size and sign of the
shock as well as where the shock hits. See Andreasen et al. (2018) for details.

12 In the interest of brevity, we focus on the impulse responses of the most extreme countries in terms of
productivity calibrations, that is, in the case of the shock size and persistence, the U.S. and China.
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Figure 5: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected productivity shock across all three
sectors (durables, non-durables, services) in China.

Additionally, 𝐺𝐷𝑃 numbers in Europe and in the U.S. increase by roughly two-thirds of

the magnitude observed for China. That is, a productivity shock in China drives a much

smaller output wedge between the three regions compared to the productivity shock in

the U.S. The larger magnitude can be explained by the larger productivity shocks in China

compared to the U.S., but also by the difference in productivity shock persistence.
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Figure 6: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected increase in the demand for the
U.S., 𝜙𝑈𝑆,𝑡 .

Next, we assess the consequences of an unexpected shock that directly increases demand

for the U.S. and, indirectly, for Europe. As we restrict aggregate demand shocks to have no

global component, and due to the way we set up the model, an increase in 𝜙𝑈.𝑆.,𝑡 will not

affect the second country’s (Europe) demand coefficient. However, it will lead to a reduction

in the third country’s (China) demand coefficient. We can think about this shock as a move
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in the world demand away from Chinese goods into U.S. goods.

In this case, one would expect the 𝐺𝐷𝑃 in the U.S. to go up and in China to go down.

The response of 𝐺𝐷𝑃 in Europe, however, is not ex-ante clear. There will be some negative

effects from the relative increase in the demand for U.S. goods and some opposite signed

effects due to the relatively higher demand for European over Chinese goods.

Figure 6 shows the resulting impulse responses of 𝐺𝐷𝑃. As expected, output in the

U.S. (China) sharply increases (decreases), whereas the output in Europe slightly decreases.

Interestingly, given that the three regions are of very similar size due to the symmetric setup,

the global effect of a large demand shock is negative. This implies that GDP global 𝐺𝐷𝑃

goes down upon the arrival of a large demand shock, which can be seen directly from Figure

7.
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Figure 7: Response of global 𝐺𝐷𝑃 to an unexpected increase in the demand for the U.S.,
𝜙𝑈𝑆,𝑡 .

The intuition for this finding is simple: China is the cheapest producer of goods, given its

relative size. A demand shock that lowers the relative demand for its goods makes, in some

sense, the world economy less productive. To the best of our understanding, this is a novel

result that shows the advantages of having a rich model with three regions and stochastic

dynamics.

Our next experiment studies the effect of a sector-specific demand shift between the

services and non-durables sectors within a given country. In particular, we look at the

effects of an increase in the demand for non-durables at the expense of services in the U.S.

Since any deviation from the equal-weighting scheme of sectors is detrimental to output in
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the U.S. (elasticities of substitution are finite), Figure 8 documents that output decreases in

the U.S., as it is harder to produce relatively more non-durables, but increases in Europe and

China as the latter countries benefit through an increase in their exports to the U.S.

0 10 20 30 40

Quarters

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

G
D

P
 c

h
an

g
e 

[%
]

USA
EUROPE
CHINA

Figure 8: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected sector-specific demand shift in the
U.S., 𝜓𝑁

𝑈𝑆,𝑡
.

In particular, the U.S. now wants to invest more (see Figure 9), which requires more inputs

from Europe and China. We can see these increased imports in Figure 10. Both Europe and

China mildly increase their absorption of U.S. goods in the durables sector. That is, part of

the U.S.-specific investment boom spills over to China and Europe.
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Figure 9: Response of investment in the U.S. to an unexpected sector-specific demand shift
in the U.S., 𝜓𝑁

𝑈𝑆,𝑡
.

The previous IRFs show that access to international trade helps to counteract this sud-

den change in the consumption composition and, therefore, changes the dynamics of the

economy after shocks arrive.
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Figure 10: Responses of U.S. specific import shares in the non-durables sector with respect
to Europe and China to an unexpected sector-specific demand shift in the U.S., 𝜓𝑁

𝑈𝑆,𝑡
.

Finally, we investigate the consequences of an investment-specific technological shock in

the U.S. As expected, a more efficient technology that converts investment into capital leads

to a local investment boom, as reported in Figure 11.

0 10 20 30 40
Quarters

-5

0

5

10

15

20

25

30

35

C
h

an
g

e 
in

 in
ve

st
m

en
t 

[%
]

USA
EUROPE
CHINA

Figure 11: Country-specific IRFs of investment to an unexpected investment-specific tech-
nological shock in the U.S., 𝜒𝐷

𝑈𝑆,𝑡
.

In contrast, investment in China and Europe drops slightly as these countries can indi-

rectly benefit from the investment-specific shock in the U.S. by means of international trade.

Therefore, China and Europe find it more beneficial to rely more heavily on imports from

the U.S. in the durables sector as opposed to producing the durables goods themselves. Ul-

timately, the abundance of durable capital is manifested in an increase in output in the U.S.

As barriers to trade are pretty low and trade flows are symmetric in this model calibration,
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both Europe and China benefit to a similar extent from the improved conditions for local

investment in the U.S as reported in Figure 12. In other words, a local investment-specific

shock has comparable effects as a local productivity shock.
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Figure 12: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected investment-specific technological
shock in the U.S., 𝜒𝐷

𝑈𝑆,𝑡
.

6 Quantitative Results: Asymmetric Trade Costs

This section discusses the model calibration with asymmetric trade costs reported as "Case 2"

in Panel C of Table 1. Similar to Section 5, we start by providing some summary statistics to

get a sense of the behavior of the model and then report the IRFs for analogous experiments

to those presented for the symmetric trade costs case in Section 5.

6.1 Summary Statistics

The left panel of Figure 13 plots a histogram of the U.S. output along a simulated path for

the asymmetric trade cost case (simulation length is 10,000 periods), while the right panel

plots 200 periods of this simulation. The average output is 0.283, with a standard deviation

of 0.009, or 3.04 percentage points. Both numbers are very close to those observed in the

model with symmetric trade costs. As it is well-known in models of international trade, the

aggregate output effect of trade is minor when an economy is large (a different point might

be the size of the welfare effects, although the results in Arkolakis et al., 2012 suggest that
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the welfare effects are also likely to be small). In this case, the U.S. can still trade cheaply

with Europe, even if not with China.
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Figure 13: Left panel: histogram of the U.S. output over a 10,000-period simulation. Right
panel: the evolution of the U.S. output along a simulated path (simulation length is 200
quarters).

To understand the detailed effects of asymmetric trade costs, it is instructive to inspect

the international trade block of the model. We start with the histogram of import shares

of non-durables. The left panel of Figure 14 plots the histogram of 𝜋𝑁
𝐸𝑈,𝑈𝑆

over the same

simulation of 10,000 periods that we used above.
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Figure 14: Histogram of import shares 𝜋𝑁
𝑛,𝑈𝑆𝐴

of non-durables (EU,U.S.) (left panel) and
(CH, U.S.) (right panel) along a simulated path (simulation length is 10,000 periods).

The mean import share is 40%, and the standard deviation 0.9%. The right panel re-

peats the same exercise for 𝜋𝑁
𝐶𝐻,𝑈𝑆

, with a mean of 3.7% and standard deviation of 0.1%.
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Comparing the absorption of U.S. imports in Europe with the absorption of U.S. imports in

China reveals that, unsurprisingly, high barriers to trade render imports from the U.S. very

unattractive for China. At the same time, the relatively low barriers to trade between the U.S.

and Europe foster a very active trade relationship between the two countries. In fact, the

trade exposure of Europe to the U.S. and vice versa is significantly higher in the asymmetric

case compared to the symmetric case.

Similarly, Figure 15 plots the histograms of the import shares 𝜋𝐷
𝑛,𝑈𝑆𝐴

of durables origi-

nating in the U.S. both for Europe (left panel) and China (right panel). As we already saw

in the case of the non-durables sector, there is a stark difference in the trade flows between

the U.S. and China compared to the flows between the U.S. and Europe due to differential

barriers to trade.

0.37 0.38 0.39 0.4 0.41 0.42 0.43 0.44

Europe, USA
D

0

200

400

600

800

1000

1200

1400

C
o

u
n

t

0.032 0.034 0.036 0.038 0.04 0.042
D
China, USA

0

200

400

600

800

1000

1200

1400
C

o
u

n
t

Figure 15: This figure shows the histogram of the evolution of import shares of durables
(EU,U.S.) (left panel) and (CH, U.S.) (right panel) along a simulated path (simulation length
is 10,000 periods).

For completeness, columns four and five of Table 2 report some of the other summary

statistics for the case with asymmetric trade costs for the sector of durables. While the

ranking in production costs is the same compared to the case of symmetric trade costs, the

average costs are now higher across all sectors. The reason for this increase in costs is the

lack of international trade flows and the diversification of shocks due to higher barriers to

trade.
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6.2 Impulse-Response Functions

We now move to analyze the IRFs of the model with asymmetric trade costs. We follow the

same structure as in Section 5 to maximize comparability across the two model calibrations.

Therefore, we start by studying the consequences of output across the three regions after a

productivity shock in the U.S. in Figure 16.
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Figure 16: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected productivity shock across all
three sectors (durables, non-durables, services) in the U.S.

After the shock, output in the U.S. increases by about 0.14% (solid line). In comparison,

the effect is slightly less than half this magnitude in Europe (dashed line) and essentially

zero in China (dotted line). The intuition is simple: higher productivity in the U.S. mainly

benefits the U.S. (direct effect) but, through international trade, induces growth in output

in its main trading partner: Europe (indirect effect). In contrast, China finds itself almost in

autarky, and the spillovers from other countries are very limited.

The flip side of Figure 16 can be seen in Figure 17, which reports the responses of

country-specific output to a productivity shock in China. As expected, China’s output

increases sharply after the shock (direct effect). The global propagation of this shock through

international trade channels, however, is very limited as this is prevented by the high iceberg

costs that shipments from or to China are subject to.

Next, we discuss the responses to an unexpected demand shift towards the U.S., that

is, 𝜙𝑈𝑆,𝑡 increases unexpectedly by three-standard deviations. As we require aggregate

demand shocks to have no global component, this will directly increase the demand for the

U.S. and indirectly for Europe. Similar to the results in the symmetric trade costs calibration,
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Figure 17: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected productivity shock across all
three sectors (durables, non-durables, services) in China.

Figure 18 reports that output in the U.S. (China) increases (decreases), and output in Europe

decreases slightly. In comparison to Figure 6, the magnitudes are now more extreme. China’s

output drops by more than one percentage point, the U.S. GDP increases by roughly one-half

a percentage point more. This difference can be explained by ex-ante exposures to the U.S.
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Figure 18: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected increase in the demand for the
U.S., 𝜙𝑈𝑆,𝑡 .

If there is close to no trade between China and the U.S. (not even indirectly through

Europe) due to high barriers to trade, output in China suffers relatively more if demand

shifts towards the U.S. At the same time, the exposure of the U.S. GDP to domestic shocks

is larger the lower the international trade flows. While there is a very strong link between

Europe and the U.S. (which is the reason for the relatively mild drop in European output),
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the overall trade activity is lower in the asymmetric compared to the symmetric trade costs

calibration.
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Figure 19: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected sector-specific demand shift in
the U.S., 𝜓𝑁

𝑈𝑆,𝑡
.

We move now to explore the consequences of a sector-specific demand shift from the

services to the non-durables sector in the U.S. Figure 19 reports that U.S. output decreases,

while output in Europe increases upon arrival of the shock. Not surprisingly, the increase in

output in China is relatively small as spillovers from the U.S. to China are very limited due

to high barriers to trade. Moreover, Figure 20 shows that the sector-specific demand shift

leads to a local investment boom as not only the demand for the non-durables sector, but

also the demand for the durables sector, has relatively (and indirectly) increased.

The main difference compared to the results previously reported in Figures 8 and 9 is the

lower magnitudes of the responses in the case of asymmetric trade costs. The reason for this

lies in the ex-ante reliance of the U.S. on goods that are produced within the U.S. When trade

costs are symmetric, the U.S. relies unconditionally more heavily on foreign goods (about

58% of absorption due to foreign goods) than in the case of the asymmetric costs (about 42%

of absorption due to foreign goods). The reallocation of resources within-country across

sectors is larger if the reliance on foreign goods is low. Moreover, any increase in investment

is internalized to a larger extent, which ultimately results in the need for a smaller increase

in investment.

Finally, we study the responses to an investment-specific shock in the U.S. Figures 21

and 22 report the IRFs of investment and output across the three regions. As in Section 5,
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Figure 20: Response of investment in the U.S. to an unexpected sector-specific demand shift
in the U.S., 𝜓𝑁

𝑈𝑆,𝑡
.

an increase in the efficiency with which investment is converted into capital leads to a local

investment boom and an increase in output for the U.S., but also frequent trade partners.

Two main differences emerge when trade costs are asymmetric as opposed to symmetric.
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Figure 21: Country-specific IRFs of investment to an unexpected investment-specific tech-
nological shock in the U.S., 𝜒𝐷

𝑈𝑆,𝑡
.

First, the magnitudes of the responses in U.S. investment and output are considerably

larger when trade costs are asymmetric. The difference in magnitudes can be explained by

the extent to which the positive investment-specific shock is internalized by the U.S. As the

reliance on U.S. goods in the durables sector in the U.S. is higher in the asymmetric compared

to the symmetric trade costs case (the mean of 𝜋𝑈𝑆,𝑈𝑆,𝑡 are 57.78% and 41.93%, respectively),

the U.S. benefits to a larger extent from the improved local conditions.
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Figure 22: Country-specific IRFs of 𝐺𝐷𝑃 to an unexpected investment-specific technological
shock in the U.S., 𝜒𝐷

𝑈𝑆,𝑡
.

Second, the responses of investment and output in China are very different across the

two trade cost calibrations. As China relies heavily on the output produced internally

(𝜋𝐶𝐻,𝐶𝐻𝐼,𝑡 = 92.41%), an increase in investment efficiency in the U.S. leaves investment and

output in China almost unaffected.

7 Conclusion

We postulate and globally solve a model of Ricardian cycles, where shocks to different

countries propagate through international trade in different sectors. The model features po-

tentially many countries that each consist of three different sectors; durables, non-durables,

and services. While durable and non-durable goods are tradable, services are not. Finally,

all agents have rational expectations about the stochastic components of the model.

We solve two versions of the model, one with symmetric trade costs and one with asym-

metric trade costs. Comparing the two model versions reveals that the relative strength of

trade links across countries is indicative of the extent to which local shocks are transmitted

to other countries. Country-specific shocks to demand, supply, and investment efficiency

induce countries to engage in intra- and intertemporal substitutions in non-durable con-

sumption, investment, services, and trade, generating business cycles.

With our methodology, many questions can be answered in future research: What is

the role of endogenous technological change in Ricardian business cycles? What is the role
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of possible nominal rigidities? And of financial frictions? What is the role of fiscal and

monetary policy? We can also enrich the model with a climate change block and explore

how international trade and shocks matter for climate change mitigation policies. We hope

to see many papers addressing these issues in the near future.
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APPENDIX

This appendix includes additional details about our model and its implementation.

A Model

We have the regions in this model: USA – 1, EU – 2, China – 3. If not stated otherwise, the three

regions are encoded with the above-mentioned numbering, with 𝐿𝑈𝑆𝐴 =2, 𝐿𝐸𝑈 =1.425, 𝐿𝐶𝐻 =1.1.

ℒ =

𝒩∑
𝑛=1
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{ ∞∑
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,

where each𝜆 is the Lagrange multiplier associated with the corresponding constraint. The constraints

include the sets discussed below together with non-negativity constraints on the 𝑦 𝑗𝑛,𝑡(𝑧)’s and the

𝑥
𝑗

𝑛𝑖,𝑡
(𝑧)’s. The transversality conditions are lim𝑡→∞ 𝜌𝑡𝜆𝑉

𝐷

𝑛,𝑡 𝐾
𝐷
𝑛,𝑡+1 = 0, for each 𝑛 = 1, . . . ,𝒩 .
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A.1 Specialization of Production Goods

We start by deriving which countries produce each good, and to which other countries they ship it.

The first-order condition with respect to shipments 𝑥 𝑗
𝑛𝑖,𝑡
(𝑧) of good 𝑧 in sector 𝑗 from country 𝑖 to 𝑛

gives 𝜆̃ 𝑗𝑛,𝑡(𝑧) + 𝜆̄
𝑗

𝑛𝑖,𝑡
(𝑧) = 𝜆̂

𝑗

𝑖 ,𝑡
(𝑧)𝑑 𝑗

𝑛𝑖,𝑡
.

We need to consider two possibilities. If 𝜆̄ 𝑗
𝑛𝑖,𝑡
(𝑧) > 0 then 𝜆̃

𝑗

𝑛,𝑡(𝑧) < 𝜆̂
𝑗

𝑖 ,𝑡
(𝑧)𝑑 𝑗

𝑛𝑖,𝑡
and 𝑥

𝑗

𝑛𝑖,𝑡
(𝑧) = 0

while if 𝑥 𝑗
𝑛𝑖,𝑡
(𝑧) > 0, then 𝜆̄

𝑗

𝑛𝑖,𝑡
(𝑧) = 0 and 𝜆̃

𝑗

𝑛,𝑡(𝑧) = 𝜆̂
𝑗

𝑖 ,𝑡
(𝑧)𝑑 𝑗

𝑛𝑖,𝑡
. Since country 𝑛 will obtain this good

from somewhere, looking across all source countries 𝑖:

𝜆̃
𝑗

𝑛,𝑡(𝑧) = min
𝑖

{
𝜆̂
𝑗

𝑖 ,𝑡
(𝑧)𝑑 𝑗

𝑛𝑖,𝑡

}
.

The first-order condition with respect to production 𝑦
𝑗

𝑛,𝑡(𝑧) of good 𝑧 in sector 𝑗 by country 𝑛 is

𝜆̂
𝑗

𝑛,𝑡(𝑧) + 𝜆̄
𝑗

𝑛,𝑡(𝑧) = 𝜆
𝑗

𝑛,𝑡(𝑧).

Thus, 𝜆 𝑗
𝑖 ,𝑡
(𝑧) ≥ 𝜆̂

𝑗

𝑖 ,𝑡
(𝑧) for all countries 𝑖, with equality if 𝑦 𝑗

𝑖 ,𝑡
(𝑧) > 0. Since 𝑥 𝑗

𝑛𝑖,𝑡
(𝑧) > 0 implies

𝑦
𝑗

𝑖 ,𝑡
(𝑧) > 0, we can rewrite the equation above as

𝜆̃
𝑗

𝑛,𝑡(𝑧) = min
𝑖

{
𝜆
𝑗

𝑖 ,𝑡
(𝑧)𝑑 𝑗

𝑛𝑖,𝑡

}
. (20)

Country 𝑖 produces good 𝑧 in sector 𝑗 if and only if it achieves this minimum in some destination 𝑛.

A.2 The Cost of Production

Suppose country 𝑛 does produce good 𝑧 in sector 𝑗 so that 𝑦 𝑗𝑛,𝑡(𝑧) > 0. The first-order conditions for

inputs of labor, capital, and intermediates to produce it gives us, for each 𝑗 ∈ Ω :

𝜆
𝑗

𝑛,𝑡(𝑧)𝛽
𝐿,𝑗
𝑛

𝑦
𝑗

𝑛,𝑡 (𝑧)
𝐿
𝑗
𝑛(𝑧)
− 𝜆𝐿𝑛,𝑡 = 0

𝜆
𝑗

𝑛,𝑡(𝑧)𝛽
𝐾,𝑗𝐷
𝑛

𝑦
𝑗

𝑛,𝑡 (𝑧)
𝐾
𝑗𝑘

𝑛,𝑡 (𝑧)
= 𝜆𝐾

𝐷

𝑛,𝑡

and

𝜆
𝑗

𝑛,𝑡(𝑧)𝛽
𝑀,𝑗 𝑗′

𝑛

𝑦
𝑗

𝑛,𝑡(𝑧)

𝑀
𝑗 𝑗′

𝑛,𝑡(𝑧)
= 𝜆

𝑗′

𝑛,𝑡

for 𝑗′ ∈ Ω.

We can relate the shadow cost of producing a good to the shadow costs of the inputs used to
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produce it. Multiplying the production function by the associated shadow value of output, we get:

𝑌
𝑗

𝑛,𝑡(𝑧) = 𝜆
𝑗

𝑛,𝑡(𝑧)𝑦
𝑗
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𝑗
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𝑗

𝑛,𝑡(𝑧)
(
𝐿
𝑗
𝑛(𝑧)
𝛽
𝐿,𝑗
𝑛

)𝛽𝐿,𝑗𝑛 (
𝐾
𝑗𝐷

𝑛,𝑡(𝑧)

𝛽
𝐾,𝑗𝐷
𝑛

)𝛽𝐾,𝑗𝐷𝑛 ∏
𝑗′∈Ω

©­«
𝑀
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𝛽
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𝑛

ª®¬
𝛽
𝑀,𝑗 𝑗′
𝑛

.

Inserting the first-order conditions given above for inputs implies:

𝑌
𝑗

𝑛,𝑡(𝑧) = 𝜆
𝑗

𝑛,𝑡(𝑧)𝑎
𝑗

𝑛,𝑡(𝑧)
(
𝑌
𝑗

𝑛,𝑡(𝑧)
𝜆𝐿𝑛,𝑡

)𝛽𝐿,𝑗𝑛 (
𝑌
𝑗

𝑛,𝑡(𝑧)
𝜆𝐾

𝐷

𝑛,𝑡

)𝛽𝐾,𝑗𝐷𝑛 ∏
𝑗′∈Ω

(
𝑌
𝑗

𝑛,𝑡(𝑧)

𝜆
𝑗′

𝑛,𝑡

)𝛽𝑀,𝑗 𝑗′
𝑛

.

Constant returns to scale implies that 𝑌 𝑗𝑛,𝑡(𝑧) cancels, giving us the shadow value of good 𝑧 in sector

𝑗 in country 𝑛:

𝜆
𝑗

𝑛,𝑡(𝑧) =
𝑐
𝑗

𝑛,𝑡

𝑎
𝑗

𝑛,𝑡(𝑧)
, (21)

where the term 𝑐
𝑗

𝑛,𝑡 =

(
𝜆𝐿𝑛,𝑡

)𝛽𝐿,𝑗𝑛 (
𝜆𝐾

𝐷

𝑛,𝑡

)𝛽𝐾,𝑗𝐷𝑛 ∏
𝑗′∈Ω

(
𝜆
𝑗′

𝑛,𝑡

)𝛽𝑀,𝑗 𝑗′
𝑛

bundles the shadow costs of labor, capital,

and intermediates in producing any good in sector 𝑗 in country 𝑛. Applying equation (21) allows us

to write equation (20) as:

𝜆̃
𝑗

𝑛,𝑡(𝑧) = min
𝑖


𝑐
𝑗

𝑖 ,𝑡

𝑎
𝑗

𝑖 ,𝑡
(𝑧)

𝑑
𝑗

𝑛𝑖,𝑡

 .
A.3 Demand for Goods

Now we take the first-order condition with respect to 𝑥 𝑗𝑛,𝑡(𝑧) to get 𝜆̃ 𝑗𝑛,𝑡(𝑧) = 𝜆
𝑗

𝑛,𝑡

(
𝑥
𝑗

𝑛,𝑡

)1/𝜎
𝑥
𝑗

𝑛,𝑡(𝑧)−1/𝜎,

which we can rearrange as:

𝑥
𝑗

𝑛,𝑡(𝑧) =
(
𝜆̃
𝑗

𝑛,𝑡(𝑧)

𝜆
𝑗

𝑛,𝑡

)−𝜎
𝑥
𝑗

𝑛,𝑡 .

Letting 𝑋 𝑗

𝑛,𝑡(𝑧) = 𝜆̃
𝑗

𝑛,𝑡(𝑧)𝑥
𝑗

𝑛,𝑡(𝑧) and 𝑋 𝑗

𝑛,𝑡 = 𝜆
𝑗

𝑛,𝑡𝑥
𝑗

𝑛,𝑡 , we obtain:

𝑋
𝑗

𝑛,𝑡(𝑧) =
(
𝜆̃
𝑗

𝑛,𝑡(𝑧)

𝜆
𝑗

𝑛,𝑡

)−(𝜎−1)

𝑋
𝑗

𝑛,𝑡 . (22)
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We can aggregate over the absorption of individual goods using 𝑥 𝑗𝑛,𝑡 =
(∫ 1

0 𝑥
𝑗

𝑛,𝑡(𝑧)(𝜎−1)/𝜎𝑑𝑧
)𝜎/(𝜎−1)

.

In combination with equation (22), we get:

𝑋
𝑗

𝑛,𝑡 =

∫ 1

0
𝑋
𝑗

𝑛,𝑡(𝑧)𝑑𝑧. (23)

Integrating both sides of equation (22) and applying equation (23), we also get:

𝜆
𝑗

𝑛,𝑡 =

(∫ 1

0
𝜆̃
𝑗

𝑛,𝑡(𝑧)
−(𝜎−1)𝑑𝑧

)−1/(𝜎−1)
. (24)

To obtain sharper results for aggregates, we need to exploit our assumption on the distribution

of good-level production efficiency.

A.4 International Trade

We now view the problem from the perspective of not knowing the individual realizations of efficiency

𝑎
𝑗

𝑛,𝑡(𝑧), but only the parameters of the distribution from which they are drawn:

𝐹
𝑗

𝑛,𝑡(𝑎) = Pr
[
𝑎
𝑗

𝑛,𝑡(𝑧) ≤ 𝑎
]
= exp

−
(

𝑎

𝛾𝐴
𝑗

𝑛,𝑡

)−𝜃 .
We can derive the probability distribution function 𝐺 𝑗

𝑛,𝑡(𝑥) of the 𝜆̃
𝑗

𝑛,𝑡(𝑧) s as:

𝐺
𝑗

𝑛,𝑡(𝑥) = Pr
[
𝜆̃
𝑗

𝑛,𝑡(𝑧) ≤ 𝑥
]
= 1 − Pr

min
𝑖


𝑐
𝑗

𝑖 ,𝑡
𝑑
𝑗

𝑛𝑖,𝑡

𝑎
𝑗

𝑖 ,𝑡
(𝑧)

 > 𝑥


= 1 −

∏
𝑖

Pr
𝑎 𝑗𝑖 ,𝑡(𝑧) <

𝑐
𝑗

𝑖 ,𝑡
𝑑
𝑗

𝑛𝑖,𝑡

𝑥

 = 1 −
∏
𝑖

exp
− ©­«

𝑐
𝑗

𝑖 ,𝑡
𝑑
𝑗

𝑛𝑖,𝑡

𝛾𝐴
𝑗

𝑖 ,𝑡
𝑥

ª®¬
−𝜃

= 1 − 𝑒−Φ
𝑗

𝑛,𝑡 (𝛾𝑥)𝜃 ,

where Φ
𝑗

𝑛,𝑡 =
∑𝒩
𝑖=1

(
𝑐
𝑗

𝑖 ,𝑡
𝑑
𝑗

𝑛𝑖,𝑡

𝐴
𝑗

𝑖 ,𝑡

)−𝜃
.

We can use this distribution to simplify the integral in equation (24):

𝜆
𝑗

𝑛,𝑡 =

(∫ ∞

0
𝑥−(𝜎−1)𝑑𝐺

𝑗

𝑛,𝑡(𝑥)
)−1/(𝜎−1)

=

(
Φ
𝑗

𝑛,𝑡

)−1/𝜃
.
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In the case of the non-tradable service sector, 𝑆, this equation becomes:

𝜆𝑆𝑛,𝑡 =

(∫ ∞

0
𝑥−(𝜎−1)𝑑𝐺𝑆𝑛,𝑡(𝑥)

)−1/(𝜎−1)
=

(
𝑐𝑆𝑛,𝑡

𝐴𝑆𝑛,𝑡

)−1/𝜃

.

This expression for the shadow value of sector 𝑗 absorption is the same as that for the price index

in Eaton and Kortum (2002). Following the derivation there, the fraction of goods for which country

𝑖 achieves the minimum in country 𝑛 is:

𝜋
𝑗

𝑛𝑖,𝑡
=

(
𝑐
𝑗

𝑖 ,𝑡
𝑑𝑛𝑖,𝑡/𝐴 𝑗

𝑖 ,𝑡

)−𝜃
Φ
𝑗

𝑛,𝑡

=
©­«
𝑐
𝑗

𝑖 ,𝑡
𝑑𝑛𝑖,𝑡

𝐴
𝑗

𝑖 ,𝑡
𝜆
𝑗

𝑛,𝑡

ª®¬
−𝜃

.

We define the shadow value of all deliveries to country 𝑛 of sector 𝑗 goods from country 𝑖 as:

𝑋
𝑗

𝑛𝑖,𝑡
=

∫ 1

0
𝜆̃
𝑗

𝑛,𝑡(𝑧)𝑥
𝑗

𝑛𝑖,𝑡
(𝑧)𝑑𝑧.

Since the distribution of 𝜆̃ 𝑗𝑛,𝑡(𝑧) is the same regardless of the country 𝑖 from which the goods are

shipped, and the fraction of goods shipped from 𝑖 is 𝜋 𝑗
𝑛𝑖,𝑡

:

𝑋
𝑗

𝑛𝑖,𝑡
= 𝜋

𝑗

𝑛𝑖,𝑡

∫ 1

0
𝜆̃
𝑗

𝑛,𝑡(𝑧)𝑥
𝑗

𝑛,𝑡(𝑧)𝑑𝑧 = 𝜋
𝑗

𝑛𝑖,𝑡

∫ 1

0
𝑋
𝑗

𝑛,𝑡(𝑧)𝑑𝑧 = 𝜋
𝑗

𝑛𝑖,𝑡
𝑋
𝑗

𝑛,𝑡 .

Integrating over all sector 𝑗 goods produced in 𝑛, we define the value of production as 𝑌 𝑗𝑛,𝑡 =∫ 1
0 𝑌

𝑗

𝑛,𝑡(𝑧)𝑑𝑧.

Summing across destinations, we can connect the value of production and the value of deliveries

to each country 𝑌 𝑗𝑛,𝑡 =
∑𝒩
𝑚=1 𝑋

𝑗

𝑚𝑛,𝑡 =
∑𝒩
𝑚=1 𝜋

𝑗

𝑚𝑛,𝑡𝑋
𝑗

𝑚,𝑡 .

A.5 Consumption and Investment

The first-order condition for absorption 𝑥 𝑗𝑛,𝑡 of sector 𝑗 ∈ Ωoutput in country 𝑛 at date 𝑡 is simply 𝜆̃
𝑗

𝑛,𝑡 =

𝜆
𝑗

𝑛,𝑡 . Hence, we drop 𝜆̃
𝑗

𝑛,𝑡 and replace it with 𝜆
𝑗

𝑛,𝑡 in the expressions for consumption and investment.

The first-order condition for consumption 𝐶ℎ𝑛,𝑡 for ℎ ∈ Ω∗
𝐾

can be written as 𝜆ℎ𝑛,𝑡𝐶
ℎ
𝑛.𝑡 = 𝜔𝑛𝜙𝑛,𝑡𝜓ℎ

𝑛,𝑡 ,

while the first-order condition for household capital services 𝐾𝐻,𝐷𝑛,𝑡 gives 𝜆𝐾𝑛,𝑡𝐾
𝐻,𝐷
𝑛,𝑡 = 𝜔𝑛𝜙𝑛,𝑡𝜓𝐷

𝑛 .
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Turning to investment, the first-order condition for 𝐼𝐷𝑛,𝑡 is:

𝜆𝑉
𝐷

𝑛,𝑡 =
𝜆𝐷𝑛,𝑡

𝛼𝐷𝜒𝐷𝑛,𝑡

(
𝐼𝐷𝑛,𝑡

𝐾𝐷𝑛,𝑡

)1−𝛼𝐷

.

A.6 GDP Calculations

In our model, global GDP is 𝑌𝑡 =
∑𝒩
𝑛=1

[
𝑤𝑛,𝑡𝐿𝑛 + 𝑟𝑛,𝑡

(
𝐾𝐷𝑛,𝑡 − 𝐾

𝐻,𝐷
𝑛,𝑡

)]
, where labor income 𝑤𝑛,𝑡𝐿𝑛 is

given by (12) and capital incomes 𝑟𝑛,𝑡𝐾𝐷𝑛,𝑡 by equation (13). To avoid valuation problems, we exclude

rental payments by households on durables in our measure of GDP. Moreover, country-specific GDP

is then trivially given by 𝑌𝑛,𝑡 = 𝑤𝑛,𝑡𝐿𝑛 + 𝑟𝑛,𝑡
(
𝐾𝐷𝑛,𝑡 − 𝐾

𝐻,𝐷
𝑛,𝑡

)
.

B Implementation Details

We briefly describe some of the challenges our DEQN solution method faces in practical applications

and how we deal with them. A drawback of deep neural networks is that the theoretical convergence

rates and why and when deep neural networks can ameliorate or break the curse of dimensionality

are poorly understood. Even though substantial progress has recently been made (Montanelli and

Du, 2019), our method still relies on a non-trivial amount of numerical experimentation.

B.1 Neural Network Architecture

In our model, the dimensionality of the “economic”state vector is given by expression (16) and is of

dimensionality 𝑀 = 6𝒩 + (𝒩 − 1) + 2(𝒩2 − 𝒩), where 𝒩 ∈ N, is the number of countries/regions

in the model (cf. Appendices C.1 and C.2). Thus, if we want to work with three regions—that is,

the USA, Europe, and China—as we do in our quantitative exercise in Sections 5 and 6, there are

32 state variables. The policy vector p on the other hand, is given by (17), and is of dimensionality

𝐾 = 23𝒩+2𝒩2. Hence, if we stay with the three-regions example, a 32-dimensional state-space maps

into a 87-dimensional output vector.

We represent the mapping of states to policies with a deep neural network of the following ar-

chitecture: After the 𝑀-dimensional input layer, the neural network features three hidden layers

with 128, 128, and 128 selu-activated, and batch-normalized hidden nodes. The output layer con-

sists of 𝐾 nodes, activated with softplus functions to ensure the non-negativity of the policies (see

Appendix C.1).
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B.2 Auxiliary State Variables to Normalize the Nonlinear Set of Equa-

tions

One issue when training the neural network is that the different components that enter the loss

function (18) can substantially vary in magnitude, causing the optimizer to focus too much on getting

a particular set of policies right while neglecting others. To mitigate this issue, we normalize the

equations by introducing one auxiliary state variable per nonlinear equation such that the equations

enter the loss function in percent units.

The basic idea is as follows. Suppose that we have a simple set of nonlinear equations:

𝑎 · 𝑥2
1 = 𝑏 · 𝑦2

1 + 𝑐,

𝑑 · 𝑥2
2 = 𝑒 · 𝑦2

2 + 𝑓 ,

with a two-dimensional state 𝑥 = (𝑥1 , 𝑥2), and a policy 𝑦 = (𝑦1 , 𝑦2). The expressions one would

naively stick into the loss function thus would read:

0 =

(
𝑏 · 𝑦2

1 + 𝑐 − 𝑎 · 𝑥2
1

)
︸                  ︷︷                  ︸

B𝑙1

+
(
𝑒 · 𝑦2

2 + 𝑓 − 𝑑 · 𝑥2
2

)
︸                  ︷︷                  ︸

:=𝑙2

.

However, the magnitudes of 𝑙1 and 𝑙2 could vary substantially and be unrelated to their economic

importance. For example, even if 𝑙1 = 0.01 and 𝑙2 = 0.001, the relative error of 𝑙2 can be much worse

than that of 𝑙1 in terms of its effect on the difference between the computed policy 𝑦 and the exact

one. To get around this issue, we can use the normalizations:

0 =
1
𝐴
(𝑏 · 𝑦2

1 + 𝑐 − 𝑎 · 𝑥2
1),

0 =
1
𝐵
(𝑒 · 𝑦2

2 + 𝑓 − 𝑑 · 𝑥2
2),

where 𝐴 := 𝑎 · 𝑥2
1, and 𝐵 := 𝑑 · 𝑥2

2.

With this basic idea at hand, the question now is how to implement it within the DEQN algorithm.

In this simulation-based setting, a “normalizing”constant has to be the mean along the simulated

path. To this end, we introduced one extra state variable per nonlinear equation that enters the

loss function. The latter is updated with exponential smoothing from one episode to the next (cf.

Algorithm 1). In the concrete case of the stylized example of this section, 𝐴 and 𝐵 would be extra

state variables and updated, for instance, as 𝐴 = 𝛾 ·𝐴𝑜𝑙𝑑 + (1− 𝛾) · (𝑎 · 𝑥2
1), where 𝐴𝑜𝑙𝑑 stems from the
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previous episode, 0 < 𝛾 < 1, and were in practice, 𝛾 = 0.99.

Normalizing the equations entering the overall loss function helps the convergence process of our

solution substantially. However, it comes at the price that the effective dimensionality of the neural

network is not 𝑀, but rather 𝑀 + 𝐾 (since for all 𝐾 equations, an auxiliary state is added), which

increases the memory consumption moderately. In the case of a 3-region model, the effective input

of the neural network thus is given by a 32 + 87 = 119-dimensional vector.

B.3 Simulating and Training of the DEQN

We train the network by simulating in each episode 512 individual states for 128 steps. The minibatch

size is 256, and we use the Adam optimizer (Kingma and Ba, 2014). To ensure that we do not leave

the ergodic distribution in the impulse-response experiments we carry out, we must ensure that the

simulated training data covers a reasonably-wide domain. To this end, we generated the simulation

paths with 2.5× the volatilies that are used in the calibration of the model—a common practice in

reinforcement learning (see, e.g., Sutton and Barto, 2018, chapter 5). However, the actual model

equations are still solved with the correct specification of the random shocks occurring in the model.

C Code

C.1 Variables (code variables: states end with ’x’, controls with ’y’)

1. The set of endogenous state variables has the following elements:

𝐾𝐷_𝑛_𝑡

CODE: KD_n_x (> 0).

2. The set of exogenous state variables has the following elements (n: country index):

𝑇𝐷𝑛,𝑡 , 𝑇
𝑁
𝑛,𝑡 , 𝑇

𝑆
𝑛,𝑡 , 𝜙𝑛,𝑡 , 𝜓

𝑁
𝑛,𝑡 , 𝑑

𝐷
𝑛𝑖,𝑡

, 𝑑𝑁
𝑛𝑖,𝑡

.

CODE: 𝑇𝐷_𝑛_𝑥, 𝑇𝑁_𝑛_𝑥, 𝑇𝑆_𝑛_𝑥, 𝑝ℎ𝑖_𝑛_𝑥, 𝑝𝑠𝑖_𝑁_𝑥, 𝑑𝐷_𝑛_𝑖_𝑥, 𝑑𝑁_𝑛_𝑖_𝑥.

3. The set of control variables has the following elements (n: country index):

𝐴𝐷𝑛,𝑡 , 𝐴
𝑁
𝑛,𝑡 , 𝐴

𝑆
𝑛,𝑡 , 𝜓

𝑆
𝑛,𝑡 , 𝑝

𝐷
𝑛,𝑡 , 𝑝

𝑁
𝑛,𝑡 , 𝑝

𝑆
𝑛,𝑡 , 𝐶

ℎ
𝑛,𝑡 , 𝑟𝑛,𝑡 , 𝐾

𝐻,𝐷
𝑛,𝑡 , 𝑌𝐷𝑛,𝑡 , 𝑌

𝑆
𝑛,𝑡 , 𝑌

𝑁
𝑛,𝑡 , 𝑤𝑛,𝑡 , 𝑋

𝐹,𝑁
𝑛,𝑡 , 𝑋𝐹,𝑆

𝑛,𝑡 , 𝑐𝐷𝑛,𝑡 , 𝑐
𝑁
𝑛,𝑡 , 𝑐

𝑆
𝑛,𝑡 ,

𝜋𝐷
𝑛𝑖,𝑡

, 𝜋𝑁
𝑛𝑖,𝑡

, 𝑋𝐷
𝑛,𝑡 , 𝑋

𝑁
𝑛,𝑡 , 𝑋

𝑆
𝑛,𝑡 , 𝐼

𝐷
𝑛,𝑡 .

CODE: 𝐴𝐷_𝑛_𝑦 (> 0), 𝐴𝑁_𝑛_𝑦 (> 0), 𝐴𝑆_𝑛_𝑦 (> 0), 𝑝𝑠𝑖_𝑆_𝑛_𝑦 (> 0), 𝑝_𝐷_𝑛_𝑦 (> 0),
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𝑝_𝑁_𝑛_𝑦 (> 0), 𝑝_𝑆_𝑛_𝑦 (> 0), 𝐶_ℎ_𝑛_𝑦 (> 0), 𝑟_𝑛_𝑦 (> 0), 𝐾_𝐻𝐷_𝑛_𝑦 (> 0), 𝑌𝐷_𝑛_𝑦 (> 0),

𝑌𝑆_𝑛_𝑦 (> 0), 𝑌𝑁_𝑛_𝑦 (> 0), 𝑤_𝑛_𝑦 (> 0), 𝑋𝐹_𝑁_𝑛_𝑦 (>0), 𝑋𝐹_𝑆_𝑛_𝑦 (>0), 𝑐𝑜𝑠𝑡_𝐷_𝑛_𝑦 (>0),

𝑐𝑜𝑠𝑡_𝑁_𝑛_𝑦 (>0), 𝑐𝑜𝑠𝑡_𝑆_𝑛_𝑦 (>0), 𝑝𝑖𝐷_𝑛_𝑖_𝑦 (≥ 0; this policy is going to be a complicated

one), 𝑝𝑖𝑁_𝑛_𝑖_𝑦 (≥ 0; this policy is going to be a complicated one), 𝑋𝐷_𝑛_𝑦 (>0), 𝑋𝑁_𝑛_𝑦

(>0), 𝑋𝑆_𝑛_𝑦 (>0), 𝐼𝐷_𝑛_𝑦 (>0).

C.2 Equations

Legend: states in green (given), controls in orange (given by policy guess from current states), next

period’s exogenous states in magenta (to be integrated over), and next period’s controls in blue (given

by policy guess at next period’s states), parameters are black.

𝑁 × 3 equations. Sectoral productivity (in code: sectoral_productivity):

0 = (1/𝛾)
(
𝑇
𝑗

𝑛,𝑡

)1/𝜃
− 𝐴 𝑗

𝑛,𝑡 . (25)

The 𝐴 𝑗

𝑛,𝑡 are organized in a 𝑁 × 3 matrix At.

𝑁 equations. Household spending on consumption good of sector 𝑆 (in code: hh_spending_S):

0 = 𝑝ℎ=𝑆𝑛,𝑡 𝐶
ℎ=𝑆
𝑛,𝑡 − 𝜔𝑛𝜙𝑛,𝑡𝜓

𝑆
𝑛,𝑡 . (26)

and for sector 𝑁 accordingly (in code: hh_spending_N):

0 = 𝑝ℎ=𝑁𝑛,𝑡 𝐶ℎ=𝑁𝑛,𝑡 − 𝜔𝑛𝜙𝑛,𝑡𝜓
𝑁
𝑛,𝑡 . (27)

𝑁 equations. Where (in code: Psi_S_Def):

𝜓𝑆𝑛,𝑡 = 1 − 𝜓𝐷
𝑛 − 𝜓𝑁

𝑛,𝑡 . (28)

𝑁 equations.

Household spending on capital of sector 𝐷 (in code: hh_spending_cap_D)

0 = 𝑟𝑛,𝑡𝐾
𝐻,𝐷
𝑛,𝑡 − 𝜔𝑛𝜙𝑛,𝑡𝜓

𝐷
𝑛 . (29)

𝑁 equations.
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Wage (in code: wage)

0 = 𝑤𝑛,𝑡𝐿𝑛 −
∑
𝑗∈Ω

𝛽
𝐿,𝑗
𝑛 𝑌

𝑗

𝑛,𝑡 . (30)

The 𝑤𝑛,𝑡 are organized in a 𝑁 × 1 vector wt.

𝑁 equations. Rental rate (in code: rental_rate):

0 = 𝑟𝑛,𝑡𝐾
𝐷
𝑛,𝑡 −

∑
𝑗∈Ω

𝛽𝐾,𝑗𝐷𝑌
𝑗

𝑛,𝑡 −
𝜓𝐷
𝑛

1 − 𝜓𝐷
𝑛

(
𝑋𝐹,𝑁
𝑛,𝑡 + 𝑋

𝐹,𝑆
𝑛,𝑡

)
. (31)

The 𝑟𝑛,𝑡 are organized in a 𝑁 × 1 vector rt.

𝑁 × 3 equations. The cost of a bundle of factors (in code: cost_bundle_D,N,S):

0 = 𝑐
𝑗

𝑛,𝑡 − (𝑤𝑛,𝑡)
𝛽
𝐿,𝑗
𝑛 (𝑟𝑛,𝑡)𝛽

𝐾,𝑗𝐷
𝑛

∏
𝑗′∈Ω

(
𝑝
𝑗′

𝑛,𝑡

)𝛽𝑀,𝑗,𝑗′
𝑛

. (32)

The 𝑐 𝑗𝑛,𝑡 are organized in a 𝑁 × 3 matrix ct.

𝑁 × 2 equations. The price index of the tradable sectors 𝑙 ∈ {𝐷, 𝑁} (in code: price_index_D,N):

0 = 𝑝 𝑙𝑛,𝑡 −
©­«
𝑁∑
𝑖=1

(
𝑐 𝑙
𝑖 ,𝑡
𝑑𝑙
𝑛𝑖,𝑡

𝐴𝑙
𝑖 ,𝑡

)−𝜃ª®¬
− 1

𝜃

. (33)

And 𝑁 equations for the service sector:

0 = 𝑝𝑆𝑛,𝑡 −
(
𝑐𝑆𝑛,𝑡

𝐴𝑆𝑛,𝑡

)−1/𝜃

. (34)

The fraction of goods from tradable sector 𝑙 ∈ {𝐷, 𝑁} that country 𝑛 obtains as imports from country

𝑖 (in code: imports_D,N):

0 = 𝜋𝑙𝑛𝑖,𝑡 −
(
𝑐 𝑙
𝑖 ,𝑡
𝑑𝑙
𝑛𝑖,𝑡

𝑝 𝑙𝑛,𝑡𝐴
𝑙
𝑖 ,𝑡

)−𝜃
. (35)

These fractions imported form a sector-specific 𝑁 × 𝑁 matrix Πl
t.

𝑁 × 2 equations. The gross production of the tradable good in sector 𝑙 ∈ {𝐷, 𝑁} in a country equals
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(in code: absoprtion_D,N):

0 = Πl
tX

l
t − Yl

t. (36)

𝑁 equations. On the other hand, the gross production for the non-tradable good in sector 𝑆 in a

country equals its absorption (in code: gross-prod_S):

0 = XS
t − YS

t . (37)

𝑁×2 equations. Value of country 𝑛’s final spending on sector ℎ ∈ {𝑆, 𝑁} (in code: final_spending_S,N):

0 = 𝑋𝐹,ℎ
𝑛,𝑡 − 𝑝

ℎ
𝑛,𝑡𝐶

ℎ
𝑛,𝑡 . (38)

𝑁 equations. Value of country 𝑛’s final spending on sector 𝐷 (in code: final_spending_D):

0 = 𝑋𝐹,𝐷
𝑛,𝑡 − 𝑝

𝐷
𝑛,𝑡 𝐼

ℎ
𝑛,𝑡 . (39)

𝑁 equations. Total spending on sector 𝑗 output is the sum of country 𝑛′ s final spending on sector 𝑗

plus the use of sector 𝑗 output as intermediates by each sector 𝑗′ (in code: total_spending_D,N,S):

0 = 𝑋
𝑗

𝑛,𝑡 − 𝑋
𝐹,𝑗

𝑛,𝑡 −
∑
𝑗′∈Ω

𝛽𝑀,𝑗′ 𝑗𝑌
𝑗′

𝑛,𝑡 . (40)

𝑁 equations. The law of motion of capital (multiply with p in code to avoid a singularity, in code:

law_of_motion_D):

0 = 𝐾𝐷𝑛,𝑡+1 − 𝜒𝐷𝑛,𝑡

(
𝑋𝐹,𝐷
𝑛,𝑡

𝑝𝐷𝑛,𝑡

)𝛼𝐷
𝐾𝐷𝑛,𝑡

1−𝛼𝐷 −
(
1 − 𝛿𝐷

)
𝐾𝐷𝑛,𝑡 . (41)

𝑁 equations. The Euler equations (in code: EE):

0 =
𝑝𝐷𝑛,𝑡

𝛼𝐷𝜒𝐷𝑛,𝑡

(
𝑋𝐹,𝐷
𝑛,𝑡

𝑝𝐷𝑛,𝑡𝐾
𝐷
𝑛,𝑡

)1−𝛼𝐷

− 𝜌
𝑝𝐷
𝑛,𝑡+1

𝛼𝐷𝜒𝐷
𝑛,𝑡+1

(
𝑋𝐹,𝐷
𝑛,𝑡+1

𝑝𝐷
𝑛,𝑡+1𝐾

𝐷
𝑛,𝑡+1

)1−𝛼𝐷 𝜒𝐷𝑛,𝑡+1(1 − 𝛼𝐷)
(

𝑋𝐹,𝐷
𝑛,𝑡+1

𝑝𝐷
𝑛,𝑡+1𝐾

𝐷
𝑛,𝑡+1

)𝛼𝐷
+ (1 − 𝛿𝐷)

 − 𝜌𝑟𝑛,𝑡+1. (42)
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𝑁 equations. The Euler equations with rational expectations (in code: EE):

0 =
𝑝𝐷𝑛,𝑡

𝛼𝐷𝜒𝐷𝑛,𝑡

(
𝑋𝐹,𝐷
𝑛,𝑡

𝑝𝐷𝑛,𝑡𝐾
𝐷
𝑛,𝑡

)1−𝛼𝐷

− 𝜌E

[
𝑟𝑛,𝑡+1

+
𝑝𝐷
𝑛,𝑡+1

𝛼𝐷𝜒𝐷
𝑛,𝑡+1

(
𝑋𝐹,𝐷
𝑛,𝑡+1

𝑝𝐷
𝑛,𝑡+1𝐾

𝐷
𝑛,𝑡+1

)1−𝛼𝐷 𝜒𝐷𝑛,𝑡+1(1 − 𝛼𝐷)
(

𝑋𝐹,𝐷
𝑛,𝑡+1

𝑝𝐷
𝑛,𝑡+1𝐾

𝐷
𝑛,𝑡+1

)𝛼𝐷
+ (1 − 𝛿𝐷)


]
. (43)

C.3 Laws of Motion for Exogenous States

𝑁 × 3 equations:

ln𝑇 𝑗𝑛,𝑡 = 𝜌𝑇 ln𝑇 𝑗
𝑛,𝑡−1 + 𝜀

𝑇
𝑗
𝑛 ,𝑡
. (44)

𝑁 − 1 equations:

ln 𝜙𝑛,𝑡 = 𝜌𝜙𝑛 ln 𝜙𝑛,𝑡−1 + 𝜀𝜙𝑛 ,𝑡 . (45)

1 equation (is put as definition; one state less!):

𝜙𝑁,𝑡 = 𝑁𝑐𝑜𝑢𝑛𝑡𝑟𝑦 −
𝑁−1∑
𝑖=1

𝜙𝑖 ,𝑡 . (46)

𝑁 equations:

ln 𝜒𝐷𝑛,𝑡 = 𝜌𝜒𝐷𝑛
ln 𝜒𝐷𝑛,𝑡−1 + 𝜀𝜒𝐷𝑛 ,𝑡 . (47)

𝑁 × (𝑁 − 1) × 2 equations (for 𝑙 ∈ {𝐷, 𝑁}):

ln 𝑑𝑙𝑛𝑖,𝑡 =
(
1 − 𝜌𝑑𝑙

𝑛𝑖

)
𝑑̄𝑙𝑛𝑖 + 𝜌𝑑𝑙

𝑛𝑖
ln 𝑑𝑙𝑛𝑖,𝑡−1 + 𝜀𝑑𝑙

𝑛𝑖
,𝑡 . (48)

𝑁 equations (for 𝑙 ∈ {𝐷, 𝑁}):

ln 𝑑𝑙𝑛𝑛,𝑡 = 0. (49)
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𝑁 equations:

𝜓𝑁
𝑛,𝑡 =

(
1 − 𝜌𝜓𝑛

) 1 − 𝜓𝐷
𝑛

2 + 𝜌𝜓𝑛𝜓
𝑁
𝑛,𝑡−1 + 𝜀𝜓𝑛 ,𝑡 . (50)
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