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Abstract

This paper studies the implications of model uncertainty for wealth distribution
and aggregate fluctuations in a continuous time general equilibrium model. House-
holds confront idiosyncratic income and investment risks, as well as model uncer-
tainty that drives the risky asset return process. We find that in the presence of bor-
rowing constraint, model distortion varies nonmonotonically with wealth, leading to
non-homothetic risky asset holdings and thicker tails of the wealth distribution. An
increase in investment risk induces a decline in output and wages by lowering the
demand for risky capital and rebalancing household portfolio toward risk-free assets.
The distributional effects of the risk shock depend on the interacting forces of model
uncertainty and borrowing constraint on household’s risky asset holdings.

1 Introduction

Wealth inequality has attracted extensive discussions among policy-makers and re-
searchers in recent years. There is a broad consensus that how households allocate re-
sources across assets is a key determinant of wealth distribution. Earlier studies have
suggested that Knightian uncertainty plays an important role in understanding house-
hold portfolio choice.1 The objective of this paper is to analyze the implications of robust-
ness associated with risky investment for wealth distribution and aggregate fluctuations.

*Djeutem: Bank of Canada, djee@bankofcanada.ca. Xu: Renmin University of China,
xushaofeng@ruc.edu.cn. We thank SeHyoun Ahn, Geoffrey Dunbar, Benjamin Moll, Galo Nuño, Young-
min Park, Yaz Terajima, and participants at various seminars and conferences for helpful comments and
suggestions. The views expressed herein are those of the authors and not necessarily those of the Bank of
Canada.

1This paper uses “model uncertainty” and “robustness” interchangeably, both meaning “Knightian un-
certainty”.
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To do this, we develop a heterogeneous-agent continuous-time general equilibrium
model with idiosyncratic income and investment risks. The model economy consists
of infinitely-lived households composed of a worker and a producer who pool their re-
sources to consume and save. Each producer within a household manages a firm subject
to idiosyncratic investment risk; this is, in turn, owned by the household. The worker
faces idiosyncratic labour productivity shocks, and supply inelastically their labour to
firms. Shocks to the investment risk are the main drivers of business cycles. Households
can trade two assets, including a riskless bond and a risky real asset, to smooth consump-
tion. Borrowing is permitted but subject to a constraint. Households confront model
uncertainty about the process driving the return of the risky asset and they choose robust
policies à la Hansen and Sargent (2008). Robustness results from a dynamic zero-sum
game between a household and nature. The household makes a standard consumption-
portfolio choice, while nature chooses how severely to distort the risky return perceived
by the household.

The starting point of our analysis is to characterize the policy functions of both poor
and rich households in a stationary model without aggregate shocks. The main findings
are three-fold. First, the size of model distortion chosen by nature varies nonmonoton-
ically with household wealth, reaching its maximum at some intermediate wealth level.
Nature finds it optimal not to distort heavily the perceived risky return of poor house-
holds as they hold little risky asset due to the borrowing constraint. For households in
possession of large wealth, the nature’s benefit from twisting their perception of the risky
return is insignificant so the distortion is also small. Second, we formulate the effects of
model uncertainty on the speed at which the wealth of unlucky households hits the bor-
rowing constraint. It is shown that under certain conditions, robustness accelerates the
speed of convergence. Model uncertainty discourages these households from investing
in the risky asset due to their mistrust of the probability distribution underlying the risky
return process. Lower wealth translates into a tighter borrowing constraint which fur-
ther constrains their investment in the risky asset. These two forces together leads to a
slower wealth accumulation. Third, we derive the policy functions of the rich. For these
households, the wealthier they are, the less nature distorts their perception, and thus the
smaller is the reduction in the proportion of their wealth invested in the risky asset. In
other words, robustness makes richer households even richer.

To illustrate the aggregate and distributional implications of model uncertainty, we
calibrate the model to the U.S. economy. We choose the robustness parameter by the
detection error probability in line with the practice in the literature. Most notably, the pa-
rameterized stationary model thickens both tails of the wealth distribution that improves
the model’s fit to the U.S. wealth distribution data. In order words, we match not only
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the wealth share of the bottom 50 percent but also that of the top 1. This extends the ex-
isting models in the literature that usually rely on a multiple combination of mechanisms
to match both tails of the distribution.

We find that an increase in investment risk induces a decline in output and wages by
lowering the demand for risky capital. Households thus rebalance their portfolio toward
risk free assets leading to aggregate overaccumaltion of these assets and a sharp drop in
the required risk free rate necessary to clear the bond market. Consumption rises counter-
factually compared to a standard recession as the decline in interest rate makes savings
less attractive. Model uncertainty related to the risky capital returns process magnifies
each of the above mechanism by further depressing risky capital demand which takes
longer to rebuild. Model uncertainty thus generates a slower recovery from the invest-
ment risk shock.

Moreover, the shock brings about rich distributional ramifications due to the non-
homethetic behavior of model uncertainty on risky capital holdings and the presence of
borrowing constraint. In response to an investment risk shock wealth-rich households
lose the most because they are the primary capital holder in the economy. As such, their
portfolio reallocation toward risk free assets is the strongest. Households seating at the
middle of the wealth distribution, by contrast, take advantage of the high private equity
premium engineered by low interest rate to lever up and increase their exposure to risk
capital. For wealth-poor households, the equilibrium change in prices following an in-
crease in investment risk is important. Decreasing wages trigger a depletion of human
wealth which constitute a larger fraction of their total wealth. These households liquidate
their capital but increase their bond borrowing in low interest environment generated by
the aggregate flight to safety.

Our paper is related to three strands of the literature. First, it is connected to the
literature that examines the effects of model uncertainty on households consumption-
portfolio choice and the macroeconomy. Examples include Anderson et al. (2003), Maen-
hout (2004), Luo et al. (2020), and Kasa and Lei (2018).2 Recent work by Kasa and Lei
(2018) is the study closest to ours. The current paper differs from theirs in the following
two aspects. First, we bring to attention the interactions between model uncertainty and
borrowing constraint. To our best knowledge, this is the first paper that characterizes this
interplay explicitly, which bears important macroeconomic implications. For example,
borrowing constraint changes the outcome of the dynamic zero-sum game, resulting in a
nonmonotonic relationship between model distortion and wealth. By contrast, the rela-
tionship is monotonic in Kasa and Lei (2018). Second, their paper answers the question

2Empirical studies, e.g., Dimmock et al. (2016) and Brenner and Izhakian (2018), provide supporting
evidence for the importance of Knightian uncertainty for understanding household portfolio choice.
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of whether model uncertainty can explain the rise in top wealth shares in the U.S., while
our main goal is to analyze the effects of robustness on the whole wealth distribution and
evaluate its business cycles implications.

The current paper also contributes to the growing literature that analyzes the macroe-
conomic effects of household heterogeneity in continuous time.3 Examples include Ben-
habib et al. (2016), Gabaix et al. (2016), Achdou et al. (2022), Cao and Luo (2017), Kaplan
et al. (2018), Nuno and Moll (2018), and Toda and Walsh (2020). Our paper is most closely
related to Achdou et al. (2022), upon which we build our model. The paper brings two
contributions to this literature. First, we show that robustness provides a useful per-
spective for understanding both tails of wealth distribution. Second, we extend relevant
results in Achdou et al. (2022) for the context of model uncertainty, and derive a novel
formulation for its impact on the speed of convergence.

Finally, the paper is related to a few studies that employ representative agent mod-
els in which stochastic volatility and model uncertainty drive business cycles. Stochastic
volatility shock associated with a TFP generates a typical recession in these models ac-
companied by a decline consumption, investment, output and hours (Bidder and Smith,
2012; Backus et al., 2015). However, these models fail to account for magnitudes and per-
sistence of shocks and robustness usually has a small effect on business cycles quantities.
Di Tella and Hall (2022) offer a two-agents stochastic growth model where idiosyncratic
investment risk rises in recessions and drives risk premium up. Firm responds by cut-
ting down risky labour demand which lead to contractions in consumption, investment,
output and hours in general equilibrium. Our contribution is to provide a distinct ra-
tionale for a recession, one that puts the non-homothetic portfolio choice in presence of
borrowing constraint and idiosyncratic investment risk at the center stage.

The rest of the paper is structured as follows. Section 2 describes the model. Section
3 characterizes the policy functions of both poor and rich households. Section 4 present
our parametrization and numerical computation strategies. In section 5, we examine the
results of our numerical experiments. Section 6 concludes.

2 The Model

This section constructs a continuous-time general equilibrium economy populated by
a continuum of infinitely-lived households. Each household consists of a worker and a

3There is also a large literature that studies equilibrium models with heterogenous households in dis-
crete time. Examples include Bewley (1986), Huggett (1993), Aiyagari (1994), Benhabib et al. (2015),
Quadrini and Ríos-Rull (2015) and references therein.
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producer (or entrepreneur). The worker supplies his labor endowment inelastically to the
labor market. The entrepreneur runs a privately-held firm that hires labor in a competitive
labor market and employs capital accumulated by its household owner. Households face
aggregate volatility shocks and idiosyncratic labor and capital income shocks. They can
save in a riskless bond and invest risky real capital in the firm they own.

2.1 Preferences

Households have standard preferences over consumption as

U0 = E0

[∫ +∞

0
e−ρtu(ct)dt

]
, (2.1)

where ρ denotes the subjective discount factor and ct the consumption at date t. The
periodic utility function u(c) is specified to be of the form

u (c) =
c1−γ

1− γ
, γ > 0. (2.2)

2.2 Endowment and technology

Each worker is endowed with one unit of labor, whose productivity zt evolves stochas-
tically over time. The productivity follows a two-state Poisson process and takes values
in {z1, z2} with z1 < z2. The process switches from state 1 to state 2 with intensity λ1 and
from state 2 to state 1 with intensity λ2.

Households also receive capital income from their own private firm. Each firm pro-
duces output using a Cobb-Douglas technology

yt = F(kt, lt) = kα
t l1−α

t , (2.3)

where α is the capital share, kt denotes the private capital, and lt stands for the labour
hired at the wage rate wt. Firm profit or household capital income is subject to idiosyn-
cratic shocks, and it evolves according to

dvt = (yt − wtlt − δkt)dt +
√

ϑtktdWt, (2.4)

where δ is the rate of capital depreciation, and Wt is a standard Brownian motion rep-
resenting an idiosyncratic shock to the capital income. The capital income shock is in-
dependent and identically distributed across firms and time, and can be interpreted as a

5



stand-in for any type of exogenous idiosyncratic risk in the returns to private investment.

The variance ϑt of the idiosyncratic capital income shocks fluctuates over time, driven
by an economic-wide risk shock. We assume ϑt follows a Cox-Ingersoll-Ross process:4

dϑt = θ
(
ϑ̄− ϑt

)
dt + ν

√
ϑtdBt, (2.5)

where θ, ϑ̄, and ν are positive parameters, denoting, respectively, the mean-reverting rate,
the mean volatility level, and the volatility of volatility. In equation (2.5), Bt is a standard
Browninan motion that captures the aggregate volatility risk in the economy, and serves
as the only exogenous driver of business cycles. It is assumed that aggregate and id-
iosyncratic shocks are independently distributed, so the paper focuses on connections be-
tween volatility shocks and economic activity that arise through the model’s internal eco-
nomic structure rather than through purely statistical channels between different types
of shocks. In the model, each firm chooses employment after the capital stock has been
installed and the contemporaneous shocks have been observed.

2.3 Market structure

Households use two types of assets to smooth consumption. First, they have an access
to an instantaneously maturing riskless bond bt that pays an interest rate rt. They can save
or borrow in the bond subject to a borrowing constraint

bt ≥ −φ, (2.6)

where φ > 0. Households can also invest real risky capital kt in their own private firm.
The associated capital return dR̃t = dvt/kt varies over time as

dR̃t = Rtdt +
√

ϑtdWt, (2.7)

where Rt is the unknown expected capital return. Capital cannot be negative, i.e., kt ≥
0. Denote at = bt + kt as a household’s net worth. The borrowing constraint and the
requirement of non-negative holdings of the risky capital can be summarized as

0 ≤ kt ≤ at + φ, (2.8)

where at ≥ a = −φ is the constraint imposed on net worth.

4Apart from its analytical tractability, the process (2.5) has been broadly adopted in finance to capture
the dynamics of stock price volatility, one important measure of macroeconomic uncertainty proposed by
the existing literature of uncertainty shocks, and thus is a reasonable volatility specification.
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The dynamics of the net worth of a household are given by

dat = ztwtdt + ktdR̃t + btrtdt− ctdt

=

(
ztwt + rtat + π̂tkt − ct

)
dt +

√
ϑtktdWt

= ŝ(at, zt, Gt, ϑt)dt +
√

ϑtktdWt

(2.9)

where π̂t = Rt − rt is the excess return of the risky capital and Gt is the cross-sectional
distribution of households along networth at and productivity zt at date t.

2.4 Robust portfolio choice

In this economy, households do not perfectly know the probability measure underly-
ing the idiosyncratic capital income shocks in the risky return process (2.7). We capture
this model uncertainty using the notion à la Hansen et al. (2006) and Hansen and Sar-
gent (2008).5 When making their consumption-portfolio decisions, households consider
multiple alternative probability measures and choose policies to obtain the highest ex-
pected utility under the worst case scenario. Robustness is achieved by assuming that
each household plays a zero-sum game with nature. Nature distorts the drift term of the
risky return process, while the household makes its portfolio choice taking the distorted
return as given.

More precisely, let q0 be a probability measure defined by the Brownian motion in
the reference law of motion describing return process (2.7) and q an alternative law. The
distance between the two laws is measured by the expected discounted log likelihood
ratio also called relative entropy

R(q) = ρ
∫ ∞

0
e−ρt

[∫
log
(

dqt

dq0
t

)
dqt

]
dt =

1
2

E0

[∫ ∞

0
e−ρth2

t dt
]

, (2.10)

where the second equality is due to the Girsanov Theorem and ht is a square integrable
and measurable process. The value of ht represents the distortion chosen by nature. One
can then view the alternative model q as induced by the following Brownian motion

dW̃t = dWt − htdt. (2.11)

5For the axiomatic foundations of model uncertainty, please refer to Gilboa and Schmeidler (1989), Mac-
cheroni et al. (2006), and Strzalecki (2011).
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Consequently, the alternative risky return process is

dR̃t =
(

Rt +
√

ϑtht

)
dt +

√
ϑtdW̃t. (2.12)

As a result, the dynamic budget constraints perceived by a household can be written as

dat =

(
ztwt + rtat + πtkt − ct

)
dt +

√
ϑtktdW̃t

= s(at, zt, Gt, ϑt)dt +
√

ϑtktdW̃t

(2.13)

where πt = Rt − rt +
√

ϑtht = π̂t +
√

ϑtht represents the perceived excess return.

The objective of a household is to choose a consumption plan {ct} and an investment
plan in the risky asset {kt} to maximize its lifetime utility, subject to budget constraint
(2.13) and borrowing constraint (2.8). By contrast, nature chooses a distortion plan {ht}
to minimize a distortion cost represented by the relative entropy R(q).6 Mathematically,
the robust consumption-portfolio choice problem can be formulated as

max
{ct,kt}

min
{ht}

E0

∫ ∞

0
e−ρt

(
c1−γ

t
1− γ

+
1
2ε

h2
t

)
dt

s.t. dat = s(at, zt, Gt, ϑt)dt +
√

ϑtktdW̃t

0 ≤ kt ≤ at + φ.

(2.14)

The parameter ε represents the robustness parameter, where 1/ε can be interpreted as a
marginal cost of distorting the drift term of the risky return process. When ε = 0, the
marginal cost is infinite and nature chooses h = 0 so that there is no doubt in the law of
motion of the risky return. In this case, the model reduces to a standard Merton portfolio
choice problem without robustness.

2.5 Recursive equilibrium

A recursive equilibrium consists of wage w(G, ϑ), capital return R(G, ϑ), interest rate
r(G, ϑ), value function v(a, zj, G, ϑ), optimal consumption c(a, zj, G, ϑ), optimal invest-
ment in the risky capital k(a, zj, G, ϑ), optimal distortion h(a, zj, G, ϑ), and density func-
tion gt(a, zj) such that

1. The value function and policy functions solve the optimization problem (2.14).

6This form of cost functions has been used widely in the literature, e.g., Hansen and Sargent (2008).
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2. The density function gt,j(a) satisfies the Kolmogorov Forward (KF) equation:

∂

∂t
gt,j(a) = − ∂

∂a
(
ŝ(a, zj, Gt, ϑt)gt,j(a)

)
− λjgt,j(a) + λ−jgt,−j(a) +

1
2

∂2

∂a2

(
ϑk2gt,j(a)

)
,

(2.15)
where gt,j(a) = gt(a, zj) with j denoted as one state of income and −j as the other.

3. The bond market clears:
2

∑
j=1

∫
(a− k)gt(a, zj) = 0. (2.16)

4. The labor market clears:
2

∑
j=1

∫
zjgt(a, zj) = 1. (2.17)

3 Equilibrium characterization

This section characterizes the equilibrium dynamics of macroeconomic aggregates,
and more importantly, the impacts of model uncertainty on the consumption-investment
behavior of households. The analysis provides important insights on the implications of
robustness for wealth distribution and aggregate fluctuations.

Proposition 1. In equilibrium, the wage and the expected capital return satisfy

wt = w(Kt, ϑt) = (1− α)Kα
t , Rt = R(Kt, ϑt) = αKα−1

t − δ, (3.1)

where Kt = ∑2
j=1
∫

kgt(a, zj) denotes the aggregate capital stock and its evolution follows

dKt = (Kα
t − δKt − Ct) dt, (3.2)

with Ct = ∑2
j=1
∫

cgt(a, zj) being the aggregate consumption in equilibrium.

We now characterize the individual behavior of households across the wealth dis-
tribution. The characterization deploys a perturbation method related to the distortion
parameter ε, which allows us to disentangle the effects of robustness in an analytical fash-
ion. To derive economic intuition, the remainder of the section focuses the analysis on the
consumption-investment decisions in the steady state.

Denote w, R and r as the steady-state wage, expected capital return and risk-free rate,
respectively, and σ =

√
ϑ as the stationary standard deviation of capital income shocks.

In the steady state, the household’s optimization problem (2.14) can be summarized by
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the following Hamilton-Jacobi-Bellman (HJB) equation:

ρvj(a) = max
c,0≤k≤a+φ

min
h

{
u(c) + 1

2ε h2 + v′j(a)(wzj + ra + (R + σh− r)k− c)
+1

2 v′′j (a)σ2k2 + λj(v−j(a)− vj(a))

}
, j = 1, 2

(3.3)
which is solved by value function vj(a) and policy functions cj(a), k j(a) and hj (a). The
associated first-order conditions are

u′(cj(a)) = v′j(a)

k j(a) = min

®
− π

σ2

v′j(a)

v′′j (a)
, a + φ

´
= min

®
R− r

σ2

v′j(a)

ε(v′j(a))2 − v′′j (a)
, a + φ

´
hj(a) = −εσk j(a)v′j(a),

(3.4)

where households use perceived excess return π instead of actual one π̂ to choose capital.
For the sake of notational convenience, we use vj,0(a), cj,0(a) and k j,0(a) to denote the
corresponding value function and policy functions in an otherwise identical economy
without model uncertainty, i.e., they represent the solution to equation (3.3) with ε = 0.

We first consider the saving behavior of wealth-poor households, with the results sum-
marized in the following proposition.

Proposition 2. Suppose that r < ρ at the steady state with a > −wz1
r . As a → a, the following

hold:

1. The robust saving function sj(a) satisfies:

s1 (a) ∼ −
»

2ς1 (a− a), (3.5)

where ς1 is a constant defined by

ς1 =
(ρ− r) c1 (a)

γ
+ λ1 (c2 (a)− c1 (a))

− c1 (a)
2γ

(
R− r

σ

)2
(

γ + 1
γ
− 1

γ

c1 (a) c′′1 (a)

c′1 (a)2

)(
1− 2

ε

γ

c1 (a)1−γ

c′1 (a)

)
. (3.6)

2. The realized saving function ŝj(a) satisfies:

ŝ1 (a) ∼ −
»

2ς̂1 (a− a), (3.7)
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where ς̂1 is a constant defined as
ς̂1 = ς1 − λε (3.8)

with the coefficient

λ =
c1 (a)

γ

(
R− r

σ

)2
(

γ + 1
γ
− 1

γ

c1 (a) c′′1 (a)

c′1 (a)2

)(
c1 (a)1−γ c′1 (a)

(γ + 1) c′1 (a)2 − c′′1 (a) c1 (a)

)
.

(3.9)

Part 1 of Proposition 2 characterizes the shape of the robust saving function of low
income households in the proximity of the borrowing constraint, where the function be-
haves like−

√
ς1(a− a). As shown in (3.6), the value of ς1 is determined by three different

factors. The first and second terms on the right-hand side of the equation capture respec-
tively the effects of intertemporal substitution and income uncertainty, whereas the third
represents the impact from risky investment taking robustness concerns into considera-
tion.

Notwithstanding households make their portfolio choice based on the perceived re-
turn process given in (2.12), their actual wealth accumulation is driven by the realized
return and thus the realized saving function ŝj. As characterized in Part 2 of Proposition
2, the function exhibits a similar square-root shape, where the parameter ς̂1 measures the
speed of convergence to the borrowing constraint.7 If c′1 > 0 and c′′1 ≤ 0, i.e., the con-
sumption function is increasing and concave with respect to wealth, one can deduce from
(3.9) that λ > 0 and thus ς̂1 < ς1 by (3.8). Intuitively speaking, because the realized return
from the risky asset is higher than what would be perceived by a household with robust-
ness concerns, its actual wealth grows at a rate faster than perceived. As such, the pace of
hitting the borrowing constraint due to successive low-income realizations is slower than
what it would be based on the robust saving function.

To identify the impact of model uncertainty on the saving behavior of wealth-poor
households, we compare our benchmark economy to an otherwise identical economy
without robustness by evaluating the disparity between their respective speeds of con-
vergence to the borrowing constraint.8 The results are presented in the following propo-
sition, whose proof relies on a first-order Taylor expansion of ς̂1 around ε = 0,

Proposition 3. Suppose that r < ρ at the steady state with a > −wz1
r . Denote cj(a) = cj,0(a) +

εcj,1(a) + O(ε2), j = 1, 2, as the first-order approximation of the consumption function, where

7It is straightforward to show that the wealth of a household with initial wealth a0 above a and successive

draws of low-income state z1 hits the borrowing constraint in finite time T =
√

2(a0−a)
ν̂1

.
8This comparative analysis is in essence a partial equilibrium study by abstracting away the general

equilibrium effects of robustness on prices.
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cj,0(a) represents the consumption function in the economy without robustness. It holds that

ς̂1 ≈ ς1,0 + ς1,1ε, (3.10)

where ς̂1 is the speed of convergence in the benchmark economy as given in (3.8),

ς1,0 =
(ρ− r)c1,0 (a)

γ
+λ1 (c2,0 (a)− c1,0 (a))− c1,0 (a)

2γ

(
R− r

σ

)2
(

γ + 1
γ
− 1

γ

c1,0 (a) c′′1,0 (a)

c′1,0 (a)2

)
(3.11)

represents the counterpart of ς̂1 in the economy without robustness, and ς1,1 is some constant
defined in the Appendix A.

In a similar vein to (3.7), as a → a the saving function of income-poor households in
the economy without model uncertainty approximately equals

s1,0 (a) ∼ −
»

2ς1,0 (a− a), (3.12)

where ς1,0 is given in (3.11). The ensuing proposition identifies a set of sufficient condi-
tions that enables a comparison of ŝ1(a) and s1,0(a) near the borrowing constraint.

Proposition 4. Suppose that r < ρ at the steady state with a > −wz1
r . If the following three

conditions are satisfied:

1. c2,1 (a) > c1,1 (a) > 0;

2. c′1,0(a) > 0 and c′′1,0(a) < 0;

3. θ(a) < 0, where θ(a) is a function defined in the Appendix A,

it holds that
ς̂1 > ς1,0, (3.13)

and there exists an ε > 0 such that for a ∈ (a, a + ε),

ŝ1(a) < s1,0(a) < 0. (3.14)

Proposition 4 says that near the borrowing constraint households in the benchmark
economy dissave at a faster rate than in the economy without robustness, and they are
also more susceptible to becoming credit constrained following negative income shocks.
This result is driven by two forces. First, robustness induces households to believe that the
excess return on the risky asset is lower than what it is in reality. Consequently, they invest
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less in the higher yielding asset, which decelerates their wealth accumulation. Second,
lower wealth translates into a tighter borrowing constraint in (2.8). This collateral effect
further discourages the investment in the risky private capital. By implication, ceteris
paribus, robustness concerns associated with the idiosyncratic investment risk tend to
increase the mass of households on the left tail of the wealth distribution.

We now proceed to analyze the consumption-investment behavior of wealth-rich house-
holds. We first derive an auxiliary lemma concerning a homogeneity property of the value
function defined in (3.3). This property is also instrumental for handling boundary con-
ditions in the subsequent numerical analysis.

Lemma 1. As a → ∞, the value function solving the HJB equation (3.3) can be approximately
written as

vj (a) ≈ vj,0 (a) + εvj,1 (a) , (3.15)

where the two functions vj,0 (a) and vj,1 (a) are such that for any ξ > 0,

vj,0 (ξa) = ξ1−γvξ,j,0 (a) , vj,1 (ξa) = ξ2(1−γ)vξ,j,1 (a) , (3.16)

with vξ,j,0 (a) and vξ,j,1 (a) satisfying two functional equations defined in the Appendix A.

The following proposition provides an analytical approximation for the policy func-
tions when wealth is very large. The proof rests on the fact that borrowing constraint and
labor income become irrelevant for the portfolio choice of rich households.

Proposition 5. As a→ ∞, the individual policy functions solving the HJB equation (3.3) can be
approximately written as

cj(a) ≈ cj,0(a) + εcj,1(a) = α
− 1

γ

0 a− ε
1
γ

α
− 1

γ−1
0 α1a2−γ (3.17)

k j(a) ≈ k j,0(a) + εk j,1(a) =
R− r
γσ2 a− ε

R− r
σ2

α2
0 + α1(γ− 1)

α0γ2 a2−γ (3.18)

hj(a) ≈ −ε
R− r
γσ2 α0a1−γ, (3.19)

where α0 is given by (A.69) and α1 by (A.72) in the appendix.

As evidenced in Lemma 1 and Proposition 5, robustness concerns also induce devia-
tions in consumption-investment behavior of rich households from the standard Merton
solution, which is represented by value function vj,0(a) and policy functions cj,0 and k j,0.9

9Kasa and Lei (2018) derive similar robust policy functions in a Blanchard–Yaari framework over the
entire state space. In our paper, these functions are only valid for the rich and they take a different shape in
the left tail due to the borrowing constraint.
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The proposition shows that if γ > 1 and α1 > 0, the presence of robustness concerns de-
creases the consumption and risk investment of rich households, with the size of model
distortion declining with wealth and diminishing to zero as wealth approaches infinity.

This monotonic relationship between distortion and wealth, however, does not extend
to the whole spectrum of the wealth distribution, as shown by the following proposition.

Proposition 6. Suppose that r < ρ at the steady state with a > −wz1
r . The optimal distortion

function satisfies: for γ > 1,
lim
a→a

hj(a) = lim
a→∞

hj(a) = 0, (3.20)

and there exists an a∗j ∈ (a, ∞) such that

h′j(a∗j ) = 0. (3.21)

Proposition 6 summarizes the effects of wealth on the way nature distorts the return
of the risky private capital. By (2.12), the distortion alters the drift of the perceived risky
return process from R to R + σhj (a). As shown in (3.4), the size of distortion equals

hj(a) = −εσk j(a)v′j(a), (3.22)

which is a function of a household’s holding of private capital k j(a) and its marginal util-
ity of wealth v′j(a). Nature does not distort the risky return perceived by constrained
households, because they do not hold any private capital k j(a) = 0 thanks to the borrow-
ing constraint in (2.8) and then have nothing to lose. By contrast, if the value function
vj(a) is concave, rich households tend to have a small marginal utility of wealth v′j(a).
When the decrease in the marginal utility overshadows the increase in the holding of
private capital as wealth becomes sufficiently large, the impact of model uncertainty dis-
sipates. Intuitively, wealth discourages nature from distorting the risky return because
the more wealth a household holds, the less pessimistic the household is about the return
obtained from the private investment. By implication, the maximal distortion occurs at
some intermediate wealth level a∗j as defined in (3.21), suggesting a likely U-shaped rela-
tion between distortion and wealth across the wealth spectrum. This result is in a stark
contrast to the literature, such as Kasa and Lei (2018), which argues that model distor-
tion depends negatively on wealth globally. The non-monotonic relation revealed herein
manifests the importance of financial constraints for the game between households and
nature.

We conclude this section by comparing in Figure 1 the policy function xj (a) in the
benchmark economy with its counterpart xj,0 (a) in an otherwise identical economy ab-
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Figure 1: The effects of robustness on policy functions

sent model uncertainty. Panel (a) shows that the size of distortion displays a U-shaped
relation with wealth, which is consistent with the preceding discussions. Panel (b) in-
dicates that robustness concerns reduce the risky investment across the board. The re-
duction, however, varies non-monotonically with wealth, and it resembles closely the
behavior of the distortion. Panel (c) portrays the implications of model uncertainty for
consumption. Robustness reduces the risky investment of households near the borrow-
ing constraint, resulting in an increase in their consumption. Contrarily, the consumption
of the rich falls as a result of a reduction in net worth thanks to the decrease in their hold-
ings of the higher yielding capital. Panel (d) depicts the reaction of saving to robustness.
The ratio is above one for the low-income state and below one for the high-income state.
Because saving is negative in the low-income state and positive in the high-income state,
it suggests that the preference for robustness decelerates wealth accumulation.

4 Calibration and computation

This section parameterizes the benchmark model and describes the numerical algo-
rithm for solving the recursive equilibrium.
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4.1 Calibration

The model is parameterized according to U.S. data. For parameters describing pref-
erences, we set the subjective discount rate ρ at 0.055 to match an average annual real
interest rate of 4 percent. The risk aversion γ is fixed at 2, a value well within the consen-
sus range of the parameter.

The parameters governing the idiosyncratic two-state productivity process are esti-
mated as follows. We interpret state 1 as unemployment and state 2 as employment.
Accordingly, we choose the transition probabilities λ1 = 0.986 and λ2 = 0.052 to repro-
duce the long-run average unemployment rate of 5 percent and the job finding rate of
0.986 in line with Blanchard and Galí (2010). The corresponding labor productivities are
set at z1 = 0.72 and z2 = 1.015, so that productivity in state 1 is about 71 percent of that
in state 2 as in Hall and Milgrom (2008), and the average productivity equals one.

There are no precise estimates of the level of idiosyncratic investment risk because
of a lack of sufficiently rich data about entrepreneurial returns, as argued for example
in Moskowitz and Vissing-Jørgensen (2002). In the baseline parametrization, we follow
Angeletos (2007) by setting σ =

√
ϑ̄ at 0.125, a conservative estimate of the risk in the U.S.

Capital depreciates at rate δ = 0.08 and the share of capital in production is α = 0.36, both
of which are standard in the literature. The values of the persistence and the volatility of
risk shocks are taken from Di Tella and Hall (2022) and set at θ = 0.2 and ν = 0.16.

Table 1: Baseline parameterization

Parameter Value
Subjective discount rate ρ 0.055
Relative risk aversion γ 2
Robustness parameter ε 0.3
Borrowing limit φ 0.5
Income jump λ1,λ2 0.986, 0.052
Low income z1 0.72
High income z2 1.015
Volatility risky return σ 0.125
Depreciation rate δ 0.08
Capital share α 0.36
stoc vol persistence θ 0.20
stoc vol volatitlity ν 0.16

The borrowing constraint parameter φ, which affects the fraction of households hold-
ing negative wealth and the overall wealth concentration, is pinned down at 0.5. The
value is broadly in line with Huggett (1993) and Achdou et al. (2022). We calibrate the ro-
bustness parameter ε based on a methodology similar to Anderson et al. (2003) and Kasa
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and Lei (2018), and set it at 0.3. The corresponding dependent detection error probabili-
ties are all above 44 percent, suggesting the empirical plausibility of model uncertainty.

The performance of the parameterized benchmark model is evaluated by comparing
the model’s implications for wealth distribution with their respective data counterparts.
Table 2 displays the results. It is encouraging that the model fits the U.S. wealth distri-
bution reasonably well, particularly the right tail. It thus provides a reliable platform for
evaluating the distributional implications of robustness over the business cycle.

Table 2: Stationary
wealth distribution

Data Model
P(a < 0) 0.100 0.128
[0, 50) 0.018 0.036
[50, 90) 0.251 0.206
[90, 99) 0.382 0.434
[99, 100] 0.350 0.324
Gini 0.860 0.828
Notes: The source of the data is
the Survey of Consumer Finances.

4.2 Computation

To solve the competitive equilibrium with volatility shocks, we employ the approxi-
mation method developed by Krusell and Smith (1997) and specifically the continuous-
time version of Fernández-Villaverde et al. (2019). The method assumes that households
are boundedly rational in the sense that they only use partial information in the distribu-
tion to predict the law of motion for the state variables. More precisely, the paper postu-
lates that the aggregate capital stock Kt is a sufficient statistic to represent the distribution
function Gt, with the following perceived law of motion (PLM) of aggregate capital and
risk-free rate

dKt = p(Kt, ϑt)dt

rt = r(Kt, ϑt),
(4.1)

where p(·) and r(·) are two forecasting functions specified as

p(Kt, ϑt) = β1 + β2ϑt + β3 ln Kt + β4ϑt ln Kt

r(Kt, ϑt) = β5 + β6ϑt + β7 ln Kt + β8ϑt ln Kt,
(4.2)
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for some unknown parameters β = (β1, · · · , β8). Based on the postulated PLM (4.1),
problem (2.14) can be characterized by the following approximated HJB equation:

ρv(a, zj, K, ϑ) = max
c,k

min
h

c1−γ

1− γ
+

1
2ε

h2 + s(a, zj, K, ϑ)
∂v
∂a

+ λj
(
v(a, z−j, K, ϑ)− v(a, zj, K, ϑ)

)
+

ϑk2

2
∂2v
∂a2 + p(K, ϑ)

∂v
∂K

+ θ(ϑ̄− ϑ)
∂v
∂ϑ

+
ϑν2

2
∂2v
∂ϑ2 ,

(4.3)

where the robust saving function s(a, zj, K, ϑ) is such that

s(a, zj, K, ϑ) = w(K, ϑ)zj + r(K, ϑ)a +
(

R(K, ϑ)− r(K, ϑ) +
√

ϑh
)

k− c, (4.4)

with w(K, ϑ) and R(K, ϑ) denoting wage and expected capital return given in (3.1).

We solve the HJB equation (4.3) and simulate the economy over a long period of time
using an upward finite difference scheme advocated by Achdou et al. (2022). The result-
ing model generated moments are compared to those perceived by households. If they
are close enough, then one obtains a good approximation of the equilibrium. Otherwise,
one could try different functional forms of the forecasting functions p and r, or include
additional moments of the distribution G. Technical details of the numerical algorithm
are presented in the Appendix B.

5 Quantitative results

This section deploys the parameterized model to investigate the role of model uncer-
tainty over the business cycle, from both aggregate and distributional perspectives.

5.1 Aggregate effects of a risk shock

We first find the deterministic steady state (DSS) model version in which all the shocks
are kept at their mean levels (mostly zero). Figure 2 exhibits the aggregate dynamics, mea-
sured by percentage deviations of involved variables from the DSS, following a sudden
escalation in volatility (green solid line). Heightened risk in the entrepreneurial activity
depresses the demand for the risky capital, resulting in a deep decline in capital stock,
output, and wage, and a sharp increase in the expected capital return. As households
accumulate more bonds out of precautionary motive, the risk-free interest rate drops,
yielding a spike in the equity premium. When the volatility shock hits, consumption
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rises on impact before subsequently falling back below its steady-state level.10 The initial
jump of consumption is a well-known feature of a business cycle model with pure volatil-
ity shocks as shown in Bloom et al. (2018). In the current model, the result stems largely
from a substitution effect because the negative risk shock makes it more attractive for
households to consume today rather than tomorrow as lower interest rate make savings
less attractive.

Figure 2: Effects of risk shock on aggregate variables
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K =

∫
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K and panel (l) shows the fraction of indebted households given by
∫

b<=0 dG(a, z)

We next examine the role of robustness in the economic repercussions driven by volatil-
ity shocks. For comparison, we display in Figure 2 the ensuing impulse responses in
a counterfactual economy that is identical to the benchmark except for robustness (red
dashed line). There are two main takeaways from the figure. First of all, the drop in the
risk-free interest rate on impact is far and away larger in the benchmark economy. After
the elevation in aggregate volatility, the fear of misspecifying the capital return process

10The literature has proposed multiple ways to resolving this anomaly by, for example, introducing addi-
tional saving vehicles in Fernández-Villaverde et al. (2011) or modeling precautionary savings from house-
holds in the wake of a volatility shock in Basu and Bundick (2017). Including these modifications would
add little additional insight but increase the computational burden considerably. We have thus abstracted
from these expansions in the paper.

19



intensifies immediately (larger σ in (3.22)). Households become more pessimistic right
away and speed up their portfolio rebalancing toward the safe asset, making the decline
in the risk-free rate much steeper. Consequently, due to the slow adjustments of capital
stock and thus the expected capital return by (3.1), the initial jump in the equity premium
is also more pronounced in the benchmark economy. Accelerated divestment in the risky
capital, as evidenced in the more suppressed investment rate, helps magnify the early
rise in consumption. Decreases in output and wage are, however, similar on impact in
the two economies as they move in lock step with capital in light of Proposition 1.

The second finding is that model uncertainty notably slows the economy’s recovery
from the depth of the recession. As the volatility shock subsides, entrepreneurs are start-
ing to take advantage of low labor and borrowing costs and build up their capital stock.
However, the incentive is weaker in the benchmark economy, because the wealth losses
experienced in the early stage of the downturn encourage nature to keep distorting the
risky return model (2.12) aggressively until households sufficiently restore their wealth
(smaller a in (3.22)). This, in turn, weighs on their subjective evaluation of the prospect
capital return, and slows down their investment. Therefore, while the depth of recessions
is comparable in the two economies, the recovery of capital and output is more sluggish
in the benchmark.

5.2 Distributional effects of a risk shock

In this subsection, we explore the distributional implications of robustness for the
propagation of volatility shocks. Figure 3 depicts the impulse responses of wealth, con-
sumption, holdings of capital and bond, and model distortion to the same volatility shock
in Figure 2 for three individual wealth groups.11 To distinguish the role of robustness, we
similarly report the model-implied dynamics in both benchmark (blue solid line) and
nonrobust (red solid line) economies.

As shown, there is a vast heterogeneity in the responses of consumption and portfo-
lio variables to the volatility shock across the wealth distribution. For households whose
wealth ranks over the top 10 percent in the population, a spike in the aggregate volatility
propels a wealth reallocation from the risky capital to the riskless bond. This is because
these households hold majority of their wealth in the private capital, and a negative risk
shock begets a flight-to-safety. The rebalanced portfolio, however, features a lower over-
all return, leading to a subsequent decline in wealth and consumption from their steady-
state levels. When households are uncertain about the underlying capital return process,

11In the figure, a group-specific variable refers to the average of the variable of households whose wealth
fall into that group.
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Figure 3: Effects of risk shock on group-specific average
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an elevated volatility only aggravates their concerns about possibly misspecifying the re-
turn model (2.12) with a large jump in distortion from nature. As such, these households
accelerate reallocating their wealth from the private capital to the bond market, yielding
a more precipitous decrease in wealth and consumption. In essence, model uncertainty
considerably strengthens the precautionary saving motive of wealth-rich households, and
it helps supercharge their portfolio reallocation activity. Since they are the primary hold-
ers of the capital stock, this intensified reallocation manifests itself in a more pronounced
interest-rate slump in the benchmark economy as seen in Figure 2.

By contrast, for households owning intermediate levels of wealth, i.e., those within the
p50-90 wealth bracket, the negative volatility shock creates an opportunity for growing
their wealth. The combination of lower risk-free rate and higher excess capital return,
engineered by the portfolio rebalancing of their richer counterparts, encourages these
households to tap the bond market and use the proceeds to invest in the capital.12 The
readjusted portfolio provides a higher average return and helps expand their wealth and

12We invite the reader to interpret the initial upward movement in panel (k) and (j) as an accumulation
of debt since each panel measures the percentage deviation from the steady-state level of bonds held by
respective group, both of which are negative (or simply debt) in the numerical simulation.
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consumption after the volatility shock, a stark contrast to their respective dynamics for
households in the top 10 percent wealth group. More interestingly, we find that model
uncertainty tends to reinforce this portfolio adjustment as evidenced in a much stronger
growth in the holding of the risky capital. This is because although elevated volatility
increases the pessimism about the capital return, its negative effect on capital investment
is outweighed by the associated general equilibrium benefits due to the steeper decline
in the interest rate and rise in the expected capital return than in the scenario absent
robustness.

Meanwhile, decreasing wage and thus labor income after the volatility shock makes
it more difficult for households in the bottom 50 percent wealth group to prop up their
consumption than the rest. For them human wealth constitutes a more important fund-
ing source than financial wealth, whose accumulation is also limited by the borrowing
constraint. In response, these wealth-poor households liquidate their capital and borrow
in the bond market at an interest rate cheaper than before. However, as model uncer-
tainty has triggered a much larger decline in the rate, they don’t have to sell their capital
as much as they would do in the counterfactual economy without robustness. This ac-
counts for the observed less severe drop in capital and wealth, and stronger pick-up in
consumption.

The above analysis demonstrates that in comparison to its aggregate implications, ro-
bustness acts as a powerful distributional amplifier of volatility shocks by significantly
magnifying the fluctuations of consumption and portfolio variables across the wealth
spectrum. It crystallizes the importance of incorporating household heterogeneity for
assessing the business-cycle implications of model uncertainty. But it remains unclear
how and to which extent it would reshape the evolution of economic distributions. To
gain insight into this point, Figures 4 plot in order the distributional dynamics of wealth
and consumption driven by the same negative volatility shock. Each figure displays the
changes in dispersion and skewness of the corresponding distribution, where the second
and third moments are inferred from the 10th, 50th and 90th percentiles of the distribu-
tion. These quantile-based statistics are robust to outliers and also easy to interpret. We
use the ratio between the 90th and 10th percentiles, P9010 in Panel (b), to measure the
overall dispersion, and similarly, the ratios between the 50th and 10th percentiles, P5010
in Panel (c), and between the 90th and 50th percentiles, P9050 in Panel (d) to represent
dispersion in the left and right tails, respectively. Our measure of skewness in Panel (a)
is the Kelley skewness defined as KSK = (P90−P50)−(P50−P10)

P90−P10 = P9050∗P5010−2∗P5010+1
P9050∗P5010−1 . A

positive value of the skewness indicates that the right tail accounts for more than one half
of the total dispersion or the distribution is rightly skewed, and vice versa for a negative
value.
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Figure 4: Effects of risk shock on wealth and consumption inequality
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with respect to wealth. The Kelley measure is defined as : KSK = (P90−P50)−(P50−P10)
P90−P10 . A negative value indicates that the left-tail

contribution to the overall dispersion is larger than that of the right tail.

The first row of figure 4 shows that heightened investment risk widens the wealth
dispersion in both tails and thus the total dispersion. The skewness also picks up after
the shock, suggesting that the rise in dispersion is more acute in the right tail. It is note-
worthy that robustness exerts strong but opposite impacts on dispersion in the two tails:
it markedly enlarges dispersion in the right tail but limits that in the left. This asymmet-
ric change is in line with the observed adjustments of the risky capital by the first two
wealth groups in Figure 3, as wealth dispersion moves largely in tandem with the capital
in the model.13 Consequently, despite its relatively muted effect on the overall dispersion,
robustness considerably skews the distribution further rightward as seen in the steeper
elevation in the Kelley skewness.

There are, however, some notable differences in the way consumption distribution re-

13The current measures of dispersion and skewness are constructed without considering the top and
bottom 10 percent of the distribution. By design, it ignores the distributional effects of behavioral changes
from households in the top 10 percent wealth group. Using wider symmetric percentiles, such as the 95th
and 5th percentiles, is found to have limited impacts on the results.
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acts to robustness relative to that of wealth. The second row of figure 4 shows that model
uncertainty multiplies instead of dampens the increase in total dispersion of consumption
over the risk-driven downturn. The divergence is propelled by a much stronger uptick
in the left-tail dispersion in the benchmark economy, especially at the onset of the shock.
This mainly stems from a well-known substitution effect as the steeper decline in risk-
free interest rate in the benchmark prompts a larger jump in consumption for households
near the right end of the bottom 50 group. In consequence, model uncertainty skews the
consumption distribution leftward on impact before reversing the course subsequently.

5.3 The role of household heterogeneity

To help gain additional insights into the role of incomplete asset markets, we com-
pare in this section models with different degrees of heterogeneity. More precisely, we
compare our baseline model with a model economy were all the parameters are kept to
their baseline values except for the volatility of the idiosyncratic investment risk. In this
alternative economy, we decrease the value of volatility of the idiosyncratic investment
risk by 28 percent going from σ = 0.125 to σ = 0.09. Figure 5 below and figure 7-9 in the
appendix compares our baseline economy to such an economy with low degree of invest-
ment risk. The alternative economy behaves similar to our baseline model but induces
a smaller response to volatility shocks. The peak in consumption response on impact is
dampened by a factor of about 30 in a robust economy with low investment risk (dashed
blue line) relative to the baseline. Intuitively, the lower the degree of heterogeneity, the
easier it is for household to smooth consumption by reducing their self-insurance needs
and investing more in the private firm.

Figure 5: Effects of risk shock on aggregate variables by investment risk level
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5.4 Extension with both TFP and risk shocks

In this section, we examine the robustness of the insights derived above by considering
an additional aggregate TFP shock. This can also be interpreted that recessions, such as
the Great Recession, are typically periods of both first- and second-moment shocks. The
extended model is only a minimal departure from the benchmark, where entrepreneurs
operate production using the following technology:

yt = eZt F(kt, lt) = eZt kα
t l1−α

t , (5.1)

with Zt being the logarithm of aggregate productivity. For computational tractability, we
assume Zt follows a two-state Poisson process and takes values in {Z1, Z2}with Z1 < Z2.
The process jumps from state 1 to state 2 with intensity ψ1 and from state 2 to state 1 with
intensity ψ2.

The stochastic process of aggregate productivity is calibrated under the interpretation
that the economy enters into recession and expansion in state Z1 and Z2, respectively. The
jump intensities ψ1 and ψ2 are chosen to match the frequency of U.S. recessions ψ2

ψ1+ψ2
=

10
10+60 and the average length of a recession 1

ψ1
= 10/12 years using the NBER-dated

recessions. We estimate the ratio of productivity eZ1

eZ2
= 0.9648, from the post-World War

II US economy log of TFP series of Fernald (2014). The combination of the productivity
ratio together with the fact the stationary mean log productivity is normalized to be zero,
i.e ψ2

ψ1+ψ2
Z1 +

ψ1
ψ1+ψ2

Z2 = 0, pin down the values of Z1 at −0.0307 and Z2 at 0.0051.

Table 3: Business cycle moments

Data Baseline Nonrobust
σ(Y) 0.015 0.009 0.009
σ(C)/σ(Y) 0.550 0.446 0.403
σ(I)/σ(Y) 4.137 3.416 3.381
corr(C, Y) 0.835 0.929 0.958
corr(I, Y) 0.930 0.981 0.991
corr(Yt, Yt−1) 0.874 0.723 0.723
Notes: All aggregate variables are log-transformed. Empiri-
cal moments are computed based on quarterly aggregate data
from 1984Q1 to 2019Q4 HP filtered. We simulate the model
for a long sample and HP filtered the generated data while
accounting for a burn-in. We then compute the model equiv-
alent of each empirical moment using these data.

As a validation, we compare the dynamics of economic variables implied by the ex-
tended model and the data. We simulate our model with a sequence of aggregate risk and
TFP shocks, and use the HP-filtered series to compute business cycle moments. Results
are reported in Table 3. It suggests that our model successfully reproduces the relative
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volatilities and cyclical behavior of consumption, investment, and capital stock observed
in data even though we did not directly target those moments in our calibration. Rela-
tive to the non robust economy counterpart, all aggregates macroeconomics variable are
more volatile in our baseline robust economy. Consumption volatility is about 11 per cent
higher. As discussed in previous sections, household consumption-portfolio choice prob-
lem under Knightian uncertainty driving the returns to private capital returns combined
with borrowing constraint explain the business cycle fluctuations amplification mecha-
nism present in the baseline economy.

In figure 6, we plot the model impulse response to a onetime positive two standard
deviation increase in risk shocks combined with a productivity sequence where aggregate
TFP is kept at state Z = Z1 for 10 months before returning to its stationary mean. Con-
sumption, capital and interest rate all fall on impact and recover thereafter. The addition
of TFP shocks thus corrects the consumption impulse response anomaly documented ear-
lier. As a results, these dynamics adjustment to shocks create plausible recessions driven
by model uncertainty.

Figure 6: Effects of risk and TFP shocks on aggregate variables
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6 Conclusion

This paper examines the implications of model uncertainty for wealth distribution and
business cycles in a tractable continuous-time general equilibrium model. We find that
the size of the model distortion chosen by nature varies nonmonotonically with house-
hold wealth. Robustness generates a larger concentration of wealth due to two factors. It
increases the speed at which the wealth of unlucky households hits the borrowing con-
straint. It also leads richer households to invest a disproportionally larger share of wealth
in the higher yielding asset. Our analysis shows that robustness significantly prolongs the
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recession driven by an investment risk shock, and magnifies the associated fluctuations
of consumption and portfolio variables across the wealth spectrum.

To illustrate the distributional effects of robustness, the model is deliberately kept sim-
ple. The mechanism proposed in the paper, however, opens the door to a proper quan-
titative analysis. For example, an emerging body of evidence highlights that in order to
understand the aggregate economic activities during the Great Recession, it is crucial for
a model to capture the large fraction of poor households.14 Model uncertainty provides a
useful channel through which a substantial share of the population become wealth poor.
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A Proofs

A.1 Proof of Proposition 1

Given the installment of capital and the observation of shocks, an entrepreneur hires
workers to maximize its profit:

v(k) = max
l

kαl1−α − wl − δk. (A.1)

It is straightforward to verify that the optimal employment and profit are

l(k) =
(

w
1− α

)− 1
α

k, v(k) =

((
w

1− α

)− 1−α
α

− w
(

w
1− α

)− 1
α

− δ

)
k, (A.2)

both of which are linear in k. Integrating l(k) with respect to the density gt and using the
labor market clearing condition (2.17) yield the equilibrium wage

wt = w(Kt, ϑt) = (1− α)Kα
t , (A.3)

and the associated profit

v(kt) = R(Kt, ϑt)kt, R(K, ϑ) = αKα−1 − δ. (A.4)

Combining (2.4) and (A.4) gives the equilibrium dynamics of the capital income

dvt = R(Kt, ϑt)ktdt +
√

ϑtktdWt, (A.5)

and consequently by (2.7) that of the capital return

dR̃t = Rtdt +
√

ϑtdWt, Rt = R(Kt). (A.6)

By (A.2) and (A.3), aggregate output equals

Yt =
2

∑
j=1

∫
ygt(a, zj) =

2

∑
j=1

∫ (w(Kt, ϑt)

1− α

)− 1−α
α

kgt(a, zj) = Kα
t . (A.7)
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Aggregating individual budget constraints (2.9) and employing the market clearing con-
ditions (2.16) and (2.17) yield the following dynamics of the aggregate capital

dKt =
2

∑
j=1

∫ (
wtzj + rta + π̂tk− c

)
gt(a, zj) +

2

∑
j=1

√
ϑt

∫
kgt(a, zj)dWt

= (wt + RtKt − Ct) dt = (Kα
t − δKt − Ct) dt,

(A.8)

where the term associated with ∑2
j=1
∫

kgt(a, zj)dWt disappears because idiosyncratic shocks
wash away in aggregation.

A.2 Proof of Proposition 2

To prove Part 1 of the proposition, we first show that s1(a) = 0. The FOCs of problem
(3.3) associated with c, k, h are, respectively,

u′
(
cj (a)

)
= v′j (a) (A.9)

v′j (a)
(

R + σhj (a)− r
)
+ v′′j (a) σ2k j (a) = 0 (A.10)

hj (a) + εσv′j (a) k j (a) = 0. (A.11)

Since 0 ≤ k j (a) ≤ a− a, it follows that lima→a k j (a) = 0, and by (A.11) lima→a hj (a) = 0,
where the last equality uses the fact that v′j (a) = lima→a u′

(
cj (a)

)
< ∞. Evaluating the

Euler equation of problem (3.3) at a = a with (A.9) and k(a) = 0 yields

ρ− r =
u′′(c1(a))
u′(c1(a))

c′1(a)s′1(a) + λ1

(
u′(c2(a))
u′(c1(a))

− 1
)

. (A.12)

Given u′ > 0, u′′ < 0, c′1 ≥ 0 and c2(a) ≥ c1(a), equation (A.12) implies s1(a) ≤ 0.
Observing the borrowing constraint a ≥ a requires s1(a) = 0, and consequently

c1(a) = lim
a→a

wz1 + ra + (R + σh1(a)− r)k1(a)− s1 (a) = wz1 + ra > 0.

As a matter of fact, s1 (a) < 0 in a neighborhood of the borrowing constraint. To see this
more precisely, combining (2.8), (A.10) and (A.11) yields

k j(a) = min

{
R− r

σ2

v′j(a)

εv′2j − v′′j (a)
, a + φ

}
. (A.13)
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As a consequence, we have

0 = lim
a→a

k1 (a) = lim
a→a
−

v′1 (a)
v′′1 (a)

R + σh1 (a)− r
σ2 = − u′ (c1 (a))

u′′ (c1 (a)) c′1 (a)
R− r

σ2 ,

meaning that c′1 (a) = ∞. Because 0 ≤ k1 (a) ≤ a− a and k1 (a) = 0, it holds that

k′1 (a) = lim
a→a

k1 (a)− k1 (a)
a− a

= lim
a→a

k1 (a)
a− a

≤ lim
a→a

a− a
a− a

= 1,

i.e., k′1 (a) is bounded. Differentiating (A.11) with respect to a yields

h′j (a) = −εσ
(

v′′j (a) k j (a) + v′j (a) k′j (a)
)

. (A.14)

As a result, we have

lim
a→a

s′1 (a) = lim
a→a

r + k′1 (a) (R + σh1 (a)− r) + k1 (a) σh′1 (a)− c′1 (a) (A.15)

= lim
a→a

r + k′1 (a) (R + σh1 (a)− r)− εσ2k1 (a)

(
v′′1 (a) k1 (a) +

v′1 (a) k′1 (a)

)
− c′1 (a)

= −∞,

where the last equality stems from the fact that lima→a k1 (a) = lima→a h1 (a) = 0, and the
two limits lima→a k′1 (a) and lima→a v′′1 (a) k1 (a) = − lima→a v′1 (a) R+σh1(a)−r

σ2 are bounded.
Since s1 (a) = 0, it holds that there exists δ > 0 such that s1 (a) < 0 for a ∈ (a, a + δ).

We now proceed to derive the approximate analytical solution of s1 (a) near the bor-
rowing constraint. By definition,

lim
a→a

(
s′1 (a) + c′1 (a)

)
s1 (a) = lim

a→a

(
r + (R− r + σh1 (a)) k′1 (a) + k1 (a) σh′1 (a)

)
s1 (a)

= lim
a→a

(
r + (R− r + σh1 (a)) k′1 (a)

−εσ2k1 (a) (v′′1 (a) k1 (a) + v′1 (a) k′1 (a))

)
s1 (a) = 0,

which implies that
lim
a→a

s′1 (a) s1 (a) = − lim
a→a

c′1 (a) s1 (a) . (A.16)
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We next compute the limit on the right-hand side. The Euler equation of (3.3) is

ρ− r =
v′′1 (a)
v′1 (a)

s1 (a) +
1
2

v′′′1 (a)
v′1 (a)

σ2k2
1 (a) + λ1

(
v′2 (a)
v′1 (a)

− 1
)

=
v′′1 (a)
v′1 (a)

s1 (a) +
1
2

v′′′1 (a)
v′1 (a)

σ2

(
R− r

σ2
v′1(a)

εv′1 (a)2 − v′′1 (a)

)2

+ λ1

(
v′2 (a)
v′1 (a)

− 1
)

≈
v′′1 (a)
v′1 (a)

s1 (a) +
1
2

v′′′1 (a)
v′1 (a)

(
R− r

σ

)2
(
−

v′1(a)
v′′1 (a)

− ε
v′1(a)3

v′′1 (a)2

)2

+ λ1

(
v′2 (a)
v′1 (a)

− 1
)

≈
v′′1 (a) s1 (a)

v′1 (a)
+

(R− r)2

2σ2
v′′′1 (a) v′1(a)

v′′1 (a)2

(
1 + 2ε

v′1(a)2

v′′1 (a)

)
+ λ1

(
v′2 (a)
v′1 (a)

− 1
)

.(A.17)

By (A.9) and the functional form of u, we have

v′1 (a) = u′ (c1 (a)) = c1 (a)−γ

v′′1 (a) = u′′ (c1 (a)) c′1 (a) = −γc1 (a)−γ−1 c′1 (a) (A.18)

v′′′1 (a) = u′′′ (c1 (a)) c′1 (a)2 + u′′ (c1 (a)) c′′1 (a) = γ (γ + 1) c1 (a)−γ−2 c′1 (a)2 − γc1 (a)−γ−1 c′′1 (a) .

Substituting them into (A.17) and rearranging lead to

ρ− r = −γc1 (a)−1 c′1 (a) s1 (a)− λ1γc1 (a)−1 (c2 (a)− c1 (a)) (A.19)

+
1
2

(
R− r

σ

)2
(

γ + 1
γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)(
1− 2ε

1
γ

c1 (a)1−γ

c′1 (a)

)
.

This together with (A.16) gives

lim
a→a

s′1 (a) s1 (a) = ς1,

where ς1 is defined in (3.6). As a result, we have

s1 (a)2 ≈ s1 (a)2 + 2s1 (a) s′1 (a) (a− a) = 2ς1 (a− a) ,

and thus (3.5).

We next prove the second part of Proposition 2. The derivation of ς̂1 is similar to that
of ς1. First, it is direct to show that

lim
a→a

ŝ′1 (a) ŝ1 (a) = − lim
a→a

c′1 (a) ŝ1 (a) . (A.20)
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By construction,
s1 (a) = ŝ1 (a) + σk j (a) hj (a) . (A.21)

Plugging it into the Euler equation (A.17) and rearranging yield

ρ− r =
v′′1 (a)
v′1 (a)

(
ŝ1 (a) + σk j (a) hj (a)

)
+

1
2

v′′′1 (a)
v′1 (a)

σ2k2
1 (a) + λ1

(
v′2 (a)
v′1 (a)

− 1
)

≈
v′′1 (a) ŝ1 (a)

v′1 (a)
+

(R− r)2

2σ2
v′′′1 (a) v′1(a)

v′′1 (a)2

1 + 2ε

 v′1(a)2

v′′1 (a)

− v′1(a)v′′1 (a)
v′′′1 (a)

 (A.22)

+λ1

(
v′2 (a)
v′1 (a)

− 1
)

.

Using expressions in (A.18) in (A.22) results in

ρ− r = −γc1 (a)−1 c′1 (a) ŝ1 (a)− λ1γc1 (a)−1 (c2 (a)− c1 (a)) (A.23)

+
1
2

(
R− r

σ

)2
(

γ + 1
γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ

c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)


 .

The combination of equations (A.23) and (A.20) imply that

lim
a→a

ŝ′1 (a) ŝ1 (a) = ς̂1,

where ν̂1 = ν1 − λε, with λ given in (3.9). Since ŝ1(a) = s1(a) = 0 by (A.21), we reach at

ŝ1 (a)2 ≈ ŝ1 (a)2 + 2ŝ1 (a) ŝ′1 (a) (a− a) = 2ς̂1 (a− a) ,

and thus (3.7).

A.3 Proof of Proposition 3

First, we rewrite (A.23) as

−c′1 (a) ŝ1 (a) =
c1(a)(ρ− r)

γ
+ λ1 (c2 (a)− c1 (a)) (A.24)

− c1(a)
2γ

(
R− r

σ

)2
(

γ + 1
γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ

c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)


 .
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Denote the above equation as

η(a) = −c′1 (a) ŝ1 (a) = η1(a) + η2(a) + η3(a), (A.25)

where

η1(a) =
c1(a)(ρ− r)

γ
(A.26)

η2(a) = λ1 (c2 (a)− c1 (a)) (A.27)

η3(a) = − c1(a)
2γ

(
R− r

σ

)2
 γ+1

γ −
1
γ c1 (a) c′′1 (a)

c′1(a)2


1 + 2ε

 − 1
γ

c1(a)1−γ

c′1(a) +

c1(a)1−γc′1(a)
(γ+1)c′1(a)2−c′′1 (a)c1(a)


 .(A.28)

Note (3.8) implies η(a) = ς̂1. Next, we derive in order the first-order approximations of
functions ηi(a), i = 1, 2, 3, around ε = 0. By (A.26), we have

η1(a) =
c1(a)(ρ− r)

γ
≈ (c1,0(a) + εc1,1(a))(ρ− r)

γ
= η1,0 (a) + εη1,1 (a) , (A.29)

where

η1,0 (a) =
c1,0(a)(ρ− r)

γ
, η1,1 (a) =

c1,1(a)(ρ− r)
γ

. (A.30)

By the same token, equation (A.27) yields

η2(a) = λ1 (c2 (a)− c1 (a)) ≈ λ1(c2,0(a) + εc2,1(a)− c1,0(a)− εc1,1(a))

= λ1(c2,0(a)− c1,0(a)) + ελ1(c2,1(a)− c1,1(a)) = η2,0(a) + εη2,1(a), (A.31)

where
η2,0(a) = λ1(c2,0(a)− c1,0(a)), η2,1(a) = λ1(c2,1(a)− c1,1(a)). (A.32)
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Finally, we can approximate η3(a) in (A.28) as

η3(a) = − c1(a)
2γ

(
R− r

σ

)2
(

γ + 1
γ
− 1

γ
c1 (a)

c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ

c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)




= − 1
2γ

(
R− r

σ

)2
(

γ + 1
γ

c1(a)− 1
γ

c1 (a)2 c′′1 (a)

c′1 (a)2

)1 + 2ε

 − 1
γ

c1(a)1−γ

c′1(a)

+
c1(a)1−γc′1(a)

(γ+1)c′1(a)2−c′′1 (a)c1(a)




≈ − 1
2γ

(
R− r

σ

)2
 (γ+1)(c1,0(a)+εc1,1(a))

γ

− 1
γ (c1,0(a) + εc1,1(a))2 c′′1,0(a)+εc′′1,1(a)

(c′1,0(a)+εc′1,1(a))2


×

1 + 2ε

 − 1
γ
(c1,0(a)+εc1,1(a))1−γ

c′1,0(a)+εc′1,1(a)

+
(c1,0(a)+εc1,1(a))1−γ(c′1,0(a)+εc′1,1(a))

(γ+1)(c′1,0(a)+εc′1,1(a))2−(c′′1,0(a)+εc′′1,1(a))(c′1,0(a)+εc′1,1(a))




≈ η3,0(a) + εη3,1(a), (A.33)

where

η3,0(a) = − 1
2γ

(
R− r

σ

)2
(

γ + 1
γ

c1,0(a)− 1
γ

c1,0(a)2 c′′1,0(a)

c′1,0 (a)2

)
, η3,1(a) = η3,0(a)τ (a) .

(A.34)
Here the function τ (a) is defined as

τ(a) =
θ(a)

(γ + 1)c1,0(a)c′1,0 (a)3 − c1,0(a)2c′1,0(a)c′′1,0(a)

− 2
γ

c1,0(a)1−γ

c′1,0(a)
+

2c1,0 (a)1−γ c′1,0 (a)

(γ + 1) c′1,0 (a)2 − c1,0 (a) c′′1,0 (a)
,

θ(a) = (γ + 1)c1,1(a)c′1,0(a)3 −
(

2c1,0(a)c1,1(a)c′′1,0(a)
+c1,0(a)2c′′1,1(a)

)
c′1,0(a) + 2c1,0(a)2c′′1,0(a)c′1,1(a).

Substituting (A.29), (A.31) and (A.33) into (A.25) and taking the limit of a to a lead to

ς̂1 = lim
a→a

η (a) = lim
a→a

3

∑
i=1

ηi (a) ≈ lim
a→a

3

∑
i=1

(ηi,0 (a) + εηi,1 (a))

=
3

∑
i=1

ηi,0 (a) + ε
3

∑
i=1

ηi,1 (a) . (A.35)
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Note that

3

∑
i=1

ηi,0 (a) =

 c1,0(a)(ρ−r)
γ + λ1(c2,0(a)− c1,0(a))

− 1
2γ

(R−r
σ

)2
(

(γ+1)c1,0(a)
γ − 1

γ c1,0(a)2 c′′1,0(a)

c′1,0(a)2

)  = ς1,0. (A.36)

Combining (A.35) and (A.36) yields (3.10) as desired, where

ς1,1 =
3

∑
i=1

ηi,1 (a) . (A.37)

A.4 Proof of Proposition 4

To prove (3.13), by (3.10) it suffices to show ς1,1 > 0. Because c1,1(a) > 0, we have

η1,1 (a) =
c1,1(a)(ρ− r)

γ
> 0.

Meanwhile, the condition c2,1 (a) > c1,1 (a) implies that

η2,1(a) = λ1(c2,1(a)− c1,1(a)) > 0.

Since c′′1,0(a) < 0, η3,0 (a) < 0 by (A.34). Furthermore, given θ(a) < 0 and c′1,0(a) > 0, we
have τ (a) < 0 and thus

η3,1(a) = η3,0(a)τ (a) > 0.

implying ς1,1 = ∑3
i=1 ηi,1 (a) > 0. Employing (3.13) and the two approximations (3.7) and

(3.12) yields the relationship in (3.14).

A.5 Proof of Lemma 1

Suppose equation (3.15) holds, it follows that

v′j (a) ≈ v′j,0 (a) + εv′j,1 (a) , v′′j (a) ≈ v′′j,0 (a) + εv′′j,1 (a) . (A.38)
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Therefore, by (A.9), we have

cj (a) = v′j (a)−
1
γ ≈

(
v′j,0 (a) + εv′j,1 (a)

)− 1
γ

= v′j,0 (a)−
1
γ

(
1 + ε

v′j,1 (a)

v′j,0 (a)

)− 1
γ

≈ v′j,0 (a)−
1
γ

(
1− ε

1
γ

v′j,1 (a)

v′j,0 (a)

)
= cj,0 (a) + εcj,1 (a) , (A.39)

where
cj,0 (a) = v′j,0 (a)−

1
γ , cj,1 (a) = − 1

γ
v′j,0 (a)−

1
γ−1 v′j,1 (a) . (A.40)

Equations (A.10) and (A.11) imply that

k j (a) =
R− r

σ2

v′j(a)

εv′j (a)2 − v′′j (a)

≈ R− r
σ2

(
−

v′j(a)

v′′j (a)
− ε

v′j(a)3

v′′j (a)2

)

≈ R− r
σ2

−v′j,0 (a) + εv′j,1 (a)

v′′j,0 (a) + εv′′j,1 (a)
− ε

(
v′j,0 (a) + εv′j,1 (a)

)3

(
v′′j,0 (a) + εv′′j,1 (a)

)2


≈ k j,0 (a) + εk j,1 (a) , (A.41)

where

k j,0 (a) = −R− r
σ2

v′j,0 (a)

v′′j,0 (a)
, k j,1 (a) = −R− r

σ2

v′j,1 (a) v′′j,0 (a) + v′j,0 (a)
(

v′j,0 (a)2 − v′′j,1 (a)
)

v′′j,0 (a)2 .

(A.42)
Similarly, we have

hj (a) = −R− r
σ

εv′j(a)2

εv′j (a)2 − v′′j (a)

≈ −R− r
σ

ε
(

v′j,0 (a) + εv′j,1 (a)
)2

ε
(

v′j,0 (a) + εv′j,1 (a)
)2
−
(

v′′j,0 (a) + εv′′j,1 (a)
)

≈ εhj,1 (a) , (A.43)
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where

hj,1 (a) =
R− r

σ

v′j,0 (a)2

v′′j,0 (a)
. (A.44)

Substituting (3.15), (A.38), (A.39), (A.41) and (A.43) into both sides of equation (3.3), and
collecting terms with the same ε power yield that vj,0 (a) and vj,1 (a) satisfy the following
two coupled functional equations:

ρvj,0 (a) =
cj,0 (a)1−γ

1− γ
+ v′j,0 (a)

(
wzj + ra + k j,0 (a) (R− r)− cj,0 (a)

)
(A.45)

+
1
2

σ2v′′j,0 (a) k2
j,0 (a) + λj

(
v−j,0 (a)− vj,0 (a)

)
,

ρvj,1 (a) = cj,0 (a)−γ cj,1 (a) + v′j,0 (a)
(
k j,1 (a) (R− r)− cj,1 (a)

)
(A.46)

+v′j,1 (a)
(
wzj + ra + k j,0 (a) (R− r)− cj,0 (a)

)
+σ2

(
v′′j,0 (a) k j,0 (a) k j,1 (a) +

1
2

v′′j,1 (a) k2
j,0 (a)

)
−1

2
σ2v′j,0 (a)2 k j,0 (a)2 + λj

(
v−j,1 (a)− vj,1 (a)

)
.

Next, we prove the homogeneity results. By (3.16), we have

vj,0 (a) = ξ1−γvξ,j,0

(
a
ξ

)
, vj,1 (a) = ξ2(1−γ)vξ,j,1

(
a
ξ

)
,

and thus

v′j,0 (a) = ξ−γv′ξ,j,0

(
a
ξ

)
, v′j,1 (a) = ξ1−2γv′ξ,j,1

(
a
ξ

)
,

v′j,0 (a) = ξ−γ−1v′ξ,j,0

(
a
ξ

)
, v′′j,1 (a) = ξ−2γvξ,j,1

(
a
ξ

)
.
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It then follows from (A.40), (A.42) and (A.44) that

cj,0 (a) = v′j,0 (a)−
1
γ =

(
ξ−γv′ξ,j,0

(
a
ξ

))− 1
γ

= ξ

(
v′ξ,j,0

(
a
ξ

))− 1
γ

= ξcξ,j,0

(
a
ξ

)
(A.47)

cj,1 (a) = − 1
γ

v′j,0 (a)−
1
γ−1 v′j,1 (a) = − 1

γ

(
ξ−γv′ξ,j,0

(
a
ξ

))− 1
γ−1

ξ1−2γv′ξ,j,1

(
a
ξ

)
= −ξ2−γ 1

γ
v′ξ,j,0

(
a
ξ

)− 1
γ−1

v′ξ,j,1

(
a
ξ

)
= ξ2−γcξ,j,1

(
a
ξ

)
(A.48)

k j,0 (a) = −R− r
σ2

v′j,0 (a)

v′′j,0 (a)
= −R− r

σ2

ξ−γv′ξ,j,0

(
a
ξ

)
ξ−γ−1v′ξ,j,0

(
a
ξ

) = ξkξ,j,0

(
a
ξ

)
(A.49)

k j,1 (a) = −R− r
σ2

v′j,1 (a) v′′j,0 (a) + v′j,0 (a)
(

v′j,0 (a)2 − v′′j,1 (a)
)

(
v′′j,0 (a)

)2 = ξ2−γkξ,j,1

(
a
ξ

)
(A.50)

hj,1 (a) =
R− r

σ

v′j,0 (a)2

v′′j,0 (a)
=

R− r
σ

(
ξ−γv′ξ,j,0

(
a
ξ

))2

ξ−2γvξ,j,1

(
a
ξ

) = ξ1−γhξ,j,1

(
a
ξ

)
. (A.51)

By inserting (A.47) to (A.51) into both (A.45) and (A.46) and rearranging terms, we obtain
that vξ,j,0 (a) and vξ,j,1 (a) satisfy the following two coupled functional equations:

ρvξ,j,0 (a) =
cξ,j,0 (a)1−γ

1− γ
+ v′ξ,j,0 (a)

(
wzj

ξ
+ ra + kξ,j,0 (a) (R− r)− cξ,j,0 (a)

)
(A.52)

+
1
2

σ2v′′ξ,j,0 (a) k2
ξ,j,0 (a) + λj

(
vξ,−j,0 (a)− vξ,j,0 (a)

)
,

ρvξ,j,1 (a) = cξ,j,0 (a)−γ cξ,j,1 (a) + v′ξ,j,0 (a)
(
kξ,j,1 (a) (R− r)− cξ,j,1 (a)

)
(A.53)

+v′ξ,j,1 (a)
(

wzj

ξ
+ ra + kξ,j,0 (a) (R− r)− cξ,j,0 (a)

)
+σ2

(
v′′ξ,j,0 (a) kξ,j,0 (a) kξ,j,1 (a) +

1
2

v′′ξ,j,1 (a) k2
ξ,j,0 (a)

)
−1

2
σ2v′ξ,j,0 (a)2 kξ,j,0 (a)2 + λj

(
vξ,−j,1 (a)− vξ,j,1 (a)

)
,
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where in (A.52) and (A.53) we define

cξ,j,0 (a) = v′ξ,j,0 (a)−
1
γ , cξ,j,1 (a) = − 1

γ
v′ξ,j,0 (a)−

1
γ−1 v′ξ,j,1 (a) , (A.54)

kξ,j,0 (a) = −R− r
σ2

v′ξ,j,0 (a)

v′′ξ,j,0 (a)
, kξ,j,0 (a) = −R− r

σ2

 v′ξ,j,1 (a) v′′ξ,j,0 (a)

+v′ξ,j,0 (a)
(

v′ξ,j,0 (a)2 − v′′ξ,j,1 (a)
) 

v′′ξ,j,0 (a)2 .

(A.55)

A.6 Proof of Proposition 5

By Lemma 1, we have for any a ∈ (a, ∞),

lim
ξ→∞

vξ,j,0 (a) = ṽ0 (a) , lim
ξ→∞

vξ,j,1 (a) = ṽ1 (a) , (A.56)

where ṽ0 (a) and ṽ1 (a) solve the following two functional equations

ρṽ0 (a) =
c̃0 (a)1−γ

1− γ
+ ṽ′0 (a)

(
ra + k̃0 (a) (R− r)− c̃0 (a)

)
+

1
2

σ2ṽ′′0 (a) k̃2
0 (a)(A.57)

ρṽ1 (a) = c̃0 (a)−γ c̃1 (a) + ṽ′0 (a)
(
k̃1 (a) (R− r)− c̃1 (a)

)
(A.58)

+ṽ′1 (a)
(
ra + k̃0 (a) (R− r)− c̃0 (a)

)
+σ2

(
ṽ′′0 (a) k̃0 (a) k̃1 (a) +

1
2

ṽ′′1 (a) k̃2
0 (a)

)
− 1

2
σ2ṽ′0 (a)2 k̃0 (a)2 ,

with

c̃0 (a) = ṽ′0 (a)−
1
γ , c̃1 (a) = − 1

γ
ṽ′0 (a)−

1
γ−1 ṽ′1 (a) (A.59)

k̃0 (a) = −R− r
σ2

ṽ′0 (a)
ṽ′′0 (a)

, k̃1 (a) = −R− r
σ2

ṽ′1 (a) ṽ′′0 (a) + ṽ′0 (a)
(

ṽ′0 (a)2 − ṽ′′1 (a)
)

ṽ′′0 (a)2 (A.60)

h̃1 (a) =
R− r

σ

ṽ′0 (a)2

ṽ′′0 (a)
. (A.61)

It is straightforward to verify that ṽ (a) = ṽ1 (a) + εṽ0 (a) is an approximate solution to
the HJB equation (3.3) absent income uncertainty and borrowing constraint. Combining
equation (A.47) with (A.56) leads to that for a very large,

cj,0 (a) = ξcξ,j,0

(
a
ξ

)
= aca,j,0 (1) ≈ ac̃0 (1) . (A.62)
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Similarly, we have

cj,1 (a) = ξ2−γcξ,j,1

(
a
ξ

)
= a2−γca,j,1 (1) ≈ a2−γ c̃1 (1) (A.63)

k j,0 (a) = ξkξ,j,0

(
a
ξ

)
= ξka,j,0 (1) ≈ ak̃0 (1) (A.64)

k j,1 (a) = ξ2−γkξ,j,1

(
a
ξ

)
= a2−γka,j,1 (1) ≈ a2−γk̃1 (1) (A.65)

hj,1 (a) = ξ1−γhξ,j,1

(
a
ξ

)
= a1−γha,j,1 (1) ≈ a1−γh̃1 (1) . (A.66)

Therefore, it remains to solve equations (A.57) and (A.58). First, conjecture

ṽ0 (a) = α0
a1−γ

1− γ
(A.67)

for some number α0. In this case, we have ṽ′0 (a) = α0a−γ, ṽ′′0 (a) = −γα0a−γ−1, and
subsequently from equations (A.59) to (A.61) that

c̃0 (a) = α
− 1

γ

0 a, k̃0 (a) =
R− r

σ2 a, h̃1 (a) = −R− r
σ2 α0a1−γ. (A.68)

Inserting (A.67) and (A.68) into (A.57) gives the value of α0:

α0 =

(
ρ− (1− γ) r

γ
− 1− γ

2γ

(R− r)2

γσ2

)−γ

. (A.69)

Next, conjecture

ṽ1 (a) = α1
a2(1−γ)

2 (1− γ)
(A.70)

for some number α1. Thus, we have ṽ′1 (a) = α1a1−2γ, ṽ′′1 (a) = (1− 2γ) α1a1−2γ, and
subsequently from (A.59) to (A.61) that

c̃1 (a) = − 1
γ

α
− 1

γ−1
0 α1a2−γ, k̃1 (a) = −R− r

σ2
α2

0 + (γ− 1) α1

γ2α0
a2−γ. (A.71)

Substituting (A.70) and (A.71) into (A.58) results in

α1

(
r− α

− 1
γ

0 +
1
2
(R− r)2

γ2σ2 − ρ

2 (1− γ)

)
= −1

2
α2

0
(R− r)2

γ2σ2 ,
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and thus the value of α1:

α1 =

1
2 α2

0

(
R−r
γσ

)2

r− α
− 1

γ

0 + 1
2

(
R−r
γσ

)2
− ρ

2(1−γ)

. (A.72)

By (A.39), (A.62) and (A.63), when a is sufficiently large, we have

cj (a) ≈ cj,0 (a) + εcj,1 (a) ≈ ac̃0 (1) + εa2−γ c̃1 (1) = α
− 1

γ

0 a− ε
1
γ

α
− 1

γ−1
0 α1a2−γ.

By the same token,

k j (a) ≈ k j,0 (a) + εk j,1 (a) ≈ ak̃0 (1) + εa2−γk̃1 (1) =
R− r

σ2 a− ε
R− r

σ2
α2

0 + (γ− 1) α1

γ2α0
a2−γ

hj (a) ≈ εhj,1 (a) ≈ εa1−γh̃1 (1) = −ε
R− r

σ2 α0a1−γ.

A.7 Proof of Proposition 6

The borrowing constraint 0 ≤ k j (a) ≤ a− a implies that lima→a k j (a) = 0, and then
by (3.22) and (A.9)

lim
a→a

hj (a) = − lim
a→a

εσk j (a) v′j (a) = − lim
a→a

εσk j (a) u′
(
cj(a)

)
= 0,

where the last equality rests on that c2(a) ≥ c1(a) = wz1 + ra > 0 and thus lima→a u′
(
cj (a)

)
<

∞. The second limit in (3.20) takes advantage of the approximation (3.19). Finally, apply-
ing the Rolle’s theorem to hj(a) with (3.20) guarantees the existence of a∗j in (3.21).

B Numerical algorithm

This paper computes the perceived law of motion (4.1) using approximation tech-
niques proposed in Krusell and Smith (1997) and Achdou et al. (2022). The numerical
algorithm comprises the following steps:

1. Guess initial forecasting coefficients β0 for the PLM of capital stock and interest rate
as specified in (4.1) and (4.2).
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2. Using the guess in Step 1, solve the HJB equation (4.3) using an upward finite dif-
ference method.

3. Apply the value and policy functions obtained in Step 2 to simulate the dynamics
of capital stock and interest rate with a constant time step ∆t:

(a) Choose the initial density g1 = gss, capital stock K1 = Kss, and volatility ϑ1 = ϑ̄,
where gss and Kss denote, respectively, the density function and aggregate cap-
ital in the stationary equilibrium, and draw a sequence of aggregate volatility
{ϑt}T

t=1 by (2.5) using a random number generator.

(b) Since the forecasting rule of the interest rate in (4.1) might not exactly clear
the bond market at all dates and states, we solve an additional optimization
problem at each point in time in the simulation, a scheme similar to Krusell
and Smith (1997). More precisely, at time t, observing the density gt, aggregate
capital Kt = ∑i,j aigt(ai, zj), and aggregate volatility ϑt, given a guessed inter-
est rate r0, solve the following optimization problem for households of state
(ai, zj):

max
c,k

min
h

c1−γ

1− γ
+

1
2ε

h2 + s(ai, zj, Kt, ϑt)
∂v
∂a

+
ϑtk2

2
∂2v
∂a2

+ λj(v(ai, z−j, Kt, ϑt)− v(ai, zj, Kt, ϑt)) + p(Kt, ϑt)
∂v
∂K

+ θ(ϑ̄− ϑt)
∂v
∂ϑ

+
ϑtν

2

2
∂2v
∂ϑ2 ,

(B.1)

subject to the same constraints for problem (4.3). Here v is the value function
as solved in Step (2), and s(a, zj, Kt, ϑt) = wtzj + r0a + (Rt − r0 +

√
ϑth)k − c

is the perceived saving rate associated with the guessed interest rate r0. This
gives the household’s optimal risky investment k(r

0)(a, zj). Look for r0 such
that the implied aggregate capital K(r0) = ∑2

j=1
∫

k(r
0)(a, zj)gt(a, zj) equals Kt,

i.e., the bond market is cleared. Apply the KF equation to derive the next-
period distribution gt+1 and capital stock Kt+1.

(c) Keep implementing the above procedure with the provided random draws and
get a series {ϑt, gt, Kt, rt}T

t=1.

4. Run OLS using the simulated series and obtain the new forecasting coefficients β1.
If new coefficients are close enough to the previous ones, then the iteration over
coefficients is finished. Otherwise, update the coefficients by β0 = (1− κ)β0 + κβ1

for some κ ∈ (0, 1) and go back to Step (2).
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5. Upon convergence of the coefficients, check the goodness of fit. If it is not satisfac-
tory, try different functional forms for the forecasting functions or add more mo-
ments of the distribution.

We next describe in details the steps involved in solving the HJB and KF equations.

B.1 Solving the HJB equation

We first discretize the state space of (a, zj, K, ϑ) on a finite uniform grid of size (I, 2, L, M)

with step sizes ∆a, ∆K and ∆ϑ, respectively. The model is approximated over a ∈ {a1, · · · , aI},
where ai = a1 + (i − 1)∆a for 2 ≤ i ≤ I, and similarly for K ∈ {K1, · · · , KL}, and
ϑ ∈ {ϑ1, · · · , ϑM}. The four-dimensional arrays are then used to store the value and
policy functions.

For ease of exposition, we denote vi,j,l,m = v(ai, zj, Kl, ϑm), and similarly for policy
functions ci,j,l,m, ki,j,l,m and hi,j,l,m for i = 1, · · · , I, j = 1, 2, l = 1, · · · , L, m = 1, · · · , M.
The derivatives with respect to individual wealth are approximated as

∂v(ai, zj, Kl, ϑm)

∂a
≈ ∂a,Fvi,j,l,m =

vi+1,j,l,m − vi,j,l,m

∆a
∂v(ai, zj, Kl, ϑm)

∂a
≈ ∂a,Bvi,j,l,m =

vi,j,l,m − vi−1,j,l,m

∆a
∂2v(ai, zj, Kl, ϑm)

∂a2 ≈ ∂aavi,j,l,m =
vi+1,j,l,m − 2vi,j,l,m + vi−1,j,l,m

(∆a)2 ,

whereas that with respect to aggregate state variables are

∂v(ai, zj, Kl, ϑm)

∂K
≈ ∂K,Fvi,j,l,m =

vi,j,l+1,m − vi,j,l,m

∆K
∂v(ai, zj, Kl, ϑm)

∂K
≈ ∂K,Bvi,j,l,m =

vi,j,l,m − vi,j,l−1,m

∆K
∂v(ai, zj, Kl, ϑm)

∂ϑ
≈ ∂ϑ,Fvi,j,l,m =

vi,j,l,m+1 − vi,j,l,m

∆ϑ
∂v(ai, zj, Kl, ϑm)

∂ϑ
≈ ∂ϑ,Bvi,j,l,m =

vi,j,l,m − vi,j,l,m−1

∆ϑ
∂2v(ai, zj, Kl, ϑm)

∂ϑ2 ≈ ∂ϑϑvi,j,l,m =
vi,j,l,m+1 − 2vi,j,l,m + vi,j,l,m−1

(∆ϑ)2 .
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Using these approximated derivatives, the HJB equation (4.3) becomes

vd+1
i,j,l,m − vd

i,j,l,m

∆
+ ρvd+1

i,j,l,m =
(cd

i,j,l,m)
1−γ

1− γ
+

1
2ε
(hd

i,j,l,m)
2 + [sd

i,j,l,m,F]
+∂a,Fvd+1

i,j,l,m + [sd
i,j,l,m,B]

−∂a,Bvd+1
i,j,l,m

+ λj(vd+1
i,−j,l,m − vd+1

i,j,l,m) +
ϑm(kd

i,j,l,m)
2

2
∂aavd+1

i,j,l,m

+ [pl,m]
+∂K,Fvd+1

i,j,l,m + [pl,m]
−∂K,Bvd+1

i,j,l,m

+ [θ(ϑ̄− ϑm)]
+∂ϑ,Fvd+1

i,j,l,m + [θ(ϑ̄− ϑm)]
−∂ϑ,Bvd+1

i,j,l,m +
ϑmν2

2
∂ϑϑvd+1

i,j,l,m,

(B.2)

where cd
i,j,l,m = (∂avd

i,j,l,m)
− 1

γ , kd
i,j,l,m = −

∂avd
i,j,l,m

∂aavd
i,j,l,m

πi,j,l,m
ϑm

, hd
i,j,l,m = −ε

√
ϑmkd

i,j,l,m∂avd
i,j,l,m, and

sd
i,j,l,m,F = wl,mzj + rl,mai + (Rl,m − rl,m +

√
ϑmhd

i,j,l,m)k
d
i,j,l,m − (∂a,Fvd

i,j,l,m)
− 1

γ

sd
i,j,l,m,B = wl,mzj + rl,mai + (Rl,m − rl,m +

√
ϑmhd

i,j,l,m)k
d
i,j,l,m − (∂a,Bvd

i,j,l,m)
− 1

γ .
(B.3)

For a generic variable x, we denote [x]+ = max{x, 0} and [x]− = min{x, 0} as the positive
and negative parts of x, respectively. In (B.2), when evaluating optimal policies, we use

∂avd
i,j,l,m = ∂a,Fvd

i,j,l,m1sd
i,j,l,m,F>0 + ∂a,Bvd

i,j,l,m1sd
i,j,l,m,B<0 + ∂av̄d

i,j,l,m1sd
i,j,l,m,F≤0≤sd

i,j,l,m,B
, (B.4)

where ∂av̄d
i,j,l,m = (c̄i,j,l,m)

−γ with c̄i,j,l,m denoting the steady-state consumption such that

sd
i,j,l,m = 0, i.e.,

c̄i,j,l,m = wl,mzj + rl,mai + (Rl,m − rl,m +
√

ϑmhd
i,j,l,m)k

d
i,j,l,m. (B.5)
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Employing the approximated derivatives gives

vd+1
i,j,l,m − vd

i,j,l,m

∆
+ ρvd+1

i,j,l,m =
(cd

i,j,l,m)
1−γ

1− γ
+

1
2ε
(hd

i,j,l,m)
2 + [sd

i,j,l,m,F]
+

vd+1
i+1,j,l,m − vd+1

i,j,l,m

∆a

+ [sd
i,j,l,m,B]

−
vd+1

i,j,l,m − vd+1
i−1,j,l,m

∆a
+ λj(vd+1

i,−j,l,m − vd+1
i,j,l,m)

+
ϑm(kd

i,j,l,m)
2

2

vd+1
i+1,j,l,m − 2vd+1

i,j,l,m + vd+1
i−1,j,l,m

(∆a)2

+ [pl,m]
+

vd+1
i,j,l+1,m − vd+1

i,j,l,m

∆K
+ [pl,m]

−
vd+1

i,j,l,m − vd+1
i,j,l−1,m

∆K

+ [θ(ϑ̄− ϑm)]
+

vd+1
i,j,l,m+1 − vd+1

i,j,l,m

∆ϑ
+ [θ(ϑ̄− ϑm)]

−
vd+1

i,j,l,m − vd+1
i,j,l,m−1

∆ϑ

+
ϑmν2

2

vd+1
i,j,l,m+1 − 2vd+1

i,j,l,m + vd+1
i,j,l,m−1

(∆ϑ)2 .

(B.6)

Collecting terms with the same subscripts on the right-hand side yields

vd+1
i,j,l,m − vd

i,j,l,m

∆
+ ρvd+1

i,j,l,m =
(cd

i,j,l,m)
1−γ

1− γ
+

1
2ε
(hd

i,j,l,m)
2 + vd+1

i−1,j,l,mαd
i,j,l,m + vd+1

i,j,l,mβd
i,j,l,m

+ vd+1
i+1,j,l,mξd

i,j,l,m + vd+1
i,−j,l,mλj

+ vd+1
i,j,l−1,mαd

K,l,m + vd+1
i,j,l+1,mξd

K,l,m

+ vd+1
i,j,l,m−1αd

ϑ,m + vd+1
i,j,l,m+1ξd

ϑ,m,

(B.7)
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where

αd
i,j,l,m = −

[sd
i,j,l,m,B]

−

∆a
+

ϑm(kd
i,j,l,m)

2

2(∆a)2

βd
i,j,l,m = −

[sd
i,j,l,m,F]

+

∆a
+

[sd
i,j,l,m,B]

−

∆a
− λj −

ϑm(kd
i,j,l,m)

2

(∆a)2 +
[pd

l,m]
−

∆K
−

[pd
l,m]

+

∆K

+
[θ(ϑ̄− ϑm)]−

∆ϑ
− [θ(ϑ̄− ϑm)]+

∆ϑ
− ϑmν2

(∆ϑ)2

ξd
i,j,l,m =

[sd
i,j,l,m,F]

+

∆a
+

ϑm(kd
i,j,l,m)

2

2(∆a)2

αd
K,l,m = −

[pd
l,m]
−

∆K

ξd
K,l,m =

[pd
l,m]

+

∆K

αd
ϑ,m = − [θ(ϑ̄− ϑm)]−

∆ϑ
+

ϑmν2

2(∆ϑ)2

ξd
ϑ,m =

[θ(ϑ̄− ϑm)]+

∆ϑ
+

ϑmν2

2(∆ϑ)2

(B.8)

The discretized HJB equation (B.7) involves undefined terms vd+1
0,j,l,m, vd+1

I+1,j,l,m, vd+1
i,j,0,m,

vd+1
i,j,L+1,m, vd+1

i,j,l,0 and vd+1
i,j,l,M+1. This calls for imposing some boundary conditions regarding

both aggregate and individual states. The boundary conditions for aggregate states K and
ϑ are based on reflections

∂Kvi,j,1,m = ∂Kvi,j,L,m = ∂ϑvi,j,l,1 = ∂ϑvi,j,l,M = 0, (B.9)

implying vd+1
i,j,0,m = vd+1

i,j,1,m, vd+1
i,j,L+1,m = vd+1

i,j,L,m, vd+1
i,j,l,0 = vd+1

i,j,l,1, and vd+1
i,j,l,M+1 = vd+1

i,j,l,M.

The boundary conditions for the individual state a are specified as follows. At the
lower bound a1, we make use of the results that kd

1,j,l,m = hd
1,j,l,m = 0 and sd

1,j,l,m,B =

ŝd
1,j,l,m,B = 0 at the bound. Thus, αd

1,j,l,m = 0 and the term vd+1
0,j,l,m disappears. The treatment

of the upper bound aI is a bit more tricky. Similar to Achdou et al. (2022), we exploit the
homogeneity properties of the value function as demonstrated in our stationary model.
For large a, the function is of the form

vj(a) ≈ x0a1−γ + x1εa2(1−γ),

where x0 and x1 are two known constants. Thus, ∂avj(a) ≈ x0(1 − γ)a−γ + x1ε2(1 −
γ)a1−2γ, ∂aavj(a) ≈ x0(1− γ)(−γ)a−γ−1 + x1ε2(1− γ)(1− 2γ)a−2γ. Assuming γ > 1
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gives

lim
a→∞

∂aavj(a)a
−γ∂avj(a)

≈ lim
a→∞

x0(1− γ)a−γ + x1ε2(−γ−1 + 1)(1− 2γ)a1−2γ

x0(1− γ)a−γ + x1ε2(1− γ)a1−2γ

= lim
a→∞

x0(1− γ) + x1ε2(−γ−1 + 1)(1− 2γ)a1−γ

x0(1− γ) + x1ε2(1− γ)a1−γ
= 1.

Consequently, this motivates the following approximations at the upper bound aI as

∂aavI,j,l,m = −
γ∂avI,j,l,m

aI
, kI,j,l,m = −

πI,j,l,m

ϑm

∂avI,j,l,m

∂aavI,j,l,m
=

πI,j,l,m

γϑm
aI ,

and then
ϑm(kI,j,l,m)

2

2
∂aavI,j,l,m = −

π2
I,j,l,maI

2γϑm
∂avI,j,l,m. (B.10)

Here the perceived excess return at aI equals

πI,j,l,m = Rl,m − rl,m +
√

ϑmhI,j,l,m ≈ (Rl,m − rl,m)

(
1− ε

α0

γ
√

ϑm
a1−γ

I

)
, (B.11)

where α0 is given in (A.69) with σ =
√

ϑm. Substituting (B.10) into (B.2) gives

vd+1
I,j,l,m − vd

I,j,l,m

∆
+ ρvd+1

I,j,l,m =
(cd

I,j,l,m)
1−γ

1− γ
+

1
2ε
(hd

I,j,l,m)
2 + [sd

I,j,l,m,F]
+

vd+1
I+1,j,l,m − vd+1

I,j,l,m

∆a

+ [sd
I,j,l,m,B]

−
vd+1

I,j,l,m − vd+1
I−1,j,l,m

∆a
+ λj(vd+1

I,−j,l,m − vd+1
I,j,l,m)

−
(πd

I,j,l,m)
2aI

2γϑm

vd+1
I,j,l,m − vd+1

I−1,j,l,m

∆a

+ [pl,m]
+

vd+1
I,j,l+1,m − vd+1

I,j,l,m

∆K
+ [pl,m]

−
vd+1

I,j,l,m − vd+1
I,j,l−1,m

∆K

+ [θ(ϑ̄− ϑm)]
+

vd+1
I,j,l,m+1 − vd+1

I,j,l,m

∆ϑ
+ [θ(ϑ̄− ϑm)]

−
vd+1

I,j,l,m − vd+1
I,j,l,m−1

∆ϑ

+
ϑmν2

2

vd+1
I,j,l,m+1 − 2vd+1

I,j,l,m + vd+1
I,j,l,m−1

(∆ϑ)2 .

(B.12)
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Collecting terms with the same subscripts on the right-hand side yields

vd+1
I,j,l,m − vd

I,j,l,m

∆
+ ρvd+1

I,j,l,m =
(cd

I,j,l,m)
1−γ

1− γ
+

1
2ε
(hd

I,j,l,m)
2 + vd+1

I−1,j,l,mαd
I,j,l,m + vd+1

I,j,l,mβd
I,j,l,m

+ vd+1
I+1,j,l,mξd

I,j,l,m + vd+1
I,−j,l,mλj

+ vd+1
I,j,l−1,mαd

K,l,m + vd+1
I,j,l+1,mξd

K,l,m

+ vd+1
I,j,l,m−1αd

ϑ,m + vd+1
I,j,l,m+1ξd

ϑ,m,

(B.13)

where

αd
I,j,l,m = −

[sd
I,j,l,m,B]

−

∆a
+

(πd
I,j,l,m)

2aI

2γϑm∆a

βd
I,j,l,m = −

[sd
I,j,l,m,F]

+

∆a
+

[sd
I,j,l,m,B]

−

∆a
− λj −

(πd
I,j,l,m)

2aI

2γϑm∆a
+

[pd
l,m]
−

∆K
−

[pd
l,m]

+

∆K

+
[θ(ϑ̄− ϑm)]−

∆ϑ
− [θ(ϑ̄− ϑm)]+

∆ϑ
− ϑmν2

(∆ϑ)2

ξd
I,j,l,m =

[sd
I,j,l,m,F]

+

∆a

(B.14)

At aI , we impose a state constraint a ≤ aI by setting sd
I,j,l,m,F = 0. Thus, ξd

I,j,l,m = 0 and the

term vd+1
I+1,j,l,m is never used.

To sum up, we convert the approximate HJB equations (B.7) and (B.13) into a system
of I × 2× L× N nonlinear equations as

1
∆
(vd+1 − vd) + ρvd+1 = ud + Advd+1 ⇔ Bdvd+1 = dd, (B.15)

where Bd = ( 1
∆ + ρ)I−Ad and dd = ud + 1

∆ vd. Solving equation (B.15) iteratively yields
the desired value and policy functions. In the equation, the vectors vd+1 and ud, and the
matrix Ad are defined as follows: ∀ l = 1, · · · , L, m = 1, · · · , M, denote

vd+1
l,m =



vd+1
1,1,l,m

...
vd+1

I,1,l,m
vd+1

1,2,l,m
...

vd+1
I,2,l,m


, vd+1

m =


vd+1

1,m
vd+1

2,m
...

vd+1
L,m

 , vd+1 =


vd+1

1
vd+1

2
...

vd+1
M

 , (B.16)
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ud
l,m =



(cd
1,1,l,m)

1−γ

1−γ +
(hd

1,1,l,m)
2

2ε
...

(cd
I,1,l,m)

1−γ

1−γ +
(hd

I,1,l,m)
2

2ε
(cd

1,2,l,m)
1−γ

1−γ +
(hd

1,2,l,m)
2

2ε
...

(cd
I,2,l,m)

1−γ

1−γ +
(hd

I,2,l,m)
2

2ε


, ud

m =


ud

1,m
ud

2,m
...

ud
L,m

 , ud =


ud

1
ud

2
...

ud
M

 , (B.17)

Ad
l,m =



βd
1,1,l,m ξd

1,1,l,m 0 · · · 0 λ1 0 0 · · · 0
αd

2,1,l,m βd
2,1,l,m ξd

2,1,l,m 0 · · · 0 λ1 0 0 · · ·
0 αd

3,1,l,m βd
3,1,l,m ξd

3,1,l,m · · · 0 0 λ1 0 · · ·
... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 αd

I,1,l,m βd
I,1,l,m 0 0 · · · 0 λ1

λ2 0 0 · · · 0 βd
1,2,l,m ξd

1,2,l,m 0 · · · 0
0 λ2 0 0 · · · αd

2,2,l,m βd
2,2,l,m ξd

2,2,l,m 0 · · ·
0 0 λ2 0 · · · 0 αd

3,2,l,m βd
3,2,l,m ξd

3,2,l,m · · ·
... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 0 · · · 0 λ2 0 · · · 0 αd

I,2,l,m βd
I,2,l,m



,

(B.18)

Ad
m =



Ad
1,m + αd

K,1,mI2I ξd
K,1,mI2I 02I 02I · · · 02I

αd
K,2,mI2I Ad

2,m ξd
K,2,mI2I 02I · · · 02I

02I αd
K,3,mI2I Ad

3,m ξd
K,3,mI2I · · · 02I

... . . . . . . . . . . . . ...
02I · · · · · · αd

K,L−1,mI2I Ad
L−1,m ξd

K,L−1,mI2I

02I · · · · · · 02I αd
K,L,mI2I Ad

L,m + ξd
K,L,mI2I


,

(B.19)
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Ad =



Ad
1 + αd

ϑ,1I2I×L ξd
ϑ,1I2I×L 02I×L 02I×L · · · 02I×L

αd
ϑ,2I2I×L Ad

2 ξd
ϑ,2I2I×L 02I×L · · · 02I×L

02I×L αd
ϑ,3I2I×L Ad

3 ξd
ϑ,3I2I×L · · · 02I×L

... . . . . . . . . . . . . ...
02I×L · · · · · · αd

ϑ,M−1I2I×L Ad
M−1 ξd

ϑ,M−1I2I×L

02I×L · · · · · · 02I×L αd
ϑ,MI2I×L Ad

M + ξd
ϑ,MI2I×L


.

(B.20)

B.2 Solving the KF equation

Let gt,i,j,l,m = gt(ai, zj|Kl, ϑm) be the density conditional on the time-t aggregate state
of Kt = Kl and ϑt = ϑm. The KF equation (2.15) can be written as

∂

∂t
gt,i,j,l,m = − ∂

∂a
(
ŝi,j,l,mgt,i,j,l,m

)
− λjgt,i,i,l,m + λ−jgt,i,−j,l,m +

1
2

∂2

∂a2

(
ϑm(ki,j,l,m)

2gt,i,j,l,m

)
.

(B.21)
It is worth noting that the saving function used the above equation corresponds to the
actual saving ŝ not the perceived saving s. More precisely, ŝi,j,l,m = si,j,l,m +

√
ϑmhi,j,l,m.

Therefore, as opposed to the existing literature, when computing the KF equation, we
cannot actually use the A matrix “for free” without proper adjustments.

Let ∆t be the time step. We discretize the KF equation (B.21) as

gt+1,i,j,l,m − gt,i,j,l,m

∆t
=−

[ŝi,j,l,m,F]
+gt+1,i,j,l,m − [ŝi−1,j,l,m,F]

+gt+1,i−1,j,l,m

∆a

−
[ŝi+1,j,l,m,B]

−gt+1,i+1,j,l,m − [ŝi,j,l,m,B]
−gt+1,i,j,l,m

∆a
− λjgt+1,i,i,l,m + λ−jgt+1,i,−j,l,m

+
ϑm

2

k2
i+1,j,l,mgt+1,i+1,j,l,m − 2k2

i,j,l,mgt+1,i,j,l,m + k2
i−1,j,l,mgt+1,i−1,j,l,m

(∆a)2 .

(B.22)

Collecting terms, equation (B.22) can be written as

gt+1,i,j,l,m − gt,i,j,l,m

∆t
= ξ̂i−1,j,l,mgt+1,i−1,j,l,m + β̂i,j,l,mgt+1,i,j,l,m + α̂i+1,j,l,mgt+1,i+1,j,l,m +λ−jgt,i,−j,l,m.

(B.23)
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Here the coefficients are

α̂i,j,l,m = −
[ŝi,j,l,m,B]

−

∆a
+

ϑn(ki,j,l,m)
2

2(∆a)2 = αi,j,l,m + ∆αi,j,l,m

β̂i,j,l,m = −
[ŝi,j,l,m,F]

+

∆a
+

[ŝi,j,l,m,B]
−

∆a
− λj −

ϑm(ki,j,l,m)
2

(∆a)2 = βi,j,l,m + ∆ξi,j,l,m

ξ̂i,j,l,m =
[ŝi,j,l,m,F]

+

∆a
+

ϑm(ki,j,l,m)
2

2(∆a)2 = ξi,j,l,m + ∆ξi,j,l,m,

(B.24)

where αi,j,l,m, βi,j,l,m, and ξi,j,l,m are given in (B.8), and

∆αi,j,l,m =
[si,j,l,m,B]

−

∆a
−

[ŝi,j,l,m,B]
−

∆a

∆βi,j,l,m =

(
[ŝi,j,l,m,B]

−

∆a
−

[si,j,l,m,B]
−

∆a

)
+

(
[si,j,l,m,F]

+

∆a
−

[ŝi,j,l,m,F]
+

∆a

)

−
[pd

l,m]
−

∆K
+

[pd
l,m]

+

∆K
− [θ(ϑ̄− ϑm)]−

∆ϑ
+

[θ(ϑ̄− ϑm)]+

∆ϑ
+

ϑmν2

(∆ϑ)2

∆ξi,j,l,m =
[ŝi,j,l,m,F]

+

∆a
−

[si,j,l,m,F]
+

∆a
.

(B.25)

Note that ∆αi,j,l,m, ∆βi,j,l,m, and ∆ξi,j,l,m are in general different from zero because of
the disparity between actual and perceived saving rates. For ∆βi,j,l,m, the discrepancy

also arises from the effects of the evolution of aggregate states, i.e., − [pd
l,m]
−

∆K +
[pd

l,m]
+

∆K −
[θ(ϑ̄−ϑm)]−

∆ϑ + [θ(ϑ̄−ϑm)]+

∆ϑ + ϑmν2

(∆ϑ)2 , which are directly taken into account by households in the
HJB equation but not so in the KF equation.

The approximate KF equations (B.23) can be written in the following matrix form:

gt+1 − gt

∆t
= ÂT

l,mgt ⇔ gt+1 = (I− ∆tÂT
l,m)
−1gt, (B.26)

where

gt =



gt,1,1,l,m
...

gt,I,1,l,m

gt,1,2,l,m
...

gt,I,2,l,m


, (B.27)
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Âl,m =



β̂1,1,l,m ξ̂1,1,l,m 0 · · · 0 λ1 0 0 · · · 0
α̂2,1,l,m β̂2,1,l,m ξ̂2,1,l,m 0 · · · 0 λ1 0 0 · · ·

0 α̂3,1,l,m β̂3,1,l,m ξ̂3,1,l,m · · · 0 0 λ1 0 · · ·
... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 · · · 0 α̂I,1,l,m β̂ I,1,l,m 0 0 · · · 0 λ1

λ2 0 0 · · · 0 β̂1,2,l,m ξ̂1,2,l,m 0 · · · 0
0 λ2 0 0 · · · α̂2,2,l,m β̂2,2,l,m ξ̂2,2,l,m 0 · · ·
0 0 λ2 0 · · · 0 α̂3,2,l,m β̂3,2,l,m ξ̂3,2,l,m · · ·
... . . . . . . . . . . . . . . . . . . . . . . . . ...
0 0 · · · 0 λ2 0 · · · 0 α̂I,2,l,m β̂ I,2,l,m



.

(B.28)
Again, as discussed previously, Âl,m 6= Al,m = limd→∞ Ad

l,m in general.

C Data sources

We collected the following aggregate time series from the St.Louis FED - FRED database
(mnemonics in parentheses). These series are quarterly frequency from 1984Q1 to 2019Q4.

Per-capita output.

1. Per-capita real gross domestic product (A939RX0Q048SBEA)

2. Source: St.Louis FED - FRED database

Per-capita investment.

1. Per-capita real personal consumption expenditures on durable goods (A795RX0Q048SBEA)

2. + Real Gross Private Domestic Investment (GPDIC1) /Population (CNP16OV)

3. Source: St.Louis FED - FRED database

Per-capita consumption.

1. Per-capita real personal consumption expenditures on nondurable goods (A796RX0Q048SBEA)

2. + services (A797RX0Q048SBEA)

3. Source: St.Louis FED - FRED database

55



TFP.

1. Fernald (2014)

2. Source: https://www.johnfernald.net/TFP

D Additional figures

Figure 7: Effects of risk shock on aggregate variables by investment risk level
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Notes: Panel (k) reports aggregate debt defined as B
K =

∫
b<=0 bdG(a,z)

K and panel (l) shows the fraction of indebted households given by
∫

b<=0 dG(a, z)
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Figure 8: Effects of risk shock on group-specific average by investment risk level
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Figure 9: Effects of risk shock on wealth inequality by investment risk level
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Notes: The Kelley measure is defined as : SK =
(P90−P50)−(P50−P10)

P90−P10 . A negative value indicates that the left-tail contribution to the overall dispersion is larger than that of the
right tail.
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Figure 10: Effects of risk and TFP shocks on aggregate variables
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Figure 11: Effects of risk and TFP shocks on group-specific average
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Figure 12: Effects of risk and TFP shocks on wealth inequality
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