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Abstract

We leverage variation in robot adoption across U.S. metropolitan areas to doc-

ument that automation reduces the sensitivity of inflation to unemployment.

A New Keynesian model with search frictions and automation rationalizes our

empirical findings through two mechanisms. First, automation shrinks workers’

bargaining power, dampening the sensitivity of wages to unemployment. Second,

automation reduces the labor share, decoupling output changes from unemploy-

ment variation. Both channels flatten the price Phillips curve. However, when

boosting automation is costly, the threat of robot adoption is no longer effective

in curtailing workers’ bargaining power amidst large expansionary shocks, lead-

ing to a steeper Phillips curve.
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1 Introduction
Over the past few decades, advanced economies have witnessed a substantial

increase in the use of robots and other forms of automation in production pro-

cesses. This phenomenon has generated comprehensive implications on the labor

market, contributing to the polarization of employment opportunities and the

decline of middle-skilled jobs, and compressing wages at the lower end of the

earnings distribution (Acemoglu and Restrepo, 2018, 2020a, 2020b, 2022; Graetz

and Michaels, 2018; Acemoglu et al., 2020). However, notwithstanding the key

role that labor market conditions have on wage and price setting, little is known

about how robot adoption may influence inflation dynamics. In this paper, we

show empirically, theoretically, and quantitatively that the surge in automation

could explain the muted sensitivity of inflation to unemployment observed in

advanced economies until the Covid pandemic.

We start by providing novel empirical evidence showing that robot adoption

alters both price inflation and wage inflation. To do so, we build a panel of non-

tradable goods inflation, wage inflation, unemployment rate and robot adoption

at the U.S. metropolitan area (MSA) level. To measure automation, we follow

Acemoglu and Restrepo (2020a) and combine the robot installation for each in-

dustry at the U.S. national level with the employment share of each industry

at the MSA level. In this way, we measure the robot installed per employee for

each metropolitan area. We end up with a panel across 384 MSAs at the an-

nual frequency from 2008 and 2018. While 2008 is the first year for which the

U.S. Bureau of Economic Analysis provides price information across MSAs, our

sample period tracks the years in which the surge of automation took place.

Our empirical approach closely follows that of Hazell et al. (2022), which we

generalize to incorporate the role of automation on inflation dynamics. Specif-

ically, we regress both non-tradable goods inflation and wage inflation on the

lagged values of the unemployment rate and its interaction with robot adoption,

while controlling in isolation for the role of robot adoption and the non-tradable

goods relative price. Hazell et al. (2022) show that the estimated sensitivity of

inflation to unemployment maps into the slope of the aggregate price Phillips

curve implied by a multi-region model. This setting allows to saturate the re-

gression with year fixed effects, which not only control for supply shocks and

inflation expectations that are common across areas, but most importantly per-

mit to absorb the endogenous response of monetary policy to common demand

shocks (Beraja et al., 2019; McLeay and Tenreyro, 2020; Fitzgerald et al., 2023).
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However, this cross-sectional analysis of inflation dynamics would not suffice

to uncover the Phillips curve if local idiosyncratic supply shocks are correlated

with the changes in the local labor market. To purge the variation of unemploy-

ment from idiosyncratic supply shocks, we follow Hazell et al. (2022) and instru-

ment the unemployment rate with local tradable demand spillovers. In particular,

for each metropolitan area we build a shift-share instrument the weights the log

difference of value added of tradable industries at the national level with the

value-added share of each tradable industry across areas. Then, to uncover the

causal effect of automation, we instrument robot adoption with a variable that

replaces the robot installation across industries observed in the U.S. with those of

the five largest European economy, as in Acemoglu and Restrepo (2020a). Under

the identifying restriction that robot demand shocks are weakly correlated across

advanced countries, our instrumenting strategy isolates the supply-side compo-

nent which caused the surge in the efficiency and widespread usage of robots.

In our baseline results, the interaction of unemployment and robot adoption is

positive and highly statistically significant, indicating a significant role of automa-

tion in decoupling inflation and unemployment. This effect is also economically

relevant: an increase in robot adoption by one standard deviation reduces the

sensitivity of prince inflation and wage inflation to unemployment by 17% and

9%, respectively. In other words, the dampening of the wage sensitivity to un-

employment due to automation accounts for 42% of the associated reduction in

the price inflation responsiveness to unemployment. This differential magnitude

suggests that that robot adoption also diminishes the influence of wage changes

onto price changes. Overall, our empirical analysis uncovers three novel findings

relating automation to inflation dynamics: robot adoption reduces (i) the sensi-

tivity of price inflation to unemployment, (ii) the sensitivity of wage inflation to

unemployment, and (iii) the pass-through from wages to prices.

Our empirical findings keeps holding in a comprehensive battery of robustness

checks that validate the extent to which the role of automation in decoupling the

movements of inflation and unemployment holds above and beyond both potential

alternative explanations and confounding factors related to the surge in automa-

tion. For instance, we establish that the role of robot adoption in dampening the

sensitivity of non-tradable goods inflation to the unemployment rate is always

highly statistically significant even when controlling the role of the time-varying

differences across MSAs in the age structure of the population (Aksoy et al.,

2019; Acemoglu and Restrepo, 2022; Basso and Jimeno, 2021), the labor market
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participation of workers with different gender, race, and education, differences

in the average marginal propensity to consume (Herreno and Pedemonte, 2022),

the relevance of abstract, routine, manual, and offshorable occupations (Autor

et al., 2013; Siena and Zago, 2021), as well as the exposure of the metropolitan

areas to foreign import competition (Forbes, 2019; Heise et al., 2022, 2023).

To rationalize our empirical evidence on how automation alters inflation dy-

namics, we extend an otherwise standard New Keynesian model with two key

features: search frictions in the labor market and the possibility of robot adop-

tion, in the spirit of Acemoglu and Restrepo (2020a). The economy features a

representative household consisting of a continuum of workers with perfect con-

sumption insurance, who directly search for a job. The production sector is split

over three layers: (i) a varying measure of producers that operate a linear tech-

nology using either robots or workers and post vacancies in the labor market,

(ii) a continuum of monopolistically competitive wholesalers that purchase the

goods of the producers and transform them into different varieties, and face a

price setting friction in the form of Rotemberg costs, and (iii) a representative re-

tailer that aggregates the different varieties with a CES technology into the final

good. The economy is closed by a Taylor rule that sets the nominal interest rate

responding to changes in inflation and the unemployment gap, subject to inertia.

Automation is modulated by producers’ decision to use either workers or ma-

chines. Producers trade off the certainty of installing and operate with a robot

with the uncertainty of possibly hiring a worker but – conditional on that – op-

erate at a relatively higher efficiency. Specifically, upon entry – and after paying

a fixed operating cost – producers draw an idiosyncratic efficiency in employing

workers, and then decide to use either a labor technology (i.e., labor firms) or a

machine technology (i.e., robot firms). Labor firms open costly vacancies at given

posted wage, which are filled with a probability that depends on the labor market

tightness. Machine firms purchase a robot from machine manufacturers, and pro-

duce with certainty. Machine manufacturers transform final goods into machines

with a linear technology featuring robot-specific technological change. Accord-

ingly, the relative price of robots declines with the level of technological change.

This setting defines an automation threshold, that is, a level of the efficiency

in operating the labor technology that defines whether firms opt to either post a

vacancy and look for workers or install a machine. This threshold crucially de-

pends on the job filling probability and the levels of both wages and the price of

robots. An increase in wages relative to the price of robots leads to more automa-
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tion, as firms can replace workers with machines. In the model, the automation

cut-off varies across steady states, as a function of the exogenous level of robot-

specific technological change, and around the steady state upon the occurrence

of a shock, as a function of the endogenous response of prices.

We then characterize the price Phillips curve and show that automation –

interpreted as a positive robot-specific technological change – reduces its slope.

The dampening effect of automation on the relationship between inflation and

the unemployment gap is due to two main mechanisms. First, automation raises

the fraction of firms operating with machines, reducing the labor share in value

added. As a result, part of the aggregated demand adjustment is unrelated to

changes in wage and unemployment dynamics. Second, the outside option of

automating production negatively affects workers’ bargaining power, dampening

the responsiveness of wages to changes in the unemployment gap.

In the quantitative analysis, we consider two steady states that differ uniquely

in the level of robot-specific technological change. These two steady states are

carefully calibrated to replicate the standard deviation of robot penetration across

MSAs in the data, which implies a 200% rise in the ratio of robots per employee.

We find that a positive demand shock – which reduces the unemployment gap by

the same amount across the two steady states – reduces the responsiveness of price

inflation and wage inflation in the high-automation economy by 18% and 14%, re-

spectively. These changes are remarkably in line with the magnitude of the effects

of automation on the price and wage Phillips curve estimated in our empirical evi-

dence, that suggest a flattening of 17% and 9%, respectively. Thus, our model im-

plies a relatively larger flattening of the wage Phillips curve and a relatively more

muted drop in the wage-to-price pass-through than that uncovered in the data.

Our model can rationalize not only the flattening of the price and wage Phillips

curve in the pre-Covid period, but also the sudden resurgence of a steep Phillips

curve. When ramping up automation is costly and machine manufacturers face

adjustment costs, the threat that robots pose to workers’ bargaining power cru-

cially depend on the size of the shock realizations. When facing a small expan-

sionary shock, firms can purchase additional machines without facing a sharp

increase in robot prices, and thus gain an upper hand on wage negotiations. In

this case, both the wage and price Phillips curves are flat. However, when the

size of an expansionary shock is substantial, installing all the required robots to

meet demand would be increasingly costly, forcing producers to continue to oper-

ate using labor. Consequently, the threat of robot adoption is no longer effective
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in curtailing workers’ bargaining power, and wages highly react to changes in

the unemployment gap. In other words, robot adoption alters the price Phillips

curve such that its slope is relatively flat when the size of shocks is small, but

can quickly become steep amidst large shock realizations.

Our work relates to the literature on the subdued dynamics of inflation in the

post 1980s, suggestive of a flat Phillips curve (Blanchard, 2016; Stock and Wat-

son, 2020). This evidence may be due to policy improvements and better anchor-

ing of inflation expectations (Ball and Mazumder, 2011; McLeay and Tenreyro,

2020; Hazell et al., 2022; Bergholt et al., 2023), labor market changes muting the

responsiveness of wages (Stansbury and Summers, 2020; Del Negro et al., 2020;

Siena and Zago, 2021), globalization (Forbes, 2019; Heise et al., 2022), changes

in the shocks composition (Gordon, 2013; Coibion and Gorodnichenko, 2015),

changes in firm inter-linkages (Galesi and Rachedi, 2019; Höynck, 2020; Rubbo,

2023), financial frictions (Gilchrist et al., 2017), and a non-linear Phillips curve

(Harding et al., 2022). We emphasize that automation can account for the flat-

tening of price and wage inflation observed in the pre-Covid period, while also

rationalizing a steep Phillips curve amidst large expansionary shocks.

The two closest papers to ours are Fornaro and Wolf (2021) and Leduc and

Liu (2023). Fornaro and Wolf (2021) build a New Keynesian model with robot

adoption to show that monetary policy accommodations can reconcile firms’ in-

tense usage of automation with limited effect on employment and inflation in

medium and long run. We take a complementary approach by emphasizing that

robot adoption decouples inflation and labor market dynamics in the short run,

taking as given the stance of monetary policy. Leduc and Liu (2023) build a real

model with robot adoption and search frictions to account for the business cycle

fluctuations of unemployment. While our work share with theirs the focus on the

threat that robots pose to workers’ bargaining power, we look at how automation

alters the slope of the price and wage Phillips curve.

2 Empirical Evidence
This section provides novel empirical evidence on how robot adoption leads to a

decoupling between inflation and unemployment. Specifically, we study a panel

of price inflation, wage inflation, unemployment, and robot adoption across U.S.

metropolitan areas. To estimate the effect of automation on the relationship be-

tween inflation and unemployment, we use the variation across U.S. metropolitan

areas in both tradable demand spillovers and robot adoption.
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2.1 Data

We build a data set of non-tradable goods inflation, wage inflation, the unem-

ployment rate, and robot adoption across 384 U.S. metropolitan areas at the

annual frequency from 2008 to 2018. The frequency and the time period of our

panel differ from those of Hazell et al. (2022) and Fitzgerald et al. (2023), as we

start much later in time, from the early 2000s on, to capture the period in which

automation took place.1

We use the information on the regional price parities of the U.S. Bureau of

Economic Analysis (BEA), which gives a breakdown of prices at the MSA level

by providing data on total prices, the price of goods, as well as distinct series for

the price of rents, utilities, and other services. We complement it with informa-

tion on wages, defined as the average compensation per job from the BEA, the

unemployment rate from the Local Area Unemployment Statistics of the U.S.

Bureau of Labor Statistics (BLS), robot installed at the industry level for the

U.S. and the five largest European countries from the International Federation

of Robotics, employment at the industry-MSA level from the Quarterly Census

of Employment and Wages of the BLS. To derive a measure of robot adoption at

the MSA-year level, we follow the two-step procedure of Acemoglu and Restrepo

(2020a): we compute the robot per employee for each industry at the U.S. na-

tional level, and combine it with the employment share of each industry at the

MSA level. In this way, we end up with a ratio of installed robots per employee

for each MSA-year pair.

Finally, we also consider value added at the industry-MSA level from the

BEA, and employment at the industry-country level for the five largest Euro-

pean countries from EUKLEMS.

2.2 Econometric Specification

We estimate the causal effect of robot adoption on the sensitivity of price inflation

to unemployment using the following panel regression:

πN,i,t = β ui,t−1 + γ ui,t−1 (mi,t−1 − m̄) + ζ mi,t−1 + χ pN,i,t + αi + δt + ϵi,t, (1)

1The data on prices at the annual frequency across 384 MSAs start in 2008. Although prices at the
metropolitan areas are available also at the quarterly and semi-annual frequency well before than 2008, they
only track around 20 MSAs. Consequently, we opt for a panel at the annual frequency from 2008 on to focus
on the period of robot adoption while maximizing the cross-sectional dimension of our data.
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where πN,i,t is the inflation rate of non-tradable goods of MSA i at year t, defined

as the log-difference of the price of services excluding rents and utilities, ui,t is

the lagged unemployment rate, mi,t denotes robot adoption, m̄ =
∑

i

∑
n
mi,t

nint
is

its average value across all MSA-year observations, where ni is the number of

MSA in the sample and nt is the number of years, and pN,i,t is the relative price

of non-tradable goods. As in Ball and Mazumder (2011), Hazell et al. (2022)

and Fitzgerald et al. (2023), we consider the unemployment rate as lagged by

one year. Similarly, we also lag by one year the robot adoption variable. The

regression also includes state fixed effects, αi, and year fixed effects, δt.

In this setting, the coefficient β denotes the local sensitivity of non-tradable

goods inflation to the unemployment rate for a MSA with the average degree of

robot adoption. The parameter γ is associated to our regressor of interest, which

is the interaction between the unemployment rate and the (demeaned) robot-

per-employee ratio, and captures how the inflation sensitivity to unemployment

varies with automation.2

We estimate the coefficients β and γ leveraging cross-sectional differences in

unemployment rate, inflation, and robot adoption across metropolitan areas. For

instance, the average value of the the unemployment rate at the MSA level in our

sample equals 6.8%, but it is highly heterogeneously distributed, as it ranges from

a value of 3% in Bismarck, ND up to 23.1% in Barnstable Town, MA. Metropoli-

tan areas also differ substantially in the time variation of unemployment over

time: the area with the smallest fluctuations is Anchorage, AK, in which the

unemployment rate ranged between 5.4% and 7.4%, whereas Elkhart-Goshen,

IN experienced swings between 2.5% and 18.1%. If anything, the variation in

robot adoption across MSAs is even larger, since the metropolitan-level standard

deviation of robot per employee is twice as large as its average value.

Importantly, our specification of regression (1) extends the approach of Hazell

et al. (2022) in leveraging cross-sectional information to identify the slope of the

Phillips curve to incorporate the role of automation. In a setting which abstracts

from robot adoption (i.e., imposing γ = ζ = 0), Hazell et al. (2022) show that the

estimate of the coefficient β in regression (1) can be mapped into the aggregate

slope of the Phillips curve implied by a multi-region model. This result hinges on

2As shown in Basso and Rachedi (2021), considering the interaction term of the unemployment rate with
the demeaned robot-per-employee ratio, mi,t−1 − m̄, does not alter the estimation of how robot adoption
affects the relationship between inflation and unemployment. Rather, this normalization allows us to directly
interpret the parameter β as the sensitivity of non-tradable goods inflation to the unemployment rate for a
MSA with the average degree of robot adoption, that is, when mi,t = m̄.
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the following conditions. First, the cross-sectional setting allows to saturate the

regression with year fixed effects, which absorb the endogenous response of mon-

etary policy to common demand shocks as well as capture the time-variation in

common inflation expectations and supply shock realizations across metropolitan

areas. Second, the presence of MSA fixed effects permits to control for any fixed

heterogeneity across areas, such as time-invariant differences in inflation expec-

tations, and also ameliorates the negative omitted variable bias from estimating

the regression using actual unemployment rates and not the unemployment gaps.

Notwithstanding, this setting would not suffice to identify the slope of the

Phillips curve because the presence of local idiosyncratic supply shocks which

may be correlated with local unemployment rate could bias the estimate of β, as

discussed by McLeay and Tenreyro (2020). To purge the variation in local un-

employment rate from idiosyncratic supply shocks, we follow Hazell et al. (2022)

and instrument the unemployment rate with local tradable demand spillovers.

Specifically, the local tradable demand spillovers in area i at year t equals

Tradable Demandi,t =
∑
x

s̄x,i ×∆ log s−i,x,t, (2)

where sx,i denotes the average value-added share of industry x in the metropoli-

tan area i, and ∆ log s−i,x,t is the log change in the national real value added of

sector x excluding the contribution of the MSA i at year t. In other words, local

tradable demand spillovers are defined as a shift-share variable in the spirit of

Bartik (1991). As long as supply disturbances that may drive the time varia-

tion in national industry value added are not correlated with the heterogeneous

relevance of industry value added across areas, the tradable demand spillovers

provide a valid instrument.3 As in Mian and Sufi (2014), the tradable industries

are agriculture, mining, and manufacturing.

Since automation could be driven by local demand factors related to the dy-

namics of wages, prices, and the conditions of the labor market in each metropoli-

tan area, we sharpen our identification of the effect of robot adoption on the

relationship between inflation and unemployment following Acemoglu and Re-

strepo (2020a). In particular, we instrument the robot-to-employee ratio at the

MSA-year pair with an alternative measure which replaces the robot installations

3Although the tradable demand spillovers are defined as a shift-share variable as for the case of automa-
tion, we use industry value-shares for the former and industry employment shares for the latter. In this way,
we make sure that the two variables do not strongly comove. In our sample, the correlation between the
tradable demand instrument and the robot adoption variable is around 0.2.
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for each industry at the U.S. nation level with the average robot installation per

industry in the largest five European economies. Under the identifying restric-

tion that robot demand shocks are weakly correlated across advanced countries,

our instrumenting strategy isolates the supply-side component which caused the

surge in efficiency of robots, and thus boosted their widespread usage.

We also study the effect of robots on the sensitivity of wage inflation to un-

employment by considering a setting identical to regression (1), with the only

difference that the dependent variable is πW,i,t, defined as the log-difference in

the average compensation per job of MSA i at year t. This case allows us to

study whether automation alter the relationship between wage changes and un-

employment, and to what extent robot adoption imply a differential sensitivity

of unemployment for wage and price inflation.

2.3 Results

Panel A of Table 1 reports the results on how automation alters the sensitivity

of non-tradable goods inflation to unemployment. Columns (1) and (2) focus

on a case of regression (1) which abstracts from the interaction between robot

adoption and the unemployment rate, with the only difference that Column (1)

uses OLS methods whereas Column (2) instruments unemployment with tradable

demand spillovers. The OLS estimate of the sensitivity of price inflation to un-

employment equals -0.1884, is highly statistically significant, and its magnitude

is in line with previous estimates of Hazell et al. (2022), while being substan-

tially lower than those of McLeay and Tenreyro (2020). However, the results of

Column (2) provide a much steeper relationship between unemployment and in-

flation, with an estimate of β that equals −0.7031, slightly above the IV estimate

of McLeay and Tenreyro (2020) that leverages variation in government spending

across metropolitan areas. Our results is consistent also with the evidence of

Hazell et al. (2022) and Fitzgerald et al. (2023), that point out how using varia-

tion across regional areas leads to a much steeper relationship between inflation

and unemployment than when focusing on aggregate data at the national level.

Columns (3) and (4) report the results of the baseline regression that includes

the interaction of robot adoption and unemployment, estimated with OLS and

IV methods, respectively. In either case, the role of automation is statistically

significant at the 5% confidence level, and the magnitude of the coefficient rises

substantially when instrumenting both unemployment with tradable spillovers

and robot adoption with that implied by the automation patterns of European

countries. The fact that the estimated coefficient displays a negative sign implies
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Table 1: Robot Adoption and Inflation across MSAs

No Interaction Term Baseline

OLS IV OLS IV
(1) (2) (3) (4)

Panel A — Dependent Variable: πN,i,t

ui,t−1 -0.1884⋆⋆⋆ -0.7031⋆⋆⋆ -0.1884⋆⋆⋆ -0.5069⋆⋆⋆

(0.0226) (0.1364) (0.0221) (0.1381)

ui,t−1 × (mi,t−1 − m̄) 0.0010⋆⋆ 0.0066⋆⋆

(0.0004) (0.0030)

Year Fixed Effects ✓ ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓ ✓
N. Observations 3,205 3,205 3,205 3,205

Panel B — Dependent Variable: πW,i,t

ui,t−1 -0.3848⋆⋆⋆ -1.0341⋆⋆⋆ -0.3855⋆⋆⋆ -0.9580⋆⋆⋆

(0.0330) (0.1503) (0.0330) (0.2450)

ui,t−1 × (mi,t−1 − m̄) 0.0016⋆⋆ 0.0049⋆⋆

(0.0007) (0.0024)

Year Fixed Effects ✓ ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓ ✓
N. Observations 3,205 3,205 3,205 3,205

Note: The table reports the estimates of panel regressions across U.S. MSAs on annual data from 2008
to 2018. In Panel A, the dependent variable is the inflation rate of non-tradable goods, πN,i,t. In Panel
B, the dependent variable is wage inflation, πW,i,t. In all regressions, the key independent variables
are the lagged value of the unemployment rate, ui,t−1, the interaction between the lagged value of the
unemployment rate and the lag value of the demeaned robot-adoption variable, ui,t−1 × (mi,t−1 − m̄).
In the IV regressions, the unemployment rate is instrumented with a shift-share variable that captures
tradeable demand spillovers, and the robot-adoption variable is instrumented with the industry-level
robot penetration in a pool of European countries. All regressions also include the lagged value of
the robot-adoption variable, mi,t−1, the relative price of non-tradable goods, pN,i,t−1, as well as year
and MSA fixed effects. Columns (1) and (2) report the results of a regression which abstracts from
the interaction between the lagged value of the unemployment rate and the lag value of the demeaned
robot-adoption variable, while Columns (3) and (4) report the results of the baseline regression which
explicitly incorporates the role of the interaction term. Columns (1) and (3) are estimated using
OLS methods, and Columns (2) and (4) are estimated using instrumental variables. Double-clustered
standard errors are reported in brackets. ⋆⋆⋆ and ⋆⋆ indicate statistical significance at the 1% and 5%,
respectively.
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that metropolitan areas with relatively more robots feature a price inflation that

is relatively less reactive to changes in the local labor market. In other words,

automation decouples inflation from unemployment. Importantly, the estimation

of the role of automation is also highly economically significant: a one standard

deviation in robot adoption reduces the sensitivity of inflation to unemployment

by 19% with respect to the sensitivity of the metropolitan area featuring the

average value of robots per employee.

Similarly to the different cases presented by Panel A of Table 1, Panel B

reports the results on how automation alters the relationship between unemploy-

ment and wage inflation. Also in this case the coefficient associated to the inter-

action term between unemployment and automation is statistically significant at

the 5% confidence level for both the OLS and IV regressions. Interestingly, while

the effect of automation on the implied wage Phillips curve at the MSA level is

economically relevant, its magnitude falls short of the magnitude of the effects

of robot adoption on the price Phillips curve: a one standard deviation in robot

adoption reduces the sensitivity of wage inflation to unemployment by 8% with

respect to the sensitivity of the metropolitan area featuring the average value

of robots per employee. In other words, the dampening of the wage sensitivity

to unemployment due to automation accounts for 42% of the associated reduc-

tion in the price inflation responsiveness to unemployment, suggesting that robot

adoption could also blunt the influence of wage inflation into price inflation.

Overall, this analysis has established three main results: automation reduces

(i) the sensitivity of price inflation to unemployment, (ii) the sensitivity of wage

inflation to unemployment, and (iii) the pass-through from wages to prices.

2.4 Robustness Check

Our results on the relationship between robot adoption and inflation dynamics

is validated in an extensive battery of robustness checks. We use this analysis

to evaluate the extent to which the effect of automation in decoupling inflation

and unemployment holds above and beyond alternative explanations. In partic-

ular, we consider three groups of potential confounding factors with differences

across metropolitan areas in demographic characteristics, occupational structure,

and exposure to international trade. We report the results of these exercises in

Appendix A.

First, we show that robot adoption dampens the sensitivity of inflation to

unemployment even when including the interaction of the unemployment rate

with differences in the age structure of the population across MSA, proxied with
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either the share of individuals below 30 years old, or the share of individuals

above 60 years old, indicating that the effect of automation on price changes is

not related to its relationship with an aging labor force (Acemoglu and Restrepo,

2022; Basso and Jimeno, 2021), and the way in which population aging affects

the long-run dynamics of inflation (Aksoy et al., 2019). Our evidence holds

even when interacting unemployment with measures capturing differences across

MSAs in the labor force participation of women, black people, and asians, as well

as in differences in educational attainments and overall labor force participation.

We also show that the role of robot adoption keeps being statistically significant

even when including differences in the marginal propensity to consume across

areas (Herreno and Pedemonte, 2022).

Second, our results hold above and beyond on the interaction of unemploy-

ment with differences across MSAs in occupations. In particular, we consider

variations in the presence of either abstract, routine, manual, as well as the ex-

tent to which occupations are offshorable. These characteristics are relevant as

Siena and Zago (2021) document that the flattening of the price Phillips curve

is related to the phenomenon of job polarization away from routine occupations,

which is also directly related to the offshoring of routine activities toward low

labor-cost countries (Autor et al., 2013).

Third, the automation dampening of the inflation sensitivity to unemploy-

ment is also robust to explicitly incorporating the role of import competition,

measured in terms of MSA exposure to either Chinese imports, or Mexican im-

ports, or both. Thus, our findings holds above and beyond the way in which

variations in import competition alter wage and price inflation dynamics (Forbes,

2019; Heise et al., 2022, 2023).

3 Model
The model extends a standard New Keynesian economy to incorporate search

frictions in the labor market and robot adoption, in the spirit of Acemoglu and

Restrepo (2020a). The production side is split over three layers: (i) a varying

measure of producers that can post vacancies in the labor market and opt to op-

erate with a linear technology using either labor or machines, (ii) a continuum of

monopolistically competitive wholesalers, that purchase the goods of producers,

convert them into different varieties, and face price setting frictions, and (iii) a

representative retailer, that purchases the different varieties and assemble them

into the final good. Final goods are sold to the household and machine manu-
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facturers, that transform them into machines using a linear technology subject

to robot-specific technological change. The household consists of a continuum of

workers, who directly look for a job. Income is pooled at the household level, who

collectively decides consumption and asset holdings. The monetary authority sets

the nominal interest rate according to a Taylor rule.4

3.1 Labour Market

Labour markets consist of a set of sub-markets with unit measure, which are

indexed by ω ∈ [0, 1]. At each point in time, there is a time-varying measure

ΞL,t of producers posting vacancies at a given wage, which we refer to as labor

firms. We denote with vω,t as the number of vacancies in each sub-market, such

that
∫ 1

0
vω,t dω = ΞL,t, and Wω,t is the associated nominal wage upon a successful

match. On the other side there are workers, who decide in which sub-market to

search for a job.5 We denote by sω as the measure of workers searching in each

sub-market. If workers match with a producer, they earn the nominal wage, and

otherwise they receive no income.6 Given the number of vacancies and search-

ing workers in each sub-market, the successful flow of matches, xω,t(vω,t, sω,t), is

pinned down by the matching function

xω,t(vω,t, sω,t) = ξvηω,ts
1−η
ω,t , (3)

where η is the elasticity of the matching function with respect to the vacancies,

and ξ denotes the fixed efficiency level of matching. Matches last for one period.

Given the matching function (3) and the labor market tightness in the sub-

market ω, θω,t = vω,t/sω,t, which describes the ratio between number of vacancies

and number of searching workers, the probability that worker finds a job equals

pω,t (θω,t) =
xω,t(vω,t, sω,t)

sω,t
= ξθηω,t (4)

and the probability of filling a vacancy is

qω,t (θω,t) =
xω,t(vω,t, sω,t)

vω,t
= ξθη−1

ω,t . (5)

4Appendix B provides a graphical description of the structure of the model.
5In the baseline model, we assume that all workers search for a job in each period. In Appendix, we

consider an extension in which labor market participation is allowed to vary across workers.
6We abstract from the presence of unemployment benefits as we assume perfect consumption insurance

across workers within the household.
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The payoff of workers searching in the sub-market ω equals the product be-

tween the nominal wage rate in case of a successful match and the probability of

finding a job, that is,

Js,ω,t = pω,t(θω,t)Wω,t. (6)

Workers decide in which sub-market to search for a job trading off the wage rate

and the probability to find a job. In a symmetric equilibrium, workers’ payoff

should be equalized across all active sub-markets, such that Js,ω,t = Js,t for all ω.

Consequently, sub-markets offering higher wage rates feature lower probabilities

to find a job.

The equilibrium in the labor market implies the sum of workers searching in

all sub-markets equals the overall unit measure of workers in the household,

1 =

∫ 1

0

sω,t dω. (7)

Accordingly, at the end of the period the unemployment rate equals the differ-

ence between the total number of workers and the measure of workers that have

matched with a producer,

ut = 1−
∫ 1

0

pω,t(θω,t)sω,t dω. (8)

3.2 Producers

At each point of time, there is a total measure Ξt of producers that decide to pay

a per-period fixed nominal operating cost κ to enter the market. We index each

producer with j ∈ [0,Ξt]. Upon entry, producers draw an idiosyncratic efficiency

in operating with a labor technology, γL,j, from a distribution f(γ) with support

[γ, γ̄], where γ and γ̄ denote the minimum and maximum level of producers’ labor

efficiency.

After drawing the labor efficiency level, producers decide to operate employ-

ing either machines (i.e., robot firms) or workers (i.e., labor firms). In case a

producer decides to operate using machines, it purchases a robot from machine

manufacturers at price PM,t, and produces with certainty using a linear technol-

ogy that is characterized by an ex-ante known efficiency level γM . The efficiency

level of robot firms lies below the upper bound of producers’ labor efficiency, such

that γM < γ̄. Robot firms then sell their output to to wholesalers at price PP,t,

such that their nominal value equals the nominal value of sales net of the cost of
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purchasing a robot and the entry cost,

VM,j,t = PP,tγM − PM,t − κ. (9)

Since all robot firms operate at the same efficiency, they all share the same value,

such that VM,j,t = VM,t, for all j.

In case a producer decides to operate using labor, then it opens a vacancy

in a given sub-market at the nominal wage rate Wω,t. Posting a vacancy comes

at a cost χ. Upon filling the vacancy, the labor firm produces using a linear

technology at the labor efficiency rate γj, and sells its output to wholesalers at

price PP,t. Consequently, the nominal value of a labor firm equals the nominal

value of sales net of the wage rate, multiplied by the probability of filling the

vacancy, minus both the entry cost and the vacancy posting cost,

VL,j,t = qω,t(θω,t) (PP,tγL,j −Wω,t)− κ− χ. (10)

Labor firms decide the nominal wage rate associated to their vacancies to

maximize their value given the labor market tightness and subject to preserving

a positive payoff for workers in each sub-market. Optimality then implies that

the nominal wage rate equals

Wω,t = PP,tγL,j(1− η). (11)

In other words, the variation in wages across labor firms is uniquely pinned by

the dispersion in the labor efficiency values. This result implies that in equi-

librium firms with different efficiency levels, γL,j sort themselves into different

sub-markets, ω. Since the labor efficiency is assigned randomly, hereafter we use

firms’ labor efficiency levels to denote the sub-markets. For instance, we refer

to wage WγL,j ,t as the rate offered by firms posting a vacancy in the sub-market

populated by labor firms with efficiency level γL,j.

How do producers sort into labor firms and robot firms? A producer j opts to

open a vacancy and operate the labor technology if and only if the value of being

a labor firms is greater than the value of being a robot firm, that is, VL,j,t > VM,t.

Since the value of being a labor firm increases with the labor efficiency level γL,j,
7,

7See the Appendix for a proof of this property.
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there exists a cut-off point for the labor efficiency level, γ⋆t , such that

VL,j,t (γ
⋆
t ) = VM,t, (12)

and firms are indifferent between operating the labor technology or the machine

technology. The cut-off point crucially defines the automation choices, since all

producers with a labor efficiency level above γ⋆t become labor firms, whereas all

the rest become robot firms.

Given the cut-off point, we can characterize the measure of labor firms and

robot firms in the economy. The measure of labor firms integrates across all the

producers with an efficiency above γ⋆t ,

ΞL,t = Ξt

∫ γ̄

γ⋆t

f (γ) dγ, (13)

whereas the measure of robot firms captures all producers with sufficiently low

labor efficiency:

ΞM,t = Ξt

∫ γ⋆t

γ

f (γ) dγ. (14)

In equilibrium, the sum of the measures of labor firms and robot firms equals the

total amount of producers that have entered the market, that is, ΞL,t+ΞM,t = Ξt.

Given the measure of labor firms and robot firms, we can define the total

amount of goods produced by producers, Zt, as

Zt = Ξt

∫ γ̄

γ⋆t

qγL,j ,t(θγL,j ,t)γL,j dj + ΞM,tγM . (15)

Finally, we can characterize what is the total measure of producers entering

the market: a producer enters the market as long as its expected value, Ve,t,

equals zero:

Ve,t =

∫ γ∗t

γ

VM,tf(γL,j)dγ +

∫ γ̄

γ∗t

VL,j(γL,j)f(γ)dγ = 0. (16)

We can also obtain the average wage:

W t =

∫ γ̄
γ∗t
PP,tγL,j(1− η)f(γ)dγ∫ γ̄

γ∗t
f(γ)dγ

. (17)
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3.3 Wholesalers

There is a unit measure of monopolistically competitive wholesalers, indexed by

i ∈ [0, 1]. Each wholesaler purchases goods Zi,t from the producers at price PP,t,

and transforms them into a different variety Yi,t with the linear technology:

Yi,t = Zi,t. (18)

The varieties are sold to retailers at the price Pi,t. Then, wholesalers’ profits

equal to Pi,tYi,t − PP,tZi,t.

Wholesalers face price-setting friction in the form of Rotemberg adjustment

cost, denoted by the parameter ϕ. Thus, wholesalers optimally set their price

Pi,t by maximizing expected profits net of the Rotemberg costs

max
Pi,t

Et

{
∞∑
k=t

Qk,t

(
Pi,kYi,k − PP,kZi,k −

ϕ

2

[
Pi,k
Pi,k−1

− 1

]2
Yi,k

)}
, (19)

where Qs,t is households’ stochastic discount factor. In a symmetric equilibrium,

all wholesalers set the same price, such that Pi,t = Pt for all i. We denote by

πt =
Pt

Pt−1
the inflation rate.

The market clearing condition implies that the total amount of goods pro-

duced by the wholesalers – net of the Rotemberg adjustment cost – equals those

produced by both labor firms and machine firms,

∫ 1

0

[
1− ϕ

2

(
Pi,t
Pi,t−1

− 1

)2
]
Yi,t di =

∫ 1

0

Zi,t di = Zt. (20)

3.4 Retailers

There is a perfectly competitive representative retailer that purchases all the va-

rieties from the wholesalers, Yi,t, and assembles them into the final good of the

economy, Yt, with a CES technology:

Yt =

[∫ 1

0

Y
ϵ−1
ϵ

i,t di

] ϵ
ϵ−1

, (21)

where ϵ is the elasticity of substitution across varieties. The retailer then sells the

final goods at price Pt to households and machine manufacturers. Accordingly,
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retailers’ optimal demand of each variety is

Yi,t =

(
Pi,t
Pt

)−ϵ

Yt, (22)

where the price of final goods is given by

Pt =

[∫ 1

0

P 1−ϵ
i,t di

] 1
1−ϵ

. (23)

The total amount of final goods is then sold to household, in form of con-

sumption goods Ct, and to machine manufacturers, in form of investment goods

It, such that the following clearing condition applies

Yt = Ct + It. (24)

3.5 Machine Manufacturers

There is a perfectly competitive representative machine manufacturer that pur-

chases final goods from the retailer It at price Pt, and transform them into ma-

chines Mt with the linear technology

Mt = ζIt, (25)

where ζ is the level of robot-specific technological change. The manufacturers

sell the machines to the robot firms at price PM,t.This price inversely relates to

the level of technological change, such that

PM,t =
1

ζ
Pt. (26)

A higher value of robot-specific technological change implies that the produc-

tion of machines is becoming relatively more efficient. Consequently, the price of

machines goes down.

In equilibrium, the total amount of machines sold by the manufacturers equals

the total amount of machines demanded by the robot firms (i.e., the measure of

robot firms), that is

Mt = ΞM,t. (27)
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3.6 Households

The household consists of a unit measure of workers featuring perfect consump-

tion insurance. Consequently, after the workers have been searching for the job

and the matches are realized, all the nominal labor earnings Xt are pooled to-

gether within the household, such that

Xt = Ξt

∫ γ̄

γ⋆t

qγL,j ,t

(
θγL,j ,t

)
WγL,j ,tf (γ) dγ. (28)

In other words, taking the nominal wage rate of all the sub-markets/efficiency

levels which are not automated and multiplying for the associated probability to

find a job yields the aggregate labor earnings of the household.

The household then decides the optimal levels of consumption, Ct to pur-

chase from retailers at price Pt, and savings in one-period nominal bonds, Bt.

Specifically, the household maximizes its lifetime utility

max
Ct,Bt+1

Et
∞∑
t=0

βt
C1−σ
t

1− σ
(29)

s.t. PtCt +Bt = Bt−1Rt−1 +Xt (30)

where Rt denotes the return of bonds.

3.7 Monetary Authority

The monetary authority sets the nominal interest rate Rt following a standard

Taylor rule that reacts to the inflation rate, πt, and the unemployment gap,

ut/u
F
t , where u

F
t is the unemployment rate in a version of the economy featuring

flexible prices, such that

Rt

R̄
=

[
Rt−1

R̄

]ψR [
(1 + πt)

ψπ
(
ut/u

F
t

)ψu
]1−ψR

, (31)

where R̄ is the steady-state nominal interest rate, ψR captures the degree of

interest-rate smoothing, and ψπ and ψu denote the responsiveness of interest

rates to the inflation rate and the unemployment gap, respectively.
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4 Quantitative Analysis

4.1 Calibration

We assume the distribution of productivity γ is a Truncated Pareto Distribu-

tion with location parameters, γ and γ̄, and shape parameter, α. Consequently,

f(γ) =
αγαγ−α−1

1−γαγ̄−α and set the lowest value in the support γ = 1. To ensure

the probability of finding a job in the low wage sub-markets (where few workers

search) and that the probability of filling a vacancy in the high wage sub-markets

(where many workers search) are within zero and one, we set α = 7, γ̄ = 1.1 (thus

labour productivity of the most productive firms is 10% higher than the worst

firm) and the efficiency of the matching function ξ = 0.9. Households utility is

given by U(C) = C1−σ

1−σ , where we set σ = 2 and the discount factor is set to

0.995. We set the elasticity of substitution across varieties to ϵ = 9, which im-

plies a markup of 12.5%, in the ball park of the estimates used in the literature

of New Keynesian models. The price rigidity parameter (ϕ) is set such that on

average firms adjust their prices every 12 months. We set the cost of opening

vacancies (χ) and the fixed cost of entry (κ) such that the unemployment rate is

5.7%, matching the month average in the US, and the the relative price of robots

PM,t/Pt is below one, thus operating profits of low labour productivity firms,

which decide to use machines, is positive. We follow Petrongolo and Pissarides

(2001) and set the elasticity of matches to unemployment (1− η) to 0.5. Finally,

the Taylor rule parameters are: the inertia parameter equals ψR = 0.8, the degree

of response to the inflation rate is ψπ = 1.5, and the degree of response to the

unemployment gap is ψu = −0.2.
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Parameter Values Criteria

γ 1 Low Productivity normalize to 1

α 7 Set to ensure

γ̄ 1.1 pω=0 (θω=0) < 1

ξ 0.9 qω=1 (θω=1) < 1

σ 2 Standard Parameter Calibration

β 0.995 Standard Parameter Calibration

ϵ 9 Mark-up = 12.5 %

ϕ 94.6 Average firms adjust their prices every 12 months

χ 0.2

κ 0.44 Given χ, unemployment = 5.7%

η 0.5 Petrongolo and Pissarides (2001)

PM,t/Pt < 1 Given γ, robot production is feasible

ψR 0.8 Standard Parameter Calibration

ψπ 1.5 Standard Parameter Calibration

ψu -0.2 Standard Parameter Calibration

4.2 Degree of Automation and the Slope of the Phillips

Curve

Our model can be described as a standard New Keynesian model augmented to

incorporate an automation choice in production that by replacing workers with

machines also affects labour markets. As such the equilibrium conditions can

then be segregated into four groups, the standard three equation blocks from

the NK model (the policy rule (31), the IS curve coming from the household

Euler equation (solution of (29)) and goods market clearing conditions, and the

pricing equation (solution to (19)) and a fourth set of equations that determines

the labour market outcomes, the automation level and ultimately the price of

intermediate goods that serve as input into the pricing decision (combining (7),

(8), (12), (16), and (27)).

After log-linearisation around the steady state, we incorporate the equilibrium

conditions in the input production and labour markets into the pricing equation

to determine the relationship between inflation (prices) and unemployment, or

the Phillips curve. Details of the derivation are found in the Appendix. Let

Θ ≡ {η, γm, γH , α, ψ} represent the set of key structural parameters, and γ∗S the

cut-off point that determines the share of production that is automated versus

the one that is labour-intensive at the steady state, then the Phillips Curve in

22



our model economy is given by

π̂t =
ψ − 1

ϕ
Ξ(γ∗S; Θ)(ût − ûF t) + Etβ

ψ − 1

ϕ
π̂t+1 (32)

where

Ξ(γ∗S; Θ) =
uS

1− uS

1(
− η

1−η −
η((ψ−1)/ψ)γm

ω1,S

(
1

1−ηϖ2,S −ϖ3,S (1 +ϖ2,S)
)) (33)

ϖ1,S(γ
∗
S; Θ) =

ξ1/ηη((ψ − 1)/ψ) (γ∗S)
(1/η)(

(1−uS)((γ∗S)−α+1/η−(γH)−α+1/η)
((γ∗S)−α+(1−η)/η−(γH)−α+(1−η)/η)

α−(1−η)/η
α−1/η

)(1−η)/η

ϖ2,S(γ
∗
S; Θ) =

1− γαm
(γ∗S)

α

α
α−1/η

(
γαm

(γ∗S)
α − γαm

(γH)α
(γH)1/η

(γ∗S)
1/η

)
ϖ3,S(γ

∗
S; Θ) =


(
α− 1−η

η

)
(γ∗S)

−α+(1−η)/η

(γ∗S)
−α+(1−η)/η − (γH)−α+(1−η)/η −

(
α− 1

η

)
(γ∗S)

−α+1/η

(γ∗S)
−α+1/η − (γH)−α+1/η


Thus, the slope of the Phillips curve in our setting, as in the standard NK

model, is a function of the firms mark-up (controlled by parameter ψ), the de-

gree of nominal rigidity (controlled by parameter ϕ), but is also a function of

the degree of automation in the economy (controlled by parameter γ∗S).
8 Hold-

ing the initial level of unemployment, uS (which is pinned down by the cost of

entry κf , affecting only the steady state and bearing no direct implications for

the dynamics around the steady state) and all the key structural parameters (Θ)

constant, the degree of automation is determined by the relative price of robots

(q). Graetz and Michaels (2018) show that the price of robots have fallen during

the last decades while automation has increased, interpreting this as the result of

robot-specific technological change. What is the effect of this robot-specific tech-

nological change that lead the economy towards a new steady state with lower

prices of robots and higher degree of automation on the Phillips Curve?

Figure 1 shows the effect of increasing the degree of automation on the slope

of the Phillips curve for the benchmark calibration and also the effect of the key

structural parameters in this relationship.

Firstly, we see that increasing automation decreases the slope of the Phillips

Curve for all the relevant parameter ranges. Second, the effect of automation

8Formally the degree of automation is defined as
∫ γ∗

S

γm
f(γ)dγ =

(1−γα
m(γ∗

t )
−α)

(1−γα
m(γH)−α) .
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Figure 1: Degree of automation and the slope of the Phillips curve
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on the Phillips Curve is weaker, the bigger the elasticity of unemployment to

matches (η) and the smaller the initial level of unemployment (uS), thus the

potential effect of automation is stronger when unemployment is relatively less

important (whereas the effect of firms’ decision gain weight) in determining the

equilibrium in the labour markets. Third, the higher the density of firms in

the lower end of the productivity scale (α is high), the larger the change in the

slope when automation increases from initially low levels (below 30%). Fourth,

in economies with higher upper bound in labour productivity imply more au-

tomation has only a slightly stronger effect on the slope of the Phillips Curve.

Finally, at high levels of automation changes in unemployment have hardly any

effect on inflation, independent of the parametrisation.

We can also obtain a close form solution for the first order approximation of

the Phillips Curve in an extension of the model in which labour market participa-

tion is endogenously set (the details of the derivation are shown in the Appendix).

In this case labour supply is set such that Lt =
(
JE,t
Pt

U ′(Ct))
1
ζ

λH
, depending on the

expected gain from joining the labour markets and the marginal utility of con-

sumption. The main qualitative results remain unchanged, a higher degree of

automation is associated with a flatter Phillips curve for all parameter ranges

(see figure C.2 in the Appendix).

The level of automation and how it changes in response to shocks influence the

dynamics of wages and prices. As automation decreases the labour share, part

of the adjustment of aggregate demand will be done by firms using robots and

thus follows different dynamics than the one determined at the labour market.

Furthermore, in our model firms have the outside option of using robots instead

of opening vacancies. As a result, automation will also influence the bargaining

power of workers and firms that result in different wage responses for a given

aggregate demand conditions. In order to analyse the relationship between wage

and prices and how automation affect their responses, we also report the effect

of automation on the wage to price pass-through. We use the condition that

determines the average wage ((17)) and following a similar procedure done for

the Phillips Curve (see the Appendix for detail) we can determine the relation-

ship between the changes in the price of inputs P I
t (effectively the marginal cost,

which direct impact prices through the firms optimal pricing condition) and the
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changes in the average wage, obtaining

p̂I,t = Υ(γ∗S; Θ)ŵt (34)

Υ(γ∗S; Θ) =
1

1 +ϖpw,S
ηpI,Sγm
ω1,S

(1 +ϖ2,S)

ϖpw,S(γ
∗
S; Θ) =

(γ∗S)
−α ((γ∗S)

−α − (γH)
−α) + α(γ∗S)

−αγ−αH (γ∗S − γH)(
(γ∗S)

−α − γ−αH
) (

(γ∗S)
−α+1 − γ−α+1

H

)
Υ(γ∗S; Θ), therefore provides a measures the wage to inflation pass-through. We

can then verify how Υ(γ∗S; Θ) changes with the degree of automation and the

structural parameters as done for the slope of the Phillips Curve. Pass-through

decreases with automation for all the relevant parameter ranges (Figure 2 show

the results for the effect of automation when α and uS also change, see the

appendix for the additional parameters in Θ). Although lower wage inflation re-

sponses due to automation is part of the mechanism delivering a flatter Phillips

Curves, automation also weakens the relationship between wages and prices.

Thus, our model provides a rationale for the findings of Del Negro et al. (2020)

and Heise et al. (2022), who uncover evidence that the flattening of the Phillips

curve is related to the decoupling of wage and price dynamics.9

Figure 2: Degree of automation and the wage to price pass-through
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4.3 Automation and Inflation Responses

We first look at the prices and wages responses after a monetary policy shock to

gain understanding of the implications of higher level of automation for short-

9For more on the difference between in price and wage Phillips Curves in the past decades, see also
Fitzgerald et al. (2023).
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term dynamics (results for a consumption demand shock and a productivity shock

generate similar implications and thus are shown in the Appendix). In this sec-

tion we employ the richer model with endogenous labour participation detailed

in the appendix (similar responses are obtained under the simpler model with

fixed labour participation). We study two otherwise identical economies that

differ only in the degree of automation resulted from robot-specific technological

change. A one standard deviation of robots penetration across MSAs in the US

implies a 200% increase in the ratio of robots to employees. We therefore set

the initial share of automation to be 2% (an economy where robots are used in a

significantly small share of production, denoted the Low Automation economy)

and increase it by 200%, denoting it the High Automation economy, to compare

the model results with our empirical estimates.

Figure 3 shows the results. We subject both economies to shocks that generate

the same response on unemployment and verify the responses of price inflation,

average wage, price to wage mark-up, number of firms and the automation cut-

off point (γ∗) after the shock. With a similar exercise, Del Negro et al. (2020)

shows that inflation responses to unemployment shocks have decreased in the

past decades.

After a monetary policy shock, demand for final goods fall, pushing the de-

mand for inputs down. Lower demand for inputs bring the value of operating

either a robot intensive or a labour intensive firm down, reducing entry. Lower

entry implies less vacancies are opened in the labour market, depressing wages.

As the degree of automation is endogenous, there are two added elements altering

the dynamics (these comprise the direct and the indirect Automation Effects).

First, as wage decreases, some firms decide to use labour instead of robots, sus-

taining labour demand and wages. This direct channel of variation in automation

moderates the wage and consequently the price responses after a monetary shock.

We called this the Moderation Effect of Automation. Second, as using robots is

always a choice firms can fall back on, robot adoption increases firms’ bargaining

power, dampening the responsiveness of wages to changes in the unemployment

gap. We call this the Wage Setting Effect of Automation. Finally, at the initial

steady state, a share of the production uses (and will continue to do so) robots.

Therefore, a part of the adjustment process as a response to the shock occurs

independently of the equilibrium changes in labour markets, decoupling the vari-

ation of unemployment to changes in aggregate demand. We denote this as the

Labour Share Effect ; note that as it will become clear below, this does not depend
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Figure 3: Impulse Responses - Monetary Policy Shock
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on the endogenous changes in automation after the shock.

In the low automation economy, goods markets is almost entirely labour dom-

inated and thus changes in firm entry lead to more volatile wages and prices given

the unemployment level relative to the high automation economy in which a big-

ger share of the adjustment in goods’ markets does not depend on unemployment

movements. Thus, the Labour Share Effect implies greater price and wage re-

sponse in the low automation economy. Second, automation is more responsive

in a low automation economy, strengthening the Moderation Effect, potentially

reducing the wage and price responses in the low automation economy. How-

ever, the Wage Setting Effect, which is stronger in the high automation economy,

dominates (we look at this in more detail below). Consequently, we find that in

the low automation economy, wages and consequently prices, are more sensitive

and drop more significantly after a monetary shock. Therefore, confirming the

results from the relationship between the degree of automation and the slope

of the Phillips curve, high automation at steady state leads to lower inflation

responses for a given change in unemployment.

In order to isolate these different channels through which automation affects

inflation responses, we consider three alternative model specifications, aside from

our core economy, which we denote as the Directed Search model. In the first,

we continue using directed search in labour markets as in the core model but do

not allow automation to endogenously change after the shock, thus the degree of

automation (γ∗) is fixed in the short-term being unresponsive to monetary policy

shocks. We denote this specification as Directed Search - Fixed. The second we

assume firms and workers are randomly matched in labour markets and share

the surplus of the match under Nash bargaining (see Pissarides (2000)). We

name this model version, the Random Search model. Finally, we also consider

the model under random search in which the automation level is fixed in the

short-run, denoting it Random Search - Fixed model.

First we focus on the two cases where we fixed automation in the short-run

(dotted lines with and without circles in Figure 4). Under these scenarios, both

the moderation via directly changing automation and the wage setting effect

boosted by the treat of robot adoption are no longer operational. Therefore, the

only difference between the low automation and high automation economies is

the size of the labour share in equilibrium. A lower labour share (high automation

economy) implies wages and prices are less responsive to variation in unemploy-

ment and thus the Phillips curve is flatter and inflation responds less for a given
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unemployment response. Under fixed short-term automation, the labour mar-

kets have similar responses under random and directed search for each respective

steady state (note that the key parameters that determine matching and surplus

sharing are the same in both specifications).

If we allow automation to endogenously change after the shock then the labour

market specification becomes crucial to determine the difference in wages and

prices between the low and high automation economies. On the one hand, under

directed search the firm that is at the margin between using robots or labour in

production is setting the wage based on its own productivity level (γj), thus the

probability of filling a vacancy, or the labour market conditions the firm faces, is

a function of its own productivity level (or q(θγj ,t)). The firm therefore internal-

izes the dependency between γj and the labour market it faces while measuring

its value under robot adoption or opening a vacancy. The value while opening a

vacancy of the firm at the margin under directed search (DS) is given by

V W,DS
j,t (γj) = q(θγj ,t)

(
PP,tγj −Wγj ,t

)
− κv − κf .

Wage setting (or selecting the labour sub-market and consequently the proba-

bility of filling a vacancy) and the automation decision interact, increasing the

bargaining power of firms.

On the other hand, under random search the labour market conditions are

the same for all firms; the probability of filling a vacancy for an specific firm j

depends on the number of firms searching (so γ∗, via general equilibrium), but

not γj. The automation decision of the firm at a margin does not alter its labour

market outcome, and thus wage setting only indirectly affects the automation

decisions via general equilibrium effects, decreasing the bargaining power of each

firm. Under random search (RS) the value of opening a vacancy for the firm at

the margin is given by

V W,RS
j,t (γj) = q(θγ∗,t) (PP,tγj −Wγ∗,t)− κv − κf .

When automation is endogenous and firms wage setting and automation deci-

sions interact, the Wage Setting Effect is stronger, leading to a greater difference

between the inflation response under the low and high automation economies

(dashed dark line in Figure 4, depicting the inflation difference for our core econ-

omy). In contrast, when automation and wage setting only interact via indirect

equilibrium conditions with labour markets characterized by random search and
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endogenous change in automation, the Wage Setting Effect weakens significantly.

In this case the Moderation Effect of Automation, or the direct effect of automa-

tion changes in increasing labour demand after a negative monetary shock as the

degree of automation falls in the short-run, dominates. The difference in inflation

response for a given change in unemployment between the low and high automa-

tion economies in this case is the smallest (continuous line in Figure 4); the

Moderation Effect of Automation, which is stronger in low automation economy,

offsets the Labour Share Effect, which is higher in the high automation economy,

bringing the inflation response for a given change in unemployment in these two

economies closer together.

Figure 4: Difference of Inflation Responses after a Monetary Policy Shock for Low and High
Automation Economies under Alternative Models
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So far we have kept q, the relative price of robots, constant in the short-term.

As such, when automation is endogenously moving, it does so without restric-

tions. Next we consider the case in which ramping up automation becomes costly.

As such we assume that the relative price of robots increases when the investment

in robots (It) increases substantially from its steady state point (see Appendix for

details). We then measure the responses of a small (one standard deviation) and

a large (five standard deviations) positive demand shocks. Results are shown in
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figure 5. For a small positive demand shock inflation responds less in the high au-

tomation economy for a given change in unemployment. The treat of robot adop-

tion dampens the wage responses leading to lower inflation increases for a given

fall in unemployment. However, for larger demand shocks, the potential increase

in robot investment would lead to rises in the price of robots making the treat of

robot adoption no longer as effective in dampening wage responses. Moreover, the

actual increase in the price of robots also lead to an increase in the cost of produc-

tion of firms who select robots (low γ firms), adding an additional channel pushing

inflation up, particular in the high automation economy, in which a greater share

of output is produced by robots. As a result, after a large demand shock we no

longer observe a difference in inflation responses for a given level of unemploy-

ment, the Phillips curve is no longer flatter in the high automation economy.

Figure 5: Costly Automation Changes
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In our final model exercise we simulate a series of demand shocks under the

low and high automation economies and plot the series of unemployment and

inflation deviations for each period, and their resulting regression lines (a crude

measure of the Phillips curve). Details of the simulation exercise are provided

in the Appendix. We find that the price inflation Phillips curve is 18% flatter
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in the high automation, relative to the low automation economy, while the wage

inflation Phillips curve is 14% flatter in the high automation. Our results are in

line with the empirical estimates discussed above. An one standard deviation

increase in robot penetration across MSAs, which implies a 200% increase in

the ratio of robots to employees, delivers a 17% flattening of the price inflation

Phillips curve and a 9% flattening in the wage inflation Phillips curve. Starting

from a low level of automation (2%), a 200% increase in the degree of automation

in our model economy delivers a similar flattening in the price Phillips curve but

a more substantial flattening of the wage Phillips curve.

Figure 6: Simulated Phillips Curves
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5 Conclusion
How does robot adoption influence inflation dynamics? We show empirically and

theoretically that economies characterized by a higher degree of automation ex-

perience a lower sensitivity of inflation to movements in unemployment. As such,

the substantial increase in the use of robots and other forms of automation in

production processes experienced in most advanced economies in the last decades

may be associated with the missing inflation observed during the same period,

when inflationary pressures did not materialize despite the fluctuations observed

in unemployment rates.

Employing a panel of nontradable goods inflation, wage inflation, unemploy-

ment rate and robot adoption at the U.S. metropolitan area (MSA) level, we un-

cover the causal relationship between automation and inflation by instrumenting

the unemployment rate with local tradable demand spillovers and robot adoption

with the robot installation across industries observed in the the five largest Euro-

pean economies. In our baseline results, the relationship between unemployment
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and inflation is affected by the degree of robot adoption in each MSA, indicating

a significant role of automation in altering the relationship between inflation and

unemployment. This effect is also economically relevant: an increase in robot

adoption by one standard deviation reduces the sensitivity of prince inflation

and wage inflation to unemployment by 17% and 9%, respectively. Overall, our

empirical analysis uncovers three novel findings relating automation to inflation

dynamics: robot adoption reduces (i) the sensitivity of price inflation to unem-

ployment, (ii) the sensitivity of wage inflation to unemployment, and (iii) the

pass-through from wages to prices.

We rationalize the empirical findings building a standard New Keynesian

model with two key augmented features: search frictions in the labor market

and the possibility of robot adoption. Firms, upon entry, draws an idiosyncratic

efficiency in employing workers, and then decide to use either a labor technology

(i.e., labor firms) or a machine technology (i.e., robot firms). Labor firms open

costly vacancies at given posted wage, which are filled with a probability that de-

pends on the labor market tightness. Workers observe posted wages and directly

search for jobs of a given wage. Machine firms purchase a robot, at a given price

determined by the level of robot-specific technological progress, from machine

manufacturers, and produce with certainty. This setting defines an automation

threshold, that is, a level of the efficiency in operating the labor technology that

defines whether firms opt to produce using labor or robots. This threshold de-

pends on the job filling probability and the levels of both wages and the price

of robots. Therefore, in the model, the automation cut-off varies across steady

states, as a function of the exogenous level of robot-specific technological change,

and around the steady state upon the occurrence of a shock, as a function of the

endogenous response of prices.

We then characterize the price Phillips curve and show that the degree of au-

tomation reduces its slope. The dampening effect of automation on the relation-

ship between inflation and the unemployment gap is due to two main mechanisms.

First, automation reduces the labor share in value added and thus, part of the

aggregated demand adjustment is unrelated to changes in wage and unemploy-

ment dynamics. Second, the outside option of robot adoption negatively affects

workers’ bargaining power, dampening the responsiveness of wages to changes in

the unemployment gap. Finally, we find that in an economy with a higher de-

gree of automation, designed to reflect the changes observed in robot penetration

across MSAs, the responsiveness of price inflation and wage inflation to unem-
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ployment changes after a demand shock is reduced by 18% and 14%, respectively.

These changes are in line with the magnitude of the effects of automation on the

price and wage Phillips curve estimated in our empirical evidence, that suggest

a flattening of 17% and 9%, respectively.

In the aftermath of the Covid pandemic inflation and low rates of unemploy-

ment have been observed, indicating a sudden strengthening of the relationship

between inflation and unemployment, or a reversal of the trend observe in the

past decades. The key element in our model that explains the flattening of the

Phillips curve in our setting is the effect of automation on the wage setting and

the bargaining power of workers. If ramping up automation is costly and ma-

chine manufacturers face adjustment, then the threat that robots pose to workers’

bargaining power crucially depend on the size of the shock realizations. When

facing a small expansionary shock, firms can purchase additional machines with-

out facing a sharp increase in robot prices, and thus gain an upper hand on

wage negotiations. In this case, both the wage and price Phillips curves are flat.

However, when the size of an expansionary shock is substantial, installing all the

required robots to meet demand would be increasingly costly, forcing producers

to continue to operate using labor. Consequently, the threat of robot adoption

is no longer effective in curtailing workers’ bargaining power, and wages highly

react to changes in the unemployment gap. As such, the model would be consis-

tent with an more substantial response of wages and prices after a large demand

shock observed after Covid. Indeed, Autor et al. (2023) shows that the increases

in wage post-Covid have been stronger for low educated and low income workers,

whose wages have been compressed during the past decades. That is consistent

with the implications of our analysis; workers who got displaced or faced the risk

of displacement during the last decades, and experienced lower wage gains despite

the unemployment rate, have recently observed an increase in their bargaining

power and are finding new jobs at greater wages.
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A Empirical Evidence: Robustness
This section evaluates the robustness of our empirical findings as well as corrob-

orates the validity of our identification strategy by reporting a comprehensive

battery of checks. Specifically, we consider to what extent our findings keep

holding when accounting for the role of potential alternative explanations for the

decoupling of inflation and unemployment dynamics, and when including vari-

ables which could be highly correlated (across states and over time) with the

surge of automation. To do so, we estimate a sequence of additional regressions

in which we introduce each time a new key potential confounding factor and we

explicitly control for both its local lagged level and its interaction with the local

unemployment rate. In this way, we can evaluate whether the effect of automa-

tion on inflation dynamics keeps holding above and beyond the interaction that

unemployment may have with other MSA-level characteristics.

Our first set of potential alternative explanations relate to heterogeneity in

demographic characteristics across metropolitan areas. To address this set of

variables, we merge our data with information from the Current Population Sur-

vey (CPS) of the U.S. Census Bureau, and we compute for each metropolitan area

the following characteristics: (i) the share of young people in total population,

defined as the share of individuals whose age is below 30 years, (ii) the share of

old people in total population, defined as the share of individuals whose age is

above 60 years, (iii) the female labor market participation, (iv) the black people

labor market participation, (v) the asian people labor market participation, (vi)

the share of individuals with low educational attainments, defined as those people

who have attended at most until the tenth grade, (vii) the overall labor market

participation, and (viii) the average marginal propensity to consume (MPC). To

compute the latter, we follow Herreno and Pedemonte (2022) and combine the

estimate of the MPC by demographic characteristics derived by Patterson (2023)

with the share of each of this characteristic in each metropolitan area in each year

of our sample. Overall, merging our initial data with the CPS information slightly

reduces the total number of observations in our panel, from 3,205 to 2,270.

We then report the results of extending our baseline regression to include the

lagged value of each of the above demographic characteristics – one at a time

– both as its lagged values and its interaction with the unemployment rate in

Table A. Overall, we find that the role of automation is always highly statis-

tically significant and rather constant across the different specifications. These

results also suggest our baseline setting does not capture the relationship that
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automation has with the aging labor force (Acemoglu and Restrepo, 2022; Basso

and Jimeno, 2021), and in turn the effect of the aging population on long-run in-

flation dynamics (Aksoy et al., 2019). The effect of automation holds also above

and beyond the way in which differences in the MPC across metropolitan areas

modulate the transmission of monetary policy, as documented by Herreno and

Pedemonte (2022).

The second set of confounding factors we consider is related to the heteroge-

neous variations in the content of occupations across metropolitan areas. Indeed,

robot adoption has lead to a decline in both routine and manual occupations

(Acemoglu and Restrepo, 2018, 2020a, 2020b), a phenomenon which is intrin-

sically related to the job polarization emphasized by Autor et al. (2013). We

evaluate the role of changes in the occupational structure as Siena and Zago

(2021) shows that the disappearance of routine and manual occupations is a

potential explanation for the flattening of the price Phillips curve in the early

2000s. To show that the effect of automation on inflation dynamics holds above

and beyond that of job polarization, we merge our data with the information on

occupations provided by the CPS, and the assignment of these occupations to

manual, routine, and abstract, as well as their offshorable content, all of which

come from Autor et al. (2013). We then report the results of extending our

baseline regression to include the lagged value of each of the above occupational

characteristics – one at a time – both as its lagged values and its interaction with

the unemployment rate in Table A. Again, we find that although the occupation

offshorability also leads to a flattening of the price Phillips curve, the effect of

automation on inflation dynamics holds even when explicitly controlling for the

time-variation in the occupational structure across metropolitan areas.

Finally, the third set of potential alternative explanations relates to the key

role that foreign import competition has had on the changes in inflation dynam-

ics in the pre-Covid and the post-Covid periods (Forbes, 2019; Heise et al., 2022,

2023). Specifically, we consider to what extent the effect of automation on infla-

tion could hold when including in our regressions the role of imports from China

and Mexico, which are the two countries which have been providing the largest

competition threats to U.S. products. To do so, we closely follow the steps of

Autor et al. (2013): we get import data from the UN Comtrade on imports from

China and Mexico at the 6 digit Harmonized System product level, we convert

this information into 1987 four-digit SIC codes, and finally transform the infor-

mation at the 1997 six-digit NAICS codes. We use the employment structure of

A.3



Table A.2: Robot Adoption and Inflation across MSAs - The Role of Occupations

Dependent Variable: πN,i,t

Abstract Routine Manual Offshorable
Occupations Occupations Occupations Occupations

IV IV IV IV
(1) (2) (3) (4)

ui,t−1 -0.5888⋆⋆⋆ -0.5842⋆⋆⋆ -0.5921⋆⋆⋆ -0.5928⋆⋆⋆

(0.1364) (0.1358) (0.1372) (0.1365)

ui,t−1× 0.0114⋆⋆⋆ 0.0125⋆⋆⋆ 0.0127⋆⋆⋆ 0.0124⋆⋆⋆

(mi,t−1 − m̄) (0.0044) (0.0044) (0.0044) (0.0044)

ui,t−1× -0.0175 0.0170 0.0051 0.0429⋆(
V ARi,t−1 − ¯V AR

)
(0.0109) (0.0170) (0.0202) (0.0242)

Year Fixed Effects ✓ ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓ ✓
N. Observations 2,489 2,489 2,489 2,489

Note: The table reports the estimates of panel regressions similar to that of Table 1 with the
difference that we also include the interaction of the unemployment rate with a set of potential
confounding factors one at a time, a term we refer to as ui,t−1 ×

(
V ARi,t−1 − ¯V AR

)
, where

V ARi,t−1 is the value that each of this additional confounding factors take in metropolitan
area i at year t, and ¯V AR is the associated average value in the sample. In all columns, the
dependent variable is the non-tradables good inflation rate, πN,i,t, and all cases are estimated
with IV methods, in which the unemployment rate is instrumented with a shift-share variable
that captures tradeable demand spillovers, and the robot-adoption variable is instrumented
with the industry-level robot penetration in a pool of European countries. All regressions
also include the lagged value of the robot-adoption variable, mi,t−1, the lagged value of the
confounding variable used in the interaction term, V ARi,t−1, the relative price of non-tradable
goods, pN,i,t−1, as well as year and MSA fixed effects. Column (1) considers the share of abstract
occupations in total occupations, Column (2) considers the share of routine occupations in
total occupations, Column (3) considers the share of manual occupations in total occupations,
and Column (3) considers the share of offshorable occupations in total occupations. Double-
clustered standard errors are reported in brackets. ⋆⋆⋆ and ⋆⋆ indicate statistical significance
at the 1% and 5%, respectively.
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each metropolitan area at the industry level to compute a time-varying measure

of Chinese and Mexican import competition over the entire sample period, and

merge it with our original data. We then report the results of extending our base-

line regression to include the lagged value of each of the above imports variable –

either the imports from China, or the imports from Mexico, or the sum imports

from the two countries – both as its lagged values and its interaction with the un-

employment rate in Table A. We find that although the total imports did flatten

the price Phillips curve, the effect of automation on inflation dynamics hold above

and beyond the time-variation in import competition across metropolitan areas.
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Table A.3: Robot Adoption and Inflation across MSAs - The Role of Import Competition

Dependent Variable: πN,i,t

Chinese Imports Mexican Imports Chinese & Mexican
Imports

IV IV IV
(1) (2) (3)

ui,t−1 -0.5687⋆⋆⋆ -0.7265⋆⋆⋆ -0.6056⋆⋆⋆

(0.1399) (0.2033) (0.1549)

ui,t−1× 0.0063⋆⋆ 0.0105⋆⋆⋆ 0.0077⋆⋆

(mi,t−1 − m̄) (0.0032) (0.0040) (0.0044)

ui,t−1× 0.0141 -0.8281 0.1812⋆(
V ARi,t−1 − ¯V AR

)
(0.0675) (0.5082) (0.1011)

Year Fixed Effects ✓ ✓ ✓
MSA Fixed Effects ✓ ✓ ✓
N. Observations 3,526 3,526 3,526

Note: The table reports the estimates of panel regressions similar to that of Table 1 with the
difference that we also include the interaction of the unemployment rate with a set of potential
confounding factors one at a time, a term we refer to as ui,t−1 ×

(
V ARi,t−1 − ¯V AR

)
, where

V ARi,t−1 is the value that each of this additional confounding factors take in metropolitan
area i at year t, and ¯V AR is the associated average value in the sample. In all columns, the
dependent variable is the non-tradables good inflation rate, πN,i,t, and all cases are estimated
with IV methods, in which the unemployment rate is instrumented with a shift-share variable
that captures tradeable demand spillovers, and the robot-adoption variable is instrumented
with the industry-level robot penetration in a pool of European countries. All regressions
also include the lagged value of the robot-adoption variable, mi,t−1, the lagged value of the
confounding variable used in the interaction term, V ARi,t−1, the relative price of non-tradable
goods, pN,i,t−1, as well as year and MSA fixed effects. Column (1) considers the share of abstract
occupations in total occupations, Column (2) considers the share of routine occupations in
total occupations, Column (3) considers the share of manual occupations in total occupations,
and Column (3) considers the share of offshorable occupations in total occupations. Double-
clustered standard errors are reported in brackets. ⋆⋆⋆ and ⋆⋆ indicate statistical significance
at the 1% and 5%, respectively.
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B Further Details on the Model

Figure B.1: The Structure of the Model

Workers
Labor Firms (γj ≥ γ∗

t )
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γ∗

8

Note: This figure gives a graphical representation of the structure of the model economy.

C Additional Results
Figure C.2 shows the effect of increasing the degree of automation on the slope of

the Phillips curve for this extension, for the benchmark calibration with ζ = 2.5

and also the effect of the key structural parameters in this relationship. The

main results of the model are unchanged under this extension.

Figure C.3 shows how the Wages to Price Pass-through changes as automation

changes for additional structural parameters.
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(a) Effect of α - Shape of productivity distribution (b) Effect of η - Elasticity of vacancies to matches

(c) Effect of γH - Upper bound on labour productivity (d) Effect of ζ - Elasticity of Labour Participation

Figure C.2: Degree of automation and the slope of the Phillips curve with Endogenous
Labour Participation
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(b) Effect of γH - Upper bound on labour productivity

Figure C.3: Degree of automation and the wage to price pass-through
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