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Abstract

The units of an object are to be distributed among a set of agents through re-

serve categories. For example, vaccines, ICU’s or other medical units are reserved

for certain patients based on their occupations, preexisting conditions and disad-

vantaged status, or school seats are allocated to students through tiers based on

the socioeconomic status to eliminate segregation. A widespread mechanism is pro-

cessing these categories in a precedence order. Since there are multiple categories

through which an agent can be assigned a unit, any choice of precedence order has

distributional consequences. To mitigate uneven treatment of agents, we consider

processing reserve categories simultaneously. We propose a procedure to enhance

equity and characterize the class of equitable random allocation rules.
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1 Introduction

The recent pandemic has highlighted the importance of well-designed rationing mecha-

nisms when resources are in short supply. How should we design and implement such

mechanisms for the allocation of vaccines, ventilators, ICU’s or other crucial medical

units? A simple solution is a priority system, which allocates units to patients with

respect to a single order of priority. These systems could fail to recognize certain eth-

ical values and inherently embed discriminatory practices against disadvantaged groups

(Pathak, Sönmez, Ünver, and Yenmez, 2021). A more flexible alternative is a reserve

system, in which units are divided into multiple reserve categories with each having a

distinct priority order of patients depending on their characteristics. Typically, these cat-

egories are processed in a precedence order. Since patients are in general beneficiaries

of multiple categories, this procedure too has distributional consequences. This problem

persists in other reserve settings such as school choice with affirmative action and immi-

gration visa allocation. We consider a general reserve system framework with processing

reserve categories simultaneously rather than sequentially. We propose and characterize

random allocation rules to enhance equity by mitigating uneven treatment of agents due

to precedence orders.

For the class of rationing problems with reserves, certain properties are indispensable (see

Section 3). First, priorities of agents under categories should be respected (respecting

priorities). Second, no unit should be wasted (efficiency). Third, an agent should be

assigned at least as the share of a unit guaranteed to her by a single category at which she

qualifies to receive a positive share (individual rationality). We call a (random) allocation

acceptable if it satisfies all these standard axioms. Our first theorem is a characterization

of the set of acceptable (random) allocation rules (Theorem 2).

The deterministic procedures within the acceptable ones imply uneven treatment of agents,

which implies randomization as a significant alternative. There are basically two standard

notions of fairness and equity in the randomization context. The first notion is a basic
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axiom of fairness, no justified-envy : if an agent prefers being in the position of another

agent, then there is a justification (based on priorities) for assigning a higher utility to

that other agent. The second notion is an axiom of equity, egalitarianism, which requires

equating agents’ utilities as much as possible (within the constraints of acceptability)

through the criterion of Lorenz dominance. We show that egalitarianism is impossible

in the current context (see Theorem 3). We then introduce and formalize a new eq-

uity property, sequential egalitarianism, which basically requires equating agents’ utilities

procedurally (as much as possible) throughout the simultaneous processing of reserves

(Section 5.3). Interestingly, while an egalitarian allocation, if it exists for a problem, does

not even satisfy equal treatment of equals in general, sequential egalitarianism is stronger

than no justified-envy (Proposition 1). Thus, we argue that sequential egalitarianism is

the plausible equity criterion for the reserves setting.

Our second theorem is the characterization of the sequentially egalitarian rules, the

Priority-Based Rawlsian (PBR) (Theorem 4). The PBR rules constitute an intuitive

class within the set of acceptable rules. Basically, they are based on defining a guaran-

teed utility for each agent and then increasing these utilities sequentially subject to the

constraints of acceptability and also the Rawlsian principle of prioritizing the most dis-

advantaged agents. We show how to design this procedure (Section 5.4) with the help of

ideas from graph theory (Appendix A).

We discuss relevant applications, rationing health care units, vaccines etc. (Section 6.1)

and affirmative action in school choice (Section 6.2). We argue that the class of rules we

propose could help policymakers to mitigate the inequalities due to uneven treatment of

agents in deterministic allocation rules based on processing reserves sequentially.

Related Literature

Reserve systems with sequential processing has been proposed for affirmative action in
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school choice (Kominers and Sönmez, 2016).1 When there are only two types of slots,

reserve and open slots, both increasing the reserve quota and raising the precedence order

positions of open seats will (weakly) increase the number of reserve-eligible students who

are accepted (Dur, Kominers, Pathak, and Sönmez, 2018). For the case of multiple

socioeconomic tiers along with the merit tier, the precedence orders for maximizing the

number of the most disadvantaged students assigned a seat are characterized as follows:

the slots of other tiers precede the merit slots which are succeeded by the slots of the tier

for the most disadvantaged students (Dur, Pathak, and Sönmez, 2020).

A model closer to the current setting is when a student is in general a beneficiary at

multiple reserve categories, the case of overlapping reserves, and the goal is to guarantee

maximal compliance with reservations (as many of the reserved positions as possible are to

be allocated to the candidates from target groups) (Sönmez and Yenmez, 2020). Equity

under maximal compliance is studied in a similar setting when random allocations are

allowed (Doğan and Yılmaz, 2022).

Reserve systems have been also relevant in various other contexts: medical rationing

(Pathak, Sönmez, Ünver, and Yenmez, 2021), the H-1B visa program (Pathak, Rees-

Jones, and Sönmez, 2022), university admissions in India (Sönmez and Yenmez, 2020;

Aygün and Turhan, 2020a,b) and Brazil (Aygün and Bo, 2021).

Another strand of literature, to which the current work belongs as well, is the approach of

processing reserves simultaneously. A recently proposed axiom in this setting is category

neutrality : An allocation is category neutral if an agent who qualifies for multiple cate-

gories receives the same amount of capacity from all of them (Delacrétaz, 2021). In the
1Affirmative action in school choice has been widely studied. Controlled choice models provide choice

to parents while maintaining the racial and ethnic balance at schools through type-specific reserves and
quotas (Abdulkadiroğlu and Sönmez, 2003; Ehlers, Hafalir, Yenmez, and Yıldırım, 2014), or through
adjusted priorities under minority reserves (Hafalir, Yenmez, and Yıldırım, 2013). A recent work studies
how to minimize priority violations for a setting when there is only one ordering of students and there are
type-specific reserves and quotas. A particular choice rule, where all applicants are first considered for
units reserved for their own types, uniquely minimizes priority violations in this class (Abdulkadiroğlu
and Grigoryan, 2021).
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context of hard reserves (only the beneficiaries of a given reserve category are eligible for

the units under that category), every random allocation satisfying efficiency, respecting

priorities and category neutrality assigns to each agent the same amount of probability of

receiving a unit in aggregate, and a polynomial-time algorithm exists to compute these

allocations (Delacrétaz, 2021). The difference between our approach and this work can

be summarized as follows: while category neutrality requires that for an agent, the prob-

ability of being assigned a unit is the same across all categories for which she is eligible,

sequential egalitarianism requires equating utilities across agents (procedurally and sub-

ject to the constraints of acceptability). Clearly, these two axioms and ideas are not only

independent but also fundamentally different.2

An alternative approach is to apply a Probabilistic Serial (PS) mechanism, the Rationing

Eating (RE) rule, to the current setting: Categories are treated as pseudo-agents and

the agents as pseudo-items, as if categories are ‘consuming’ agents. The pseudo-agents

categories now have preferences over the pseudo-items that are derived from the priorities

of the corresponding categories. Then, the PS rule is implemented on this pseudo-market

(Aziz, 2021). The RE rule retains the fairness property (sd-envy-freeness) in this pseudo-

market: category sd-envy-freeness. This work and the current one are also substantially

different: we do not reverse the roles of agents and categories. Thus, we cannot apply

the PS rule directly for the categories (pseudo-agents) over the agents (pseudo-items).

This leads to an analytical challenge: We should keep track of who can be assigned

to units from which categories at a given instance of the random allocation rule. We

explain this technical challenge, and propose a methodology for overcoming this difficulty

(Section 4). More importantly, this fundamental difference implies another important

distinction between these works: while the RE rule is designed to satisfy a property

based on the comparison of categories in terms of the agents’ probabilities assigned to

units under these categories, our solution, the PBR rule (see Section 5.4), satisfies a

property based purely on agents’ welfare (see Definition 9 in Section 5).
2See the extended version of our work (Yılmaz, 2022) for an example clarifying the difference between

the two works.
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The idea of egalitarianism and the principle of maximizing the minimum welfare are stud-

ied in several other contexts of discrete allocation models.3 Recently, another such work

analyzes the incentive schemes designed for plasma donation (Kominers, Pathak, Sönmez,

and Ünver, 2020). Plasma donors are given priorities for prospective plasma therapies of

their loved ones (pay-it-backward), and patients receive priority access for plasma therapy

in exchange for a pledge to donate her own plasma in the near future (pay-it-forward).4

The authors also design a mechanism, plasma pooling procedure, which guarantees an

egalitarian distribution of plasma therapy by making non-prioritized patients’ welfare as

equal as possible across different blood types within efficiency constraint.5

2 Model

There is a set of agents I and a set of reserve categories C. For each c ∈ C, qc
identical units are reserved, and there is a weak priority order πc over I.6 The strict

and indifference parts of πc are denoted by πPc and πIc , respectively. For each c, the set

of agents in the k−th indifference class of πc is Iπc(k) such that for k′ > k′′, i ∈ Iπc(k′)

and j ∈ Iπc(k′′) imply j πPc i. The set of agents in the first k indifference classes is denoted

by UCSπc(k), thus, UCSπc(k) =
k⋃

k′=1

Iπc(k′).

A (rationing) problem is a tuple R = (I, C, (πc)c∈C, (qc)c∈C). Let R denote the set of

all problems. We consider a setting where units are assigned to agents probabilistically
3See Bogolomania and Moulin (2004), Roth, Sönmez, and Ünver (2005) and Yılmaz (2011).
4A different health care setting where similar incentive schemes are analyzed is a kidney exchange

model where compatible pairs are incentivized to participate in kidney exchange by insuring their patients
against future renal failure via increased priority in the deceased-donor queue (Sönmez, Ünver, and
Yenmez, 2020).

5This method is also based on graph theoretical ideas and in particular, on parametric flows (see also
Katta and Sethuraman (2006)).

6The contribution of our model is not the assumption of a general domain of priority orders. Even
under strict priority orders, the main analytical and conceptual challenges remain and our analysis is still a
novel approach. Nevertheless, the assumption of weak priority orders adds another challenging analytical
component to our work. Also, weak priority orders become relevant for some of the applications we
consider in Section 6.
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such that for each R ∈ R, the probability with which an agent is assigned a unit is at

most one and for each c ∈ C, at most qc units are assigned to agents.

Definition 1. Given a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation is

a stochastic |I| × |C| matrix Z where for each i and c, zic is the probability with which

agent i is assigned one unit from category c such that

i. for each i ∈ I,
∑

c∈C zic ≤ 1,

ii. for each c ∈ C,
∑

i∈I zic ≤ qc.

Let Z(R) denote the set of all random allocations for a problem R, and Z =
⋃
R∈RZ(R)

the set of all random allocations. A rule is a mapping ϕ : R → Z such that for each

problem R, ϕ(R) ∈ Z(R).

Since all units are identical, only the probability of receiving a unit is relevant for agents,

not the specific reserve categories through which they are (randomly) assigned a unit.

Let R = (I, C, (πc)c∈C, (qc)c∈C) be a problem and Z ∈ Z(R) a random allocation. The

utility of agent i is given by uZ(i) =
∑

c∈C zic. The vector uZ = (uZ(i))i∈I ∈ R|I| is the

utility profile. We also say that a utility profile u is generated by a random allocation Z

if u = uZ . Random allocations Z and Z ′ are welfare equivalent if uZ = uZ′ . Similarly,

rules ϕ and ϕ′ are welfare equivalent if for each problem R, random allocations ϕ(R)

and ϕ′(R) are welfare equivalent.

3 Axioms

There are three indispensable requirements: (1) Resources should not be wasted (effi-

ciency), (2) each agent’s utility should be at least as the utility guaranteed to them by a

single category (individual rationality), and (3) an agent can be assigned a unit under a

category only if each agent with a strictly higher priority for that category is assigned a

unit with probability one (respecting priorities).
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3.1 Efficiency

The first axiom states that no unit should be wasted. If there are agents demanding a

unit and that unit is available, then it should not remain as unassigned.

Definition 2. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R)

is non-wasteful, if for any c ∈ C,

∑
i∈I

zic < qc =⇒ for each i ∈ I,
∑
c′∈C

zic′ = 1.

A rule ϕ is non-wasteful if for any problem R, random allocation ϕ(R) is non-wasteful.

The only case for a unit remaining (partially) unassigned under non-wastefulness is when

each agent is assigned a unit with probability one. For expositional simplicity, we exclude

these cases: A problem is non-trivial, if it is not possible to assign each agent a unit.

We assume that each problem in R is non-trivial.7 Clearly, non-wastefulness and non-

triviality together imply that Condition (ii) of Definiton 1 holds with equality.

3.2 Individual rationality

Given a problem R = (I, C, (πc)c∈C, (qc)c∈C), let Rc = (I, {c}, πc, qc) denote the associated

single-category rationing problem. Let kc be such that there are sufficient number

of units under category c for the agents in the first kc indifferent classes but not for the

agents in the first kc + 1 indifference classes.

The priority rule ρ maps each single-category rationing problem Rc into an |I|-vector

and for each i ∈ I, it specifies the share of i at category c, denoted by ρi(R
c). The

priority rule allocates the units under category c sequentially by respecting the priority

order πc: the first |Iπc(1)| units are assigned to the agents in Iπc(1), the next |Iπc(2)|
7There is no loss of generality in assuming non-triviality : the definitions and results hold also for

trivial problems.
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units are assigned to the agents in Iπc(2), so on, until all units are assigned such that in

Step kc+1, the number of remaining units (if any), that is, qc−
kc∑
k=1

|Iπc(k)|, is assigned to

the agents in Iπc(kc + 1) with equal probability. Thus, each agent in the first kc priority

classes is assigned a unit with probability one; agents in the (kc + 1)−st priority class

share the remaining units8 equally among themselves and the remaining agents are not

assigned a positive share. The priority rule ρ is formally defined as follows:

ρi(R
c) =



1 if i ∈
kc⋃
k=1

Iπc(k)

qc−
kc∑
k=1
|Iπc (k)|

|Iπc (kc+1)| if i ∈ Iπc(kc + 1)

0 otherwise

We consider an agents’ share at category c given by the priority rule as their minimum

utility.

Definition 3. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R)

is individually rational, if for any c, and i ∈ Iπc, uZ(i) ≥ ρi(R
c). A rule ϕ is individ-

ually rational if for any problem R, random allocation ϕ(R) is individually rational.

Individiual rationality implies that the utility of agent i is greater than or equal to

max
c∈C

ρi(R
c). (1)

We call this value as the initial reservation value of agent i and denote it by v0
i . The

initial reservation profile is v0 = (v0
i )i∈I .

Remark 1. While it is natural to consider agents’ share at a single category as the least

that they should receive (and that is what we assume in our theoretical analysis in Sec-

tions 4 and 5), some contexts may require defining these rights differently.9 Since, in
8Note that the number of remaining units may be zero, in which case the agents in this class are not

assigned a positive share.
9See Section 6.1 for such a case.
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this work, individual rationality is relevant only for its implication on the initial reserva-

tion profile, our solutions and theorems hold for any alternative definition of individual

rationality.

Our analysis throughout the paper is based on the simple idea of sequentially updating the

initial reservation profile. Thus, we refer to reservation profiles in general, generically

denoted by v = (vi)i∈I . Although the utility profile uZ under a random allocation Z and

the reservation profile v = (vi)i∈I are mathematically the same type of objects, there is

an important difference between them: While a utility profile represents agents’ utilities

induced by a random allocation, the interpretation of a reservation profile v = (vi)i∈I is

that agent i is guaranteed a utility level at least as much as vi, without any implication

of a specific random allocation and agents’ utilities. A reservation profile v is feasible if

there exists a random allocation Z such that v = uZ .

3.3 Respecting priorities

The third axiom is about priorities: an agent cannot be (probabilistically) assigned a unit

from a category if there is another agent with a strictly higher priority and a utility less

than one.

Definition 4. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R)

respects priorities, if for any i ∈ I, and c ∈ C,

i πPc j and uZ(i) < 1 =⇒ zjc = 0

A rule ϕ respects priorities if for any problem R, random allocation ϕ(R) respects

priorities.
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4 Acceptable random allocations

We deem the axioms stated in Section 3 as indispensable and consider only the rules, which

satisfy these axioms: For any problem R, a random allocation Z ∈ Z(R) is acceptable

if it satisfies non-wastefulness, individually rationality and respects priorities. We denote

the set of acceptable random allocations by Za(R). A rule ϕ is acceptable if for each

problem R, ϕ(R) ∈ Za(R).

Our main goal is (1) to formalize a sensible equity notion in the current context, and

(2) to design and characterize acceptable rule(s) satisfying this notion. Towards this

goal, we first characterize acceptable rules. These rules are based on a procedure of

starting with the initial reservation profile, and then improving (certain) agents’ utilities

by (probabilistically) assigning units simultaneously. This procedure is based on a simple

idea but its design is not straightforward for mainly three difficulties.

First, since agents can receive units from different categories, it is not clear which agents

should have access to a given category at a given instance of improving utilities.

Example 1. (Determination of agents’ access to reserve categories)

Let I= {i, j, k} and C= {c1, c2} such that one unit is reserved for each category. The

priority orders for categories are given below with each set in the table being a priority

class (we use the same type of representation for a problem in all the remaining examples):

πc1 πc2

{i} {i, j}

{k} {k}

Individual rationality implies that i is assigned one unit, and j is assigned at least half

units. A plausible argument is that since j has a higher priority than k, the remaining

half units should be assigned to j, which is an acceptable allocation. On the other hand,
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for each λ ∈ [0, 1
2
], the following random allocation is also acceptable:

Z =

c1 c2

i 1
2

+ λ 1
2
− λ

j 0 1
2

+ λ

k 1
2
− λ 0

In Example 1, since the unit under c2 can also be (probabilistically) assigned to i (along

with the unit under c1), there is room for the unit under c1 to be (probabilistically) as-

signed to k, and there is no reason why k should be excluded from the list of candidates

for c1. This simple example brings about the solution of the first difficulty: in charac-

terizing acceptable allocation rules, agents’ access to categories should be set as broad as

possible and restricted only by the axioms in Section 3.

Definition 5. Let v = (vi)i∈I be a reservation profile. Agent i is eligible for category c

under v if i ∈ Iπc(k) and for each i ∈ UCSπc(k− 1), vi = 1. The set of eligible agents for

category c under v is denoted by Γc(v).

Whenever the first k− 1 priority classes consist of only agents with reservation value one,

all these agents and the agents in the kth priority class are eligible for the corresponding

reserve category.10

Second, there is an exception to eligibility : as the following example demonstrates, eli-

gibility does not always imply that units under a category can be assigned to all of its

eligible agents.

Example 2. (Eligibility does not always imply a positive share.)

Let I= {i, j, k} and C= {c1, c2} such that one unit is reserved for each category. Consider
10In Example 1, i and k are eligible for c1, while i and j are eligible for c2 (note that k is not eligible

for c2).
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the following problem:
πc1 πc2

{i} {j}

{k} {k}

For the reservation profile v = (vi, vj, vk) = (1, 1, 0), all agents are eligible for all cate-

gories. But, any random allocation such that a unit is (probabilistically) assigned to k

does not respect priorities.

In Example 2, individual rationality implies that agents i and j are assigned all units, one

unit each. Thus, they should have ‘exclusive rights’ over the units under c1 and c2.

Let v = (vi)i∈I be a reservation profile. For each i with vi > 0, let C(i, v) denote the

set of reserve categories, for which agent i is eligible under the reservation profile v.

Let C(I, v) =
⋃
i∈I
C(i, v).

Definition 6. Given a reservation profile v = (vi)i∈I, agents in I have exclusive rights

over the set of reserve categories C(I, v) if
∑
i∈I
vi =

∑
c∈C(I,v)

qc.

For a given reservation profile, exclusive rights correspond to binding feasibility constraints

for an underlying random allocation. The following characterization theorem implies that

exclusive rights are the only exceptions to eligibility. We utilize this important insight to

prove the characterization of the acceptable rules (Theorem 2).

Theorem 1. (The Supply-Demand Theorem (Gale, 1957))11

Let v = (vi)i∈I be a reservation profile. There is a random allocation Z such that (i) for

each i ∈ I, uz(i) ≥ vi, and (ii) zic > 0 implies i ∈ Γc(v), if and only if, for each subset I

of agents ∑
i∈I

vi ≤
∑

c ∈ C(I,v)

qc. (2)

11This is a generalization of Hall’s Set Representation Theorem (Hall, 1935), which holds only for
integers.
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Third, the approach of sequentially updating the reservation values requires keeping track

of changes in eligibility : while an agent may not be eligible for a category at a given

reservation profile, as the agents’ reservation values possibly go up, she might be eligible

for it at a different one.

Example 3. (Sequential improvement of agents’ access to reserve categories)

Let I= {i, j, k, l, i1, i2, i3, i4} and C = {c1, c2, c3, c4} such that for each c1 and c3, two units

are reserved, and for each c2 and c4, one unit is reserved. Consider the following problem:

πc1 πc2 πc3 πc4

{i, j, k} {i, k, i1} {l} {j, i2}

{i3, i4} {i3, i4} {i, j, i1} {i4}

For the initial reservation profile v0 = (v0
i , v

0
j , v

0
k, v

0
l , v

0
i1
, v0
i2
, v0
i3
, v0
i4

) = (2
3
, 2

3
, 2

3
, 1, 1

3
, 1

2
, 0, 0),

agents i3 and i4 are not eligible for any category. On the other hand, for the profile v =

(1, 1, 1, 1, 1, 1
2
, 0, 0), agents i3 and i4 are eligible for c1 and c2.

We characterize the set of acceptable random allocations by a sequential allocation proce-

dure: thePriority-Based Sequential Welfare Improvement (PBSWI) Algorithm.

The design relies on careful treatment of the difficulties discussed above. The idea is to

sequentially update agents’ access to reserve categories through the eligibility criterion by

keeping track of exclusive rights.

The PBSWI Class:

Step 0. Let the reservation profile be v0 = (v0
i )i∈I .12

For each n ≥ 1 and the reservation profile vn−1, the following steps are executed.

Step n.1 For each set of agents I with exclusive rights over C(I, vn−1),
12By definition of reservation value, there exists a random allocation Z such that v0 is the utility profile

under Z.
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i. for each i ∈ I, let vni = vn−1
i , and

ii. mark each reserve category in the set C(I, vn−1) as unavailable.

Let An denote the set of available reserve categories.

Step n.2 If An = ∅, then let Z? with uZ? = vn−1 be the outcome. Otherwise, proceed to

Step n.3.

Step n.3 (Welfare improvement) Select a feasible reservation profile vn 6= vn−1 such that

for each i, vni = vn−1
i +λni where λni ∈ [0, 1], and for each i 6∈

⋃
c ∈ An

Γc(v
n−1), λni = 0.

The PBSWI selects a welfare improvement at each step, and it is a class of rules since

each sequence of these selections implies a different random allocation. To define a rule

in the PBSWI class, it is sufficient to specify the selection rule of welfare improve-

ment at Step n.3. (We define such a rule in Section 5.4.) For each problem R =

(I, C, (πc)c∈C, (qc)c∈C), let PBSWI (R) denote the set of all random allocations obtained

by the class PBSWI .

Theorem 2. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z is accept-

able if and only if Z ∈ PBSWI (R).

Proof. See Appendix B

This result provides an insight on how to describe an acceptable random allocation by

means of a sequence of welfare improvement profiles. We use this insight later when we

characterize the set of ‘equitable’ (see Section 5) allocations by means of a unique random

allocation rule (see Section 5.4).
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5 Enhancing equity

Processing reserves sequentially implies uneven treatment of agents in general and two

important questions follow this observation: First, is eliminating uneven treatment of

agents a plausible consideration in the current context? Second, if so, how should it be

formulated?

There are two possibly sensible ideas for the current setting. (1) Equity : Agents’ utilities

are equalized as much as possible through the criterion of Lorenz dominance (egalitarian-

ism). (2) Fairness : If an agent prefers being in the position of another agent, then there

is a justification (based on priorities) for assigning a higher utility to that other agent in

that position (no justified-envy).

Our first observation is that an egalitarian rule does not exist in the current context (The-

orem 3). Moreover, if an egalitarian random allocation exists for some problem, it may

not even treat equals as equal, the most fundamental principle of fairness (Section 5.1).

Thus, egalitarianism is not sensible in the current setting. On the other hand, the sense of

fairness is severely restricted by the constraints of respecting priorities, and no justified-

envy could be vacuous in some situations and quite weak in general (Section 5.2). Given

these negative findings, we formulate and propose a new notion, sequential egalitarian-

ism. This equity axiom is very much in the spirit of egalitarianism. Yet, it is independent

from it, and interestingly, it implies the core axiom of fairness, no justified-envy (Sec-

tion 5.3). Finally, we characterize the rules satisfying sequential egalitarianism in the

class of acceptable rules (Section 5.4).

5.1 Egalitarianism

While respecting priorities captures some sort of fairness by emphasizing priorities, an

independent attribute is equitable access to resources, the standard formulation of which
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is Lorenz dominance. For any vector u ∈ R|I|, let u? be the vector obtained upon re-

arranging the coordinates of u increasingly. Given a problem R = (I, C, (πc)c∈C, (qc)c∈C)

and Z, Z ′ ∈ Z(R), Z Lorenz dominates Z ′ if

for each l = 1, . . . , |I| :
l∑

m=1

((u?Z)m − (u?Z′)m) ≥ 0.

The question of defining equitable access is entangled with the indispensability of the

axioms in Section 3. Fortunately, it can easily be adapted to the current context in the

form of ‘equating utilities as much as possible’.

Definition 7. A random allocation Z ∈ Za(R) is egalitarian if it is Lorenz dominant

in the set Za(R). A random allocation Z ∈ Za(R) is weakly egalitarian if it is

not Lorenz dominated by another allocation in the set Za(R). A rule ϕ is (weakly)

egalitarian if for any problem R, random allocation ϕ(R) is (weakly) egalitarian.

There are two important issues regarding an egalitarian random allocation: First, it turns

out that a Lorenz dominant allocation may not exist in the set of acceptable random

allocations.13

Theorem 3. No rule is egalitarian.

Proof. See Appendix C.

Second, even if an egalitarian random allocation exists for a problem, it does not nec-

essarily ‘treat equals as equal ’, as the following example demonstrates. (Clearly, this

observation holds also for weakly egalitarian allocations.)

Example 4. (An egalitarian random allocation does not necessarily ‘treat equals as equal’.)

Let I= {i, j, i1, i2, j1, j2, k, l} and C= {c1, c2} such that three units are reserved for each
13The impossibility still holds even if we restrict the domain of priority orders (see Appendix C).
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category. Consider the following problem:

πc1 πc2

{i, j} {i, j}

{i1, i2} {j1, j2}

{k, l} {k, l}

Let us first characterize the set of egalitarian random allocations. By individual rational-

ity, (i) agents i and j are assigned a unit each with probability one, (ii) agents i1, i2, j1

and j2 are assigned a unit each with probability at least half. Thus, there are four units

remaining with the constraint (ii). Non-wastefulness and respecting priorities imply that

there are three alternatives for these units:

1. i1, i2, j1, j2 (each with probability one)

2. i1, i2 (each with probability one) and j1, j2, k, l (j1, j2 each with probability at least

half)

3. j1, j2 (each with probability one) and i1, i2, k, l (i1, i2 each with probability at least

half)

The second and third alternatives provide access to a higher number of agents than the first

alternative. Thus, (it is straightforward to check that) an acceptable random allocation is

egalitarian if and only if it generates one of the following utility profiles:

u = (ui, uj, ui1 , ui2 , uj1 , uj2 , uk, ul) = (1, 1, 1, 1,
1

2
,
1

2
,
1

2
,
1

2
),

u′ = (u′i, u
′
j, u
′
i1
, u′i2 , u

′
j1
, u′j2 , u

′
k, u

′
l) = (1, 1,

1

2
,
1

2
, 1, 1,

1

2
,
1

2
).

While it is in general not easy to define ‘equals’ in the current context, in some situations,

it is. In Example 4, agents i and j qualify for both reserve categories and this implies a
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surplus for agents i1 and i2 under c1, and for j1 and j2 under c2. Thus, the claims of these

two groups of agents over the surplus should be treated equally. But, any egalitarian

random allocation, as characterized in Example 4, favours either agents i1 and i2 over

agents j1 and j2, or vice versa. The reason is simple: by granting, say agents i1 and i2, a

unit each, the remaining two units can be (probabilistically) allocated to agents j1, j2, k

and l, instead of allocating four units equally among agents i1, i2, j1 and j2.

5.2 No justified-envy

Let R = (I, C, (πc)c∈C, (qc)c∈C) be a problem and Z ∈ Z(R). For each c, let kc(Z) be such

that for each i ∈ UCSπc(kc(Z)), uZ(i) = 1, and for some j ∈ Iπc(kc(Z) + 1), uZ(j) < 1.

Suppose there exists an agent i with uZ(i) < 1 and a reserve category c such that for each

agent j with a higher priority under c,

1. uZ(j) = 1, and

2. there exists another category c′ such that j ∈ Uπc′ (kc′(Z)− 1).

Thus, Z assigns one unit to each agent, say j, with a higher priority than i under c,

and also for some c′, one unit to each agent in the next lower priority class of any such

agent j. But then, although agent i is in a similar situation, that is, she is in the next

lower priority class under c, she is assigned a lower utility than the agents under other

categories. We argue that in this case, agent i has justified-envy for these agents. The

next axiom eliminates this type of envy.

Definition 8. For a problem R = (I, C, (πc)c∈C, (qc)c∈C), a random allocation Z ∈ Z(R)

satisfies no justified-envy, if for each c ∈ C,

UCSπc(k) ⊆
⋃

c′∈C\{c}

UCSπc′ (kc′(Z)− 1) =⇒ kc(Z) > k.
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A rule ϕ satisfies no justified-envy if for any problem R, random allocation ϕ(R) sat-

isfies no justified-envy.

Given that any random allocation we consider respects priorities, no justified-envy ex-

cludes only certain types of envy, while some other types of envy are not considered as

justified due to the restrictions by respecting priorities.14

5.3 Sequential egalitarianism

As we argued in Section 4, each acceptable random allocation can be described as a simple

procedure of sequential allocation of units to their eligible agents whenever these units

become available. Our approach to equity is to provide equal access to these units for

eligible agents.

Definition 9. A random allocation rule in the class of the PBSWI is sequentially egali-

tarian if, at each step, the selected reservation profile Lorenz dominates any other feasible

reservation profile that can be selected at that step.

The units are allocated based on priorities, and as Theorem 2 demonstrates, at each step,

there is a set of eligible agents who are the candidate receivers of the remaining units.

Sequential egalitarianism requires an equitable access of these units to these agents by

equalizing their updated reservation values as much as possible (through Lorenz domi-

nance) among all possible acceptable reservation profiles. That is, this principle requires

applying the idea of egalitarianism sequentially.

To demonstrate the idea, let us revisit Example 4: At the initial step, only i and j

are eligible for the units under c1 and c2. Sequential egalitarianism requires that their

reservation values are increased equally, and each is assigned one unit. There are still
14We provide the associated examples in the Appendix of the extended version of our work (Yılmaz,

2022).
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four units available and agents i1, i2, j1 and j2 are now eligible. Again, their reservation

values are increased equally, and we obtain an allocation such that each is assigned one

unit. Thus, each agent in {i, j, i1, i2, j1, j2} is assigned one unit. The idea of equal access

to units at each step implies treating agents j1 and j2 equally as i1 and i2, which was not

the case under egalitarianism as demonstrated in Example 4.15

This example also clarifies the logical relationship between the two notions. An egali-

tarian random allocation may not exist, but when it exists it does not imply sequential

egalitarianism. On the other hand, a sequentially egalitarian allocation always exists (see

Section 5.4). Thus, sequential egalitarianism does not imply egalitarianism.

Remark 2. Egalitarianism and sequential egalitarianism are independent properties.

Interestingly, while (as discussed in Section 5.1) egalitarianism does not imply even treat-

ing equal agents equally, sequential egalitarianism implies no justified-envy (the central

fairness concept in the current context).

Proposition 1. Sequential egalitarianism implies no justified-envy.

Proof. See Appendix E.

This logical relationship does not hold between egalitarianism and no justified-envy, and

egalitarianism does not imply no justified-envy :16 Let us reconsider Example 4. Let Z be

an egalitarian random allocation. Then, it generates the utility profile u in that example.

Thus, kc1(Z) = 2 and kc1(Z) = 1. For category c2, UCSπc2 (1) ⊆ UCSπc1 (kc1(Z) − 1) =

UCSπc1 (1). But, since uZ(j1) < 1, kc1(Z) = 1. Thus, agent j1 has justified-envy (similarly,

agent j2 also has justified-envy). Thus, Z dos not satisfy no justified-envy.
15Sequential egalitarianism is not compatible with rules based on a precedence order of reserve cate-

gories, or a priority ordering of agents (see the Appendix of the extended version of the current work
(Yılmaz, 2022)).

16This observation intuitively follows from the insight in Example 4 and the fact treating equals equally
is a weaker notion than no justified-envy. Although it is straightforward to formally define equal treatment
of equals in the current context, we have not provided the definition for brevity. Thus, we need to argue
for why egalitarianism does not imply no justified-envy over an example.
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5.4 The Priority-Based Rawlsian (PBR) rule

Our goal is to incorporate equity (Section 5.3) into the acceptable class and characterize se-

quentially egalitarian rules. The design of our solution, the Priority-Based Rawlsian

(PBR) rule, relies on the Rawlsian principle of maximizing the minimum welfare. Ba-

sically, the utilities of the most disadvantaged agents are increased continuously as long

as the constraints embedded in eligibility and reservation profile are not binding. By

Theorem 2, specifying this Rawlsian improvement process as the welfare improvement

selection rule is sufficient to define the PBR.17

Step n.3 (Welfare improvement selection rule of the PBR)

The agents with the minimum reservation value are selected among agents, who are eligible

for at least one available category. Their reservation values are increased equally up to

the minimum of the following two, while other agents’ reservation values do not change:

• The reservation value of a non-selected agent, who is eligible for at least one available

category.

• The level at which a subset of agents eligible for at least one available category has

exclusive rights over the categories for which they are eligible.

While this selection rule is quite intuitive, the difficulty is to analytically characterize the

execution of its steps. First, when agents are allowed to receive a unit (probabilistically)

at some step of the PBSWI , in general, they can receive it from multiple categories. Thus,

the implication of increasing utilities on feasibility is not clear. Second, at any step, there

are multiple constraints due to (1) eligibility (a set of constraints on who can be assigned

from which categories) and (2) the reservation profile of that step (a set of constraints in

the form of guaranteed probabilities to agents). At some point, some constraints become
17Each acceptable random allocation rule can be described via a welfare improvement selection rule in

Step n.3 of the PBSWI algorithm (see also the discussion in Section 4).
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binding, and the challenge is to track these instances. Thus, we need to analytically

specify the welfare improvement selection rule described above to complete the definition

of the PBR.

Step n.3 (Welfare improvement selection rule of the PBR)

Agent i ∈
⋃

c ∈ An
Γc(v

n−1) is prioritized if, for each j ∈
⋃

c ∈ An
Γc(v

n−1), vn−1
i ≤ vn−1

j .

Let vn−1,1 be the reservation value of prioritized agents. If all agents in
⋃

c ∈ An
Γc(v

n−1)

are prioritized, then let vn−1,2 = 1, otherwise let vn−1,2 be the lowest reservation value

among non-prioritized agents in
⋃

c ∈ An
Γc(v

n−1). Let Bn be the set of all subsets of⋃
c ∈ An

Γc(v
n−1) with at least one prioritized agent. Let

λ? = min
I∈Bn

∑
c ∈ C(I,vn−1)

qc −
∑
i∈I
vn−1
i

|{i ∈ I : i is prioritized}|
.

For each i ∈
⋃
c∈An

Γc(v
n−1), let

vni =

 min{vn−1,1 + λ?, vn−1,2} if i is prioritized

vn−1
i otherwise

We are now ready to present our main theorem, which states that this specific improve-

ment process characterizes sequentially egalitarian rules.

Theorem 4. A rule ϕ is sequentially egalitarian if and only if ϕ is welfare-equivalent to

the PBR.

Proof. See Section D.

The proof of this characterization result relies highly on exploiting parametric networks

and an extension of the Max-Flow Min-Cut Theorem (Ford and Fulkerson, 1956) (see

Appendix A).
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6 Applications

6.1 Rationing health care units

6.1.1 A weighted lottery policy

The Department of Health, Pennysylvania has been recently implementing a weighted

lottery mechanism for the allocation of medications to treat COVID-19 (Pennsylvania

DH, 2020). As outlined in the “Pandemic Guidelines for the Interim Pennsylvania Crisis

Standards of Care”, this framework is designed such that “all patients who meet clinical

eligibility criteria should have a chance to receive treatment”. In the preliminary step, the

number of available courses of the COVID-19 therapy is determined and the number of

eligible patients (for which the drug is allotted) is estimated. By dividing the first number

by the second, the chances for each eligible “general community” patient to receive the

drug is determined. In the second step, patients’ characteristics relevant to the weighted

lottery are determined to adjust the general community chances found in the preliminary

step. These adjustments are done according to the formula in Table 1. Finally, each

patient enters into the lottery constructed by the probability with which she receives

treatment. Basically, a lottery number between 1 and 100 is randomly selected for each

eligible patient. If the lottery chances for the patient is x out of 100 and the patient’s

randomly drawn lottery number is less than or equal to x, they should be offered the

scarce drug. If the lottery number is greater than x, then they should not be offered the

scarce drug.

There are two issues with this mechanism. First, the implementation of the lottery (i.e.

single patient-single lottery) does not imply a probability distribution. Second, since

these probabilities are fixed and do not depend on the number of patients in each group,

target ratios between the weights of each pair of patient groups (Table 1) are not feasible

in general.
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Group Chances to receive treatment

Disadvantaged community member (c1) 1.25 x (general community chances)
Essential worker (c2) 1.25 x (general community chances)
Death likely within 1 year (c3) 0.5 x (general community chances)
Disadvantaged community member + Essen-
tial worker

1.5 x (general community chances)

Disadvantaged community member + death
likely within 1 year

0.75 x (general community chances)

Essential worker + death likely within 1 year 0.75 x (general community chances)

Table 1: Probabilities in the weighted lottery

The goal of creating meaningful access to patients by randomization is consistent with

the motivation of sequential egalitarianism and the PBR. By designing these categories

(as specified in Table 1) and the weak priority orders appropriately, we can apply the

PBR rule (1) to create sequentially egalitarian access for patients (Theorem 4), and (2) to

remove analytical inconsistencies explained above. For an appropriate design of the reserve

structure, this rule implies that each patient is assigned a unit with a positive probability

(as stated in the Pandemic Guideline above).

Alternatively, a different rule in the PBSWI class can be specified for this setting to

achieve targeted ratios between the weights in an analytically consistent way. First, reserve

categories are modeled with dichotomous indifference classes: for each category, the first

indifference class is the set of all patients belonging to that category and the second one is

the rest of the patients. Since our model allows for weak priority orders, this construction

is clearly within our framework.

Second, targeted ratios between the weights are specified: The weights defined in Table 1

suggest that (1) each disadvantaged community member who is an essential worker should

have a higher utility than each utility value obtained by the priority rule applied to these

single-category problems, (2) each disadvantaged community member or essential worker

with death likely within one year should have a lower (higher) utility than the utility value
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obtained by the priority rule applied to disadvantaged community member or essential

worker category (death likely within one year category). A (weighted) average of the

utilities applies to patients belonging to these multiple categories. Thus, there is a target

for relative utilities of patients belonging to two groups.18 Let uk and uk,l represent the

utility of a patient belonging to group ck only, and to groups ck and cl, respectively.

Given that u1 = u2 > u3, the target utility ratios are defined such that u1,2 = αu1

and u1,3 = u2,3 = w(u1, u3), where α > 1 and w(u1, u3) is a convex combination of u1

and u3.

Step 0. Let C = {c1, c2, c3} be the patient groups (i.e. categories) in Table 1. For

each c ∈ C, and for each patient i belonging to group c, the weak order πc is

constructed such that i ∈ Iπc(1). For each patient group, a certain number of units

is reserved such that qc1
|Iπc1 (1)| =

qc2
|Iπc2 (1)| >

qc3
|Iπc3 (1)| .

19

Step 1 For each patient i, let the initial reservation profile v0
i = min

c∈{c′:i∈Iπc′ (1)}
ρi(R

c).20

Step 2 The units are allocated by the PBSWI algorithm with the following welfare

improvement selection rule: If there are eligible patients for at least one available

category, who belong to two groups and have a reservation value lower than the

targeted ratio, then these patients are selected ; otherwise, all patients who are

eligible for at least one available category are selected. The reservation value of

selected patients are increased equally up to the minimum of the following two:

• The level at which a subset of patients eligible for at least one available reserve

category has exclusive rights over the categories for which they are eligible.
18We assume that there is no patient belonging to all three groups (see Table 1).
19Since the units and the number of patients are integers, we can only impose qc1

|Iπc1 (1)|
≈ qc2
|Iπc2 (1)|

. But,
for the ease of notation, we assume that it is possible to reserve units such that this approximation holds
with equality. Also, these numbers of units reserved for each group can be determined with respect to
some target ratio between u1 and u3.

20This specification of initial reservation profile is due to the fact that individual rationality in the
current setting implies that each patient should receive a share at least as the minimum of their shares
given by the priority rule applied to all category groups they belong to. Note that this is different than
the individual rationality constraint given by Equation 1 in Section 3.2. Also, see Remark 1 in Section 3.2
for the generalization of Definition 3.
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• The level at which the targeted ratio is achieved for a patient who had a

reservation value lower than the targeted ratio.

The above rule selects a random allocation with target utility ratios within the set of

acceptable random allocations, whenever it is feasible. We do not claim that our rule is

the only one: there are other ways to achieve target utility ratios for this very special case.

Our point here is that, by Theorem 2, our approach is robust in delivering the desired

properties for different settings.

6.1.2 Soft reserves

Reserve systems have been adopted in several settings with rationing of medical re-

sources.21 These systems are generally such that for each category c ∈ C, a benefi-

ciary group is designated. When the beneficiary group is exclusive and a strict subset

of patients, the associated category is referred to as a preferential treatment category.

There is also an unreserved category such that its beneficiary group is the set of all

patients. A particular approach in this setting is hard reserves: A patient is qualified to

receive a medical unit from a category if and only if they are in the beneficiary group of

that category. Hard reserves are in general incompatible with efficiency (see Example 2

in Pathak, Sönmez, Ünver, and Yenmez (2021)). A more flexible interpretation of reserve

categories is a soft reserve system, where all individuals are qualified for all categories,

that is, for each c ∈ C, all individuals are ranked under priority order πc. In particular,

a soft reserve system is obtained by applying the following to each preferential treatment

category c: (1) If there is an unreserved category as well, πc is obtained by ranking each

non-beneficiary patient strictly below the beneficiary group and by preserving the ranking

of non-beneficiary patients under the unreserved category. (2) If there does not exist an
21After the circulation of Pathak, Sönmez, Ünver, and Yenmez (2021) and the authors’ interaction

with public health officials, the National Academies of Sciences, Engineering, and Medicine (NASEM)
started to formulate recommendations on the fair allocation of COVID-19 vaccines. Later, Tennessee,
Massachusetts and New Hampshire announced their plans to adopt a reserve system (Tennessee DH,
2020; Massachusetts DPH, 2020; New Hampshire DHHS, 2021).
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unreserved category, then all the non-beneficiary patients are ranked as an indifference

class just below the last beneficiary patient in the associated category. While our model

applies clearly to both cases, we emphasize that the second case necessarily implies a

weak order of priorities under reserve categories, the generality of which is provided by

our work.

A plausible requirement for the soft reserves setting is to maximally allocate the reserves

to target beneficiaries: maximal in beneficiary (Pathak, Sönmez, Ünver, and Yenmez,

2021). It is straightforward to see that the PBR rule is not maximal in beneficiary : At

each step, since the rule treats all eligible patients equally and soft reserves setting is such

that all patients are ranked under a category and the set of eligible patients may contain

both beneficiary and non-beneficiary patients, it may not prioritize target beneficiaries

over the others. Actually, instead of maximizing the number of beneficiaries, the PBR rule

maximizes (at each step of the PBR) the number of eligible patients receiving treatment

(see Remark 3 in Appendix D). We analyze equitable allocation rules within the set of

maximal in beneficiary allocations in a separate work (Doğan and Yılmaz, 2022).

6.2 Affirmative action in school choice

Affirmative action schemes are widespread in school admissions around the world. Typ-

ically, a fraction of slots is reserved for disadvantaged students and the rest is assigned

based on merit. A compelling example is Chicago’s place-based affirmative action at the

K-12 level: Schools fill 40% of their slots with the applicants having the highest com-

posite scores22 and the remaining 60% of slots by dividing the slots equally across four

tiers based on the socioeconomic characteristics of applicants’ neighborhoods. For each

socioeconomic tier, students in that corresponding group are prioritized over all other

students such that students both inside and outside the group are ordered by composite
22The composite score is the equally-weighted combination of the admission test score, the applicant’s

7th grade GPA, and the standardized test score.
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score. For the merit tier, all students are ordered by composite score. This setting fits

perfectly into our model, and our results apply directly.23

One of the themes in this affirmative action scheme is to eliminate explicit targeting of

applicants by differentiating across tiers, that is tier-blindness (Dur, Pathak, and Sönmez,

2020). Let T denote the socioeconomic tiers and m the merit tier. Thus, C = T ∪ {m}.

Also, any two socioeconomic tiers t, t′ ∈ T , qt = qt′ . Also, for each c ∈ C, we fix πc. A

merit-preserving bijection θ : C → C is a one-to-one and onto function where θ(m) =

m.

Definition 10. A random allocation rule ϕ is tier-blind if for each set of students I, for

each set of tiers C and for each merit-preserving bijection θ, the random allocations Z =

ϕ(I, C, (πc)c∈C, (qc)c∈C) and Z ′ = ϕ(I, C, (πθ(c))c∈C, (qθ(c))c∈C) are such that

uZ = uZ′ . (3)

Tier-blindness implies that relabeling tiers does not change the probability with which

a student is assigned a seat. Since the PBR rule is based on the set of eligible patients

at each step, and that structure is independent from the labels of the tiers, the following

observation follows immediately.

Observation 1. The PBR rule is tier-blind.

23Under the assumption that for each socioeconomic tier, the number of students in that tier is more
than the sum of all slots, this setting becomes a special case of our model since the students in socioe-
conomic tiers are mutually exclusive. It is easy to show that the independence of egalitarianism and
sequential egalitarianism prevails and the PBR is not egalitarian, even for this special case.
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Appendix A Maximum flow problem: Preliminaries

A directed graph, or digraph is a pair G = (V,A), consisting of a set of vertices V

and a set of ordered pairs of vertices, A, called arcs. For a set of vertices V ′ ⊆ V ,

the set δout(V ′) is the set of all outgoing arcs; that is, the arcs (x, y) such that x ∈ V ′

and y 6∈ V ′. Similarly, the set δin(V ′) is the set of all incoming arcs; that is, the arcs (x, y)

such that x 6∈ V ′ and y ∈ V ′. Let l, k : A→ <+ be two functions, which associate each arc

a = (x, y) of G with non-negative real numbers l(x, y) and k(x, y) called the lower-bound

and capacity of the arc (x, y), respectively, such that for each arc (x, y), l(x, y) ≤ k(x, y).

For a set of arcs A′ ⊆ A, l(A′) =
∑

a∈A′ l(a) and k(A′) =
∑

a∈A′ k(a).

A network (V,A, l, k) is a digraph with lower-bound and capacity functions. A supply-

demand network is a network (V,A, l, k) with V = V1 ∪ V2 ∪ {s, t}, where V1 and V2

are the set of demand and supply vertices, respectively, s the source vertex, and t the

sink vertex such that there is an arc from the source vertex into each demand vertex,

an arc from each supply vertex into the sink vertex, and all the other arcs are from

demand vertices into supply vertices. (An arc from a demand vertex x ∈ V1 into a supply

vertex y ∈ V2 is interpreted that x demands units from y.)

A flow in a supply-demand network (V,A, l, k) is a function f : A → <+, satisfying the

following properties:

(i)
∑

x f(x, y) =
∑

z f(y, z) for each y in V1 ∪ V2 and,

(ii) l(x, y) ≤ f(x, y) ≤ k(x, y) for each (x, y) in A.

The value of f, denoted by v(f) is defined as
∑

x f(s, x). Given a supply-demand

network (V,A, l, k), the maximum flow problem is to find the maximum value of flow.

The solution for this problem is characterized by the following theorem (Schrijver, 2003):

Theorem 5. Let (V,A, l, k) be a supply-demand network such that there exists a flow f .
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Then, the maximum value of a flow is equal to the minimum value of

k(δout(V ′))− l(δin(V ′))

taken over V ′ ⊆ V with s ∈ V ′ and t 6∈ V ′.24

Appendix B Proof of Theorem 2

We prove that (1) each random allocation given by the PBSWI class is acceptable (Lemma 1)

and (2) each acceptable random allocation Z can be obtained by a sequence of selections

of reservation values in the PBSWI (Lemma 3).

Lemma 1. Let R = (I, C, (πc)c∈C, (qc)c∈C) be a problem. If a random allocation Z is an

outcome of the PBSWI (R), then it is acceptable.

Proof. Let N be the last step of the PBSWI . By definition of the PBSWI , the al-

gorithm ends at the end of Step N.2, and the reservation values are not updated at

Step N . Thus, the outcome of the algorithm is vN−1. Let Z? be a random allocation such

that uZ? = vN−1.

Z? is non-wasteful. Suppose Z? is not non-wasteful. Then, by Definition 2, there exists a

reserve category c and an agent i, such that

∑
j∈I

z?jc < qc and vN−1
i = uZ?(i) =

∑
c′∈C

z?ic′ < 1. (4)

Since uZ?(i) < 1, by definition of Step N.2, Category c is unavailable at this step. Thus,

there exists a set of agents I with exclusive rights over the set C(I, vN−1) with c ∈
24This theorem is an extension of the well-known Max-flow Min-cut Theorem (Ford and Fulkerson,

1956).
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C(I, vN−1) (note that agent i is not necessarily in the set Γc(v
N−1)) such that

∑
j∈I

vN−1
j =

∑
c′∈C(I,vN−1)

q′c (5)

By definition of the set C(I, vN−1), each j ∈ I with vN−1
j > 0 is not eligible for cate-

gories out of C(I, vN−1). Thus, for each j ∈ I, vN−1
j =

∑
c′∈C(I,vN−1) z

?
jc′ . By rewriting

Condition (5), we obtain

∑
c′∈C(I,vN−1)

qc′ =
∑
j∈I

∑
c′∈C(I,vN−1)

z?jc′ =
∑

c′∈C(I,vN−1)

∑
j∈I

z?jc′ (6)

Since, by definition of the PBSWI , Z? is a random allocation, by Property (ii) of a

random allocation (Definition 1), for each c′ ∈ C(I, vN−1),

∑
j∈I

z?jc′ ≤ qc′ . (7)

Thus, Conditions (6) and (7) together imply that the weak inequality in Condition (7)

holds with equality. By definition of a random allocation, this also implies that for

each c′ ∈ C(I, vN−1),
∑

j∈I z
?
jc′ = qc′ . Since c ∈ C(I, vN−1), this contradicts with (4).

Z? is individually rational. By construction of the initial reservation profile v0, Z0 is in-

dividually rational. Since, at each step, utility increases non-negatively for each agent, for

each n ≥ 1, vn ≥ vn−1. Finally, for each 0 ≤ n ≤ N − 1, by definition of Step n.3, there

exists an underlying random allocation Zn such that that uZn = vn. Thus, Z? = ZN−1 is

individually rational.

Z? respects priorities. Let i ∈ I, and c ∈ C such that i πPc j and uZ?(i) < 1. At

Step N , since there exists at least one agent with a utility less than one, by definition of

Step N.2, Category c must be unavailable at the end of the algorithm. Since uZ?(i) < 1,
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and i πPc j, by definition of eligibility, agent j is not eligible for c. Moreover, by definition

of eligibility, for each c and each n ≥ 1, Γc(v
n) ⊇ Γc(v

n−1). This implies that j has not

been eligible at any step before N . Thus, as Z? underlies vN−1 and vN−1
j is the sum of

agent j’s shares at categories for which she is eligible, z?jc = 0.

Lemma 2. Let vn−1 be a reservation profile with an underlying random allocation Zn−1.

If I1 and I2 have exclusive rights over C(I1, v
n−1) and C(I2, v

n−1), respectively, then I1∪I2

has exclusive rights over C(I1, v
n−1) ∪ C(I2, v

n−1).

Proof. Let I1 and I2 have exclusive rights over C(I1, v
n−1) and C(I2, v

n−1), respectively.

There are two cases.

Case 1: C(I1, v
n−1) ∩ C(I2, v

n−1) = ∅.

By definition of eligibility, we have I1 ∩ I2 = ∅. By definition of exclusive rights,

∑
i∈I1

vi =
∑

c∈C(I1,vn−1)

qc and
∑
i∈I2

vi =
∑

c∈C(I2,vn−1)

qc. (8)

Since I1 ∩ I2 = ∅, these two equalities together imply,
∑

i∈I1∪I2
vi =

∑
c∈C(I1∪I2,vn−1)

qc. Thus,

the set I1 ∪ I2 has exclusive rights over the set of reserve categories C(I1 ∪ I2, v
n−1).

Case 2: C(I1, v
n−1) ∩ C(I2, v

n−1) 6= ∅.

Suppose I1∩I2 = ∅. (Note that equalities in (8) hold in this case as well.) Clearly,
∑

i∈I1∪I2
vi =∑

i∈I1
vi +

∑
i∈I2

vi. Moreover, by definition of eligibility, C(I1 ∪ I2, v
n−1) = C(I1, v

n−1) ∪

C(I2, v
n−1). Since C(I1, v

n−1) ∩ C(I2, v
n−1) 6= ∅, this implies that

∑
c∈C(I1∪I2,vn−1)

qc <
∑

c∈C(I1,vn−1)

qc +
∑

c∈C(I2,vn−1)

qc.
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This, together with equalities in (8), imply

∑
c∈C(I1∪I2,vn−1)

qc <
∑

i∈I1∪I2

vi.

Then, Condition 2 in Theorem 1 does not hold for the set I1 ∪ I2. Thus, by Theorem 1,

there does not exist a random allocation underlying vn−1, which is a contradiction. Thus,

we have I1 ∩ I2 6= ∅. Now consider the sets I1 ∪ I2 and C(I1∪I2, v
n−1). Since there exists

a random allocation Zn−1 underlying vn−1, by Theorem 1,

∑
c∈C(I1∪I2,vn−1)

qc ≥
∑

i∈I1∪I2

vi. (9)

Suppose Inequality (9) is strict. First, note that

C(I1 ∩ I2, v
n−1) ⊆ C(I1, v

n−1) ∩ C(I2, v
n−1). (10)

The inclusion follows from the definition of eligibility, and since different agents can be

eligible for the same reserve category, these two sets do not necessarily coincide. We can

rewrite Inequality (9) as follows:

∑
c∈C(I1,vn−1)\C(I2,vn−1)

qc+
∑

c∈C(I2,vn−1)\C(I1,vn−1)

qc+
∑

c∈C(I1,vn−1)∩C(I2,vn−1)

qc >
∑

i∈I1\I2

vi+
∑

i∈I2\I1

vi+
∑

i∈I1∩I2

vi.

Together with equalities in (8), this implies that

∑
c∈C(I1,vn−1)∩C(I2,vn−1)

qc <
∑

i∈I1∩I2

vi. (11)

Inequality (11), together with Inclusion (10), implies

∑
c∈C(I1∩I2,vn−1)

qc <
∑

i∈I1∩I2

vi. (12)
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This violates Condition 2 in Theorem 1. Thus, by Theorem 1, there does not exist a

random allocation underlying vn−1, which is a contradiction. Thus, Inequality (9) cannot

be strict. Thus, by definition of exclusive rights, the set of agents I1 ∪ I2 has exclusive

rights over the set of reserve categories C(I1 ∪ I2, v
n−1).

Lemma 3. Each acceptable random allocation is obtained as an outcome by a member of

the PBSWI class.

Proof. Let Z be an acceptable random allocation and v = uZ . Since Z is acceptable (and

thus individually rational), v ≥ v0. First suppose v = v0. This is possible only if the units

under each category is allocated to that category’s highest ranked agents with respect

to the priority rule ρ (see Section 3.2) and each agent receives shares from at most one

category. Since Z is non-wasteful, all units are allocated and Z is the unique acceptable

random allocation. Thus, this case is trivial.

We prove by induction that there is a sequence of reservation profiles vn for n = 1

to N , each obtained by a welfare improvement from vn−1 as defined by Step n.3 of the

PBSWI , and vN−1 = v. Let n ≥ 1. Our inductive hypothesis is that there exists a

random allocation Zn−1 underlying vn−1, the reservation profile vn−1 is obtained through

a sequence of welfare improvements and v ≥ vn−1. (We have already shown that the

initial step holds since v ≥ v0.) Suppose that v 6= vn−1. We prove that there exists a

welfare improvement for some eligible agents to obtain a reservation profle vn from vn−1

such that v ≥ vn. This completes the proof.

Suppose An = ∅. Since each reserve category c is not available, there is a set of agents

having exclusive rights over a set of categories including c. Thus, there is a collection of sets

of agents, I1, . . . , Im having exclusive rights over C(I1, v
n−1), . . . , C(Im, v

n−1), respectively,

such that the union of the sets C(I1, v
n−1), . . . , C(Im, v

n−1) is C. By Lemma 2,
m⋃
k=1

Ik has

exclusive rights over C. But then, all units are assigned to agents with exclusive rights

under vn−1. Thus,
∑
i∈I

vn−1
i =

∑
c∈C

qc. Since v ≥ vn−1 and vi > vn−1
i for some agent i,
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this implies that there exists a reserve category c with
∑
i∈I

zic > qc. But, this violates

Property (ii) of Definition 1 and contradicts Z being a random allocation.

Suppose An 6= ∅. Let I be the subset of agents such that i ∈ I if and only if vi = vn−1
i .

We claim that there exists a reserve category c ∈ An such that Γc(v
n−1)\ I 6= ∅. Suppose,

on the contrary, that for each c′ ∈ An, Γc′(v
n−1) ⊆ I. Let c be such a reserve category. By

non-triviality assumption (see Section 2), it is not possible that for each j ∈ I, vn−1
j = 1.

By definition of eligibility, this implies that there exists an agent i ∈ Γc(v
n−1) with vn−1

i =

vi < 1. Also, each agent in the indifference class including agent i is in the set Γc(v
n−1).

Since Γc(v
n−1) ⊆ I, that is, for each j ∈ Γc(v

n−1), vn−1
j = vj, this implies that there exists

an indifference class such that both vn−1 and v coincide for the agents in this and higher

priority classes. Then, since Z is acceptable, any agent with a positive utility in a lower

priority class cannot be assigned a unit from c with a positive probability, which would

violate priorities. Moreover, vn−1 is obtained through a sequence of steps of the PBSWI

algorithm. Thus, for each reserve category c, there is an integer k(c) such that each agent

in the first k(c) priority classes has a reservation value one and there exists an agent in

the next priority class with a reservation value less than one under vn−1. Also, v 6= vn−1

and v ≥ vn−1. Thus, since Z is acceptable, for some c 6∈ An, it is possible to increase the

utility of an agent in Γc(v
n−1). But, by definition of exclusive rights, for each c 6∈ An,

and i ∈ Γc(v
n−1), and for each λ > 0, there does not exist a random allocation generating

the utility profile (vn−1
−i , v

n−1
i + λ), which is a contradiction.

Thus, there exists a reserve category c ∈ An such that Γc(v
n−1) \ I 6= ∅. By definition

of eligibility, there exists an agent i ∈ Γc(v
n−1) \ I such that vn−1

i < 1 and λ > 0

with vni = vn−1
i +λ underlying a random allocation. Thus, there is a welfare improvement

to obtain vn from vn−1 such that v ≥ vn ≥ vn−1. This completes the inductive step.
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Appendix C Proof of Theorem 3

Let C= {c1, c2, c3, c4, c5} each category with capacity one and I= {i, j, k, i1, i2, j1, j2, j3}.

The (strict) priority orders for categories are given below:

πc1 πc2 πc3 πc4 πc5

i i i i i

j j j j j

k k i1 i1 j1

j1 j2 i2 i2 i2

i1 j3 j1 j2 j3

j2 j1 k k k

j3 i1 j3 j1 j2

i2 i2 j2 j3 i1

Let R be the problem above and Z ∈ Za(R). Also, let

uZ = (uZ(i), uZ(j), uZ(k), uZ(i1), uZ(i2), uZ(j1), uZ(j2), uZ(j3))

By individual rationality, uZ(i) = 1, and by non-wastefulness and respecting priorities

together, uZ(j) = 1. Thus, there are three units remaining for agents k, i1, i2, j1, j2 and j3.

Suppose

uZ(k), uZ(i1), uZ(j1) < 1. (13)

Then, by respecting priorities, only agents i, j, k are assigned positive probabilities for

the units under c1, c2, only agents i, j, i1 are assigned positive probabilities for the units

under c3, c4, and only agents i, j, j1 are assigned positive probabilities for the unit un-

der c5. But, then agents receive in total less than five units and this contradicts with

non-wastefulness. Thus, at least one of the agents in {k, i1, j1} receives one unit under Z.

By considering all possible cases, we obtain the set Za(R).
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Case 1: uZ(k) = uZ(i1) = uZ(j1) = 1

There is only one utility profile satisfying this condition: agents i, j, k, i1 and j1 receive

one unit and the other agents are not assigned a unit with positive probability. It is

straightforward to check that there exists a random allocation, say Z1, generating this

utility profile. Thus, uZ1 = (1, 1, 1, 1, 0, 1, 0, 0).

Case 2: uZ(k) = 1; uZ(i1), uZ(j1) < 1

Since agents i, j and k receive one unit each, there are two units to be assigned to the

rest of the agents. Since uZ(i1), uZ(j1) < 1, and Z respects priorities, either (1) these

two units are to be assigned to agents i1, j1 and j2, or (2) j2 is assigned one unit and

the remaining one unit is assigned to agents i1 and j1, or (3) j2 and j3 are assigned one

unit each. While there is no acceptable random allocation generating the utility profile

in (3), there are random allocations generating the utility profiles in (1) and (2). Among

all possible random allocations generating the utility profiles in (1), random allocation,

say Z2, such that uZ2 = (1, 1, 1, 2
3
, 0, 2

3
, 2

3
, 0) is Lorenz dominant. Among all possible ran-

dom allocations generating the utility profiles in (2), random allocation, say Z3, such

that uZ3 = (1, 1, 1, 1
2
, 0, 1

2
, 1, 0) is Lorenz dominant.

Case 3: uZ(k) = uZ(i1) = 1; uZ(j1) < 1

There is one unit remaining for agents j1, j2 and i2. Among all possible random al-

locations generating these utility profiles, random allocation, say Z4, such that uZ4 =

(1, 1, 1, 1, 1
3
, 1

3
, 1

3
, 0) is Lorenz dominant.

Case 4: uZ(k) = uZ(j1) = 1; uZ(i1) < 1

There is one unit remaining for agents i1, i2 and j2. Among all possible random al-

locations generating these utility profiles, random allocation, say Z5, such that uZ5 =
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(1, 1, 1, 1
3
, 1

3
, 1, 1

3
, 0) is Lorenz dominant.

Case 5: uZ(k) < 1; uZ(i1) = uZ(j1) = 1

There is one unit remaining for agents k and i2. Among all possible random allo-

cations generating these utility profiles, random allocation, say Z6, such that uZ6 =

(1, 1, 1
2
, 1, 1

2
, 1, 0, 0) is Lorenz dominant.

Case 6: uZ(k), uZ(i1) < 1; uZ(j1) = 1

There are two units remaining for agents k, i1 and i2. Among all possible random al-

locations generating these utility profiles, random allocation, say Z7, such that uZ7 =

(1, 1, 2
3
, 2

3
, 2

3
, 1, 0, 0) is Lorenz dominant.

Case 7: uZ(k), uZ(j1) < 1; uZ(i1) = 1

There are two units remaining for agents k, j1 and i2. Among all possible random al-

locations generating these utility profiles, random allocation, say Z8, such that uZ8 =

(1, 1, 2
3
, 1, 2

3
, 2

3
, 0, 0) is Lorenz dominant.

Since Lorenz domination is a transitive binary relation, it is enough to consider the random

allocations Z1 to Z8 and find the random allocation Lorenz dominating others. Note that

(i) Z2, Z7 and Z8 are Lorenz indifferent, (ii) Z3 and Z6 are Lorenz indifferent, and (iii) Z4

and Z5 are Lorenz indifferent. Thus, it is enough to compare Z1, Z2, Z3 and Z4. But,

while Z2 Lorenz dominates Z1 and Z3, it does not Lorenz dominate Z4. Also, Z4 does not

Lorenz dominate Z2. Thus, there does not exist a Lorenz dominant random allocation

in the set Za(R). Thus, there does not exist an egalitarian random allocation for this

problem, and no rule is egalitarian.
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Appendix D Proof of Theorem 4

Let N be the last step of the PBR algorithm and Z? be one of its outcomes. Thus, uZ? =

vN−1. We first show that the PBR is a rule in the PBSWI class (Lemma 4). This implies

that Z? is acceptable. Then, we prove that any sequentially egalitarian random allocation

generates uZ? (Lemma 5), which completes the proof of the theorem.

First, we show that for each reservation profile vn obtained at the end of Step n.3, there

exists a random allocation Zn such that vn = uZn (Lemma 4). Thus, the selection of the

reservation values at Step n.3 of the PBR complies with Step n.3 of the PBSWI .

Lemma 4. For each reservation profile vn obtained at the end of Step n.3, there exists a

random allocation Zn such that vn = uZn.

Proof. The algorithm starts with the initial reservation profile v0. Since this profile cor-

responds to the outcomes of the priority rule applied to each category separately, it is

straightforward to obtain the underlying Z0. In particular, each i is entitled the proba-

bility share ρi(Rc) of one unit at category c. If agent i is entitled at multiple categories,

then we choose the category with the highest probability share and assign a unit at that

category with this highest probability. (If there are multiple such categories, we choose

one of them randomly.) Moreover, the probabilities assigned to agents are not greater

than one under Z0 (because the priority rule assigns probabilities less than or equal to

one, and in case there are multiple such probabilities for an agent, then the highest such

probability is chosen for her). For each category c, the priority rule ρ(Rc) allocates to

agents no more than qc units. Thus, Properties (i) and (ii) of a random allocation are

satisfied (Definition 1), and Z0 is a random allocation.

By induction, we show that given an underlying Zn−1 for vn−1, there exists a random

allocation Zn for the utility profile vn obtained at the end of Step n. For each set of

agents I with exclusive rights, since the reservation value of each such agent is the same

as in the previous step, by inductive hypothesis, there exists an assignment of probabilities
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of units at reserve categories in the set C(I, vn−1). Note that, by Definition 6, all units

under these reserve categories are assigned to these agents. Also, at Step n, these agents

are not eligible for any category out of the set C(I, vn−1). Thus, we can consider the set

of available categories separately from the set of unavailable categories.

Let us consider the set An and
⋃
c∈An

Γc(v
n−1). By inductive hypothesis, there exists a

random allocation Zn−1 inducing the utility profile vn−1, in particular the reservation

value vn−1
i for each i ∈

⋃
c∈An

Γc(v
n−1).25 Thus, by Theorem 1, for each set of agents, the

condition in Theorem 1 is satisfied at the end of Step n− 1. Since for each agent i with

exclusive rights, vni = vn−1
i , for any subset of agents with exclusive rights, the condition

in Theorem 1 is also satisfied at the end of Step n. Thus, we need to check this condition

only for the set of agents with no exclusive rights, that is for each subset of
⋃
c∈An

Γc(v
n−1).

By Step n.3, only prioritized agents’ reservation values are updated. Thus, to complete

the proof, it is enough to check the condition only for the subsets including prioritized

agents. Suppose there exists such a set of agents I violating the condition in Theorem 1

at the end of Step n. Thus, ∑
i∈I

vni >
∑

c ∈ C(I,vn−1)

qc. (14)

By Step n.3, for a non-prioritized agent i, vni = vn−1
i and for a prioritized agent j,

vnj ≤ vn−1,1 + λ? = vn−1
j + λ?.

Let p be the number of prioritized agents in the set I. Thus, Inequality (14) can be

rewritten as ∑
i∈I

vn−1
i + pλ? ≥

∑
i∈I

vni >
∑

c ∈ C(I,vn−1)

qc.

25Note that there could be an agent i ∈
⋃

c∈An
Γc(v

n−1), who is eligible also for an unavailable reserve

category. By Step n.1, she does not have any exclusive rights and, the inductive hypothesis that there
is a random allocation Zn−1 for the reservation profile vn−1 implies that she is assigned probabilities
equivalent to vn−1i from reserve categories in C(i, vn−1) ∩ An.
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Thus,

λ? >

∑
c ∈ C(I,vn−1)

qc −
∑
i∈I
vn−1
i

p
.

Since p = |{i ∈ I : i is prioritized}| and I ∈ Bk, this inequality contradicts with the defi-

nition of λ?. Thus, no subset of
⋃
c∈An

Γc(v
n−1) with at least one prioritized agent violates

the condition in Theorem 1. Thus, by Theorem 1, there exists a random allocation Zn

for the reservation profile vn obtained at Step n.3.

While the PBR increases only the welfare of prioritized patients, the next observation

demonstrates that eventually, the total reservation value of all eligible agents is maximized.

Remark 3. The PBR rule maximizes the total reservation value of eligible agents at each

step.

The PBR increases the reservation value of only the prioritized agents up to a level such

that either (i) their reservation value reaches to the level of the lowest reservation value of

non-prioritized agents, or (ii) a set of agents have exclusive rights, or (iii) the reservation

value of each eligible agent is equal to one. The last one is possible only if all eligible agents

are prioritized and each such agent’s reservation value can be increased to one. Note that

in this case, the total reservation value of eligible agents is maximized. Suppose (i) holds.

At the updated reservation profile, the set of eligible agents is the same as the beginning

of the step. Thus, at the next step, the reservation values of the prioritized agents at the

current step, and also of the eligible agents with the second-lowest reservation value at the

end of the current step are increased. Suppose (ii) holds. Then, all the units under the

reserve categories, for which there are now exclusive rights, are assigned to agents with

these rights. Since only the reservation values of the eligible agents are increased, all the

remaining units under these categories at the beginning of the current step are assigned

to eligible agents. Moreover, since no other eligible agent’s reservation value is updated

to one, by definition of eligibility, there are no new eligible agents at the beginning of

the next step. Thus, under both (i) and (ii), the next step is such that only a subset (if
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not all) of the current eligible agents’ reservation values are increased. By an inductive

argument, this ends at a step where all of these eligible agents have exclusive rights or their

reservation value becomes one. In the former case, all the units available for the current

eligible agents are assigned to these agents. In the latter case, each eligible agent has a

reservation value one. Thus, in both cases the total reservation value of eligible agents is

maximized. Note that this maximization holds in general in multiple steps. But, since

these steps are such that there are no new eligible agents, the welfare improvements for

these eligible agents can be also defined as being realized in only one step instead of

multiple steps.

Lemma 5. A random allocation Z is sequentially egalitarian if and only if it is welfare

equivalent to Z?.

Proof. Let Z be a sequentially egalitarian random allocation. We prove by induction that

for each n ≥ 0, and i ∈ I, uZ(i) ≥ vni . Since, by definition of the PBR algorithm, no

agent’s reservation value can be improved at the last step of the algorithm, this completes

the proof.

Initial step: The initial reservation profile v0 is determined by the priority rule for each

single-category rationing problem (Section 3.2). Thus, individual rationality implies that,

for each agent i ∈ I, their utility is at least v0
i . This implies that for each i ∈ I, uZ(i) ≥ v0

i .

Inductive step: By inductive hypothesis, for each i ∈ I, uZ(i) ≥ vn−1
i . We show that

for each i ∈ I, uZ(i) ≥ vni . At the beginning of Step n, if there is a set of agents I with

exclusive rights, then they are assigned the units under the reserve categories C(I, vn−1),

and by definition of exclusive rights, there are no units left under these categories, and

these categories are not available for other agents.

Let us now consider agents without exclusive rights. For any subset of this group of

agents, Condition 2 in Theorem 1 is not binding. Thus, their welfare can be improved.

To make the reservation values as equal as possible among the set of eligible agents, we
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construct a supply-demand network (see Figure 1) by setting V n
1 =

⋃
c∈An

Γc(v
n−1) as the

demand vertices and V n
2 = An as the supply vertices.26 Agent i ∈ V n

1 points to c ∈ V n
2

if and only if i ∈ Γc(v
n−1). For each of these arcs (i, c), l(i, c) = 0 and k(i, c) = ∞. For

each prioritized agent i ∈
⋃
c∈An

Γc(v
n−1), arc (s, i) has lower bound l(s, i) = vn−1

i + λ and

capacity, k(s, i) = vn−1
i +λ. For each non-prioritized agent i ∈

⋃
c∈An

Γc(v
n−1), arc (s, i) has

lower bound l(s, i) = vn−1
i and capacity, k(s, i) = vn−1

i . Also, for each arc (c, t) from V n−1
2

into t, let l(c, t) = 0 and k(c, t) = qc.

. . .

i

. . .

c

ts

[l = 0, k = qc]

[l = 0, k = ∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0,∞]

[0, qc′ ]

[0, qc′′ ]

[0, qc′′′ ]

c′

c′′

c′′′

[l = vn−1i , k = vn−1i ]

j

[vn−1j + λ, vn−1j + λ]

i′

[vn−1i′ , vn−1i′ ]

j′

[vn−1j′ + λ, vn−1j′ + λ]

i′′

[vn−1i′′ , vn−1i′′ ]
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Figure 1

We set up this network as parametric in the following way: For the prioritized agents
26The subscripts in V n1 and V n2 stand for describing them either as the demand or supply vertices, and

the superscripts for the number of the step of the algorithm.
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among all eligible agents under available reserve categories, the parameter λ captures that

their reservation values, and only their reservation values, at the relevant categories are

improved equally and continuously as long as (a) the feasibility conditions in Definition 1

are not violated27 and (b) there are no others joining the group of prioritized agents.28

Since Z respects priorities, a unit under a category is not (probabilistically) assigned to

an agent in a priority class of that category until the utility of each agent in the higher

priority classes is one. Thus, when prioritized agents’ reservation values are increased

via λ, the agents in the next priority class cannot be allowed to be assigned units under

the same reserve category. Also, while the reservation values of prioritized agents ranked

under a reserve category are increased, the reservation values of other prioritized agents

ranked under other categories are also increased.

At the beginning of Step n.3, if it is possible to increase the reservation value of each

eligible agent to one, then by sequential egalitarianism, each such agent’s value should be

increased to one. By the argument for Remark 3, the PBR rule achieves it, in multiple

consecutive steps in general. Suppose that it is not possible to increase the reservation

value of each eligible agent to one. The idea is to use λ as a continuously increasing

parameter until a breakpoint where Part (a) or (b) will be violated if increased further.

Thus, there are two candidates for this breakpoint: Condition 2 in Theorem 1 becomes

binding (a) or the reservation value of a prioritized agent (note that the reservation

value of these agents is the minimum among the eligible agents under available reserve

categories) becomes equivalent to the level of the reservation value of a non-prioritized

and eligible agent (b). If the latter holds, then the reservation value of each prioritized

agent can be increased to the level of of the second-lowest reservation value among other

eligible agents. Thus, by definition of Lorenz dominance, at Z, among the set of eligible
27Part (a) is captured by the setting of arcs and their lower bounds and capacities: Condition (i) in

Definition 1 by setting the capacity of the arcs from the source to agents by one, and Condition (ii) by
setting the capacity of each arc from c to the sink by the capacity qc.

28Whether an agent is prioritized or not depends on her relative reservation value at reserve categories.
Thus, as the agents’ reservation values change, their status of being prioritized or non-prioritized might
change as well.
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agents, no agent’s utility is lower than this updated reservation value. Moreover, since

this value is lower than one, the set of eligible agents does not change. The only change

is that, at this reservation profile, the set of agents with the minimum level of reservation

value becomes larger. This process of increasing the reservation values of the prioritized

continues until either the breakpoint is given by (a) or each eligible agent’ reservation

value becomes one. If it is the latter, the definition of Lorenz dominance implies clearly

that each eligible agent’s utility is one (since there exists such an underlying random

allocation), which coincides with the outcome of the PBR for the eligible agents. Thus,

the only case that remains is when the breakpoint is given by (a).

Suppose the breakpoint is given by (a). Since agents are eligible for multiple categories in

general, to check whether Condition 2 in Theorem 1 becomes binding as λ is increased,

we need to consider all subsets of agents. Also, at the beginning of each step when λ = 0,

clearly the condition cannot be binding for a subset of agents without exclusive rights.

The prioritized agents have the lowest level of reservation value among all eligible agents.

Thus, to equate reservation values, the parameter λ is increased continuously. Since

Condition 2 in Theorem 1 is not binding for no subset of agents, a flow exists for some

values of λ > 0. The question is to find the maximum possible value for this parameter.

Since the breakpoint is due to Condition 2 becoming binding, there will not be a flow

respecting the lower bounds of the arcs from s to the demand vertices of prioritized agents,

if the reservation values of prioritized agents are increased above this breakpoint level.

By Theorem 5, the value of this maximum flow is equal to the minimum value

k(δout(V ′))− l(δin(V ′)) (15)

taken over V ′ ⊆ V with s ∈ V ′ and t 6∈ V ′. Since the flow is always maximum, the set {s}

gives this minimum value. Moreover, as the breakpoint is reached, there exists another

set of vertices with the minimum value of (15). We need to find this bottleneck set of

vertices V ′ = {s} ∪ I ′ ∪ C ′, which prevent λ to be increased further.
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The set V ′ satisfies that each i ∈ I ′ points only to the reserve categories in C ′ (because

otherwise k(δout(V ′)) − l(δin(V ′)) = ∞). Thus, C(I ′, vn−1) ⊆ C ′. Also, there cannot be

a reserve category c such that c ∈ C ′ \ C(I ′, vn−1), since then, by removing c from the

set V ′, the value of (15) is decreased by the amount qc due to the capacity of the outgoing

arc from c to t. Thus, C ′ = C(I ′, vn−1).29 Thus,

k(δout(V ′))−l(δin(V ′)) =
∑

i∈
( ⋃
c∈An

Γc(vn−1
)
\I′

vn−1
i +λ|{i 6∈ I ′ : i is prioritized}|+

∑
c∈C(I′,vn−1)

qc.

The first and second terms of the right-hand side in this equation is the total capacity of all

the edges from s to the set of eligible agents excluding the set I ′. Since {s} minimizes (15)

as well, and only the reservation values of prioritized agents are increased by λ, we also

have

k(δout(V ′))− l(δin(V ′)) =
∑

i∈
⋃

c∈An
Γc(vn−1)

vn−1
i + λ|{i ∈

⋃
c∈An

Γc(v
n−1) : i is prioritized}|

This implies

∑
i∈
( ⋃
c∈An

Γc(vn−1)
)
\I′

vn−1
i +

∑
c∈C(I′,vn−1)

qc =
∑

i∈
⋃

c∈An
Γc(vn−1)

vn−1
i + λ|{i ∈ I ′ : i is prioritized}|

(16)

Since Equality (16) is the necessary condition for V ′ to be a bottleneck set, the reservation

values of the prioritized agents can be increased by the minimum of λ satisfying (16). Note

that this minimum λ is equivalent to λ? defined in Step n.3 of the PBR. By definition of

sequential egalitarianism, at Z, the lowest reservation value is maximized. Thus, since the

reservation value of a prioritized agent, say i, is the lowest among all eligible agents, and

it is feasible to increase their reservation value to vn−1
i + λ?, their utility must be greater

29Also, reserve categories in C ′ cannot be pointed by an agent who is not in I ′ and eligible only for
categories in C ′ (because otherwise, by adding such an agent to the set I ′, the value k(δout(V ′ ∪ {i}))−
l(δin(V ′ ∪ {i})) is lower than the value k(δout(V ′))− l(δin(V ′)). Note that any such agent i provides an
incoming edge to V ′ with a lower-bound zero, and an outgoing edge from V ′ with a capacity vn−1i .
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than or equal to this value. Moreover, the PBR is such that, for each non-prioritized

agent, the reservation value does not change at Step n. Thus, for each eligible agent j,

the updated reservation value is at least vn−1
j +λ?. Thus, uZ(j) ≥ vni . This completes the

proof.

Appendix E Proof of Proposition 1

We first show that the PBR rule satisfies no justified-envy. The result then follows directly

from Theorem 4. Let c ∈ C and k > 0 such that

UCSπc(k) ⊆
⋃

c′∈C\{c}

UCSπc′ (kc′(Z
?)− 1).

Let C ′ ⊆ C\{c} be the set of reserve categories such that for each c′ ∈ C ′, UCSπc′ (kc′(Z
?)−

1) ∩ UCSπc(k) 6= ∅ (†). Let n be the first step of the PBR such that for all agents

in
⋃

c′∈C′
UCSπc′ (kc′(Z

?)− 1), reservation value is one. There are two cases:

Case 1: At Step n+1, for some category c′ ∈ C ′, agents in Iπc′ (kc′(Z
?)) are eligible for c′.

By (†), this implies that each agent in Iπc(k+ 1) is eligible for c. By definition of kc′(Z?),

at some step n′ > n, for each i′ ∈ Iπc′ (kc′(Z
?)), vn′i′ = 1. By (†), this implies that for each

agent j ∈ Iπc(k + 1), vn′j = 1. Thus, kc(Z?) ≥ k + 1.

Case 2: At Step n+1, for each category c′ ∈ C ′, no agent in Iπc′ (kc′(Z
?)) is eligible for c′.

Since the reservation value of each agent in
⋃

c′∈C′
UCSπc′ (kc′(Z

?)−1) is one, by definition of

eligibility, this case is possible only if there is the exception of exclusive rights to eligibility.

By (†) and definition of exclusive rights, agents in Iπc(k + 1) are not eligible for c. By

definition of kc′(Z?), at a step n′′ > n, for categories in C ′, all agents in Iπc′ (kc′(Z
?)) and

for category c, all agents in Iπc(k+1), become eligible for their corresponding categories.30

But then, as, for some c′ ∈ C ′, the reservation value of each agent in Iπc′ (kc′(Z
?)) reaches

30Note that this happens when an agent in
⋃

c′∈C′
UCSπc′ (kc′(Z

?) − 1) becomes eligible for a category

out of C ′ ∪ {c}.
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one (this has to be the case by definition of kc′(Z?)), by (†), the reservation value of each

agent in Iπc(k + 1) reaches one as well. Thus, kc(Z?) ≥ k + 1.

49



References

Abdulkadiroğlu, A., and T. Sönmez (2003): “School Choice: A Mechanism Design

Approach,” American Economic Review, 93, 729–747.

Abdulkadiroğlu, A., and A. Grigoryan (2021): “Priority-based Assignment with

Reserves and Quotas,” working paper.

Aygün, O., and I. Bo (2021): “College Admission with Multidimensional Privileges: The

Brazilian Affirmative Action Case,” American Economic Journal: Microeconomics, 13,

1–28.

Aygün, O., and B. Turhan (2020a): “Designing Direct Matching Mechanisms for India

with Comprehensive Affirmative Action,” SSRN working paper.

(2020b): “Dynamic Reserves in Matching Markets,” Journal of Economic Theory,

188, 105069.

Aziz, H. (2021): “Probabilistic Rationing with Categorized Priorities: Processing Re-

serves Fairly and Efficiently,” working paper.

Bogolomania, A., and H. Moulin (2004): “Random Matching Under Dichotomous

Preferences,” Econometrica, 72, 257–279.

Delacrétaz, D. (2021): “Processing Reserves Simultaneously,” working paper.

Doğan, F., and O. Yılmaz (2022): “Fair Allocation of Reserve Units When There Are

Target Beneficiaries,” working paper.

Dur, U., S. Kominers, P. Pathak, and T. Sönmez (2018): “Reserve Design: Un-

intended Consequences and The Demise of Boston’s Walk Zones,” Journal of Political

Economy, 126(6), 2457–2479.

Dur, U., P. Pathak, and T. Sönmez (2020): “Explicit vs. statistical targeting in

affirmative action: Theory and evidence from Chicago’s exam schools,” Journal of

Economic Theory, 187, 104996.

50



Ehlers, L., I. E. Hafalir, M. B. Yenmez, and M. A. Yıldırım (2014): “School

Choice with Controlled Choice Constraints: Hard Bounds versus Soft Bounds,” Journal

of Economic Theory, 153, 648–683.

Ford, L. R., and D. R. Fulkerson (1956): “Maximal flow through a network,” Cana-

dian Journal of Mathematics, 8, 399–404.

Gale, D. (1957): “A Theorem on Flows in Networks,” Pacific Journal of Mathematics,

7, 1073–1082.

Hafalir, I. E., M. B. Yenmez, and M. A. Yıldırım (2013): “Effective Affirmative

Action in School Choice,” Theoretical Economics, 8, 325–363.

Hall, P. (1935): “On representatives of subsets,” Journal of London Mathematical Soci-

ety, 10, 26–30.

Katta, A.-K., and J. Sethuraman (2006): “A Solution to The Random Assignment

Problem on The Full Preference Domain,” Journal of Economic Theory, 131, 231–250.

Kominers, S., P. Pathak, T. Sönmez, and U. Ünver (2020): “Paying It Backward

and Forward: Expanding Access to Convalescent Plasma Through Market Design,”

working paper.

Kominers, S. D., and T. Sönmez (2016): “Matching with slot-specific priorities: The-

ory,” Theoretical Economics, 11, 683–710.

Massachusetts DPH (2020): “MA Covid-19 Vaccine Presentation,” Decem-

ber 9, https://www.mass.gov/doc/ma-covid-19-vaccine-presentation-1292020/

download.

New Hampshire DHHS (2021): “COVID-19 Vaccine Training for Commu-

nity Leaders,” January, https://www.dhhs.nh.gov/dphs/cdcs/covid19/documents/

covid-vaccine-comm-leader-training.pdf.

51

https: //www.mass.gov/doc/ma-covid-19-vaccine-presentation-1292020/download
https: //www.mass.gov/doc/ma-covid-19-vaccine-presentation-1292020/download
https://www.dhhs.nh.gov/dphs/cdcs/covid19/documents/covid- vaccine-comm-leader-training.pdf
https://www.dhhs.nh.gov/dphs/cdcs/covid19/documents/covid- vaccine-comm-leader-training.pdf


Pathak, P., T. Sönmez, U. Ünver, and B. Yenmez (2021): “Fair Allocation of

Vaccines, Ventilators and Antiviral Treatments: Leaving No Ethical Value Behind in

Health Care Rationing,” working paper.

Pathak, P. A., A. Rees-Jones, and T. Sönmez (2022): “Reversing Reserves,” forth-

coming, Management Science.

Pennsylvania DH (2020): “Ethical Allocation Framework for Emerging Treatments

of COVID-19,” https://www.health.pa.gov/topics/disease/coronavirus/Pages/

Guidance/Ethical-Allocation-Framework.aspx.

Roth, A. E., T. Sönmez, and M. U. Ünver (2005): “Pairwise Kidney Exchange,”

Journal of Economic Theory, 125, 151–188.

Schrijver, A. (2003): Combinatorial Optimization: Polyhedra and Efficiency. Springer-

Verlag.

Sönmez, T., M. U. Ünver, and M. B. Yenmez (2020): “Incentivized Kidney Ex-

change,” American Economic Review, 110(7), 2198–2224.

Sönmez, T., and B. Yenmez (2020): “Affirmative Action with Overlapping Reserves,”

working paper.

Tennessee DH (2020): “Covid-19 Vaccination Plan,” Version 3.0, Decem-

ber 30, https://www.tn.gov/content/dam/tn/health/documents/cedep/

novel-coronavirus/COVID-19_Vaccination_Plan.pdf.

Yılmaz, O. (2011): “Kidney Exchange: An Egalitarian Mechanism,” Journal of Eco-

nomic Theory, 146, 592–618.

(2022): “Random Allocation of Identical Objects under Reserves,” working pa-

per, https://mysite.ku.edu.tr/ozyilmaz/wp-content/uploads/sites/128/2022/

07/ReserveRandom_OY.pdf.

52

https://www.health.pa.gov/topics/disease/coronavirus/Pages/Guidance/Ethical-Allocation-Framework.aspx
https://www.health.pa.gov/topics/disease/coronavirus/Pages/Guidance/Ethical-Allocation-Framework.aspx
https: //www.tn.gov/content/dam/tn/health/documents/cedep/novel-coronavirus/ COVID-19_Vaccination_Plan.pdf
https: //www.tn.gov/content/dam/tn/health/documents/cedep/novel-coronavirus/ COVID-19_Vaccination_Plan.pdf
https://mysite.ku.edu.tr/ozyilmaz/wp-content/uploads/sites/128/2022/07/ReserveRandom_OY.pdf
https://mysite.ku.edu.tr/ozyilmaz/wp-content/uploads/sites/128/2022/07/ReserveRandom_OY.pdf

	Introduction
	Model
	Axioms
	Efficiency
	Individual rationality
	Respecting priorities

	Acceptable random allocations
	Enhancing equity
	Egalitarianism
	No justified-envy
	Sequential egalitarianism
	The Priority-Based Rawlsian (PBR) rule

	Applications
	Rationing health care units
	A weighted lottery policy
	Soft reserves

	Affirmative action in school choice

	Appendix Maximum flow problem: Preliminaries
	Appendix Proof of Theorem 2
	Appendix Proof of Theorem 3
	Appendix Proof of Theorem 4
	Appendix Proof of Proposition 1

