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Abstract

The axioms underlying Arrow’s impossibility theorem are very restrictive in

terms of what can be used when aggregating preferences. Social preferences may

not depend on the menu nor on preferences over alternatives outside the menu.

But context matters. So we weaken these restrictions to allow for context to be

included. The context as we define describes which alternatives in the menu and

which preferences over alternatives outside the menu matter. We obtain unique

representations. These are discussed in examples involving markets, bargain-

ing and intertemporal well being of an individual. Proofs are constructive and

insightful.

1 Introduction

A central question in economics is how a social planner should compare alternatives

when the preferences of the individuals involved are in conflict. To determine what is

best for those individuals involved, the planer needs a rule that aggregates individual

preferences into a single social preference. Different strands of the economic literature

use very different rules. In the analysis of markets, the standard tool to evaluate the

joint welfare of consumers is consumer surplus. In a bargaining problem, the rules for

finding a fair solution can be interpreted as the choice of an implicit social planner who

is trading off benefits of the different parties involved. The fair solution is determined
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either by the Nash product (Nash, 1950) or is taken to be the equitable outcome on

the Pareto frontier (Kalai and Smorodinsky, 1975). The intertemporal welfare of a

dynamically inconsistent decision maker is evaluated either by the Pareto criterion or

by the long-run utility (O’Donoghue and Rabin, 1999). Even within their respective

settings, these criteria can only be applied under narrow modeling assumptions. More

importantly, each of them fails to conform to a minimal set of desiderata. Consumer

surplus violates the Neutrality axiom, as it is sensitive to the labels of social alterna-

tives. Neither the Nash product nor the equitable outcome is rational, in the sense of

abiding by the von Neumann and Morgenstern (1944) axioms. The Pareto criterion

does not generate complete preferences and long-run utility violates the Pareto princi-

ple. Some of these violations are not obvious and will be demonstrated later. In each

of these settings we could search separately for other rules. However, we feel that the

well-beings of individuals should be traded off based on principles that are appealing

independently of the application. Therefore, we would like to have a universal rule

that can be applied to every setting. In light of Arrow (1950, 1963), it is not clear

whether such a rule exists. In the following we argue that some of Arrow’s demands

are too stringent and should be relaxed. Before we state our contentions, let us briefly

revisit Arrow’s theorem.

Arrow (1963) shows that there is no aggregation rule that satisfies completeness,

transitivity, the Pareto principle, non-dictatorship and independence of irrelevant al-

ternatives (IIA). If we want the social planner to be rational, benevolent and impartial,

then the first four axioms of Arrow serve as minimal requirements. Consider now the

fifth and last axiom, IIA. According to Arrow, IIA demands that when the planner

chooses from a menu of alternatives, denoted by S, the choice C(S) is not allowed

to depend on individual preferences over alternatives outside S. In addition to the

above, Arrow assumes that social choice from any menu is made according to a sin-

gle social preference over all alternatives. Hence, Arrow implicitly assumes one more

axiom, namely menu independence (MI). Together, these axioms make it impossible

to aggregate preferences. Weakening either IIA or MI are potential avenues to escape

the impossibility. We now argue that one can weaken either of them as neither is as

desirable as the first four axioms mentioned above.
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First, we asses IIA with the aid of the following example by Pearce (2021). Imagine

being tasked with choosing between two social alternatives x and y for a group of five

kindergarten children. Strict preferences of the children are given by the following

table.

1 2 3 4 5

x x x x y

y y y y x

Figure 1: Children’s ordinal preferences.

In isolation, one would be inclined to choose x over y as it is preferred by four of

the five children. However, we also learn that under x each of the first four children

gets 1001 toys while under y each of them only gets 1000 toys. Moreover, we are told

that the fifth child has a fatal illness which would be cured under y, whereas under

x the fifth child dies a long and terrifying death. Unquestionably, this additional

information would change our preference to y over x. Pearce therefore concludes that

information besides individual preferences between x and y must be relevant for social

choice. But which information exactly? Let us embed the comparison between x and

y into a social choice problem in which for each of the first four children there exists

an alternative zi where only this child i dies and every other child gets 1001 toys.

While the alternatives z1 to z4 aren’t feasible, meaning they are not in the menu, they

are still possible and could be in the menu in a different situation. Assume that the

following graph depicts the von Neumann-Morgenstern preferences of the children over

the possible alternatives.

1
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Figure 2: Children’s cardinal preferences.
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The inclusion of alternatives z1 to z4 provides a context that puts the alternatives

x and y into perspective. Adding this context, it becomes clear that going from y

to x represents a marginal improvement for the first four children at the expense

of a substantial loss to the fifth child. IIA demands that we ignore this additional

information, which seems unreasonable. In order to include the context provided by

the infeasible alternatives, IIA has to be weakened.

Next, we asses MI. To do this, consider the following example by Sen (1993). An

individual faces the menu {x, y} where y means taking the last remaining apple from

the fruit basket at the dinner table and x means taking nothing instead. Compare

this to the situation where there is a second apple in the basket, such that the menu

is {x, y, z} where z means taking the other apple. One can plausibly prefer x over y

under the first menu and y over x under the second. Similarly, our understanding of

fairness in a social choice setting might be dependent on what is currently feasible.

When comparing two social alternatives x and y, information about the feasibility of

other alternatives provides a context that helps with the evaluation. In order to make

use of that information, MI has to be weakened.

Above we argued that neither IIA nor MI is desirable, as they ignore additional

information that can help in the assessment of social alternatives. Weakening either

of these conditions opens the possibility for preference aggregation. We are looking

for an aggregation rule that abides by the von Neumann-Morgenstern axioms, satis-

fies the strong Pareto condition and is anonymous. These axioms strengthen Arrow’s

minimal requirements for rationality, benevolence and impartiality. We do not want

to drop IIA and MI completely, as we wish to limit the information that can be used

by the social planner. We therefore define two weaker axioms that identify when two

social choice problems provide the same relevant information and thus yield the same

social preferences. These axioms implicitly define the context as the context captures

what is relevant. Our axiom independence of irrelevant comparable alternatives (IICA)

weakens IIA by requiring that preferences over alternatives outside the menu do not

influence the ranking if they are comparable for each individual to other alternatives.

Specifically, an alternative is comparable to others if each individual is indifferent to

some mixture of these other alternatives. Menu independence of comparable alterna-
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tives (MICA) weakens MI by allowing alternatives to be dropped from the menu if

they are comparable to other alternatives in the menu. Each of these axioms, together

with our other axioms, uniquely defines an aggregation rule that can be applied to any

social choice or aggregation problem. Both of our representations are relative utilitar-

ian, meaning the social welfare of an alternative is identified as the sum of individual

von Neumann-Morgenstern utilities. When we weaken MI and maintain IIA, individ-

ual utilities are normalized relative to the menu. When we weaken IIA and maintain

MI, individual utilities are normalized relative to the set of all possible alternatives.

To normalize means to set the utility of the worst alternative in the respective set

to 0 and of the utility of the best alternative to 1. In a later section, we then use

our representations to quantify consumer welfare, fair bargaining and well-being of a

dynamically inconsistent decision maker.

Relative utilitarianism has been axiomatized before by Karni (1998), Dhillon and

Mertens (1999), Segal (2000), Borgers and Choo (2017), Marchant (2019), Sprumont

(2019) and Brandl (2021). Most closely related is Dhillon and Mertens (1999). Dhillon

and Mertens (1999) implicitly assume menu independence and characterize an aggre-

gation rule that is the same as the one we obtain when relaxing IIA. They have a

bottom-up approach, as their implicit objective is to present the weakest possible

axioms that characterize relative utilitarianism. In contrast, we have a top-down ap-

proach, as we stay close to Arrow (1963) and wish to present the strongest possible

axioms that don’t result in an impossibility. These two different approaches lead to

quite distinct axiomatic systems. Dhillon and Mertens (1999) has a higher level of

technical sophistication, which is exemplified by their continuity axiom and intricate

proof. In contrast, our axioms have a straightforward interpretation and our proof

is more insightful, due to its simplicity. Note also that Dhillon and Mertens (1999)

do not provide a representation when individuals have either identical or opposing

preferences.

Another related paper is Sprumont (2019), which considers a setting where al-

ternatives are acts (i.e. mappings from states to outcomes). The treatment is also

different as axioms are formulated in terms of the set of outcomes and not in terms

of sets of alternatives. Note also that the formulation of IIA therein has more the
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flavor of MI. In the representation, individual utilities are normalized relative to a

set of alternatives the social planner deems relevant. Sprumont’s axioms don’t tell us

what is relevant, as the relevant set is exogenous and part of the social choice problem.

Without additional restrictions, this would allow the planner to justify nearly any de-

cision, by handpicking the relevant set as needed. In our approach, the relevant set is

determined endogenously from the axioms.

We mention a few of the many other papers on axiomatizations of aggregation rules

that start similarly to us from Arrow (1950, 1963) and relax axioms therein. Notably,

Sen (1993) drops MI and shows that impossibility still follows if IIA is replaced by

binary IIA.1 To our knowledge, Sen (1993) is the only previous paper that points out

the implicit MI axiom in Arrow (1950, 1963). Saari (1998) and Maskin (2020) relax

IIA by allowing the comparison between two alternatives to depend on how many

other alternatives lie in-between them.

We proceed as follows. In Section 2 we present our framework, axioms and results.

Section 3 provides a sketch of the proof. In Section 4 we apply our representation to

several economic settings. Section 5 concludes.

2 Axiomatization

There is a society consisting of n individuals, where n ∈ N. The set of individuals

is denoted by N := {1, ..., n}. Furthermore, there is a set of possible alternatives

A, where A is finite. In Appendix B we consider the case where A is infinite. Each

individual in society has rational preferences over the possible alternatives. Formally,

let △A denote the set of lotteries over A and let R denote the set of logically possible

von Neumann-Morgenstern (vNM) preferences over △A. Individual preferences are

then captured by a preference profile R ∈ Rn. For a given profile R, we sometimes

write ≽R
i to denote the i’th element in R. In any given situation, only a subset S of A

is feasible and could be implemented for society. We call S the menu. A social planner

is tasked with evaluating the alternatives in the menu, taking individual preferences

1Binary IIA says that the social preference between any two alternatives x and y can only depend

on individual preferences between x and y. The literature often uses the notion of IIA and binary

IIA interchangeably. Note however that binary IIA is only implied by IIA if MI is assumed as well.
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into account. Formally, for any menu S ⊆ A and preference profile R ∈ Rn, ≽(S,R)
∗ is

a binary relation over △S, describing the social planner’s evaluation. We call (S,R)

a state and denote by Ω the set of all states. One can think of the evaluation as a

state dependent preference. We denote by ≽∗ the evaluation function, which assigns

to each state (S,R) ∈ Ω an evaluation ≽(S,R)
∗ .

We now impose axioms on how the social planner evaluates alternatives. Rational-

ity says that the evaluation is rational in the sense of abiding by the vNM axioms.

Axiom RA (Rationality). For each (S,R) ∈ Ω, ≽(S,R)
∗ satisfies the vNM axioms.

Rationality is normatively desirable and strengthens Arrow’s requirement that the

planner’s evaluation is complete and transitive. Furthermore, we believe that, since

individuals are assumed to be rational, an aggregation rule should preserve this char-

acteristic of the individuals.

Our second axiom says that the social planner is benevolent, such that the evalu-

ation respects the individuals’ preferences whenever these are not in conflict.

Axiom SP (Strong Pareto). For each (S,R) ∈ Ω and x, y ∈ △S, if x ≽R
i y for all

i ∈ N then x ≽(S,R)
∗ y and if in addition x ≻R

i y for some i ∈ N then x ≻(S,R)
∗ y.

SP strengthens Arrow’s Pareto condition.

Our third axiom is anonymity. Anonymity says that the planner’s evaluation must

not depend on the individual identities but only on the preferences themselves. Hence,

in a counter-factual world, where preferences are interchanged across the individuals,

the planner’s evaluation must be the same.

Axiom AN (Anonymity). For each (S,R), (S,R′) ∈ Ω, if R′ is a permutation of R

then ≽(S,R)
∗ =≽(S,R′)

∗ .

AN is an impartiality requirement and strengthens Arrow’s non-dictatorship axiom.

Above we have stated our desiderata. Next, we will present the two conditions

in Arrow (1950, 1963) that restrict what information can be used in the evaluation.

The first condition is the axiom of independence of irrelevant alternatives. We say

that two preferences relations ≽ and ≽′ agree on some set of alternatives S if for any

x, y ∈ △S, x ≽ y if and only if x ≽′ y. Furthermore, we say that two preference

profiles R,R′ ∈ Rn agree on S if for each i ∈ N , ≽R
i and ≽R′

i agree on S.
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Axiom IIA (Independence of Irrelevant Alternatives). Fix (S,R) ∈ Ω. For any

R′ ∈ Rn, if R and R′ agree on S then ≽(S,R)
∗ =≽(S,R′)

∗ .

IIA says that the planner’s evaluation of the menu cannot depend on individual pref-

erences over alternatives outside the menu. Hence, in a counter-factual world, where

individual preferences differ only on alternatives outside the menu, the planner’s eval-

uation must be the same.

The second condition is that social preferences are menu independent. Arrow

assumes this implicitly, as he writes that the social choice from a menu S is made

based on a single preference relation over A, which is independent of the menu. Note

that there are many equivalent ways of formalizing this condition. In anticipation of

how we will relax this condition, we choose the following.

Axiom MI (Menu independence). For each (S,R) ∈ Ω and S ′ ⊆ S, ≽(S,R)
∗ and ≽(S′,R)

∗

agree on S ′.

Menu independence says that removing alternatives from the menu does not change

the planner’s evaluation of the remaining alternatives.

It is well known that Arrow’s axioms lead to an impossibility. Unsurprisingly, as

our first three axioms strengthen Arrow’s rationality, benevolence and impartiality

requirements, the above axioms lead to an impossibility as well.2

Proposition 1. There is no evaluation function ≽∗ that satisfies RA, SP, AN, IIA

and MI.

As we have argued in the introduction, we believe that both IIA and MI force the

social planner to ignore valuable context and should therefore be reconsidered. We

will weaken each of these conditions, with the help of a notion of comparability.

Definition 1. a ∈ A is comparable relative to B ⊆ A under R ∈ Rn if a /∈ B and for

every i ∈ N there exists xi ∈ △B such that xi ∼R
i [a].

2Note that formally, we weaken Arrow’s universal domain condition, by assuming that individuals

have vNM preferences. However, it has been shown that such a domain restriction is insufficient for

escaping the impossibility. See Sen (1970), Kalai and Schmeidler (1977), Hylland (1980), Chichilnisky

(1985) and Dhillon and Mertens (1997).
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An alternative is comparable to a set if for each individual there is a pay-off in the set

equal to that of the alternative.

First, we weaken MI.

Axiom MICA (Menu Independence of Comparable Alternatives). For each (S,R) ∈

Ω and S ′ ⊆ S where every a ∈ S \ S ′ is comparable relative to S ′, ≽(S,R)
∗ and ≽(S′,R)

∗

agree on S ′.

MICA says that removing comparable alternatives from the menu does not change the

planner’s evaluation of the remaining alternatives.

Weakening MI to MICA results in a representation we refer to as menu contingent

utilitarianism. For any R ∈ Rn and B ⊆ A, let uB,R
i denote the representation of ≽R

i

where maxa∈B uB,R
i (a) = 1 and mina∈B uB,R

i (a) = 0, unless ≽R
i is indifferent on B in

which case uB,R
i (a) = 0 for all a ∈ B.3 Furthermore, for any B ⊆ A we denote by |B|

the number of elements in B.

Theorem 1 (Menu Contingent Utilitarianism). Let |A| ≥ 2n + 4. An evaluation

function ≽∗ satisfies RA, SP, AN, IIA and MICA if and only if for each (S,R) ∈ Ω,

≽(S,R)
∗ is represented by ∑

i∈N

uS,R
i .

Next, we weaken IIA. For any B ⊂ A we write Bc to denote A \B.

Axiom IICA (Independence of Irrelevant Comparable Alternatives). Fix (S,R) ∈ Ω

and C ⊂ Sc such that every a ∈ C is comparable relative to Cc under R. For any

R′ ∈ Rn, if R and R′ agree on Cc and every a ∈ C is comparable relative to Cc under

R′, then ≽(S,R′)
∗ =≽(S,R)

∗ .

IICA says that the planner’s evaluation of the menu cannot depend on individual

preferences over comparable alternatives outside the menu. Hence, in a counter-factual

world, where individual preferences over these alternatives are different and these

alternatives are still comparable, the planner’s evaluation must be the same.

Weakening IIA to IICA results in a representation we refer to as setting contingent

utilitarianism.
3For any binary relation ≽ on a set X, a utility function u : X → R is said to represent ≽ if for

all x, y ∈ X, u(x) ≥ u(y) if and only if x ≽ y.
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Theorem 2 (Setting Contingent Utilitarianism). Let |A| ≥ 2n + 4. An evaluation

function ≽∗ satisfies RA, SP, AN, IICA and MI if and only if for each (S,R) ∈ Ω,

≽(S,R)
∗ is represented by ∑

i∈N

uA,R
i .

Our proofs of the theorems require a setting with many possible alternatives. How-

ever, as shown by the following proposition, we only need a few more alternatives than

what is necessary for the axioms to be sufficient.

Proposition 2. Let |A| < 2n + 1. For both representation theorems, the axioms

aren’t sufficient to ensure that the planner’s evaluation can be represented by the sum

of normalized individual utilities across all states.

The proofs of the propositions and theorems in this section can be found in Ap-

pendix A.

Finally, we want to mention another desideratum that is satisfied by both repre-

sentations, namely neutrality. We say that π : A 7→ A is a permutation of A if π is

bijective and denote by Π the set of permutations of A. We abuse notation and define

π(S) := {π(a) : a ∈ S}. We write π(x) ∈ △A to denote the lottery that for every

a ∈ A puts probability µ on π(a) if and only if x puts probability µ on a. Finally, let

π(R) := (≽π
i )i∈N ∈ Rn denote the preference profile which has the same preferences

on the permuted alternatives as R on the original alternatives. Formally, π(x) ≽π
i π(y)

if and only if x ≽i y for all i ∈ N and x, y ∈ △A.

Axiom NE (Neutrality). For each (S,R) ∈ Ω, x, y ∈ △S and π ∈ Π, x ≽S,R
∗ y if and

only if π(x) ≽π(S),π(R)
∗ π(y).

Neutrality says that the labels of alternatives play no role. Hence, if the labels of a

and b were interchanged and a was preferred by the planner before, then b must be

preferred afterwards.

3 Sketch of Proof

To highlight some insights, this section provides a sketch of the proof. Since the proofs

of both theorems are quite similar, we only sketch the proof of Theorem 1.
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Before we prove the theorem, we derive two interim results. Note that SP implies

Pareto indifference (PI), which says that if every individual in society is indifferent

between two lotteries, then so is the social planner. The first interim result states

that if both RA and PI are satisfied, then the utility function of the social planner

can be expressed as a weighted sum of the individual utility functions. This result is

well known and has first been postulated by Harsanyi (1955). However, Harsanyi’s

original proof contains a mistake, which lead to a variety of proofs by the subsequent

literature. We in turn provide our own proof of Harsanyi’s theorem, similar to those by

Border (1985), Selinger (1986) and Hammond (1992), albeit ours is self contained as

we do not refer to mathematical theorems. Our proof makes use of the pay-off matrix,

which indicates for each individual the vNM utility of every alternative in the menu.4

See Figure 3 for an example with three individuals and four alternatives. By RA,



a b c d

1 1 1 1

i=1 .5 .5 0 1

i=2 1 0 .7 .3

i=3 0 1 .2 .8


Figure 3: Example of a pay-off matrix.

the planner’s evaluation can be represented by a row vector of vNM utilities as well.

What needs to be shown is that whenever PI is satisfied, the planner’s utility vector

is equal to some linear combination of the rows in the pay-off matrix. If individual

preferences are sufficiently diverse, such that the rows of the pay-off matrix span

the entire vector space, then any logically possible vNM preference over the menu

can be expressed by a linear combination of the individual utility functions. On the

other hand, if individual preferences are not sufficiently diverse, we show that there

exists a dependent alternative, who’s column can be expressed by a linear combination

of the other columns. For instance, in our example Column d is equal to a plus

b minus c. We then sequentially drop dependent alternatives until the columns of

the remaining alternatives are linearly independent. Then individual preferences over

4A row of 1’s is included in the pay-off matrix to allow for a constant in the representation.
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the remaining alternatives are sufficiently diverse such that any vNM preference over

these alternatives can be expressed by a linear combination of rows. For each of

the dependent alternatives we can identify two lotteries such that every individual is

indifferent between them. In case of alternative d, these lotteries would be 1
2
[a] + 1

2
[b]

and 1
2
[c]+ 1

2
[d]. By PI, also the planner must be indifferent between these lotteries and

hence the planner’s utility of the dependent alternative is pinned down by the same

linear combination as for the individuals.

For our second interim result, we introduce the concept of polar alternatives. An

alternative is polar if it is best among the menu for one individual and worst among

the menu for everyone else. If the menu consists only of polar alternatives, we call

such a state a polar state. Our second interim result then states that in a polar state,

the planner is indifferent between all alternatives. Consider for instance a polar state

that is described by the pay-off matrix depicted on the left-hand side of Figure 4. Note



e f g

1 1 1

i=1 1 0 0

i=2 0 1 0

i=3 0 0 1


anonymity−−−−−⇀↽−−−−−
neutrality



e f g

1 1 1

i=1 0 1 0

i=2 1 0 0

i=3 0 0 1


Figure 4: The polar state.

that the pay-off matrix doesn’t describe the state completely, as it does not specify

individual preferences over infeasible alternatives. However, by IIA, preferences over

infeasible alternatives can be ignored. Assume the planner weakly prefers e to f .

We begin by permuting the preferences of Individual’s 1 and 2, which corresponds

to swapping these individuals’ rows in the pay-off matrix. By AN, the planner must

weakly prefer e over f in the resulting state as well. The pay-off matrix of the resulting

state is depicted on the right hand side of Figure 4. In the right-hand state we then

interchange the labels of alternatives e and f , which corresponds to swapping the first

two columns. If the planner satisfies NE, then if e was preferred over f before, then

f must be preferred over e after their labels have been swapped. With the help of
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MICA we can show that indeed NE is satisfied in polar states. Note that swapping

the first two columns in the right-hand pay-off matrix, brings us back to the initial

state. Hence, we have shown that if e is weakly preferred to f , then f must also be

weakly preferred to e, implying indifference.

Finally, we prove the theorem. Consider individual preferences over the menu

{a, b, c, d} as depicted in Figure 3 and assume that for each individual there is a

comparable polar alternative outside the menu, denoted by e, f and g. In the menu

{e, f, g}, the planner must be totally indifferent as we have shown previously. Now we

add the original menu, resulting in Figure 5. Since we have only added comparable



a b c d e f g

1 1 1 1 1 1 1

i=1 .5 .5 0 1 1 0 0

i=2 1 0 .7 .3 0 1 0

i=3 0 1 .2 .8 0 0 1


Figure 5: Adding the original menu to the polar state.

alternatives, by MICA the planner must still be indifferent between e, f and g. This

indifference, together with our first interim result, then implies that equal weights on

the individual utility functions represent the planner’s evaluation. SP ensures that

these common weights are positive and can be normalized to 1. Finally, we remove

the polar alternatives and by MICA the same linear combination must still represent

the planner’s evaluation. By IIA, this must hold even if there are no comparable polar

alternatives outside the original menu. However, if there are less than n alternatives

outside the original menu, the proof is more involved.

4 Applications

We apply our aggregation rules to three classic economic situations: aggregating the

welfare of different consumers in a market, finding a fair solution to a bargaining prob-

lem and identifying the total welfare of a dynamically inconsistent decision maker.

The literature has so far treated each of these problems in isolation. We provide a
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unifying framework, which aggregates individual preferences consistently across appli-

cations. In particular, we uncover policy recommendations contrary to those by the

established welfare criteria.

4.1 Consumer Welfare

Consider a society with n individuals and two consumption goods m and g where m

is the numéraire. A social alternative is an allocation of these goods to the individuals

in society, hence an element of R2n
+ . Individuals are self interested and their utility is

quasi-linear, formally for each i ∈ N ,

ui((m1, g1), ..., (mn, gn)) = αimi + vi(gi) (1)

for some vi : R+ → R and αi ∈ R+. The standard measure of aggregate welfare in this

setting is aggregate consumer surplus

ACS((m1, g1), ..., (mn, gn)) =
∑
i∈N

1

αi

ui((m1, g1), ..., (mn, gn)) =
∑
i∈N

mi +
∑
i∈N

vi(gi)

αi

.

Consider two allocations a and b such that some individuals strictly prefer a and some

strictly prefer b. If ACS(a) is higher than ACS(b), then there exists monetary transfers

after a, resulting in an allocation a′, such that a′ Pareto dominates b. This makes

consumer surplus quite appealing. However, if these transfers aren’t implemented,

then ACS makes a judgment on how the well-being of different individuals should be

traded off. We can show that the way in which ACS makes these trade-offs violates

neutrality. Specifically, consumer surplus is sensitive to which of the two consumption

goods is selected as the numéraire. Let RQL ⊂ Rn denote the set of preference profiles

that can be represented by (1).

Proposition 3. There doesn’t exist an evaluation function ≽ on the restricted domain

RQL that satisfies NE.

Proof. It is sufficient to show that the axiom is violated in some state, so consider the

state where for each i ∈ N , vi(gi) = βigi for some βi > 0. Next consider the per-

mutation of alternatives π such that π((m1, g1), ..., (mn, gn)) = ((g1,m1), ..., (gn,mn))

and note that π(R) ∈ RQL. For NE to be satisfied, it must hold that ACSR(a) ≥
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ACSR(b) if and only if ACSπ(R)(π(a)) ≥ ACSπ(R)(π(b)). We will show that for

the following alternatives this is violated. Let a = ((0, 1), (0, 0), ..., (0, 0)) and b =

((0, 0), (2, 0), ..., (0, 0)). Then ACSR(a) = β1

α1
, ACSR(b) = 2, ACSπ(R)(π(a)) = 1 and

ACSπ(R)(π(b)) = α2

β2
. Neutrality is violated for instance when β1 = 3, α1 = 1, α2 = 2

and β2 = 1.

Next consider a setting where a monopolist produces the good g at constant

marginal cost c. We assume that individuals can be divided into two groups, low

elasticity consumers L and high elasticity consumers H. Within each group every in-

dividual has the same preferences. The fraction of individuals belonging to Group J ∈

{L,H} is denoted by γJ . Total demand of Group J is then DJ(p) := nγJ(v
′
i)
−1(pαi)

where i ∈ J . Assume the monopolist can identify which group an individual belongs to

and therefore engage in third-degree price discrimination. Let p∗J denote the monopoly

price charged to Group J and let p∗ denote the optimal price if price discrimination

was prohibited. Assume

p∗L > p∗ > p∗H .

A social planner has to decide whether to allow or prohibit price discrimination. Ag-

gregate consumer surplus as a function of prices is given by

ACS(pl, pH) = CSL(pL) + CSH(pH)

where CSJ(p) :=
∫∞
p

DJ(p)dp and would recommend prohibition whenever CSL(p
∗)+

CSH(p
∗) > CSL(p

∗
L) + CSH(p

∗
H). As an alternative measure of aggregate welfare we

propose setting contingent utilitarianism. We assume that the planner cannot directly

implement an allocation, but instead can only affect the pricing scheme in the market,

such that set of possible alternatives is the set of allocations that can arise from any

price tuple in [c,∞)2. Then aggregate welfare under setting contingent utilitarianism

is given by

u∗(pl, pH) = nγL
1

CSL(c)
CSL(pL) + nγH

1

CSH(c)
CSH(pH).

We find that for the text-book case of linear demand, price discrimination can be so-

cially beneficial, even if low demand consumers would be served under uniform pricing.

In contrast, aggregate consumer surplus is higher under price discrimination if and only
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Figure 6: Linear demand and monopoly prices.

if low demand consumers aren’t served under the uniform price. Figure 6 shows the de-

mand and monopoly prices for DH(p) = 2000−50p, DL(p) = 7000−100p and c = 0. If

the firm is allowed to price discriminate it will charge $20 to high elasticity and $35 to

low elasticity consumers, which yields a consumer surplus of CSH($20) = $10, 000

and CSL($20) = $61, 250. If price discrimination was prohibited the firm would

charge $30 to both, which yields a consumer surplus of CSH($30) = $2, 500 and

CSL($30) = $80, 000. In order for both groups to be better off under uniform pricing,

low elasticity consumers would have to pay between $7, 500 and $18, 750 to high elas-

ticity consumers. However, if these transfers are not implemented, and they usually

aren’t, then high elasticity consumers are worse off under uniform pricing. Going from

price discrimination to uniform pricing, normalized utility of high elasticity consumers

drops from 0.25 to roughly 0.06, while it increases for low elasticity consumers from

0.25 to roughly 0.33. If both groups consist of an equal number of individuals, then

total utility is higher under price discrimination and is therefore favored by u∗. In a

sense u∗ penalizes low elasticity consumers through a lower weight on their surplus,

in order to account for the missing transfers. Note that if transfers would in fact be

implemented, then u∗ would agree with ACS, since both satisfy SP. Furthermore, u∗

accounts for how many individuals are positively and negatively affected by the policy,

whereas ACS ignores the shares of individuals in each group. If for instance the share

of consumers in Group H is below roughly 0.29 then u∗ favors the prohibition of price
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discrimination, as sufficiently many individuals in Group L are positively affected by

the policy. u∗ values individuality and has a flavor similar to the majority principle.

Finally, note that u∗, unlike ACS, can be meaningfully applied even when individual

utility is not quasi-linear.

4.2 Bargaining

Consider a worker W and an employer E bargaining over the worker’s wage. If no

agreement can be reached, then both take their respective outside option, which we

call the disagreement point and denote by d. For each i ∈ {E,W} let ui : R+ ∪{d} →

R denote the individual’s utility over the possible alternatives. The set of feasible

alternatives S is given by disagreement point and any wage that is weakly better than

d for both individuals, formally S = {d} ∪ {w ∈ R+ : ui(w) ≥ ui(d) for i ∈ {W,E}}.

We assume that for both the worker and the employer there exists a wage in S that is

strictly better than the disagreement point, which allows us to normalize ui without

loss of generality such that ui(d) = 0 and maxw∈S ui(w) = 1.

In this bargaining situation, what is the fair wage? Nash (1950) proposes

Nash := arg max
x∈△S

{uW (x)uE(x)},

whereas Kalai and Smorodinsky (1975) recommend

KS := arg max
x∈△S

{uW (x)} s.t. uW (x) = uE(x).

Unlike our aggregation rules, which produce a complete ordering over all wages in S,

the solutions offered by Nash (1950) and Kalai and Smorodinsky (1975) are choice

rules, as they only identify the planner’s most preferred alternative. To make the

different frameworks comparable, we assume that the lotteries over wages selected by

the choice rules are strictly preferred to all other lotteries by the planner. Given this

assumption, we find that neither of these rules is rational.

Proposition 4. There doesn’t exist an evaluation function ≽ that is consistent with

either Nash or KS and that satisfies RA.

Proof. It is sufficient to show that the axiom is violated in some state, so consider the

state where both the worker and employer are risk neutral. Note that in this state
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Figure 7: Comparing the different bargaining solutions.

Nash and KS is the same, namely {x ∈ △S : uW (x) = uE(x) =
1
2
}. Define w, w such

that uE(w) = uW (w) = 0 and uW (w) = uE(w) = 1. The lottery 1
2
[w] + 1

2
[w] is part

of the solution, but neither w nor w is. Hence, under both rules the planner strictly

prefers a mixture over every pure alternative in the mixture, which violates RA.

We believe that a solution to the bargaining problem should be rational and offer

menu contingent utilitarianism as an alternative. Since individual utilities are already

normalized to [0, 1] on the menu S, the socially optimal wage simply maximizes the

sum of the workers and employers utility, formally

u∗ := arg max
x∈△S

{uW (x) + uE(x)}.

Like Nash and KS, u∗ has an elegant geometric interpretation, which we demonstrate

with the help of Figure 7. The curve shows the Pareto frontier of bargaining set for

uE(w) = 1−w and uW (w) = w
2
5 . KS (circle) is the intersection of the Pareto frontier

and the dashed 45◦ line, Nash (square) maximizes the area of the rectangle spanned

by d and the Pareto frontier and u∗ (triangle) maximizes the circumference of the

rectangle spanned by d and the Pareto frontier. If the Pareto frontier is smooth, then

the slope of the Pareto frontier at u∗ is -1, as it would otherwise be possible to increase

the utility of one individual by decreasing the utility of the other individual by a lesser

amount. Hence, in this example, u∗ favors the employer relative to KS because the

slope at KS is flatter than -1 and the employer can be made significantly better off at
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Figure 8: Violation of Monotonicity by u∗.

the cost of making the worker slightly worse off. If the slope at KS were steeper than

-1, u∗ would favor the worker relative to KS.

We now consider the framework of Nash (1950) and Kalai and Smorodinsky (1975)

to see which of their axioms is violated by our bargaining solution. It is easy to see

that u∗ respects Nash’s and Kalai & Smorodinsky’s Pareto optimality and invariance

to affine transformations. To a lesser extend u∗ respects their symmetry axiom, as

the symmetric outcome is optimal in a symmetric environment, but not uniquely

optimal if the Pareto frontier is flat. Finally, u∗ violates Nash’s IIA axiom and Kalai

& Smorodinsky’s monotonicity axiom. First consider Nash’s IIA axiom and note that

despite the name, it is in fact a menu independence condition equivalent to MI. Hence,

the violation is unsurprising and of no concern, since what is fair can depend on what

is on the table. The violation of monotonicity is demonstrated by Figure 8. In the

initial bargaining set, indicated by the solid line, u∗ (circle) lies on the kink as the

slope of the Pareto frontier is flatter than -1 to the left of the kink and steeper than

-1 to the right. Increasing the bargaining set by the dashed line gives the worker a

weakly larger utility for each level of uE. Monotonicity would then require the solution

to give weakly higher utility to the worker, which in this example would mean that the

solution stays at the circle. However, the new bargaining set provides an opportunity

for the social planner to increase the employer’s utility substantially at the cost of a

slight decrease in utility for the worker. Under menu contingent utilitarianism, the
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planner takes this opportunity, resulting in a new u∗ (square).

4.3 Inter-temporal Welfare

Consider the consumption-savings problem of an inter-temporal decision maker (DM)

with finite time horizon n ≥ 3. For ease of exposition, we assume that there is no

interest on savings and no per period income. Hence, the problem reduces to allocating

the initial endowment, normalized to size 1, across time periods. The set of feasible

consumption sequences is then S = {(c1, ..., cn) ∈ [0, 1]n :
∑n

1 ct ≤ 1}. As an example,

one could think of a retired worker, who did not pay into a pension fund and who has

to decide on how to consume the wealth that she saved up prior to retirement. As in

Laibson (1997), we assume the DM discounts consumption quasi-hyperbolically, such

that the utility in period t is given by

ut(ct, ..., cn) = v(ct) + β
n∑

i=t+1

δi−tv(ci) (2)

with β, δ ∈ [0, 1] and v monotonically increasing and bounded on [0, 1]. If β <

1, the DM is dynamically inconsistent, meaning there exist consumption sequences

(c1, ..., cn), (c1, ..., ct, c
′
t+1, ..., c

′
n) ∈ S such that the DM in Period t strictly prefers

(c1, ..., cn) over (c1, ..., ct, c
′
t+1, ..., c

′
n), while in Period t + 1 her preference is reversed.

It is as if the DM consists of different selves, Self 1 to Self n, with conflicting interests.

If we want to asses which of the two sequences is better for the DM overall, we need

a welfare criterion that incorporates the perspective of each self. Two criteria are

common in the literature, the Pareto criterion and long-run utility (O’Donoghue and

Rabin, 1999)

LR(c1, ..., cn) :=
n∑

t=1

δt−1v(ci).

Before we discuss these criteria, let us first consider the case where β = 1, such

that the DM is dynamically consistent. It is conventional wisdom among economists

that in this case there is no conflict between the selves and the appropriate welfare

measure is the utility of Self 1. This view however ignores the possibility that, even

though there is no conflict looking forward, there could be a conflict looking backward.

For instance, if β = 1 and δ was close to 0, the DM would consume nearly all of the

endowment in Period 1 and leave nearly nothing for future periods. At a future period,
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the DM could regret her earlier decision and prefer she had saved more in the past.

So even though the DM is dynamically consistent, there is disagreement among the

selves. To formalize this idea, let each self t have a vNM preference ≽t over △S. This

means that Self t can compare sequences that differ in the consumption levels before

Period t. Note that, since one cannot change the past, ≽t is only partially revealed

and the revealed part is represented by ut. Now that all selves have preferences over

the same domain, we can view these conflicting interested from the perspective of

preference aggregation. This allows us to show that the common view, that for β = 1

total welfare is given Self’s 1 utility, violates the Pareto criterion. Let RQH ⊂ Rn

denote the set of preference profiles, where the revealed part can be represented by

(2).

Proposition 5. There doesn’t exist an evaluation function ≽ on the restricted domain

RQH that (i) is represented by u1 whenever R ∈ RQH is represented by (2) with β = 1

and (ii) satisfies SP.

Proof. Note that it is sufficient to show that the axiom is violated in some state.

Consider the state where each self is past indifferent, meaning for any t ∈ {2, ..., n},

(c1, ..., cn), (c
′
1, ..., c

′
t−1, ct, ..., cn) ∈ S,

(c1, ..., cn) ∼t (c
′
1, ..., c

′
t−1, ct, ..., cn).

Now consider two sequences s = (c1, ..., cn) and s′ = (c′1, c
′
2, c3..., cn) such that c1 > c′1

and v(c1) + δv(c2) = v(c′1) + δv(c′2). Then s ∼1 s
′, s′ ≻2 s and s ∼t s

′ for all t ≥ 3 and

hence by SP s′ should give strictly higher total welfare than s. If however u1 measure

total welfare of the DM, then s and s′ are equally desirable.

Let us now return to the aforementioned welfare criteria. The Pareto principle

cannot compare every sequence in S, hence is incomplete and violates RA. Long-run

utility is equal to u1 for β = 1 and therefore, as shown by Proposition 5, violates SP. As

an alternative to the established criteria, we propose menu contingent utilitarianism.

In order to apply our criterion, we have to make assumptions on individual preferences

over histories. Note that the same is true for the Pareto principle (see Goldman (1979)).

As a benchmark, we assume past indifference. Then preferences over entire sequences

are represented by (2). Next we normalize each self’s utility with respect to the best
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and worst alternative in S. Without loss of generality assume that v(0) = 0 and let

ūt = maxs∈S ut(s) denote the optimal allocation from the perspective of Self t. Then

total welfare of the DM according to menu contingent utilitarianism is given by

u∗(c1, ..., cn) :=
n∑

t=1

1

ūt

ut(ct, ..., cn) =
n∑

t=1

(
1

ūt

+ β

t−1∑
i=1

δi

ūt−i

)
︸ ︷︷ ︸

γt

v(ct).

In contrast to long-run utility, the weights γt on the per period valuation are increasing

in t. Hence, our criterion recommends an increasing consumption profile. This is

because future consumption has a positive externality on earlier selves in the form

of anticipatory utility, while later selves do not benefit from past consumption. Of

course, this is driven by our assumption of past indifference. We leave it to future

research to determine whether this assumption is plausible.

5 Conclusion

In economics we are used to modeling rational agents in the sense that these maximize

expected utility. This is the canonical model that is applied independently of the

setting. This motivates us to consider such individuals when aggregating preferences.

It also motivates us to look for a social preference relation that is rational in this

sense. Thereafter one can then treat the group of rational individuals as a single

rational individual. In particular, it allows to evaluate uncertainty as a group in the

traditional way by reducing uncertainty to risk and computing expected utility.

This paper implicitly launches a call to treat aggregated preferences as we treat

individual preferences, and thus to apply a method that is motivated universally and

not by the specific application. In particular, aggregation is more than just social

choice. We present in detail examples of bargaining, consumer welfare and individual

well being.

We pay tribute to Arrow (1963) by relaxing the axioms and assumptions therein

as little as possible. Consequently we obtain two different aggregation rules, one that

relaxes MI and one that relaxes IIA. The rule to be applied is determined by the

aspects of the comparison. MI should be relaxed whenever outside options play a role

as in bargaining. Relaxing IIA gives insights when the specific comparison has to be
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put into context. In fact, one objective of this paper is to formally introduce the notion

of a context. In our understanding, there are no small or large changes in contexts.

Instead, the context is what matters. To change the context means that something

different can matter.

The key concept in our paper is that of comparable alternatives and comparable

preferences. The concept of comparable alternatives can also be found in the axiom

of independence of inessential expansions in Sprumont (2013, 2019). However, unlike

Sprumont we do not regard this axiom as “practical convenience” (Sprumont, 2013,

p. 1021). We find that our formulation (equivalent to that of Sprumont (2013, 2019))

is as close as possible to MI. Alternatives that do not change the payoffs of each of

the individuals are irrelevant. Note that this allows each individual to have their

own reason why the alternative dropped does not change the possible payoffs of this

individual. Similarly, we find that our axiom on comparable preferences is very similar

to IIA.

Our axioms lead to relative utilitarianism. The additivity comes from the require-

ment that social preferences are rational (Harsanyi, 1955). Here the linearity of von

Neumann Morgenstern preferences comes into play. Using the additivity of appropri-

ately scaled preferences our comparability axioms allow to connect any social choice

problem to one with polar states. Anonymity implies that all alternatives in a polar

state are equally good in aggregation. This insight has implications on the original

social choice problem, namely that normalized utilities have to be summed. The ex-

treme payoffs that pin down the normalization is the part that is left over from the

polar state.

Aggregating preferences when these differ among individuals implicitly requires

that individual preferences can be compared. This is because the aggregate preference

relation will implicitly contain a judgment about how the well being of one individual

is traded off against that of another. Note that we do not make explicit assumptions

on how preferences can be compared apart from assuming anonymity. It is our axioms

that reveal that preferences can be compared once they are appropriately normalized.

We see our paper as identifying a method for applications. Thus we have included

three. Many interesting questions arise, such as the role of the individual as opposed
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to the role of the group.

Appendix A

This section contains the proofs of Theorem 1, Theorem 2, Proposition 2 and some

additional propositions and lemmas required for the proofs of the theorems.

First off, note that SP implies Pareto indifference.

Axiom PI (Pareto Indifference). For any (S,R) ∈ Ω and x, y ∈ △S, if x ∼R
i y for all

i ∈ N then x ∼(S,R)
∗ y.

We use this axiom for our first interim result.

Proposition 6. Let RA and PI be satisfied. Then for any (S,R) ∈ Ω and for any

representations (ui)i∈N of R and u∗ of ≽(S,R)
∗ there exists (λi)

n
i=0 ∈ Rn+1 such that for

all a ∈ S,

u∗(a) = λ0 +
∑
i∈N

λiui(a).

Proof. Fix (S,R) ∈ Ω. We denote the alternatives in S by a1 to am wherem = |S|. The

pay-off vector u⃗i := (ui(a1), ..., ui(am)) describes individual i′s vNM preferences over

S. By RA, the representation u∗ of ≽(S,R)
∗ must be an expected utility representation

and is therefore fully described by a pay-off vector as well. We denote this vector by

u⃗∗ := (u∗(a1), ..., u∗(am)). Let

M :=


(1, ..., 1)

u⃗1

...

u⃗n


be the pay-off matrix, which describes individual preferences over S. Note that the

proposition states that u⃗∗ is equal to some linear combination of the rows in M . We

distinguish two cases. If individual preferences are sufficiently diverse, then there are

m linearly independent rows in M , which span the entire m-fold vector space. Hence,

a linear combination of rows in M equal to u⃗∗ exists trivially, even without invoking

PI. Next consider the case where individual preferences are not sufficiently diverse,
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such that not every vector of length m can be expressed as a linear combination of

rows. In this case the maximal number of linearly independent rows is strictly below

m. Hence, the maximal number of linearly independent columns must be strictly

below m as well. As M has m columns, linearly dependent columns must exist.

Sequentially drop linearly dependent columns from M until all remaining columns are

linearly independent. Denote the set of alternatives associated with the remaining

columns by B. We call the alternatives in B the independent alternatives and the

alternatives in S \B the dependent alternatives. Note that in the resulting matrix, the

rows span the entirety of the reduced vector space. Hence, by dropping the dependent

alternatives, preferences are again sufficiently diverse to express any utility vector for

the independent alternatives. This means that we can find a linear combination of rows

of M that matches u⃗∗ in the utilities for the independent alternatives. Now consider

the dependent alternatives. For each a ∈ S \B there must exist a linear combination

of columns γa : B → R such that∑
b∈B

γa(b)u⃗(b) = u⃗(a). (3)

We will now show that each γa can be decomposed into two lotteries γa
+, γ

a
− ∈ △S such

that every individual is indifferent between these lotteries. Let Ba
+ := {b ∈ B : γa(b) ≥

0} and Ba
− := {b ∈ B : γa(b) < 0}. Since by definition the first row of M consists only

of 1’s,
∑

b∈B γa(b) = 1 and furthermore k :=
∑

b∈Ba
+
γa(b) = 1 −

∑
b∈Ba

−
γa(b). Now

define two lotteries

γa
+(b) :=


1
k
γa(b) b ∈ Ba

+

0 b /∈ Ba
+

and γa
−(b) :=


− 1

k
γa(b) b ∈ Ba

−

1
k

b = a

0 b /∈ Ba
− ∪ {a}

Note that for each i ∈ N ,
∑

b∈S γ
a
+(b)ui(b) =

∑
b∈S γ

a
−(b)ui(b), meaning each individual

is indifferent between the two lotteries. By PI, the planner must be indifferent as well.

Therefore,
∑

b∈S γ
a
+(b)u∗(b) =

∑
b∈S γ

a
−(b)u∗(b) and furthermore∑

b∈B

γa(b)u∗(b) = u∗(a). (4)

Compare this to Equation (3). The planner’s utility for any dependent alternatives is

determined from the independent alternatives in the same way as for every individ-

ual. Therefore, if a linear combination of rows of M matches the planner’s utilities
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for the independent alternatives, it must also match the utilities for the dependent

alternatives.

We say that a state (S,R) ∈ Ω is polar if (i) S has exactly n elements, which we

denote by p1 to pn, (ii) for every i ∈ N , pj ∼R
i pk for all j, k ∈ N \ {i} and (iii) either

pi ≻R
i pj for all j ∈ N \ {i} or pi ∼R

i pj for all j ∈ N \ {i}. We say that pi is i’s polar

alternative.

Proposition 7. Let RA, SP, AN, IIA and MICA be satisfied. Then for any polar

state (S,R) ∈ Ω, if i, j ∈ N have a strict preference on S then pi ∼(S,R)
∗ pj.

Proof. Assume (S,R) ∈ Ω is polar and i, j ∈ N have strict preferences on S. If

i = j the proposition is trivially satisfied so assume i ̸= j. We assume pi ≽
(S,R)
∗ pj

and show that pj ≽(S,R)
∗ pi is implied, which only leaves pi ∼(S,R)

∗ pj. We prove the

proposition by going through a sequence of preference profiles and menus. We use

roman numerals as subscripts to keep track of the different preference profiles and

menus. Let RI ∈ Rn denote the permutation of R where only preferences of i and j

are permuted. By AN, pi ≽
(S,RI)
∗ pj. Let RII ∈ Rn denote a preference profile which

agrees with RI on S and where there is qi, qj ∈ Sc such that qi ∼RII
k pi and qj ∼RII

k pj for

all k ∈ N . By our assumption that A has at least 2n + 4 elements, such alternatives

must exist. By IIA, pi ≽(S,RII)
∗ pj. Let SI := S ∪ {qi, qj}. Then pi ≽(SI,RII)

∗ pj by

MICA. Furthermore, pi ∼(SI,RII)
∗ qi and pj ∼(SI,RII)

∗ qj by SP and hence qi ≽
(SI,RII)
∗ qj

by RA. Let SII := SI \ {pi, pj}. Then qi ≽
(SII,RII)
∗ qj by MICA. Let RIII ∈ Rn denote

a preference profile which agrees with RII on SII and where qi ∼RIII
k pj and qj ∼RIII

k pi

for all k ∈ N . Then qi ≽
(SII,RIII)
∗ qj by IIA, qi ≽

(SI,RIII)
∗ qj by MICA and pj ≽

(SI,RIII)
∗ pi

by SP and RA. Furthermore, pj ≽
(S,RIII)
∗ pi by MICA. Note that RIII and R agree on

S. Therefore, pj ≽
(S,R)
∗ pi by IIA, which implies pi ∼(S,R)

∗ pj.

We now show two properties of binary relations that we will need for the proofs of

the theorems.

Lemma 1. Let ≽, ≽′ and ≽′′ be binary relations over △S. If ≽ and ≽′ agree on

B ⊆ S and ≽′ and ≽′′ agree on C ⊆ S then ≽ and ≽′′ agree on B ∩ C.

Proof. Consider any B,C ⊆ S s.t. B ∩ C ̸= ∅ and any x, y ∈ △(B ∩ C). If ≽ and ≽′

agree on B then x ≽ y if and only if x ≽′ y and if ≽′ and ≽′′ agree on C then x ≽′ y
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if and only if x ≽′′ y. Hence, for any x, y ∈ △(B ∩ C), x ≽ y if and only if x ≽′′ y,

meaning ≽ and ≽′′ agree on B ∩ C.

Lemma 2. Let ≽ be a binary relation over △S satisfying RA. For any u : S → R, if

for each distinct b, c, d ∈ S the part of ≽ on △{b, c, d} is represented by u, then ≽ is

represented by u.

Proof. Let u satisfy the premise above. Select b, c, d ∈ S such that b ≻ c. If this is not

possible, then ≽ must be totally indifferent on S, in which case the proof is trivial.

By assumption u represents ≽ on △{b, c, d}. Let û : S → R denote a representation

of ≽ where û(a) = u(a) for all a ∈ {b, c, d}. Now consider any e ∈ S \ {b, c, d}. By

assumption, both u and û represent ≽ on △{b, c, e}. Since vNM representations are

unique up to a positive affine transformation, there must exist α ∈ R+ and β ∈ R

such that u(a) = αû(a) + β for all a ∈ {b, c, e}. As û(b) = u(b) and û(c) = u(c), we

find that (1 − α)u(b) = (1 − α)u(c) which further implies α = 1 and β = 0. Hence,

û(e) = u(e). As this holds true for any e ∈ S \ {b, c, d}, we find that û = u and hence

u represents ≽.

Proof of Theorem 1

Let RA, SP, AN, IIA and MICA be satisfied and assume that |A| ≥ 2n + 4. We will

prove that for each (S,R) ∈ Ω, ≽(S,R)
∗ is represented by∑

i∈N

uS,R
i .

Fix (S,R) ∈ Ω where |S| ≥ 3. Later we consider the case |S| = 2. We will show

that for any distinct b, c, d ∈ S, the the part of ≽(S,R)
∗ on △{b, c, d} is represented by∑

i∈N uS,R
i . It then follows from Lemma 2 that ≽(S,R)

∗ is represented by
∑

i∈N uS,R
i .

The proof is done in three steps. First, we define a sequence of states, connecting

(S,R) to a polar state. Second, we show that in the final state of that sequence, social

preferences on △{b, c, d} are represented by
∑

i∈N uS,R
i . Third, we show that social

preferences in the final state agree with the social preferences in the initial state on

{b, c, d}.

We begin by defining the aforementioned sequence of states. We use roman numer-

als as subscripts to keep track of the different preference profiles and menus. If S ̸= A
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then define SI := S. If on the other hand S = A, we construct SI in the following way.

S \ {b, c, d} must have at least 2n + 1 alternatives and hence at least one alternative

a ∈ S \ {b, c, d} must be comparable relative to S \ {a} under R. In this case, let

SI := S \{a}. Either way, there is at least one alternative in Sc
I . Let RI ∈ Rn denote a

preference profile that agrees with R on SI and where there is an e ∈ Sc
I such that for

each i ∈ N , e ∼RI
i a for all a ∈ {a ∈ SI : a ≽RI

i a′ for all a′ ∈ S}. Let SII := SI ∪ {e}.

Next identify the smallest subset SIII ⊆ SII with the property that {b, c, d} ⊆ SIII and

every a ∈ SII \SIII is comparable relative to SIII under RI. Note that there are at most

n + 4 alternatives in SIII, namely b, c, d, e and n alternatives that are each worst for

exactly one individual. Hence, there are at least n alternatives in Sc
III. For any state

ω ∈ Ω, we denote the set of individuals that are not totally indifferent on the menu by

Nω
≻. Let RII ∈ Rn denote a preference profile that agrees with RI on SIII and where

there exists P ⊆ Sc
III such that (i) (P,RII) is polar, where pi ∈ P denotes i’s polar

alternative, (ii) for each i ∈ N , i ∈ N
(P,RII)
≻ if and only if i ∈ N

(SIII,RII)
≻ and (iii) for

each i ∈ N , pi ∼RII
i a for all a ∈ {a ∈ SIII : a ≽RII

i a′ for all a′ ∈ SIII} and pj ∼RII
i a

for all a ∈ {a ∈ SIII : a
′ ≽RII

i a for all a′ ∈ SIII} and j ∈ N \ {i}. This concludes the

construction of the sequence of states.

Next, we show that the part of≽(P∪SIII,RII)
∗ on△{b, c, d} is represented by

∑
i∈N uS,R

i .

By Proposition 6, there exists weights (λi)
n
i=0 ∈ Rn+1 such that ≽(P∪SIII,RII)

∗ is repre-

sented by

λ0 +
∑
i∈N

λiu
P∪SIII,RII
i .

By Proposition 7, pi ∼(P,RII)
∗ pj for all i, j ∈ N

(P,RII)
≻ . Because every alternative in

SIII is comparable relative to P under RII, by MICA pi ∼(P∪SIII,RII)
∗ pj for all i, j ∈

N
(P∪SIII,RII)
≻ as well. This implies λi = λj =: λ for all i, j ∈ N

(P∪SIII,RII)
≻ . Note that if

i /∈ N
(P∪SIII,RII)
≻ , then uP∪SIII,RII

i is constant on P ∪ SIII and λi can be normalized to λ

as the planner’s vNM representation is unique up to positive affine transformations.

Similarly, λ0 can be normalized to 0. We now show that λ > 0 and therefore λ

can be normalized to 1. We distinguish three cases. First, consider the case where

N
(P∪SIII,RII)
≻ = N and for any alternative a ∈ SIII there exists a lottery xa ∈ △P such

that a ∼RII
i xa for all i ∈ N . Then ≽(P∪SIII,RII)

∗ is totally indifferent on P ∪SIII and any

λ represents the same preferences. Second, consider the case where N
(P∪SIII,RII)
≻ = N
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and for some alternative a ∈ S such a lottery does not exist. Depending on whether∑n
i=1 u

SIII,RII
i (a) is greater or smaller than 1, one can construct a lottery over P that

either Pareto dominates a or is Pareto dominated by a. Then for SP to be satisfied,

λ has to be strictly positive. Third, if N
(P∪SIII,RII)
≻ ̸= N then for SP to be satisfied,

pi ≻(P∪SIII,RII)
∗ pj for any i ∈ N

(P∪SIII,RII)
≻ and j /∈ N

(P∪SIII,RII)
≻ . This requires λ to be

strictly positive as well. In any of the three cases, λ can be normalized to 1. Hence,

we have shown that ≽(P∪SIII,RII)
∗ is represented by∑

i∈N

uP∪SIII,RII
i .

Finally, note that we have constructed (P ∪SIII, RII) in such a way that for each i ∈ N ,

uP∪SIII,RII
i (a) = uS,R

i (a) for all a ∈ {b, c, d}. Hence, we have shown that the part of

≽(P∪SIII,RII)
∗ on △{b, c, d} is indeed represented by

∑
i∈N uS,R

i .

In the third and final step, we show that ≽(P∪SIII,RII)
∗ and ≽(S,R)

∗ agree on {b, c, d}.

≽(S,R)
∗ and ≽(SI,R)

∗ agree on {b, c, d}. (MICA)

≽(SI,R)
∗ and ≽(SI,RI)

∗ agree on {b, c, d}. (IIA)

≽(SI,RI)
∗ and ≽(SII,RI)

∗ agree on {b, c, d}. (MICA)

≽(SII,RI)
∗ and ≽(SIII,RI)

∗ agree on {b, c, d}. (MICA)

≽(SIII,RI)
∗ and ≽(SIII,RII)

∗ agree on {b, c, d}. (IIA)

≽(SIII,RII)
∗ and ≽(P∪SIII,RII)

∗ agree on {b, c, d}. (MICA)

Hence, by Lemma 1 ≽(P∪SIII,RII)
∗ and ≽(S,R)

∗ agree on {b, c, d}. This concludes the proof

for |S| ≥ 3.

Now consider |S| = 2. There must at least be 2n+2 alternatives in Sc. We consider

a different profile RI where there is a set of polar alternatives P outside of S. Then

≽(P∪S,RI)
∗ must be represented by equal weights by the above argument. By MICA,

≽(S,RI)
∗ must be represented by equal weights and by IIA ≽(S,R)

∗ must be represented

by equal weights. This concludes the proof of Theorem 1.

Next we derive an interim result required for the proof of Theorem 2.

Proposition 8. Let RA, SP, AN, MI and IICA be satisfied. Then for any polar

(S,R) ∈ Ω, if every a ∈ Sc is comparable relative to S under R and i, j ∈ N have a

strict preference on S then pi ∼(S,R)
∗ pj.
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The proof is nearly identical to the proof of Proposition 7, with the only difference

that IICA is used instead of IIA. This is possible as Proposition 8 is restricted to polar

states where all alternatives outside are comparable.

Proof of Theorem 2

Let RA, SP, AN, IICA and MI be satisfied and assume that |A| ≥ 2n + 4. We show

that for each (S,R) ∈ Ω, ≽(S,R)
∗ is represented by∑

i∈N

uA,R
i .

Note that it suffices to show that this holds for S = A, as by MI the same representa-

tion must hold for any S ⊂ A. Furthermore, note that for S = A, the representations

of both theorems coincide. Hence, we follow the proof of Theorem 1, with the caveat

that RII is selected such that every alternative in (P ∪ SIII)
c is comparable relative

to (P ∪ SIII) under RII. Then one can simply replace the use of Proposition 7 with

Proposition 8 and the use of IIA with IICA for the proof to follow through. This

concludes the proof of Theorem 2.

Proof of Proposition 2

We prove the proposition by providing a counterexample. Specifically, we identify an

evaluation function that satisfies the axioms but is not represented by the normal-

ized sum of individual utilities across all states. We begin with a counterexample

for the representation of Theorem 1. Assume that RA, SP, AN, IIA and MICA

are satisfied. Fix a state (A, R̂) ∈ Ω where no alternative is comparable relative

to the remaining alternatives under R̂. As |A| < 2n + 1, such a state must ex-

ist. Let π(R̂) denote the set containing all permutations of R̂ and R̂ itself and let

Ω̂ := {(S,R) ∈ Ω : S = A,R ∈ π(R̂)}. Now consider an evaluation function where

≽(S,R)
∗ is represented by ∑

i∈N

(∑
a∈S

uS,R
i (a)

)
uS,R
i (5)

whenever (S,R) ∈ Ω̂ and by ∑
i∈N

uS,R
i (6)
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whenever (S,R) /∈ Ω̂. Note that it could be that for all (S,R) ∈ Ω̂, (5) and (6) are

positive affine transformations of each other. So assume that (A, R̂) has been selected

such that this is not the case, which is possible by the richness of Ω. If this evaluation

function indeed satisfies our axioms, we have produced a counterexample. Note that

AN, MICA and IIA connect states, meaning they impose restrictions between states,

whereas RA and SP impose restrictions on each state separately. So to prove that

no axiom is violated, we will show that (i) no axiom connects a state in Ω̂ to a state

outside of Ω̂, (ii) (5) satisfies the restrictions imposed between any two states in Ω̂, and

(iii) (5) satisfies RA and SP for each (S,R) ∈ Ω̂. First, Ω̂ has been constructed such

that AN doesn’t connect any state in Ω̂ to a state outside of Ω̂. IIA doesn’t connect

any state in Ω̂ to another state, as there are no alternatives outside the menu. MICA

doesn’t connect any state in Ω̂ to another state, as no alternative is comparable relative

to the other alternatives in A under any R ∈ π(R̂). Second, (5) satisfies AN as the

weight on each utility function only depends on the utility function itself but not on

the index. Third, (5) assigns positive weights to all individual utility functions, unless

an individual is indifferent on A, in which case the weight can be chosen arbitrarily.

Hence, RA and SP are satisfied for each (S,R) ∈ Ω̂. This concludes the proof of

Proposition 2 in case of Theorem 1.

Next we provide a counterexample for the representation of Theorem 2. Assume

that RA, SP, AN, IICA and MI are satisfied. Fix a state (A, R̂) ∈ Ω where no

alternative is comparable relative to the remaining alternatives under R̂. As |A| <

2n + 1, such a state must exist. Let π(R̂) denote the set containing all permutations

of R̂ and R̂ itself and let Ω̂ := {(S,R) ∈ Ω : R ∈ π(R̂)}. Now consider an evaluation

function where ≽(S,R)
∗ is represented by

∑
i∈N

(∑
a∈S

uA,R
i (a)

)
uA,R
i (7)

whenever (S,R) ∈ Ω̂ and by ∑
i∈N

uA,R
i (8)

whenever (S,R) /∈ Ω̂. As before, assume that (A, R̂) has been selected such that (7)

and (8) are not positive affine transformations of each other. Note that both MI and

IICA connect states. As before, we show that (i) no axiom connects a state in Ω̂ to a
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state outside of Ω̂, (ii) (7) satisfies the restrictions imposed between any two states in

Ω̂, and (iii) (7) satisfies RA and SP for each (S,R) ∈ Ω̂. First, Ω̂ has been constructed

such that both MI and AN doesn’t connect any state in Ω̂ to a state outside of Ω̂.

IICA doesn’t connect any state in Ω̂ to another state, as no alternative is comparable

relative to the other alternatives in A under any R ∈ π(R̂). Second, (5) satisfies AN

as the weight on each utility function only depends on the utility function itself but

not on the index. (7) satisfies MI as the weights are independent of the menu. Third,

(7) assigns positive weights to all individual utility functions, unless an individual is

indifferent on A, in which case the weight can be chosen arbitrarily. Hence, RA and

SP are satisfied for each (S,R) ∈ Ω̂. This concludes the proof of Proposition 2 in case

of Theorem 2.

Appendix B

In this section we consider the case where A is either countably or uncountable infinite.

This requires us to make some adjustments to the framework and the axioms. First, in-

dividual utilities might not be bounded, in which case they cannot be normalized as in

the representations of Theorems 1 and 2. We deal with this by introducing a domain re-

striction, namely we only impose axioms on states where each individual has a best and

worst alternative in A. Formally, we define Ω to be the set of states, such that for each

(S,R) ∈ Ω, both
{
a ∈ A : a ≽R

i b for all b ∈ A
}
and

{
a ∈ A : b ≽R

i a for all b ∈ A
}
are

non-empty for all i ∈ N . Second, even if individual preferences have a best and worst

alternative in A, they might not have one for S ⊂ A. For example, if A = [0, 1] and

uR
i (a) = a for some R ∈ Rn and i ∈ N , then ≽R

i does not have a best alternative in

S = [0, 1). The non-existence of a best or worst alternative for an individual in a given

menu means that we cannot construct the specific polar state required for the proof of

Theorem 1. Therein, every alternative in the menu must be comparable relative to the

set of polar alternatives and every polar alternative must be comparable relative to the

menu. For the proof to go through, we introduce a weaker notation of comparability.

Definition 2. a ∈ A is approximately comparable relative to B ⊆ A under R ∈ Rn if
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a /∈ B and for every i ∈ N and ε ∈ (0, 1) there exists xi,ε, yi,ε ∈ △B such that

(1− ε)[a] + εxi,ε ∼R
i yi,ε.

Note that if a is comparable relative to B under R, then a is approximately comparable

relative to B under R. If A is finite, the two concepts coincide. Furthermore, if a is

approximately comparable, its utility must lie between the supremum and infimum

utility in the set for every individual, as shown by the following lemma. We will later

use this result for the representation theorem.

Lemma 3. For any R ∈ Rn and B ⊆ A, if a /∈ B and for any utility profile (uR
i )i∈N

of R,

sup
b∈B

uR
i (b) ≥ uR

i (a) ≥ inf
b∈B

uR
i (b)

for all i ∈ N then a is approximately comparable relative to B under R.

Proof. Fix (uR
i )i∈N . Note that a ∈ A is approximately comparable relative to B ⊆ A

under R ∈ Rn if and only if for every i ∈ N and ε ∈ (0, 1) there exists xi,ε, yi,ε ∈ △B

such that

(1− ε)uR
i (a) + εuR

i (xi,ε) = uR
i (yi,ε). (9)

If uR
i (a) is strictly between supb∈B uR

i (b) and infb∈B uR
i (b) one can simply select a

zi ∈ △B such that uR
i (zi) = uR

i (a) and then set xi,ε = yi,ε = zi. Then (9) is satisfied for

all ε. So assume uR
i (a) = supb∈B uR

i (b) and fix ε. Choose xi,ε arbitrarily. The left hand

side of (9) is strictly between supb∈B uR
i (b) and infb∈B uR

i (b) and hence there must be a

yi,ε ∈ △B to satisfy (9). The same argument applies when uR
i (a) = infb∈B uR

i (b).

In MICA, comparability is then replaced by approximate comparability.

Axiom MICA*. For each (S,R) ∈ Ω and S ′ ⊆ S where every a ∈ S \ S ′ is approxi-

mately comparable relative to S ′, ≽(S,R)
∗ and ≽(S′,R)

∗ agree on S ′.

With these adjustments, we can now state the equivalent of Theorem 1 when A is

infinite. For any R ∈ Rn and B ⊆ A, let ûB,R
i denote the representation of ≽R

i where

supa∈B ûB,R
i (a) = 1 and infa∈B uB,R

i (a) = 0, unless ≽R
i is indifferent on B in which case

ûB,R
i (a) = 0 for all a ∈ B.
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Theorem 3. Let A be infinite. An evaluation function ≽∗ satisfies RA, SP, AN, IIA

and MICA* if and only if for each (S,R) ∈ Ω, ≽(S,R)
∗ is represented by∑

i∈N

ûS,R
i .

Proof. First off, note that the proofs of Proposition 7, Lemma 1 and Lemma 2 go

through when there are infinitely many possible alternatives. For a proof of Proposition

6 under infinite A we refer to Mandler (2005). Now consider the proof of Theorem 1.

When constructing the sequence of states, specifically RI and RII, there might not be

a best or worst alternative in the menu for some individuals. We make the following

adjustments to the proof. Let RI ∈ Rn denote a preference profile that agrees with R

on SI and where there is an e ∈ Sc
I such that for each i ∈ N and any uRI

i representing

≽RI
i , uRI

i (e) = supa∈SI
uRI
i (a). Let RII ∈ Rn denote a preference profile that agrees with

RI on SIII and where there exists P ⊆ Sc
III such that (i) (P,RII) is polar, where pi ∈ P

denotes i’s polar alternative, (ii) for each i ∈ N , i ∈ N
(P,RII)
≻ if and only if i ∈ N

(SIII,RII)
≻

and (iii) for each i ∈ N and any uRII
i representing ≽RII

i , uRII
i (pi) = supa∈SIII

uRII
i (a) and

uRII
i (pj) = infa∈SIII

uRII
i (a) for all j ∈ N \ {i}. By Lemma 3, e is approximately

comparable to SI under RI and every alternative in P is approximately comparable

relative to SIII under RII. Then the proof of Theorem 1 goes through.

Note that Theorem 2 goes through without adjustment to the axioms.
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