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Abstract

I construct a novel random double auction as a robust bilateral trading mechanism
for a profit-maximizing intermediary who facilitates trade between a buyer and a seller.
It works as follows. The intermediary publicly commits to charging a fixed commission
fee and randomly drawing a spread from a uniform distribution. Then the buyer submits
a bid price and the seller submits an ask price simultaneously. If the difference between
the bid price and the ask price is greater than the realized spread, then the asset
is transacted at the midpoint price, and each pays the intermediary half of the fixed
commission fee. Otherwise, no trade takes place, and no one pays or receives anything.
I show that the random double auction is a dominant-strategy mechanism, always gives
a positive worst-case expected profit, and maximizes the worst-case expected profit
across all dominant-strategy mechanisms.
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1 Introduction

1.1 Background and Motivation

At every moment, a huge amount of trades are facilitated by intermediaries charging fees
for their intermediary services in matching buyers with sellers. For example, stocks are sold
through a trading platform that typically gets compensation by means of commissions; cars
are sold through an automobile dealer who charges dealer fees; many bonds, commodities
and derivatives are sold in the over-the-counter market (OTC) where a market maker earns
profits through the bid-ask spread.

There are many situations in which the uncertainty about the value of the asset being
traded is large, e.g., a newly public stock, and Tesla’s new model. Intermediaries may
then know little of the concerned parties’ willingness to trade and only have an overall
estimate about it. Given the large uncertainty towards the two-sided market, it is natural
for the intermediary to seek for a trading mechanism that guarantees a good profit. How
should a profit-maximizing intermediary design trading rules in such situations? Would the
intermediary still be able to guarantee a positive profit and thus have strict incentives to
offer intermediary services?

To answer these questions, I study the design of profit-maximizing trading mechanisms
for the two-sided market when the intermediary has limited knowledge about the value
distribution of the buyer and the seller. Specifically, I assume that the intermediary knows
only the ex-ante gain from trade1, denoted by GFT , but does not know the joint distribution
of the traders’ private values2. A joint distribution consistent with the known ex-ante gain
from trade is referred to as a feasible value distribution. The intermediary considers the
class of all dominant-strategy mechanisms3. Dominant-strategy mechanisms are attractive
because the intermediary can predict trading behavior without making assumptions about
the traders’ beliefs. The intermediary evaluates a mechanism’s performance by the expected
profit under the dominant-strategy equilibrium in the worst case across all feasible value
distributions, referred to as the profit guarantee, and seeks a mechanism that maximizes the
profit guarantee across all dominant-strategy mechanisms, referred to as a maxmin trading
mechanism.

Let me comment briefly on the maxmin modeling approach. At a high level, the maxmin
1The ex-ante gain from trade is defined to be E[max{Buyer’s value − Seller’s value, 0}], where the

expectation is taken with respect to the joint distribution of the traders’ private values.
2That is, the intermediary knows neither the marginal distributions nor the correlation structure except

for the ex-ant gain from trade, which is a summary statistics of the joint distribution.
3A trading mechanism is a dominant-strategy mechanism if each trader has a strategy that is optimal

and yields a non-negative ex-post payoff, regardless of the other trader’s strategy.
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modeling approach addresses an important issue of the classic mechanism design theory,
in which the designer is assumed to know the agents’ information structure and maximize
some objective under her known information structure, e.g., Myerson (1981), Myerson and
Satterthwaite (1983) and Crémer and McLean (1985, 1988). Although the classic theory
is beautiful and influential, the optimal mechanism is sensitive to the detailed assumptions
about the information structure. In contrast, the maxmin modeling approach leads to an
answer that depends less on the details about the information structure.

Several motivations can be offered for the assumption about the intermediary’s limited
knowledge. First, the ex-ante gain from trade is a simple summary statistics, whereas the
joint distribution is a high-dimensional object. Therefore, it is relatively easy to estimate the
ex-ante gain from trade, while obtaining an accurate estimate of the whole joint distribution
often requires unrealistically many data about the traders’ joint value profiles. In addition,
the knowledge of the ex-ante gain from trade is arguably the minimal amount of information
under which, as I will show, one obtains a non-trivial answer. Therefore, this model can be
viewed as a natural benchmark. More importantly, this assumption leads to the discovery of
a novel trading mechanism with appealing properties along with new economic insights.

1.2 Results

The main contribution is the construction of a novel random double auction as a robust
bilateral trading mechanism. It works as follows.
Step 0: Fixed commission fee . The intermediary publicly commits to charging a fixed
commission fee r ∈ (0, 1)4, where 1 is the normalized maximum value for each trader.
Step 1: Uniformly random spread . The intermediary publicly commits to randomly
drawing a spread s uniformly on [r, 1]. Then a random spread is drawn whose realization is
not observed by either the buyer or the seller. The buyer and the seller both know r and
the uniform distribution on [r, 1] from which the random spread is drawn.
Step 2: Midpoint transaction price . The buyer submits a bid price b, and the seller
submits an ask price a, simultaneously. If the difference between the bid price and the ask
price is greater than the realized spread, or b − a > s, then the seller sells the asset to the
buyer at the midpoint price b+a

2
, and each pays the intermediary half of the fixed commission

fee r
2
. Otherwise, no trade takes place, and no one pays or receives anything.

Under this mechanism, the uniformly random spread determines whether the transaction
is successful for a bid-ask pair. That is, trade takes place randomly. Conditional on trading,
the mechanism reduces to a double auction, as the transaction price is the midpoint of the

4The optimal fixed commission fee r is determined by the known ex-ante gain from trade, details of
which are given when deriving the profit guarantee of the random double auction.
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bid price and the ask price; in addition, the intermediary earns r as a fixed total commission
from both parties. Although both traders have to pay half of the fixed commission fee to
the intermediary conditional on trading, this mechanism is ex-post individually rational:
Each trader’s ex-post payoff is always non-negative by being honest, regardless of the other
trader’s submission. This is because the lower bound of the random spread is the fixed
commission fee.

The random double auction is a novel trading mechanism that combines three features:
A double auction, a fixed commission fee, and a random spread. Indeed, the first two features
are familiar in the real world. First, a double auction is widely used in stock exchanges as well
as in dark pools5, e.g., the New York Stock Exchange (NYSE) and the Tokyo Stock Exchange
(TSE) use a double auction to determine the opening prices; block-trading dark pools such as
Liquidnet or POSIT typically match orders at the midpoint of the prevailing bid-ask prices
(Duffie and Zhu, 2017). Second, brokerage firms often adopt the fixed-commission practice,
e.g., Interactive Brokers offers fixed-commission plans for many financial assets6; E*TRADE
charges a fixed commission per contract for futures contracts7. The main novelty of the
random double auction comes from the third feature— a random spread8. Importantly,
the random spread both disciplines the traders for cheating and hedges against uncertainty
towards the traders’ information structure. I next illustrate the key properties of the random
double auction along with elaborating the dual role played by the random spread.

Strategy-proofness. The random double auction is strategy-proof (Proposition 1),
i.e., it is a dominant strategy for the buyer (resp, the seller) to submit a bid price (resp, an
ask price) equal to his private value. This is a priori surprising, as conditional on trading,
the mechanism reduces to a double auction, and a double auction per se is not strategy-
proof (Chatterjee and Samuelson, 1983). This is because, the buyer (resp, the seller) has an
incentive to submit a bid price (resp, an ask price) lower (resp, higher) than his true value to
lower (resp, raise) the transaction price. A random spread makes it costly for the traders to

5A dark pool is a privately organized financial forum or exchange for trading securities that are not
accessible by the investing public. Dark pools came about primarily to facilitate block trading involving a
huge number of securities.

6Interactive Brokers is a brokerage firm. From its official website (interactivebrokers.com), it offers a
fixed-commission plan that charges $0.005 per share for stocks in US; it also offers a fixed-commission plan
that charges $ 0.065 per contract for NANOS Options on CBOE.

7E*TRADE is also a brokerage firm. From its official website (us.etrade.com), it charges $1.5 per contract
for futures contracts.

8The spread s in the random double auction is closely related to but different from the “bid-ask spread”,
also called “market-maker spread”, which refers to the difference between the price at which a market-maker
is willing to buy an asset and the price at which she is willing to sell the asset. Similar to the spread s,
the bid-ask spread determines whether a trade takes place given a bid-ask pair. The bid-ask spread is an
important source of profit for a market maker when she facilitates a trade successfully. In contrast, the
spread s only determines whether a trade takes place, but does not affect the profit conditional on trading.
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cheat. This is because, with a random spread, if the buyer (resp, the seller) submits a lower
bid price (resp, a higher ask price), then the trade will take place with a lower probability,
which limits the buyer’s (resp, the seller’s) payoff from deviating to a lower bid price (resp,
a higher ask price). Remarkably, a judiciously chosen random spread — uniformly random
spread — eliminates the traders’ incentive to cheat and makes the mechanism strategy-proof.
To see this, note that the buyer’s ex-post payoff from submitting a bid price b when his true
value is vB and the seller submits an ask price a (assuming trade takes place with a positive
probability) is

b− a− r

1− r
·
(
vB − b+ a+ r

2

)
, (1)

where the first term is the trading probability and the second term is the ex-post payoff of
the buyer conditional on trading. Note that (1) is a quadratic function in the bid price b. It
is straightforward to show that b = vB maximizes his ex-post payoff regardless of the seller’s
submitted ask price a. Similarly, truth-telling maximizes the ex-post payoff for the seller
regardless of the buyer’s submitted bid price b.

Positive profit guarantee. The profit guarantee of the random double auction is
always positive (Proposition 2). This is in sharp contrast to any deterministic dominant-
strategy mechanism: As I will show in Theorem 5, the profit guarantee of any deterministic
dominant-strategy mechanism is zero if the known ex-ante gain from trade is weakly below
one half.

To derive the profit guarantee of a random double auction with a general fixed commission
fee, I first show that the ex-post profit earned from an arbitrary value profile (vB, vS) is
max

{
vB−vS−r

1−r
· r, 0

}
. To see this, note that the profit collected from a bid-ask pair (b, a) if

b− a > r is
b− a− r

1− r
· r, (2)

where the first term is the trading probability and the second term is the profit conditional on
trading. Importantly, (2) is linear in the difference between the bid and the ask, as uniformly
random spread translates into a linear trading probability, and the profit conditional on
trading is the fixed commission fee. If b− a ≤ r, then the trade will not take place and the
profit is trivially zero. Recall that the bid price (resp, the ask price) is equal to the true
value of the buyer (resp, the seller) because the mechanism is strategy-proof. Next, I show
that a lower bound on the expected profit is max

{
GFT−r
1−r

· r, 0
}
. To see this, note that the

expected profit 9

E
[
max

{
max{vB−vS ,0}−r

1−r
· r, 0

}]
≥ max

{
E
[
max{vB−vS ,0}−r

1−r
· r
]
, 0
}
= max

{
GFT−r
1−r

· r, 0
}
,

9Observe that max{vB − vS , 0} = vB − vS when vB − vS > r.
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where the inequality follows from Jensen’s inequality, and the equality follows from the
linearity of the ex-post profit when it is positive. Finally, I show that the lower bound is
tight, i.e., the profit guarantee is max

{
GFT−r
1−r

· r, 0
}
. To see this, note that a degenerate

distribution— a point mass on the value profile (GFT, 0)— hits the lower bound. Indeed,
a random double auction with any positive fixed commission fee below the ex-ante gain
from trade has a positive profit guarantee. A high fixed commission fee translates into a
high profit conditional on trading, but also leads to a low trading probability. Optimal
fixed commission fee r = 1 −

√
1−GFT balances these two effects, resulting in the profit

guarantee of
(
1−

√
1−GFT

)2.
Furthermore, the random double auction exhibits a good hedging property: The

intermediary is indifferent to any feasible value distribution whose support is contained in the
set of value profiles where the difference between values is higher than the fixed commission
fee, which renders the random double auction a good candidate for a maxmin trading
mechanism. This property holds because the ex-post profit from any value profile in the
support of an aforementioned feasible value distribution is linear. Indeed, any aforementioned
feasible value distribution minimizes the expected profit under the random double auction.

Optimal profit guarantee. The random double auction gives the optimal profit
guarantee across all dominant-strategy mechanisms (Theorem 1). To show this, I construct
a feasible value distribution, and show that

(
1−

√
1−GFT

)2 is the tight upper bound on
the expected profit across all dominant-strategy mechanisms against the constructed value
distribution. In addition, this upper bound is hit by the random double auction.

The constructed value distribution is a symmetric triangular value distribution that can
be described as follows. The support is a symmetric triangular subset in the set of joint
values, which is the same as the trading region10 of the random double auction. The marginal
distribution for the buyer is a combination of a uniform distribution on (r, 1) and an atom
on 1, while for the seller is a combination of a uniform distribution on (0, 1− r) and an atom
on 0. The conditional distribution is some truncated generalized Pareto distribution with
an atom on 1 (resp, 0) for the buyer (resp, the seller).

There are many different ways to model the intermediary’s limited knowledge about
the value distribution, and the results can be extended to several other models of the
limited knowledge. For the model where the intermediary knows only the difference between
the expectations of the traders’ values, I show that the random double auction remains
a maxmin trading mechanism. For the model where the intermediary knows only the
expectations of the traders’ values, I show that the random double auction remains a maxmin

10I refer to the set of value profiles in which trade takes place with a positive probability as the trading
region.
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trading mechanism for the symmetric11 informational environment. For the asymmetric
informational environment, I show that a generalized random double auction is a maxmin
trading mechanism. It generalizes the random double auction in that it approximates the
random double auction as the asymmetric informational environment approximates the
symmetric one.

Randomized trading is a salient property of the random double auction. This requires
the intermediary to have full commitment power, which is a standard assumption in the
mechanism design literature (e.g., Myerson (1981)). However, in practice, it is hard for the
traders to check whether the randomization is done according to the specified trading rule.
The traders then may not trust the specified randomization. This motivates the search for
a trading mechanism that maximizes the profit guarantee across all deterministic dominant-
strategy mechanisms. Such a trading mechanism is referred to as a maxmin deterministic
trading mechanism. I characterize the class of maxmin deterministic trading mechanisms for
any informational environment with a non-trivial profit guarantee (Theorem 5). Examples
of maxmin deterministic trading mechanisms include a linear trading mechanism, in which
trade takes place with probability one if and only if the difference between the bid price and
the ask price exceeds a threshold, and a double posted-price trading mechanism, in which
trade takes place with probability one if and only if the bid price exceeds a threshold and
the ask price falls short of a threshold.

In addition, I extend my result to a more general model in which the intermediary can
hold the asset. That is, the sum of the traders’ allocations is only required to be weakly
less than 1. I show that the random double auction remains a maxmin trading mechanism
(Theorem 6). Finally, I apply my result to an information design problem in which a financial
regulator can choose a probability distribution of the value profile of the buyer and the seller
to maximize their welfare. The intermediary, after observing the choice of the distribution
but not the realized joint values, designs a profit-maximizing trading mechanism across all
dominant-strategy mechanisms. I show that the symmetric triangular value distribution is
a solution to this financial regulator’s information design problem (Theorem 7).

The remainder of the introduction discusses the related literature. Section 2 presents
the model. Section 3 characterizes the main results. Section 4 characterizes the results for
other models of limited knowledge. Section 5 characterizes the class of maxmin deterministic
trading mechanisms. Section 6 extends and discusses the main results. Preliminary analysis
and omitted proofs are in the Appendix.

11Roughly speaking, the (a)symmetric information environment is one where the two-sided markets have
(non-)identical willingness to trade on average.
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1.3 Related Literature

This paper is related to the classic mechanism design literature. Myerson and Satterthwaite
(1983) (henceforth MS) study the design of optimal bilateral trading mechanisms assuming
the intermediary knows the distribution of the traders’ private values and that these values
are independently distributed. In contrast, the intermediary in my paper knows only the
ex-ante gain from trade, but does not know the joint distribution of the traders’ values.
Importantly, I permit correlation between values. The intermediary in MS maximizes
expected profit, whereas the intermediary in my paper maximizes the worst-case expected
profit. The optimal trading mechanism in MS is deterministic, provided that some regularity
conditions hold, whereas the maxmin trading mechanism in my paper involves randomized
trade. Moreover, the optimal trading mechanism in MS is in general complicated. Under
their mechanism, the trade takes place if and only if the buyer’s virtual value is greater
than the seller’s one. These virtual values, however, depend on the fine details of the value
distributions, and are non-linear functions of the traders’ values in general12. In contrast,
the maxmin trading mechanism in my paper is simple. Under the random double auction,
the trade takes place if and only if the difference between the traders’ values is greater than
a uniformly random spread.

This paper contributes to the literature on robust mechanism design. One of the main
differences is that I focus on a two-sided market, whereas most of the literature focuses on
a one-sided market.

Carrasco et al. (2018) study the design of profit-maximizing selling mechanisms when
a seller faced with a single buyer only knows the first n moments of the buyer’s value
distribution (n can be any positive integer), and solve the problem in which the seller only
knows the expectation of the buyer’s value as a special case. Indeed, their problem in the
special case is equivalent to the intermediary’s problem when she knows the ex-ante gain
from trade and the seller’s value is commonly known to be zero. This is because the ex-ante
gain from trade is the same as the expectation of the buyer’s value if the seller’s value is zero.
In contrast, my paper studies the intermediary’s problem when she knows only the ex-ante
gain from trade. Importantly, there is two-sided private information in my paper. This adds
complications to the analysis in two ways. First, the mechanism in my paper has to respect
the seller’s incentive constraint, in addition to the buyer’s one. Second, the intermediary
is faced with a stronger “adversary” in my paper: The adversary can carefully choose the
correlation structure between the traders’ values to minimize the expected profit, in addition
to choosing the distribution of the buyer’s value. Indeed, the worst value distribution in my

12Except for a special circumstance in which both traders’ value are uniformly distributed.

8



paper has a rather intricate correlation structure exhibiting a particular positive correlation.
Zhang (2022) considers a model of one-sided auction design in which the designer (the

auctioneer) knows the marginal distribution of each bidder’s value but does not know the
correlation structure. He finds that the second-price auction with the uniformly random
reserve price is a maxmin auction across all dominant-strategy mechanisms under certain
regularity conditions for the two-bidder case. In contrast, this paper studies a model of
two-sided bilateral trade. In addition, the designer (the intermediary) in this paper knows
less: She does not know the marginal distribution of each trader’s value, in addition to not
knowing the correlation structure between the traders’ values. Methodologically, both papers
construct worst value distributions to proceed the analysis. However, the construction of the
worst value distribution is more involved in this paper: It requires me to solve a partial
integral equation in addition to ordinary differential equations.

There are other papers seeking robustness to value distributions in a one-side market,
e.g., Auster (2018), Bergemann and Schlag (2011), Carroll (2017), Che and Zhong (2021).
A separate strand of papers focuses on the case in which the designer does not have reliable
information about the agents’ hierarchies of beliefs about each other while assuming the
knowledge of the payoff environment, e.g., Bergemann and Morris (2005), Chung and Ely
(2007), Chen and Li (2018), Bergemann et al. (2016, 2017, 2019), Du (2018), Brooks and
Du (2021), Libgober and Mu (2021), Yamashita and Zhu (2018).

This paper contributes to the double auction literature. Chatterjee and Samuelson (1983)
analyze the simplest and most well-known double auction mechanism: If the bid price is
higher than the ask price, then trade takes place, and the transaction price is the midpoint
price; otherwise no trade takes place, and no one pays or receives anything. This mechanism
has an undesirable property: Both traders have incentives to cheat under this mechanism.
McAfee (1992) shows how to make the double auction mechanism strategy-proof when there
are many buyers and sellers. However, McAfee’s mechanism reduces to “no trade” when there
are only one buyer and one seller. McAfee achieves strategy-proofness by making the price
paid by any trader invariant to that trader’s report conditional on trading.13 In contrast,
under the random double auction, a trader’s report can still affect the price paid (midpoint
price) conditional on trading. I achieve the strategy-proofness by introducing a random
spread, which lowers the trading probability if the buyer (resp, the seller) underbids (resp,
overbids) his value.

13Under McAfee’s mechanism, the only way a trader can affect the price is by eliminating himself from
trading.
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2 Model

2.1 Trading Environment

I consider an environment where an asset is traded between two risk-neutral traders through
an intermediary. One of the traders is the seller (S), who holds the asset initially, while the
other one is the buyer (B), who does not hold the asset initially. I denote by I = {S,B}
the set of the traders and i ∈ I is a trader. Each trader i has private information about
his value for the asset, which is modeled as a random variable vi. I denote by Vi the set of
possible values of trader i. Throughout, I assume VS = VB. I assume that Vi is bounded. As
a normalization, I assume that Vi = [0, 1]. The set of possible value profiles is denoted by
V = [0, 1]2 with a typical value profile v. vB and vS may be correlated in an arbitrary way.
I denote by π the joint distribution of the value profile. In addition, there is no technical
assumption on π. That is, π can be continuous, discrete, or any mixtures. The set of all
joint distributions on V is denoted by ∆V .

2.2 Knowledge

The intermediary only knows the ex-ant gain from trade GFT , but does not know the joint
distribution π. Formally, I denote by

Π(GFT ) =

{
π ∈ ∆V :

∫
max{vB − vS, 0}dπ(v) = GFT

}
the collection of joint distributions that are consistent with the known ex-ante gain from
trade. I refer to any π ∈ Π(GFT ) as a feasible value distribution. I assume GFT ∈ (0, 1) to
rule out uninteresting cases.

2.3 Dominant-strategy Mechanisms

The intermediary seeks a dominant-strategy mechanism. The revelation principle holds,
and it is without loss of generality to restrict attention to direct trading mechanisms. A
direct trading mechanism (q, tB, tS) consists of a trading rule q : V → [0, 1], a payment rule
tB : V → R and a transfer rule tS : V → R.14 The buyer submits a bid price b and the
seller submits an ask price a simultaneously to the intermediary. Upon receiving the bid-
ask pair (b, a), the buyer obtains the asset with probability q(b, a) and pays tB(b, a) to the

14q is the probability that the buyer obtains the asset when the asset is indivisible. I allow randomization,
which will play a crucial role in my analysis. q can be interpreted as the trading quantity when the asset is
divisible.
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intermediary, while the seller holds the good with the remaining probability 1− q(b, a) and
receives tS(b, a) from the intermediary. With slight abuse of notation, I sometimes use the
true value profile v = (vB, vS) to represent the submitted bid-ask pair because each trader
truthfully reports his value in the dominant-strategy equilibrium.

A direct trading mechanism (q, tB, tS) is a dominant-strategy mechanism if

vBq(v)− tB(v) ≥ vBq(v
′
B, vS)− tB(v

′
B, vS), ∀v ∈ V, v′B ∈ VB; (DSICB)

vBq(v)− tB(v) ≥ 0, ∀v ∈ V ; (EPIRB)

vS(1− q(v)) + tS(v) ≥ vS(1− q(vB, v
′
S)) + tS(vB, v

′
S), ∀v ∈ V, v′S ∈ VS; (DSICS)

vS(1− q(v)) + tS(v) ≥ vS, ∀v ∈ V. (EPIRS)

The set of all dominant-strategy mechanisms is denoted by D.

2.4 Objective

I am interested in the intermediary’s expected profit in the dominant-strategy equilibrium
in which each trader truthfully reports his value of the asset. The expected profit of a
dominant-strategy mechanism (q, tB, tS) under the joint distribution π is U((q, tB, tS), π) =∫
v∈V t(v)dπ(v) where t(v) = tB(v)− tS(v), referred to as the ex-post profit. The intermediary

evaluates a trading mechanism by its worst-case expected profit over all feasible value
distributions. Formally, the intermediary evaluates a trading mechanism (q, tB, tS) by its
profit guarantee PG((q, tB, tS)), defined as

inf
π∈Π(GFT )

U((q, tB, tS), π). (PG)

The intermediary aims to find a trading mechanism (q∗, t∗B, t
∗
S), referred to as a maxmin

trading mechanism, that maximizes the profit guarantee. Formally, the intermediary solves

sup
(q,tB ,tS)∈D

PG((q, tB, tS)). (MTM)

3 Main Results

Recall the random double auction: Given a submitted bid-ask pair (b, a), if b − a > s

in which s is a random spread drawn from the uniform distribution on [r, 1] where r =

1 −
√
1−GFT ∈ (0, 1) is the fixed commission fee, then trade takes place at the midpoint

price p = b+a
2

, and each pays the intermediary r
2
; otherwise, trade does not take place, and
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no one pays or receives anything.
It is straightforward to show that the random double auction can also be expressed as

follows. If b− a > r,

q∗(b, a) =
1

1− r
· (b− a− r) ,

t∗B(b, a) =
1

2(1− r)
·
[
b2 − (a+ r)2

]
,

t∗S(b, a) =
1

2(1− r)
·
[
(b− r)2 − a2

]
.

If b− a ≤ r,
q∗(b, a) = t∗B(b, a) = t∗S(b, a) = 0.

The trading rule is a linear function; the payment rule and the transfer rule are both
quadratic functions. In addition, this mechanism satisfies the standard weak budget balance
property (as in Myerson and Satterthwaite (1983)), i.e., the intermediary never subsidizes
the market.

3.1 Strategy-proofness

Proposition 1 (Strategy-proofness). The random double auction is strategy-proof.

The proof has been given in the introduction. The key idea is to use a random spread to
decrease the traders’ incentive to deviate in the double auction.

Remark 1 (Dropping the risk-neutral assumption). This idea does not rely on the
assumption that the traders are risk-neutral. Suppose that the traders’ von Neumann-
Morgenstern utility function is u(x) = xα where α > 0 and α ̸= 1. Note that the traders
are risk-averse (resp, risk-loving) if α < 1 (resp, α > 1). Now I modify the random spread
distribution so that the cumulative distribution function of the random spread s is

(
s−r
1−r

)α on
the same support [r, 1], then the random double auction is again strategy-proof. To see this,
note that the non-risk-neutral buyer’s ex-post utility from submitting a bid price b when his
true value is vB and the seller submits an ask price a (assuming trade takes place with a
positive probability) becomes(

b− a− r

1− r

)α

·
(
vB − b+ a+ r

2

)α

,

where the first term is the trading probability given the modified random spread distribution
and the second term is the ex-post utility of the buyer conditional on trading. It is
straightforward that b = vB maximizes his ex-post utility regardless of the seller’s submitted
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ask price a, as a monotonic transformation preserves the optimal solution. Similarly, truthful-
telling maximizes the ex-post utility for the seller regardless of the buyer’s submitted bid
price b.

3.2 Positive Profit Guarantee

Proposition 2 (Positive profit guarantee). The random double auction has a positive profit
guarantee for any non-trivial informational environment. The amount of the profit guarantee
is

(
1−

√
1−GFT

)2.
The proof has been given in the introduction. In its essentials, the ex-post profit under

the random double auction is a convex function in the ex-post gain from trade. Therefore, a
point mass on the value profile (GFT, 0) minimizes the expected profit across feasible value
distributions.

Remark 2 (Positive welfare guarantee). In terms of the traders’ welfare, how does the
random double auction perform? Define the ex-post welfare for a value profile (vB, vS) as the
sum of the traders’ ex-post payoffs, or q(v)(vB − vS)− (tB(v)− tS(v)). The expected welfare
and the welfare guarantee can then be similarly defined. I will show below that the random
double auction has a positive welfare guarantee.

To derive the welfare guarantee of the random double auction, I first show that the ex-
post welfare given an arbitrary value profile (vB, vS) is (vB−vS−r)2

1−r
1vB−vS>r. To see this, note

that the welfare from a bid-ask pair (b, a) if b− a > r is

b− a− r

1− r
· (vB − vS − r) ,

where the first term is the trading probability and the second term is the realized welfare
conditional on trading. If b − a ≤ r, then the trade will not take place and the realized
welfare is trivially zero. Recall that the bid price (resp, the ask price) is equal to the true
value of the buyer (resp, the seller) because the mechanism is strategy-proof. Next, I show
that a lower bound on the expected welfare is (GFT−r)2

1−r
. To see this, note that the expected
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welfare

E

[
(vB − vS − r)2

1− r
1vB−vS>r

]
= E

[
((vB − vS − r)1vB−vS>r)

2

1− r

]
≥ (E [(vB − vS − r)1vB−vS>r])

2

1− r

=
(E [max{vB − vS − r, 0}])2

1− r

≥ (E [max{vB − vS, 0} − r])2

1− r

=
(GFT − r)2

1− r
,

where the first line follows from 1vB−vS>r = 1
2
vB−vS>r, the second line follows from Jensen’s

inequality, the third line follows from (vB−vS−r)1vB−vS>r = max{vB−vS−r, 0}, the fourth
line follows from max{vB − vS − r, 0} ≥ max{vB − vS, 0} − r, and the last line follows from
the definition of GFT . Finally, I show that the lower bound is tight, i.e., the gain from trade
guarantee is (GFT−r)2

1−r
. To see this, note that a degenerate distribution— a point mass on the

value profile (GFT, 0)— hits the lower bound. Clearly, any fixed commission fee below the
difference between the ex-ante gain from trade leads to a positive welfare guarantee. Raising
fixed commission fee leads to both a low welfare conditional on trading and a low trading
probability. Therefore, optimal fixed commission fee (for welfare) is zero, resulting in the
welfare guarantee of GFT 2.

3.3 Optimal Profit Guarantee

In this section, I will show that the random double auction is a maxmin trading mechanism
(Theorem 1) by constructing a feasible value distribution, referred to as a worst value
distribution, and showing that

(
1−

√
1−GFT

)2 is the tight upper bound on expected profit
across all dominant-strategy mechanisms against the worst value distribution. In addition,
the random double auction is an optimal mechanism against the worst value distribution.
Essentially, the random double auction and the worst value distribution form a “saddle
point”: The random double auction maximizes the expected profit given the worst value
distribution, and the worst value distribution minimizes the expected profit under the random
double auction. The properties of a saddle point imply that the random double auction is
maxmin optimal. More details about the saddle point approach are given in Appendix A.1.
Subsection 3.3.1 gives details about the construction of the worst value distribution.

Let me first specify the symmetric triangular value distribution, which is the worst value
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Figure 1: Symmetric Triangular Value Distribution

distribution that I construct. The support is a symmetric triangular subset of joint values
ST := {v ∈ V |vB − vS > r}. The marginal distribution for the buyer is a combination
of a uniform distribution on (r, 1) and an atom of size r on 1: π∗

B(vB) = 1 for vB ∈ (r, 1)

and Pr∗B(1) = r. The marginal distribution for the seller is a combination of a uniform
distribution on (0, 1 − r) and an atom of size r on 0: π∗

S(vS) = 1 for vS ∈ (0, 1 − r)

and Pr∗S(0) = r. The conditional distribution for the buyer is a combination of some
generalized Pareto distribution on (vS + r, 1) and an atom on 1: When vS ∈ (0, 1 − r),
π∗
B(vB|vS) = 2r2

(vB−vS)3
for vB ∈ (vS + r, 1) and Pr∗B(vB = 1|vS) = r2

(1−vS)2
; when vS = 0,

π∗
B(vB|vS = 0) = r

(vB)2
for vB ∈ (r, 1) and Pr∗B(vB = 1|vS = 0) = r. The conditional

distribution for the seller is a combination of some generalized Pareto distribution on
(0, vB − r) and an atom on 0: When vB ∈ (r, 1), π∗

S(vS|vB) = 2r2

(vB−vS)3
for vS ∈ (0, vB − r)

and Pr∗S(vS = 0|vB) = r2

(vB)2
; when vB = 1, π∗

S(vS|vB = 1) = r
(1−vS)2

for vS ∈ (0, 1 − r) and
Pr∗S(vS = 0|vB = 1) = r.

Equivalently, the symmetric triangular value distribution can be described as a
combination of a joint density function on ST\{(1, 0)} and an atom of size r2 on the value
profile (1, 0) as follows (See Figure 1).

π∗(vB, vS) =


2r2

(vB−vS)3
if vB − vS > r, vB ̸= 1 and vS ̸= 0,

r2

(1−vS)2
if vB = 1 and 0 < vS < 1− r,

r2

(vB)2
if r < vB < 1 and vS = 0.

P r∗(1, 0) = r2.

To construct the symmetric triangular value distribution, it is useful to define a “virtual
value”.

Definition 1 (Virtual value). Fix any value distribution π15, the expected profit of an
15 For exposition, I assume that π is differentiable everywhere when deriving the virtual values. It can
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optimal trading mechanism (q, tB, tS) admits a “virtual” representation16:

E[t(v)] =

∫
q(v)ϕ(v)dπ(v),

where ϕ(v) := (vB−vS)−
(

1−ΠB(vB |vS)
πB(vB |vS)

+ ΠS(vS |vB)
πS(vS |vB)

)
is defined to be the “virtual value”17 of the

value profile (vB, vS), where the first term is the maximum possible profit the intermediary
could have earned if she knew the value profile (vB, vS), and the second term is the sum
of the traders’ information rents, which are pinned down by dominant-strategy incentive
compatibility and the binding ex-post participation constraints of zero-value buyer and one-
value seller. Here πB(·|·) and ΠB(·|·) (resp, πS(·|·) and ΠS(·|·)) are conditional PDF and
conditional CDF for the buyer (resp, the seller).

Using the virtual value, the problem of maximizing the expected profit across all
dominant-strategy mechanisms is equivalent to the problem of maximizing the expected
virtual value of the value profile in which trade takes places, subject to that the
trading rule is monotone18 (a monotonicity constraint associated with dominant-strategy
incentive compatibility). This simplifies the problem, as one can now point-wise maximize
the objective, ignoring the monotonicity constriant19. The symmetric triangular value
distribution is constructed by solving a zero virtual value condition requiring the virtual
value be zero for any value profile in the support except for the highest joint type. The
intuition behind this condition is that the intermediary is indifferent between trading and
no trading for any those value profiles under the random double auction.

Lemma 1. The symmetric triangular value distribution satisfies a zero virtual value
condition for any value profile in the support except for the highest joint type. Formally,

ϕ(v) = 0, ∀v ∈ ST\{(1, 0)}. (ZVV)

Indeed, this condition guarantees that the intermediary is indifferent to any dominant-
strategy mechanism in which 1) trade does not take place if the value profile lies outside the
support and trade takes place with probability one when the value profile is (1, 0), and 2)
ex-post participation constraints are binding for zero-value buyer and one-value seller. In

be easily extended to joint distributions which admits an atom on the value profile (1, 0).
16The details are given in Appendix A.2.
17This is a straightforward adaptation of the virtual value in Myerson and Satterthwaite (1983) to

dominant-strategy mechanisms and the correlated private value environment.
18A trading rule q is monotone if q is non-decreasing in vB and non-increasing in vS . This is analogous

to a monotone allocation rule in the auction design. Details are given in Appendix A.2.
19Of course, one need to check that the monotonicity constraint holds in the end.
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addition, such a trading mechanism is an optimal trading mechanism given the symmetric
triangular value distribution. Using the virtual representation, the optimal expected profit
given the symmetric triangular value distribution is

Pr∗(1, 0)× 1 =
(
1−

√
1−GFT

)2

.

This is because (1, 0) is the only value profile with a positive virtual value, and its virtual
value is 1 as it is the highest joint type.

To understand why the symmetric triangular value distribution is a worst value
distribution, it is useful to observe that it exhibits a positive correlation: If the buyer’s
value is higher, then the seller’s value is more likely to be higher as well. Intuitively, positive
correlation levels the maximal gain from trade across value profiles and therefore limits
the intermediary’s incentive to discriminate across value profiles. Indeed, the symmetric
triangular value distribution exhibits “extreme” positive correlation in the following sense: It
renders the intermediary indifferent across all value profiles in the support but the highest
joint type (1, 0).

Definition 2 (Positive correlation for bivariate distributions). Let Z = (X, Y ) be a bivariate
random vector whose distribution is F . I say that Z exhibits positive correlation for DX and
DY if F (X|Y = y) first order stochastically dominates F (X|Y = y′) for any y > y′, y, y′ ∈ DY

and F (Y |X = x) first order stochastically dominates F (Y |X = x′) for any x > x′, x, x′ ∈ DX .

Lemma 2. The symmetric triangular value distribution exhibits a positive correlation for
r < vB < 1 and 0 < vS < 1− r.20

Theorem 1. The random double auction is a maxmin trading mechanism with a profit
guarantee of

(
1−

√
1−GFT

)2, and the symmetric triangular value distribution is a worst
value distribution.

Remark 3. It is useful to compare the profit guarantee of the random double auction and
the optimal profit across dominant-strategy mechanisms if the value distribution were known
to the intermediary. One case could be the following value distribution: The buyer’s value
follows a uniform distribution on [GFT, 1] and the seller’s value follows a uniform distribution
on [0, 1−GFT ]; their values are independent. By a straightforward adaptation of the revenue
equivalence theorem, the profit achievable by the optimal dominant-strategy mechanism can

20To see this, note that Π∗
S(vS |vB) = r2

(vB−vS)2 is decreasing w.r.t. vB for vB ∈ (r, 1). When vB = 1,

Π∗
S(vS |vB = 1) = r

1−vS
≥ r2

(1−vS)2 , so the positive correlation breaks when vB = 1. Similarly, Π∗
B(vB |vS) =

1− r2

(vB−vS)2 is decreasing w.r.t. vS for vS ∈ (0, 1− r). When vS = 0, Π∗
B(vB |vS = 0) = 1− r

vB
≤ 1− r2

(vB)2 ,
so the positive correlation breaks when vS = 0.
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be computed. For example, When GFT = 3
4
, the optimal profit is 1

2
, whereas the profit

guarantee of the random double auction is 1
4
, so the ratio between the profit guarantee and

the optimal profit is 1
2
. In addition, this ratio is large when GFT is large and converges to 1

as GFT → 1. Another case could be that the value distribution is a point mass on (GFT, 0).
Then the optimal profit is GFT . When GFT = 3

4
, the ratio between the profit guarantee

and the optimal profit is 1
3
. In addition, this ratio is increasing in GFT and converges to 1

as GFT → 1.

3.3.1 Construction of Symmetric Triangular Value Distribution

In this subsection, I illustrate how I construct a feasible value distribution such that (ZVV)
holds. I start from value profiles in which either vB = 1 or vS = 0. Assume that
Pr∗(1, 0) = α. Consider value profiles (vB, 0) in which vB ∈ (r, 1). Let S∗(vB, 0) :=∫
(vB ,1)

π∗(x, 0)dx+ Pr∗(1, 0) for vB ∈ (r, 1) and S∗(1, 0) := Pr∗(1, 0). Note that π∗(vB, 0) =

−∂S∗(vB ,0)
∂vB

for vB ∈ (r, 1). By (ZVV), I have that for any (vB, 0) in which vB ∈ (r, 1),

π∗(vB, 0)(vB − 0)− S∗(vB, 0) = 0.

Note that this is a simple ordinary differential equation, to which the solution is

S∗(vB, 0) =
α

vB
, π∗(vB, 0) =

α

v2B
, ∀vB ∈ (r, 1).

Then consider value profiles (1, vS) in which vS ∈ (0, 1 − r). Similarly, let S∗(1, vS) :=∫
(0,vS)

π∗(1, x)dx + Pr∗(1, 0) for vS ∈ (0, 1 − r). Note that π∗(1, vS) = ∂S∗(1,vS)
∂vS

for
vS ∈ (0, 1− r). By (ZVV), I have that for any (1, vS) in which vS ∈ (0, 1− r),

π∗(1, vS)(1− vS)− S∗(1, vS) = 0.

Note that this is also a simple ordinary differential equation, to which the solution is

S∗(1, vS) =
α

1− vS
, π∗(1, vS) =

α

(1− vS)2
, ∀vS ∈ (0, 1− r).

Finally consider any value profile (vB, vS) in which vB − vS > r, vB ̸= 1 and vS ̸= 0. Let
S∗(vB, vS) :=

∫
(vB ,1)

π∗(b, vS)db + π∗(1, vS) if vB − vS > r, vB ̸= 1 and vS ̸= 0. Note that
π∗(vB, vS) = −∂S∗(vB ,vS)

∂vB
if vB − vS > r, vB ̸= 1 and vS ̸= 0. By (ZVV), I have that if
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vB − vS > r, vB ̸= 1 and vS ̸= 0,

π∗(vB, vS)(vB − vS)− S∗(vB, vS)−
∫
(0,vS)

π∗(vB, s)ds− π∗(vB, 0) = 0. (PIE)

Note that (PIE) is a (second order) partial integral equation. It is straightforward to see that
S∗(vB, vS) is not separable by taking the cross partial derivative. I take the guess-and-verify
approach to solve (PIE). I guess that if vB − vS > r, vB ̸= 1 and vS ̸= 0,

S∗(vB, vS) =
α

(vB − vS)2
.

Under this guess, the L.H.S. of (PIE) equals 2α
(vB−vS)3

(vB−vS)− α
(vB−vS)2

−
∫
(0,vS)

2α
(vB−s)3

ds− α
v2B

,
which can be shown to be 0 with simple algebra. Thus, I verified the guess.

To solve for α, I use the requirement that π∗(v) is a distribution. Note that the marginal
distribution for S is π∗

S(vS) = S∗(vS + r, vS) = α
(vS+r−vS)2

= α
r2

for 0 < vS < 1 − r and
Pr∗S(vS = 0) = S∗(r, 0) = α

r
. Since the integration is 1, I obtain that

α

r
+

α

r2
· (1− r) = 1.

Thus, α = r2.
The final step is to show that the constructed joint distribution is a feasible value

distribution. To see this, note that∫
max {vB − vS, 0} dπ∗ =

∫
(vB − vS) dπ

∗

=

(
r · 1 +

∫ 1

r

vBdvB

)
−
(
r · 0 +

∫ 1−r

0

vSdvS

)
= GFT,

where the first line follows from vB > vS for any value profile in the support of π∗, the second
line uses the marginal distributions of π∗, and the third line uses r = 1−

√
1−GFT .

4 Other Models of Limited Knowledge

4.1 Known Difference In Expectations

In this section, I consider a model in which the intermediary only knows the difference
between the expectations of the traders’ values, denoted by DE, but does not know the joint
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distribution π. Formally, I denote by

Π(DE) =

{
π ∈ ∆V :

∫
(vB − vS)dπ(v) = DE

}
(KDE)

the collection of joint distributions that are consistent with the known difference in
expectations. If DE ≤ 0, then the maxmin profit is zero, as no trading mechanism can
generate a positive profit against the point mass on the value profile (0,−DE). Therefore,
I focus on non-trivial informational environments in which DE > 0.

Theorem 2. Under the model (KDE), The random double auction is a maxmin trading
mechanism with a profit guarantee of

(
1−

√
1−DE

)2, and the symmetric triangular value
distribution is a worst value distribution.

Knowing DE is different from knowing GFT . That is, the sets of feasible value
distributions are different under these two assumptions. Indeed, for any value distribution
in which the seller’s value is greater than the buyer’s one with a positive probability, GFT

is strictly higher than DE. GFT = DE if and only if the seller’s value is always weakly
lower than the buyer’s one. Nonetheless, the results are the same under these two different
assumptions. This is because the ex-post profit under the random double auction is convex
in either the ex-post gain from trade or the difference between the values21. Therefore, any
value distribution in which the seller’s value is greater than the buyer’s one with a positive
probability is not a “worst case” for the random double auction under either assumption. In
other words, the differences in the sets of feasible value distributions do not matter.

4.2 Known Expectations

In this section, I consider a model in which the intermediary only knows the expectations of
the buyer’s value and the seller’s value respectively, denoted by MB and MS, but does not
know the joint distribution π. Formally, I denote by

Π(MB,MS) =

{
π ∈ ∆V :

∫
vBdπ(v) = MB,

∫
vSdπ(v) = MS

}
(KE)

the collection of joint distributions that are consistent with the known expectations. If
MB ≤ MS, then the maxmin profit is zero, as no trading mechanism can generate a positive
profit against the point mass on the value profile (MB,MS). Therefore, we focus on non-
trivial informational environments in which MB > MS.

21The ex-post profit max
{

vB−vS−r
1−r · r, 0

}
= max

{
max{vB−vS ,0}−r

1−r · r, 0
}

.
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4.2.1 Symmetric Informational Environment: MB +MS = 1

The higher the seller’s value, the lower his willingness to trade. Thus, it is plausible to
regard the highest-value seller as the lowest-type seller. When the known expectations
sum up to 1, the expectation of the buyer’s value and the expectation of the seller’s value
have the same distance from the lowest-type buyer and the lowest-type seller respectively,
i.e., MB − 0 = 1 − MS. Therefore I refer to this case as the symmetric informational
environment. The symmetric informational environment captures situations in which both
parties have similar willingness to trade. Likewise, I refer to the case in which MB +MS ̸= 1

as the asymmetric informational environment.

Theorem 3. Under the model (KE), for the symmetric informational environment,
the random double auction is a maxmin trading mechanism with a profit guarantee of(
1−

√
1− (MB −MS)

)2

, and the symmetric triangular value distribution is a worst value
distribution.

The derivation of the profit guarantee under the model (KE) is the same as that under
the model (KDE). The construction of a worst value distribution is the same. Observe that
the symmetric triangular value distribution satisfies MB +MS = 1, because∫

(vB + vS) dπ
∗ =

(
r · 1 +

∫ 1

r

vBdvB

)
+

(
r · 0 +

∫ 1−r

0

vSdvS

)
= 1,

where the first line uses the marginal distributions of π∗, and the second line holds for any
r ∈ (0, 1).

Knowing the expectations and knowing the difference in expectations are comparable.
Indeed, Π(DE) is a larger set: It contains both the symmetric informational environment
and the asymmetric ones. For example, if DE= 0.2, then it is possible that MB = 0.6

and MS = 0.4 (the symmetric one), and it is possible that MB = 0.8 and MS = 0.6 (an
asymmetric one). Therefore, although the random double auction is maxmin optimal under
the model (KDE), it is maxmin optimal only for the symmetric informational environment
under the model (KE). For the asymmetric one, as I show in the next section, a variation
of random double auction does strictly better.

4.2.2 Asymmetric Informational Environment: MB +MS ̸= 1

I extend the analysis to construct a maxmin trading mechanism for the asymmetric
informational environment. I will propose a generalized random double auction and an
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asymmetric triangular value distribution, and then show that they form a saddle point. The
illustration of the result is relegated to Appendix B. This section generalizes the results for the
symmetric informational environment, as the generalized random double auction (resp, the
asymmetric triangular value distribution) converges to the random double auction (resp, the
symmetric triangular value distribution) when the asymmetric informational environment
converges to the symmetric informational environment (See Remark 7).

Let (r1, r2) in which r1 ∈ (0, 1), r2 ∈ (0, 1) and r1 + r2 ̸= 1 be a solution to the following
system of equations

MB =

∫ 1

r1

r1(1− r2)

(1−r1−r2
1−r1

vB + r1r2
1−r1

)2
vBdvB + r1 := H1(r1, r2), (KE-B)

MS =

∫ r2

0

r1(1− r2)

(1−r1−r2
r2

vS + r1)2
vSdvS := H2(r1, r2). (KE-S)

Lemma 3. For the asymmetric informational environment, there exists a solution (r1, r2) ∈
(0, 1)2 to the system of equations (KE-B) and (KE-S). In addition, r1 + r2 ̸= 1.

Let γ := 1−r2
r1

, δ := 2(1−r1−r2)
1−r1+r2

, τ := 2r1r2
1−r1+r2

. The generalized random double auction is
described as follows.
Step 0: Transformed bid and ask. The intermediary publicly commits to transforming
a bid price b and an ask price a as follows: b′ = 1

ln γ
·
[
ln
(

1−r1−r2
1−r1

b+ r1r2
1−r1

)]
, a′ =

1
ln γ

·
[
ln
(

1−r1−r2
r2

a+ r1

)]
. The buyer and the seller both know r1 and r2 as well as the

transformations.
Step 1: Uniformly random spread. The intermediary publicly commits to randomly
drawing a spread s′ uniformly on [0, 1]. Then a random spread is drawn whose realization
is not observed by either the buyer or the seller. The buyer and the seller both know the
uniform distribution on [0, 1] from which the random spread is drawn.
Step 2: Exponential transaction price and floating commission fee. The buyer
submits a bid price b, and the seller submits an ask price a, simultaneously. If the
difference between the transformed bid price and the transformed ask price is greater than
the realized spread, or b′ − a′ > s′, then the seller sells the asset to the buyer at the price
p′ = γb′−γa′

δ(ln γ)(b′−a′)
− τ

δ
, and each pays the intermediary half of the commission fee r′

2
= δp′+τ

2
.

Otherwise, no trade takes place, and no one pays or receives anything.

Remark 4. The transaction price p′ is no-longer midpoint of the bid price and the ask price.
The floating commission fee r′, however, has a fixed commission fee component τ , plus an
price-adjusted component δp′, which is linear in the transaction price.
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It is straightforward to show that the generalized random double auction can also be
expressed as follows. If r2b− (1− r1)a > r1r2,

q∗∗(b, a) =
1

ln 1−r2
r1

·
[
ln

(
1− r1 − r2

1− r1
b+

r1r2
1− r1

)
− ln

(
1− r1 − r2

r2
a+ r1

)]
,

t∗∗B (b, a) = − r1r2
(1− r1 − r2) ln

1−r2
r1

·
[
ln

(
1− r1 − r2

1− r1
b+

r1r2
1− r1

)
− ln

(
1− r1 − r2

r2
a+ r1

)]

+
1

ln 1−r2
r1

·
(
b− 1− r1

r2
a− r1

)
,

t∗∗S (b, a) = − r1r2
(1− r1 − r2) ln

1−r2
r1

·
[
ln

(
1− r1 − r2

1− r1
b+

r1r2
1− r1

)
− ln

(
1− r1 − r2

r2
a+ r1

)]

+
1

ln 1−r2
r1

·
(

r2
1− r1

b− a− r1r2
1− r1

)
.

If r2b− (1− r1)a ≤ r1r2,

q∗∗(b, a) = t∗∗B (b, a) = t∗∗S (b, a) = 0.

Remark 5. The generalized random double auction also satisfies the standard weak budget
balance property.

Now let me specify the asymmetric triangular value distribution. The support is an
asymmetric triangular subset of joint values AT := {v|r2vB − (1 − r1)vS > r1r2}. The
marginal distribution for the buyer is a combination of some generalized Pareto distribution
on (r1, 1) and an atom of size r1 on 1: π∗∗

B (vB) = r1(1−r2)(
1−r1−r2

1−r1
vB+

r1r2
1−r1

)2 for vB ∈ (r1, 1)

and Pr∗∗B (1) = r1. The marginal distribution for the buyer is a combination of some
generalized Pareto distribution on (0, r2) and an atom of size 1 − r2 on 0: π∗∗

S (vS) =
r1(1−r2)(

1−r1−r2
r2

vS+r1
)2 for vS ∈ (0, r2) and Pr∗∗S (0) = 1 − r2. The conditional distribution for the

buyer is a combination of some generalized Pareto distribution on
(
r1 +

1−r1
r2

vS, 1
)

and an

atom on 1: When vS ∈ (0, r2), π∗∗
B (vB|vS) =

2
(

1−r1−r2
r2

vS+r1
)2

(vB−vS)3
for vB ∈

(
r1 +

1−r1
r2

vS, 1
)

and Pr∗∗B (vB = 1|vS) =

(
1−r1−r2

r2
vS+r1

)2

(1−vS)2
; when vS = 0, π∗∗

B (vB|vS = 0) = r1
(vB)2

for
vB ∈ (r1, 1) and Pr∗∗B (vB = 1|vS = 0) = r1. The conditional distribution for the seller
is a combination of some generalized Pareto distribution on (0, r2(vB−r1)

1−r1
) and an atom

on 0: When vB ∈ (r1, 1), π∗∗
S (vS|vB) =

2
(

1−r1−r2
1−r1

vB+
r1r2
1−r1

)2

(vB−vS)3
for vS ∈

(
0, r2(vB−r1)

1−r1

)
and
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Pr∗∗B (vS = 0|vB) =
(

1−r1−r2
1−r1

vB+
r1r2
1−r1

)2

(vB)2
; when vB = 1, π∗∗

S (vS|vB = 1) = 1−r2
(1−vS)2

for vS ∈ (0, r2)

and Pr∗∗S (vS = 0|vB = 1) = 1− r2.
Equivalently, the asymmetric triangular value distribution can be described as a

combination of a joint density function on AT\{(1, 0)} and an atom of size r1(1− r2) on the
value profile (1, 0) as follows (See Figure 2).

π∗∗(vB, vS) =


2r1(1−r2)
(vB−vS)3

if r2vB − (1− r1)vS ≥ r1r2, vB ̸= 1 and vS ̸= 0,
r1(1−r2)
(1−vS)2

if vB = 1 and 0 < vS < r2,
r1(1−r2)
(vB)2

if r1 < vB < 1 and vS = 0.

P r∗∗(1, 0) = r1(1− r2).

Lemma 4. The asymmetric triangular value distribution exhibits a positive correlation for
r1 < vB < 1 and 0 < vS < r2.22

Remark 6. If MS = 0, then it is common knowledge that the seller’s value vS = 0. Note
that q∗∗(b, 0) = 1

ln
1−r2
r1

· ln
(

1−r1−r2
r1(1−r1)

b+ r2
1−r1

)
. If r2 = 0, it is straightforward that q∗∗(b, 0)

(resp, π∗∗) reduces to the mechanism (resp, the worst-case distribution) found by Carrasco
et al. (2018) when the monopolistic seller only knows the expectation of the buyer’s value.

Theorem 4. Under the model (KE), for the asymmetric informational environment, the
generalized random double auction is a maxmin trading mechanism with a profit guarantee

22To see this, note that Π∗∗
S (vS |vB) =

(
1−r1−r2

1−r1
vB+

r1r2
1−r1

)2

(vB−vS)2 is decreasing w.r.t. vB for vB ∈ (r1, 1).

When vB = 1, Π∗∗
S (vS |vB) = 1−r2

1−vS
≥ (1−r2)

2

(1−vS)2 , so the positive correlation breaks when vB = 1.

Similarly, Π∗∗
B (vB |vS) = 1 −

(
1−r1−r2

r2
vS+r1

)2

(vB−vS)2 is decreasing w.r.t. vS for vS ∈ (0, r2). When vS = 0,

Π∗∗
B (vB |vS = 0) = 1− r1

vB
≤ 1− (r1)

2

(vB)2 , so the positive correlation breaks when vS = 0.
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Figure 3: The thick black curve is a trade boundary B that is non-decreasing.

of r1(1− r2), and the asymmetric triangular value distribution is a worst value distribution.

Remark 7 (Convergence). If MB +MS → 1, it is straightforward to show that there is a
solution in which r1 + r2 → 1. Then by L’Hôpital’s rule, q∗∗ → q∗, p′ → p, r′ → r, t∗∗B → t∗B,
t∗∗S → t∗S. In addition, π∗∗ → π∗.

5 Deterministic Mechanisms

In this section, I restrict attention to the class of deterministic dominant-strategy
mechanisms, i.e., the trading rule has an additional property: q(v) 23 is either 0 or 1 for
any v ∈ V . I characterize maxmin deterministic trading mechanisms across mechanisms in
this class.

Definition 3. The trade boundary of a given deterministic dominant-strategy mechanism
(q, tB, tS) is a set of value profiles B := {v̄ = (v̄B, v̄S) ∈ V |q(v̄) =

024 and for any small ϵ > 0, q(v̄B + ϵ, v̄S) = 1 or q(v̄B, v̄S − ϵ) = 1}.

I observe that the trade boundary of a deterministic dominant-strategy mechanism is
non-decreasing (See Figure 3).

Remark 8 (Non-decreasing trade boundary). If v̄ = (v̄B, v̄S) ∈ B, v̄′ = (v̄′B, v̄
′
S) ∈ B and

v̄B > v̄′B, then v̄S ≥ v̄′S. 25

The main idea of searching for a maxmin deterministic trading mechanism is as follows.
I divide all possible deterministic dominant-strategy mechanisms into four classes according

23I define q(v) to be 0 if v /∈ V .
24For exposition, I assume that trade does not take place on the trade boundary. As will be clear, this is

to guarantee that a best response for adversarial Nature exists. This assumption does not affect the solution
and the value of the problem. Similar assumption is also made in Kos and Messner (2015).

25To see this, note that by the definition of the trade boundary, I have that q(v̄B , v̄′S) = 1 because v̄′ ∈ B
and v̄B > v̄′B . Then, again by the definition of the trade boundary, I have that v̄S ≥ v̄′S because v̄ ∈ B.
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Figure 4: B1 = (1−
√

1−GFT
2

, 0), B2 = (1,
√

1−GFT
2

). If GFT > 1
2
, then B1 ∈ B, B2 ∈ B, and

B lies in the black region for a maxmin deterministic trading mechanism.

to the trade boundary. By strong duality26, I can work on the dual program. I propose a
relaxation of the dual program by ignoring a lot of constraints. The merit of doing so is
to have a finite-dimensional linear programming problem. Then I derive an upper bound of
the value of the relaxation and show that it can be attained by constructing deterministic
dominant-strategy mechanisms as well as a feasible value distribution.

Theorem 5. When GFT > 1
2
, any deterministic dominant-strategy mechanism satisfying

the following properties is a maxmin deterministic trading mechanism (See Figure 4):
(i).

(
1−

√
1−GFT

2
, 0
)
∈ B,

(
1,
√

1−GFT
2

)
∈ B.

(ii). B is above (including) the line vB − vS =
√

1−GFT
2

.
(iii). The payment rule and the transfer rule are characterized by Lemma 5.

The profit guarantee is
(
1−

√
2(1−GFT )

)2

. The worst value distribution puts

probability masses of
√

1−GFT
2

,
√

1−GFT
2

and 1 − 2
√

1−GFT
2

on the value profiles(
1−

√
1−GFT

2
, 0
)
,
(
1,
√

1−GFT
2

)
and (1, 0) respectively.

When GFT ≤ 1
2
, the Never Trading Mechanism27 is a maxmin deterministic trading

mechanism with a profit guarantee of 0.

That is, I characterize the class of maxmin deterministic trading mechanisms for any
informational environment with a non-trivial profit guarantee (i.e., GFT > 1

2
). The worst

value distribution is discrete, and is the same for the mechanisms in this class. Now I provide
examples of some maxmin deterministic trading mechanisms.

Linear Trading Mechanism: Trade takes place with probability one if vB−vS >
√

1−GFT
2

,

and conditional on trading, the buyer pays 1 −
√

1−GFT
2

+ vS and the seller receives

26That is, given a dominant-strategy mechanism, the value of the primal minimization problem equals
that of its dual maximization problem, details of which are in Appendix D.

27Trade never takes place, and no one pays or receives anything.
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vB −
(
1−

√
1−GFT

2

)
; otherwise, no trade takes place, and no one pays or receives anything.

Double Posted-Price Trading Mechanism: Trade takes place with probability one if
vB > 1−

√
1−GFT

2
and vS <

√
1−GFT

2
, and conditional on trading, the buyer pays 1−

√
1−GFT

2

and the seller receives
√

1−GFT
2

; otherwise, no trade takes place, and no one pays or receives
anything.

6 Extension and Discussion

6.1 Can-hold Case

Consider a more general model in which the intermediary can hold the asset. To wit, this
only requires that the sum of the buyer’s allocation (denoted by qB) and the seller’s allocation
(denoted by qS) do not exceed 1. Recall that this sum is required to be 1 for the main results.
Formally, the intermediary seeks a trading mechanism (qB, qS, tB, tS) such that the following
constraints hold:

vBqB(v)− tB(v) ≥ vBqB(v
′
B, vS)− tB(v

′
B, vS), ∀v ∈ V, v′B ∈ VB; (DSICB)

vBqB(v)− tB(v) ≥ 0, ∀v ∈ V ; (EPIRB)

vSqS(v) + tS(v) ≥ vSqS(vB, v
′
S) + tS(vB, v

′
S), ∀v ∈ V, v′S ∈ VS; (DSIC ′

S)

vSqS(v) + tS(v) ≥ vS, ∀v ∈ V ; (EPIR′
S)

qB(v) + qS(v) ≤ 1, ∀v ∈ V. (CH)

I denote the set of such trading mechanisms as D′28. The intermediary’s problem is to seek
for a trading mechanism that solves

sup
(qB ,qS ,tB ,tS)∈D′

inf
π∈Π(GFT )

∫
t(v)dπ(v). (MTM’)

Theorem 6. The random double auction is a solution to (MTM’).

That is, the solution to the more general problem (MTM’) coincides with the solution
to the problem (MTM). To see this, first note that the value of (MTM’) is weakly higher
than the value of (MTM) because D ⊂ D′. I will show that the value of (MTM) is weakly
higher than the value of (MTM’). Indeed, given the symmetric triangular value distribution,

28Note that here the monotonicity constraints are that qB(vB , vS) is non-decreasing w.r.t. vB for any vS
and qS(vB , vS) is non-decreasing w.r.t. vS for any vB .
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the random double auction is an optimal mechanism even among this wider class of trading
mechanism D′. To show this, first note that a simple adaptation of Lemma 5 yields an
analogous virtual representation of the expected profit for this more general model:

E[t(v)] =

∫
v

[qB(v)ϕB(v) + qS(v)ϕS(v)]dπ(v)− 1,

where ϕB(v) = vB − 1−ΠB(vB |vS)
πB(vB |vS)

and ϕS(v) = vS + ΠS(vS |vB)
πS(vS |vB)

. Here ϕB(v) (resp, ϕS(v)) is the
buyer’s (resp, the seller’s) virtual value when the value profile is v = (vB, vS). Given the
symmetric triangular value distribution, ϕB = ϕS > 0 for any value profile in the support
except for the highest joint type (1,0), in which ϕB(1, 0) > ϕS(1, 0) = 0; in addition, ϕB ≤ 0

and ϕS ≥ 0 for any value profile outside the support. Then any trading mechanism in D′

will be optimal if 1) the ex-post participation constraints are binding for zero-value buyer
and one-value seller, and 2) qB = 0 and qS = 1 for any value profile outside the support,
qB + qS = 1 for any value profile inside the support and qB(1, 0) = 1, qS(1, 0) = 0. It is
straightforward to see that the random double auction29 is such a mechanism and therefore
remains optimal to the symmetric triangular value distribution in this general model. Indeed,
given the property that the buyer’s virtual value is equal to the seller’s virtual value for any
value profile in the support except for (1,0), the intermediary does not have an incentive to
hold the asset in an optimal trading mechanism.

6.2 Information Design Problem

A well-known result in models of private information is that the distribution of agents’ private
information is a key determinant of their welfare. For example, in the environment of bilateral
trade, Myerson and Satterthwaite (1983) consider the independent private value model and
show that the two trading parties’ welfare is not the full surplus for general distributions
and the amount of their welfare depends on their distributions of private values. Indeed,
most of the existing models of private information in the environment of bilateral trade
assume that the distribution of the two trading parties’ private information is exogenous.
However, it is conceivable that a financial regulator, e.g., the Security and the Exchange
Commission (SEC), may optimally design the nature of the private information held by the
two trading parties to maximize their welfare, given the fact that their welfare is affected by
the distribution of their private information.

In this section, I consider an information design problem of a financial regulator whose
objective is to maximize the expected welfare. Recall that the expected welfare is defined as

29In this more general model, qB = q∗ and qS = 1− q∗.
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the sum of the traders’ expected profits. I assume that the financial regulator can carefully
design the private information of the traders by choosing a value distribution subject to the
constraint that the ex-ante gain from trade is GFT , i.e., π ∈ Π(GFT ). The intermediary,
after observing the choice of the distribution but not the realized joint values, designs a
profit-maximizing trading mechanism across dominant-strategy mechanisms. Formally, the
financial regulator solves 30

sup
π∈Π(GFT )

∫
[q∗(v)(vB − vS)− t∗(v)]dπ(v) (MW)

subject to

(q∗, t∗B, t
∗
S) ∈ arg sup

(q,tB ,tS)∈D

∫
v

t(v)dπ(v).

Theorem 7. The symmetric triangular value distribution is a solution to (MW).

That is, the symmetric triangular value distribution is an optimal information structure
for the financial regulator’s information design problem (MW).

Recall that a symmetric triangular value distribution has the property that the virtual
value is zero for any value profile in the support except for the value profile (1, 0). This
property has two implications. First, it implies that an efficient 31 trading mechanism
is a best response for the intermediary. Second, it implies that in a best response, the
intermediary does not discriminate across all value profiles in the support but the value
profile (1, 0). These two implications render a symmetric triangular value distribution a
good candidate as a solution.

Under the symmetric triangular value distribution, the expected welfare is the difference
between the ex-ante gain from trade GFT and the expected profit of the intermediary(
1−

√
1−GFT

)2. Indeed, the symmetric triangular value distribution minimizes the
expected profit of the intermediary. This is because the expected profit under the random
double auction is weakly higher than

(
1−

√
1−GFT

)2 for any feasible value distribution
(Recall Proposition 2). Therefore, the symmetric triangular value distribution solves (MW).
In addition, the expected welfare is equally shared by the traders: Each trader obtains an
expected profit of

√
1−GFT (1−

√
1−GFT ).

The information design problem (MW) is closely related to Condorelli and Szentes
30If the intermediary has multiple optimal trading mechanisms, I break ties in favor of the financial

regulator by selecting one that maximizes the gain from trade for the traders. This is a standard tie-
breaking rule in the information design literature (e.g., Kamenica and Gentzkow (2011), Roesler and Szentes
(2017) and Condorelli and Szentes (2020)).

31Precisely, trade takes place with probability one for any value profile in the support of the symmetric
triangular value distribution, and 0 otherwise.
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(2020) who consider a buyer-optimal information design problem: The buyer can choose
the probability distribution of her valuation for the good to maximize her profit. The seller,
after observing the buyer’s choice of the distribution but not the realized valuation, designs a
revenue-maximizing selling mechanism. The problem (MW) may be interpreted as a traders-
optimal information design problem. Critically, trade is efficient under the solution in either
problem.

Appendix A Preliminaries

A.1 Zero-Sum Game

The intermediary’s maxmin optimization problem (MTM) can be interpreted as a two-player
sequential zero-sum game. The two players are the intermediary and adversarial Nature.
The intermediary first chooses a trading mechanism (q, tB, tS) ∈ D. After observing the
intermediary’s choice of the trading mechanism, adversarial Nature chooses a feasible value
distribution π ∈ Π(MB,MS). The intermediary’s payoff is U((q, tB, tS), π), and adversarial
Nature’s payoff is −U((q, tB, tS), π). Instead of solving directly for such a subgame perfect
equilibrium, I can solve for a Nash equilibrium ((q∗, t∗B, t

∗
S), π

∗) of the simultaneous-move
version of this zero-sum game, which corresponds to a saddle point of the payoff functional
U . Formally, for any (q, tB, tS) ∈ D and any π ∈ Π(MB,MS),

U((q∗, t∗B, t
∗
S), π) ≥ U((q∗, t∗B, t

∗
S), π

∗) ≥ U((q, tB, tS), π
∗). (SP)

Indeed, the first inequality implies that the mechanism (q∗, t∗B, t
∗
S)’s profit guarantee is the

expected profit when adversarial Nature chooses the value distribution π∗, and the second
inequality implies that no other dominant-strategy mechanism can yield a strictly higher
expected profit under the value distribution π∗. Hence, the two inequalities together imply
the mechanism (q∗, t∗B, t

∗
S) is a maxmin trading mechanism.

A.2 Revenue Equivalence

When searching an optimal dominant-strategy mechanism given a value distribution, it will
be useful to simplify the problem. I will use the following proposition: Its proof is standard
but included in Appendix A.2.1 for completeness.

Lemma 5 (Revenue Equivalence). When searching an optimal dominant-strategy
mechanism, it is without loss to restrict attention to trading mechanisms satisfying the
following properties:
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(i). q(v) is non-decreasing in vB and non-increasing in vS.
(ii). tB(v) = vBq(v)−

∫ vB
0

q(x, vS)dx.
(iii). tS(v) = vSq(v) +

∫ 1

vS
q(vB, x)dx.

(iv). t(v) = (vB − vS)q(v)−
∫ vB
0

q(x, vS)dx−
∫ 1

vS
q(vB, x)dx.

That is, the trading rule q(v) is monotone; the payment rule tB and the transfer rule
tS admit an envelope representation. In addition, the ex-post participation constraints for
zero-value buyer and one-value seller are binding. Lemma 5 is standard in the mechanism
design literature. The envelope representation of the ex-post profit (property (iv)) implies
E[t(v)] =

∫
q(v)ϕ(v)dπ(v), using integration by parts.

A.2.1 Proof of Lemma 5

(i). Dominant-strategy incentive compatibility (DSIC) for a type vB of B requires that for
any vS and v′B ̸= vB:

vBq(vB, vS)− tB(vB, vS) ≥ vBq(v
′
B, vS)− tB(v

′
B, vS).

DSIC for a type v′B of B requires that for any vS and vB ̸= v′B:

v′Bq(v
′
B, vS)− tB(v

′
B, vS) ≥ v′Bq(vB, vS)− tB(vB, vS).

Adding the two inequalities, I have that:

(vB − v′B)(q(vB, vS)− q(v′B, vS)) ≥ 0.

It follows that q(vB, vS) ≥ q(v′B, vS) whenever vB > v′B .
Similarly, DSIC for a type vS of S requires that for any vB and v′S ̸= vS:

vS(1− q(vB, vS)) + tB(vB, vS) ≥ vS(1− q(vB, v
′
S)) + tS(vB, v

′
S).

DSIC for a type v′S of S requires that for any vB and vS ̸= v′S:

v′S(1− q(vB, v
′
S)) + tS(vB, v

′
S) ≥ v′S(1− q(vB, vS)) + tS(vB, vS).

Adding the two inequalities, I have that:

(vS − v′S)(q(vB, v
′
S)− q(vB, vS)) ≥ 0.
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It follows that q(vB, vS) ≤ q(vB, v
′
S) whenever vS > v′S .

(ii). Fix vS, and define
UB(vB) := vBq(vB, vS)− tB(vB, vS).

By the first two inequalities in (i), I obtain that

(v′B − vB)q(vB, vS) ≤ UB(v
′
B)− UB(vB) ≤ (v′B − vB)q(v

′
B, vS).

Therefore UB(vB) is Lipschitz, hence absolutely continuous w.r.t. vB and therefore
differentiable w.r.t. vB almost everywhere. Then applying the envelope theorem to the
above inequality at each point of differentiability, I obtain that

dUB(vB)

dvB
= q(vB, vS).

Then I have that

tB(vB, vS) = vBq(vB, vS)−
∫ vB

0

q(x, vS)dx− UB(0).

Note that UB(0) ≥ 0 by the ex-post individually rational constraint. If UB(0) > 0, then I
can reduce it to 0 so that I can increase the payment from B for any value profile in which
the seller’s value is vS. And the profit will be weakly greater. Thus, when searching for
an optimal dominant-strategy mechanism, it is without loss of generality to let UB(0) = 0.
Then I obtain that tB(vB, vS) = vBq(vB, vS)−

∫ vB
0

q(x, vS)dx.
(iii). Similarly, fix vB, and define

US(vS) := vS(1− q(vB, vS)) + tS(vB, vS).

By the fourth and fifth inequalities in (i), I obtain that

(v′S − vS)(1− q(vB, vS)) ≤ US(v
′
S)− US(vS) ≤ (v′S − vS)(1− q(vB, v

′
S)).

Therefore US(vS) is Lipschitz, hence absolutely continuous w.r.t. vS and therefore
differentiable w.r.t. vS almost everywhere. Then applying the envelope theorem to the
above inequality at each point of differentiability, I obtain that

dUS(vS)

dvS
= 1− q(vB, vS).
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Then I have that

tB(vB, vS) = US(1)− vS(1− q(vB, vS))−
∫ 1

vS

q(vB, x)dx.

Note that US(1) ≥ 1 by the ex-post individually rational constraint. If US(1) > 1, then I
can reduce it to 1 so that I can decrease the payment to S for any value profile in which
the buyer’s value is vB. And the profit will be weakly greater. Thus, when searching for
an optimal dominant-strategy mechanism, it is without loss of generality to let US(1) = 1.
Then I obtain that tS(v) = 1− (1− q(v))vS −

∫ 1

vS
(1− q(vB, x)dx = q(v)vS +

∫ 1

vS
q(vB, x)dx.

(iv). This is implied by (ii) and (iii).

Appendix B Illustration of Theorem 4

B.1 Construction of Generalized Random Double Auction

Lemma 6. Given a trading mechanism (q, tB, tS) ∈ D, if π minimizes the expected profit
over Π(MB,MS), then there exist real numbers λB, λS and µ such that

λBvB + λSvS + µ = t(v), ∀v ∈ supp(π). (CS)

(CS) is a complementary slackness condition, stating that the ex-post profit is a linear
function of the true values for any value profile in the support of a worst value distribution.
The complementary slackness condition is a result of strong duality. The proof is similar
to the one for the main model (See Appendix D for details). The complementary slackness
condition is useful in the construction of a maxmin trading mechanism for the asymmetric
informational environment.

For the asymmetric informational environment, it is natural to attach different weights
to the submitted bid price and the submitted ask price. I thus form an educated guess
of the trading region in a maxmin trading mechanism: Trade takes place with positive
probability if and only if the difference between a weighted bid (true value of the buyer)
r2 ·vB and a (different) weighted ask (true value of the seller) (1−r1) ·vS exceeds a threshold
r1r2 > 0, or r2vB − (1 − r1)vS > r1r2. In addition, again, the support of a worst value
distribution coincides with the trading region (including the boundary). Together with (iv)

of Lemma 5, the complementary slackness condition (CS) can be expressed as follows: For
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any (vB, vS) ∈ AT ,

λ∗∗
B vB+λ∗∗

S vS+µ∗∗ = (vB−vS)·q∗∗(vB, vS)−
∫ vB

1−r1
r2

vS+r1

q∗∗(x, vS)dx−
∫ r2

1−r1
(vB−r1)

vS

q∗∗(vB, x)dx.

(CS-A)
Now I solve for the trading rule q∗∗. Similarly, I first take the first order derivatives with
respect to vB and vS respectively, and I obtain that for any (vB, vS) ∈ AT ,

(vB − vS) ·
∂q∗∗(vB, vS)

∂vB
−

∂
∫ r2

1−r1
(vB−r1)

vS
q∗∗(vB, x)dx

∂vB
= λ∗∗

B , (FOC-B)

(vB − vS) ·
∂q∗∗(vB, vS)

∂vS
−

∂
∫ vB

1−r1
r2

vS+r1
q∗∗(x, vS)dx

∂vS
= λ∗∗

S . (FOC-S)

Then, I take the cross partial derivative, with some algebra, I obtain that

(vB − vS) ·
∂q∗∗(vB, vS)

∂vB∂vS
= 0.

Thus, q∗∗(vB, vS) is separable, which can be expressed as the sum of two functions f ∗∗ and
g∗∗: For any (vB, vS) ∈ AT ,

q∗∗(vB, vS) = f ∗∗(vB) + g∗∗(vS). (B.1.1)

Again, the separable nature is crucial for solving (CS-A). Plugging (B.1.1) into (FOC-B)
and (FOC-S), I obtain that for any (vB, vS) ∈ AT ,[(

1− r2
1− r1

)
vB +

r1r2
1− r1

]
·(f ∗∗)′(vB)−

r2
1− r1

·
[
f ∗∗(vB) + g∗∗

(
r2

1− r1
(vB − r1)

)]
= λ∗∗

B ,

(B.1.2)[(
1− r1
r2

− 1

)
vS + r1

]
·(g∗∗)′(vS)+

1− r1
r2

·
[
f ∗∗

(
1− r1
r2

vS + r1

)
+ g∗∗(vS)

]
= λ∗∗

S . (B.1.3)

Note that f ∗∗(vB) + g∗∗
(

r2
1−r1

(vB − r1)
)

= 0 and that f ∗∗
(

1−r1
r2

vS + r1

)
+ g∗∗(vS) = 0

because trade does not take place in the boundary of the trading region, i.e., q∗∗(vB, vS) = 0

for r2vB − (1− r1)vS = r1r2. Then it is straightforward to solve for f ∗∗(vB) and g∗∗(vS), and
I obtain that

f ∗∗(vB) =
(1− r1)λ

∗∗
B

1− r1 − r2
· ln

[(
1− r2

1− r1

)
vB +

r1r2
1− r1

]
+ c∗∗B , (B.1.4)
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g∗∗(vS) =
r2λ

∗∗
S

1− r1 − r2
· ln

[(
1− r1
r2

− 1

)
vS + r1

]
+ c∗∗S , (B.1.5)

where c∗∗B and c∗∗S are some constants. Observe that

g∗∗
(
r2(vB − r1)

1− r1

)
=

r2λ
∗∗
S

1− r1 − r2
· ln

[(
1− r2

1− r1

)
vB +

r1r2
1− r1

]
+ c∗∗S .

Then, again, using that q∗∗(vB, vS) = 0 for r2vB − (1− r1)vS = r1r2, I have that

(1− r1)λ
∗∗
B + r2λ

∗∗
S = c∗∗B + c∗∗S = 0. (B.1.6)

Now plugging (B.1.4),(B.1.5) and (B.1.6) into (B.1.1), I obtain that for any (vB, vS) ∈ AT ,

q∗∗(vB, vS) =
(1− r1)λ

∗∗
B

1− r1 − r2
·
[
ln

(
1− r1 − r2

1− r1
vB +

r1r2
1− r1

)
− ln

(
1− r1 − r2

r2
vS + r1

)]
.

Likewise, to solve for λ∗∗
B , I let q∗∗(1, 0) be 1 and obtain that λ∗∗

B = 1−r1−r2
(1−r1) ln

1−r2
r1

. So far I have

obtained the trading rule q∗∗32. The payment rule t∗∗B (resp, the transfer rule t∗∗S ) is then
characterized by (ii) (resp, (iii)) of Lemma 5.

B.2 Construction of Asymmetric Triangular Value Distribution

Similar to the symmetric informational environment, I impose a zero virtual value condition
on the joint distribution, stating that virtual value is 0 for any value profile in the support
except for the highest joint type. Formally,

ϕ(v) = 0, ∀v ∈ AT\{(1, 0)}. (ZVV-A)

The construction procedure for the joint distribution is exactly the same. Therefore I omit it.
Note that the marginal distribution no longer has a uniform distribution part since vB − vS

is no longer a constant on the boundary of the trading region due to different weights for the
buyer and the seller. The final step is to make sure that the constructed joint distribution
has the known expectations. Given the marginal distributions for the buyer and the seller, I
have a system of two equations (KE-B) and (KE-S). Lemma 3 states that a solution exists
for the asymmetric informational environment, details of which are given in Appendix C.

32Plugging the trading rule q∗∗ into (CS-A), it is straightforward that µ∗∗ = − r1(1−r1−r2)

(1−r1) ln
1−r2
r1

.

35



Appendix C Proofs for Section 3

C.1 Proof of Lemma 3

I start from establishing the following four claims regarding some properties of the functions
H1(r1, r2) and H2(r1, r2), which play a crucial role in establishing Lemma 3. First, by simple
calculation, I have that for (r1, r2) ∈ (0, 1)2,

H1(r1, r2) =
r1(1− r2)(1− r1)

2

(1− r1 − r2)2
· ln 1− r2

r1
− r1r2(1− r1)

1− r1 − r2
+ r1, (C.1.1)

H2(r1, r2) =
r1(1− r2)r

2
2

(1− r1 − r2)2
· ln 1− r2

r1
− r1r

2
2

1− r1 − r2
. (C.1.2)

First note that H1 and H2 are not well-defined when 0 < r1 = 1 − r2 < 1. Using
L’Hôpital’s rule, it is straightforward to show that lim1−r2→r1 H1(r1, r2) =

1−r21+2r1
2

and
lim1−r2→r1 H2(r1, r2) = (1−r1)2

2
. I thus define H1(r1, r2) := lim1−r2→r1 H1(r1, r2) and

H2(r1, r2) := lim1−r2→r1 H2(r1, r2) when 0 < r1 = 1 − r2 < 1. This makes H1 and
H2 continuous on (0, 1)2. In addition, using L’Hôpital’s rule, it is straightforward to
show that limr1→0H1(r1, r2) = 0 for r2 ∈ (0, 1), limr1→1H1(r1, r2) = 1 for r2 ∈ (0, 1),
limr2→0H1(r1, r2) = r1 − r1 ln r1 for r1 ∈ (0, 1), limr2→1H1(r1, r2) = 1 for r1 ∈ (0, 1),
limr1→0H2(r1, r2) = 0 for r2 ∈ (0, 1), limr1→1H2(r1, r2) = (1 − r2) ln (1− r2) + r2 for
r2 ∈ (0, 1), limr2→0H2(r1, r2) = 0 for r1 ∈ (0, 1) and limr2→1H1(r1, r2) = 1 for r1 ∈ (0, 1).
Therefore I define H1(r1, r2) and H2(r1, r2) as follows.

H1(r1, r2) =



(1−r2)r1(1−r1)2

(1−r1−r2)2
· ln 1−r2

r1
− r1r2(1−r1)

1−r1−r2
+ r1 if (r1, r2) ∈ (0, 1)2 and r1 + r2 ̸= 1,

1−r21+2r1
2

if 0 < r1 = 1− r2 < 1,

0 if r1 = 0 and r2 ∈ (0, 1),

1 if r1 = 1 and r2 ∈ (0, 1),

r1 − r1 ln r1 if r2 = 0 and r1 ∈ (0, 1),

1 if r2 = 1 and r1 ∈ (0, 1).

H2(r1, r2) =



r1(1−r2)r22
(1−r1−r2)2

· ln 1−r2
r1

− r1r22
1−r1−r2

if (r1, r2) ∈ (0, 1)2 and r1 + r2 ̸= 1,
(1−r1)2

2
if 0 < r1 = 1− r2 < 1,

0 if r1 = 0 and r2 ∈ (0, 1),

(1− r2) ln (1− r2) + r2 if r1 = 1 and r2 ∈ (0, 1),

0 if r2 = 0 and r1 ∈ (0, 1),

1 if r2 = 1 and r1 ∈ (0, 1).
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Claim 1. Fix any r2 ∈ [0, 1), H1(r1, r2) is strictly increasing in r1. Moreover, for any
r2 ∈ (0, 1), limr1→1−r2

∂H1(r1,r2)
∂r1

exists and is positive. In addition, for any r2 ∈ [0, 1), as
r1 → 1, H1(r1, r2) → 1.

Proof of Claim 1. When r2 = 0, H1(r1, r2) = r1 − r1 ln r1. This is an strictly
increasing function because ∂H1(r1,r2)

∂r1
= − ln r1 > 0. In addition, by L’Hôpital’s rule,

limr1→1H1(r1, r2) = 1. Thus, Claim 1 holds when r2 = 0. When 0 < r2 < 1, I already
have that limr1→1H1(r1, r2) = 1. Now taking the first order derivative w.r.t. r1 to (C.1.1), I
obtain that

∂H1(r1, r2)

∂r1
=

(1− r1)(1− r2)

(1− r1 − r2)2
·
[(

1− 3r1 +
2r1(1− r1)

1− r1 − r2

)
· ln 1− r2

r1
− 2r2

]
. (C.1.3)

Then to show the first part of Claim 1, it suffices to show that if (r1, r2) ∈ (0, 1)2 and
r1 + r2 ̸= 1, (

1− 3r1 +
2r1(1− r1)

1− r1 − r2

)
· ln 1− r2

r1
− 2r2 > 0. (C.1.4)

Let β := 1−r2
r1

, then β ∈ (0, 1) ∪ (1,∞). Plugging r2 = 1 − βr1 into (C.1.4), it suffices to
show that for any β ∈ (0, 1) ∪ (1,∞),(

1− 3r1 +
2(1− r1)

β − 1

)
· ln β − 2 · (1− βr1) > 0. (C.1.5)

Slightly rewriting (C.1.5), it suffices to show that for any β ∈ (0, 1) ∪ (1,∞),

β + 1

β − 1
· ln β − 2 +

(
−3β − 1

β − 1
· ln β + 2β

)
· r1 > 0. (C.1.6)

Then, it suffices to show that for any β ∈ (0, 1)∪ (1,∞), the following two inequalities hold:

β + 1

β − 1
· ln β − 2 > 0, (C.1.7)

−3β − 1

β − 1
· ln β + 2β > 0. (C.1.8)

Now to prove (C.1.7), it suffices to show that f(β) := ln β − 2(β−1)
β+1

> 0 for β ∈ (1,∞) and
f(β) < 0 for β ∈ (0, 1). Taking the first order derivative to f(β), I obtain that

f ′(β) =
(β − 1)2

β(β + 1)2
. (C.1.9)

Therefore, f(β) is strictly increasing. Note that f(1) = 0. Thus, I proved (C.1.7). To prove

37



(C.1.8), it suffices to show that h(β) := (1 − 3β) ln β + 2β(β − 1) > 0 for β ∈ (1,∞) and
h(β) < 0 for β ∈ (0, 1). Taking the first order derivative to h(β), I obtain that

h′(β) = 4β − 3 ln β +
1

β
− 5. (C.1.10)

Now taking the second order derivative to h(β), I obtain that

h′′(β) =
(4β + 1)(β − 1)

β2
. (C.1.11)

Note that h′′(β) > 0 when β > 1, h′′(β) < 0 when β < 1 and h′′(1) = 0. This implies
that h′(β) is minimized at β = 1. Note that h′(1) = 0. This implies that h(β) is strictly
increasing. Finally, note that h(1) = 0. This implies that (C.1.8) holds.

Using L’Hôpital’s rule, I have that limr1→1−r2
∂H1(r1,r2)

∂r1
= r2(6−5r2)

1−r2
> 0 for r2 ∈ (0, 1).

Claim 2. Fix any r1 ∈ (0, 1), H1(r1, r2) is strictly increasing in r2. Moreover, for any
r1 ∈ (0, 1), limr2→1−r1

∂H1(r1,r2)
∂r2

exists and is positive. In addition, for any r1 ∈ (0, 1), as
r2 → 1, H1(r1, r2) → 1.

Proof of Claim 2. When 0 < r1 < 1, I already have that limr2→1H1(r1, r2) = 1. Now taking
the first order derivative w.r.t. r2 to (C.1.1), with some algebra, I obtain that

∂H1(r1, r2)

∂r2
=

(1− r1)
2r1

(1− r1 − r2)2
·
[(

−1 +
2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
− 2

]
. (C.1.12)

Then it suffices to show that if (r1, r2) ∈ (0, 1)2 and r1 + r2 ̸= 1,(
−1 +

2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
− 2 > 0. (C.1.13)

Plugging r2 = 1− βr1 into (C.1.13), it suffices to show that for any β ∈ (0, 1) ∪ (1,∞),

β + 1

β − 1
· ln β − 2 > 0. (C.1.14)

This is exactly (C.1.7) and has been shown in the Proof of Claim 1.
Using L’Hôpital’s rule, I have that limr2→1−r1

∂H1(r1,r2)
∂r2

= (1−r1)2

6r1
> 0 for r1 ∈ (0, 1).

Claim 3. Fix any r2 ∈ (0, 1), H2(r1, r2) is strictly increasing in r1. Moreover, for r2 ∈ (0, 1),
limr1→1−r2

∂H2(r1,r2)
∂r1

exists and is positive.
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Proof of Claim 3. Taking the first order derivative w.r.t. r1 to (C.1.2), I obtain that

∂H2(r1, r2)

∂r1
=

(1− r2)r
2
2

(1− r1 − r2)2
·
[(

1 +
2r1

1− r1 − r2

)
· ln 1− r2

r1
− 2

]
. (C.1.15)

Then it suffices to show that if (r1, r2) ∈ (0, 1)2 and r1 + r2 ̸= 1,(
1 +

2r1
1− r1 − r2

)
· ln 1− r2

r1
− 2 > 0. (C.1.16)

Plugging r2 = 1 − βr1 into (C.1.16), it suffices to show that for any β ∈ (0, 1) ∪ (1,∞),
β+1
β−1

ln β − 2 > 0, which is exactly (C.1.7) and has been shown in the Proof of Claim 1.

Using L’Hôpital’s rule, I have that limr1→1−r2
∂H2(r1,r2)

∂r1
= (r2)2

6(1−r2)
> 0 for r2 ∈ (0, 1).

Claim 4. Fix any r1 ∈ (0, 1], H2(r1, r2) is strictly increasing in r2. Moreover, for any
r1 ∈ (0, 1), limr2→1−r1

∂H2(r1,r2)
∂r2

exists and is positive. In addition, for any r1 ∈ (0, 1], as
r2 → 1, H2(r1, r2) → 1.

Proof of Claim 4. When r1 = 1, H2(r1, r2) = (1 − r2) · ln (1− r2) + r2. This is an strictly
increasing function because ∂H2(r1,r2)

∂r2
= − ln (1− r2) > 0. In addition, by L’Hôpital’s rule,

limr2→1H2(r1, r2) = 1. Thus, Claim 4 holds when r1 = 1. When 0 < r1 < 1, I already
have that limr2→1H1(r1, r2) = 1. Now taking the first order derivative w.r.t. r2 to (C.1.2), I
obtain that

∂H2(r1, r2)

∂r2
=

r1r2
(1− r1 − r2)2

·
[(

2− 3r2 +
2r2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
− 2 · (1− r1)

]
. (C.1.17)

Then to show the first part of Claim 4, it suffices to show that if (r1, r2) ∈ (0, 1)2 and
r1 + r2 ̸= 1, (

2− 3r2 +
2r2(1− r2)

1− r1 − r2

)
· ln 1− r2

r1
− 2 · (1− r1) > 0. (C.1.18)

Plugging r2 = 1− βr1 into (C.1.18), it suffices to show that for any β ∈ (0, 1) ∪ (1,∞),(
3βr1 − 1 +

2β(1− βr1)

β − 1

)
· ln β − 2 · (1− r1) > 0. (C.1.19)

Slightly rewriting (C.1.19), it suffices to show that for any β ∈ (0, 1) ∪ (1,∞),

β + 1

β − 1
· ln β − 2 +

(
β2 − 3β

β − 1
ln β + 2

)
· r1 > 0. (C.1.20)
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Then, it suffices to show that for any β ∈ (0, 1)∪ (1,∞), the following two inequalities hold:

β + 1

β − 1
· ln β − 2 > 0, (C.1.21)

β2 − 3β

β − 1
· ln β + 2 > 0. (C.1.22)

Note that (C.1.21) is exactly (C.1.7), which has been shown in the Proof of Claim 1. To
prove (C.1.22), it suffices to show that g(β) := (β2 − 3β) ln β + 2(β − 1) > 0 for β ∈ (1,∞)

and g(β) < 0 for β ∈ (0, 1). Taking the first order derivative to g(β), I obtain that

g′(β) = (2β − 3) · ln β + β − 1. (C.1.23)

Now taking the second order derivative to g(β), I obtain that

g′′(β) = 2 ln β − 3

β
+ 3. (C.1.24)

Note that g′′(β) is strictly increasing and g′′(1) = 0. This implies that g′(β) is minimized at
β = 1. Note that g′(1) = 0. This implies that g(β) is strictly increasing. Finally, note that
g(1) = 0. This implies that (C.1.22) holds.

Using L’Hôpital’s rule, I have that limr2→1−r1
∂H2(r1,r2)

∂r2
= (1−r1)(5r1+1)

6r1
> 0 for r1 ∈

(0, 1).

I am now ready to prove Lemma 3. Fix any (MB,MS) in which 0 < MS < MB < 1

and MB + MS ̸= 1. By Claim 1, 2 and the Intermediate Value Theorem, I have that for
any r2 ∈ [0, 1), there exists a unique I(r2) ∈ (0, 1) such that r1 = I(r2) is a solution to
H1(r1, r2) = MB. In addition, I(r2) is a strictly decreasing function. Moreover, by the
Implicit Function Theorem33, I(r2) is continuous at each r2 ∈ [0, 1). By Claim 3, 4 and
the Intermediate Value Theorem, I have that for any r1 ∈ (0, 1], there exists a unique
J(r1) ∈ (0, 1) such that r2 = J(r1) is a solution to H2(r1, r2) = MS. In addition, J(r1)

is a strictly decreasing function. Moreover, by the Implicit Function Theorem34, J(r1) is
continuous at each r1 ∈ (0, 1]. Thus it suffices to prove that there exists r2 ∈ (0, 1) such that

J(I(r2)) = r2. (C.1.25)

33The Implicit Function Theorem applies for any r2 ∈ [0, 1) because by Claim 1 and 2, ∂H1(I(r2),r2)
∂r1

> 0

and ∂H1(I(r2),r2)
∂r2

> 0 for any r2 ∈ [0, 1).
34The Implicit Function Theorem applies for any r1 ∈ (0, 1] because by Claim 3 and 4, ∂H2(r1,J(r1))

∂r1
> 0

and ∂H2(r1,J(r1))
∂r2

> 0 for any r1 ∈ (0, 1].
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Note that J(I(r2)) is a continuous and strictly increasing function for r2 ∈ [0, 1). Also note
that J(I(0)) ∈ (0, 1) because I(0) ∈ (0, 1) and J(r1) ∈ (0, 1) when r1 ∈ (0, 1). Now, by the
Intermediate Value Theorem, it suffices to show that there exists some r2 ∈ (0, 1) such that

J(I(r2)) ≤ r2. (C.1.26)

Because J is strictly decreasing, it is equivalent to showing that there exists some r2 ∈ (0, 1)

such that
I(r2) ≥ J−1(r2). (C.1.27)

By Claim 1, this is equivalent to showing that there exists some r2 ∈ (0, 1) such that

H1(J
−1(r2), r2) ≤ MB. (C.1.28)

Let ϵ := MB −MS > 0. I observe a relationship between the two functions H1 and H2 when
(r1, r2) ∈ (0, 1)2:

H1(r1, r2)−H2(r1, r2) =

(
(1− r1)

2

r22
− 1

)
·H2(r1, r2) + r1 · (2− r1). (C.1.29)

Note that when r2 → 1, J−1(r2) → 0. To see this, suppose not, then by Claim 4,
H2(J

−1(r2), r2) → 1 when r2 → 1, a contradiction to H2(J
−1(r2), r2) = MS < 1. Then

by (C.1.29), as r2 → 1,

H1(J
−1(r2), r2)−MS = H1(J

−1(r2), r2)−H2(J
−1(r2), r2)

=

(
(1− J−1(r2))

2

(r2)2
− 1

)
·H2(J

−1(r2), r2) + J−1(r2) · (2− J−1(r2))

=

(
(1− J−1(r2))

2

(r2)2
− 1

)
·MS + J−1(r2) ·

(
2− J−1(r2)

)
→

(
(1− 0)2

12
− 1

)
·MS + 0 · (2− 0)

= 0.

This implies that there exists some r2 ∈ (0, 1) such that

∣∣H1(J
−1(r2), r2)−MS

∣∣ ≤ ϵ

2
. (C.1.30)

Note that (C.1.30) implies (C.1.28) because H1(J
−1(r2), r2) ≤ MS + ϵ

2
< MS + ϵ = MB.

Finally, suppose that r1 + r2 = 1 for the solution (r1, r2), then MB +MS = H1(r1, r2) +
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H2(r1, r2) = 1 by the definition of H1(r1, r2) and H2(r1, r2), a contradiction to the assumption
that MB +MS ̸= 1. Therefore, I have that r1 + r2 ̸= 1 for the solution (r1, r2).

C.2 Proof of Theorem 4

Step 1 : The generalized random double auction maximizes the expected profit under the
asymmetric triangular value distribution. To show this, first note that (ZVV-A) holds by
construction. In addition, the virtual value is non-positive for any value profile outside the
support and positive for the value profile (1, 0). Then any dominant-strategy mechanism
in which 1) ex-post participation constraints are binding for zero-value buyer and one-value
seller, and 2) trade does not take place when r2vB − (1 − r1)vS < r1r2 and trade takes
place with probability one when (vB, vS) = (1, 0) is an optimal trading mechanism. It is
straightforward to see that the generalized random double auction is such a mechanism.
Step 2 : The asymmetric triangular value distribution minimizes the expected profit under
the generalized random double auction. I use the duality theory to show this. Note that the
asymmetric triangular value distribution is a feasible value distribution by construction. By
the virtual representation, the expected profit (the value of the primal problem) given the
random double auction and the symmetric triangular value distribution is Pr(1, 0)×(1−0) =

r1(1 − r2). Second, the constraints in the dual problem hold for all value profiles. To
see this, note that for any value profile v = (vB, vS) inside the support (or v ∈ AT ),
λ∗∗
B vB + λ∗∗

S vS + µ∗∗ = t∗∗(v) by (CS-A). Also, for any value profile v = (vB, vS) in which
r2vB − (1 − r1)vS = r1r2, λ∗∗

B vB + λ∗∗
S vS + µ∗∗ = 0 = t∗∗(v) because λ∗∗

B = 1−r1−r2
(1−r1) ln

1−r2
r1

,

λ∗∗
S = − 1−r1−r2

r2 ln
1−r2
r1

and µ∗∗ = − r1(1−r1−r2)

(1−r1) ln
1−r2
r1

. Then, for any value profile v = (vB, vS) in

which r2vB − (1 − r1)vS < r1r2, λ∗∗
B vB + λ∗∗

S vS + µ∗∗ < 0 = t∗∗(v) because λ∗∗
B > 0 and

λ∗∗
S < 0. Finally, the value of the dual problem given the constructed dual variables is equal

to r1(1− r2) by simple calculation. The details of the constructed dual variables as well as
the characterization are given in Appendix B.

Appendix D Proof of Theorem 5

To facilitate the analysis, I first establish a strong duality result. Given a dominant-strategy
mechanism (q, tB, tS), the primal minimization problem of adversarial Nature is as follows
(with dual variables in the bracket):

inf
π

∫
t(v)dπ(v) (P)
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subject to ∫
max{vB − vS, 0}dπ(v) = GFT, (λ)∫

dπ(v) = 1. (µ)

It has the following dual maximization problem:

sup
λ∈R,µ∈R

λGFT + µ (D)

subject to
λmax{vB − vS, 0}+ µ ≤ t(v), ∀v ∈ V.

Note that the value of (P) is bounded by 1 as t(v) ≤ 1. In addition, the joint distribution
that puts all probability masses on the value profile (1+GFT

2
, 1−GFT

2
) is in the interior of the

primal cone. Then, by Theorem 3.12 in Anderson and Nash (1987), strong duality holds.
Theorem 5 is established by the following three steps.
Step 1: Narrow down the search to a class of mechanisms.

I divide all deterministic dominant-strategy mechanisms that satisfy the properties stated
in Lemma 5 into the following four classes:
Class 1 : The trade boundary touches on the value profiles (c1, 1) and (0, c2) for some
0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1.
Class 2 : The trade boundary touches on the value profiles (0, c1) and (1, c2) for some
0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1.
Class 3 : The trade boundary touches on the value profiles (c1, 0) and (c2, 1) for some
0 ≤ c1 ≤ 1, 0 ≤ c2 ≤ 1.
Class 4 : The trade boundary touches on the value profiles (c1, 0) and (1, c2) for some
0 < c1 ≤ 1, 0 ≤ c2 < 135.

By (iv) of Lemma 5, I can show that the ex-post profit from the value profile (0, 0) or (0, 1)
will never be positive for any mechanism in Class 1, Class 2 or Class 3. To see this, note that
for any mechanism in Class 1 : t(0, 0) = 0−c2 = −c2 ≤ 0, t(1, 0) = (1−0)·1−1−1 = −1 < 0;
for any mechanism in Class 2 : t(0, 0) = 0−c1 = −c1 ≤ 0, t(1, 0) = (1−0)·1−1−c2 = −c2 ≤ 0;
for any mechanism in Class 3 : t(0, 0) = 0, t(1, 0) = (1− 0) · 1− (1− c1)− 1 = −(1− c1) ≤ 0.
Consider the joint distribution that puts probability masses GFT and 1−GFT on the value
profiles (1,0) and (0,0) respectively. It is straightforward to verify that this is a feasible value
distribution; moreover, the profit under this joint distribution cannot be positive. Therefore,
I can restrict attention to Class 4 only.

35The cases where c1 = 0 are included in Class 2, and the cases where c2 = 1 are included in Class 3.
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Step 2: Identify an upper bound of the profit guarantee.
I propose a relaxation of (D) by ignoring many constraints. Specifically, the only

remaining ones are the constraints for the following four value profiles: (0,0), (1,0), (c1, 0)
and (1, c2). Formally, I have the following relaxed problem:

max
λ∈R,µ∈R

λGFT + µ (D’)

subject to
µ ≤ 0, (D.1.1)

λ+ µ ≤ c1 − c2. (D.1.2)

λc1 + µ ≤ 0, (D.1.3)

λ(1− c2) + µ ≤ 0. (D.1.4)

Note that the value of (D’), denoted by val(D’), is weakly greater than the value of (D).
Now I will find an upper bound of the value of (D’) across 0 < c1 ≤ 1 and 0 ≤ c2 < 1, and
show that it is attainable by constructing deterministic dominant-strategy mechanisms and
a feasible value distribution.

If λ ≤ 0, then by (D.1.1), val(D’)≤ 0 for any 0 < c1 ≤ 1 and 0 ≤ c2 < 1. Henceforth,
I restrict attention to λ > 0. If c1 ≥ GFT , then λGFT + µ ≤ λc1 + µ ≤ 0, where
the first inequality follows from λ > 0 and the second inequality follows from (D.1.3). If
c2 ≤ 1−GFT , then λGFT + µ ≤ λ(1− c2) + µ ≤ 0, where the first inequality follows from
λ > 0 and the second inequality follows from (D.1.4). If c1 ≤ c2, then λGFT+µ ≤ λ+µ ≤ 0,
where the first inequality follows from λ > 0 and the second inequality follows from (D.1.2).
Therefore, I can restrict attention to 1−GFT < c2 < c1 < GFT , because otherwise the profit
guarantee cannot be positive. This also implies that I can restrict attention to informational
environments in which GFT > 1

2
, because otherwise the profit guarantee cannot be positive.

Now I am left with (D.1.2), (D.1.3) and (D.1.4) as they imply (D.1.1).
If c1 ≥ 1 − c2, then I am left with (D.1.2) and (D.1.3), as (D.1.4) is not binding. It is

straightforward that the solution occurs when both (D.1.2) and (D.1.3) are binding, because
c1 < GFT < 1. The solution is λ = c1−c2

1−c1
, µ = − c1(c1−c2)

1−c1
. val(D’)= (c1−c2)(GFT−c1)

1−c1
:=

K(c1, c2). Now I maximize K(c1, c2) subject to the constraints that 1 − GFT < c2 < c1 <

GFT and c1 ≥ 1 − c2. Observe that c2 = 1 − c1 in the optimal solution as K(c1, c2) is
decreasing in c2. Now, with some algebra,

K(c1, 1− c1) = 1 + 2(1−GFT )− 2(1− c1)−
1−GFT

1− c1
.
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Then it is straightforward that the optimal solution is c1 = 1 −
√

1−GFT
2

, c2 = 1 − c1 =√
1−GFT

2
, and the maximized value of K(c1, c2) is

(
1−

√
2(1−GFT )

)2

.
If c1 ≤ 1 − c2, then I am left with (D.1.2) and (D.1.4), as (D.1.3) is not binding. It

is straightforward that the solution occurs when both (D.1.2) and (D.1.4) are binding,
because 1 − c2 < GFT < 1. The solution is λ = c1−c2

c2
, µ = − (1−c2)(c1−c2)

c2
. val(D’)=

(c1−c2)(GFT−1+c2)
c2

:= L(c1, c2). Now I maximize L(c1, c2) subject to the constraints that
1−GFT < c2 < c1 < GFT and c1 ≤ 1− c2. Observe that c1 = 1− c2 in the optimal solution
as L(c1, c2) is increasing in c1. Now, with some algebra,

L(1− c2, c2) = 1 + 2(1−GFT )− 2c2 −
1−GFT

c2
.

Then it is straightforward that the optimal solution is c2 =
√

1−GFT
2

, c1 = 1 − c2 =

1−
√

1−GFT
2

, and the maximized value of L(c1, c2) is
(
1−

√
2(1−GFT )

)2

.
Step 3: Show that the upper bound is attainable.

The last step is to construct deterministic trading mechanisms whose profit guarantee is(
1−

√
2(1−GFT )

)2

when GFT > 1
2
. Consider any deterministic trading mechanism

satisfying (i), (ii) and (iii) of Theorem 5. Let λ =
1−
√

2(1−GFT )√
1−GFT

2

and µ =

− (1−
√

2(1−GFT ))(1−
√

1−GFT
2

)√
1−GFT

2

. I will show that they are feasible for the original dual problem

(D).
Note that the constraint for the value profile (1,0) holds with equality by construction.

Then the constraint holds for any interior value profile36. Indeed, the constraint is the most
stringent for the value profile (1,0) because the trade boundary is non-decreasing. To see
this, note that the constraint for any interior value profile (vB, vS) is equivalent to that

λmax{vB − vS, 0}+ b1(vB)− b2(vS) + µ ≤ 0, (D.1.5)

where (vB, b1(vB)) and (b2(vS), vS) are in the trade boundary. Then the L.H.S. of (D.1.5)
is maximized at (1,0) because that λ > 0 and that b1 as well as b2 are non-decreasing. For
any exterior value profile37, the constraint also holds if (ii) of Theorem 5 holds. To see this,
note that given the constructed λ and µ, λmax{vB − vS, 0} + µ = 0 for the value profiles(
1−

√
1−GFT

2
, 0
)

and
(
1,
√

1−GFT
2

)
. Then, by linearity, λ(vB − vS) + µ = 0 for any value

36A value profile in which trade takes place with probability one is referred to as an interior value profile.
37A value profile in which trade does not take place is referred to as an exterior value profile. Note that by

the definition of the trade boundary, a value profile on the trade boundary is also an exterior value profile.
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profile on the line linking
(
1−

√
1−GFT

2
, 0
)

and
(
1,
√

1−GFT
2

)
. Therefore, if (ii) of Theorem

5 holds, the constraint also holds for any exterior value profile because that λ > 0 and µ < 0.

Finally, the value of (D) under the constructed dual variables is
(
1−

√
2(1−GFT )

)2

by
simple calculation.

Now consider the joint distribution described in Theorem 5. First, it is straightforward to
verify that it is a feasible value distribution. Second, given any trading mechanism satisfying

(i), (ii) and (iii) of Theorem 5, the value of (P) is
(
1−

√
2(1−GFT )

)2

under the joint
distribution by simple algebra. This finishes the proof.

References

Anderson, E. J. and Nash, P. (1987). Linear programming in infinite-dimensional spaces:
theory and applications. John Wiley & Sons.

Auster, S. (2018). Robust contracting under common value uncertainty. Theoretical
Economics, 13(1):175–204.

Bergemann, D., Brooks, B., and Morris, S. (2017). First-price auctions with general
information structures: Implications for bidding and revenue. Econometrica, 85(1):107–
143.

Bergemann, D., Brooks, B., and Morris, S. (2019). Revenue guarantee equivalence. American
Economic Review, 109(5):1911–29.

Bergemann, D., Brooks, B. A., and Morris, S. (2016). Informationally robust optimal auction
design. Available at SSRN 2886456.

Bergemann, D. and Morris, S. (2005). Robust mechanism design. Econometrica, 73(6):1771–
1813.

Bergemann, D. and Schlag, K. (2011). Robust monopoly pricing. Journal of Economic
Theory, 146(6):2527–2543.

Brooks, B. and Du, S. (2021). Optimal auction design with common values: An
informationally robust approach. Econometrica, 89(3):1313–1360.

Carrasco, V., Luz, V. F., Kos, N., Messner, M., Monteiro, P., and Moreira, H. (2018).
Optimal selling mechanisms under moment conditions. Journal of Economic Theory,
177:245–279.

46



Carroll, G. (2017). Robustness and separation in multidimensional screening. Econometrica,
85(2):453–488.

Chatterjee, K. and Samuelson, W. (1983). Bargaining under incomplete information.
Operations research, 31(5):835–851.

Che, Y.-K. and Zhong, W. (2021). Robustly-optimal mechanism for selling multiple goods. In
Proceedings of the 22nd ACM Conference on Economics and Computation, pages 314–315.

Chen, Y.-C. and Li, J. (2018). Revisiting the foundations of dominant-strategy mechanisms.
Journal of Economic Theory, 178:294–317.

Chung, K.-S. and Ely, J. C. (2007). Foundations of dominant-strategy mechanisms. The
Review of Economic Studies, 74(2):447–476.

Condorelli, D. and Szentes, B. (2020). Information design in the holdup problem. Journal
of Political Economy, 128(2):681–709.

Crémer, J. and McLean, R. P. (1985). Optimal selling strategies under uncertainty for a
discriminating monopolist when demands are interdependent. Econometrica, 53(2):345–
362.

Crémer, J. and McLean, R. P. (1988). Full extraction of the surplus in bayesian and dominant
strategy auctions. Econometrica: Journal of the Econometric Society, pages 1247–1257.

Du, S. (2018). Robust mechanisms under common valuation. Econometrica, 86(5):1569–
1588.

Duffie, D. and Zhu, H. (2017). Size discovery. The Review of Financial Studies, 30(4):1095–
1150.

Kamenica, E. and Gentzkow, M. (2011). Bayesian persuasion. American Economic Review,
101(6):2590–2615.

Kos, N. and Messner, M. (2015). Selling to the mean. Available at SSRN 2632014.

Libgober, J. and Mu, X. (2021). Informational robustness in intertemporal pricing. The
Review of Economic Studies, 88(3):1224–1252.

McAfee, R. P. (1992). A dominant strategy double auction. Journal of economic Theory,
56(2):434–450.

47



Myerson, R. B. (1981). Optimal auction design. Mathematics of Operations Research,
6(1):58–73.

Myerson, R. B. and Satterthwaite, M. A. (1983). Efficient mechanisms for bilateral trading.
Journal of Economic Theory, 29(2):265–281.

Roesler, A.-K. and Szentes, B. (2017). Buyer-optimal learning and monopoly pricing.
American Economic Review, 107(7):2072–80.

Yamashita, T. and Zhu, S. (2018). On the foundations of ex post incentive compatible
mechanisms. Technical report.

Zhang, W. (2022). Correlation-robust optimal auctions. arXiv preprint arXiv:2105.04697.

48


	Introduction
	Background and Motivation
	Results
	Related Literature

	Model
	Trading Environment
	Knowledge
	Dominant-strategy Mechanisms
	Objective

	Main Results
	Strategy-proofness
	Positive Profit Guarantee
	Optimal Profit Guarantee
	Construction of Symmetric Triangular Value Distribution


	Other Models of Limited Knowledge
	Known Difference In Expectations
	Known Expectations
	Symmetric Informational Environment: MB+MS=1
	Asymmetric Informational Environment: MB+MS=1


	Deterministic Mechanisms
	Extension and Discussion
	Can-hold Case
	Information Design Problem

	Preliminaries
	Zero-Sum Game
	Revenue Equivalence
	Proof of Lemma 5


	Illustration of Theorem 4
	Construction of Generalized Random Double Auction
	Construction of Asymmetric Triangular Value Distribution

	Proofs for Section 3
	Proof of Lemma 3
	Proof of Theorem 4

	Proof of Theorem 5

