
The Impact of Financial Shocks on the Forecast

Distribution of Output and Inflation*

Mario Forni
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1 Introduction

Since the seminal contribution of Adrian et al. (2019), the dynamics of the forecast

distribution of the growth rate of GDP have attracted increasing attention from

both the academia and policy makers, see Plagborg-Møller et al. (2020), Giglio et al.

(2016) and Delle Monache et al. (2020), among others. Existing evidence suggests

that the distribution tends to become more dispersed and left-skewed at the onset

of economic downturns. This empirical regularity is almost fully attributable to

movements in the left tail, since the right tail displays very little variation. As Adrian

et al. (2019) claim, left tail movements are predictable using financial variables. The

topic has quickly become central in the current research agenda: if other moments

of the growth rate distribution beside the mean are relevant for the agents’ decision-

making process, then understanding their dynamics becomes essential to better

understand economic fluctuations.1

A recent and parallel stream of literature, developed from the seminal contri-

bution of Gilchrist and Zakraǰsek (2012), has studied the role of shocks originating

from the financial sector as drivers of macroeconomic fluctuations, see among oth-

ers, Peersman (2011), Meeks (2012), Peersman and Wagner (2015), Caldara et al

(2016), Gambetti and Musso (2017), Furlanetto et al. (2019) and Brianti (2023).2

All in all, these contributions, albeit with differences in terms of magnitude, point

to financial shocks as important drivers of macroeconomic fluctuations.

1For instance, since Bloom (2009), a growing literature has shown that changes in uncertainty
have sizable effects on real activity variables. Some prominent contributions are, among others,
Jurado et al. (2015), Ludvigson et al. (2021), Fernandez-Villaverde et al. (2011), Bachmann et
al. (2013), Bekaert et al. (2013), Caggiano et al. (2014), Rossi and Sekhposyan (2015), Scotti
(2016), Baker et al. (2016), Caldara et al. (2016), Leduc and Liu (2016), Basu and Bundik (2017),
Fajgelbaum et al. (2017), Piffer and Podstawski (2018), Nakamura et al. (2017), Bloom et al.
(2018), Carriero et al. (2018a, 2018b), Shin and Zhong (2020), Jo and Sekkel (2019), Angelini
and Fanelli (2019). For more references, see the survey articles in Cascaldi-Garcia et al. (2021),
Fernandez-Villaverde and Guerron-Quintana (2020) and Berger et al. (2020). More recently,
Salgado et al. (2019) and Dew-Becker (2020) have argued that also changes in the asymmetry of
the distribution are important for economic fluctuations.

2Early theoretical works on the importance of the financial sector for real economic activity
fluctuations include Bernanke and Gertler (1989), Carlstrom and Fuerst (1997), Bernanke, Gertler,
and Gilchrist (1999) and Kiyotaki and Moore (1997). More recent contributions focusing on the
role of the financial sector in economic fluctuations include Christiano, Motto and Rostagno (2003,
2007), Curdia and Woodford (2010), Gertler and Karadi (2011), and Gertler and Kiyotaki (2011),
Mendoza (2010), He and Krishnamurthy (2013), Brunnermeier and Sannikov (2014).
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In this paper we bring these two streams of literature together and study the

effects of financial shocks on the forecast distribution of real variables and inflation.

Relative to the first stream of literature, we contribute by adopting a causal perspec-

tive. Most of the existing contributions in this area have focused on reduced-form

analysis where the aim was to assess potential predictors of changes in the forecast

distribution. Relative to the second stream of literature, we study causal effects of

financial shocks on the whole expected distribution of real economic activity vari-

ables and inflation, not limiting the focus to first-moment effects as it is the case in

the existing literature. More specifically, we investigate how financial shocks affect

tail risk (the 5th percentile), uncertainty and asymmetry of the forecast distribu-

tions of industrial production growth and inflation in the US. The financial shock

is a credit spread shock, identified following Gilchrist and Zakraǰsek (2012).

As for the method, building on Forni, Gambetti and Sala (2021), we propose

an econometric approach which combines quantile regressions and structural VARs.

Quantile regressions are employed to estimate the conditional quantiles of the fore-

cast distribution of any variable of interest, using a set of predictors. Such predictors

have a VAR representation and thus a VMA representation in terms of structural

shocks. This implies that the quantiles themselves have an impulse response func-

tions representation in terms of the structural shocks, so one can study how quantiles

respond to a shock of interest.

While the model is that of Forni, Gambetti and Sala (2021), the way it is used

here represent an original methodological contribution. While Forni, Gambetti and

Sala (2021) use the model to identify novel shocks (shocks affecting the tails of ex-

pected real activity growth) and study their first moment effects on macroeconomic

variables, here we do the other way round. That is, we analyze the effect of shocks

already studied in the SVAR literature to the expected quantiles of macroeconomic

variables.

Our main findings are the following. First, while for industrial production growth

the left tail is substantially more volatile than the right tail, confirming previous

results, for inflation both tails display fluctuations: the right tail shifts primarily

before the mid 1980s, while the left tail mainly varies after the 2000s. Second, credit

spread shocks are a major driver of fluctuations in the left tail of output, explaining
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60% of the forecast error variance on impact and about one third at business cycle

frequencies. Consequently, they explain a large fraction of real activity uncertainty

(almost one half at the one-year horizon). This suggests that credit shocks may

affect economic activity not only directly, by increasing the cost of credit, but also

indirectly, via their effects on downside uncertainty. Third, also monetary policy,

identified with an external instrument approach (see Miranda-Agrippino and Ricco,

2021), produces significant effects on the left tail of macroeconomic variables. The

effects, however, are substantially smaller than those of financial shock. From a

back-of-the-envelope calculation, a four standard deviation monetary policy shock

would be needed to offset the real risk arising from a one standard deviation financial

shock.

Our results are in line with the findings in Adrian et al. (2019) but in the

context of a structural, rather than reduced-form, model. The paper is also closely

related to Loria et al. (2019) and López-Salido and Loria (2020). The authors

use quantile local projections to study the effects of several macroeconomic shocks,

identified in separate SVAR models, on the tail risk of GDP growth and inflation.

The main difference relative to their paper is that we perform the analysis in a

single model linking the SVAR with quantile regression. Our approach presents

several advantages. First, the fact that there is a single model ensures consistency

between the distribution dynamics and the responses of the variables included in

the VAR. Second, variance and historical decompositions for different quantiles are

easily derived as in the SVAR literature. Third, one can also perform scenario

and counterfactual analysis (see e.g. Antoĺın-Dı́az et al., 2021, and the references

therein), which are instead unfeasible (or at least not straightforward) in a local

projection framework. The differences in the econometric approach could be at the

root of the different results obtained. While Loria et al. (2019) find that both

financial and monetary policy shocks are equally important for tail risk, we find

that only financial shocks represent a major driver of fluctuations in the distribution

dynamics.

Our model is similar in spirit to the quantile VAR proposed by Chavleishvili and

Manganelli (2019). The two approaches present advantages and disadvantages. The

quantile VAR is more general than our approach since it considers the whole multi-
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variate forecast distribution of the variables included in the model. However, it has

the potential drawback that the approach is – by construction – order dependent

(as quantiles of each of the variables are estimated conditioning on the contempo-

raneous quantiles of the variables ordered before the variables itself in the VAR as

in a standard Cholesky identified VAR). Therefore one requires a strong prior on a

particular ordering of the variables, which is however hard to justify in practice in

many settings.

The main advantage of our approach is that is very easy to estimate and use.

Also, since shocks identification works exactly the same way as in SVARs, impulse

response functions and variance decomposition analyses are easy to perform for any

shock of interest. The main limitation is that the procedure models only univariate

marginal distributions as opposed to modeling the (conditional) quantiles of the

joint multivariate density. We plan to extend the model in this direction in our

future research.

The remainder of the paper is organized as follows. Section 2 lays out the

econometric approach. Section 3 presents the main findings and some robustness

checks. Section 4 concludes.

2 Econometric approach

Our model has two main ingredients. First, there is a SVAR representation for a

set of macroeconomic variables. Second, there is a quantile regression that relates

the quantiles of the forecast distribution of a variable of interest to the variables

included in the VAR. These two features establish a link between quantiles and

structural shocks, where the impulse response functions of the quantiles (or of any

linear function of them) are linear combinations of the quantile regression coefficients

and the impulse response functions of the predictors.
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2.1 SVAR representation

To begin with, we assume that yt, a vector of macroeconomic variables, follows

(abstracting from the constant term) the VAR model

A(L)yt = εt, (1)

where εt ∼ WN(0,Σε) is a vector of reduced-form white-noise residuals and A(L) =

I −
∑p

k=1AkL
k is a matrix of degree-p polynomials in the lag operator L. By

inverting the VAR, we obtain the moving average

yt = C(L)εt, (2)

where C(L) =
∑∞

k=0CkL
k = A(L)−1 (with C0 = In). From (2), we can derive the

structural representation

yt = C(L)SUut = B(L)ut, (3)

where S is the Cholesky factor of Σε, U is an orthonormal (UU ′ = I) identification

matrix, ut = U ′S−1εt ∼ WN(0, I) is the vector of structural shocks and B(L) is a

matrix of structural impulse response functions.

2.2 Forecast distribution quantiles

Let xt be the target variable whose distribution has to be predicted and let yt be the

vector of n macroeconomic variables included in the VAR in (1). Let wt = Wyt be

the r-dimensional subvector of variables which are important to forecast xt, where

W is a r × n matrix of zeros and ones selecting the appropriate predictors in yt.

The quantiles of the h-period ahead forecast distribution of xt are estimated

using conditional quantile regressions. The τ -th quantile, Qτ
t , of xt+h, conditional

on the predictors wt, is a linear function of the predictors:

Qτ
t = β′

τ (L)wt = β′
τ (L)Wyt = β̃′

τ (L)yt,

where β̃′
τ (L) = β′

τ (L)W and βτ (L) is a r-dimensional vector in the lag operator L.
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Since the quantiles are linear in yt, any linear combination zjt of the quantiles can

be written as a linear combination of current and lagged macroeconomic variables:

zjt = γ′
j(L)yt, (4)

where γj(L) = γj0 + γj1L+ ...γjqL
q is an n-dimensional vector of polynomials in L.

The parameters βτ (L) are estimated using the smoothed quantile regression es-

timator recently proposed by Fernandes et al. (2021) and Natal and Horta (2022).

The basic novelty of this estimator is that it uses a smoothing of the standard objec-

tive function typically used in conditional quantile regressions.3 The advantage of

this estimator is that (i) it is more accurate than the standard estimator and (ii) it

does not suffer from the curse of dimensionality, so that it is possible to use several

predictors. In addition, (iii) the kernel estimator is continuously differentiable and

increasing in the quantiles.4 Moreover, (iv) it is possible to compute the asymptotic

standard deviation of the estimated coefficients to get confidence bands and (v) ob-

tain a consistent estimate of the conditional probability density function, without

the need of resorting to an interpolation like the one used in Adrian et al. (2019).

The estimator has a parameter governing the bandwidth. To set this parameter, we

use the rule of thumb suggested by Fernandes et al. (2021).

Finally, estimates of the polynomials γj(L) can simply be obtained by replac-

ing the quantile parameters β̃τ (L) with their estimates obtained from the quantile

regression.

2.3 Distribution dynamics

By combining (4) and (3) we can see that any linear combination of the quantiles

zjt = γ′
j(L)yt, has the following dynamic structural representation

zjt = γ′
j(L)B(L)ut, (5)

3See Koenker and Bassett (1978).
4The latter property holds for the average covariates, but in practice it is rarely violated else-

where.
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where the polynomial γ′
j(L)B(L) represents the impulse response functions to the

structural shocks ut.
5

We focus here on three main features of the forecast distribution: tail risk,

uncertainty and asymmetry. Let use define the 5th, 50th and 95th percentiles of the

forecast distribution as

zLt = Q0.05
t = γ′

L(L)yt = β̃′
0.05(L)B(L)ut (6)

zRt = Q0.95
t = γ′

R(L)yt = β̃′
0.95(L)B(L)ut. (7)

zMt = Q0.5
t = γ′

M(L)yt = β̃′
0.5(L)B(L)ut (8)

The 5th percentile is our measure of tail risk. Uncertainty is defined as the difference

between the two tails

zUt = zRt − zLt = γ′
U(L)yt = (β′

0.95(L)− β′
0.05(L))B(L)ut.

Asymmetry is measured as the non-normalized Kelley skewness (Kelley, 1947), i.e.

the sum of the 5th and 95th percentiles minus twice the median:

zSt = zRt + zLt − 2zMt = γ′
S(L)yt = (β′

0.95(L) + β′
0.05(L)− 2β′

0.5(L))B(L)ut.

2.4 Discussion

At first sight, the linearity of the VAR model for yt might seem at odds with the

idea that each conditional quantile of the forecast distribution of yt is time varying

and predictable. But it is not.

To get the intuition, we discuss a simple model which is compatible with the two

modeling assumptions. Suppose that the n-dimensional vector yt admits the VAR

representation

yt = Ayt−1 + εt

5Notice that, in this framework, ut, although orthogonal to the past values of yt, cannot be
independent of them, since independence would imply that the conditional quantiles of ut, and
therefore those of yt, are constant, contrary to the basic idea behind equations (4) and (5) and the
empirical evidence below. We do not model explicitly the dependence of the distribution of ut on
yt−k, k > 0, since this is not necessary for our purposes, see the discussion in Section 2.4.
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where εt is i.i.d. In this case, the τ -th conditional quantile of the i-th element of the

vector yt, yit, is:

Qi,τ = Aiyt−1 +Qεi,τ

where Qεi,τ is the τ -th conditional quantile of εit, and Ai is the i-th row of A. Note

that the term Aiyt−1 is constant for all τ so the difference between any two quantiles

τ and τ is:

Qi,τ −Qi,τ = Qεi,τ −Qεi,τ .

By the i.i.d assumption, Qεi,τ is constant and does not depend on yt−1 so that

Qi,τ −Qi,τ is constant.

Suppose now that εt is not serially independent. For instance assume εt =

α′yt−1vt, where vt is a vector white noise, independent of the past history of yt.

Notice that εt, consistently with the assumptions of the VAR model, is serially

uncorrelated since E(εtε
′
t−k) = α′E(yt−1y

′
t−k)α E(vtv

′
t−k) = 0 for any k > 0. The

model becomes

yt = Ayt−1 + α′yt−1vt. (9)

This model is in line with a long tradition in the interest rate modeling, where

generalizations of the Cox, Ingersoll and Ross (1985) model have appeared with

exactly the same formulation of equation (9), but with Gaussian innovations (see

Chan et al. (1992) for an in depth discussion).

The τ -th conditional quantile of yit is now

Qi,τ = Aiyt−1 + α′yt−1Qvi,τ

= (Ai +Qvi,τα
′)yt−1

where Qvi,τ is the τ -th conditional quantile of vit. Interestingly, now the quantiles of

yit depend linearly on yt−1 and the coefficient (Ai +Qvi,τα
′) is quantile-dependent.

The difference between two quantiles is:

Qi,τ −Qi,τ = (Qvi,τ −Qvi,τ )α
′yt−1
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which is a linear function of the conditioning variables, yt−1.

3 Empirical analysis

We discuss here the target variables for the quantile regressions and the shock iden-

tification in the SVAR model. We then present the main empirical findings. First,

we describe the estimated measures of the forecast distributions of industrial pro-

duction growth and inflation. Second, we assess the relevance of financial shocks in

explaining fluctuations in these.

3.1 Target variables, specification and identification

We investigate the forecast distributions of industrial production growth and CPI

inflation. In the baseline exercise we forecast the two variables one-year ahead. We

consider the six-month ahead forecast as a robustness check. We use a monthly VAR

including in yt the log of industrial production (INDPRO), CPI inflation (CPI), the

unemployment rate (UNRATE), the excess bond premium (EBP) of Gilchrist and

Zakraǰsek (2012), the Chicago Fed’s National Financial Conditions Index (NFCI),

the S&P Composite Stock Price Index (SP500) and the federal funds rate (FFR).

The time span of the sample is 1973:M1 - 2016:M8. We use four lags in the VAR. In

the quantile regressions we use the current value and one lag of all of the variables

included in the monthly VAR.

3.2 The estimated forecast distributions

Figure 1 presents the estimated 5th, 50th and 95th quantiles of the one-year ahead

forecast distributions of industrial production growth and inflation, together with

their measures of uncertainty and skewness.

A few interesting findings emerge for the forecast distribution of industrial pro-

duction growth. First, the 5th percentile is much more volatile than the 95th per-

centile, which is relatively flat over the sample. Second, the 5th percentile displays

large and sudden drops in correspondence of economic downturns. Fluctuations in

tail risk drive the behavior of uncertainty and skewness: uncertainty increases and
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the growth distribution becomes more left-skewed during recessions. The largest

changes are observed in correspondence to the economic crises of the mid 1970s, the

early 2000s and the Great Recession. Our findings confirm those obtained in Adrian

et al. (2019) and point to the left tail as the main driver of the dynamics in the

forecast distribution of industrial production growth.

Unlike real economic activity, both tails of the inflation forecast distribution ex-

hibit substantial fluctuations over the sample considered. Movements in upside tail

risk are particularly large before the mid 1980s. Tail risk displays a large and pro-

nounced drop in correspondence of the Great Recession. Uncertainty has a declining

trend until the mid 1990s and an increasing trend from 2000 until 2010 followed by

another decline in the latest part of the sample. The three largest spikes in inflation

uncertainty are observed in the late 1970s, early 1980s and at the onset of the Great

Recession. Differently from industrial production, where fluctuations in uncertainty

are exclusively driven by the left tail, both tails play a role for inflation uncertainty.

For instance, the increase in uncertainty during the 1980s is largely driven by upside

tail risk, while the increase in the aftermath of the Great Recession is driven by tail

risk. Skewness presents a very interesting behavior. In the first part of the sample,

before the 1990s, skewness presents several spikes driven by the right tail which

make the distribution of inflation right-skewed. In the latest part of the sample, af-

ter 2000, the series presents two large negative peaks driven by the left tail, around

2003 and 2010, which make the distribution left-skewed. Below, we show that the

asymmetry observed after 2000 is largely driven by financial shocks. Our results,

however, do not shed light on what drives the right tail before the mid 1980s and

this issue is left for future research.

3.3 The effects of financial shocks

Here we present our main results about the effects of financial shocks on the forecast

distributions of growth and inflation. The financial shock is identified following

Gilchrist and Zakraǰsek (2012).

The shock is the 4th shock of a Cholesky identification where the Excess Bond

Premium (EBP) is the 4th variable in yt. The first 3 variables (INDPRO, CPI and

UNRATE) represent slow moving variables and the remaining n−3 variables (EBP,
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NFCI, SP500, FFR) are fast moving variables. The financial shock has no con-

temporaneous effect on the slow-moving variables, while it has a contemporaneous

impact on the fast-moving variables.

First, we show the impulse responses of the macroeconomic variables to financial

shocks in the monthly SVAR. Second, we present the impulse responses to the

different functions zjt of the forecast distributions of industrial production growth

and inflation.

Figure 2 reports the impulse response functions of the variables included in

the VAR to an unfavorable financial shock, namely an unexpected increase in the

excess bond premium. Bold lines represent point estimates and shaded areas are

68% and 90% confidence bands. Results are very much in line with those found in

the literature, see Gilchrist and Zakraǰsek (2012). Real economic activity variables,

stock prices and inflation significantly reduce following the shock, while the financial

stress index significantly increases. Table 1 reports the variance decomposition. The

shock explains around 20% of the variance of real economic activity variables and

stock prices. The finding confirms an important role for financial shocks as drivers

of macroeconomic fluctuations.

Figure 3 reports the responses of the 5th and 95th percentiles (first row), the

difference of the 5th and 95th percentiles with respect to the 50th percentile (sec-

ond row), uncertainty (third row) and skewness (fourth row) of the one-year ahead

forecast distributions of industrial production growth and CPI inflation to an unfa-

vorable financial shock. Solid lines and shaded areas represent point estimates and

68% and 90% confidence bands, respectively.

An unfavorable financial shock reduces both tails of the distribution of indus-

trial production growth and inflation. However, the effects on the 5th percentiles are

much larger and persistent than those on the 95th percentiles, especially for indus-

trial production. At the peak, a one-standard-deviation financial shock decreases

the 5th percentile of the expected distribution of industrial production growth by

roughly 1.2 percent, while it implies a decrease of the 95th percentile of about 0.4

percent. For inflation, the 5th percentile of the forecast distribution decreases by

0.25 percent, while the 95th percentile decreases by roughly 0.12 percent. When

considering the results in deviation from the 50th percentile (5th and 95th per-
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centiles minus the median), the results are very similar suggesting that the effects

do not represent a median effect. Indeed, the 5th percentile in deviations from the

median displays a pronounced drop following an unfavorable financial shock, while

the 95th percentile is either increasing (for industrial production growth) or not

moving significantly (for inflation). The financial shock significantly increases tail

risk of both real economic activity and inflation. The dynamics of the left tail are

reflected in the impulse responses of uncertainty and asymmetry. The fall of the

5th percentile with a relatively unchanged 95th percentile triggers an increase in

uncertainty of both inflation and industrial production and makes the distribution

of both variables more left-skewed. In other words, the probability of large drops

in industrial production growth and inflation increases significantly in response to

a worsening in financial conditions.

Table 2 reports the variance decomposition of tail risk, uncertainty and asym-

metry of industrial production growth and inflation. Financial shocks explain a

large portion of the left tail variance. For industrial production, 61% on impact

and around 35% after one, two and four years. For inflation, 23% on impact and

around 45% at one and two year horizons and 34% after four years. The effects on

the median of both forecast distributions are substantially lower and those on the

right tails even lower, especially for inflation. Financial shocks play a primary role

in explaining fluctuations in uncertainty and skewness of the industrial production

growth forecast distribution. Indeed, the shock explains slightly less than half of

the variance of uncertainty and around one third of the variance of skewness. The

percentages explained for inflation are slightly smaller since the 95th percentile plays

a role in uncertainty and skewness dynamics, but the importance of the financial

shock on the right tail is very modest.

The above findings shed new light on the transmission of credit shocks. They

not only reduce directly private expenditure by increasing the cost of credit, but

also considerably increase uncertainty about real economic activity, which can in

turn induce a further reduction in the demand for investment and consumption

durables (Bloom, 2009). This indirect channel is all the more important as it con-

cerns downside uncertainty, whose effects on growth are particularly strong (see

Forni, Gambetti and Sala, 2021).
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To complement the variance decomposition analysis, we also compute historical

decompositions for various percentiles, uncertainty and skewness of the forecast

distributions of inflation and industrial production growth. Figure 4 present the

results for 5th, 50th and 95th percentiles and Figure 5 for uncertainty and skewness

of the forecast distributions of industrial production growth and inflation. The black

solid line represents the variable in deviation from its deterministic components. The

dark gray bars represent the contribution of the financial shock and the light gray

bars the contribution of the remaining shocks in the system, which we label as

residual for simplicity and to which we do not provide an economic interpretation.

Overall, financial shocks explain the bulk of the fluctuations in the left tail of the

forecast distribution of both inflation and growth after 2000. Indeed, the lion’s

share of the large drops in correspondence to the early 2000s recession and the

Great Recession are driven by financial shocks. On the contrary, the role played by

financial shocks in explaining fluctuations in the median and the right tail is much

more modest, with essentially no role for the upside tail risk. As a result, financial

shocks appear to be the major drivers of uncertainty and skewness from the early

2000s.

Finally, from the impulse response functions we derive estimates of the Phillips

curve slopes for different quantiles. The exercise should be taken with caution since

we work with marginal distributions and not with the joint distribution. Still, we

believe that numbers could provide some useful information. Since the financial

shock is a demand shock, i.e. it moves output and inflation in the same direction,

we can measure the Phillips curve slope with the response of prices relative to the

response of industrial production, as previously done in Barnichon and Mesters

(2020) and Gaĺı and Gambetti (2020). More specifically, the slope is computed as

the ratio between the sum of responses of the j-th quantile of industrial production

over the sum of the response of the j-th quantile of inflation at an horizon of 12

months. We consider j = 0.05, 0.5, 0.95. The slopes are 0.17, 0.13 and 0.34 for the

5th, 50th and 95th percentiles respectively. The results show a much steeper Phillips

curve for high levels of inflation and industrial production growth. The finding is in

line with models with convex AS curves, arising for instance in presence of downward

wage rigidites, and with the evidence in Daly and Hobijn (2014) and Debortoli et
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al. (2022).

3.4 Other checks

Tables 3 and 4 report the variance decompositions of the different statistics of the

forecast distributions when using a horizon of 6- and 3-month ahead, respectively.

Figure 6 reports the impulse response functions for the 6-month ahead only. The

results are very similar to those of the baseline case when we use a 6-month horizon

ahead, except that financial shocks are even more important for industrial produc-

tion, especially for the left tail and for the median. For the 3-month ahead case,

results are slightly different as far as industrial production is concerned. In partic-

ular, the shock appears to have more uniform effects on the three percentiles of the

distribution. For inflation, the shock still is much more important for the left tail

in both specifications.

Figure 7 reports the results obtained using no lags of the variables in the quantile

regression. While for industrial production the results are virtually identical, for

inflation a few differences are observed. The most remarkable change is that the left

tail does not respond more than the right tail. The result is suggestive that lags of the

variables are important predictors for the forecast distribution of inflation. Indeed,

the coefficients in the quantile regression associated to the lags of the variables in

the monthly VAR are significant for each quantile considered.

3.5 Is there a role for monetary policy?

What are the policy implications of the above findings? In this Section we investigate

the extent to which monetary policy can be effective in mitigating the adverse effects

on the left tail. The evidence discussed here is also novel since there are no studies

on the effects of monetary policy on the distribution dynamics of both output and

inflation, made exception for Loria et al. (2019).

The monetary policy shock is identified using an external instrument approach

with the instrument of Miranda-Agrippino and Ricco (2021). The variable and lag

specification of the VAR is the same as the one employed above for credit shocks.

The reduced-form VAR is estimated from 1983:M1 to 2016:M8, but the regression of
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the reduced-form residuals on the instrument is estimated using data from 1991:M1

until 2009:M12, the time span for which the instrument is available. The responses

are to a unitary variance shock.

Tables 5, 6 and 7 display the variance decomposition results using the 12-, 6-

and 3-month ahead forecast distributions. Figure 8 shows the impulse response

functions of the monetary policy shocks in the case of 3-month ahead, as this is

the horizon for which the effects of monetary policy shocks are maximal. At a one-

year horizon the shock accounts for around 20% of the variance of the left tail of

industrial production and between 1% and 22% of the left tail of inflation depending

on the horizon of the target variable. Hence, monetary policy has relevant effects on

the risk of the distribution of the two variables suggesting that it can play a role in

containing macroeconomic risk arising from the adverse effects of financial shocks.

However it should be noted that, quantitatively, the effects are much smaller than

those of the financial shock. From a back-of-the-envelope calculation, in order to

offset the effects on the left tail of industrial production arising from a one standard

deviation adverse financial shock, a four standard deviation expansionary monetary

policy shock would be required. Such a large shock would more than offset the

effects on inflation with the result of pushing on the right the whole distribution

of inflation. So while there is a role for policy, stabilizing real risk would require

actions associated to large and possibly unwanted inflationary effects.

4 Concluding remarks

We study the effects of financial shocks on the forecast distribution dynamics of

industrial production growth and inflation. To this end, we use a novel econometric

technique which combines quantile regressions and Structural VARs.

We find that financial shocks represent the major driver of fluctuations in the

left tail of the forecast distributions of output and inflation. As the variance and the

asymmetry of the forecast distributions are largely driven by the left tail, financial

shocks turn out to play a very important role for distribution dynamics. After 2000,

financial shocks are the dominant driver of the left tail of both industrial production

growth and inflation forecast distributions. Monetary policy shocks have relevant
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effects on distribution dynamics, even though smaller than those of credit shocks.

This suggests that monetary policy can help containing uncertainty and the adverse

uncertainty effects of financial shocks.
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Tables

Horizon
h = 0 h = 12 h = 24 h = 48

INDPRO 0.0 16.6 21.7 19.6
CPI Inflation 0.0 2.3 2.3 2.4
UNRATE 0.0 18.2 25.4 23.7
EBP 97.8 78.2 73.3 69.5
NFCI 3.0 4.5 4.0 4.2
SP500 7.9 21.7 23.6 23.8
FFR 0.6 1.8 6.6 9.3

Table 1: Variance decomposition of the variables in the SVAR.

Industrial Production growth 12-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 61.0 37.7 35.6 33.2
50th percentile 33.3 15.2 15.2 16.1
95th percentile 33.7 8.5 10.3 10.0
Uncertainty 41.0 48.6 47.0 44.7
Skewness 32.7 36.2 33.7 29.8

CPI Inflation 12-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 23.3 47.2 42.2 34.0
50th percentile 3.3 2.4 1.9 4.8
95th percentile 0.3 1.1 1.1 2.3
Uncertainty 18.0 8.9 7.4 7.6
Skewness 1.8 24.3 26.4 23.1

Table 2: Financial shock: variance decomposition of the forecast distribution 12-
month ahead.
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Industrial Production growth 6-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 61.2 44.6 42.1 38.9
50th percentile 39.8 28.9 27.1 25.8
95th percentile 52.0 20.5 19.8 19.2
Uncertainty 14.4 53.3 51.9 49.0
Skewness 0.0 21.0 20.0 19.0

CPI Inflation 6-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 6.8 22.3 20.5 16.7
50th percentile 0.0 0.4 0.5 2.0
95th percentile 2.2 1.6 1.3 2.1
Uncertainty 12.4 11.5 10.4 9.8
Skewness 0.9 3.2 4.4 5.4

Table 3: Financial shock: variance decomposition of the forecast distribution 6-
month ahead.
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Industrial Production growth 3-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 8.4 24.0 22.9 22.6
50th percentile 26.4 28.6 27.3 25.7
95th percentile 13.5 23.7 23.2 23.7
Uncertainty 0.0 18.3 17.6 17.0
Skewness 1.3 9.8 9.8 11.2

CPI Inflation 3-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 11.9 30.7 30.9 25.2
50th percentile 1.3 0.9 0.8 2.8
95th percentile 0.9 8.8 7.6 7.9
Uncertainty 14.9 30.0 28.7 26.4
Skewness 14.0 11.5 12.3 12.2

Table 4: Financial shock: variance decomposition of the forecast distribution 3-
month ahead.
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Industrial Production growth 12-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 0.4 21.8 21.6 20.5
50th percentile 3.4 22.4 20.9 19.6
95th percentile 11.0 13.8 12.1 11.1
Uncertainty 2.6 22.6 22.8 21.9
Skewness 2.1 11.6 11.3 12.0

CPI Inflation 12-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 0.6 1.6 2.4 4.3
50th percentile 0.0 8.9 8.7 13.6
95th percentile 18.7 22.4 17.6 15.4
Uncertainty 7.1 9.0 8.0 7.0
Skewness 0.5 3.8 5.5 14.0

Table 5: Monetary policy shock: variance decomposition of the forecast distribution
12-month ahead.

27



Industrial Production growth 6-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 17.3 21.6 21.6 21.0
5oth percentile 10.0 18.6 17.5 18.2
95th percentile 5.6 7.6 7.7 8.8
Uncertainty 10.4 22.9 23.1 22.4
Skewness 0.3 1.2 1.3 9.2

CPI Inflation 6-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 0.1 6.1 6.3 8.8
50th percentile 1.9 10.9 11.5 15.2
95th percentile 8.5 21.3 19.5 18.0
Uncertainty 1.7 13.5 13.7 14.8
Skewness 4.9 6.0 5.9 9.9

Table 6: Monetary policy shock: variance decomposition of the forecast distribution
6-month ahead.
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Industrial Production growth 3-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 22.2 18.1 17.8 18.4
50th percentile 11.1 20.8 20.2 20.4
95th percentile 0.7 5.8 6.0 7.4
Uncertainty 16.6 20.3 20.6 19.8
Skewness 3.1 10.2 10.9 11.0

CPI Inflation 3-month ahead
Horizon

h = 0 h = 12 h = 24 h = 48
5th percentile 21.3 22.8 21.5 22.4
50th percentile 19.7 18.2 19.3 23.7
95th percentile 5.7 18.2 16.3 15.3
Uncertainty 7.8 19.2 17.4 18.0
Skewness 17.3 10.8 11.4 20.6

Table 7: Monetary policy shock: variance decomposition of the forecast distribution
3-month ahead.
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Panel (A) Panel (B)

Figure 1: Forecast distributions. Panel (A): industrial production growth. Panel
(B): inflation.
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Figure 2: Impulse response functions of the variables to a financial shock. Solid lines are
point estimates, while shaded areas are 68% and 90% confidence bands.
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Panel (A) Panel (B)

Figure 3: Impulse response functions. Panel (A): industrial production growth.
Panel (B): inflation. Solid lines are point estimates, while shaded areas are 68%
confidence bands.
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Panel (A) Panel (B)

Figure 4: Historical decompositions. Panel (A): industrial production growth. Panel
(B): inflation.
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Panel (A) Panel (B)

Figure 5: Historical decompositions. Panel (A): industrial production growth. Panel
(B): inflation.
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Panel (A) Panel (B)

Figure 6: Robustness 1: 6-month ahead forecast distribution. Panel (A): industrial
production growth. Panel (B): inflation. Solid lines are point estimates, while
shaded areas are 68% confidence bands.
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Panel (A) Panel (B)

Figure 7: Robustness 2: no lags in the quantile regression. Panel (A): industrial
production growth. Panel (B): inflation. Solid lines are point estimates, while
shaded areas are 68% confidence bands.
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Panel (A) Panel (B)

Figure 8: Impulse response functions of 3-month ahead forecast distributions to
a monetary policy shock. Panel (A): industrial production growth. Panel (B):
inflation. Solid lines are point estimates, while shaded areas are 68% confidence
bands.
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