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Abstract

This paper investigates the role of heterogeneous elasticities in the US pro-

duction networks in shaping the transmission of supply shocks. We develop and

estimate a multi-industry general equilibrium model featuring heterogeneous elas-

ticities in input demands. Using quarterly data on 15 US industries, we find that US

industries exhibit a relatively large dispersion in input substitution elasticities char-

acterized by higher substitution levels than previously found in the literature. At

an industry level, this heterogeneity enriches the propagation patterns of idiosyn-

cratic shocks and amplifies their impact on the supplying industry. At a macro

level, this dispersion in elasticities generates greater output volatility, in particular

during US recessions, entailing a higher welfare cost of fluctuations.
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1 Introduction

In normal times, firms operating in a production network respond to changes in input

prices or availability by replacing one input with another in their production process.

Recent disruptions in the production network following the Covid-19 epidemic and the

Ukrainian war has highlighted the vulnerabilities of supply chains when specific inputs

become scarcer. The ability of firms to find a supplier and substitute inputs determine

the resilience of supply chains, and shapes in turn the downstream propagation of supply

shocks along the production network. This paper argues that elasticities of substitu-

tion of inputs are heterogeneous across industries, affecting the propagation patterns of

idiosyncratic shocks.

Over the last decade, a literature on production networks has emerged to bring back

input-output linkages at the centre of research agenda. Seminal papers, such as Acemoglu

et al. [2012], Carvalho and Gabaix [2013] or Baqaee and Farhi [2019], have improved

our understanding on the origins of fluctuations and the role of production networks in

shaping the propagation of idiosyncratic shocks. With respect to this growing literature,

two challenges emerge. The first one questions the empirical foundation of reallocation

patterns. The essential contribution of this literature has remained normative, such that

the empirical quantification of substitution effects is still an open challenge, in particular

to disentangle the sectoral components of aggregate fluctuations.1 A second challenge

for this literature concerns a common but arbitrary assumption that imposes a unique

elasticity of input substitution across all industries. If this assumption is widespread for

tractability purposes,2 it considerably limits reallocation possibilities across sectors in the

wake of idiosyncratic shocks. In particular, this restriction artificially pushes reallocation

dynamics towards complementarity, overstating the transmission of idiosyncratic shocks

in the production networks.3

Given these challenges, the goal of this paper is to empirically measure the relative

dispersion of elasticities of substitution in the production network and assess its quantita-

1A notable exception is Baqaee and Farhi [2019] who estimate the intakes of substitution mechanisms
in shaping shock transmission and welfare costs, but impose a single elasticity of substitution

2A second possible explanation for this assumption is the absence of benchmark value at an industry
level for this parameter in the literature.

3Atalay [2017] gives an intuition for this mechanism : “When inputs are more complementary a
(negative) productivity shock to a supplying industry (e.g., Steel) will lead to larger decreases in output
for downstream industries (e.g., Motor Vehicles, Construction, etc...). On the other hand, the output
decline in the industry experiencing the productivity shock will be smaller when its output is more com-
plementary to the output of other industries”. Conversely, when inputs are substitutes, the mechanism
works the other way around.
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tive importance in shaping the propagation of idiosyncratic shocks. In presence of sizable

changes in the propagation, the goal of the paper is also to investigate the industry and

aggregate level effects of dispersed elasticities.

Our approach consists in building a disaggregated version of a real business cycle

model for the US economy at a 2-digit level (15 sectors). We next infer the model’s

structural parameters and idiosyncratic shocks through Bayesian techniques using US

quarterly data from 1948 to 2020. This estimation exercise provides a data-consistent

measure of elasticities of substitution for the 15 sectors concerned, as well as one ad-

ditional elasticity for households demand in order to assess for all types of reallocation

(inputs and final demand). Based on those estimates, the model is amenable to quan-

titatively measure the relative importance of heterogeneous elasticities of substitution

in shaping the propagation of supply shocks through the production network and its

aggregate consequence on fluctuations.

With respect to aggregate business cycle models, the analysis on the transmission

of supply shocks gives a central role to the production network’s granularity in shaping

the propagation mechanism. In this paper, we originally dissect in three complementary

forces the contribution of the production network on the propagation mechanism of id-

iosyncratic shocks. The first force is the downstream channel driven by prices: a supply

shock modifying the relative price of one industry both propagates to its direct and in-

direct buyers prices downstream in the production chain. The second force at play is

the input reallocation channel driven by quantities: a change in one industry price leads

other industries to reallocate their budget relatively to the other inputs needed in their

production process. Dispersed elasticities of substitution critically affect this channel,

and possibly change the way shocks propagate. The last channel is the final consump-

tion reallocation: CES consumption preferences allows households to shift their demands

across industries following changes in industrial prices. One contribution of this paper is

to provide a general mathematical framework for the analysis of such forces, and gauge

the empirical importance through the structural inference of the model.

We get four main results from our quantitative investigation. First, we find that

intermediate input elasticities of substitution are heterogeneous across industries, with

4 out of 15 elasticities above 1 (while the remaining are below unity). This finding

strikingly contrasts with the production networks literature that typically imposes an

homogeneous and below unity elasticity of substitution across intermediate inputs for all

industries.4 In particular, we find a relatively higher degree of substitution, while the

4See for instance, Atalay [2017], Baqaee and Farhi [2019] or Carvalho et al. [2021b]
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latter typically averages out when estimated with common elasticity (e.g. Atalay [2017]).

Our second result concerns the micro and macro effects of this relatively more intense

substitution across inputs in the production network. In this environment, the impact

of idiosyncratic shocks is amplified on the supplying industry, bringing more variability

in aggregate fluctuations with respect to models using a common CES parameter across

sectors. Third, we find that the downstream effect, i.e. the transmission within the

network through prices, quantitatively dominates the propagation of idiosyncratic shocks.

However, the contribution of reallocation mechanisms to the propagation is also important

in explaining the observed transmission of shocks, and offers a positive support to the

normative findings of Baqaee and Farhi [2019]. Our last finding sheds lights on the origin

of aggregate fluctuations by revealing that its main source is attributed to sectoral shocks

rather than aggregate ones.

Our paper contributes to the literature on the origin and transmission of supply shocks

through input-output networks.5 The analysis of input-output linkages became part of

the research agenda of the real business cycle theory through the main contributions of

Long and Plosser [1983], Horvath [1998], Dupor [1999] and Horvath [2000]. This literature

revisites the initial diversification argument of Lucas [1977] through disaggregated real

business models. By validating the diversion of Lucas, the role of idiosyncratic shocks and

production network was not part of the real business cycle agenda up to the last decade.

Following the contributions of Foerster et al. [2011], Acemoglu et al. [2015], Carvalho

and Gabaix [2013], Carvalho et al. [2021a], the interest for the role idiosyncratic shocks

in driving fluctuation was renewed, highlighting downstream and upstream propagation

patterns. Taking dis-aggregated models to the data was still a challenge up to the con-

tribution of Atalay [2017]. The latter evaluates that sectoral shocks accounts for 83%

of US aggregate volatility. Our paper contributes to this literature branch by relaxing

the assumption of a unique elasticity of substitution in input demands, and empirically

measuring its dispersion via Bayesian methods. Our inference relies on 70 years of US

sectoral data, and therefore captures salients features of the production network on a

long time period.

Our paper also contributes to the literature analyzing the substitution mechanisms

operating within a production network. The substitution channel has first been dissected

by Carvalho et al. [2021a] through the lens of nested CES functions in the production

5Pioneered by Leontief [1942], this seminal contribution provides the first analysis of sectoral dis-
aggregation of US economy, contrasting for the role of intermediate goods demands shape industrial
output. Hulten [1978] provides a conceptual framework on aggregate effects of sectoral shocks that has
lead to a flourishing literature on industry-specific shock propagation.
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technology. In continuation of this research, Baqaee and Farhi [2018], Baqaee and Farhi

[2019], Baqaee and Farhi [2020] and Atalay [2017] assess the importance of realloca-

tion dynamics in shaping the transmission of supply shocks. This literature shows that

nonlinearities stemming from CES functions generate large GDP fluctuations.Providing

data-grounded quantification of the relative strength of reallocation channels since then

has remained an open challenge. With respect to this challenge, our paper provides two

contributions. First, we provide a closed-form decomposition of the impact of idiosyn-

cratic shocks on industrial outputs, contrasting input substitution versus final consump-

tion channels in order to take into account all possible types of reallocation within the

production network. Second, the inference of our model allows to measure consistently

with the data the relative strength of these reallocation channels.

Finally, our paper contributes to the literature bridging sectoral models to the data to

estimate elasticities of substitution in consumption and input demands. Regarding final

consumption, recent estimates from Herrendorf et al. [2013], Atalay [2017] and Oberfield

and Raval [2021] suggests the presence of below 1 elasticity, exhibiting complementarity.

On the production side (the elasticity of inputs for producers), Atalay [2017] and Boehm

et al. [2019] find values slightly above 0 suggesting that inputs are complement rather than

substitutes. However, a common feature of these inferences is the common restriction that

all industries exhibit the same elasticity degree in their production functions. Our paper

offers new insights by letting the data inform how uniform or dispersed the elasticites

are within the production network. To our knowledge, this paper is the first attempt

to characterize heterogeneous substitution patterns in multi-sectoral models. Grounded

by the inference of these elasticities, we next assess the impact of this heterogeneity in

driving the propagation of idiosyncratic shocks at an industrial and aggregate levels.

The rest of the paper is organized as follows. In section 2 provides the multi-sectoral

model discusses implications of CES functions in input demands. section 3 describe the

estimation method and results. section 4 discusses the output multipliers of idiosyncratic

shocks and decomposes these multipliers through three channels to highlight the relevance

of substitution in shock transmission. section 5 focuses on the impact of substitution

heterogeneity on aggregate fluctuations. section 6 investigate the origins of fluctuations

by gauging the relative contributions of aggregate and sectoral shocks. Lastly, section 7

provides additional results stemming from nonlinear effects of the model.
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2 The Model

Our model is an extension of the model of Carvalho and Tahbaz-Salehi [2019] char-

acterized by a discrete-time economy that features two types of agents: households and

firms. Each agent has a unit mass. Households work, buy and consume from all sectors.

Firms use labour from households and inputs from other firms, which creates a produc-

tion networks. As in recent models of production networks (Atalay [2017],Baqaee and

Farhi [2019], Carvalho et al. [2021b]...), the inputs are subject to substituability and the

technologies are given by constant elasticity of substitution (CES) functions. The utility

function of the household is also CES. The original feature of our economy is that we

allow for heterogeneity in substitution parameters, with sectors exhibiting different elas-

ticities of substitution. This particularity has important consequences on firms’ reactions

to shocks.

2.1 Agents

Consumers are embodied by a representative agent who supplies inelastically one unit

of work every period. He seeks to maximize his instantaneous expected utility, which is

logarithmic in consumption, the latter being a bundle of final goods from N sectors. The

consumption of the agent at period t ≥ 0 is defined by:

Ct = D
1

σ−1

t

(∑
j

ϕ
1
σ
j C

1− 1
σ

jt

) σ
σ−1

(1)

where the consumption index Ct is a basket of goods from all sectors, Cjt is the

consumption from the good produced by sector j (considered as final goods) and Dt is a

final demand shock which is unitary on average in the spirit of Carvalho et al. [2021b].

This shock is intended to capture the variations in consumption and sectoral outputs

that are due to demand effects and not emerging from supply-side distrubances. The

expression of the consumption index is given by a CES technology, where σ > 0 is

the elasticity of substitution across sectors and the ϕj ∈ (0, 1) are demand parameters

reflecting the importance of industries’ goods in the consumer’s preferences. The agent

is subject to one main budget constraint which writes down in real terms:

Ct ≤
∑
j

Ljtwt (2)
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where wt is the hourly wage in real terms (considered to be the same across sectors) and

Ljt is the number of hours worked for sector j. The agent supplies inelastically one unit

of labour each period, such that
∑

j Ljt = 1, ∀t. These assumptions are standard in this

class of models (Carvalho and Tahbaz-Salehi [2019],Acemoglu and Azar [2020],Carvalho

et al. [2021a]...) which become analytically tractable. Since there is no deposit services

in this economy, the budget constraint can be written:

Ct = wt (3)

which is also a measure of the Gross Domestic Product (GDP) of the economy. The

total sum of weights of each sectoral consumption share is normalized to 1 :

∑
j

ϕj = 1 (4)

Let Pjt denote the nominal price of good from sector j at time t, the corresponding

price level emerges:

Pt =

(
N∑
j=1

ϕjP
1−σ
jt

) 1
1−σ

(5)

Dividing by Pt on both sides and using pjt as the notation for real prices. we have

the following normalization condition:

∑
j

ϕjp
1−σ
jt = 1 (6)

Each period, the optimal allocation for each type of sectoral goods is determined by

the following optimal control problem:

max
{Cjt}

Ct = D
1

σ−1

t

(∑
j

ϕ
1
σ
j C

1− 1
σ

jt

) σ
σ−1

(7)

s.t. : Ct =
∑
j

pjtCjt

First order conditions solving for the previous problem leads to the following demand

function for each sector j :
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Cjt = Dtp
−σ
jt ϕjCt (8)

This condition indicates that the relative consumption of good j in the consumption

basket is decreasing with its price pjt and increasing with the preference parameter ϕj.

It’s also a function of the demand shock.

2.2 Firms

Each sector is populated by one firm which operates competitively to produce a homo-

geneous sectoral good. Firms produce their goods by combining other sectoral goods a

well as labor demand. The technology for each sector is Cobb-Douglas in labor input and

productivity, but CES for intra-sectoral linkages as follows:

Yjt = ξjZtAjtL
βj

jtM
1−βj

jt = ξjZtAjtL
βj

jt

(
N∑
i=1

γ
1
σj

ji M
1− 1

σj

jit

)σj(1−βj)

σj−1

(9)

with Yjt being the output of sector j at time t, Ljt the labour force, Mjt the input

basket composed of the different Mjit, the amount of good from sector i used as input.

σj > 0 is the elasticity of substitution across inputs for sector j, Zt the common state

of technology, Ajt the sectoral state of technology (which are defined below) and ξj a

normalization constant defined by :

ξj =
(
β
βj

j (1− βj

) (1−βj)σj
σj−1

)−1

This specification imposes the following condition to reach constant return to scale:

N∑
i=1

γji + βj = 1 for j = 1, 2...N (10)

The resource constraint for good j is given by:

Yjt = Cjt +
N∑
i=1

Mijt (11)

Therefore, each firm is maximizing its profit stream by choosing at each period its

output level and the amount of labour and inputs it wants to use. The underlying program

of the firm from sector j writes down at each period t ≥ 0:
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max
Yjt,Ljt,(Mijt)i

pjtYjt − wjtLjt −
N∑
i=1

pitMjit (12)

s.t : Yjt = ξjZtAjtL
βj

jt (
N∑
i=1

γ
1
σj

ji M
1− 1

σj

jit )
σj(1−βj)

σj−1

Solving the program for each sector (as shown in the Appendix) yields the following set

of equations for all i,j = 1, 2...N :

Ljt = βj(
pjt
wt

)Yjt (13)

Mjit = (1− βj)γji(
pjt
p
σj

it

)Yjt(
∑
k

γjkp
1− 1

σj

kt )−1 (14)

Equation 13 ensures that the labour demand from sector j is increasing with the

labour intensity parameter βj, with the price of good j and with the production Yjt, but

decreasing with the cost of labour (i.e: wt). Equation 14 shows a relation with a similar

pattern, with (1− βj)γji the intensity parameter of input i for j’s technology. However,

if the use of good i as an import decreases with the price of that input, it also depends

on the overall cost of inputs with the last factor. This relation depends crucially on the

value of the elasticity σj, and more specifically whether σj > 1 or not.

2.3 Shocks

The states of technology and the demand shifter are assumed to follow classical stochastic

process. For sector j and for the whole economy, the processes write down respectively

for sectoral, aggregate supply and demand shocks:

log(Ajt) = ρj log(Aj(t−1)) + ϵjt (15)

log(Zt) = ρZ log(Zt−1) + ϵZt (16)

log(Dt) = ρD log(Dt−1) + ϵDt (17)

Where ρj denotes the persistence of sectoral technology state, ρZ denotes the per-
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sistence of common technology state, ρD denotes the persistence of the demand shocks

and ϵjt, ϵZt and ϵDt are zero-mean random variable, normally distributed with respective

standard error υj, ΥZ and ΥD :

ϵjt
i.i.d∼ N(0, υ2

j )

ϵZt
i.i.d∼ N(0,Υ2

Z)

ϵDt
i.i.d∼ N(0,Υ2

D)

While the study focuses on the mechanisms from the supply-side, we seek to iden-

tify all demand fluctuations in a common demand shock to avoid misidentifying and

overestimating our supply shocks, hence the demand shifters ϵDt.

2.4 CES function mechanism

To illustrate the functioning if a CES function, consider the CES in Equation 1 (but

same conclusion apply for other CES in the paper). Parameter σ determines whether

factors behave as good substitutes or not. The CES function actually nests different

specification based on the value for σ that worths a discussion. When σ is high, factors

are are relatively better substitutes, i.e. a loss in one factor is mechanically compensated

by an increase in the others. For σ → +∞, the goods become perfect substitutes such

that a decrease in one good is compensated by a proportional increase in another one,

while the production function is linear. For σ = 1, the form of the function is Cobb-

Douglas. Finally, for σ → 0, the technology becomes Leontieff (f(x, y) = min(x, y)) such

that there is no substituability at all: an increase in one specific factor is irrelevant as

long as the amount of other factors don’t change.

More specifically, when σ > 1. we say that goods are ”gross substitutes”: a decrease

in the price of a factor relatively to others will increase the share of the budget allocated

to this good. In contrast, when σ < 1, we say that goods are ”gross complements”: there

is limited possibilities for substitution and a increase in the price of a factor relatively to

others will lead to an increase in the share of the budget allocated to this good. When

σ = 1, the shares of budget allocated are independent of prices.
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2.5 Further notations

The set of factor shares γji for i, j = 1, ...N are stacked in a N ×N matrix Γ in the same

way as in the Leontief [1942] model of sectoral demands, such that for all i, j, Γji = γji.

This matrix represents the direct requirements of input for each sector. We also define

the Leontieff inverse matrix L as follows:

L =
∞∑
k=0

Γk = (I− Γ)−1 (18)

This matrix L = (lji)j,i is key in this paper and measures the importance of industries

as direct and indirect input supplier to other industries. Finally, we introduce the Domar

weights of a sector (or an industry). Domar weights are defined as the share of the sales

of a sector on total GDP. Thus, they can be written as:

λjt =
pjtYjt

GDPt

=
pjtYjt

wt

(19)

We also define wage-relative (or more simply, relative) prices:

p̂j = log(
pj
w
) (20)

These notations will help us to alleviate the formulae of the paper. We also stack all

the shocks in a 1× (N + 2) vector ϵ = ((ϵj)j, ϵZ , ϵD) and the elasticities in a 1× (N + 1)

vector σ = ((σj)j, σ). A summary of the equation system and the corresponding steady-

state closed-form solutions are given in Appendix.

3 Estimation

In this section, we estimate the structural parameters of the model using Bayesian meth-

ods. In a nutshell, a Bayesian approach can be followed by combining the likelihood

function with prior distributions for the parameters of the model to form the posterior

density function. The posterior distributions are drawn through the Metropolis-Hastings

sampling method. We solve the model using a linear approximation to the model’s policy

function, and employ the Kalman filter to form the likelihood function and compute the

sequence of errors. For a presentation of the method, we refer to the canonical papers of

An and Schorfheide [2007] and Smets and Wouters [2007]. This method allows to infer

the sectoral substitution parameters which are the most likely to have generated the data.
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The following sub-sections discuss the data transformation, calibration, the priors and

the posteriors.

3.1 Data

The model is estimated with Bayesian methods on U.S. quarterly data over the sample

time period 1948Q2 to 2020Q4, using seasonally adjusted gross output data by industries

(as given by the Bureau of Economic Analysis) and the Personal Consumption Expendi-

ture (PCEC index as given by the FRED database). For output data, the original data is

a panel of 15 industries spanning 74 years. The name of industries are given in Table 1.

We next convert this sample into a quarterly basis through the Chow and Lin [1971]

methodology (with flow disaggregation and weighted least squares method) to obtain 291

observations per industry.6

AGR : Agriculture, forestry, fishing and hunting
MIN : Mining
UTI : Utilities
CON : Construction
MAN : Manufacturing
WHO : Wholesale trade
RET : Retail trade
TRA : Transportation and warehousing
INF : Information
FIN : Finance, insurance, real estate, rental and leasing
BUS : Professional and business services
EDU : Educational services, health care, and social assistance
ART : Arts. entertainment, recreation, accommodation and food services
OTH : Other services, except government
GOV : Government

Table 1: Description of the 15 industries

Concerning the transformation of series, the aim is to map non-stationary data to

a stationary model (namely, industry gross output and consumption). Following Smets

and Wouters [2007], data exhibiting a trend or unit root are rendered stationary in two

steps. We first divide the sample by the working-age population. Second, data are taken

in logs and we apply a first-difference filter to obtain growth rates. Real variables are

6The high frequency indicator used for the time disaggregation is the BEA’s gross domestic product.
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deflated by the implicit GDP deflator price index. The measurement equations mapping

our model to the data are given by:
Real Per Capita Output Growth of sector AGR

Real Per Capita Output Growth of sector MIN

...

Real Per Capita Output Growth of sector GOV

Real Per Capita Consumption Growth

 =


∆ log (YAGR,t)

∆ log (YMIN,t)

...

∆ log (YGOV,t)

∆ log (Ct)

 . (21)

3.2 Calibration and prior distributions

The calibrated parameters are reported in two separate tables Table 8 and Table 9.

The calibration strategy of the parameters related to factor shares (γij)i,j, reported in

Table 8, follows Foerster et al. [2011], Atalay [2017] by using Input-Output tables given

by the BEA. More precisely, we use the Commodity-by-industry defined as ”Total inputs

by commodity directly required in order to produce one dollar of industry output”. We

use the tables between 2001 and 2020 and we compute the mean in order to calibrate

our model. Unlike Foerster et al. [2011], Atalay [2017] who base their calibration on one

reference period, we compute the factor shares on an average value observed between

2001 and 2020.7

We next turn to the parameters for labour intensity (βj)j in the technology of firms,

and final consumption share per type of sectoral goods (ϕj)j. Our calibration strategy is

inspired by Atalay [2017] as labour intensity parameters (βj)j are computed using data

from the BEA between 2000 and 2020, and calculated as the ratio of compensation of

labor on total gross output for our 15 NAICS industry classification. For the consumption

expenditure share (ϕj)j, for each industry we compute the ratios by using the sales

in 2002 to the following industry codes: F010 (Personal consumption expenditures).

F02R (Residential private fixed investment) and F040 (Exports) for industries other than

government and F100 (Government consumption expenditures and gross investment) for

the government. One can easily verify that our values reported in Table 9 are very similar

to the ones in Atalay [2017].

For the remaining set of parameters and shocks that are not calibrated, we employ

Bayesian methods. Table 2 summarizes the prior — as well as the posterior — distribu-

tions of the structural parameters for the U.S. economy. Let us first discuss the prior for

7Note that this period allows us to get homogeneous data classification since the BEA changes its
methodology on a regular basis
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structural disturbances. The prior information on the persistence of the Markov processes

ρj are inspired from Carvalho et al. [2021b] characterized by a Beta distribution of mean

0.7 and standard deviation of 0.10. Note that the standard deviation is slightly lower to

reduce the likelihood of having unit-roots process. Regarding sectoral volatilities υj, we

impose an inverse gamma distribution with prior mean 0.05 and standard deviation 0.1.

The aggregate shock is assumed to be less volatile with same distribution form, but with

mean 0.02 and volatility 0.1.

Regarding CES elasticities in the input-demand function, one goal of the paper is to

assess quantitatively their relative heterogeneity. To let the data be informative about

these key parameter, we impose a very diffuse prior distribution with prior mean 0.9 and

standard deviation 2. The latter implies a positive support for elasticities, with posterior

value that can either be close to 0 up to 10. Note that such an estimation of sectoral

elasticities has never been done so far, and constitutes a first step towards assessing

heterogeneity in these parameters across industries.

3.3 Posterior distributions

In addition to prior distributions, Table 2 reports the means and the 5th and 95th

percentiles of the posterior distributions drawn from five parallel Markov chain Monte

Carlo chains of 100,000 iterations each. The sampler employed to draw the posterior

distributions is the Metropolis-Hasting algorithm with a jump scale factor, so as to match

an average acceptance rate close to 25-30 percent per chain.

The results of the posterior distributions for each estimated parameter are listed in

Table 2. We first discuss the elasticity of substitution. The posterior distribution indi-

cates that most of the sectors at the 15-industry level exhibits relatively low elasticities of

substitution (σj < 1), meaning that their inputs are gross complements, as discussed in

subsection 2.4. This indicates that US production network exhibits limited possibilities

for substitution such that a factor price increase (relative to other inputs) mechanically

leads to an increase in the share of the budget allocated to this good. The dispersion

across these elasticities is high, as the highest estimated elasticity is 14 times bigger

than the lowest one, suggesting that heterogeneity in inputs elasticities is strongly moti-

vated. In particular, the Government sector exhibit a high elasticity of substitution, with

σGOV = 2.98. The Agricultural industry, the Mining industry and the Arts sector exhibit

mean elasticities that are above 1 but the value for the agriculture is really close to 1.

However, looking at the 90% confidence interval of the AGR and ART sectors, we can’t
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Prior distribution Posterior distribution
Parameter Type Mean SD Mean [5%;95%]

Input Elasticities σAGR IG 0.9 2 1.11 [0.76 , 1.45]
σMIN IG 0.9 2 1.60 [1.19 , 1.99]
σUTI IG 0.9 2 0.31 [0.19 , 0.42]
σCON IG 0.9 2 0.29 [0.19 , 0.38]
σMAN IG 0.9 2 0.21 [0.16 , 0.26]
σWHO IG 0.9 2 0.39 [0.22 , 0.56]
σRET IG 0.9 2 0.76 [0.25 , 1.34]
σTRA IG 0.9 2 0.33 [0.20 , 0.46]
σINF IG 0.9 2 0.27 [0.18 , 0.35]
σFIN IG 0.9 2 0.26 [0.19 , 0.32]
σBUS IG 0.9 2 0.26 [0.18 , 0.33]
σEDU IG 0.9 2 0.72 [0.24 , 1.23]
σART IG 0.9 2 1.73 [0.44 , 2.84]
σOTH IG 0.9 2 0.63 [0.23 , 1.08]
σGOV IG 0.9 2 2.98 [2.00 , 3.93]

Sectoral shock AR ρAGR B 0.75 0.1 0.978 [0.966 , 0.991]
ρMIN B 0.75 0.1 0.980 [0.970 , 0.991]
ρUTI B 0.75 0.1 0.982 [0.973 , 0.992]
ρCON B 0.75 0.1 0.982 [0.973 , 0.992]
ρMAN B 0.75 0.1 0.986 [0.978 , 0.994]
ρWHO B 0.75 0.1 0.973 [0.958 , 0.986]
ρRET B 0.75 0.1 0.986 [0.978 , 0.995]
ρTRA B 0.75 0.1 0.987 [0.980 , 0.994]
ρINF B 0.75 0.1 0.977 [0.965 , 0.989]
ρFIN B 0.75 0.1 0.970 [0.954 , 0.986]
ρBUS B 0.75 0.1 0.969 [0.955 , 0.985]
ρEDU B 0.75 0.1 0.980 [0.969 , 0.991]
ρART B 0.75 0.1 0.991 [0.986 , 0.996]
ρOTH B 0.75 0.1 0.987 [0.980 , 0.994]
ρGOV B 0.75 0.1 0.979 [0.968 , 0.990]

Sectoral shock std υAGR IG 0.05 0.1 0.0209 [0.0162 , 0.0255]
υMIN IG 0.05 0.1 0.0303 [0.0261 , 0.0343]
υUTI IG 0.05 0.1 0.0159 [0.0141 , 0.0176]
υCON IG 0.05 0.1 0.0113 [0.0102 , 0.0123]
υMAN IG 0.05 0.1 0.0064 [0.0059 , 0.0070]
υWHO IG 0.05 0.1 0.0109 [0.0100 , 0.0118]
υRET IG 0.05 0.1 0.0111 [0.0098 , 0.0124]
υTRA IG 0.05 0.1 0.0103 [0.0091 , 0.0115]
υINF IG 0.05 0.1 0.0063 [0.0055 , 0.0071]
υFIN IG 0.05 0.1 0.0048 [0.0044 , 0.0053]
υBUS IG 0.05 0.1 0.0089 [0.0081 , 0.0096]
υEDU IG 0.05 0.1 0.0139 [0.0123 , 0.0154]
υART IG 0.05 0.1 0.0117 [0.0105 , 0.0130]
υOTH IG 0.05 0.1 0.0079 [0.0073 , 0.0086]
υGOV IG 0.05 0.1 0.0109 [0.0096 , 0.0121]

Macroeconomic parameters σ IG 0.7 1 0.46 [0.40, 0.52]
ρZ B 0.75 0.05 0.826 [0.762 , 0.889]
ρD B 0.75 0.05 0.974 [0.966 , 0.982]
υZ IG 0.02 0.1 0.0018 [0.0016 , 0.0020]
υD IG 0.02 0.1 0.0038 [0.0035 , 0.0040]

Notes: B denotes the Beta and IG the Inverse Gamma (type 1) distribution.

Table 2: Results of posterior estimation for sectoral parameters
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reject the possibility that they also have production technology such that the inputs are

gross complements. All other sectors elasticities are interestingly low, with 8 out of 15

with their 90% confidence interval upper bound below unity. These results are consistent

with the findings of Atalay [2017], highlighting the low substituability of inputs at a low

level of disaggregation in the economy.

Regarding the standard errors of sectoral shocks, there is a high heterogeneity across

sectors with mean estimates ranging from 0.48% for Financial services up to 3.03% for the

Mining industry. This suggests that the contribution of sectoral productivity shocks on

aggregate variable is also heterogeneous. The average sectoral standard errors estimates

of productivity shocks is 1.2% which is consistent with estimates of quarterly sectoral

TFP shocks from the literature (Carvalho et al. [2021b] for a recent estimate). We also

notice that the coefficients of persistence are very high, suggesting that shocks last long

over time.

Next, we turn to discussing the inference results concerning common parameters re-

ported in the last rows of Table 2. We first discuss the determination of aggregate demand,

stemming here from both the CES for consumption as well as for the exogenous demand

shock process. There is little substituability between final goods for consumers at the 15-

industry level (we can even assess there is gross complementarity since σ < 1). This low

estimate implies that effects through consumption reallocation won’t soar. However, they

still play a role in mitigating or amplifying the propagation of shocks, this will be further

discussed in the next section. Regarding the exogenous demand shock, its persistence as

well as its standard deviation is higher than the aggregate TFP shock, consistently with

the findings of the literature such as Smets and Wouters [2007].

Regarding the aggregate production shock, its inferred standard deviation is much

smaller than its sectoral counterpart. This result is consistent with the idea that smaller

entities of an aggregate economy are more subject to idiosyncratic shocks than aggregate

ones. However, the relative bigger standard deviation of sectoral shocks with respect

to the aggregate shock does not necessarily imply that its relative contribution is also

bigger. Indeed, a common shock affects the whole economy and then spreads through

the network such as a sectoral one would, but starting from each industry. Thus, even

if the magnitude of the shock is smaller, a common shock of 0.5% is similar as if all the

sectors productivity were affected by an idiosyncratic shock of 0.5% at the same time!

This comparison of aggregate versus sectoral shocks is deeper assessed in a subsequent
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section.

3.4 Model comparison

A natural question at this stage is whether our specification of heterogeneous CES technol-

ogy performs better than the standard specification with uniform CES or Cobb-Douglas.

To do so, we perform estimation using these standard specifications: in the first three

columns of Table 3, we estimate a model with no or partial substitution (some of the

elasticities are unitary, i.e: not all functions are CES); in the fourth column, we esti-

mate a model with full substitution but with a common value for the input elasticities

(which posterior mode is 0.43); in the last column, we estimate our complete model

with CES functions and heterogeneous elasticities across sectors. Using an uninformative

prior distribution over models (i.e: 20% prior probability for each model), Table 3 shows

both the posterior odds ratios and model probabilities taking the standard consumption

Cobb-Douglas model as the benchmark.

The posterior odds of the full specification model is 7.36e195 to 1, which is the highest

value among all the models we tested. In other words, this statistical test leads us

to give credit to CES modelling with heterogeneous elasticities more than other types

of specification. Notice that heterogeneity in elasticities is key to fit the data as the

main model performs considerably better than the model with a common σj value across

sectors.

No substitution Partial substitution Full substitution

Model type (σ = 1, σj = 1) (σ ̸= 1, σj = 1) (σ = 1, σj ̸= 1) (σ ̸= 1, σj = 0.43) (σ ̸= 1, σj ̸= 1)

Prior probability 0.2 0.2 0.2 0.2 0.2
Log marginal data density 16240.62 16383.95 16622.51 16649.18 16691.27
Bayes ratio 1 3.45e+62 7.95e+165 4.23e+177 7.36e+195
Posterior model probability 0.00 0.00 0.00 0.00 1.00

Table 3: The comparison of prior and posterior model probabilities with different speci-
fications (with parameters taken at their posterior mode).

4 Substitution dynamics in the propagation of shocks

In this section, we use the estimates of the elasticities (which are key parameters in the

model) in order to gauge quantitatively the importance of reallocation in shock trans-
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mission. To do so, we first disentangle the different channels through which a shock

propagate from a sector to another. This decomposition allows to extract the channels

stemming from substitution and compare their effect to the overall shock transmission.

Therefore, we use the values from the estimation to compute numerically the contribution

of each channel in the transmission. Finally, these computations allow us to assess why

reallocation matters in the propagation.

4.1 Dissecting the propagation within the production network

This subsection is dissecting the mechanisms shaping the propagation of sectoral supply

shocks along the production network. In particular, the goal is to examine the respective

role of substituability in inputs and final goods in driving the transmission of sectoral

shocks. These issues are addressed with theoretical considerations on first-order effects

of the Taylor expansion, while second order effects are studied in a subsequent section.

Before considering the impact of shocks on output, we first need to get a simple

expression for the effect of productivity shocks on wage-relative prices such as in Carvalho

and Tahbaz-Salehi [2019]. For clarity purpose, we drop the time subscript (which for each

variable are all t). The first theorem on relative log prices is the following:

Theorem 1. The first-order effect of a productivity shock in sector i on the log relative

prices of sector j around the steady state is given by :

∂log
pj
w

∂ϵi
|ϵ=0 =

∂p̂j
∂ϵi

|ϵ=0 = −lji (22)

This result is of paramount importance for the rest of the study. It implies that the

structure of the production network embodied by Γ is enough to assess to first-order

impact of shocks on log relative prices. In particular, it allows us to derive the following

decomposition of sectoral shocks through the different channels of propagation as in

Carvalho and Tahbaz-Salehi [2019] but with additional detail on final consumption:

Theorem 2. The first-order effect of a productivity shock in sector i on the log output

of sector j around the steady state can be decomposed into three complementary channels

as follows:

∂logYj

∂ϵi
|ϵ=0 = TOTji = DEji + CRji + IRji, (23)

where each channel is given by:
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DEji = lji

CRji =
1

λj

(1− σ)
∑
k

lkjϕk(
∑
r

ϕrlri − lki)

IRji =
1

λj

∑
k

lkj
∑
r

γrj(1− σr)λr(
1

1− βr

∑
s

γrslsi − lki).

In this expression, DEji denotes the downstream effect of price fluctuations of input i

on the production j, CRji the effect due to consumption reallocation from the consumer,

and IRji is the effect due to input reallocation from the firms.

The main insight of this theorem is to disentangle and characterize the link between

two nodes of the production network. Notice that the expression
∂logYj

∂ϵi
|ϵ=0 = TOTji is

indeed a multiplier around the steady state. When using a first-order Taylor expansion

on the output of the sector j as a function of the shock on sector i, we get that the

deviation from the steady-state writes down:

Yj(ϵi)− Yj ≈
∂logYj

∂ϵi
|ϵ=0 × ϵi = TOTji × ϵi (24)

where ϵi is the magnitude of the shock in sector i and TOTji amplifies (or dampens)

this shock on sector j. For example, if ϵi = 3% and TOTji = 0.5, it means that the effect

of the shock from sector i on sector j has been halved: the deviation from the steady state

output of sector j is only 1.5%. Thus, the (TOTji)j,i are multipliers: they embody the

intensity of shock transmission. At this stage of the paper, we’ll use this denomination

for any element TOT , DE, CR or IR. As shown above, three types of complementary

channels make up the overall multiplier.

First, the downstream effect DEji measures the relative importance of industry j

as (direct and indirect) input-supplier to industry i as documented in Carvalho et al.

[2021b]. Suppose that industry j is hit by a negative shock that reduces its production

and hence increases the price of good j. Such a price increase adversely impacts all the

industries that rely on good j as an intermediate input for production, thus creating

a direct impact on j’s customer industries. But this initial impact will in turn result

in further propagation over the production network: the prices of goods produced by

industries affected in the first round of propagation will rise, creating an indirect negative

effect on their own customer industries, and so on. Formally, the overall effect can be

decomposed into direct intra-industry, direct inter-industry and indirect inter-industry
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effects as follows:

lji = δj=i︸︷︷︸
Direct effect on i

+ γji︸︷︷︸
Effect of i as j’s supplier

+
∑
k

γjkγki︸ ︷︷ ︸
Effect of i as supplier of j’s suppliers

+ ... (25)

The second and third channel mechanisms are quite similar. The second channel,

CR is the channel through which a sector is affected via final consumption reallocation.

When a sector is shocked (either positively or negatively), all the prices in the economy

will vary, inducing a trade-off for the consumer between all the products. If the prefer-

ences are Cobb-Douglas (σ = 1), there will be no impact on output through reallocation

by the consumers because the shares of the budget allocated to all goods are independent

of prices. Thus, there will be additional volatility in a sectoral output due to substitution

from the consumer only if σ ̸= 1.

To better understand the mechanism, suppose that goods are complement for the

consumer (σ < 1), and consider CRji. Take a sector k and suppose that
∑

r ϕrlri > lki.

It means that −
∑

r ϕrlri < −lki, i.e the price variation due to the shock −lki is bigger

than the average variation of the price of the basket of good −
∑

r ϕrlri because of the

pure downstream channel. However, since there is complementarity, good k becomes

more expensive relatively to the average basket and the agent will adapt by increasing

its budget share for good k. Thus, since j is a supplier of k in the amount of lkj in total,

this reallocation will induce an increase in its production proportional to ljk and to the

weight of k in the agent’s expenditure ϕk due to the increase in the budget share allocated

to k by the agent. This is exactly what is captured by lkjϕk(
∑

r ϕrlri − lki) and is then

summed on all sectors k. If there was substituability (σ > 1), the result would be the

opposite: when a sector’s relative price increase is lower than the average basket due to

downstream effect, this gap will be widened by substitution and thus, sector j will have

less inputs to supply him for production.

The same processes are underlying the input reallocation channel. The final consump-

tion weights (ϕj) are just replaced by input weights (γrj and
γrs
1−βr

) and we add the Domar

weights λr to stress the role of a sector in the overall output. One should notice that if

the technology functions are specified as Cobb-Douglas (all elasticities are unity), then

the first order multipliers around steady state
∂logYj

∂ϵi
|ϵ=0 depend only on the structure of

the network: the Input-Output table is sufficient to understand the micro shocks from a

sector to another one.
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It’s noticeable that there might be an effect through the consumption channel on

a sector even though it has no weight in final demand (ϕj = 0). Indeed, final goods

substitution leads to changes in outputs for sectors where j is a supplier too, and as we

described before in the paper, it is sufficient to generate co-movement. The same goes for

inputs reallocation: as long as one production function isn’t Cobb-Douglas, there might

be reallocational impacts due to the mechanisms we explained.

4.2 A numerical quantification

Based on the insights obtained in the previous section, an important question at this

stage is quantifying the relative strengths of each force (i.e. downstream, consumption,

inputs) in shaping the response of outputs following a realization of a sectoral shock. The

estimated model with structural parameters taken at their posterior mean can be used

for quantitative purpose to disentangle the relative force discussed in Theorem 2. In this

subsection, we decompose the contribution of DEji, CRji and IRji through heat maps

for each couple (j, i) of industries in the input-output network. The exact values of the

matrices are reported in the Appendix.

The Downstream Effect. First, we quantitatively assess the relative importance

of the downstream channel, as the latter plays a major role in the production network.

Figure 1 reports the downstream multiplier of a sectoral shock originating from industry

in the column, while industry in row reports output response from recipient industries of

the shock.8 The intensity of the downstream multiplier is proportional to the intensity

of the blue color.

The first remark on Figure 1 concerns its diagonal elements that are relatively bigger

than any other elements both in the same column and row. The relative dominance of

the diagonal elements highlights the presence of both column and row wise dominance.

Column dominance typically emerges in an economy characterized by a network structure

such that for any industry experiencing an idiosyncratic shock, the main recipient of the

shock is itself.9 In contrast, the row dominance emerges in production networks charac-

8Note that all the values will be positive since, by definition, DEji = lji and the Leontieff inverse
matrix is defined as the sum of the powers of the positive matrix Γ.

9Note that column-wise dominance is specific to the US I-O matrix but isn’t true in general for this
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Note: For the downstream channel between sectors i, j, the value DEji indicates the variation of
output of sector j when sector i is affected by a sectoral productivity shock of size one. A column
i corresponds to the multipliers of shocks from i to other sectors while a line j corresponds to the
multipliers of shocks from all sectors to industry j.

Figure 1: Intensity of the downstream multiplier (DE) for the US economy

terized by industrial output that are mostly driven by their own idiosyncratic shock. The

fact that diagonal values are bigger than 1 is straightforward since a a specific sector j’s

output increases relatively more than the size of the initial impulsion.

What are idiosyncratic shocks that are the most amplified by the downstream chan-

nel? The Manufacturing industry (MAN), the Financial sector (FIN) and the Professional

Business and services sector (BUS) are the three sectors exhibiting the highest multiplier:

a 1% sectoral productivity shock in one of these sectors yields on average respectively

0.68%, 0.65% and 0.64% of sectoral output (average multiplier of their column). These

values strikingly contrast with other sectors, as the next largest average multiplier is

0.22% for Transportation and Warehousing (TRA). The relative importance of these

three sectors is explained as they are the largest suppliers within the production network

of the US economy.10 As a result, idiosyncratic shocks in these three sectors are particu-

larly informative, as they trigger large co-movements across sectors via the downstream

channel. In contrast, any shock originating from Educational services, health care, and

social assistance (EDU) does not translate into sizable fluctuations in other industries,

kind of Leontieff inverse
10The relative size of one sector as a supplier is measured by parameter γi,j , the latter is calibrated to

match the average size within the production network.
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as these sectors are negligible suppliers within the production network.

Consumption Reallocation. This demand-side channel typically emerges from the

CES preferences of the representative consumer who substitutes varieties when the rela-

tive price of goods change following idiosyncratic shocks. Figure 2 reports the consump-

tion substitution channel multipliers to grasp the impact of this mechanism in sectoral

shock transmission.
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Note: For the consumption reallocation channel between sectors i, j, the value CRji indicates the
variation of output of sector j when sector i is affected by a sectoral productivity shock of size
one. A column i corresponds to the multipliers of shocks from i to other sectors while a line j
corresponds to the multipliers of shocks from all sectors to industry j.

Figure 2: Intensity of the consumption reallocation channel (CR) for the US economy

Despite exhibiting relatively lower values than for the downstream multipliers, the

consumption reallocation channel is however quantitatively important. There are two

main comments to take on this channel. First, because goods are complement (char-

acterized by estimated substitution elasticity σ < 1) in the preference of households,

a positive sectoral shock doesn’t lead to an increase in the consumption spending for

that sector specifically, as complementarity forces consumers to increase their demands

for other types of sectoral products as well. Complementarity mitigates the propaga-

tion of idiosyncratic shocks as diagonal elements are negative, which in turn limits the

mechanism of downstream propagation.11

11To illustrate the relative importance of the consumption reallocation channel, consider the value in
Educational, Health and Social services (EDU) sector with CREDU,EDU = −0.47 (diagonal element in
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The second main comment on this channel concerns the heterogeneity in terms of con-

sumption reallocation channels between industries (ie, on non-diagonal values reported

in Figure 2). This implies that demand effects can either amplify or mitigate the sec-

toral response of output. As an example, a shock in the Manufacturing industry (MAN)

amplifies the co-movement for some industries via consumption reallocation such as Ed-

ucational, Health and Social services (EDU) or Retail Trade (RET), but also dampens

the response of others such as Mining (MIN) or Agriculture (AGR).

Input Reallocation. The last term that drives the propagation, as discussed in

Theorem (2), is the input reallocation channel, that is reported in Figure 3 based on

the estimated model. Through this channel, idiosyncratic shocks propagate when sectors

substitute their inputs due to price changes.
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Note: For the input reallocation channel between sectors i, j, the value IRij indicates the variation
of output of sector j when sector i is affected by a sectoral productivity shock of size one. A
column j corresponds to the multipliers of shocks from i to other sectors while a line j corresponds
to the multipliers of shocks from all sectors to industry j.

Figure 3: Intensity of the input reallocation channel (IR) for the US economy

On average, the multipliers are larger than for reallocation from consumers in absolute

terms, with values ranging from -0.60 (for IRFIN,FIN) to 0.16 (for IRUTI,BUS). Except

for the Education, Health and Social services sector (EDU), all the diagonal values are

EDU-EDU in Figure 2), a 1% productivity shock in this sector yields to an increase in output by 0.53%
(abstracting from any other effects), thus mitigating the sectoral fluctuation through the demand side of
the economy.
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negative: input reallocation also mitigates one sector’s own shock. This result is due

to the fact that most elasticities are below 1. Financial services (FIN) and Professional

Business and services (BUS) are the two industries whose shocks might affect the economy

through input reallocation the most, alongside with Manufacturing (MAN). These results

are consistent with the impacts we analysed with the downstream channel.

As underlined by Atalay [2017], two opposite mechanisms occur when inputs are

complements. On one side, complementarity generates co-movement with other sectors

relying on the shocked industry as a supplier, leading to amplified decreases in output for

these industries. On the other side, the shocked industry will suffer lighter output losses

due to the limited substitution possibilities from the other sectors. In our case, it seems

that the input reallocation channel is overall dampening shock transmission, hinting that

the latter effect is prevailing on the other one. This is confirmed with the study of the

total multiplier.

The total multiplier. By summing these three complementary channels, namely

DEij+CRij+IRij, we assess how an idiosyncratic shock generates a sectoral response of

output as reported in Figure 4. This multiplier exhibits two interesting features. First, the

multipliers are all positive which highlights that an idiosyncratic shock originating from

any sector always triggers a positive response of output in other sectors. Such features

in the production network actually validates the Lucas [1977]’s assertion that “output

movements across broadly defined sectors move together”. Therefore, an idiosyncratic

shift in productivity spreads along the supply chain always in the same direction. For

example, despite being partially buffered by substitution forces, an adverse sectoral shock

diminishes the output of all industries. Nevertheless, the impact is more intense for the

sector which is primarily affected since the total matrix is diagonal dominant such as for

the downstream channel.

This matrix gives interesting insights on shock transmission in the US economy.

Firstly, we notice that input-output linkages matter a lot in the propagation of sectoral

shocks, even at a low 2-digit level of disaggregation. Without the network structure,

this matrix would be the identity matrix. With the network specification, the trans-

mission of shock makes the analysis way more complex. For example, TOTAGR,AGR and

TOTMAN,MAN are respectively 1.37 and 1.58, suggesting that shocks in these sectors are

amplified by 37% and 58% due to the complementary channels considered before. When a

sectoral shock hits the Financial sector (FIN), the Business services sector (BUS) will be
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Note: For sectors i, j, the value TOTij indicates the total variation of output of sector j when
sector i is affected by a sectoral productivity shock of size one. A column j corresponds to the
multipliers of shocks from i to other sectors while a line j corresponds to the multipliers of shocks
from all sectors to industry j.

Figure 4: Intensity of the total multiplier (TOT ) for the US economy

impacted by a corresponding variation of its output which is almost of the same magni-

tude as the initial shock (TOTBUS,FIN = 0.85). These propagation patterns exhibit intense

deepenings of the idiosyncratic productivity shocks. On the other side, most diagonal

values are lower than 1 (TOTMIN,MIN = 0.76, TOTUTI,UTI = 0.67 or TOTGOV,GOV = 0.56),

showing that substitution effects can dampen idiosyncratic shocks consequently. We can

also assess that the sectors whose shocks propagate the most are the sectors already iden-

tified above as the largest suppliers of the network (see the columns of MAN, FIN and

BUS in Figure 4).

4.3 How much does substitution matter ?

Does substitution matter ? The decomposition of the first order multipliers we built tends

to show that reallocation is of primary importance for shock transmission as substitution

mechanisms could constitute a huge part of this radiation through the network. To give a

quantitative insight of this role, we compute in Figure 5 the heat-map of multiplier errors

from pure downstream values to total values. In other words, we map our grid with the

relative difference between the (DEji)j,i and the (TOTji)j,i :
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ERRORji =
|DEji − TOTji|

TOTji

(26)
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Figure 5: Heatmap of relative difference between Downstream and Total multipliers

Figure 5 shows that most for most couples of sectors (i, j), the pure downstream first-

order shock is a poor approximation of the real effect. For 132 couples out of 225 possible

(more than one half of the grid), the error is at least 20% and for 48 couples, the error

is greater than 50%. For 13 sectors out of 15, the relative error term of their own id-

iosyncratic shocks (diagonal values) are greater than 30%. Yet, we know from the results

above that the diagonal multipliers are among the highest (see Figure 4). This map sug-

gests that reducing first-order multipliers to their pure Downstream counterpart is highly

misleading for propagation schemes. In particular, Cobb-Douglas functions constitute a

very specific case of production or preferences, which captures poorly the mechanisms

of shock transmission. These important intakes of reallocation motivates the study of

heterogeneous production technologies with different CES elasticities : if substitution

matters, heterogeneity in substitution might matter as well.
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5 Heterogeneous elasticities and the business cycles

A unique feature of our model is the heterogeneity in elasticities of substitution within

the production network. By estimating industry-specific elasticities, the model allows for

a large range of patterns from the input reallocation channel. The literature typically

considers a highly restricted version with respect to our case in which all the substitution

elasticities are the same across the production network (see recent works from Atalay

[2017],Carvalho et al. [2021a], Carvalho et al. [2021b]...). In this section, we investi-

gate how the dispersion in the elasticities estimates affects the sectoral transmission of

shocks. More importantly, we show that the restricted models crucially underestimate

the volatility of output, especially in times of booms and busts.

5.1 How dispersed are the substitution coefficients in input de-

mands?

At this stage, a natural question would be whether specifying sectoral elasticities is really

relevant in shock transmission. As detailed in the subsection 3.4, we ran an additional

estimation for a unique elasticity of substitution across industries which yielded an es-

timate of 0.43 as a common value. However, as highlighted in Table 3, the full-fledged

specification (last column) exhibits a Bayes ratio of 1 compared to this restricted model,

implying that it performs considerably better in terms of likelihood. This observation

gives a first hint at the relevance for heterogeneity of CES elasticities. In Figure 6, we

plotted the estimates of the posterior means for each sector, as well as a red dotted line

which corresponds to the value when estimating a common elasticity (0.43 as above).

While some values are close to the red line, 4 elasticities out of 15 would be very poorly

approximated by a common value of 0.43 (namely for the following sectors: AGR, MIN,

ART, GOV). We also notice that 0.43 is outside the 90% confidence interval of estimates

from the Retail sector (RET) and the Educational, Health and Social services (EDU).

Overall, the estimation results reveal high heterogeneity across sectors with estimates

ranging from 0.21 to 2.98.
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Figure 6: Dispersion of sectoral elasticities (with the 90% confidence interval)

5.2 Implications of elasticity dispersion for shock propagation

With regards to reallocation dynamics, this heterogeneity affects the intakes of the

input reallocation channel. To confirm this hypothesis, we report in Appendix the input

reallocation multiplier matrix computed when using the estimates of the homogeneous

elasticity of substitution. In other words, we compute (IRji)j,i such as in Figure 3 using

σj = 0.43 for all sectors j. We find that this estimation significantly increases the

magnitude of the input reallocation channel.

For example, the diagonal values are much higher (in absolute terms) in the homoge-

neous case than with our full-fledged model. IRAGR,AGR shifts from -0.01 (which indicates

there is almost no shock transmission through this channel) to -0.9 , which indicates a

vast dampening of the shock through this channel. Meanwhile, IRBUS,MAN increased from

0.13 to 0.29. What these results suggest is that relaxing the uniqueness of the elasticity

of substitution has major implications on shock transmission. Indeed, we detailed in

subsection 4.2 how complementarity was overall mitigating shock propagation in the US

specific case. Hence, using a common value of 0.43 forces the reallocation mechanisms

towards complementarity and overestimates sectoral shock dampenings.

What are the implications of such an overestimation of the input reallocation channel

? As a direct consequence, if this channel intakes are inflated, the volatility of the outputs

are underestimated as shocks are over-dampened. Hence, business cycles will be under-

looked. The next subsection gives insights on the consequences of this overestimation

with counterfactual business cycles analysis.
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5.3 A counterfactual analysis of recent crisis (Dotcom, Sub-

primes, Covid-19...)

To further assess the consequences of homogeneous CES modelling with contrast to

our full-fledged model, we compare the aggregate output predictions in both cases during

major recessive shocks. In particular, we compare the evolution of aggregate output on a

quarterly basis in both specification during three crisis : the Dotcom crisis, the Subprimes

crisis and the Covid crisis. To do so, we simulate the evolution of the aggregate output

using the sequence of shock identified in our full-fledged model, taking as starting point

the level of output before the economic downturn. Graphs for the Dotcom and Subprime

crisis are reported in Figure 7 while the graph for the Covid-19 crisis is reported in

Appendix.

2002 2003 2004 2005
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100%

105%
Heterogeneous

Homogeneous

(a) Dotcom crisis

2009 2010 2011
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90%

95%

100%

105%
Heterogeneous

Homogeneous

(b) Subprime crisis

Figure 7: Counterfactual output variations in Homogeneous elasticity and Heterogeneous
elasticities model (the homogeneous case corresponds to σj = 0.43)

The intuitions given in subsection 5.2 turn out to be confirmed as the simulated

curves for the homogeneous case (dashed line) exhibit significantly smaller decreases of

output than for the heterogeneous model. For the Dotcom crisis (Panel (a)), we observe

that the aggregate output plummets down to 88.4% of its starting level in 2002Q3 with

the unrestricted model while it stays above 91% for the restricted case. Similarly, the

output levels during the Subprime crisis (Panel (b)) respectively went down to 85.9%

and 88.4%.12. As explained above, the model with common elasticity overestimates the

12The same observations apply for the Covid-19 crisis in Appendix
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impacts of the input reallocation channel which in turn induces a lower volatility of output

due to shock dampenings.

6 Aggregate versus Sectoral Shocks

6.1 Aggregate shocks

While we’ve been focusing on sectoral productivity shocks so far, our specification

allows for common productivity shocks to occur as well. These disturbances might be

seen as the evolution of the common state of technology of our economy. We can easily

obtain an analog theorem on the effects on log relative prices and outputs at first order

such as in Theorem (1) and (2) :

Theorem 3. The first-order effect of a common productivity shock on the log relative

prices of sector j around the steady state is given by :

∂log
pj
w

∂ϵ̃
|ϵ=0 =

∂p̂j
∂ϵ̃

|ϵ=0 = −
∑
i

lji

Consequently, the first-order effect of a common productivity shock on the log output

of sector j around the steady state is given by :

∂logYj

∂ϵ̃
|ϵ=0 =

∑
i

∂logYj

∂ϵi
|ϵ=0 =

∑
i

TOTji

As we notice, the common multiplier of a sector is just computed as the sum of the

coefficients on the corresponding line in the total multiplier matrix TOT . The fact that

all the impacts are just added across all sectors is intuitive since a common shock can be

interpreted as the combination of shocks from all industries.13 Naturally, this means that

a common shock impact is always greater than a sectoral one of the same magnitude.

The values of the common multipliers are summarized in Table 4:

Sector AGR MIN UTI CON MAN WHO RET TRA INF FIN BUS EDU ART OTH GOV

∂logYj

∂ϵ̃
|ϵ=0 4.49 3.94 3.90 3.48 4.08 3.42 3.48 3.60 3.73 3.78 3.16 3.22 3.49 3.34 3.24

Table 4: Common shock multipliers

13However, this result holds only at first-order.
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These aggregate disturbances multipliers due to propagation are significant: a 1%

shock in common factor productivity will translate into variations from 3.16% of output

for Business services (BUS) up to 4.49% for the Agricultural sector (AGR). The standard

error of common shocks being around 0.18%, it corresponds to average variations of

output from 0.57% to 0.81%.

6.2 The origins of fluctuations

A question that has been largely tackled in the literature concerning sectoral hetero-

geneity is the decomposition of the aggregate volatility and the understanding of what

stems from idiosyncratic variability and what originates from common factors. Three

main characteristics shape this decomposition of the aggregate variance : the propaga-

tion patterns through the network (which variables are the multipliers), the magnitude of

the shocks (embodied by the standard errors of the different shocks) and the persistence

of the shocks (stacked in the auto-correlation coefficients ρ). Exploiting these parame-

ters, we can draw a portrait of the contribution of each component in the volatility of

the whole production network.

To compare the aggregate and sectoral intakes on fluctuations, we decompose the

variance of the sectoral outputs, simulating one shock at a time, that is for a sector k

and for a shock ϵj, j ∈ {1, ..., N, Z,D}:

V ar(logYk|ϵi = 0, ∀i ̸= j)

Thus, to grasp the role of sectoral shocks on sectoral (or aggregate) fluctuations, we

can simply compute the ratio of the sum of the variances stemming from these sectoral

shocks on the total sum of the variances, that is to say:

∑
j V ar(logYk|ϵi = 0, ∀i ̸= j)∑

j V ar(logYk|ϵi = 0,∀i ̸= j) + V ar(logYk|ϵi = 0,∀i ̸= Z) + V ar(logYk|ϵi = 0,∀i ̸= D)

(27)

The Table 5 summarizes this ratio for each sector. We immediately observe that

these results are consistent with the recent literature on the micro origins of aggregate

fluctuations. Indeed, on average across sectors, common shocks (supply and demand)

are only responsible for 9.3% of the output volatility, with a minimum of 2.73% for the

Mining industry (MIN) and a maximum of 13.42% for the Financial services (FIN). We
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can notice that the industries of goods (AGR, MIN, CON etc.) seem to be more dependent

on sectoral shocks than industries of services (BUS, FIN, ART etc.) do. At the aggregate

level (Y ), notice that common supply shocks are only responsible for 11.68% of the total

output volatility, a result which is even smaller than the findings of Atalay [2017] which

amout to 17%.

Y YAGR YMIN YUTI YCON YMAN YWHO YRET YTRA YINF YFIN YBUS YEDU YART YOTH YGOV

88.32 93.72 97.27 93.81 90.05 92.35 87.89 88.72 90.5 86.77 86.58 88.66 89.02 91.66 86.91 87.21

Table 5: Ratio of sectoral volatility due to sectoral shocks

Accordingly, idiosyncratic shocks seem to be the main sources of aggregate fluctuations

in the US business cycles since 1948.14 Taking into account the network structure of the

economy leads to complex amplification effects which drive the aggregate fluctuations.

The explanation given by the estimates is the following: while the multipliers for aggregate

shocks are greater than sectoral ones (see Table 4), the magnitude of these common

disturbances are way smaller than idiosyncratic ones. To give a hint on the effect of

sectoral shocks on aggregate quantities, Figure 8 plots the fluctuations of US GDP around

its trend between 1948 an 2020 in two cases:

1950 1960 1970 1980 1990 2000 2010 2020
−10%

−5%

0%

5%

All shocks

Sectoral shocks only

Figure 8: GDP variations around trend between 1948 and 2020 with all/sectoral shocks

14These results cast some doubts on the ”large law of numbers”-type of argument from Lucas [1977]
stating that disaggregating the economy at a granular level is irrelevant since micro shocks should wash
out on average.
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The blue line represents the observed evolution of GDP in the data (with all shocks

taken into account). The red line shows the fluctuations with a simulated economy where

the aggregate shocks have been removed. Both curves exhibit very similar patterns as

the red line (with sectoral shocks only) does a great job at replicating the observed data,

confirming that sectoral shocks are the primary drivers of aggregate volatility.

7 Nonlinear considerations of production networks

This section investigates nonlinear effects of the production network in entailing the

welfare cost of fluctuations as well as affecting the propagation of idiosyncratic shocks.

7.1 Welfare cost of sectoral business cycles

A common concern in the business cycles literature is the quantity of consumption that

the households would be willing to renounce for, in order to avoid uncertainty for their

consumption path. This question goes as far back as Lucas [1987], who defined this

quantity as the ”Welfare cost of business cycles” (hereafter Wc), the difference between

the expected utility of consumption and the utility of consumption at the steady state:

W = E(u(C(ϵ)))− u(C(E(ϵ))) (28)

This gap originates from the concave nature of utility and production functions (as

function of shocks). Lucas originally found with a baseline model that the cost of fluc-

tuations should be very small (estimates around 0.1% of total consumption). However,

Lucas assumptions to get to this result have been largely challenged and new results have

shown that the real value might be substantially higher.

Among others, Baqaee and Farhi [2019] have enriched the original computations of

Lucas by using non-linear production functions in their model and adding sectoral fluctu-

ations, which is also the case in our specification. As shown by Baqaee and Farhi [2019],

adding non-linearities such as substitution possibilities can induce much more consequent

values for welfare costs, especially when the degree of non-linearity is increased. We re-

port in Table 6 the computed welfare costs in consumption points (i.e. % points of total

consumption) for the different specifications such as in Table 3. We compute the deriva-
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tions using a CRRA utility function15 and with different coefficient of relative aversion.

For each specification, the column on the left (W) displays the welfare cost while the col-

umn on the right (Contrib) indicates the contribution of common shocks to the welfare

cost.16

No substitution Partial substitution Full substitution

(σ = 1, σj = 1) (σ ̸= 1, σj = 1) (σ = 1, σj ̸= 1) (σ ̸= 1, σj = 0.43) (σ ̸= 1, σj ̸= 1)

W Contrib W Contrib W Contrib W Contrib W Contrib

γ = 1 0.002 (0%) 0.08 (0%) 0.26 (1%) 0.21 (-%) 0.34 (0%)
γ = 1.5 0.026 (8%) 0.11 (3%) 0.33 (1%) 0.37 (-%) 0.41 (1%)
γ = 2 0.05 (12%) 0.15 (4%) 0.39 (2%) 0.53 (-%) 0.48 (2%)
γ = 4 0.15 (12%) 0.28 (6%) 0.66 (4%) 1.17 (-%) 0.77 (3%)

Table 6: Welfare costs of business cycles (in consumption points)

In the full-fledged model, the welfare cost of business cycles neighbours half of a

consumption point for realistic calibration of γ, with a value of 0.41% of consumption

(for γ = 1.5). In other words, a household earning 50 000$ annually would be willing to

pay 205$ per year to avoid uncertainty in its consumption. These figures seem realistic

and broadly in accordance with other estimates in the literature such as in Barlevy [2004]

or Baqaee and Farhi [2019]. They are also much higher than the original computations

of Lucas. Notice that relaxing Cobb-Douglas assumptions and allowing for substitution

increases the welfare costs: it stems from second-order terms which are non-zero when

adding non-linearities in the model. For example, the welfare costs are multiplied by 10

when switching from ”No substitution” to ”Full substitution with heterogeneity” when

γ = 2. This table gives a quantitative assessment of the theoretical contribution of

Baqaee and Farhi [2019] and highlights the major implication of substitution mechanisms

on households.

Despite increasing with the coefficient of relative risk aversion, the intakes of common

disturbances (in Contrib columns) are way smaller than the sectoral shocks, with contri-

butions often below 5%. This observation suggests once again that idiosyncratic shocks

are primary drivers of macroeconomic variables fluctuations.

We give here an intuition on the reason why the contribution of common shocks is

increasing with γ. Consider the aggregate shocks, for example the aggregate supply shock.

15In other words: u(c) = c1−γ−1
1−γ

16The contribution is computed as the ratio of welfare cost when setting all sectoral shocks equal to 0
to the regular welfare cost
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The initial impact of the common TFP shock is small compared to sectoral shocks as

discussed in section 6. Thus, when the degree of concavity of the utility function is low

(small γ), the intakes of the common shocks are low because the biggest shocks drive

the variance of the utility. However, when γ increases, u becomes more concave and the

variations of utility due to shocks are being squeezed. This gives more relative weight to

small shocks as deviations from the mean become small even for large shocks.17

7.2 Second-order expansion

So far, this study has only focused on first-order effects, using the first order Taylor

expansion. However, the accuracy of this proxy will depend on the size of the shocks

ϵ. Indeed, as ϵ increases, the terms of higher order in the Taylor approximation will get

bigger and bigger as they are strictly convex. Thus, when the magnitude of the shocks

increases too much, the first-order approximation might become gross. To assess the

accuracy of the first-order approximation, we can use a slightly more developed Taylor

formula (at second order):

log(Yj(ϵ)) ≈ log(Yj(0)) +∇(logYj)(0)
t ∗ ϵ+ 1

2
ϵt ∗D2(logYj)(0) ∗ ϵ (29)

In this expression, the additional term 1
2
ϵt ∗D2(logYj)(0)∗ϵ is likely to have an impor-

tant weight in the overall variation of log output when ϵ increases. We used simulation

to compute the impulse response functions of the sectors’ own shock (IRFs) at first-order

and second-order. We compare the IRFs by deriving the relative difference between both

terms:

|IRF1st order(υi)− IRF2nd order(υi)

IRF2nd order(υi)
| (30)

The values are summarized in Table 7. What emerges from the results is that the

1st order development seems to be an excellent proxy for the size of shocks estimated.

Indeed, the relative difference between first order and second order IRFs for ”standard

error”-wide shocks is, on average, 0.24%. Notice that the biggest error only amounts to

1.15%, for the Utilities sector. What we can conclude from these results is that the first

order proxy is (at least) almost as accurate as the second order one. This gives credit to

the specification of our study so far.

17Notice that for linear utility and consumption, the contribution of each shock would be strictly
proportional to the size of the shock
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Sector AGR MIN UTI CON MAN WHO RET TRA INF FIN BUS EDU ART OTH GOV

Error 0.30 0.91 1.15 0.33 0.31 0.07 0.07 0.13 0.05 0.15 0.01 0.07 0.00 0.02 0.01

Table 7: Difference between 1st and 2nd order IRFs in relative terms (in %)

8 Conclusion

This paper casts and estimates a general equilibrium model of a multi-industry econ-

omy with heterogeneous elasticities of substitution in order to explain and quantify the

transmission mechanisms inherent to input-output linkages. Based on the inference of

parameters with Bayesian techniques, we show that sectors exhibit highly heterogeneous

elasticities of substitution, which contrast with the usual uniformity imposed to these

elasticities in the literature. We find that this heterogeneity enriches the propagation

patterns of idiosyncratic shocks and amplifies their impact on the supplying industry.

In addition, the paper propose to decompose the role of the production network in

three complementary forces through which shocks propagate along the supply chain.

Based on our inference exercise, we let the data determine their relative contribution

in shaping the transmission of idiosyncratic shocks. We find that reallocation chan-

nels (input reallocation and final demand reallocation) account for a large part of shock

transmission. This finding stresses out how important are the reallocation dynamics in

disaggregated environments, such as theoretically suggested by the literature.

Production networks model are a becoming more and more sophisticated as we bet-

ter grasp the complexity of input-output linkages. We identify two natural avenues

for further research in our understanding of reallocation dynamics. First, we consid-

ered in our model that the input-output structure was endogenous. Recent works from

Taschereau-Dumouchel [2017] and Acemoglu and Azar [2020] endogenize the choice of

supplier, showing that the propagation of sectoral shocks might lead to cascade shut-

downs in the production networks. Estimating the elasticity of substitution in a model

with endogenous production networks such as theirs could be highly informative in or-

der to understand the interaction between reallocation possibilities and supplier choices.

Second, we estimated a model with CES production function and preferences which are

typically used in multi-sector model. However, one wants to allow for more complex

form such as the non-homothetic CES preferences studied by Comin et al. [2021]. The

estimation of such state-of-the-art preferences could be a promising way of understanding
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transmission mechanisms and multi-sectoral macroeconomics.
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9 Appendix

9.1 Summary of the equations

The equations summarizing our system are thus for all i, j = 1, 2...N and t ≥ 0:

Ct = wt (31)

∑
j

ϕjp
1−σ
jt = 1 (32)

Cjt = Dtp
−σ
jt ϕjCt (33)

Ljt = βj(
pjt
wt

)Yjt (34)

Mjit = (1− βj)γji(
pjt
p
σj

it

)Yjt(
∑
k

γjkp
1−σj

kt )−1 (35)

Yjt = Cjt +
N∑
i=1

Mijt (36)

Yjt = ZtAjtξjL
βj

jt (
N∑
i=1

γ
1
σj

ji M
1− 1

σj

jit )
σj(1−βj)

σj−1 (37)

log(Ajt) = ρj log(Aj(t−1)) + ϵjt (38)

log(Zt) = ρZ log(Zt−1) + ϵZt (39)

log(Dt) = ρD log(Dt−1) + ϵDt (40)

9.2 Steady-state

The corresponding steady state system for our set of equations is for all i, j = 1, 2...N

(see Appendix for proof):
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Aj = Z = D = 1 (41)

C = w = pj = 1 (42)

Cj = ϕj (43)

Yj =
∑
i

ϕilij (44)

Lj = βjYj (45)

Mji = γjiYj (46)

9.3 Proofs

9.3.1 Agents

The FOCs of the consumption basket optimization yields (with ηt the corresponding

Lagrange multiplier):

(Cjt) : −ηtpjt +
1

1− σ
((1− σ)ϕσ

jC
−σ
jt )C

σ
1−σ

t = 0

which can be manipulated when putting to power 1− σ:

C−1
t ϕσ−1

j C1−σ
jt = η

1− 1
σ

t p
1− 1

σ
jt

Summing on all sectors j and using the aggregate index of Ct we find that:

ηt = C
−σ− σ

σ−1

t

Which gives the Equation 8 when reinjecting in the FOC (Cjt).

9.3.2 Firms

The Lagrangian of the firm j which wants to maximize its profit writes down (with θjt

the corresponding Lagrange multipliers):
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L((Yjt)t, (Ljt)t, (Mjit)i,t, (θjt)t) = pjtYjt − wtLjt −
∑N

i=1 pitMjit − θjt(Yjt − ZtAjtξjL
βj

jt (
∑N

i=1 γ
1
σj

ji M
1− 1

σj

jit )
σj(1−βj)

σj−1 )

(47)

The FOCS yield the following equations:

(Yjt) : pjt = θjt

(Ljt) : wjt = θjtβj
Yjt

Ljt

(Mjit) : pit = θjtYjt
σj

σj − 1
(1− βj)(

N∑
k=1

γ
1
σj

jk M
1− 1

σj

jkt )γ
1
σj

ji

σj − 1

σj

M
− 1

σj

jit

(θjt) : Yjt = ZtAjtξjL
βj

jt (
N∑
i=1

γ
1
σj

ji M
1− 1

σj

jit )
σj(1−βj)

σj−1

Plugging the expressions of the Lagrange multipliers θjt given by the equation (Yjt), we

immediately get the equations from subsection 2.2 except the ones for the input demands

Mjit. Simplifying the condition (Mjit) gives:

pit = pjtYjt(1− βj)(
N∑
k=1

γ
1
σj

jk M
1− 1

σj

jkt )γ
1
σj

ji M
− 1

σj

jit (48)

We put this equation to power 1− σj and we sum on all i, giving that:

N∑
k=1

γ
1
σj

jk M
1− 1

σj

jkt = (pjtYjt(1− βj))
1
σj

−1
(
∑
k

γjkp
1−σj

kt )
− 1

σj

When plugging back this expression in Equation 48, we immediately get the expression

of input demand.

9.3.3 Determination of the steady states

The normalization conditions make it possible to determine the closed-form solution of

the steady states. The steady state of the sectoral and aggregate TFPs and the demand

shocks are straightforward, such that :

Aj = 1, ∀j
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Z = D = 1

Now we want to compute the steady states for the prices and the wage (in real terms).

Reinjecting the expressions of Mji and Lj at the steady states given by Equation 34 and

Equation 35, we get that:

Yj = ξj(βj(
pj
w
)Yj)

βj(
N∑
i=1

γ
1
σj

ji ((1− βj)γji(
pj
pi

σj
)Yj(

∑
k

γjkpk
1−σj)−1)

1− 1
σj )

σj(1−βj)

σj−1

Using the expression of ξj, simplifying the Yj and putting the pj together, we get that

this equation reduces to :

1 = (
pj
w
)βjpj

1−βj((
∑
k

γjkpk
1−σj)

1
σj )

σj(1−βj)

σj−1

Finally, we can log-linearize, giving the following equation :

log(
pj
w
) =

1− βj

(1− σj)
log(

1

1− βj

∑
k

γjk(
pk
w
)1−σj)

From now on, we can prove that this equation implies for all j:

pj = w

Denote by j̃ the sector such that the real price is maximal across sectors at the steady

state and suppose that pj̃ ≥ w. We have:

log(
pj̃
w
) =

1− βj̃

(1− σj̃)
log(

1

1− βj̃

∑
k

γj̃k(
pk
w
)1−σj̃)

We notice that:

∑
k

γj̃k(
pk
w
)1−σj̃ ≤

∑
k

γj̃k(
pj̃
w
)1−σj̃ = (

pj̃
w
)1−σj̃

∑
k

γj̃k = (1− βj̃)(
pj̃
w
)1−σj̃

Thus, for sector j̃, we have:

log(
pj̃
w
) ≤ (1− βj̃) log(

pj̃
w
)
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This implies that pj̃ = w because (1 − βj̃) < 1 and
pj̃
w

≥ 1. Moreover, the inequality

is binding if and only if all the prices are equal. Thus, the real prices are all equal to the

real wage at equilibrium. If pj̃ < w, then we can use the exact same reasoning with j̃

denoting the smallest real price.

Moreover, we know that:

∑
j

ϕjpj
1−σ = 1

Thus:

w1−σ
∑
j

ϕj = 1

w = 1

Furthermore, since C = w, we have :

C = 1

This equation immediately implies that:

Cj = ϕj

Now we want to get the expression of (Yj)j. Remember that we have:

Yj = Cj +
∑
i

γijYi

which allows us to write in matrix form:

(I− Γ)Y = Φ

Y = LΦ

This gives the closed-form expression for the (Yj)j. It’s straightforward to get the

other equations of the steady states knowing the (Yj)j.
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9.3.4 Proof of Theorem 1

We begin from the same equation as for the steady state but we use the temporal indices.

We suppose that at t− 1, the economy is at the steady state and thus the variables are

defined by the equations in subsection 9.2 :

Yjt = ξjZtAjt(βj(
pjt
wt

)Yjt)
βj(

N∑
i=1

γ
1
σj

ji ((1− βj)γji(
pjt
p
σj

it

)Yjt(
∑
k

γjkp
1−σj

kt )−1)
1− 1

σj )
σj(1−βj)

σj−1

1 = ZtAjt(
pjt
wt

)βjp
1−βj

jt ((
∑
k

γjkp
1−σj

kt )
1
σj )

σj(1−βj)

σj−1

We log-linearize and rearrange the terms to obtain:

log(
pjt
wt

) = −ϵ̃t − ϵjt +
1− βj

1− σj

log(
1

1− βj

∑
k

γkj(
pkt
wt

)1−σj) (49)

Denote j̃ the sector with highest price at time t such as in the proof for the steady

state and suppose once again that ϵ = 0 and pj̃t ≥ wt. The equation of normalization of

prices ensures that pj̃ ≥ 1. Thus:

1− βj̃

1− σj̃

log(
1

1− βj̃

∑
k

γj̃k(
pkt
wt

)1−σj̃) ≤ (1− βj̃)log(
pj̃t
wt

)

Remember that the equality only holds if all the prices are all equal across sectors.

Plugging this into the log-linearized expression from Equation 49, we get that :

log(
pj̃t
wt

) ≤ (1− βj̃t) log(
pj̃t
wt

)

This can be true if and only if all the prices are equal to the wage in real terms. Once

again, if pj̃t < wt, we use the same reasoning with j̃ being the smallest price. Thus, we

get that when the productivity shocks are all zero at time t, prices are all equal to the

wage and the normalization condition imposes that for all j:

pjt = wt = 1

Now we differentiate the Equation 49 and we evaluate it for ϵ = 0. This leads us to

the equality:
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∂log
pj
w

∂ϵit
|ϵ=0 = −1j=i +

∑
k

γjk
∂log pk

w

∂ϵit
|ϵ=0

Using the notation p̂jt = log(
pjt
wt
) and p̂ the associated vector, we get that:

(I− Γ)
∂p̂

∂ϵit
|ϵ=0 = −ei

∂p̂

∂ϵit
|ϵ=0 = −Lei

which ends the proof of the first theorem.

9.3.5 Proof of Theorem 2

We begin from the resource constraint which implies:

λjt = (Cjt +
N∑
k=1

Mkjt)
pjt
wt

∂λjt

∂ϵit
|ϵ=0 = (

∂Cjt
pjt
wt

∂ϵit
|ϵ=0 +

N∑
k=1

∂Mkjt
pjt
wt

∂ϵit
|ϵ=0)

We need to compute a few terms before being able to obtain the expression of the

proposition.

Consumption. Firstly, we determine the wage multiplier around the steady state
∂wt

∂ϵi
|ϵ=0. We divide the normalization Equation 6 by w1−σ

t and we differentiate around

the steady-state giving the equation :

∑
k

ϕk(1− σ)
∂ pkt

wt

∂ϵit
|ϵ=0 = (σ − 1)

∂wt

∂ϵit
|ϵ=0

which immediately gives:

∂wt

∂ϵit
|ϵ=0 =

∑
k

ϕklki = λi

Note that we come back to the theorem from Hulten [1978]. Then, we use the fact

that Cjt
pjt
wt

= ϕjp
1−σ
jt , giving:
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∂Cjt
pjt
wt

∂ϵit
|ϵ=0 = ϕj(1− σ)

∂pjt
∂ϵit

|ϵ=0

Since we have :

∂pjt
∂ϵit

|ϵ=0 =
∂

pjt
wt

∂ϵit
|ϵ=0 +

∂wt

∂ϵit
|ϵ=0,

we get that:

∂pjt
∂ϵit

|ϵ=0 = −lij +
∑
k

ϕklik,

and thus:

∂Cjt
pjt
wt

∂ϵit
|ϵ=0 = ϕj(1− σ)(

∑
k

ϕklik − lij).

Inputs. Define ωkjt, such that :

ωkjt =
pjtMkjt

pktYkt

It follows that :

∂Mkjt
pjt
wt

∂ϵit
|ϵ=0 =

∂ωkjtλkt

∂ϵit
|ϵ=0

We use the exact same proof as in Carvalho and Tahbaz-Salehi [2019] to show that:

∑
k

∂ωkjtλkt

∂ϵit
|ϵ=0 =

∑
k

γkj
∂λkt

∂ϵit
|ϵ=0 +

∑
k

γkj(σk − 1)λkt(lij −
1

1− βk

∑
s

γkslis)

Compilation. Thus if we use the following notation:

Bji = ϕj(1− σ)(
∑
k

ϕklik − lij)

Dji =
∑
k

γkj(1− σk)λkt(lij −
1

1− βk

∑
s

γkslis)

Compiling all the information we got so far allows us to write :
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∂λjt

∂ϵit
|ϵ=0 −

∑
k

γkj
∂λkt

∂ϵit
|ϵ=0 = Bji +Dji

Thus, we have:

∂λjt

∂ϵit
|ϵ=0 =

∑
k

lkj(Bki +Dki)

Finally, notice that since λjt =
pjtYjt

wt
. we have :

∂logYjt

∂ϵit
|ϵ=0 =

1

λj

∂λjt

∂ϵit
|ϵ=0 −

∂p̂jt
∂ϵit

|ϵ=0

∂logYjt

∂ϵit
|ϵ=0 =

1

λj

∑
k

ljkBki︸ ︷︷ ︸
Consji

+
1

λj

∑
k

ljkDki︸ ︷︷ ︸
Inpji

− lji︸ ︷︷ ︸
Dirji

9.3.6 Proof of Theorem 3

We use the exact same proof as for Theorem 1 in subsubsection 9.3.4 until we get to the

Equation 49:

log(
pjt
wt

) = −ϵ̃t − ϵjt +
1− βj

1− σj

log(
1

1− βj

∑
k

γkj(
pkt
wt

)1−σj) (1)

Here, we differentiate and evaluate for ϵ = 0:

∂p̂jt
∂ϵ̃t

|ϵ=0 = −1 +
∑
k

γjk
∂p̂kt
∂ϵ̃t

|ϵ=0

where 1 is a 1×N vector with all values being 1. We easily get to the analog equation:

∂p̂

∂ϵ̃t
|ϵ=0 = −L1

which gives the first part of the theorem on log prices. The second part is straight-

forward when replacing the expression of the
∂p̂jt
∂ϵ̃

|ϵ=0 with sum on i in the proof.
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9.4 Additional Data

9.4.1 Data Calibration

The input-output parameters (γji) are summarized in the following table :

Γ AGR MIN UTI CON MAN WHO RET TRA INF FIN BUS EDU ART OTH GOV

AGR 0.324598 0.000743 0 0.002971 0.067805 3.48E-05 0.002729 0.00016 0 1.76E-06 0.001230 0.000225 0.010222 0.000673 0.003492
MIN 0.008136 0.236967 0.270576 0.021419 0.10834 8.68E-05 8.49E-05 0.000463 0.000684 7.33E-06 0.000976 0.000444 0.002250 0.002161 0.023451
UTI 0.022 0.035396 0.132605 0.007703 0.02216 0.023014 0.05811 0.03264 0.010177 0.041124 0.01257 0.020360 0.058883 0.017368 0.022930
CON 0.006762 0.025454 0.031282 0.000369 0.004161 0.002934 0.006512 0.011101 0.005236 0.062358 0.001419 0.001994 0.006142 0.014111 0.064662
MAN 0.293157 0.244634 0.118161 0.518919 0.54764 0.08847 0.075144 0.222182 0.129758 0.027287 0.104006 0.227856 0.174281 0.233906 0.311867
WHO 0.128932 0.048567 0.030769 0.093017 0.089573 0.075681 0.036096 0.04544 0.027703 0.010641 0.020728 0.055388 0.03815 0.041686 0.046214
RET 0.007020 0.002668 0.009308 0.113926 0.005016 0.001178 0.007938 0.023370 0.001061 0.003141 0.002979 0.001364 0.02846 0.033814 0.001037
TRA 0.03854 0.055199 0.119027 0.033661 0.039773 0.113776 0.128658 0.258758 0.026101 0.015740 0.036338 0.023029 0.022710 0.02037 0.051157
INF 0.002707 0.007784 0.015648 0.013225 0.005999 0.035487 0.038585 0.014954 0.333411 0.028273 0.063851 0.031291 0.026006 0.041028 0.076812
FIN 0.141291 0.151305 0.076426 0.065756 0.025898 0.199180 0.271761 0.187082 0.104439 0.527489 0.217406 0.269449 0.214979 0.31995 0.102352
BUS 0.018103 0.183348 0.153682 0.114990 0.072530 0.373144 0.313027 0.129140 0.286061 0.223934 0.455784 0.246474 0.306268 0.189038 0.223970
EDU 0.000464 0 0.001039 9.34E-06 2.41E-05 0.002490 0.007447 0.000323 0.000595 1.70E-05 0.000731 0.040980 0.003199 0.009530 0.020850
ART 0.002873 0.003280 0.01756 0.001591 0.003587 0.013341 0.012935 0.022437 0.055750 0.0315 0.050926 0.045243 0.06466 0.020171 0.018812
OTH 0.004846 0.004586 0.007880 0.01242 0.006110 0.037814 0.026523 0.033199 0.013434 0.020757 0.023260 0.027101 0.028339 0.046636 0.024922
GOV 0.00018 6.22E-05 0.016024 1.55E-05 0.001371 0.033360 0.014438 0.018732 0.005583 0.007723 0.00778 0.008794 0.015424 0.009544 0.007465

Table 8: Calibration values of the Input-Output matrix Γ

The parameters values for labor share (βj) and consumption expenditure (ϕj) are

summarized in the following table :

Sector AGR MIN UTI CON MAN WHO RET TRA INF FIN BUS EDU ART OTH GOV

β 0.12 0.15 0.15 0.33 0.18 0.31 0.37 0.30 0.21 0.15 0.46 0.50 0.34 0.43 0.52
ϕ 0.006 0.003 0.015 0.057 0.199 0.040 0.071 0.021 0.034 0.172 0.032 0.121 0.049 0.035 0.145

Table 9: Calibration values of the labor share and consumption expenditure

9.4.2 Multiplier matrices

The estimates of the multiplier matrices using the values from Table 2 are the following :



1.48 0.16 0.11 0.06 1.03 0.30 0.03 0.19 0.08 0.71 0.53 0.00 0.06 0.05 0.02
0.07 1.38 0.11 0.08 0.83 0.17 0.02 0.18 0.09 0.67 0.68 0.00 0.06 0.04 0.02
0.06 0.43 1.20 0.08 0.69 0.15 0.03 0.25 0.10 0.58 0.65 0.00 0.07 0.05 0.03
0.07 0.14 0.06 1.03 0.91 0.17 0.09 0.13 0.07 0.41 0.46 0.00 0.04 0.04 0.01
0.17 0.28 0.09 0.05 2.23 0.23 0.02 0.17 0.07 0.46 0.52 0.00 0.05 0.04 0.02
0.03 0.07 0.07 0.04 0.40 1.12 0.01 0.17 0.10 0.57 0.68 0.00 0.06 0.06 0.04
0.03 0.07 0.09 0.05 0.36 0.09 1.02 0.17 0.10 0.60 0.59 0.01 0.05 0.05 0.02
0.05 0.10 0.09 0.05 0.61 0.12 0.03 1.31 0.08 0.58 0.50 0.00 0.06 0.06 0.03
0.04 0.08 0.07 0.04 0.54 0.11 0.02 0.12 1.43 0.54 0.74 0.00 0.11 0.05 0.02
0.04 0.08 0.12 0.13 0.43 0.09 0.02 0.11 0.13 2.17 0.76 0.00 0.10 0.06 0.03
0.03 0.05 0.05 0.03 0.32 0.07 0.01 0.08 0.10 0.47 1.59 0.00 0.07 0.04 0.01
0.03 0.06 0.05 0.03 0.41 0.09 0.01 0.07 0.07 0.47 0.43 1.02 0.06 0.04 0.01
0.05 0.09 0.10 0.04 0.49 0.10 0.03 0.10 0.09 0.57 0.61 0.00 1.09 0.05 0.02
0.04 0.07 0.06 0.05 0.48 0.10 0.03 0.09 0.09 0.59 0.46 0.01 0.05 1.06 0.02
0.04 0.09 0.05 0.06 0.50 0.09 0.01 0.09 0.09 0.32 0.39 0.01 0.04 0.03 1.01


Figure 9: Downstream channel matrix of US economy (DE)
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

−0.11 −0.03 0.00 0.00 −0.28 −0.02 0.02 −0.01 0.01 0.07 0.02 0.04 0.01 0.01 0.04
−0.02 −0.05 −0.02 0.00 −0.23 −0.01 0.02 −0.01 0.01 0.05 0.01 0.03 0.01 0.01 0.03
0.00 −0.03 −0.11 0.01 −0.01 0.00 0.00 −0.01 0.01 −0.05 −0.01 0.03 0.00 0.01 0.04
0.00 0.00 0.00 −0.24 0.00 0.00 0.01 0.01 0.02 0.00 0.02 0.05 0.02 0.01 0.04
−0.03 −0.04 0.00 0.00 −0.32 −0.01 0.02 −0.01 0.01 0.08 0.02 0.03 0.01 0.01 0.03
−0.01 −0.01 0.00 0.00 −0.07 −0.13 0.02 −0.01 0.01 0.06 0.00 0.03 0.01 0.01 0.03
0.02 0.02 0.00 0.01 0.18 0.03 −0.37 −0.01 0.02 0.06 0.00 0.06 0.02 0.01 0.07
0.00 −0.01 −0.01 0.00 −0.04 −0.01 −0.01 −0.11 0.01 0.02 0.01 0.03 0.01 0.01 0.03
0.01 0.01 0.00 0.02 0.08 0.01 0.01 0.01 −0.23 0.00 −0.04 0.03 0.00 0.01 0.02
0.01 0.01 −0.01 0.00 0.09 0.01 0.01 0.00 0.00 −0.29 −0.04 0.03 0.00 0.00 0.04
0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 −0.01 −0.05 −0.05 0.02 0.00 0.00 0.03
0.02 0.04 0.02 0.04 0.22 0.04 0.04 0.04 0.04 0.16 0.08 −0.47 0.03 0.02 0.07
0.01 0.01 0.00 0.02 0.11 0.02 0.02 0.01 0.00 0.00 −0.02 0.03 −0.24 0.01 0.05
0.01 0.01 0.01 0.02 0.09 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.01 −0.23 0.05
0.02 0.02 0.02 0.03 0.16 0.03 0.04 0.03 0.02 0.21 0.09 0.06 0.03 0.02 −0.40



Figure 10: Final good substitution channel matrix of US economy (CR)



−0.01 0.11 −0.01 −0.03 −0.08 −0.02 0.01 0.01 −0.01 −0.13 0.09 −0.01 0.00 0.00 0.00
0.07 −0.57 −0.07 −0.02 0.11 0.08 0.01 0.04 −0.01 −0.01 0.07 −0.01 0.01 0.01 0.01
0.00 −0.09 −0.42 0.00 0.01 0.01 0.00 −0.02 0.01 0.04 0.15 0.00 0.01 0.01 0.00
−0.02 −0.03 0.00 −0.04 −0.11 −0.02 0.00 −0.01 0.00 −0.01 0.09 −0.01 0.01 0.00 0.00
−0.01 0.02 0.00 −0.02 −0.33 0.02 0.01 0.01 −0.01 0.06 0.09 −0.01 0.00 0.00 0.00
−0.01 0.06 0.00 −0.01 0.11 −0.20 0.01 0.01 −0.01 0.02 0.08 −0.01 0.00 0.00 0.00
0.00 0.02 0.00 0.00 0.09 0.02 −0.13 0.00 0.00 0.01 0.05 0.00 0.00 0.00 0.00
0.00 0.03 −0.02 0.00 0.07 0.01 0.00 −0.37 0.01 0.09 0.16 −0.01 0.01 0.01 0.00
−0.01 −0.01 0.01 0.00 −0.05 −0.01 0.00 0.01 −0.27 0.11 0.10 −0.01 0.02 0.01 0.00
−0.01 0.00 0.00 0.00 0.07 0.00 0.00 0.02 0.02 −0.60 0.13 0.00 0.01 0.01 0.01
0.01 0.02 0.02 0.02 0.13 0.02 0.01 0.04 0.02 0.17 −0.24 0.00 0.02 0.02 0.01
0.00 −0.01 0.00 −0.01 −0.04 −0.01 0.00 −0.01 −0.01 −0.01 −0.02 0.06 0.00 0.00 0.00
0.00 0.01 0.00 0.01 0.04 0.01 0.00 0.02 0.02 0.08 0.11 0.00 −0.27 0.01 0.00
0.00 0.01 0.01 0.01 0.02 0.00 0.00 0.01 0.01 0.06 0.12 0.00 0.01 −0.19 0.00
0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 −0.05



Figure 11: Input substitution channel matrix of US economy (IR)



1.37 0.24 0.10 0.04 0.66 0.25 0.05 0.18 0.08 0.66 0.64 0.03 0.06 0.06 0.06
0.12 0.76 0.02 0.05 0.71 0.24 0.05 0.21 0.09 0.71 0.77 0.03 0.07 0.06 0.05
0.05 0.30 0.67 0.09 0.68 0.15 0.03 0.22 0.11 0.57 0.79 0.03 0.07 0.06 0.07
0.06 0.11 0.07 0.76 0.80 0.16 0.09 0.13 0.09 0.40 0.58 0.04 0.07 0.05 0.06
0.14 0.26 0.09 0.03 1.58 0.24 0.05 0.18 0.08 0.60 0.64 0.03 0.07 0.05 0.05
0.01 0.12 0.07 0.03 0.44 0.79 0.04 0.17 0.10 0.65 0.75 0.03 0.07 0.07 0.07
0.05 0.11 0.09 0.05 0.64 0.14 0.52 0.16 0.12 0.68 0.64 0.06 0.07 0.06 0.09
0.05 0.12 0.06 0.05 0.64 0.13 0.03 0.83 0.09 0.69 0.67 0.03 0.08 0.07 0.06
0.04 0.08 0.08 0.06 0.56 0.11 0.03 0.13 0.92 0.65 0.80 0.03 0.13 0.06 0.05
0.03 0.09 0.12 0.12 0.58 0.11 0.03 0.14 0.14 1.28 0.85 0.03 0.11 0.07 0.08
0.04 0.07 0.07 0.06 0.48 0.09 0.02 0.13 0.12 0.58 1.31 0.02 0.09 0.06 0.05
0.05 0.09 0.07 0.07 0.60 0.12 0.05 0.11 0.10 0.62 0.49 0.61 0.08 0.06 0.09
0.05 0.11 0.10 0.08 0.64 0.13 0.05 0.13 0.11 0.64 0.70 0.03 0.58 0.07 0.08
0.05 0.10 0.08 0.07 0.59 0.11 0.05 0.11 0.11 0.65 0.61 0.04 0.08 0.63 0.07
0.06 0.11 0.07 0.09 0.67 0.12 0.05 0.12 0.12 0.55 0.52 0.07 0.08 0.06 0.56


Figure 12: Total multiplier matrix of US economy (TOT )

9.4.3 Reallocational effects relatively to downstream effects

The error matrix between DE and TOT effects is the following :
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

8.3 34.1 8.1 56.1 55.5 16.3 49.1 1.8 2.1 8.2 16.8 93.2 13.1 13.4 63.0
41.8 81.1 518.1 49.2 16.2 29.4 58.1 13.1 3.4 6.1 11.1 95.0 23.5 25.8 64.8
12.8 40.9 78.6 10.1 0.6 5.6 4.0 17.0 16.7 2.1 16.7 91.0 4.9 25.6 54.4
23.7 25.1 10.6 36.8 13.1 7.7 5.4 0.5 18.9 2.0 20.4 96.5 46.9 28.6 75.6
23.7 7.0 0.5 47.8 41.3 3.2 58.7 2.3 5.4 23.6 17.7 94.9 29.5 20.5 65.3
133.7 44.4 6.7 25.9 8.6 42.7 66.1 1.0 0.5 11.9 9.8 89.0 22.0 9.7 46.1
39.8 37.4 1.3 12.1 43.0 36.1 97.2 7.5 18.7 11.4 7.3 90.3 27.0 19.9 74.8
3.6 19.8 38.4 1.0 3.6 1.5 28.5 57.5 15.4 16.6 25.6 93.9 27.0 18.4 52.5
2.2 3.5 17.1 24.2 4.5 0.6 50.1 12.0 55.1 16.5 7.9 92.4 14.5 20.2 58.1
17.7 7.9 1.3 1.0 26.6 15.3 27.8 16.6 13.1 69.8 10.3 93.8 10.2 9.5 66.4
33.6 26.7 31.1 42.1 33.2 24.3 38.8 34.8 12.6 19.7 21.5 90.4 20.6 34.8 70.7
36.0 31.2 27.7 54.0 30.9 28.7 79.6 30.4 28.1 24.5 12.8 66.5 31.5 34.6 83.1
10.4 19.1 3.1 44.7 23.1 19.5 34.6 23.6 20.6 11.8 13.4 89.3 89.0 25.5 68.9
15.2 24.7 23.9 32.1 18.7 12.2 30.5 22.3 18.6 9.7 24.1 82.2 30.9 66.8 74.2
27.7 22.8 30.9 35.4 25.5 26.5 76.2 24.1 20.0 42.2 24.7 83.4 47.2 42.2 80.0


Figure 13: Relative error between Downstream and Total multipliers in absolute terms
(in %)



−0, 90 0, 06 0, 01 0, 00 −0, 38 0, 01 0, 01 0, 03 0, 03 0, 10 0, 25 0, 00 0, 01 0, 01 0, 01
0, 04 −0, 75 −0, 10 −0, 01 −0, 23 0, 07 0, 01 0, 03 0, 03 0, 10 0, 20 0, 00 0, 02 0, 02 0, 01
0, 01 −0, 14 −0, 58 0, 01 0, 02 0, 02 0, 00 −0, 03 0, 03 0, 01 0, 19 0, 00 0, 01 0, 01 0, 00
0, 00 −0, 01 0, 01 −0, 26 −0, 03 0, 00 −0, 02 0, 01 0, 03 −0, 04 0, 18 0, 00 0, 02 0, 01 0, 00
−0, 03 −0, 04 0, 00 0, 00 −0, 75 0, 01 0, 01 0, 01 0, 03 0, 17 0, 20 0, 00 0, 02 0, 01 0, 00
0, 01 0, 05 0, 01 0, 00 0, 06 −0, 40 0, 01 0, 01 0, 02 0, 12 0, 15 0, 00 0, 01 0, 01 0, 00
0, 01 0, 02 0, 00 −0, 02 0, 09 0, 02 −0, 14 −0, 01 0, 01 0, 02 0, 06 0, 00 0, 00 0, 00 0, 00
0, 01 0, 03 −0, 02 0, 01 0, 06 0, 01 0, 00 −0, 62 0, 04 0, 15 0, 27 0, 00 0, 02 0, 01 0, 00
0, 02 0, 03 0, 02 0, 02 0, 17 0, 02 0, 01 0, 04 −0, 65 0, 10 0, 09 0, 00 0, 01 0, 01 0, 01
0, 01 0, 02 0, 00 −0, 01 0, 19 0, 03 0, 00 0, 03 0, 02 −0, 77 0, 11 0, 00 0, 00 0, 00 0, 01
0, 03 0, 04 0, 03 0, 03 0, 29 0, 04 0, 01 0, 07 0, 02 0, 14 −0, 37 0, 00 0, 02 0, 02 0, 01
0, 00 0, 00 0, 00 0, 00 0, 01 0, 00 0, 00 0, 00 0, 00 0, 01 0, 01 −0, 03 0, 00 0, 00 0, 00
0, 01 0, 02 0, 00 0, 02 0, 13 0, 02 0, 00 0, 03 0, 01 0, 03 0, 10 0, 00 −0, 32 0, 01 0, 00
0, 01 0, 03 0, 02 0, 01 0, 12 0, 01 0, 00 0, 02 0, 02 0, 04 0, 17 0, 00 0, 01 −0, 32 0, 01
0, 00 0, 01 0, 00 0, 00 0, 02 0, 00 0, 00 0, 00 0, 00 0, 03 0, 04 0, 00 0, 00 0, 00 −0, 07



Figure 14: Input substitution channel matrix of US economy (IR) of the restricted model
(σj = 0.42,∀j
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9.5 Graphs

The graphs of priors and posteriors marginal density for the main estimated parameters

can be found here:
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Figure 15: Priors and posteriors distribution of the main estimated parameters
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Figure 16: Covid Crisis counterfactuals
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