
An Aspiring Friend Is a Friend Indeed: On the Mechanisms Behind Peer Influences on

Human Capital Accumulation

Jessica Gagete-Miranda ∗

Abstract

This paper studies friends’ influence on the process of human capital accumulation and the
mechanisms behind such an influence. I combine novel data on Brazilian students’ networks
with administrative data and investigate whether friends’ high school completion impacts stu-
dents’ high school completion. The employed methodology acknowledges that social cliques
are formed endogenously and models friendship formation based on students’ unobserved so-
cial ability and their random interaction opportunities. I then use the attributes of predicted
friends of friends as instrumental variables for friends’ school completion. The results show
substantial peer effects: An extra friend graduating from high school increases the likelihood
of students’ graduation by 6.62 percent. Friends’ influence is greater for black students and
students whose mothers did not complete high school. Focusing on the mechanisms behind
such an impact, I show that aspirations and effort in the school spread through students’ net-
works, but perceptions about schooling returns and fear of stigma do not. A mediation analysis
underscores the role of aspirations as the primary driver of friends’ influence.
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1 Introduction

Under-investment in human capital among disadvantaged youth is widespread across devel-

oped and developing countries and has detrimental consequences for growth and inequality

(Galor, 2011; Galor and Moav, 2004). While the bottleneck in developed countries is usually

the acquisition of tertiary education (e.g. Bailey and Dynarski, 2011), developing countries

struggle with an even more complex challenge: the low completion rates of secondary edu-

cation. In Brazil, for instance, about 33% of the adult population has not completed upper

secondary education – or high school –, and about 19% of the youth in the age range for

upper secondary education was out of school in 2017 (OECD, 2019).

Although financial constraints are an essential driver of low investment in human capi-

tal, psychological and informational barriers frequently keep students from achieving higher

levels of education even in the absence of such constraints (Dynarski et al., 2021; Hoxby

and Avery, 2012; Jensen, 2010; Kearney and Levine, 2014; La Ferrara, 2019). In this con-

text, individuals’ social networks might play a crucial role in either breaking such barriers or

making them even more salient through their influence on students’ aspirations, effort, per-

formance, and perceptions about schooling returns. Indeed, recent literature has shed light

on the importance of peers and family for educational choices (e.g. Altmejd et al., 2021;

Barrios-Fernández, 2022). However, data and methodological challenges make the evidence

of the mechanisms behind such an influence scarce.

The present paper combines administrative data with a unique social network dataset

collected among middle-school students in Brazil to answer two questions. First, do school

friends impact students’ likelihood of graduating from high school? Second, what are the

mechanisms behind such an impact?

To answer the first question, I investigate how students’ decision to graduate from high

school depends on their friends’ graduation decisions. I address the reflection problem (Man-

ski, 1993) and the endogeneity of friendship formation by leveraging the network structure of

my data. Specifically, I first model friendship formation based on students’ unobserved social
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ability and their random opportunities to interact in the school. I document that, after con-

trolling for senders’ and receivers’ fixed effects, a student i (sender) is more likely to befriend

another student j (receiver) if both i and j share their first name initial. This characteristic

is an important predictor of friendship formation because, as I show, students tend to be

allocated into classes in alphabetical order when they first enroll in middle schools, which

randomly increases their chances of meeting and interacting. Next, based on the model’s

predicted connections, the identification strategy addresses the reflection problem by using

predicted friends of friends’ characteristics as instrumental variables for friends’ outcomes

(Bramoullé et al., 2009; De Giorgi et al., 2010). It also uses network fixed effects and a broad

set of controls to eliminate other possible correlated effects.

I find that an extra friend graduating from high school increases, on average, 6.62 percent

the likelihood that a student will also graduate from high school. This impact is even higher

(14.52 percent) if we consider the likelihood of graduating from high school without being

retained in any grade during that cycle. I also find that friends’ influence is greater for

low-SES students, perhaps those with lower support from family or school and who need to

rely the most on their friends.

To answer the second question – on the mechanisms behind friends’ influence on high

school completion–, I exploit rich information on students’ aspirations, perceptions about

schooling returns, fear of stigma, and school effort. These variables represent possible psycho-

logical and informational factors that enter the students’ human capital production function.

I first investigate endogenous social effects in these variables and find that aspirations and

school effort spread throughout students’ social networks. Interestingly, friends do not seem

to share information about schooling returns, nor do friends influence students’ performance

or fear of being stigmatized as “nerds”.

Next, I perform a mediation analysis to understand whether these proxies of psychological

and informational factors explain friends’ influence on human capital investments. I show

that once these variables are accounted for, the impact of friends’ high school completion
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on students’ high school completion vanishes. Moreover, students’ and friends’ aspirations

represent the largest share of the total mediated effect, indicating that aspirations are a

crucial mechanism behind friends’ influence on human capital investments.

The present paper contributes to the literature on peer effects on human capital accumu-

lation. Traditional contributions to the literature on peer effects focus on outcomes such as

school or college performance (see Sacerdote (2011) and Sacerdote (2014) for comprehensive

reviews). Results in this setting are context-dependent and vary considerably, with promi-

nent peer effects in some cases and absent or negligible peer effects in others. A more recent

stream of this literature has focused on peers’ influence on schooling decisions and has found

larger and more consistent effects.1 Many papers in this second stream of the literature focus

on the impact of older siblings or neighbors on human capital investment decisions (Aguirre

and Matta, 2021; Altmejd et al., 2021; Barrios-Fernández, 2022; Dahl et al., 2020; Dustan,

2018,1; Joensen and Nielsen, 2018; Qureshi, 2018). Other contributions focus on the impact

of peers’ characteristics or peers whose incentives to accumulate human capital suddenly

increased (Abramitzky et al., 2021; Anelli and Peri, 2019; Anelli et al., 2022; Ballis, 2020;

Bobonis and Finan, 2009; Brenøe and Zölitz, 2020; Cipollone and Rosolia, 2007; Cools et al.,

2021; Feld and Zölitz, 2022; Pagani and Pica, 2021; Zölitz and Feld, 2021).

This paper contributes to this literature in two ways. First, it adds another piece of

evidence on how peers are influential on students’ schooling decisions. This time, however,

it focuses on friends, a source of influence on human capital investments overlooked by the

literature on the topic so far. Friends’ have been shown to impact individuals’ productivity

(e.g. Bandiera et al., 2010) and performance (e.g. Calvó-Armengol et al., 2009; Fletcher

et al., 2020). However, to the best of my knowledge, this is the first paper to show that

they also impact schooling decisions. Second, and most importantly, this paper exploits

rich information on several students’ characteristics to investigate the mechanisms behind

friends’ influence. The studies that have found positive peer effects on schooling decisions
1However, Feld and Zölitz (2022) and Anelli and Peri (2019) did not find strong peers influence even in

this setting.
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were not able, so far, to comprehend the channels leading to this effect. In particular, many of

these studies explicitly say that they cannot disentangle information diffusion from changes

in preferences (e.g. Altmejd et al., 2021; Barrios-Fernández, 2022). This paper shows that

while aspirations and effort in the school spread through students’ networks, information

about perceived schooling returns does not. While I cannot test spillovers in other types of

preferences or information, the findings in this paper suggest that changes in preferences are

more relevant than the spread of information.

The mechanisms’ analysis of this paper also sheds light on the literature investigating the

determinants of aspirations and their role in individuals’ outcomes (see Fruttero et al., 2021;

Mani and Riley, 2019, for comprehensive reviews ). Theoretical contributions discuss how

the capacity to aspire to a better standard of living is an essential driver of individuals’ efforts

and investments (Appadurai, 2004; Ray, 2006) and consider the lack of such a capacity – or

aspirations failures – as a psychological constraint that might trap people in poverty (Dalton

et al., 2016; Genicot and Ray, 2017). When it comes to the determinants of aspirations, a

large body of empirical contributions has found that peers’ socioeconomic status is associated

with individuals’ aspirations (e.g. Galiani et al., 2021; Janzen et al., 2017; Stutzer, 2004).

Fewer papers, however, have focused on how peers’ aspirations influence one’s own aspirations

(but see Boucher et al., 2018; Dickerson et al., 2018; Mora and Oreopoulos, 2011; Norris,

2020, for notable exceptions). This paper estimates how friends’ college aspirations influence

students’ college aspirations. Moreover, to the best of my knowledge, this is the first paper

to provide evidence that the aspirations of both students and their friends are important

predictors of students’ future schooling decisions and the main mechanisms behind friends’

influence on such decisions. Given how challenging it is to identify the role of aspirations on

individuals’ outcomes, these findings represent an essential step in this direction.

Finally, this paper contributes to flourishing literature that has combined estimations

of peer effects on networks and models of network formation to address endogenous link

formation on the estimation of peer effects (see Bramoullé et al., 2020, for a comprehensive
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survey about this topic). Specifically, my identification strategy relates closely to papers that,

first, model link formation exploiting individuals’ pre-determined characteristics and, second,

use the predicted links from such a model to estimate peer effects (Fletcher et al., 2020;

Santavirta and Sarzosa, 2019). Besides leveraging pre-determined characteristics, I indirectly

exploit individuals’ random chances to interact due to quasi-experimental allocations of

students into classes and show that such interactions are important predictors of friendship

formation.

2 Data and background

The primary data source used in this work is a survey conducted on students enrolled in the

ninth grade of state-operated middle schools in Sao Paulo, Brazil, in 2011. I combine this

survey with administrative data to recover information on students’ socioeconomic back-

ground, performance, and school path – each school, grade, and class in which students

were enrolled throughout their education. Information on students’ school paths allows me

to verify whether they finished high school or not. I build two different measures for high

school completion. The first – "HS completion" – is a binary variable indicating whether

students graduated from high school at any time in the future. The second – "HS completion

without retention" – is a binary variable indicating whether students graduated from high

school without being retained in any grade during that cycle.

In what follows, I first provide some background information about the Brazilian educa-

tional system and relevant details about the provision of public education in the State of Sao

Paulo. Then, I describe the main characteristics of the survey and present some descriptive

statistics.
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2.1 Institutional background

Basic education in Brazil is divided into preschool (attended by students up to the age of six),

primary school (attended by six- to 14-year-olds), and secondary or high school (attended

by 15- to 17-year-olds). Primary school is the only mandatory level of education in Brazil.

It is subdivided into two levels: elementary school – grades one to five – and middle school –

grades six to nine. The main subjects taught in primary school are the Portuguese language,

mathematics, social sciences, and sciences. Students are assigned to classes at the beginning

of each academic year. They study all subjects together with the same classmates for the

entire year.

In most Brazilian states, and particularly in the State of Sao Paulo, municipal govern-

ments are generally responsible for elementary schools, while the state government is typically

responsible for middle and high schools. Hence, the vast majority of students must change

schools in the transition from fifth to sixth grade. State-operated schools in Sao Paulo are

usually larger than municipal-operated schools. In 2011, when the relevant survey was con-

ducted, the average number of students enrolled in a state-operated school was 1,189, while

the average number of students enrolled in a municipal-operated school was 697. Class size

is also larger in state-operated schools, with an average of 39 students per class in 2011; this

figure was 27 students per class for municipal-operated schools in that same year.2

Because of the decentralized nature of the educational system in Sao Paulo, state-operated

schools receive virtually no information about students from municipal-operated schools in

their transition from fifth to sixth grade. Hence, when students enroll in a state-operated

school in the sixth grade, that school’s administration does not have information about these

students’ backgrounds, such as previous performance or behavior. Since the assignment of

students in sixth-grade classes cannot take their characteristics into consideration, they are

often assigned according to the alphabetical order of their names.3 As Section 3 shows, I
2Source: 2011 school census (http://portal.inep.gov.br/censo-escolar).
3Evidence from students in my sample corroborates this pattern. I show in section 3 that students who

share their first-name initials have a higher likelihood of being assigned to the same class in the sixth grade.
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exploit this feature in the Sao Paulo educational system to model friendship formation.

2.2 Survey on students’ profiles and friendship ties

In 2011, students in the ninth grade of selected state-operated schools in Sao Paulo answered

a comprehensive questionnaire about their personal profiles, happiness or satisfaction with

their lives, study habits, perceptions about schooling returns, and educational aspirations.4

One block of questions in the survey mapped students’ social networks. They were

asked to name their four closest friends or colleagues in their grade (which, in most schools,

comprehends more than one classroom).5 Importantly, it is possible to link the named

students to school rosters and also to locate their own answers to the questionnaire. The

survey sampled all students in the ninth grade of each selected school, and administrative

records are available for all students in state-operated schools, which makes it possible to

map the network and characteristics of all ninth-graders in each school.

Besides leveraging information on students’ networks to identify friends’ influence on

high school completion, I exploit other questions in the survey to investigate the mechanisms

behind such influence, as discussed in section 5. These questions aimed to extract essential

inputs that students consider when deciding on their schooling investments. First, one

question asked how many years the students would like to keep studying if this choice were

entirely up to them. I use this question to create a measure of aspirations toward pursuing

a college degree, called "college aspirations".6 This is a binary variable that takes a value

equal to one if students answered that they would like to keep studying until they get a

college degree and zero otherwise.
4This survey was conducted by professors from the University of Sao Paulo with funding from the Inter-

American Development Bank.
5On average, there were four classrooms in each school.
6The framing of such a question is relevant: Since students were asked to reveal their preferences about

their educational future regardless of any constraint they might face, this measure is more likely to capture
students’ genuine aspirations and not merely their expectations for the future. Of course, completely dis-
entangling aspirations from expectations is challenging, and an in-depth discussion about such a difference
is not in the scope of this work (see Fruttero et al., 2021, for a comprehensive discussion on aspirations’
measures.)
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Second, another question asked students to indicate their probability of finding jobs

if they finish high school, vis-a-vis dropping out of school before obtaining such a level of

education.7 I call this variable "perceived HS returns" since it measures students’ perception

of the labor market returns from finishing high school.

Third, students were asked about possible impediments to future educational pursuits.

One impediment, in particular, might both be impacted by students’ networks and related

to their schooling decisions: the students’ concern about being stigmatized as "nerds" if

they put too much effort into studying. I call this variable the "fear of nerd stigma." Such

an impediment might proxy for students’ willingness to comply with rather harmful social

norms in the school that are potentially detrimental to human capital accumulation.

Finally, to proxy for the effort students put into school, a question of the survey asked

them how long per day they study math outside school hours. I create a binary variable

indicating whether they study at least half an hour per day, and I call this variable "30+

min math study/day".

Table 1 presents some descriptive statistics derived from this survey and administrative

data. The table shows the mean and standard deviation for all students and separately

for those who concluded high school (at any time in the future) and those who did not.

First, the sample composed of all students reveals that only about 79% of them went on in

their studies to complete high school. Such a figure is in line with the average high school

completion in Brazil and shows a worrisome pattern of low investments in human capital in

the country (OECD, 2019). Second, comparing students who graduated from high school

with students who did not, we see that those with high school completion are, on average,

higher achievers and have better-educated parents. Their aspirations and perceptions about

college return are also higher, and their willingness to comply with harmful social norms in

the school is lower. School effort, in turn, is no different among the two groups of students.
7This question was framed in the following way. First, students were asked to think of 10 other students

very similar to them in the school. They were then asked to indicate how many of these students would find
a job depending on how far they kept studying.
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Table 1: Descriptive Statistics

All HS completion =1 HS completion=0

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
HS completion 0.79 0.41 1.00 0.00 0.00 0.00
HS completion w/out retention 0.64 0.48 0.81 0.39 0.00 0.00
Girl 0.49 0.50 0.53 0.50 0.38 0.48
White 0.33 0.47 0.35 0.48 0.30 0.46
Mother education: more than HS 0.24 0.43 0.27 0.44 0.15 0.36
Father education: more than HS 0.22 0.41 0.24 0.43 0.16 0.37
Father works 0.73 0.44 0.75 0.43 0.69 0.46
Reading proficiency (2009) -0.00 1.00 0.10 1.01 -0.38 0.88
Math proficiency (2009) -0.00 1.00 0.08 1.01 -0.31 0.89
Reading proficiency (2011) -0.00 1.00 0.12 1.00 -0.44 0.87
Math proficiency (2011) 0.00 1.00 0.10 1.01 -0.36 0.87
College aspiration 0.68 0.46 0.73 0.45 0.53 0.50
Perceived HS returns 0.50 0.27 0.51 0.27 0.47 0.26
Fear of nerd stigma 0.26 0.44 0.23 0.42 0.35 0.48
30+ min math study/day 0.40 0.49 0.40 0.49 0.39 0.49
Named friends 2.02 1.41 2.14 1.39 1.59 1.40
Observations 6075 4771 1304
Number of schools 85
Note: (i) Math and Reading proficiency are standardized with Mean=0 and SD=1; (ii)“College aspiration” is
a binary variable indicating that the students would like to have a college degree, “Perceived HS returns” is
the likelihood students’ attribute for them to find a job if they finish high school vis-a-vis drooping out from
school before it, “Fear of nerd stigma” is a binary variable indicating that the student would like to put more
effort into studying but does not due to the fear of being stigmatized as a nerd, “30+ min math study/day”
is a binary variable indicating that the student studies math outside of school hours at least 30 min per day,
“Named friends” is the number of friends in the ninth grade named by the student.
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3 Identification of peer effects

Researchers face several challenges when identifying endogenous social effects – that is, the

impact that peers’ outcomes have on one’s outcomes – through a linear-in-means model. The

first challenge is the reflection problem (Manski, 1993): a simultaneity bias that emerges

because an individual might influence the behavior of their group and, at the same time,

be influenced by the group’s behavior. For instance, in a friendship network, all friends

potentially impact each other, so it is hard to discern if one’s behavior is the cause or

consequence of the group’s behavior.

The second challenge, also discussed by Manski (1993), is correlated effects, whereby

people in the same reference group tend to behave alike not because they influence one

another but because they share similar unobserved characteristics. For instance, students

within a school are all influenced by school quality or an inspiring teacher.

Finally, a specific instance of correlated effects is that connections or friendship links do

not happen randomly, which makes reference groups themselves endogenous. Several works

have shown the central role of homophily in friendship formation. That is, the likelihood that

two people will interact with one another is higher if they share similar characteristics, like

race or SES (Alan et al., 2020; Currarini et al., 2009; Mayer and Puller, 2008; Moody, 2001;

Weinberg, 2007). An important implication of homophily and the endogenous formation of

networks is that neither the connections nor the influence of individuals inside a reference

group is equal for everyone. Even students enrolled at the same school and receiving instruc-

tion from the same teachers form different cliques. This brings extra challenges to estimating

peer effects since individuals might have unobserved characteristics correlated to both their

outcomes and their link formation.

Several works in the peer-effects literature use different strategies to tackle these identi-

fication problems. Some use natural experiments to solve correlated effects (Cipollone and

Rosolia, 2007; Sacerdote, 2001; Zimmerman, 2003), others use theoretical models of social in-

teractions (Brock and Durlauf, 2001) or network structures (Boucher et al., 2014; Bramoullé
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et al., 2009; Calvó-Armengol et al., 2009; De Giorgi et al., 2010; Liu et al., 2014) to address

both correlated effects and the reflection problem.

Fewer works have relaxed the assumption of strictly exogenous networks and fully ac-

knowledged the implications of the endogenous formation of links. Flourishing literature,

however, has combined estimations of peer effects on networks and models of network forma-

tion – leveraging contributions such as the model proposed by Graham (2017) – to address

endogenous link formation on the estimation of peer effects.8 A stream of this literature

adopts a control function approach that models link formation and controls for it in the

estimation of peer effects. (Goldsmith-Pinkham and Imbens, 2013; Griffith, 2016; Hsieh and

Lee, 2016; Johnsson and Moon, 2021; Qu and Lee, 2015)

My paper relates more closely to another stream of this literature that models link for-

mation exploiting individuals’ pre-determined characteristics and uses the predicted links

from such a model to estimate peer effects. Fletcher et al. (2020), for instance, estimate a

non-parametric model of within-grade and school friendship links based on similarities in the

characteristics of students’ mothers and use this model to predict the number of a student’s

friends with a four-year college-educated mother. They then estimate the impact of friends’

maternal education on students’ academic performance. Santavirta and Sarzosa (2019) em-

ploy a similar estimation but use individuals’ similarities in characteristics at the time of

birth to model link formation. Other contributions outside the literature on the economics of

education have also implemented similar strategies. König et al. (2018), for instance, model

link formation based on past network structures as exclusion restrictions that affect current

link formation but do not enter the network effects outcome equation. The authors then use

the predicted links coming from this model to employ an instrumental variables strategy to

estimate technology spillovers in firms’ networks.

In this paper, I first model friendship formation based on students’ unobserved social

ability – or degree heterogeneity – and their exogenous chances of interacting due to as-
8See Bramoullé et al. (2020) for a comprehensive survey about this topic.
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good-as-random assignments to classes when they enroll in middle school. Next, I perform

estimations similar to the ones implemented by Bramoullé et al. (2009) and De Giorgi et al.

(2010) in which friends’ outcomes are instrumented by friends’ of friends characteristics. The

main difference is that, when building the instruments, I replace the endogenous sociometric

matrix with the predicted one from the link formation model.

3.1 Model of friends’ influence

Let a student’s high school completion be affected by the average high school completion of

their friends, their characteristics, such as previous performance, gender, race, and family

background, and the average characteristics of their friends. More formally, suppose there

is a set of students i, i = (1...N), that belongs to network l, l = (1, ...L)9. Each student

may have a group of friends Fi of size ni or may be isolated, where Fi = ∅. Assume that

each student i is not included in their own group of friends, such that i /∈ Fi.10 The model

is given by:11

yli = β

∑
j∈Fi

ylj

ni

+ γxli + η

∑
j∈Fi

xlj

ni

+ µl + υli

E(υli|Xl, µl) = 0

(1)

where yli is the high school completion status of individual i in network l , which depends

on the average high school completion of the friends directly connected to them12 – the
9In this study, each network is formed by all students in 9th grade of each school.

10The exclusion of individuals from their own reference group might lead to yet another source of bias,
namely the exclusion bias, that causes an underestimation of peer effects (Caeyers and Fafchamps, 2016;
Guryan et al., 2009). The exclusion of an individual i from the pool of i’s peers creates a negative mechanical
relationship between i’s characteristics and that of their peers, especially in small samples. The identification
strategy adopted in this work – that follows the works of Bramoullé et al. (2009) and De Giorgi et al. (2010)
– also addresses this source of bias. For more details, see the work of Caeyers and Fafchamps (2016).

11This model reassembles the one described in Bramoullé et al. (2009) and is a special case of the model
described in Manski (1993), in which an individual reference group is the friends linked to them.

12Boucher and Bramoullé (2021) show that linear models of peer effects, traditionally used to study
continuous outcomes, can also be used for binary outcomes. In particular, they show that the identification
results of Bramoullé et al. (2009) apply when outcomes are binary.
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endogenous social effects in Manski’s notation (see Manski (1993)) –, on xli, their own

characteristics13, on the average characteristics of their friends – the exogenous social effects

in Manski’s notation – and on network unobserved fixed effects, µl. The only restriction

imposed to parameters in this model is that |β| < 1, so that its reduced form is identifiable.

Let G be the adjacency matrix, where element gi,j = 1/ni if individual i sends a friendship

tie to individual j, and gi,j = 0 otherwise. Assume that gi,i = 0 so that each individual is

not part of their own reference group. The above model can then be translated to:

yl = βGyl + γXl + ηGXl + µl + υl

E(υl|Xl, µl) = 0

(2)

It is easy to see that the reflection problem emerges because the outcome variable y

is present on both sides of the equation. To be more explicit, if one assumes that G is

orthogonal to υl (I will relax this assumption next), it is possible to causally estimate the

reduced form of equation 214:

yl = (I − βG)−1(γI + ηG)Xl + (I − βG)−1µl + (I − βG)−1υ (3)

However, such estimation will yield only unbiased estimates of (I − βG)−1η, which will

not disentangle the endogenous social effects (β) from the exogenous social effects (η).

Correlated effects would emerge if the modeler did not observe µl, since Xl is only ex-

ogenous conditional on µl. School quality, for instance, is probably correlated with students’

schooling decisions. Hence, students within the same school are more likely to have similar

levels of high school completion, which could bias estimations upwards. This problem is

addressed by simply controlling the estimations by network fixed effects – in this case, the

same as school fixed effects (as discussed in section 3.4, the most stringent specifications of
13For the sake of notation clarity, there is only one exogenous characteristic included in equation 1 In the

next equation, the model is generalized to more characteristics.
14Given the restriction on β, I − βG is invertible.
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the model also control for classroom fixed effects).

Nonetheless, this does not solve the endogeneity of link formation. That is, individuals

do not befriend one another at random, and homophily plays a significant role in friendship

formation, which yields G 6⊥ υl. Once again, such correlation would most likely bias es-

timates upward since more similar students have a greater probability of becoming friends

and, at the same time, are more likely to have similar schooling paths.

I will address the reflection problem and the endogenous formation of friendship with the

use of a three-stage estimation. The first stage models link formation based on students’

unobserved degree heterogeneity and their exogenous chances of interacting. The second

and third stages use the predicted friendship connections delivered by the first stage and use

predicted friends of friends’ characteristics as instrumental variables for friends’ outcomes

(resembling Bramoullé et al. (2009)). The remainder of this section describes this approach

and explains how it overcomes the issues mentioned above. For the sake of clarity in exposi-

tion, the last two stages of the implemented strategy, which address the reflection problem,

are described first. The first stage is then described, along with an explanation of how it

overcomes the endogenous formation of networks.

3.2 The reflection problem

Through a series expansion of equation 3 and assuming βγ + η 6= 0, Bramoullé et al. (2009)

show that if I, G, G2, and G3 are linear independent, it is possible to use (G2Xl, G3Xl,

...) as excluded instruments for Gy and, as so, to identify all the parameters of model 2.15

The authors prove that if the diameter of the network is greater than or equal to 3, then the
15If correlated effects were not an issue and µl could be excluded from the model, this condition would be

less restrictive. As a matter of fact, one would need only I, G, G2 to be linear independent in order for the
model to be identified.
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linear independence between I, G, G2, and G3 is guaranteed and the model is identified.1617

Therefore, to identify the parameters ϕ =(β, η, γ), it is possible to follow a 2SLS es-

timation, where the matrix of explanatory variables X̃ =[Gyl Xl GXl] is instrumented

in the second stage by S = [Xl GXl G
2Xl ], such that the final estimates are given by

ϕ̂2SLS = (X̃ ′PX̃)−1 ˜X ′Pyl, where P = S(S′S)−1S.

In other words, unless the network is fully connected, there will always be an individual A

in the network whose characteristics will directly affect the outcome of another individual B

but will affect the outcome of a third individual C only indirectly, through the friendship tie

between B and C. Therefore, A’s characteristics are valid instruments for B’s outcomes (see

section 3.4 for a discussion on possible limitations of such strategy in the present setting).

3.3 Endogenous link formation

The 2SLS strategy mentioned above would ensure unbiased estimates of the endogenous

and exogenous social effects if friendship links were formed at random – that is, if G ⊥ υl.

However, as stated before, social networks are not formed at random, and homophily plays

a role in clique formation. I deal with such an issue by including a stage before the 2SLS,

in which I use predicted networks based on exogenous interaction opportunities to build the

IVs that identify the social effects.

My model of link formation leverages the fact that inter-classroom and within-classroom

assignments are driven at least in part by students’ first-name alphabetical order. First,

as described in section 2, the assignment of students to classrooms when they first enroll

in state-operated schools is not based on students’ previous performance or behavior, since

the school administrators do not have such information. Therefore, students are usually
16As in Bramoullé et al. (2009)[pg 47], "define the distance between two students i and j in the network

as the number of friendship links connecting i and j in the shortest chain of students i1...il such that i1 is a
friend of i, i2 is a friend of i1, ...and j is a friend of il.(...) Define the diameter of the network as the maximal
friendship distance between any two students in the network (see Wasserman and Faust (1994))."

17The counterpart for the diameter size in a model in which correlated effects are absent is the presence
of intransitive triads – that is, when we have a set of three individual i, j, and k such that i is connected to
j and j is connected to k but i is not connected to k - in at least some networks.

15



assigned in alphabetical order. Indeed, as presented in Table A.2, sharing the first-name

initial is the only significant predictor of the likelihood that two students were assigned to

the same classroom in sixth grade. Other similarities, such as gender, race, and parental

education, are not good predictors of such assignments.18 Second, within-class allocation–

such as the choice of students’ seats – is usually also done in alphabetical order. Hence, if

two students share their first name initials, a variable that is arguably exogenous, they are

more likely to meet and interact in the school, which increases their chances of becoming

friends.

I formalize this idea by estimating a dyadic regression based on Graham (2017), which

models network formation considering individuals’ unobserved degree heterogeneity – that

is, the fact that individuals have different, not observed, social abilities – and homophily –

that is, the fact that individuals are more likely to send a friendship tie to someone similar

to them. I adapt this model and consider that the friendship connection Di,j between two

agents i and j, depends on their unobserved degree heterogeneity and on whether they share

their first name initials. Clearly, the mechanism behind friendship formation, in this case,

is not homophily but the exogenous increase in students’ likelihood to meet and interact in

the school – one might think of it as a decrease in the search cost for a friend. In Appendix

A.1, I present estimations employing a model closer to the one proposed by Graham (2017),

where homophily in pre-determined characteristics is the driver of friendship formation.

If we consider in the dyadic regression wij as a binary variable that takes value equal to

one if i and j have the same first name initials, and zero otherwise, then agent i will send a

friendship tie to agent j if the total surplus of doing so is positive:

Di,j = 1(ϕwij + θi + θj + Uij ≥ 0) (4)
18Table A.3 presents balance tests where students’ characteristics are regressed against the leave-out-

mean characteristics of their peers in 6th grade. I implement Guryan et al. (2009)’s correction to address
the negative mechanical correlation created when performing such an exercise. The only relevant positive
association is that girls seem more likely to study with other girls. However, as I control for students’ gender
in my main exercises, this should not be a concern.
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where 1(.) is an indicator function, θi(j) is agent i(j)’s fixed effect – to control for agents’

unobserved degree heterogeneity–, and Uij is an idiosyncratic component. Hence, if we

assume that Uij is a standard logistic random variable that is independently and identically

distributed across dyads, the conditional likelihood of observing network D = d is

Pr(D = d|w, θ) =
∏
i 6=j

Pr(Dij = d|wij, θi, θj)

with

Pr(Dij=d|w, θ) =

[
1

1 + exp(ϕwij + θi + θj)

]1−d [
exp(ϕwij + θi + θj)

1 + exp(ϕwij + θi + θj

]d
for all i 6= j.

Such a probability is modeled using the following conditional logistic regression function:

Pr(Dij=d|Z, θ) =
exp(ϕwij + θi + θj)

1 + exp(ϕwij + θi + θj)
(5)

Table 2 presents the results of such estimation. Column (1) presents the raw estimation,

and column (2) presents the odds ratio. Analyzing the table, we can see that students’

exogenous chances of interacting in the school due to allocations according to alphabetical

order increase their likelihood of becoming friends.
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Table 2: Probability of Forming a Friendship Link

(1) (2)

Raw estimation Odds-ratio

1[xi = xj]

First name initial 0.407*** 1.503***

(0.053) (0.080)

Constant -3.970*** 0.019***

(0.035) (0.001)

N (potential links) 524724 524724

Note: (i) This table shows the results of a conditional logistic

regression model that predicts the likelihood that a student i will

send a friendship tie to another student j in the ninth grade of the

same school; the estimation controls for i’s and j’s fixed effects; (ii)

Standard errors clustered at the school level shown in parenthesis;

(iii) * p < 0.10, ** p < 0.05, *** p < 0.001.

Using this model’s predicted links, I replace the original adjacency matrix with the pre-

dicted adjacency matrix when building the instruments used to identify model 2. Therefore,

in the final estimation of the parameters ϕ =(β, η, γ), the matrix of explanatory vari-

ables X̃ =[Gyl Xl GXl] is instrumented in the second stage by Ŝ = [Xl GXl Ĝ(W )2Xl

], where Ĝ(W ) is the predicted adjacency matrix from equation 8, D̂(W ), row normal-

ized so that each row sums to one. The final estimates are, therefore, given by ϕ̂3SLS =

(X̃ ′P̂ X̃)−1X̃ ′P̂ yl, where P̂ = Ŝ(Ŝ′Ŝ)−1Ŝ.

Importantly, I only use the predicted links from my friendship formation model as in-

struments. As I am interested in the impacts of students’ true (and not predicted) friends,

the predicted friends of friends’ characteristics instrument the true friends’ outcomes, not

the predicted ones.
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3.4 Potential threats to identification and inference

This section discusses the validity of identifying assumptions in the implemented method-

ology and threats that might emerge from mapping students’ networks. It also describes a

procedure to adjust the standard errors of the model to deal with the fact that the network

structure is predicted in the construction of the models’ instrument variables.

Possible violation of the exclusion restriction

The exclusion restriction in the identification of model 2 is that the predicted friends

of friends who are not the student’s friends do not directly influence the student. In that

sense, another potential threat to identification is that students’ schooling decisions might

be directly affected not only by their friends but also by other colleagues. A high-achieving

colleague might be a role model, which could increase students’ desire to invest more in

their schooling, or a competitor, which could hinder such investments.19 If this colleague

is predicted to be a friend’s friend, the exclusion restriction of the instruments might be

threatened. Controlling for classroom fixed effects alleviates such a problem. Even though

it does not address possible heterogeneous impacts that a specific colleague can have on

a particular student, including classroom fixed effects in the model ensures that students’

ranking and competitive dynamics within the classroom are held constant. Therefore, I also

include classroom fixed effects in my most stringent estimations to check robustness.

Mapping of students’ networks

An important assumption of Bramoullé et al. (2009) is that networks are fully mapped.

That is, we should be able to identify all connections made by all individuals within a

network. This assumption is necessary to guarantee that intransitive triads in the network

are indeed intransitive. In order words, if A is connected to B, and B is connected to C, but
19Several contributions show that role models are crucial in determining individuals’ aspirations (Beaman

et al., 2012; Bernard et al., 2014; Macours and Vakis, 2014), while other papers in the education literature
illustrate how competition or social image concerns might affect students’ outcomes and behavior (Azmat
and Iriberri, 2010; Bursztyn et al., 2019; Bursztyn and Jensen, 2015; Jonsson and Mood, 2008).
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C is not connected to A, the absence of connection between A and C must not be due to

missing or censored data. Such an assumption is also relevant for the model of friendship

formation proposed by Graham (2017); all connections in a network must be identifiable to

be fully modeled.

In that sense, the data used in this work may suffer from a ceiling effect since students

could name only four of their friends. If a student had a fifth or sixth friend in that grade,

these connections do not show up. Figure A.1 presents the out-degree distribution – that is,

the distribution of the number of friends that each student named. While we can see that

about 80% of students named at most three friends and hence were not censored in any way,

the figure also shows that about 20 percent of students might be suffering from this ceiling

effect since they named all four friends, and it is not possible to know if there were more

friends they would like to name.20 Although this proportion is considerable, the work of

Griffith (2019) – who uses data from Add Health and other smaller survey to investigate the

direction of the bias when censoring network data – shows that, if anything, censoring the

number of friends yields a downward bias in the results. Still, in section 4.1, some robustness

checks are offered to address potential issues with censored networks.

Specifications of the model of friendship formation

A final relevant discussion is in place. The main underlying event behind the predictive

power of name similarities in friendship formation is students’ alphabetical assignment in

classes in the sixth grade. A concern here is that something special happens at the beginning

of the middle school cycle that influences schooling decisions later on. For instance, early

experiences in the new school, such as being assigned to a particularly motivating teacher or

a particularly disruptive group of peers, could have long-term effects on students’ outcomes.

Another concern with using similarities in first-name initials is that such initials could be

correlated with students’ socioeconomic status. While there is evidence that first names are
20Figure A.1 also shows that about 20 percent of students did not named any friend. This proportion is in

the same order as the one in Add-Health data (Niño et al., 2016). Exercises – not shown – either controlling
for isolated students or excluding them from the estimation show very similar results.
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correlated with individuals’ socioeconomic background (e.g. Olivetti and Paserman, 2015),

this should be less of a concern when looking at first name initials. Table A.4 in the appendix

indeed shows that students’ gender, race, parental education, and father’s working status

do not vary greatly depending on students’ first name initials. In any case, it is important

to check the robustness of the model for estimations that do not consider such variable in

the friendship formation model. In appendix A.1, I check the sensitivity of estimations to

different specifications of the model of link formations. One specification considers a model

of friendship formation closer to the one proposed by Graham (2017), where the drivers of a

link between two students are their unobserved degree heterogeneity and similarities in pre-

determined characteristics, such as gender, race, and week of birth. Another specification

considers both similarities in pre-determined characteristics and names similarities to predict

friendship formation to check robustness.

Inference – standard errors adjustment

Finally, since this is a three-stage estimation where a network predicted in the first stage

is used to build the instruments in the next two stages, the estimations’ standard errors

should be adjusted. I present bootstrapped standard errors with 50 replications in the most

stringent estimations to account for this fact.21

21Since the bootstrap involves estimating the model of friendship formation and calculating Ĝ(W )2Xl

for each replication, such procedure is very computational demanding. Since, as shown, the bootstrapped
standard errors tend to be larger than the non-bootstrapped ones, performing such a procedure only on the
most stringent estimations is already a good indicator of whether the estimations remain significant.
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4 Friends’ influence on students’ high school completion

Table 3 presents results of the main estimations of model 2.22 Columns (1) and (2) present

estimations for students’ likelihood to finish high school, no matter when, and columns

(3) and (4) present estimations for students’ likelihood to finish high school without being

retained in any grade during that school cycle. Columns (1) and (3) control for schools’ fixed

effects, and columns (2) and (4) control for classroom fixed effects.

The estimations indicate that peer effects on high school completion are positive, sig-

nificant, and quite sizable. Let us consider the most stringent estimations that control for

classroom fixed effects. Column 2 shows that if a student passes from having no named

friends who finish high school to having all named friends who do, this student’s probability

of finishing high school increases by 10.4 percentage points. Column 4 shows that if we

consider the likelihood of finishing high school with no retention, such an influence is even

more prominent, with an impact of 18.5 percentage points. Importantly, the instruments are

very strong, and we do not reject the hypothesis that they are indeed exogenous. First, the

Kleibergen-Paap rk LM statistic is considerably high, lending to a rejection of the underiden-

tification test in all estimations, which indicates the IVs’ relevance. Second, such relevance

is also supported by the IVs’ join significance (F-statistic), which ranges from 165.72 to

380.46.23 Finally, we also do not reject the Hansen test of over-identification restrictions,

which indicates the exogeneity of the instruments.
22For comparative purposes, Table A.5, in the appendix, presents the results from an OLS estimation,

the 2SLS estimation proposed by Bramoullé et al. (2009) and De Giorgi et al. (2010), and the 3SLS used
throughout this work. The OLS estimation is actually smaller than the 2SLS estimation, which may be due
to measurement error or to the exclusion bias discussed earlier. Importantly, however, the results decrease
considerably when comparing the 2SLS estimation with the 3SLS one. This indicates that homophily might
indeed bias the results upwards and shows the importance of properly correcting it.

23In a recent contribution about inference using instrumental variables, Lee et al. (2021) show that the
commonly employed rule of thumb for the first-stage F statistic to be greater than 10 to guarantee strong
instruments might be problematic. The authors demonstrate that both the value of the first-stage F statistic
and the second-stage t statistic should be considered when evaluating the IVs’ strength. In Table 3 of the
paper, the authors present the critical values for t at the 5 percent significance level associated with a given
F statistic. In all estimations of Table 3, the t-statistics are greater than the critical t, given the F-statistics
associated with them. Hence, the instruments employed here are strong even under this more stringent
condition.

22



Table 3: Friends’ influence on schooling decisions

HS completion HS comp. w/out retention

(1) (2) (3) (4)
Endogenous social effect 0.113*** 0.104*** 0.181*** 0.185***

(0.034) (0.036) (0.049) (0.052)
[0.055] [0.099]

Own characteristics
Girl 0.053*** 0.055*** 0.110*** 0.110***

(0.014) (0.014) (0.017) (0.017)
White 0.006 0.006 0.002 0.004

(0.011) (0.011) (0.013) (0.014)
Mother education: more than HS 0.041*** 0.039*** 0.057*** 0.058***

(0.011) (0.011) (0.014) (0.014)
Father education: more than HS 0.010 0.010 0.014 0.017

(0.013) (0.014) (0.015) (0.015)
Reading proficiency (2009) 0.044*** 0.042*** 0.061*** 0.059***

(0.006) (0.007) (0.007) (0.007)
Math proficiency (2009) 0.023*** 0.023*** 0.038*** 0.037***

(0.006) (0.007) (0.008) (0.008)
Father works 0.031** 0.032** 0.050*** 0.048***

(0.013) (0.013) (0.013) (0.014)
Friends’ characteristics
Girl 0.003 0.012 -0.022 -0.018

(0.019) (0.019) (0.024) (0.025)
White 0.018 0.017 0.038** 0.042**

(0.017) (0.018) (0.019) (0.020)
Mother education: more than HS -0.040** -0.036* -0.045** -0.045*

(0.019) (0.021) (0.022) (0.023)
Father education: more than HS 0.028 0.033 0.031 0.042*

(0.020) (0.021) (0.023) (0.025)
Reading proficiency (2009) 0.013 0.008 0.016 0.013

(0.011) (0.011) (0.012) (0.012)
Math proficiency (2009) 0.005 0.009 -0.006 -0.003

(0.010) (0.011) (0.012) (0.013)
Father works -0.005 -0.006 -0.020 -0.028

(0.019) (0.020) (0.023) (0.024)
N 6075 6075 6075 6075
Mean Dep. Var. 0.785 0.785 0.637 0.637
R2 0.055 0.047 0.089 0.076
Kleibergen-Paap rk LM statistic 211.000 198.885 175.718 165.322
P-val underidentification test 0.000 0.000 0.000 0.000
IVs’ joint significance 379.623 380.464 165.714 165.995
Hansen J statistic 5.887 3.159 10.230 8.117
P-val overidentification test 0.436 0.789 0.115 0.230
Control for school FE X X
Control for classroom FE X X

Note: (i) This table shows estimations of models like the one described in equation 2, in which
friends’ high school completion is instrumented by the predicted friends-of-friends’ characteristics
(Ĝ2X); (ii) "Endogenous social effect" is the effect that friends’ outcomes have on students’ out-
comes. In columns (1) and (2), this is the average of friends who finished HS, while in columns
(3) and (4), this is the average of friends who finished HS without retention; (iii) Standard errors
clustered at the classroom level are shown in parenthesis, bootstrapped standard errors clustered
at the classroom level are shown in brackets; (iv) To avoid overcrowding, bootstrapped standard
errors are shown only in the endogenous social effect coefficients; (v) * p < 0.10, ** p < 0.05, ***
p < 0.001.
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Perhaps passing from having no friends with high school completion to having all friends

with high school completion is a too-extreme interpretation of the results. A better inter-

pretation might be to consider the marginal impact of an extra friend with such a level of

education. This effect will depend on the number of named friends. As shown in Table 1,

students named on average two friends. Hence, we need to divide the estimated coefficient

by two to retrieve the impact of an extra friend finishing high school for the average student.

Regarding the likelihood of finishing high school at any time, such an impact would be 5.20

p.p., translating into a 6.62 percent increase in the likelihood that a student will finish high

school. If we focus on finishing high school with no retention, such an impact would be 9.25

p.p., translating into a 14.52 percent increase in the likelihood that a student will finish high

school without being retained.

To understand the importance of such an impact, we can compare it with other inputs

entering the model of school completion shown in Table 3. For instance, the impact of an

extra friend finishing high school (without retention) is 1.3 (1.6) times larger than the impact

of having a mother with a high school diploma or more. This impact is 2.3 (2.5) times larger

than moving students in one standard deviation in their math performance.

These results are also larger than those found in other studies examining peer effects

on high school completion. Abramitzky et al. (2021), for instance, shows that a reform

that increased the returns to schooling for kibbutzim students in Israel led to spillovers on

their non-kibbutz schoolmates. After the reform, the exposition to an additional kibbutz

schoolmate increased by 1.2 percentage points the likelihood that a non-kibbutz student

would finish high school.24 Another example is Ballis (2020), which exploits spillover from

the Deferred Action for Childhood Arrivals (DACA) that significantly increased the returns

to schooling for undocumented youth in the United States. She finds that the exposition

to an additional DACA-eligible schoolmate increases by 4.5 percentage points the likelihood
24The impact of an additional kibbutz schoolmate was calculated based on Table A2, showing the sample

size, and Table 3, showing the effect of the share of post-reform kibbutz students on high school completion.
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that a US-born student will finish high school.25 The fact that the results here are larger

than the ones looking at general peer effects is expected since friends are socially closer to

students than other schoolmates and, as such, might have a stronger influence on them.

Table 4 shows that friends’ influence is stronger for low-SES students. The columns of the

table show heterogeneous results regarding gender (columns (1) and (2)), race (columns (3)

and (4)), and maternal education (columns (5) and (6)). Panel A shows results for finishing

high school, while Panel B shows results for finishing high school without retention. We can

see in Panel B that, while friends have roughly the same influence on boys and girls, they are

more influential for black students and students whose mothers did not finish high school.

Such heterogeneity might emerge because low-SES students receive less support from their

parents and possibly even from their teachers,26 which makes the influence of their friends

more critical for their outcomes in school.

Table 4: Heterogeneous impacts

HS completion HS completion w/out retention

(1) (2) (3) (4) (5) (6)
Girl Black Mother less HS Girl Black Mother less HS

Endogenous social effects 0.123∗∗∗ 0.110∗∗∗ 0.098∗∗ 0.190∗∗∗ 0.153∗∗∗ 0.090∗
(0.026) (0.022) (0.039) (0.033) (0.026) (0.048)

Endog. social effects x Var. in column -0.030 0.004 0.017 -0.061 0.066∗ 0.094∗
(0.037) (0.024) (0.043) (0.046) (0.034) (0.052)

N 6075 6075 6075 6075 6075 6075
Mean Dep. Var. 0.785 0.785 0.785 0.637 0.637 0.637
R2 0.046 0.045 0.045 0.077 0.078 0.076
Kleibergen-Paap rk LM statistic 200.232 227.273 224.771 195.508 218.519 205.056
P-val underidentification test 0.000 0.000 0.000 0.000 0.000 0.000
IVs’ joint significance 473.401 524.093 523.594 268.030 277.254 272.569
Hansen J statistic 4.462 7.055 6.046 11.284 14.696 11.705
P-val overidentification test 0.974 0.854 0.914 0.505 0.258 0.470
Control for classroom FE X X X X X X

Note: (i) This table shows derivations of the model described in equation 2, in which the endogenous social effect and an interaction
of the endogenous social effect with the variables described in the table’s columns are instrumented by Ĝ2X, as well as interactions
between these instruments and the variables described in the table’s columns; (ii) "Endogenous social effect" is the effect that
friends’ outcomes have on students’ outcomes. In columns (1) to (3), this is the impact of the average of friends who finished HS,
while in columns (4) to (6), this is the impact of the average of friends who finished HS without retention; (iii) All estimations
include the same controls as in Table 3; (iv) Standard errors clustered at the classroom level are shown in parenthesis, bootstrapped
standard errors clustered at the classroom level are shown in brackets; (v) ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.

25The impact of being exposed to one additional schoolmate was calculated based on the results from
Panel D of Table 5 and considering the average cohort size and percentage of DACA-eligible students, shown
in Table 2.

26The study by Papageorge et al. (2016) shows how teachers expect less from black students, which turns
out to be a self-fulfilling prophecy regarding their future outcomes.
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4.1 Robustness checks

Tables A.6, A.7, and A.8, in the appendix, present several exercises that address possible

concerns with the identification strategy proposed by this paper. First, I include contextual

effects in my model of friends’ influence – namely, the impacts of friends’ characteristics,

or η in equation 2. Given the endogenous formation of links and the fact that only Gyl is

instrumented by Ĝ2X, the inclusion ofGyX in the model might raise concerns of endogeneity.

Hence, columns (1) and (3) of table A.6 present estimations without the inclusion of friends’

characteristics. The results are pretty stable for such a change in the estimates.

Second, as discussed in section 3.4, a potential threat for identification is the fact that

some students in the data did not name all of their friends due to space restrictions. If this

is the case, the model of friendship formation might not be correctly estimated, and some

excluded instruments used in the estimation of peer effects might be endogenous. Even

though the contribution by Griffith (2019) has shown that, if anything, such a problem

biases the estimations upwards, I check whether possible ceiling effects in the naming of

friends could be driving the results. Columns (2) and (4) of table A.6 present an estimation

of the results in the sub-sample of students who were not censored by the limit in friendship

nomination – that is, students who named three friends or fewer. In this restricted sample,

it is possible to map all students’ connections with more precision without incurring the risk

of missing links. Again, the results are remarkably similar to the ones in Table 3.

Third, table A.7 presents some placebo exercises where I check the endogenous social

effects on some students’ pre-determined characteristics, such as parental education and

home ownership. If endogenous social effects emerged as significant from such tests, this

would indicate that my model is, at least to some extent, still capturing the homophily in

friendship formation instead of causal friends’ influence. As we can see, this is not the case:

not only none of the coefficients in table A.7 is significant, but the size of the coefficient is

also very small.

Finally, table A.8 presents estimations of friends’ influence using different models of
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friendship formation, as explained in appendix A.1 (see section 3.4 for a discussion about

the importance of such checks). Columns (1) and (3) present estimations in which the

predicted adjacency matrix Ĝ′
2
X comes from a model that considers students’ similarities

in terms of gender, race, and date of birth, and do not consider name similarities among

students to predict friendship links. Columns (2) and (4), in turn, present estimations in

which the predicted adjacency matrix Ĝ′′
2
X comes from a model that considers both name

similarities and similarities in these other pre-determined characteristics among students to

predict friendship links. In both cases, the point estimates are remarkably similar to the

ones in table 3, and the instruments are as strong as in the main estimations.

5 Mechanisms behind friends’ influence

This section discusses different channels through which friends’ high school completion influ-

ences students’ high school completion. I leverage some variables from the survey described

in section 2 that might enter as inputs in a model of human capital accumulation decisions.

The first is college aspirations, a powerful predictor of individuals’ investments, including in

education (Fruttero et al., 2021). The second is students’ perception of high school returns.

Several contributions have shown that information on schooling returns and perceptions

about the consumption value of education increase students’ educational investments (or, at

least, investments preferences) (Belfield et al., 2020; Bleemer and Zafar, 2018; Boneva and

Rauh, 2017; Jensen, 2010). The third variable is students’ fear of nerd stigma and how they

see such fear as an impediment to putting effort into school. This variable can proxy for

students’ willingness to comply with rather harmful social norms in the school, ultimately

impacting their schooling decisions (Bursztyn and Jensen, 2017). The last variables are

school effort – proxied by an indicator of outside school hours math study of at least 30

minutes –and reading and math proficiency.

I perform two exercises focusing on these variables. First, I investigate whether these
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characteristics spread through students’ networks in the same way as schooling decisions.

The second exercise is a mediation analysis where I test whether and how much each of

these characteristics captures the main results of friends’ influence on students’ schooling

decisions.

5.1 Friends’ influence on potential inputs of schooling decision

The impact of friends’ high school completion on students’ high school completion may come

through friends’ influence on different inputs that enter a model of human capital accumu-

lation. I investigate such a channel employing the same methodology as the one described

in section 3, but this time looking at how friends’ characteristics related to schooling invest-

ments influence students’ such characteristics. Table 5 presents the results of this exercise.

Column (1) shows estimations of how friends’ college aspirations influence students’ college

aspirations; column (2) shows estimations of how friends’ perceived high school returns influ-

ence students’ perceived high school returns; column (3) shows estimations of how friends’

fear of nerd stigma influences students’ such fear; column (4) shows estimations of how

friends’ math study time influences students’ study time; and, columns (5) and (6) show

estimations of how friends’ performance in reading and math, respectively, impacts students

performance on these subjects.

The results in column (1) show that friends’ college aspirations have a crucial impact

on students’ own college aspirations. For the average student with two friends, an extra

friend aspiring to a college degree increases by 8.15 percentage points the likelihood that the

student will also aspire to it. In column (2), we see that students do not seem to share infor-

mation about high school returns, at least not about labor market returns from finishing high

school.27 The results in column (3) also show absent endogenous social effects on students’

fear of being stigmatized as nerds. Column (4), in turn, shows that friends’ school effort,

proxied by their math study time, influences students’ school effort. Specifically, for the av-
27I am unfortunately unable to test whether information about non-pecuniary returns is spread through

the network.
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erage student, an extra friend studying at least half an hour per day increases the likelihood

that this student will also study such amount of time by 8.5 percentage points. Interestingly,

the results in columns (5) and (6) show absent peer effects on students’ performance.

Since aspirations and school efforts spread through students’ networks, they are good

candidates for the channels behind the influence of friends’ schooling decisions on students’

schooling decisions. Information diffusion and compliance with social norms, in turn, are

unlikely to be the mechanisms in place. I next perform a mediation analysis to test how

much friends’ influence on students’ schooling decisions can be explained by these potential

channels.

5.2 Mediation analysis

I start by estimating an extended version of model 2:

yl = βGyl + λAl + θBl + µl + υl

E(υl|Al,Bl, µl) = 0

(6)

where Al = [Xl,GXl] is the vector of controls included in model 2, and Bl = [X ′l ,GX
′
l ]

is a vector containing the new variables discussed above, namely students’ and friends’

aspirations, perceived high school returns, fear of nerd stigma, study time, and reading and

math proficiency. Remember that all these variables were measured when students were in

9th grade – the last grade of primary school in Brazil –, so they are all pre-determined with

respect to high school conclusion.

Table 6 presents the results of such estimation. Columns (1) and (3) present benchmark

estimations, that is, estimations of model 2 without the inclusion of further controls, as in

Table 3. Columns (2) and (4), in turn, present estimations considering the new controls.

Two important results stem from this table. First, the aspirations of both students and

their friends are important predictors of students’ high school graduation. This finding adds
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to previous evidence corroborating the theoretical literature discussing the important role

of aspirations in determining individuals’ investments and efforts.28 Second, after including

these other inputs, the influence that friends’ high school conclusion has on students’ high

school conclusion vanishes: The estimated coefficient approaches zero and loses its signifi-

cance. Hence, at least one of the new controls is an important mechanism behind friends’

influence on high school graduation.

I employ Gelbach (2016)’s decomposition to understand the relevance of each of these

new controls for the decrease in the coefficient of my main estimation.

Call βbase the coefficient of model 2, that omits Bl and βfull the coefficient of model 6

that includes such variables. As shown in Gelbach (2016), the total mediated effects after

the inclusion of Bl in the model is the difference between β̂base and β̂full, and is given by

δ̂ =
∑

k δ̂k, where δ̂k is the omitted variable bias for each variable k in vector Bl. Hence,

the relevance of each variable Blk for the total mediated effects is given by δ̂k = Γ̂kθ̂k, where

Γ̂k are estimates of a regression of Blk on Al, Gyl.Gelbach (2016) also shows that the same

strategy can be employed to mediate differences in IV estimates of β due to addition of

exogenous covariates, which is the case here.29

Figures 1 and 2 present the mediation analysis for friends’ influence on high school comple-

tion and high school completion without retention, respectively. Table A.9 in the appendix

also presents such analysis. The total mediated effect is the difference between β̂base and

β̂full, that is, how much of friends’ influence is reduced once the new controls are included

in the model. Each coefficient below the total mediated effect represents how much that

control contributes to such a difference. We can see that while students’ own aspirations

and performance explain some of the decrease in the endogenous social effects, most of the

decrease is due to friends’ aspirations.

Overall, the above exercises show that aspirations play a crucial role in friends’ influence
28See Dalton et al. (2016); Genicot and Ray (2017) for reference on the theoretical literature, and Fruttero

et al. (2021) for a review on empirical studies showing the associations between aspirations and future
outcomes.

29See Gelbach (2016) for more details.
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Table 6: Friends’ influence on schooling decisions – further controls

HS completion HS comp. w/out retention

(1) (2) (3) (4)
Endog. social effects 0.104∗∗∗ 0.033 0.185∗∗∗ -0.016

(0.036) (0.053) (0.052) (0.090)
College aspiration 0.056∗∗∗ 0.080∗∗∗

(0.013) (0.015)
Perceived HS returns 0.016 0.014

(0.021) (0.023)
Fear of nerd stigma -0.020 -0.007

(0.013) (0.015)
30+ min math study/day 0.012 0.009

(0.011) (0.012)
Reading proficiency (2011) 0.039∗∗∗ 0.050∗∗∗

(0.008) (0.009)
Math proficiency (2011) 0.025∗∗∗ 0.038∗∗∗

(0.007) (0.007)
College aspiration 0.057∗∗ 0.098∗∗∗

(0.023) (0.029)
Perceived HS returns -0.006 0.048

(0.034) (0.043)
Fear of nerd stigma -0.003 0.016

(0.021) (0.023)
Reading proficiency (2011) 0.006 0.018

(0.012) (0.014)
Math proficiency (2011) -0.001 -0.003

(0.011) (0.013)
30+ in study/day 0.022 0.017

(0.019) (0.022)
N 6075 6075 6075 6075
Mean Dep. Var. 0.785 0.785 0.637 0.637
R2 0.047 0.068 0.076 0.109
Kleibergen-Paap rk LM statistic 198.885 149.016 165.322 107.739
P-val underidentification test 0.000 0.000 0.000 0.000
IVs’ joint significance 380.464 166.535 165.995 56.744
Hansen J statistic 3.159 3.083 8.117 6.771
P-val overidentification test 0.789 0.798 0.230 0.343
Control for classroom FE X X X X

Note: (i) This table shows estimations of models like the one described in equation 2, in
which friends’ high school completion is instrumented by the predicted friends-of-friends’
characteristics (Ĝ2X); (ii) "Endogenous social effect" is the effect that friends’ outcomes
have on students’ outcomes. In columns (1) and (2), this is the average of friends who finished
HS, while in columns (3) and (4), this is the average of friends who finished HS without
retention; (iii) Standard errors clustered at the classroom level are shown in parenthesis;
(iv) All estimations include the same controls as in Table 3; (v) ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗
p < 0.001.
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Total mediated effect

Own coll. aspiration

Friends' coll. aspiration

Own perceived HS returns

Friends' perceived HS returns

Own fear of nerd stigma

Friends' fear of nerd stigma

Own math study time

Friends' math study time

Own performance

Friends' performance

-.05 0 .05 .1 .15

Figure 1: Mediation analysis – HS Completion
Note: The total mediated effect represents how much friends’ influence is reduced once the model includes
the new controls. The coefficients below the total mediated effect represent the contribution of each control

in explaining the variation of friends’ influence. Detailed results shown in Table A.9.
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Total mediated effect

Own coll. aspiration

Friends' coll. aspiration

Own perceived HS returns

Friends' perceived HS returns

Own fear of nerd stigma

Friends' fear of nerd stigma

Own math study time

Friends' math study time

Own performance

Friends' performance

0 .1 .2 .3

Figure 2: Mediation analysis – HS Completion w/out retention
Note: The total mediated effect represents how much friends’ influence is reduced once the model includes
the new controls. The coefficients below the total mediated effect represent the contribution of each control

in explaining the variation of friends’ influence. Detailed results shown in Table A.9.
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on students’ schooling decisions. Not only do college aspirations spread through students’

networks, but they also capture the impact that friends’ schooling decisions have on students’

schooling decisions. Importantly, however, friends’ aspirations play a crucial role in students’

schooling decisions, above and beyond influencing students’ own aspirations in the 9th grade.

There are two possible reasons for such a finding. First, the process of aspirations formation

is probably dynamic, such that students might keep influencing each other’s aspirations

during high school. Second, students with higher aspirations might create a better school

environment with higher engagement and lower disruptions, decreasing students’ dropout

likelihood. While separating these two channels is beyond the scope of this paper, uncovering

the role of aspirations behind friends’ influence on schooling decisions have important policy

implications, discussed in the next section.

6 Conclusion

This work addresses primary challenges concerning the estimation of peer effects and in-

vestigates the influence of friends’ schooling decisions on students’ schooling decisions and

the mechanisms behind such an impact. I first leverage students’ exogenous opportunities

of interaction to model friendship formation. Then, based on the predicted friendship links

coming from the model, I use predicted friends of friends’ characteristics as instrumental

variables for friends’ outcomes. This identification strategy overcomes both the endogenous

formation of friendships and the reflection problem, largely discussed in the literature on

peer effects estimation.

Results show that an extra friend finishing high school increases students’ likelihood of

finishing high school. Such an impact is concentrated among students from low-income back-

grounds, possibly the ones who need to rely more heavily on the support of their friends.

An in-depth investigation of the mechanisms behind friends’ influence delivers some relevant

patterns. First, while I do not find evidence of information diffusion or peer effects on stu-
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dents’ fear of nerd stigma or performance, friends influence students’ aspirations and their

effort in the school through their own aspirations and effort, respectively. Second, the aspi-

rations of students and their friends are crucial predictors of students’ likelihood of finishing

high school and are the main variables mediating the influence of friends’ schooling decisions

on students’ schooling decisions. Friends’ aspirations, in particular, play an essential role in

mediating such an impact.

These findings offer a relevant policy message. While providing students information

about schooling returns and raising students’ aspirations might be effective in increasing their

schooling (e.g Carlana et al., 2022; Jensen, 2010), the present paper finds that aspirations

are more likely to spill over to other students. I also show here that aspirations are the

main channel through which friends influence students’ high school completion. Hence, if a

policymaker wants the impact of a policy aiming at improving human capital accumulation

to reach other students, raising their aspirations might be a better option. However, a note

of caution is in place here: this paper is not able to address the question of whether new

information would spread through students’ networks and lead to higher peers’ influence on

schooling decisions. The fact that students in the networks analyzed here are not spreading

their perceptions about schooling returns does not mean that they would not spread it if

someone changed their priors regarding such returns. Banerjee et al. (2019) find, for instance,

that giving information to central individuals in a network might be an effective policy tool

due to high information diffusion.

Regardless of the possible effects of offering more information to students, this paper

evidences the crucial role that aspirations play in human capital accumulation decisions.

Educational policies that raise students’ aspirations will likely spill over to these students’

friends. As long as such policies do not raise students’ aspirations so much that they fall into

aspirations failures (Genicot and Ray, 2017; Goux et al., 2017; Kearney and Levine, 2014),

they might help both students and their friends to go further in school.
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A Online Appendix

A.1 Model of friendship formation based on homophily in pre-

determined characteristics

The main model of friendship formation implemented in this paper uses similarities in name

initials as students’ pre-determined characteristics influencing their link formation. As said

before, the mechanism behind friendship formation in this case is not homophily, but the

exogenous increase in students’ likelihood to meet and interact in the school. In this section,

I present other specifications of this model, closer to the contribution by Graham (2017),

who explicitly models network formation based on homophily. The main idea of this model

is that the friendship connection Di,j between two agents i and j, depends on the distance

between these two agents regarding several agent-level attributes Zi = {z1i, ...zKi}, and on

their unobserved degree heterogeneity. If we consider Wij =
∑K

k=1(|zki − zkj|) as a measure

of the total distance between i and j, then agent i will send a friendship tie to agent j if the

total surplus of doing so is positive:

Di,j = 1(W ′
ijϕ+ θi + θj + Uij ≥ 0) (7)

where 1(.) is an indicator function, θi(j) is agent i(j)’s fixed effect, and Uij is an id-

iosyncratic component. Hence, if we assume that Uij is a standard logistic random variable

that is independently and identically distributed across dyads, the conditional likelihood of

observing network D = d is

Pr(D = d|Z, θ) =
∏
i 6=j

Pr(Dij = d|Zi, Zj, θi, θj)

with
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Pr(Dij=d|Z, θ) =

[
1

1 + exp((W ′
ijϕ+ θi + θj)

]1−d [ exp((W ′
ijϕ+ θi + θj)

1 + exp(W ′
ijϕ+ θi + θj

]d

for all i 6= j.

Such a probability is modeled using the following conditional logistic regression function:

Pr(Dij=d|Z, θ) =
exp((W ′

ijϕ+ θi + θj)

1 + exp((W ′
ijϕ+ θi + θj)

(8)

where Wij is the distance in predetermined dyadic characteristics. More specifically, this

vector includes binary variables indicating if students are similar in terms of gender, race,

and week of birth.

Table A.1 presents the results of such estimation. The odd-numbered columns present

raw estimations, and the even-numbered columns present odds ratios. Columns (1) and (2)

show the results of the estimation considering the model described above, where homophily

in pre-determined characteristis is the main mechanism in place. Column (3) and (4), in

turn, present estimations considering both homophily in pre-determined characterists and

students’ random chances of interacting at the school, captured by similarities in their first

name initials. Table A.8 presents estimations of friends’ influence in schooling decisions

considering these other models of friendship formation, to check the robustness of the paper’s

main results.
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Table A.1: Friendship link formation – other specifications

(1) (2) (3) (4)

raw estimation Odds-ration raw estimation Odds-ration

Gender 1.570*** 4.806*** 1.567*** 4.794***

(0.053) (0.255) (0.053) (0.254)

Race-white 0.128*** 1.136*** 0.128*** 1.137***

(0.022) (0.025) (0.022) (0.025)

Race-black 0.116*** 1.123*** 0.115*** 1.122***

(0.023) (0.026) (0.023) (0.025)

Week of birth 0.015 1.015 0.013 1.013

(0.095) (0.096) (0.095) (0.096)

First letter of name 0.373*** 1.453***

(0.053) (0.076)

Constant -5.166*** 0.006*** -5.192*** 0.006***

(0.057) (0.000) (0.058) (0.000)

N 524724 524724 524724 524724

Note: (i) This table shows results of a conditional logistic regression model that predicts the

likelihood that a student i will send a friendship tie to another student j in the ninth grade of the

same school; the estimation controls for i’s and j’s fixed effects; (ii) Standard errors clustered at

the school level shown in parenthesis; (iii) * p < 0.10, ** p < 0.05, *** p < 0.001.
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A.2 Auxiliary tables and figures
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Figure A.1: Out degree distribution

Note: Each student was asked to name at most four of their best friends or colleagues at the 9th grade. This

graph shows the distribution of the number of named friends by each student.
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Table A.2: Students’ allocation into classrooms in 6th grade

(1) (2)

Dependent variable: same classroom in 6th grade

1[xi = xj]

First-name initial 0.881∗∗∗ 0.803∗∗∗

(0.264) (0.259)

Gender 0.156 0.165

(0.189) (0.184)

Race -0.192 -0.045

(0.159) (0.126)

Father finished HS 0.176 0.281

(0.258) (0.232)

Father has college degree -0.043 0.630

(0.587) (0.498)

Mother finished HS 0.076 -0.059

(0.297) (0.264)

Mother has college degree -0.623 -0.594

(0.517) (0.429)

N 640,826 640,826

Control for school FE X

Note: (i) This table presents estimations of conditional logistic regression models to

predict the likelihood that two students i and j in the same school in 2011 were

allocated into the same classroom in 2008 when they enrolled in the sixth grade. The

observational unit of this table is dyads of students. The dependent variable is the

likelihood that student i was enrolled in the same classroom as student j in the sixth

grade. Each independent variable is a binary variable that takes value one if student

i shares the same characteristic as student j; (ii) Standard errors clustered at the

school level shown in parenthesis; (iii) ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.
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Table A.3: Balancing Tests – students’ peers during 6th grade

(1) (2) (3) (4) (5) (6)

Girl White Mother educ: Mother educ: Father educ: Father educ:

HS college HS college

Peer outcome leave-out-mean 0.173*** 0.005 -0.019 0.073* 0.027 0.001

(0.038) (0.042) (0.041) (0.041) (0.041) (0.039)

N 4920 4920 4920 4920 4920 4920

R2 0.039 0.059 0.048 0.028 0.041 0.047

Note: (i) All estimations control for school FE; (ii) Estimations perform the Guryan et al. (2009)’s correction to account for the

negative mechanical correlation between a student’s characteristics and the characteristics of the leave-out peer group; (v) The

sample size is smaller than the one in the main regressions because some students’ changed schools from 6th to 9th grade and the

6th-grade peers of these students are not considered; (iv)* p < 0.10, ** p < 0.05, *** p < 0.001.

Table A.5: Friends’ influence on schooling decisions – comparing OLS, 2SLS, and 3SLS

HS completion HS completion w/out retention

(1) (2) (3) (4) (5) (6)

Endogenous social effects 0.036 0.244*** 0.104*** 0.052** 0.315*** 0.185***

(0.023) (0.064) (0.036) (0.026) (0.089) (0.052)

Model OLS IV:G2X IV: Ĝ2X OLS IV: G2X IV: Ĝ2X

N 6075 6075 6075 6075 6075 6075

Mean Dep. Var. 0.785 0.785 0.785 0.637 0.637 0.637

R2 0.197 0.028 0.047 0.245 0.055 0.076

Kleibergen-Paap rk LM statistic 127.019 198.885 101.661 165.322

P-val underidentification test 0.000 0.000 0.000 0.000

IVs’ joint significance 75.452 380.464 49.392 165.995

Hansen J statistic 0.825 3.159 0.725 8.117

P-val overidentification test 0.991 0.789 0.994 0.230

Control for classroom FE X X X X X X

Note: (i) The "OLS" model estimates equation 2 through an OLS; the "2SLS" model estimates equation 2 using G2X as instruments

for friends’ high school completion; the "3SLS" model estimates equation 2 using Ĝ2X as instruments for friends’ high school

completion; (ii) Standard errors clustered at the classroom level are shown in parenthesis; (iii) All estimations include the same

controls as in Table 3; (iv) * p < 0.10, ** p < 0.05, *** p < 0.001.
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Table A.4: Correlation between SES and first name initial

(1) (2) (3) (4) (5)
Girl White Mother educ: HS+ Father educ:HS+ Father works

First name initial=0 -0.481 -0.675 -0.655 -0.781* -0.196
(0.487) (0.478) (0.434) (0.419) (0.452)

First name initial=1 -0.311 -0.615 -0.614 -0.679 -0.135
(0.483) (0.474) (0.430) (0.415) (0.448)

First name initial=2 -0.316 -0.592 -0.605 -0.671 -0.119
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=3 -0.365 -0.686 -0.594 -0.622 -0.189
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=4 -0.510 -0.671 -0.631 -0.653 -0.133
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=5 -0.466 -0.624 -0.619 -0.629 -0.121
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=6 -0.543 -0.636 -0.659 -0.640 -0.113
(0.484) (0.475) (0.431) (0.416) (0.449)

First name initial=7 -0.467 -0.610 -0.603 -0.640 -0.163
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=8 -0.702 -0.605 -0.584 -0.681 -0.159
(0.485) (0.476) (0.432) (0.417) (0.450)

First name initial=9 -0.405 -0.623 -0.553 -0.602 -0.129
(0.484) (0.475) (0.431) (0.416) (0.449)

First name initial=10 -0.435 -0.696 -0.635 -0.657 -0.160
(0.483) (0.474) (0.430) (0.415) (0.448)

First name initial=11 -0.255 -0.664 -0.602 -0.635 -0.128
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=12 -0.461 -0.637 -0.582 -0.637 -0.121
(0.483) (0.474) (0.430) (0.415) (0.448)

First name initial=13 -0.436 -0.653 -0.662 -0.664 -0.160
(0.483) (0.474) (0.430) (0.415) (0.448)

First name initial=14 -0.095 -0.612 -0.588 -0.647 -0.110
(0.484) (0.475) (0.431) (0.416) (0.449)

First name initial=15 -0.819 -0.655 -0.677 -0.539 -0.100
(0.500) (0.491) (0.446) (0.430) (0.464)

First name initial=16 -0.333 -0.623 -0.612 -0.660 -0.151
(0.484) (0.475) (0.431) (0.416) (0.449)

First name initial=17 0.055 -0.979* -0.678 -0.896** -0.141
(0.527) (0.517) (0.470) (0.453) (0.489)

First name initial=18 -0.532 -0.666 -0.623 -0.661 -0.156
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=19 -0.220 -0.605 -0.679 -0.667 -0.131
(0.483) (0.474) (0.431) (0.416) (0.449)

First name initial=20 -0.101 -0.610 -0.625 -0.667 -0.128
(0.483) (0.474) (0.431) (0.415) (0.448)

First name initial=21 -0.616 -0.557 -0.845* -0.873** -0.299
(0.515) (0.506) (0.459) (0.443) (0.478)

First name initial=22 -0.529 -0.646 -0.560 -0.582 -0.248
(0.483) (0.474) (0.431) (0.416) (0.449)

First name initial=23 -0.903* -0.641 -0.664 -0.696* -0.170
(0.484) (0.475) (0.431) (0.416) (0.449)

First name initial=24 -0.359 -0.711 -0.704 -0.679 -0.207
(0.487) (0.478) (0.434) (0.419) (0.452)

First name initial=25 0.000 0.000 0.000 0.000 0.000
(.) (.) (.) (.) (.)

N 6075 6075 6075 6075 6075
R2 0.554 0.366 0.280 0.262 0.741
Note: (i) All estimations control for school FE; (ii) First name initial= 0 represents students with missing names (60 students);
(iii) * p < 0.10, ** p < 0.05, *** p < 0.001.
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Table A.6: Friends’ influence on schooling decisions – Robustness checks

HS completion HS completion w/out retention

(1) (2) (3) (4)
Endogenous social effect 0.111*** 0.103*** 0.162*** 0.175***

(0.022) (0.037) (0.026) (0.055)
Own characteristics
Girl 0.060*** 0.055*** 0.103*** 0.111***

(0.011) (0.016) (0.013) (0.018)
White 0.008 0.010 0.006 0.008

(0.012) (0.013) (0.014) (0.015)
Mother education: more than HS 0.041*** 0.036*** 0.060*** 0.067***

(0.011) (0.013) (0.014) (0.016)
Father education: more than HS 0.010 0.017 0.017 0.031*

(0.014) (0.016) (0.015) (0.017)
Reading proficiency (2009) 0.044*** 0.048*** 0.061*** 0.063***

(0.007) (0.008) (0.007) (0.009)
Math proficiency (2009) 0.023*** 0.021*** 0.037*** 0.035***

(0.006) (0.008) (0.008) (0.009)
Father works 0.031** 0.032** 0.049*** 0.050***

(0.013) (0.014) (0.014) (0.015)
Friends’ characteristics
Girl 0.017 -0.016

(0.021) (0.027)
White 0.011 0.035

(0.020) (0.022)
Mother education: more than HS -0.040* -0.052**

(0.022) (0.025)
Father education: more than HS 0.035 0.052*

(0.023) (0.027)
Reading proficiency (2009) 0.006 0.008

(0.012) (0.013)
Math proficiency (2009) 0.013 -0.005

(0.012) (0.014)
Father works -0.009 -0.024

(0.021) (0.026)
N 6075 4893 6075 4893
Mean Dep. Var. 0.785 0.768 0.637 0.613
R2 0.045 0.049 0.076 0.076
Kleibergen-Paap rk LM statistic 223.813 190.318 216.106 154.872
P-val underidentification test 0.000 0.000 0.000 0.000
IVs’ joint significance 1047.228 311.694 555.552 138.575
Hansen J statistic 2.978 2.057 7.018 6.623
P-val overidentification test 0.812 0.914 0.319 0.357
Control for classroom FE X X X X
Maximum out-degree 4 3 4 3
Note: (i) This table shows estimations of models like the one described in equation 2, in which friends’ high
school completion is instrumented by the predicted friends-of-friends’ characteristics (Ĝ2X); (ii) "Endogenous
social effect" is the effect that friends’ outcomes have on students’ outcomes. In columns (1) to (3), this is the
impact of the average of friends who finished HS, while in columns (4) to (6), this is the impact of the average of
friends who finished HS without retention; (iii) Maximum out-degree is the maximum number of friends named
by a student; (iv) * p < 0.10, ** p < 0.05, *** p < 0.001.

52



Table A.7: Placebo exercises

(1) (2) (3)

Mother educ.HS+ Father educ. HS+ Own house

Endogenous social effects -0.071 0.020 -0.014

(0.107) (0.113) (0.065)

N 6075 6075 6075

Mean Dep. Var. 0.684 0.684 0.684

R2 0.013 0.008 0.005

Kleibergen-Paap rk LM statistic 36.206 32.817 41.042

P-val underidentification test 0.000 0.000 0.000

IVs’ joint significance 39.698 33.325 79.661

Hansen J statistic 3.082 2.405 0.607

P-val overidentification test 0.544 0.662 0.962

Control for classroom FE X X X

Note: (i) This table shows estimations of models like the one described in equation 2, in which friends’ outcomes

are instrumented by the predicted friends-of-friends’ characteristics (Ĝ2X); (ii) "Endogenous social effect" is

the effect that friends’ outcomes have on students’ outcomes. In column (1) this is the impact of the average

of friends whose mother finished HS, in column (2) this is the impact of the average of friends whose father

finished HS, and in column (3) this is the impact of the average of friends who live in a owned house; (iii) All

estimations include the same controls as in Table 3 (iv) ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.001.
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Table A.8: Friends’ influence on schooling decisions – other models of friendship formation

HS completion HS completion w/out retention

(1) (2) (3) (4)

Endog. social effects 0.104*** 0.104*** 0.189*** 0.188***

(0.036) (0.036) (0.054) (0.054)

Model IV: Ĝ′
2
X IV: Ĝ′′

2
X IV: Ĝ′

2
X IV: Ĝ′′

2
X

N 6075 6075 6075 6075

Mean Dep. Var. 0.785 0.785 0.637 0.637

R2 0.047 0.047 0.076 0.076

Kleibergen-Paap rk LM statistic 195.739 195.846 160.978 161.239

P-val underidentification test 0.000 0.000 0.000 0.000

IVs’ joint significance 354.232 353.762 152.588 152.757

Hansen J statistic 3.379 3.471 5.844 5.899

P-val overidentification test 0.760 0.748 0.441 0.435

Control for classroom FE X X X X

Note: (i) This table shows estimations of models like the one described in equation 2, in which friends’

outcomes are instrumented by the predicted friends-of-friends’ characteristics (Ĝ′
2
X or Ĝ′′

2
X); (ii) "En-

dogenous social effect" is the effect that friends’ outcomes have on students’ outcomes. In columns (1)

and (2) this is the impact of the average of friends who finished HS, in columns (3) and (4) this is the

impact of the average of friends who finished HS without retention; (iii) Ĝ′
2
X is the adjacency matrix

coming from a model of link formation that includes students similarities in pre-determined character-

istics (but not name similarities) in the set of controls; (iv) Ĝ′′
2
X is the adjacency matrix coming from

a model of link formation that includes students similarities in pre-determined characteristics and name

similarities in the set of controls; (v) Standard errors clustered at classroom level shown in parenthesis;

(vi) All estimations include the same controls as in Table 3; (vii) * p < 0.10, ** p < 0.05, *** p < 0.001.
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Table A.9: Mediation analysis

(1) (2)

HS completion HS completion w/out retention

Total mediated effect 0.069* 0.157**

(0.031) (0.053)

Own coll. aspiration 0.009** 0.016**

(0.003) (0.005)

Friends’ coll. aspiration 0.037* 0.073**

(0.017) (0.027)

Own perceived HS returns 0.001 0.001

(0.001) (0.001)

Friends’ perceived HS returns 0.001 0.035

(0.019) (0.030)

Own fear of nerd stigma 0.001 0.001

(0.001) (0.001)

Friends’ fear of nerd stigma 0.001 0.007

(0.006) (0.009)

Own math study time 0.001 0.001

(0.001) (0.002)

Friends’ math study time 0.007 0.004

(0.008) (0.012)

Own performance 0.012** 0.022***

(0.004) (0.006)

Friends’ performance -0.001 -0.002

(0.002) (0.003)

Observations 6075 6075

Note: (i) The total mediated effect represents how much friends’ influence is reduced once the model includes

the new controls. The coefficients below the total mediated effect represent the contribution of each control in

explaining the variation of friends’ influence; (ii) All estimations include the same controls as in Table 3; (iii)

Standard errors clustered at the classroom level are shown in parenthesis; (iv) * p < 0.10, ** p < 0.05, ***

p < 0.001.
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