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Abstract

Identification-robust hypothesis tests are commonly based on the continu-

ous updating objective function or its score. When the number of moment

conditions grows proportionally with the sample size, the large-dimensional

weighting matrix prohibits the use of conventional asymptotic approxima-

tions and the behavior of these tests remains unknown. We show that

the structure of the weighting matrix opens up an alternative route to

asymptotic results when the distribution of the moment conditions eval-

uated at the true parameters is reflection invariant. In a heteroskedastic

linear instrumental variables model, this allows us to establish joint asymp-

totic normality of conventional identification-robust tests statistics under

many-instrument sequences. The additional variance terms that appear are

negative, indicating that the conventional approximation leads to conser-

vative tests. We revisit a study on the elasticity of substitution between

immigrant and native workers where the number of instruments is over a

quarter of the sample size. As the theory predicts, the many-instrument

robust approximation leads to substantially narrower confidence intervals.
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1 Introduction

Identification-robust inference procedures guard researchers against spurious con-

clusions that arise due to a lack of instrument relevance. These procedures are

commonly based on the continuous updating (CU) objective function of Hansen,

Heaton, and Yaron (1996), either directly through Anderson and Rubin’s (1949)

AR statistic, via its score as in Kleibergen’s (2005) K statistic, or via a combi-

nation thereof (Moreira, 2003; Kleibergen, 2005; Andrews, 2016). While conven-

tional tools yield the limiting distribution of these statistics when the number

of instruments is small, their asymptotic behavior is unknown under Bekker’s

(1994) many instrument sequences. This limits their use in recent applications

with large instrument sets such as the judge design dummies from Kling (2006),

genetic variants instrumenting socioeconomic variables (Davies, Hemani, Timp-

son, Windmeijer, and Davey Smith, 2015), Bartik instruments that interact local

industry shares with national industry growth rates (Goldsmith-Pinkham, Sorkin,

and Swift, 2020), and saturated specifications allowing nonparametric conditioning

(Angrist and Imbens, 1995; Blandhol, Bonney, Mogstad, and Torgovitsky, 2022).

The main obstacle in establishing the limiting distribution of statistics based on

the CU objective function is that under many-instrument sequences the weighting

matrix for the moment conditions is large-dimensional and does not converge to

a well-defined object. As Newey and Windmeijer (2009) write: “If the number

of instruments grows as fast as the sample size, the number of elements of the

weight matrix grows as fast as the square of the sample size. It seems difficult to

simultaneously control the estimation error for all these elements.” In this paper,

we show how this difficulty can be circumvented when the distribution of the

moment conditions evaluated at the true parameters satisfies a suitable invariance

condition. We focus throughout on the linear instrumental variables (IV) model

with heteroskedasticity, although our results on the AR statistic apply in a generic

generalized methods of moments set-up.

Our approach is motivated by the observation that if the distribution of the

moment conditions, evaluated at the true parameter vector, is orthogonally invari-

ant, the finite sample distribution of the AR statistic is available in closed form.

This sidesteps the issue that the dimension of the weighting matrix is nonneglible

compared to the sample size, but the scope of application is limited: when the

moment conditions are independent, orthogonal invariance implies that they are

normally distributed. However, under a substantially weaker invariance property,

known as orthant symmetry (Efron, 1969) or reflection invariance (Bekker and
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Lawford, 2008), the obstruction posed by the weighting matrix can be circum-

vented as well. This type of invariance is in particular suitable for heteroskedastic

models as it allows the distribution of the moment conditions to differ across ob-

servations. Under reflection invariance, the finite sample distribution of the CU

objective function is no longer tractable, but its limiting distribution, and hence,

that of the Anderson-Rubin statistic, follows from known results on the limiting

behavior of bilinear forms by Chao, Swanson, Hausman, Newey, and Woutersen

(2012). We propose a procedure that in finite samples produces narrower con-

fidence intervals relative to those based on an asymptotic approximation that

assumes the number of instruments to be fixed. Conservativeness of the usual AR

statistic is also studied by Bun, Farbmacher, and Poldermans (2020). They show

that even under the null and with a fixed number of moment conditions the test

based on the AR statistic is undersized in finite samples.

A well-known downside of the AR statistic is that it lacks power in overidenti-

fied models. This problem is particularly severe under many instrument sequences.

We therefore turn to a derivation of the asymptotic distribution of the score func-

tion. We establish a new central limit theorem for cubic forms that implies joint

asymptotic normality of the score and the appropriately centered and scaled AR

statistic under many instrument sequences. The variance of the score function

contains several terms that do not appear when the number of instruments grows

slower than proportionally with the sample size. Importantly, we show that the

sum of these terms is negative, indicating that the conventional asymptotic ap-

proximation leads to unnecessarily wide confidence intervals. Furthermore, as the

score is the derivative of the CU objective function it has a low value in any region

where the objective function is flat. This is the case for tested parameters around

the true value, but also for distant alternatives. We combine the many instrument

robust AR and score statistics in a two step test to overcome this power loss. The

first step is based on the AR statistic and ensures that alternatives far from the

true value are rejected. The second step uses the score to improve the overall

power.

To highlight the practical relevance of the many-instrument robust approxima-

tions, we consider data from Card (2009) that was recently revisited in Goldsmith-

Pinkham et al. (2020). The goal is to conduct inference on the negative inverse

elasticity of substitution between immigrant and native workers by using the share

of immigrants from a particular country of origin in various US cities as instru-

ments. Many-instrument analysis is relevant here as there are 38 instruments

(equal to the number of countries of origin) and 124 observations (equal to the
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Figure 1: Illustration: 95% CIs for the negative inverse elasticity of substitution.
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number of cities). Figure 1 shows 95% confidence intervals for the negative inverse

elasticity of substitution for high-school equivalent workers (left panel) and col-

lege equivalent workers (right panel). The intervals are based on (i) ordinary least

squares (OLS), (ii) Bartik instruments that use a particular accounting identity to

weight the set of available instruments, (iii) two-stage least squares (2SLS), (iv)

and (v) inverting the AR test assuming a fixed number of instruments (k) or many

instruments (MI), (vi) and (vii) inverting the score test assuming a fixed number of

instruments (k) or many instruments (MI). As expected the identification-robust

confidence intervals are wider relative to their non-robust counterparts. The con-

fidence intervals based on the score are disjoint, which is not uncommon for this

type of test. Most importantly for our purposes is the narrowing of the confidence

intervals when using the developed many-instrument approximations. In the left

panel, the width of the confidence interval based on inverting the AR test is re-

duced by 25%. For the score based interval, even if we only focus on the central

part of the confidence interval of the fixed-k approximation, the width is reduced

by 19%. In the right panel, the width is reduced with 28% for the AR based con-

fidence intervals, and 18% for the score based interval. Further details are given

in Section 7.

As a second application, we briefly revisit the canonical example in the many-

instrument literature that studies the return of education using the quarter-of-

birth dummy proposed by Angrist and Krueger (1991). As suggested by Miku-

sheva and Sun (2022), in this application the dimension of the instrument set can

be increased up to 1530 instruments by interacting the quarter-of-birth instrument

with various fixed effects. For the AR test we find a small reduction in the width

of the confidence intervals when moving from the assumption that the number of

instruments is fixed to the many-instrument robust approximation. For the score
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test on the other hand we observe no narrowing of the confidence interval.

We further assess the finite sample performance of the tests in a simulation

that highlights the effect of (i) the identification strength, (ii) the number of

instruments, (iii) conditional heteroskedasticity and (iv) robustness to deviations

from the invariance assumption. The simulation shows that unlike conventional

asymptotic approximations, the many instrument identification robust tests have

close to nominal size control regardless of the instrument strength and regardless of

the number of instruments. As the theory suggests, the procedures developed for a

fixed number of instruments get progressively more conservative when the number

of instruments increases relative to the sample size. Moreover, we find that the

developed procedures are robust to small deviations from the assumed reflection

invariance. This raises the important question whether the results continue to be

valid under a well-defined approximate reflection invariance condition, similar in

spirit to the ideas of Canay, Romano, and Shaikh (2017) in randomization tests,

but we have no theoretical results in this regard.

In the appendix we also compare the power properties with an alternative

approach that alters the weighting matrix to no longer depend on the regression

errors. This approach is recently proposed by Mikusheva and Sun (2022) and

Crudu, Mellace, and Sándor (2021) for the AR statistic and Matsushita and Otsu

(2022) for the score-based statistic. For the AR statistic, the difference in power

appears to depend on the sign of the true coefficient on the endogenous variable.

For the score statistic, we find that the alternative weighting matrix is generally

suboptimal in terms of power when identification is weak, while differences are

small when identification is strong.

Related literature Many instrument sequences can be traced back to Kunit-

omo (1980) and Morimune (1983). Bekker (1994) shows that in a homoskedastic

IV model with normally distributed errors and strong instruments, the two-stage

least squares estimator is inconsistent under many instruments. The limited in-

formation maximum likelihood estimator remains consistent, but the presence

of many instruments changes the asymptotic variance. Hansen, Hausman, and

Newey (2008) extend these results by removing the normality assumption. Ana-

tolyev (2019) provides a survey of the literature on many instruments.

The consistency of the limited information maximum likelihood estimator is

lost under heteroskedasticty, with the exception of balanced group structures as

in Bekker and van der Ploeg (2005). Estimators and specification tests that re-

main consistent under many instruments and heteroskedasticity were developed
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by Hausman, Newey, Woutersen, Chao, and Swanson (2012), Chao, Swanson,

Hausman, Newey, and Woutersen (2012), Chao, Hausman, Newey, Swanson, and

Woutersen (2014) and Bekker and Crudu (2015). The key idea is to explicitly re-

move the terms in the LIML objective function that cause the inconsistency under

heteroskedasticity, leading to various jackknife estimators. In this sense it is not

surprising that continuous updating is useful under heteroskedasticity given the

jackknife interpretation by Donald and Newey (2000).

When instruments are weak or even irrelevant, the parameters of interest can-

not be estimated consistently, and the focus shifts to inference procedures that

guarantee size control uniformly over the strength of the instruments. In ho-

moskedastic linear IV models, such identification-robust inference is commonly

based on (i) the Anderson-Rubin statistic (Anderson and Rubin, 1949) that is a

scaled version of the LIML objective function, (ii) statistics based on the score of

this objective function (Kleibergen, 2002), or (iii) a combination of (i) and (ii) as

in the conditional likelihood-ratio (CLR) test (Moreira, 2003). The CLR test is

particularly attractive as it provides near optimal power (Andrews, Marmer, and

Yu, 2019). Under heteroskedasticity, inference can be based on the continuous up-

dating objective function, its score (Kleibergen, 2005) or generally more powerful

conditional test statistics (Andrews, 2016).

Allowing many instruments to be potentially weak can be done through what is

called many weak instrument sequences developed by Chao and Swanson (2005)

and Stock and Yogo (2005). Such sequences are crucially different from many

instrument sequences as they restrict the number of instruments to increase at

a slower rate relative to the sample size. A combination of many instrument se-

quences with identification robust statistics was considered by Bekker and Kleiber-

gen (2003) in the context of the homoskedastic Gaussian IV model. This shows

that under many instrument sequences the score-based statistic by Kleibergen

(2002) needs to be scaled to obtain the familiar χ2 limiting distribution.

Finally, the combination of robust inference in heteroskedastic linear IV models

with many instruments that is considered in this paper has been studied recently

by Crudu, Mellace, and Sándor (2021), Mikusheva and Sun (2022), Matsushita

and Otsu (2022) and Lim, Wang, and Zhang (2022). Instead of using the contin-

uous updating objective function, these papers change the objective function by

using the weighting matrix from the homoskedastic set-up. Critical values for the

resulting AR statistic can then be derived that yield a valid test even under het-

eroskedasticity. Using the homoskedastic weighting matrix, Matsushita and Otsu

(2022) propose a score-based statistic that is also identification and many instru-
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ment robust under heteroskedasticity. Lim et al. (2022) consider a conditional

linear combination of the squared jackknife AR statistic and an orthogonalized

LM statistic with critical values from a minimum regret approach as in Andrews

(2016). A formal comparison of the results under various weighting matrices is an

important avenue for further research.

Invariance properties can open up a route to exact finite sample inference via

randomization tests (Lehmann and Romano, 2005; Bekker and Lawford, 2008;

Canay et al., 2017). In special cases, invariance can even be used to derive the

exact finite sample distribution, e.g. the t-statistic has a Student’s t-distribution

under rotational invariance (Fisher, 1925). In other cases, the distribution must

be simulated by drawing transformations from the invariance group. For a recent

example of such randomization inference in economics, see Young (2019). In our

setting, one could indeed simulate the exact finite sample distribution of the AR

statistic, be it at substantial computational costs. However, this does not appear

to be case for the score, which depends on the first stage errors and the covari-

ance between the first and second stage errors, both of which are unknown. The

invariance of the second stage errors does allow us to find the asymptotic distri-

bution of the AR and score. Invariance properties to find limiting distributions

have been used before in the symmetrization of empirical processes (van der Vaart

and Wellner, 1996). In special cases the results for the invariant process extend to

more general processes that do not satisfy the invariance property. We leave it for

further research whether this is the case for the model considered in this paper.

Structure In Section 2 we discuss the heteroskedastic IV model and the CU

objective function. Two invariance conditions and their implications for the dis-

tribution of the AR statistic are discussed in Section 3. Section 4 focuses on results

for the score. Section 5 provides the variance estimators required to implement the

tests and discusses their consistency. Section 6 contains the Monte Carlo results.

The empirical applications are given in Section 7. Section 8 concludes.

Notation For a vector v, denote byDv the diagonal matrix with v on its diago-

nal. Moreover, for a square matrix A, let DA = A⊙ I, where ⊙ is the Hadamard

product. We use Ȧ = A − DA for a matrix with all diagonal elements equal

to zero. Projection matrices are denoted as PA = A(A′A)−1A′. ι indicates a

vector of ones and ei a vector with its ith entry equal to one and the remaining

entries equal to zero. Let a(h) = Aeh denote the hth column of a matrix A. For

random variables A and B, A
(d)
= B means that A is distributionally equivalent
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to B. A
(E)
= B means that E[A] = E[B]. EA[·] is the expectation over the dis-

tribution of the random variable A. →d denotes convergence in distribution, →p

convergence in probability and →a.s. almost sure convergence. a.s.n. is short for

with probability 1 for all n sufficiently large. For a symmetric n × n matrix A,

λmin(A) = λ1(A) ≤ · · · ≤ λn(A) = λmax(A) denote its eigenvalues. C denotes a

generic finite positive constant that can differ between appearances. We tacitly

assume C > 1/C if necessary.

2 Continuous updating and the heteroskedastic

linear IV model

While our results on the AR statistic apply to any setting with reflection invariant

moment conditions, our main focus is the heteroskedastic linear IV model. The

model has p endogenous regressors with both the first and second stage exactly

linear,

yi = x
′
iβ0 + εi,

xi = Π′zi + ηi

= z̄i + ηi,

(1)

with β0 a p × 1 vector, Π a k × p matrix, and i = 1, . . . , n. We denote ε =

(ε1, . . . , εn)
′, X = (x1, . . . ,xn)

′, Z = (z1, . . . ,zn)
′, and Z̄ = (z̄1, . . . , z̄n)

′. We

also introduce the following notation that will be convenient below: for some β,

not necessarily equal to β0, εi(β) = yi − x′
iβ and ε(β) = (ε1(β), . . . , εn(β))

′.

The model (1) is accompanied by the following assumptions.

Assumption A1. (a) Conditional on Z, {εi,η′
i}ni=1 is independent, with mean

zero and E[(εi,η
′
i)
′(εi,η

′
i)|Z] = Σi = (σ2

i σ′
12i; σ12i Σ22i), (b) 0 < C−1 ≤

λmin(Σi) ≤ λmax(Σi) ≤ C < ∞ a.s., (c) For all i, E[ε4i |Z] ≤ C < ∞ a.s. and

E[∥ηi∥4|Z] ≤ C < ∞ a.s.

To conduct inference on β0, we have k moment conditions gi(β) that condi-

tionally on Z are independent across i and satisfy E[gi(β0)] = E[ziεi] = 0. We

stack the moment conditions in the n×k matrix G(β) = [g1(β), . . . , gn(β)]
′, with

rank(G(β0)) = k. Define the projector P (β) = G(β)(G(β)′G(β))−1G(β)′. The

continuous updating (CU) objective function introduced by Hansen et al. (1996)
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can be written as

Q(β) =
1

n
ι′P (β)ι =

k

n
+

1

n

∑
i ̸=j

[P (β)]ij. (2)

The minimizer of (2) is the continuous updating estimator (CUE), which Donald

and Newey (2000) show has a jackknife interpretation. Newey and Windmeijer

(2009) show that the estimator is asymptotically normal when the number of

instruments grows slowly in the sense that k3/n → 0.

The CU objective function is closely related to the Anderson-Rubin GMM

(abbreviated as AR) statistic, defined as

AR(β) = nQ(β). (3)

For a fixed number of instruments k, the AR statistic is asymptotically χ2(k)

distributed when evaluated at β0. Extending this result to the case where the

number of moment conditions grows proportionally with the sample size is chal-

lenging. Specializing to the linear IV model (1), the CU objective function is

Q(β) =
1

n
ι′Dε(β)Z(Z ′D2

ε(β)Z)−1Z ′Dε(β)ι. (4)

The weighting matrix Z ′D2
ε(β)Z is k × k dimensional and contains the second

stage regression errors ε. This combination makes the behavior of this weighting

matrix challenging to control when k is a non-negligible fraction of the sample

size.

3 Invariant moment conditions

To motivate the use of invariance conditions to obtain the distribution of test

statistics, consider the setting where the moment conditions are orthogonally in-

variant, i.e.G(β0)
(d)
= G(β0)Q for any orthogonal matrixQ. In this case, the finite

sample distribution of Q(β0) can be obtained as follows. Orthogonal invariance

implies that ι′P (β0)ι/n
(d)
= z′P (β0)z where z is uniformly distributed over the

(n− 1)-dimensional unit sphere and P (β0) can be regarded as fixed, see e.g. Ver-

shynin (2018, Chapter 5). As a result, Q(β0)
(d)
= (Z1 + Z2)

−1Z1 where Z1 ∼ χ2(k)

independently of Z2 ∼ χ2(n − k), and hence, Q(β0) ∼ Beta(k/2, (n − k)/2) or

equivalently (n − k)Q(β0)/[k(1 − Q(β0))] ∼ F(k, n − k). Orthogonal invariance

thus allows us to bypass the fact that the dimensions of the weighting matrix
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Figure 2: Empirical PDF of Q(β0) with and without orthogonal invariance.
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Note: empirical PDF obtained by simulating 100,000 draws of Q(β0) =
ι′G(G′G)−1G′ι/n with G an n× k matrix with n = 50 and k = 20. The elements
[G]ij ∼ N(0, 1) and [G]ij = εi(β0)Zij with εi(β0) ∼ N(0, 1) and independently
Zij ∼ N(0, 1). Dark solid line indicates the PDF of the Beta(k/2, (n− k)/2) distri-
bution.

G(β0)
′G(β0) are nonnegligible relative to the sample size. Figure 2 illustrates this

result by showing the empirical PDF of Q(β0) over 100,000 draws with n = 50,

k = 20 and we ensure orthogonal invariance by drawing the elements of G as

independent standard normal random variables.

Unfortunately, orthogonal invariance is restrictive. In particular, combined

with independence of the moment conditions, it implies that the moment condi-

tions are normally distributed. Even in a highly stylized set-up where we have an

IV model with second stage errors εi and the instruments Zij generated as inde-

pendent standard normals, orthogonal invariance breaks down as [G]ij = εiZij.

The blue dashed histogram in Figure 2 shows that in this case the empirical PDF

differs from the Beta PDF.

The class of allowed distributions can be substantially enlarged by the fol-

lowing invariance assumption, referred to as orthant symmetry by Efron (1969)

and reflection invariance by Bekker and Lawford (2008). In the context of the IV

model in (1), we impose the invariance on the second stage regression errors εi.

Assumption A2. Let {ri}ni=1 be a sequence of independent Rademacher random

variables and r = (r1, . . . , rn)
′. Then, conditional on Z, ε

(d)
= Drε.

This assumption implies reflection invariance in the distribution of the moment

conditions as conditional on Z, G(β0)
(d)
= DrG(β0). The results in this section

therefore apply to any application where the distribution of the moment conditions
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is reflection invariant. The assumption is substantially weaker than assumption

that the errors are homoskedastic and Gaussian under which many of the previous

results for identification robust tests with many moment conditions have been

derived (Bekker, 1994; Bekker and Kleibergen, 2003). The key observation is

that Assumption A2 allows the distribution of the moment conditions to differ

across observations. This makes it particularly suitable to use in the context of

heteroskedastic models.

Under Assumption A2 we can relate the distribution of the CU objective func-

tion with a similar function written in terms of Rademacher random variables.

Conditional on Z,

Q(β0)
(d)
= Qr(β0) =

1

n
r′P (β0)r.

While the exact finite sample distribution of Q(β0) is no longer tractable, the

asymptotic distribution under many instrument sequences is. As conditional on

Z, Q(β0) and Qr(β0) are distributionally equivalent, it suffices to analyze the

asymptotic distribution Qr(β0). Likewise, we analyze ARr(β0) = nQr(β0) to

establish the asymptotic distribution of the AR statistic defined in (3).

Conditioning now on J = {εi,Z ′
i}ni=1, the only randomness in ARr(β0) comes

from the Rademacher random variables. Under the following assumptions, we

can directly apply the CLT for bilinear forms by Chao et al. (2012) to obtain the

asymptotic distribution of the AR statistic under many instrument sequences.

Assumption A3. Conditional on J = {εi,Z ′
i}ni=1 we have with probability 1 for

all sufficiently large n: (a) rank[P (β0)] = k, (b) Pii(β0) ≤ C < 1 for i = 1, . . . , n,

(c) σ2
n > 1/C where

σ2
n =

2

k

∑
i ̸=j

Pij(β0)
2. (5)

Part (a) excludes any redundant moment conditions. Part (b) is common

in the many instruments literature, see e.g. Hausman et al. (2012), Bekker and

Crudu (2015) and Anatolyev (2019). Part (c) bounds the variance of the scaled

AR statistic away from zero and is required to apply the central limit theorem

provided in Lemma A2 by Chao et al. (2012). The following result follows directly

from that Lemma and its proof.

Theorem 1. Under Assumptions A1 to A3 and conditional on J = {εi,Z ′
i}ni=1,

when k → ∞ as n → ∞, (kσ2
n)

−1/2(ARr(β0) − k) →d N(0, 1) a.s. This implies

that (kσ2
n)

−1/2(AR(β0)− k) →d N(0, 1).

The assumption of finite moments for the errors and the eigenvalue bounds

for their variance in Assumption A1 and the technical assumption on P (β0) in
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Figure 3: Empirical PDF of the centered and scaled AR statistic.
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Note: empirical PDF of (kσ2
n)

−1/2(AR(β0)−k) as defined in Theorem 1 obtained by
simulating 100,000 draws of the n×k moment condition matrix G with n = 50 and
k = 20. The elements [G]ij = εi(β0)Zij with εi(β0) ∼ N(0, 1) and independently
Zij ∼ N(0, 1) (left panel) and εi ∼ N(0, Z2

1i) (right panel). Dark solid line indicates
the PDF of the standard normal distribution.

Assumption A3 made in Theorem 1 are comparable to the assumptions Crudu

et al. (2021) and Mikusheva and Sun (2022) need to obtain the distribution of the

jackknife AR statistic.

Theorem 1 shows that the AR statistic needs to be shifted and scaled to have a

well-defined asymptotic distribution. A similar result is obtained by Anatolyev and

Gospodinov (2011) for the AR statistic in a homoskedastic IV model with many

instruments. We note that Theorem 1 applies in a general GMM set-up where the

moment conditions are reflection invariant, as we make no use of the particulars of

the linear IV model (1), but only exploit the invariance in the moment conditions.

While Theorem 1 requires k → ∞, we can achieve uniform inference across k by

testing based on the quantiles of the distribution of Z = (2k)−1/2(Z1 − k) where

Z1 ∼ χ2(k). When k is fixed, σ2
n →p 2, and hence, we compare AR(β0) against the

quantiles of a χ2(k) distribution. When k increases, the quantiles of Z approach

that of the standard normal distribution and Theorem 1 applies.

To illustrate Theorem 1, we revisit the setting from Figure 2 with n = 50

observations, k = 20 instruments and [G]ij = εiZij with εi and Zij independent

standard normal random variables. The left panel of Figure 3 shows that the

asymptotic distribution derived in Theorem 1 provides an accurate finite sample

realization. In the right panel, we introduce conditional heteroskedasticity through

εi ∼ N(0, Z2
i1). We hardly observe any effect on the finite sample distribution.
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4 Inference based on the score

Since the AR test is known not to be efficient in overidentified models, we now

consider the application of Assumption A2 in the linear IV model to analyze a test

statistic based on the score of the CU objective function given in (4). To obtain

the limiting distribution of the first order conditions of the CU objective function,

we make the following assumption on the IV model in (1).

Assumption A4. Consider ηi and εi as in (1). Then, ηi = εiai + ui, where

ai = σ21i/σ
2
i , and, conditional on Z, {ui, εi} are mutually independent.

This assumption parameterizes the relation between the first and second stage

errors and also appears in Bekker and Kleibergen (2003). It is for example satisfied

if (εi,η
′
i) is multivariate normal. We use Assumption A4 to write

xi = x̄i + εiai, x̄i = z̄i + ui. (6)

The fact that x̄i does not depend on εi is useful when applying Assumption A2.

The flexibility of the model can be increased by including higher-order polynomials

of the errors εi in Assumption A4 at the expense of more elaborate notation.

The assumption on the eigenvalues of the second moment matrix of (εi,η
′
i) in

Assumption A1 implies that the eigenvalues of ΣU
i = E[uiu

′
i|Z] are bounded from

above and below by positive constants and that E[∥ui∥4|Z] ≤ C < ∞ a.s.

Denote V (β) = Z(Z ′Dε(β)2Z)−1Z ′. To simplify the notation, we write V =

V (β0) and likewise P = P (β0). The score of the CU objective function is

S(i)(β) =
∂Q(β)

∂βi

= − 1

n
x′
(i)(I −DP (β)ι)V (β)ε(β).

Under Assumption A2, and using the decomposition of ηi in Assumption A4 we

find that, conditional on Z, S(i)(β0)
(d)
= S(i),r(β0), where with x̄(i) as in (6),

S(i),r(β0) = − 1

n
x̄′
(i)V Dεr +

1

n
r′PDrDx̄(i)

V Dεr

− 1

n
r′Da(i)Pr +

1

n
r′PDa(i)Pr.

(7)

The score consists of one linear term, two quadratic terms and one cubic term.

Our strategy is to derive the asymptotic distribution of S(i),r(β0) to obtain the

distribution of S(i)(β0). As for the AR statistic, we derive the limiting distribution

conditional on J = {εi,Z ′
i}ni=1. For the score, this implies that we do need to take

into account the randomness that enters via ui.
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4.1 Conditional variance of the score

We start by finding the conditional variance of (7) that is decomposed in two

parts. First, the conditional expectation of the estimator for the variance of the

score as in Kleibergen (2005) after applying Assumption A2,

ΩL
ij(β0) =

1

n
E[(x̄(i)+Da(i)Drε)

′(I−DrDPr)V (I−DrDPr)(x̄(j)+Da(j)Drε)|J ].

Second, we find correction terms that are relevant under many-instrument se-

quences. The following matrix appears under nonzero identification strength. De-

fine Sij = Pii + Pjj. Then for i ̸= j,

[V ⊙W ]ij = Vij

[
(PiiPjj + P 2

ij)(3− 4Sij)− 2Sij + 2S2
ij

]
,

[V ⊙W ]ii = −2ViiPii(1− 2Pii)− 2
n∑

k=1

V 2
ikε

2
kP

2
ik.

(8)

Using this notation, we have the following theorem.

Theorem 2. For J = {εi,Z ′
i}ni=1 and under Assumption A2, E[S(i),r(β0)|J ] = 0.

The (i, j)-th element of the conditional variance matrix is

Ωij(β0) = E
[
n · S(i),r(β0)S(j),r(β0)

∣∣J ] = ΩL
ij(β0) + ΩH

ij (β0), (9)

where ΩL
ij(β0) = ΩL,z

ij (β0) + ΩL,a
ij (β0) + ΩL,u

ij (β0) with

ΩL,z
ij (β0) =

1

n
z̄′(i)[(I −DP )V (I −DP ) +DPDV (I − 2DP ) + V ⊙ P ⊙ P ]z̄(j),

ΩL,a
ij (β0) =

1

n
a′
(i)(DP − P ⊙ P )a(j),

ΩL,u
ij (β0) =

1

n
tr(DΣU (i,j)DV (I −DP )),

and ΩH
ij (β0) = ΩH,z

ij (β0) + ΩH,a
ij (β0) + ΩH,u

ij (β0) with

ΩH,z
ij (β0) =

1

n
z̄′(i)(V ⊙W )z̄(j),

ΩH,a
ij (β0) = − 2

n
a′
(i)(DP − P ⊙ P )2a(j),

ΩH,u
ij (β0) = − 2

n
tr(DΣU (i,j)(V Dε ⊙ V Dε)(I − 2DP + P ⊙ P )),

with (W ⊙V ) defined in (8) and DΣU (i,j) an n× n diagonal matrix with the k-th

diagonal element equal to cov(uki, ukj|J ).
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Proof. See Appendix A.2.

Theorem 2 does not involve any asymptotic approximation, but gives the ex-

act conditional variance of the score under Assumption A2. The components

ΩL
ij(β0) and ΩH

ij (β0) are split into contributions due to the instruments, due to

heteroskedasticity in the relation between the first and second stage errors, and

finally due to the second stage errors themselves. The terms involving a(i) and

a(j) cancel when a(i) = a(i) · ι for all i = 1, . . . , p. This is true under homoskedas-

ticity, but holds more generally. From Assumption A4 we see that even if εi and

ui are (conditionally) heteroskedastic, we can still have a(i) = a(i) · ι. The most

important property of the correction ΩH(β0) is given by the following result.

Corollary 1. Let (i) mini=1,...,n λmin(Σ
U
i ) ≥ C > 0, (ii) max

i=1,...,n
Pii ≤ 0.9 and (iii)

n−1
∑n

i=1 ViiPii > 0. Then, ΩH(β0) from Theorem 2 is negative definite.

Proof. See Appendix A.3.

Under Assumption A4, condition (i) is implied by Assumption A1. Condition

(ii) ensures that in Theorem 2 [W ]ij ≤ 0 for i ̸= j, which in turn implies that

ΩH,z(β0) ⪯ O. Moreover, together with the assumption (iii), it ensures that

ΩH,u(β0) ≺ O. If we drop conditions (i) and (iii), the result holds with negative

definite replaced by negative semidefinite.

Corollary 1 shows that the variance correction is negative definite. This im-

plies that the use of the conventional inference procedures based on the score will

be conservative. The condition that n−1
∑n

i=1 ViiPii > 0 makes it clear that this

is more likely to occur, and asymptotically only occurs, when the number of in-

struments is a non-negligible fraction of the sample size. For instance, if {εi}ni=1 is

itself a sequence of Rademacher variables and Z has independent elements with

finite fourth moment. Bai et al. (2007) show that 1
n

∑n
i=1 ViiPii − k2

n2 →a.s. 0, and

hence asymptotically (iii) requires that k/n → λ > 0.

We revisit the numerical example from Section 3 to quantify the reduction

in the conditional variance when using the conditional variance from Theorem 2,

versus the conditional expectation of the conventional variance estimator. We

consider the ratios ηz =
[
ΩL,z

ij (β0) + ΩH,z
ij (β0)

]
/ΩL,z

ij (β0), that contains the terms

due to the signal in the instruments, as well as the analogously defined ratios ηa

that is due to heteroskedasticity, and ηu that is due to the independent (noise)

component in the second stage errors. We now specify there is p = 1 endogenous

variable, the number of instruments ranges from k = 1, . . . , n/2, and the instru-

ment slope coefficients are Π = e1. Since we study the ratio ηz, this can be scaled
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Figure 4: Reduction in the components of the conditional variance.
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Note: depicted is the ratio ηz = Ê[(ΩL,z(β0) + ΩH,z(β0))/Ω
L,z(β0)] as a function of

the number of instruments k (left panel), and similarly for ηa (middle panel) and
ηu (right panel) with the components of ΩL(β0) and ΩH(β0) defined in Theorem 2
and Ê indicates the average over the 10,000 simulation draws. The band is between
the 5th percentile and the 95th percentile.

with any nonzero constant without changing the results. We set DΣU
(1,1)

= I and

a(1),i = |Zi1|. Results are based on 10,000 draws.

Figure 4 shows the average of the ratios {ηz, ηa, ηu} as well as the 5th per-

centile and the 95th percentile. We find a substantial reduction in the different

components of the conditional variance when taking into account the correction

terms contained in ΩH
ij (β0). This reduction even occurs with a single instrument,

although it generally increases when the number of instruments grows.

4.2 Asymptotic results for the AR and score statistics

To describe the joint limiting distribution of the AR statistic and the score, we

need the following assumptions.

Assumption A5. (a) 1
n

∑n
i=1 ∥z̄i∥2 ≤ C < ∞ a.s.n., (b) 1

n
max

i=1,...,n
∥z̄i∥2 →a.s. 0,

(c) 1
n
max

i=1,...,n
∥Z̄ ′V Dεei∥2 →a.s. 0, (d) 0 < C−1 ≤ λmin(

1
n
Z ′Z) ≤ λmax(

1
n
Z ′Z) ≤

C < ∞ a.s.n., 0 < C−1 ≤ λmin(
1
n
Z ′D2

εZ) ≤ λmax(
1
n
Z ′D2

εZ) ≤ C < ∞ a.s.n.

Part (a) and (b) are standard assumptions under many instruments. Part

(a) also appears in Chao et al. (2012) and Hausman et al. (2012), who instead

of (b) require n−2
∑n

i=1 ∥z̄i∥4 →a.s. 0. We see that this condition is implied by

Assumption A5 parts (a) and (b). In particular, (b) is a Lyapunov condition

needed for the central limit theorem we employ. Part (c) is another Lyapunov
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condition needed for the CLT under heteroskedasticity. Part (d) ensures that

V = Z(Z ′D2
εZ)−1Z ′ has bounded eigenvalues a.s.n.

The joint limiting distribution of the AR statistic and the score evaluated at

the true parameter β0 is given in the following theorem.

Theorem 3. Under Assumptions A1 to A5, when n → ∞ and k/n → λ ∈ (0, 1),

Σn(β0)
−1/2

(
1√
k
(AR(β0)− k)
√
n · S(β0)

)
→d N(0, Ip+1).

Here [Σn(β0)]1,1 = σ2
n from (5), [Σn(β0)]2:p+1,2:p+1 is given by Ω(β0) in Theorem 2,

and the covariance between the rescaled AR statistic and the score is

[Σn(β0)]1,j+1 = [Σn(β0)]j+1,1 =
2√
nk

tr(Ψ(j) ⊙ P ), j = 1, . . . p, (10)

with Ψ(j) =MDa(j)P and M = I − P .

Proof. See Appendix B.

Our proof uses that the eigenvalues of Σn are bounded away from zero un-

der many instrument sequences. In sharp contrast to the analysis under a fixed

number of instruments, this holds even in the unidentified case where Π = O.

This is the reason that under many instruments Theorem 3 does not need to be

analyzed separately for different identification strengths as is the case under a

fixed number of instruments. We further observe that the covariance between the

objective function and the score is only nonzero when the number of instruments

increases and when there is heteroskedasticity in the sense that a(j) varies across

observations. When a(j) is constant across observations, we have Da(j) = a(j)In

and hence Ψ(j) = O.

5 Implementation

5.1 An unbiased and consistent variance estimator

To use Theorems 1 and 3 for hypothesis testing and the construction of asymp-

totically valid confidence intervals, we require a consistent estimator for Σn(β0).

Define,

Σ̂n(β) =

(
σ̂2
n(β)

[
Σ̂n(β)

]′
2:p,1[

Σ̂n(β)
]
2:p,1

Ω̂(β)

)
, (11)
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with for the variance of the AR statistic σ̂2
n(β) = 2k−1(k − ι′D2

P ι) and to lighten

the notation DP is short for DP (β). To estimate the variance matrix of the score

vector Ω(β) we follow the decomposition in Theorem 2,

Ω̂L
ij(β) =

1

n
x′
(i)(I −DPι)V (I −DPι)x(j),

Ω̂H
ij (β) =

1

n
x′
(i)[7DP V̇ DP − 4D2

P V̇ DP − 4DP V̇ D
2
P

+ 3V̇ ⊙ P ⊙ P − 4DP (V̇ ⊙ P ⊙ P )− 4(V̇ ⊙ P ⊙ P )DP

− 2DP V̇ − 2V̇ DP + 2D2
P V̇ + 2V̇ D2

P ]x(j)

− 2

n
x′
(i)

[(
(V Dε ⊙ V Dε)(P ⊙ P )

)
⊙ I

]
x(j).

(12)

When β = β0, the final line estimates the terms ΩH,u
ij (β0) and ΩH,a

ij (β0) from

Theorem 2, as well as the terms corresponding to [V ⊙W ]ii in ΩH,z
ij (β0). The

preceeding terms in Ω̂H
ij (β) estimate the terms corresponding to [V ⊙W ]ij for

i ̸= j in ΩH,z
ij (β0). Finally, the covariance between the AR statistic and the jth

component of the score given in (10) can be estimated by

[Σ̂n(β)]1,j+1 = [Σ̂n(β)]j+1,1 =
2√
nk
x′
(j)(DV − (V ⊙ P ))DPε. (13)

The consistency of (11) for Σ(β0) is stated in the following result.

Theorem 4. Under Assumption A2, E[Σ̂n(β0)|J ] = Σn(β0). Also, under As-

sumptions A1 to A5, Σ̂n(β0) →p Σn(β0).

Proof. See Appendix A.5.

While the estimator is conditionally unbiased and consistent, it is not guaran-

teed to be positive definite. In a setting where there is only a single endogenous

regressor, a crude way of dealing with negative variances is to set the variance

equal to zero when this occurs, such that tests using this variance always reject.

This is the solution we employ here.

5.2 AR statistic: power relative to fixed-k approximations

With the estimator for the variance, we can use Theorem 3 to perform identifi-

cation robust inference. To conduct inference based on the AR statistic that is

valid regardless of the number of instruments, we obtain a confidence region for
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β0 with asymptotic coverage rate 1− α by including all values for β for which

(kσ2
n)

−1/2(AR(β)− k) ≤ (2k)−1/2(χ2(k)1−α − k), (14)

where χ2(k)1−α is the 1 − α quantile of a χ2(k) distribution. Using (14) ensures

that asymptotically we compare the AR statistic with χ2(k) critical values when

k is fixed, and that we compare the centered and scaled AR statistic with stan-

dard normal critical values when k is large. We have the following result on the

probability of rejecting based on the many-instrument approximation versus the

fixed-k approximation. Note that this finite-sample result does not contradict the

fact that both procedures are asymptotically size correct under a fixed number of

instruments.

Corollary 2. Let ϕ1(β) = 1 if (kσ2
n)

−1/2(AR(β) − k) > (2k)−1/2(χ2(k)1−α − k),

and let ϕ2(β) = 1 if AR(β) > χ2(k)1−α. Then, if α < 0.3, P(ϕ1(β) = 1) >

P(ϕ2(β) = 1).

Proof. After some rewriting we see that ϕ1(β) = 1 if

AR(β) > χ2(k)1−α − [χ2(1− α)− k] ·
[
1−

(
1− k−1

n∑
i=1

Pii(β)
2

)1/2]
.

If α < 0.3, we have that χ2(k)1−α > k for all k. The result follows.

5.3 Combining the score and AR statistic

Given that the score-based test lacks power in regions away from the true value

where the objective function is flat, we also combine the AR and score test. From

Theorems 3 and 4 we have(
ARo(β0)

So(β0)

)
= Σ̂n(β0)

−1/2

(
1√
k
(AR(β0)− k)
√
n · S(β0)

)
→d N(0, Ip+1).

Therefore, for a given size α and αAR < α the test that rejects if either ARo(β) >

(2k)−1/2(χ2(k)1−αAR
− k) or if both ARo(β) ≤ (2k)−1/2(χ2(k)1−αAR

− k) and

So(β)′So(β) > χ2(k)1−αS
, with αS = (α − αAR)/(1 − αAR), is size correct un-

der the assumptions of Theorem 3.

In finite samples Σ̂n(β0) is not guaranteed to be invertible. We implement the

combination test by rejecting the test whenever Σ̂n(β0) is singular.
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For the fixed-k linear IV model with homoskedastic normal errors it is known

that the CLR test of Moreira (2003) has excellent power properties regardless

of instrument strength (Andrews et al., 2006, 2019). Since the CLR statistic

can be written as particular combination of the fixed-k AR and score statistic,

it is desirable to also combine the many instrument AR and score into a many

instrument CLR statistic. Such an extension is non-trivial however, so we leave it

for further research.

6 Simulation results

We test the finite sample performance of the proposed tests by generating n = 800

observations from the model in (1), with p = 1 endogenous regressor. The elements

of the instrument matrix Z are independent standard normal distributed. We set

Π = (R
√
k/n)1/2e1, such that the first instrument is relevant for the endogenous

regressor. The strength of the instrument is governed by the parameter R.

To allow for violations of the invariance assumption we draw the errors εi

independently from a skew normal distribution with skewness parameter ζε. That

is, the PDF of εi is f(x) = (2/ωε)ϕ ((x− ξε)/ωε) Φ (ζε(x− ξε)/ωε) , with ϕ and Φ

the PDF and CDF of the standard normal distribution and ωε = σεi/(1 − 2δ2ε
π
)

and ξε = −ωεδε
√

2/π for δε = ζε/
√

1 + ζ2ε and π the mathematical constant. We

consider both a homoskedastic setting and a heteroskedastic setting. In the former

case we generate ηi = ρεi +
√

1− ρ2wi for ρ = 0.3 and wi ∼ N(0, 1). In the latter

case we set ηi = aiεi +
1
2
wi where ai = |Zi1| and wi again standard normal. The

results are based on 10,000 draws from this data generating process (DGP).

6.1 Size

To analyze the size properties of the proposed tests, we set β0 = 0 and a nominal

size of α = 0.05. Figure 5 shows the size of 2SLS, LIML, the fixed-k and the

many instrument robust tests, when k ∈ {10, 100} and R ranges from 0 to 50.

In the upper left panel we see that for this relatively small instrument set and

homoskedasticity 2SLS is oversized and especially so for weak instruments. LIML

and the fixed-k tests on the other hand are slightly conservative. The many

instrument robust tests are size correct. When k increases to 100, which is depicted

in the lower left panel, the size distortion of 2SLS increase, but LIML remains

relatively unaffected. The many instrument robust AR test maintains the five

percent rejection rate. The size of the other many instrument robust tests drops
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Figure 5: Size under identification robust inference.
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Note: size when testing H0 : β = 0 at α = 0.05 based on the fixed-k Anderson-
Rubin test, the fixed-k score, the tests developed here, 2SLS and LIML. k denotes
the number of instruments and R their strength. ζε is the skewness parameter for
ε. The combined test uses αAR = 0.01. The Monte Carlo is described in Section 6.

slightly, but not as much as the size of the fixed-k tests. These observations hold

uniformly over the instrument strength and largely extend to the heteroskedastic

case, with the exception that LIML becomes oversized for weak instruments and

that the many instrument robust score, and with it the combination test, becomes

slightly oversized when there is a small number of weak instruments. However, the

many instrument robust score remains size correct for large instrument sets. The

many instrument robust score’s size distortion for k = 10 and weak instruments

is due to negative variance estimates that occasionally prevail in this setting.

By default the many instrument robust score test rejects for negative variance

estimates, thus explaining the higher rejection rates. We do not observe negative

variance estimates under the null for higher values of k or stronger instruments,

and hence the test is size correct in these cases.
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Figure 6: Power under identification robust inference with weak instruments.
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Note: power when testing H0 : β = 0 when the true β = β∗ at α = 0.05 based
on the fixed-k Anderson-Rubin test, the fixed-k score test and the tests developed
here. k denotes the number of instruments, R their strength and the invariance
assumption is satisfied. The combined test uses αAR = 0.01. The Monte Carlo is
described in Section 6.

6.2 Power

We now analyze the power against H0 : β = 0 when the true β0 equals β∗ in the

interval [−1; 1] for α = 0.05. We vary the identification strength by setting R = 5

and R = 50. Throughout the invariance assumption is satisfied. Figure 6 shows

the power of the fixed-k and many instrument robust tests in different settings

when the instruments are weak. If we first focus on the homoskedastic DGP

depicted in the left panels, we observe that for small k the power of the fixed-k

tests is close to their many instrument robust counterparts. Nevertheless, even

for this small instrument set the many instrument correction improves the power.

The power differences increase when k = 100 as shown in the lower left panel.

Furthermore, using the score rather than the AR increases power.

These observations extend to the heteroskedastic case as given in the right

panels. For small k the power of the fixed-k and many instrument robust tests
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Figure 7: Power under identification robust inference with strong instruments.
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Note: see the note to Figure 6.

are close, but the power difference increases in the number of instruments, and

the score generally tests have higher power than the AR tests. A major difference

however, is the right tail of the power curve. For positive values of the true β

only the many instrument robust score has good power. Part of this power comes

from negative variance estimates for which the many instrument robust score test

always rejects. Such estimates are common for alternatives far away from the true

value of β. We illustrate this point in Appendix C.2.

For stronger instruments, as shown in Figure 7, we see similar behavior of the

tests. A notable difference is the power in in the right tail for the heteroskedastic

DGP. Although power remains lower than in the left tail, it increases towards one.

The advantage of the many instrument robust tests over the fixed-k tests remains.

In both figures the combination of the many instrument robust AR and score

test closely follows the power curve of the many instrument robust score. Only

when the power of the score drops because the tested value is far from the true

parameter, the power curves separate and we see that the combination successfully

overcomes the loss in power.
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Figure 8: Size under identification robust inference without invariance.
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Note: see the note to Figure 5.

6.3 Moment conditions without invariance

An important issue is what happens to the size of the many instrument robust tests

when the invariance assumption on the second stage regression errors is violated.

Figure 8 shows the size when the errors εi are generated from a skewed normal

distribution with ζε = 10. All panels show rejection rates that are very close to

those in Figure 5. This suggests some robustness to departures from the invariance

imposed in Assumption A2.

7 Empirical applications

7.1 Card (2009)

We illustrate the tests by estimating the negative inverse elasticity of substitution

between immigrant and native workers using the model and data by Card (2009)

and Goldsmith-Pinkham et al. (2020). Card (2009) uses the wage gap between

natives and immigrants and their respective labor supplies in 124 cities in the US to
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determine how easily workers from one of these groups can be replaced by workers

from the other group. Since this may depend on the skill group the employee

is in, Card (2009) subdivides the sample in high school and college equivalent

workers. Denote yjl the residual log wage gap between immigrant and native men

in skill group j and location l, xlj the ratio of immigrant to native hours worked in

skill group j and location l of both men and women and Xl the vector of location

specific controls including an intercept. Then we can estimate the negative inverse

elasticity of substitution, β, from

ylj = β log xlj + γ
′Xl + εlj,

where γ are other coefficients and εlj is an error term.

It is possible though, that a local labor demand shock both increases relative

earnings and the number of immigrants that settles in that location, thus increas-

ing the relative labor supply. Consequently xlj is an endogenous regressor. Card

(2009) therefore instruments labor supply with the predicted number of immi-

grants in skill group j that settles in l arguing that immigrants tend to settle in

cities with a large population of immigrants from their country of origin. Therefore

settlement patterns in an initial period together with arrival rates of immigrants

from specific country groups in subsequent periods, can be used to predict the

inflow of immigrants in each city. To be precise, let Nlk,1980 be the number of

immigrants from k = 1, . . . , 38 country (group) of origin in l in 1980, Nk,1980 be

the total number of immigrants from k in the US in 1980, Pl,2000 be the population

of l in 2000 and gkj be the number of immigrants from k in skill group j arriving

in the US from 1990 to 2000. Then xlj is instrumented by Blj =
∑38

k=1 zlk,1980gkj

where zlk,1980 = Nlk,1980/(Nk,1980 ·Pl,2000). Blj is also known as a Bartik instrument.

Goldsmith-Pinkham et al. (2020) note that instead of combining the zlk,1980 into

a single instrument via the gkj, they can also be used separately as instruments,

leaving the coefficients on the zlk,1980 unrestricted. In this case the number of

instruments amounts to 38, which is large compared to the 124 observations.

In this section we compare confidence intervals for the elasticity of substitution

obtained by ignoring the endogeneity and using ordinary least squares (OLS);

2SLS; the fixed-k AR and score statistic; and the tests developed in this paper.

We apply 2SLS twice. Once with the Bartik instrument and once with the zlk,1980

as instruments. The other instrumental variable approaches use the zlk,1980 as

instruments. To estimate the standard errors for the 2SLS estimate with Blj as

an instrument, we bootstrap over the 124 cities with 1000 replications. We prefer
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Figure 9: 95% CIs for the negative inverse elasticity of substitution.
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bootstrap standard errors over analytical standard errors since, as Goldsmith-

Pinkham et al. (2020) note, the 2SLS estimator is identical to a GMM estimator

using a weighting matrix based on the gjk. This weighting matrix is singular

however, which invalidates standard results for GMM estimation and makes that

conventional standard errors may be far off.

We repeat Figure 1 and add the many instrument robust combination test

in Figure 9. From the results for high school equivalent workers, we observe

the following. Firstly, OLS, 2SLS with the Bartik instrument and 2SLS yield

narrower confidence intervals than the identification and many instrument robust

methods. However, in this application there are many instruments compared to

the sample size. These instruments are, moreover, likely to be weak as indicated

by the disjoint confidence interval of the many instrument robust score statistic.

2SLS is oversized when there are many and/or weak instruments and thus these

confidence intervals may be unreliably small. Secondly, the confidence intervals

based on the fixed-k AR and score test are wider than their many instrument

robust counterparts. Thirdly, the upper bounds of the fixed-k score and the many

instrument robust confidence intervals are close to zero. The table in Appendix D

which reports the exact values, indicates that according to the fixed-k score and

the many instrument robust AR the negative inverse elasticity of substitution is

not significantly different from zero. The confidence intervals from the score and

the combination of the many instrument robust AR and score test on the other
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hand excludes zero. Fourthly, the confidence interval of the combined test is close

to those of the many instrument robust score, albeit slightly wider.

The estimates for college equivalent workers show that OLS, and 2SLS again

give the smallest confidence intervals. Furthermore, also for this skill group the

intervals based on the fixed-k tests are the widest, hinting again at heteroskedas-

ticity. Besides, the two AR tests yield wide intervals which includes zero, whereas

the intervals from the score tests and the combined test do not. This thus shows

the benefit of considering the score of the objective function, rather than only the

objective function itself.

7.2 Angrist and Krueger (1991)

The article by Angrist and Krueger (1991), that studies the return to education,

is a motivating study for the many and weak instrument literature. We revisit

this study using the extended instrument set of all year-of-birth, quarter-of-birth

and place-of-birth interactions as suggested by Mikusheva and Sun (2022), which

contains up to 1530 instruments. Table 1 shows the 95% confidence intervals for

the return to education for the fixed-k and many instrument tests. We note that

the confidence intervals by the many instrument AR are slightly narrower than

those by the fixed-k AR test for k = 1530. For the score and the combined test

we do not observe any difference between the fixed-k and many instrument test

however.

The widths of the confidence intervals for the many instrument robust AR

are similar to those found by Mikusheva and Sun (2022) for the jackknife AR

with crossfit variance. They find [0.008, 0.20] and [−0.047, 0.20] for 180 and 1530

instruments respectively. The confidence intervals for the many instrument score

are also comparable to what Matsushita and Otsu (2022) find for the jackknife

score: [0.067, 0.133] for k = 180 and [0.025, 0.123] for k = 1530.

8 Conclusion

We develop a new approach for identification robust inference under many instru-

ments and heteroskedasticity using reflection invariance in the moment conditions

to derive the joint limiting distributions of the AR and score statistic. We find

that the many instrument corrections to the variance of both statistics are nega-

tive, suggesting that conventional approximations lead to conservative tests and

a potential loss of power under many instruments. Monte Carlo simulations show
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Table 1: 95% confidence intervals for the return to education

k = 30 k = 180 k = 1530
Lower Upper Lower Upper Lower Upper

Fixed-k AR 0.00 0.18 0.01 0.18 -0.01 0.23
MI AR 0.00 0.18 0.01 0.18 0.00 0.23
Fixed-k score 0.05 0.12 0.07 0.13 0.04 0.15
MI score 0.05 0.12 0.07 0.13 0.04 0.15
MI combined 0.05 0.12 0.07 0.13 0.04 0.15

Note: 95% confidence intervals for the return to education. k denotes the number of
instruments. Estimates are based on people born between 1930 and 1940.

close to nominal size of the developed procedures regardless of the strength of the

instruments and the number of instruments, as well as a substantial increase in

power under many instruments. We apply our new tests to the elasticity of sub-

stitution study by Card (2009) and to the return to education study by Angrist

and Krueger (1991). The applications show that the reduction in the length of the

confidence intervals by using the many instrument approximation can be sizable.
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Appendix A Proofs

A.1 Preliminary results

In the proofs of our theorems we make use of the following results.

A.1.1 Expectations over Rademacher random variables

Theorem A.1. Consider a n× 1 vector r with independent Rademacher entries.

Let A1, . . . ,A4 denote generic n× n matrices and v an n× 1 vector. Then,

1. E[r′A1r] = tr(A1).

2. Ullah (2004):

E[r′A1rr
′A2r] = −2 tr(DA1A2) + tr(A1) tr(A2) + tr(A1A2) + tr(A′

1A2).

3. E[v′rr′A2DrA1r] = v
′A2DA1ι+ ι

′(A2⊙A′
1)v+ ι

′DA2A1v−2ι′DA2DA1v.

4. E[r′A1DrA2rr
′A3DrA4r] = tr(DA4A1DA2A3)

+ ι′DA3A4A1DA2ι− 2 tr (DA3A4A1DA2) + ι
′A2 ⊙A3 ⊙ (A′

1A
′
4)ι

+ ι′DA1A2A3DA4ι− 2 tr (DA1A2A3DA4) + ι
′A4 ⊙A1 ⊙ (A′

3A
′
2)ι

+ ι′(A1 ⊙A3)(A2 ⊙A4)ι+ tr(A′
1A

′
2 ⊙A′

3A
′
4)− 2 tr((A1 ⊙A3)(A2 ⊙A4))

+ ι′DA4A3A1DA2ι− 2 tr(DA4A3A1DA2)

+ ι′DA2A1A3DA4ι− 2 tr(DA2A1A3DA4)

− 2ι′DA1DA2A3DA4ι− 2ι′DA3DA4A1DA2ι+ 16 tr(DA3DA4A1DA2)

− 2ι′A1DA2 ⊙A4 ⊙A′
3ι− 2ι′A3DA4 ⊙A2 ⊙A′

1ι

+ ι′DA4A
′
3A1DA2ι− tr(DA4A

′
3A1DA2)− tr(DA2A

′
1A3DA4)

+ ι′((A3 ⊙A′
1)A4)⊙A2ι− 2ι′((A1 ⊙A′

3 ⊙ I)A2)⊙A4ι

+ ι′(A1 ⊙ (A3(A
′
2 ⊙A4)))ι− 2 tr((A1 ⊙ (A3(A

′
2 ⊙A4))))

− 2 tr((A3 ⊙ (A1(A
′
4 ⊙A2))))

+ ι′(A1 ⊙A′
2)A

′
4DA3ι− 2ι′(A1 ⊙A′

2 ⊙ I)A′
4DA3ι

+ ι′(A3 ⊙A′
4)A

′
2DA1ι− 2ι′(A3 ⊙A′

4 ⊙ I)A′
2DA1ι

+ ι′DA1A2A
′
4DA3ι.

5. E[r′A1DrA2A3DrA4r] = tr(DA4A1DA2A3) + ι
′DA1A2A3DA4ι

− 2 tr(DA1A2A3DA4) + ι
′(A4 ⊙A1 ⊙ (A′

3A
′
2))ι.

Suppose now that A1 and A2 are symmetric matrices with all diagonal elements

equal to zero. Then,
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6. Bao and Ullah (2010):

E[(r′A1r)
2(r′A2r)

2] = 4 tr(A2
1) tr(A

2
2) + 8 tr2(A1A2)

+ 32 tr(A1A2A1A2) + 16 tr(A1A2A2A1)− 32ι′(I ⊙A2
1)(I ⊙A2

2)ι

− 64ι′(I ⊙A1A2)(I ⊙A1A2)ι+ 32ι′(A1 ⊙A1 ⊙A2 ⊙A2)ι.

7. Ullah (2004):

E[r′A1rr
′A2rr

′A3r] = tr(A3[20(A1 ⊙A2)− 3I ⊙ (2A1A2 + 2A2A1)

+ 4A1A2 + 4A2A1 + 2 tr(A1A2)I]).

Proof. 1. E[r′A1r] = tr(A1 E[rr
′]) = tr(A1).

2. See Ullah (2004), Appendix A5.

3. Denote ∆ = rr′ − I. We split the expectation into two parts,

E[v′rr′A1DrA2r] = E[v′A1DrA2r]︸ ︷︷ ︸
(I)

+E[v′∆A1DrA2r]︸ ︷︷ ︸
(II)

.

For the first part, using independence of the Rademacher random variables,

(I) = E

[
n∑

i,j,k=1

via1,ija2,jkrjrk

]
=

n∑
i,j=1

via1,ija2,jj = v
′A1DA2ι.

For (II) we write (II) = E
[∑n

i,j,k,l=1 viδija1,jka2,klrkrl

]
. There are two cases

where the expectation is nonzero. In case (II.a) i = k, j = l, i ̸= j, and

(II.a) =
∑
i ̸=j

via1,jia2,ij = ιA1 ⊙A′
2v − ι′DA1DA2v.

In case (II.b) i = l, j = k, i ̸= j, such that

(II.b) =
∑
i ̸=j

via1,jja2,ji = ι
′DA1A2v − ι′DA1DA2v.

4. We decompose the expectation as

E[r′A1DrA2rr
′A3DrA4r]

= E[tr(A1DrA2A3DrA4)]︸ ︷︷ ︸
(I)

+E[tr(A1DrA2(rr
′ − I)A3DrA4(rr

′ − I))]︸ ︷︷ ︸
(III)

+ E[tr(A1DrA2(rr
′ − I)A3DrA4)]︸ ︷︷ ︸

(II)

+E[tr(A1DrA2A3DrA4(rr
′ − I))]︸ ︷︷ ︸

(II′)

.

(A.1)
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Starting with (I), we have that

(I) = E

[
n∑

i=1

n∑
j=1

n∑
k=1

e′iA1eje
′
jDreje

′
jA2A3eke

′
kDreke

′
kA4ei

]

=
n∑

i=1

n∑
j=1

e′iA1eje
′
jA2A3eje

′
jA4ei = tr(DA4A1DA2A3).

For (II), define δkl = [rr′−I]kl and note that δkk = 0, and E[δkl] = E[rkrl] =

0 if k ̸= l and E[δ2kl] = E[r2kr
2
l ] = 1.

(II) = E

[
n∑

i=1

e′iA1DrA2(rr
′ − I)A3DrA4ei

]

= E

[
n∑

i=1

n∑
j,m,k,l=1

e′iA1eje
′
jDreje

′
jA2emδmke

′
kA3ele

′
lDrele

′
lA4ei

]
.

There are two cases when the expectation is nonzero: (a) j = m, l = k, j ̸= l

and (b) j = k, l = m, j ̸= l. Starting with case (a),

(II.a) =
n∑

i=1

∑
j ̸=l

e′iA1eje
′
jA2eje

′
lA3ele

′
lA4ei

= ι′DA3A4A1DA2ι− tr (DA3A4A1DA2)︸ ︷︷ ︸
(II.a.2)

.

For case (b), we have

(II.b) =
n∑

i=1

∑
j ̸=l

e′iA1eje
′
jA2ele

′
jA3ele

′
lA4ei

= ι′A2 ⊙A3 ⊙ (A′
1A

′
4)ι+ (II.a.2).

By rotation invariance, the expressions for (II ′) can be obtained by changing

A2 → A4, A3 → A1, A4 → A2, A1 → A3.

The most difficult term to deal with in (A.1) is

(III) = E

[
n∑

i=1

∑
j,k,m,l,s

a1,ija2,jka3,mla4,lsrjrlδkmδsi

]
.

There are now 10 cases to consider, which we label (III.a)− (III.j). All of

them satisfy k ̸= m, s ̸= i
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a. j = l k = s m = i k ̸= i f. k = i l = s

b. k = i m = s i ̸= m g. j = s k = l m = i

c. j ̸= l j = k m = s l = i h. k = i l = m

d. m = i l = s i. j = i k = s m = l

e. j = m k = s l = i j. k = l m = s

We work out (III.a) − (III.c) explicitly. The remaining cases follow by

analogous calculations.

(III.a) =
n∑

i=1

∑
j,k ̸=i

a1,ija2,jka3,ija4,jk

=
n∑

i=1

∑
j,k ̸=i

e′i(A1 ⊙A3)eje
′
j(A2 ⊙A4)ek

= ι′(A1 ⊙A3)(A2 ⊙A4)ι− tr((A1 ⊙A3)(A2 ⊙A4))︸ ︷︷ ︸
(III.a.2)

.

(III.b) =
n∑

i=1

∑
j,m̸=i

a1,ija2,jia3,mja4,jm

= tr(A′
1A

′
2 ⊙A′

3A
′
4) + (III.a.2).

(III.c) =
n∑

i=1

∑
j ̸=i,j ̸=m,m ̸=i

a1,ija2,jja4,ima3,mi

=
n∑

i=1

∑
j ̸=i

eiDA4A3A1DA2ej − e′iDA3DA4A1DA2ej

− e′i(A1DA2)⊙A4 ⊙A′
1ej

= ι′DA4A3A1DA2ι− tr(DA4A3A1DA2)− ι′DA3DA4A1DA2ι

+ 2 tr(DA3DA4A1DA2)− ι′(A1DA2)⊙A4 ⊙A′
3ι.

There are many repeated elements in the expressions for (III.d)− (III.j).

We introduce the following notation

(c.1) = ι′DA4A3A1DA2ι, (c.2) = − tr(DA4A3A1DA2),

(c.3) = −ι′DA3DA4A1DA2ι, (c.4) = tr(DA3DA4A1DA2),

(c.5) = −ι′(A1DA2)⊙A4 ⊙A′
3ι, (d.1) = ι′DA4A

′
3A1(I ⊙A2)ι,

(d.2) = − tr(DA4A
′
3A1DA2), (e.1) = ι′((A3 ⊙A′

1)A4)⊙A2ι,

(e.3) = −ι′((A1 ⊙A′
3 ⊙ I)A2)⊙A4ι, (g.1) = ι′(A1 ⊙ (A3(A

′
2 ⊙A4)))ι,

(g.2) = − tr((A1 ⊙ (A3(A
′
2 ⊙A4)))), (h.1) = ι′(A1 ⊙A′

2)A
′
4DA3ι,

(h.5) = −ι′((A1 ⊙A′
2)⊙ I)′A4(A

′
3 ⊙ I)ι, (i.1) = ι′DA1A2A

′
4DA3ι.
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Furthermore, let any of these with a asterisk denote the same term but with

A2 → A4, A3 → A1, A4 → A2, A1 → A3. Then

(III.c) = (c.1) + (c.2) + (c.3) + (c.4) + (c.5) + (c.4),

(III.d) = (d.1) + (d.2) + (c.3)∗ + (c.4) + (c.3) + (c.4),

(III.e) = (e.1) + (c.5)∗ + (e.3) + (c.4) + (c.5)∗ + (c.4),

(III.f) = (c.1)∗ + (c.5)∗ + (c.3)∗ + (c.4) + (c.2)∗ + (c.4),

(III.g) = (g.1) + (g.2)∗ + (g.2) + (c.4) + (d.2)∗ + (c.4),

(III.h) = (h.1) + (g.2)∗ + (c.2)∗ + (c.4) + (h.5) + (c.4),

(III.i) = (i.1) + (e.3) + (h.5)∗ + (c.4) + (h.5) + (c.4),

(III.j) = (h.1)∗ + (g.2) + (h.5)∗ + (c.4) + (c.2) + (c.4).

Putting everything together, we obtain the desired result.

5. Can be obtained from Item 4 by only considering the terms (I) and (II)′ in

the proof.

6. See Bao and Ullah (2010), Theorem 2.

7. See Ullah (2004), Appendix A5.

A.1.2 Eigenvalues of Hadamard products

Theorem A.2. Let A and B be n× n real symmetric matrices. Then

λmax(A⊙B) ≤ λmax(A⊗B) ≤ max{λmax(A)λmax(B), λmin(A)λmin(B)},

and

λmin(A⊙B) ≥ λmin(A⊗B)

≥ min{λmin(A)λmin(B), λmin(A)λmax(B), λmax(A)λmin(B)}.

Proof. Let v ∈ Rn be given and define u ∈ Rn2
with u(i−1)·n+i = vi for i = 1, . . . , n

and zeroes elsewhere. Then v′(A⊙B)v = u′(A⊗B)u.

Now since A and B are symmetric, so are A⊙B and A⊗B. Consequently

both have real eigenvalues of which the maximum and minimum can be written
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as

λmax(A⊙B) = max
v:v′v=1

v′(A⊙B)v = max
u:u′u=1

u′(A⊗B)u

≤ max
w:w′w=1

w′(A⊗B)w = λmax(A⊗B),

and

λmin(A⊙B) = min
v:v′v=1

v′(A⊙B)v = min
u:u′u=1

u′(A⊗B)u

≥ min
w:w′w=1

w′(A⊗B)w = λmin(A⊗B),

where u is restricted to follow the structure above and w is any vector in Rn2
.

We therefore go from a restricted extremum to an unrestricted extremum, which

explains the inequality.

The last set of equalities in the theorem then follows because the n2 eigenvalues

of A⊗B equal λi(A)λj(B) for i, j = 1, . . . , n.

Corollary 3. Let A and B be n×n real symmetric matrices. If λmin(A) ≥ 0 then

λmax(A⊙B) ≤ λmax(A)λmax(B). If in addition λmin(B) ≥ 0, then λmin(A⊙B) ≥
λmin(A)λmin(B).

A.2 Proof of Theorem 2

Proof. The score function from the continuous updating objective function is given

by ∂Q(β)
∂βi

= − 1
n
x′
(i)(I −DPι)V ε. Under Assumption A2, the score satisfies

∂Q(β)

∂βi

(d)
= − 1

n
(x̄(i) +DrDεa(i))

′(I −DrDPr)V Drε

= − 1

n
x̄′
(i)V Dεr +

1

n
r′PDrDx̄(i)

V Dεr −
1

n
r′Da(i)Pr +

1

n
r′PDa(i)Pr

(Er)
= 0.

This proves the first statement of Theorem 2.

The (i, j)th element of the conditional variance is given by

E

[
n
∂Q(β)

∂βi

∂Q(β)

∂βj

|J
]
= E

[
1

n
x′
(i)V εε

′V x(j)︸ ︷︷ ︸
(I)

+
1

n
x′
(i)DPιV εε

′V DPιx(j)︸ ︷︷ ︸
(II)

− 1

n
x′
(i)V εε

′V DPιx(j)︸ ︷︷ ︸
(III)

− 1

n
x′
(i)DPιV εε

′V x(j)︸ ︷︷ ︸
(IV )

|J
]
.
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We first write (I) − (IV ) in terms of the Rademacher random variables from

Assumption A2, take the expectation over these random variables by applying the

results from Section A.1.1, and then take an additional expectation over the first

stage errors U . The marker “fixed-k approximation” indicates terms that appear

when we take the estimator for the variance of the score as in Kleibergen (2005)

and Newey and Windmeijer (2009), and then take the expectation over r and U .

Using that x(i) = x̄(i) +Dεa(i) we get,

(I)
(d)
=

1

n
x̄′
(i)V Dεrr

′DεV x̄(j) + r
′Da(i)Prr

′PDa(j)r

+
1

n
x̄′
(i)V Dεrr

′PDa(j)r +
1

n
r′Da(i)Prr

′DεV x̄(j)

(Er)
=

1

n

[
x̄′
(i)V x̄(j) − 2 tr(DPDa(i)DPDa(j)) + tr(Da(i)P ) tr(Da(j)P )

+ tr(Da(i)Da(j)P ) + tr(Da(i)PDa(j)P )

]
(EU )
=

1

n

[
z̄′(i)V z̄(j) + tr(DΣU (i,j)V ) + tr(Da(i)Da(j)P )︸ ︷︷ ︸

fixed-k approximation

− 2 tr(DPDa(i)DPDa(j)) + tr(Da(i)P ) tr(Da(j)P ) + tr(Da(i)PDa(j)P )

]
.

(II)
(d)
=

1

n
r′PDrDx̄(i)

V Dεrr
′DεV Dx̄(j)

DrPr +
1

n
r′PDa(i)Prr

′PDa(j)Pr

+
1

n
r′PDa(i)Prr

′DεV Dx̄(j)
DrPr +

1

n
r′PDa(j)Prr

′DεV Dx̄(i)
DrPr

(Er,U )
=

1

n
z̄′(i)[DPDV +DPV DP + P ⊙ P ⊙ V − 2D2

PDV ]z̄(j)︸ ︷︷ ︸
fixed-k approximation (I)

+
1

n
tr(PDa(i)PDa(j)) +

1

n
tr(DΣU (i,j)(DPDV )︸ ︷︷ ︸

fixed-k approximation (II)

+
1

n
z̄′(i) {2DPDV + 7DPV DP − 10DPDVDP + 3(V ⊙ P ⊙ P )

− 2(V Dε ⊙ V Dε)(P ⊙ P )⊙ I − 4D2
PV DP − 4DPV D

2
P + 16D3

PDV

−4(V ⊙ P ⊙ P )DP − 4DP (V ⊙ P ⊙ P )} z̄(j)

+
2

n
tr(DΣU (i,j)(DPDV − (V Dε ⊙ V Dε)(P ⊙ P )))

− 2

n
tr((I ⊙ PDa(i)P )PDa(j)P ) +

1

n
tr(PDa(i)) tr(PDa(j)) +

1

n
tr(Da(i)PDa(j)P ).
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Note that tr((I ⊙ PDa(i)P )PDa(j)P ) = a′
(i)(P ⊙ P )2a(j).

(III)
(d)
= − 1

n
x̄′
(i)V Dεrr

′DεV Dx̄(j)
DrPr −

1

n
r′Da(i)Prr

′DεV Dx̄(j)
DrPr

− 1

n
r′PDrDx̄(i)

V Dεrr
′PDa(j)r −

1

n
r′Da(i)Prr

′PDa(j)Pr

(Er,U )
= − 1

n
z̄′(j)V DP z̄(i) −

1

n
tr(Da(j)PDa(i)P )− 1

n
tr(DΣU (i,j)DPDV )︸ ︷︷ ︸

fixed-k approximation

− 2

n
z̄′(j)DP (I −DP )V z̄(i) −

2

n
tr(DΣU (i,j)DP (I −DP )DV )

+
2

n
tr(DPPDa(i)PDa(j))−

1

n
tr(PDa(j)) tr(PDa(i))−

1

n
tr(Da(j)PDa(i)P ).

Note that tr(DPPDa(i)PDa(j)) = a
′
(i)(P ⊙ P )DPa(j).

(IV )
(Er,U )
= − 1

n
z̄′(i)V DP z̄(j) −

1

n
tr(Da(i)PDa(j)P )− 1

n
tr(DΣU (j,i)DPDV )︸ ︷︷ ︸

fixed-k approximation

− 2

n
z̄′(i)DP (I −DP )V z̄(i) −

2

n
tr(DΣU (j,i)DP (I −DP )DV )

+
2

n
tr(DPPDa(j)PDa(i))−

1

n
tr(PDa(j)) tr(PDa(i))−

1

n
tr(Da(i)PDa(j)P ).

Rearranging, we find

Ωij(β0) = Er

[
n · S(i),r(β0)S(j),r(β0)

∣∣J ] = ΩL
ij(β0) + ΩH

ij (β0),

where ΩL
ij(β0) includes all terms labeled “fixed-k approximation”, and ΩH

ij (β0)

includes the remaining terms. Importantly, the products n−1tr(PDa(j))tr(PDa(i))

cancel when adding (I)-(IV ). Some further algebraic manipulations give the result

in Theorem 2.

A.3 Proof of Corollary 1

Proof. It is clear that in Theorem 2, ΩH,a(β0) is negative semidefinite. To show

that ΩH,u(β0) ≺ O, observe that ΩH,u(β0) = − 2
n

∑n
i=1 ciΣ

U
i where

ci = e
′
i(DVDP (1− 2DP ) + (V Dε ⊙ V Dε)(P ⊙ P ))ei

= ViiPii(1− 2Pii + P 2
ii) +

n∑
k ̸=i

V 2
ikε

2
kP

2
ki ≥ ViiPii(1− Pii)

2.
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Since by assumption Pii ≤ C < 1, λmin(Σ
U
i ) ≥ C, and

∑n
i=1 ViiPii > 0, we have

that ΩH,u(β0) ≤ −(C
∑n

i=1 ViiPii) · Ip ≺ O.

It now suffices to prove that Z̄ ′(V ⊙W )Z̄ ⪯ O. We first consider the diagonal

terms of V ⊙W . If Vii = 0, the result is trivial. We therefore assume Vii > 0.

First, we make the observation that Ωii(β0) ≥ 0, since it is the expectation of the

squared score. This also holds in a model with Π = O, and a(i) = 0 for all (i)

and ΣU(i, i) = 1 for some i and 0 for all j ̸= i. We then deduce that for all i,

Vii − 3PiiVii + 4ViiP
2
ii − 2

n∑
j=1

V 2
ijε

2
jP

2
ij ≥ 0. (A.2)

Now, wiiVii = −2(ViiPii − 2ViiP
2
ii +

∑n
j=1 V

2
ijε

2
jP

2
ij). To show that wii ≤ 0, we need

to show that −1
2
wiiVii = ViiPii−2ViiP

2
ii+
∑n

j=1 V
2
ijε

2
jP

2
ij ≥ 0. Using (A.2), we have

that

−1

2
wiiVii ≥ Vii

(
Pii − 2P 2

ii +
1

2
− 3

2
Pii + 2P 2

ii

)
=

1

2
Vii(1− Pii).

Since Vii > 0, we can now conclude that wii < 0 if Pii ≤ C < 1, which holds by

Assumption A3.

Consider now the off-diagonal terms of V ⊙W . For i ̸= j, we have

wij = (PiiPjj + P 2
ij)(3− 4(Pii + Pjj))− 2(Pii + Pjj) + 2(Pii + Pjj)

2

Suppose that Pii + Pjj < 3/4. Then, PiiPjj + P 2
ij ≤ (Pii + Pjj)

2 by using that

P 2
ij ≤ PiiPjj and 2PiiPjj ≤ (Pii + Pjj)

2. Defining xij = Pii + Pjj, we then have

that wij ≤ −(4x2
ij − 5xij + 2)xij < 0. Now suppose that Pii + Pjj ≥ 3/4, then

wij ≤ PiiPjj(3− 4(Pii + Pjj))− 2(Pii + Pjj) + 2(Pii + Pjj)
2.

We can verify that wij ≤ 0 if maxi=1,...,n Pii ≤ 1
8
[3+2

√
2+

√
3(4

√
2−5)1/2] ≈ 0.904.

Define Π̃ = (Z ′D2
εZ)1/2Π and z̃i = (Z ′D2

εZ)−1/2zi. Then,

Π′
∑
i,j

ziVijz
′
jΠ · wij = Π′

∑
i,j

ziz
′
i(Z

′D2
εZ)−1zjz

′
jΠ · wij

= Π̃′

(
n∑

i=1

z̃iz̃
′
iz̃iz̃

′
iwii +

∑
i>j

(z̃iz̃
′
iz̃jz̃

′
j + z̃jz̃

′
jz̃iz̃

′
i) · wij

)
Π̃.

The first term within the brackets is a negatively weighted sum of symmetric

positive semidefinite matrices and hence, negative semidefinite. The second term
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is a nonpositively weighted sum of symmetric positive semidefinite matrices, so

that the resulting matrix is symmetric and negative semidefinite. We conclude

that Z̄ ′(W ⊙ V )Z̄ ⪯ O.

A.4 Proof of Theorem 3

We defer the proof of Theorem 3 to Appendix B, due to its length.

A.5 Proof of Theorem 4

A.5.1 Unbiasedness

Proof. To show that Σ̂(β0) is unbiased conditionally on J = {Zi, εi}ni=1, we start

by analyzing the variance of the score. The variance estimator given in (12),

evaluated at the true parameter vector β0, consists of the following components.

Ω̂L
ij(β0) =

1

n
x′
(i)(I −DPι)V (I −DPι)x(j),

Ω̂H
ij (β0) =

1

n
x′
(i)[7DP V̇ DP − 4D2

P V̇ DP − 4DP V̇ D
2
P

+ 3V̇ ⊙ P ⊙ P − 4DP (V̇ ⊙ P ⊙ P )− 4(V̇ ⊙ P ⊙ P )DP

− 2DP V̇ − 2V̇ DP + 2D2
P V̇ + 2V̇ D2

Pβ
]x(j)

− 2

n
x′
(i)(DV − V ⊙ P )D2

ε(DV − V ⊙ P )x(j)

For Ω̂L
ij(β0), we use Assumption A4 and then the distributional equivalence

from Assumption A2 to obtain

x′
(j)V x(i) = x̄

′
(j)V x̄(i) + a

′
(j)DεV Dεa(i) + a

′
(j)DεV x̄(i) + x̄

′
(j)V Dεa(i)

(d)
= x̄′

(j)V x̄(i) + r
′Da(j)PDa(i)r + r

′Da(j)DεV x̄(i) + x̄
′
(j)V DεDa(i)r

(Er,U )
= E[x′

(j)V x(i)|J ] = z̄′(j)V z̄(i) + tr(DΣU (j,i)V ) + tr(Da(j)PDa(i)).

(A.3)

Similarly, we obtain

x′
(j)DPιV x(i)

(Er,U )
= z̄′(j)DPV z̄(i) + tr(DΣU (j,i)DPDV ) + tr(Da(i)PDa(j)P ),

x′
(j)DPιV DPιx(i)

(Er,U )
= z̄(j)[DPDV +DPV DP − 2D2

PDV + (P ⊙ P ⊙ V )]z̄(i)

+ tr(DΣU (j,i)DVDP ) + tr(PDa(i)PDa(j)).

(A.4)
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Aggregating these results, we see that E[Ω̂L
ij(β0)|J ] = ΩL

ij(β0).

For Ω̂H
ij (β0), we use the following results

x′
(j)D

k
P V̇ D

l
Px(i)

(Er,U )
= z̄′(j)D

k
P V̇ D

l
P z̄(i), l, k = 0, 1, 2,

x′
(j)(V̇ ⊙ P ⊙ P )Dk

Px(i)

(Er,U )
= z̄′(j)(V̇ ⊙ P ⊙ P )Dk

P z̄(i), k = 0, 1,

x′
(j)DPDV x(i)

(Er,U )
= z̄′(j)DPDV z̄(i) + tr(DΣU (j,i)DPDV )

+ tr(D2
PDa(i)Da(j)),

x′
(j)(V ⊙ P )DPx(i)

(Er,U )
= z̄′(j)DVD

2
P z̄(i) + tr(DΣU (j,i)DVD

2
P )

+ a′
(j)(P ⊙ P )DPa(i),

x′
(j)

[(
(V Dε ⊙ V Dε)(P ⊙ P )

)
⊙ I

]
x(i)

(Er,U )
= z̄′(j)[((V Dε ⊙ V Dε)(P ⊙ P ))⊙ I]z̄(i)

+ tr(DΣU (j,i)(V Dε ⊙ V Dε)(P ⊙ P ))

+ a′
(j)(P ⊙ P )2a(i).

(A.5)

Aggregating these results and using symmetry shows that Ω̂(β0) is a conditionally

unbiased estimator for Ω(β0).

Similarly under the null we have E[σ̂2
n(β0)] = E[ 2

k
(k − ι′D2

P ι)] =
2
k
(
∑n

i=1 Pii −∑n
i=1 P

2
ii) =

2
k
(
∑n

i,j=1 P
2
ij −

∑n
i=1 P

2
ii) =

2
k
(
∑

i ̸=j P
2
ij) = σ2

n and

Σ̂1,j+1(β0) =
2√
n · k

x′
(j)(DV − (V ⊙ P ))DPε

=
2√
n · k

x̄′
(j)(DV − (V ⊙ P ))DPε+ ε

′Da(j)(DV − (V ⊙ P ))DPε

(d)
=

2√
n · k

[x̄′
(j)(DV − (V ⊙DrPDr))D

2
rDPDεr

+ r′DεDa(j)(DV − (V ⊙DrPDr))D
2
rDPDεr]

(Er,U )
=

2√
n · k

[tr(DεDa(j)DVDPDε)− ι′DεDa(j)(V ⊙ P )DPDει]

=
2√
n · k

[tr(Da(j)PDP )− tr(PDa(j)PDP )]

=
2√
n · k

tr(MDa(j)PDP )

=
2√
n · k

tr(Ψ(j) ⊙ P ).

We conclude that Σ̂(β0) is a conditionally unbiased estimator for Σ(β0).
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A.5.2 Consistency

We first show consistency of the variance estimator of the AR statistic. Under

H0 : β = β0, σ
2
n and σ̂2

n are identical, hence under H0 the estimator is consistent.

Next, we consider the variance estimator of the score statistic. Define x(i),r =

z̄(i)+u(i)+DrDεa(i). We first observe that under many instrument sequences the

variance of the score is bounded away from zero as established in Section B.2.3.

Then, to show consistency of the variance estimator, we need to show for some

matrix Ar that possibly depends on the vector of Rademacher random variables

r, that

n−2 E[(x′
(i),rArx(j),r − E[x′

(i),rArx(j),r|J ])2|J ] →p 0. (A.6)

For Ar we consider the general cases (a) Ar =DrADr and (b) Ar = A, and the

specific cases (c) Ar = DrDPrV , and (d) Ar = DrDPrV DPrDr. Cases (a) and

(b) cover the consistency of the terms listed in (A.3) and (A.5) that are all of the

form x′
(i)Arx(j). For all these terms λmax(A⊙A) ≤ C a.s.n. and λmax(AA

′) ≤ C

a.s.n., which we will use repeatedly below. We frequently invoke the bound that for

a random vector w with independent elements that have bounded fourth moment,

we have E[(w′Aw−E[w′Aw])2|A] ≤ C tr(AA′), see for instance Whittle (1960).

Cases (c) and (d) will cover the consistency of the terms in (A.4).

For (a)–(d), we decompose (A.6) into three parts that will be treated separately,

n−2 E[(x′
(i),rArx(j),r − E[x′

(i),rArx(j),r|J ])2|J ]

≤ 4n−2 E[(z̄′(i)Arz̄(j) − E[z̄′(i)Arz̄(j)|J ])2|J ]︸ ︷︷ ︸
(I)

+ 4n−2 E[(u′
(i)Aru(j),r − E[u′

(i)Aru(j)|J ])2|J ]︸ ︷︷ ︸
(II)

+ 4n−2 E[(a′
(i)DεDrArDrDεa(j) − E[a′

(i)DεDrArDrDεa(j)|J ])2|J ]︸ ︷︷ ︸
(III)

.

We start with (a.I)− (a.III).

(a.I) = n−2 E[(z̄′(i)Arz̄(j) − E[z̄′(i)Arz̄(j)|J ])2|J ]

= n−2 E[(r′Dz̄(i)ȦDz̄(j)r)
2|J ]

= n−2 tr(Dz̄(i)ȦDz̄(j)Dz̄(i)ȦDz̄(j)) + n−2 tr(Dz̄(i)ȦDz̄(j)Dz̄(j)ȦDz̄(i))

≤ 2λmax(Ȧ⊙ Ȧ)

(
1

n2

n∑
k=1

z̄4(i),k
1

n2

n∑
k=1

z̄4(j),k

)1/2

→a.s. 0,
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by Assumption A5. Similarly, for (a.II)

(a.II) = n−2 E[(u′
(i)Aru(j) − E[u′

(i)Aru(j)|J ])2|J ]

≤ 2n−1λmax(Ȧ⊙ Ȧ)
1

n

n∑
k=1

E[u4
(i),k]

1/2 E[u4
(j),k]

1/2 →a.s. 0,

since Assumptions A1 and A4 imply that u(i),k has bounded fourth moment. Fi-

nally, (a.III) = E[(a′
(i)DεDrArDrDεa(j)−E[a′

(i)DεDrArDrDεa(j)|J ])2|J ] = 0.

For (b.I), conditional on J there is no randomness, so we get E[(z̄′(i)Arz̄(j) −
E[z̄′(i)Arz̄(j)|J ])2|J ] = 0. For (b.II) we have

(b.II) = n−2 E[(u′
(i)Au(j) − E[u′

(i)Au(j)|J ])2|J ]

= n−2 E[
∑

k,k′,l,l′

u(i),ku(i),k′u(j),lu(j),l′AklAk′l′ ]− n−2 tr(DΣU (i,j)DA)
2

≤ n−2u′
(i)Du(i)

(A⊙A)Du(j)
u(j) + n−2u′

(j)Du(i)
AA′Du(i)

u(j)

≤ n−1(λmax(Ȧ⊙ Ȧ) + λmax(AA
′))

1

n

n∑
k=1

E[u4
(i),k]

1/2 E[u4
(j),k]

1/2 →a.s. 0.

Finally, (b.III) satisfies

(b.III) = n−2 E[(a′
(i)DεDrADrDεa(j) − E[a′

(i)DεDrADrDεa(j)|J ])2|J ]

= n−2 E[(r′Da(i)DεADεDa(j)r)
2|J ]− tr(Da(i)DεADεDa(j))

2

≤ Cn−2 tr(Da(i)DεADεDa(j)Da(j)DεA
′DεDa(i))

≤ Cn−2 tr(DεAD
2
εA

′Dε)

Using the expressions for A as in (A.3) and (A.5), we see that (b.III) →a.s. 0.

We continue with (c.I)− (c.III).

(c.I) = n−2 E[(z̄′(i)DrDPrV z̄(j) − E[z̄′(i)DrDPrV z̄(j)|J ])2|J ]

= n−2 E[(r′PDrDz̄(i)V z̄(j) − E[z̄′(i)DPV z̄(j)|J ])2|J ]

= n−2 tr(DPDz̄(i)D
2
V z̄(j)

Dz̄(i))− 2n−2 tr(Dz̄(i)V z̄(j)z̄
′
(j)V Dz̄(i)DP )

+ n−2ι′(P ⊙ P ⊙ (Dz̄(i)V z̄(j)z̄
′
(j)V Dz̄(i)))ι

= n−2z̄′(j)V Dz̄(i)DPDz̄(i)V z̄(j) − 2n−2z̄′(j)V Dz̄(i)DPDz̄(i)V z̄(j)

+ n−2z̄′(j)V Dz̄(i)(P ⊙ P )Dz̄(i)V z̄(j)

≤

(
1

n2

n∑
k=1

z̄4(i),k
1

n2

n∑
k=1

(z̄′(j)V ek)
4

)1/2

→a.s. 0,

44



with the convergence implied by Assumption A5.

(c.II) follows by analogous arguments. For (c.III), we have

(c.III) = n−2 E[(a′
(i)DεDPrV DrDεa(j) − E[a′

(i)DεDPrV DrDεa(j)|J ])2|J ]

= n−2 E[(r′PDa(i)PDa(j)r − tr(PDa(i)PDa(j)))
2|J ]

≤ n−2 tr(PDa(i)PD
2
a(j)
PDa(i)P ) →a.s. 0.

Proceeding with (d.I)− (d.III), we have

(d.I) = n−2 E[(z̄′(i)DrDPrV DPrDrz̄(j) − E[z̄′(i)DrDPrV DPrDrz̄(j)|J ])2|J ].

Notice that

n−1z̄′(i)DrDPrV DPrDrz̄(j) = n−1ιDrPDrDz̄(i)V Dz̄(j)DrPDrι

= n−1z̄′(i)DPV DP z̄(j) + n−1ι′DPDz̄(i)V Dz̄(j)DrṖDrι

+ n−1ι′DrṖDrDz̄(i)V Dz̄(j)DP ι

+ n−1ι′DrṖDrDz̄(i)V̇ Dz̄(j)DrṖDrι.

The second and third term after the final equality sign have expectation equal to

zero. The difference of these terms from their expectation converges almost surely

to zero by the same arguments as used in showing convergence of parts (a)− (c).

The final term has expectation z̄′(i)(V̇ ⊙ Ṗ ⊙ Ṗ )z̄(j). Subtracting this expectation,

and defining r−ij as the vector r with the ith and jth element set to zero, the

final term can be written as

tr(ṖDrDz̄(i)V̇ Dz̄(j)DrṖ ) + n−1

n∑
k=1

∑
l ̸=k

rkrlr
′
−klDPekDz̄(i)V̇ Dz̄(j)DPelr−kl.

Squaring and taking the expectation, we get the bound

2

n2
E[tr(ṖDrDz̄(i)V̇ Dz̄(j)DrṖ )2|J ] +

4

n2

n∑
k=1

n∑
l=1

E[(r′−klDPekDz̄(i)V̇ Dz̄(j)DPelr−kl)
2|J ]

≤ 2

n2
E[(r′Dz̄(i)(V̇ ⊙ Ṗ 2)Dz̄(j)r)

2]

+
4

n2

n∑
k=1

n∑
l=1

tr(DPekDz̄(i)V̇ Dz̄(j)DPelDPelDz̄(j)V̇ Dz̄(i)DPek)

≤ C

(
1

n2

n∑
k=1

z̄4(i),k
1

n2

n∑
k=1

z̄4(j),k

)1/2

→a.s. 0.
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(d.II) follows from analogous arguments. Finally,

(d.III) = n−2 E[(a′
(i)DεDPrV DPrDεa(j) − tr(PDa(i)PDa(j)))

2|J ]

= n−2 E[(r′PDa(i)PDa(j)Pr)
2|J ]− tr(PDa(i)PDa(j)))

2|J ]2

≤ n−2 tr(PDa(i)PD
2
a(j)
PDa(i)P ) →a.s. 0.

Lastly, we consider the estimator of the covariance between the AR and the

score statistic. From (10) and (13) we can bound the variance of [Σ̂n,r(β0)]1,j as

E[(Σ̂n,r(β0)]1,j)
2|J ]

≤ 4

nk
E[(tr(Ψ(j) ⊙ P )− (z̄(j) +DrDεa(j) + u(j))

′(DV −Dr(V ⊙ P ))DPε)
2|J ]

≤ C

nk
(E[(tr(Ψ(j) ⊙ P )− a′

(j)DrDε(DV −Dr(V ⊙ P ))DPε)
2|J ]

+ E[(z̄′(j)(DV −Dr(V ⊙ P ))DPε)
2|J ] + E[(u′

(j)(DV −Dr(V ⊙ P ))DPε)
2|J ])

=
C

nk
(E[(z̄′(j)(DV −Dr(V ⊙ P ))DPε)

2|J ] + E[(u′
(j)(DV −Dr(V ⊙ P ))DPε)

2|J ]).

The first term becomes, by using the law of iterated expectations, Assumption A2

and Theorem A.1,

C

nk
E[(z̄′(j)(DV − (V ⊙ P ))DPε)

2|J ]

≤ C

nk
(E[(z̄′(j)DVDrDPε)

2|J ] + E[(z̄′(j)Dr(V ⊙ P )DPε)
2|J ])

=
C

nk
(E[z̄′(j)DVDPDεrr

′DVDPDεz̄(j)|J ]

+ E[r′Dz̄(j)(V ⊙ P )DPεε
′DP (V ⊙ P )Dz̄(j)r|J ])

=
C

nk
(tr(z̄′(j)DVD

3
P z̄(j)) + ε

′DP (V ⊙ P )D2
z̄(j)

(V ⊙ P )DPε)

=
C

nk
(tr(z̄′(j)DVD

3
P z̄(j)) + ι

′DεDP (V ⊙ P )D2
z̄(j)

(V ⊙ P )DPDει)

≤ C

nk
(tr(z̄′(j)DVD

3
P z̄(j)) + z̄

′
(j)DVDP z̄(j)) →a.s. 0,

by Assumption A5. The last inequality uses that e′j(V ⊙V )DPD
2
ει =

∑n
i=1 V

2
jiPiiε

2
i ≤∑n

i=1 V
2
jiε

2
i = Vjj, and hence,

ι′DεDP (V ⊙ P )D2
z̄(j)

(V ⊙ P )DPDει ≤ z̄′(j)DεD
2
VDεz̄(j) = z̄

′
(j)DVDP z̄(j).

We conclude that, under H0 : β = β0, Σ̂n is consistent for Σn.
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Appendix B Central limit theorem

The proof of Theorem 3 is similar to the proof of Lemma A2 in Chao et al. (2012)

and consists of the following steps. First, in Appendix B.1 we rewrite the statistic(
1√
k
(AR(β)− k)
√
n · S

)
= Yn

(d)
= Ynr,

such that it is a martingale difference array. Note that
(d)
= is defined as distribu-

tional equivalence conditional on Z.

Second, in Appendix B.2 we show that, conditional on J = {Zi, εi}ni=1, any

linear combination of the elements inΣ
−1/2
n Ynr converges to the same linear combi-

nation of a multivariate normally distributed random vector. That is, conditional

on J t′Σ
−1/2
n Ynr →d t

′Z for any t ∈ Rp+1 and Z a multivariate normally dis-

tributed random variable with identity covariance matrix.

Third, in Appendix B.3 we use a version of Lebesgue’s dominated convergence

theorem to show that t′Σ
−1/2
n Yn →d t

′Z unconditionally.

Fourth, in Appendix B.4 we invoke the Cramér-Wold theorem to conclude that

Σ
−1/2
n Yn →d Z and thus that Yn is multivariate normally distributed.

B.1 Rewriting the statistic

First we rewrite the AR statistic. In Section 2 we showed that 1√
k
(AR(β0)−k)

(d)
=

1√
k
(ARr(β0)− k). Then defining

w1n,AR =
2√
k
P12, yin,AR =

2√
k

[∑
j<i

Pijrj

]
· ri,

we have 1√
k
(ARr(β0)− k) = w1n,AR +

∑n
i=3 yin,AR.

Next, we consider the score. We rewrite the first order conditions as

∂Q(β)

∂βh

∣∣∣∣
β=β0

= − 1

n
x′
(h)(I −DPι)V ε

= − 1

n

[
x̄′
(h)(I −DPι)V ε+ ε

′Da(h)(I −DPι)V ε

]
(d)
= − 1

n

[
x̄′
(h)V Dεr − r′PDrDx̄(h)

V Dεr + r
′Da(h)Pr − r

′PDa(h)Pr

]
= − 1

n

[
x̄′
(h)V Dεr + r

′Ψ(h)r − r′PDrDx̄(h)
V Dεr

]
,
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where

Ψ(h) ≡MDa(h)P , Φ(h) ≡Dx̄(h)
V Dε.

We rewrite the final term as

r′PDrΦ
(h)r = tr(PDrΦ

(h)) + tr(PDrΦ
(h)∆) ∆ ≡ rr′ − In

= tr(Φ(h)Dr) + tr(PDrΦ
(h)∆)

= x̄′
(h)DVDεr +

∑
i,j,k
i ̸=k

PijΦ
(h)
jk rirjrk

= x̄′
(h)DVDεr +

∑
i ̸=j,k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk

= x̄′
(h)DVDεr +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk +

∑
i ̸=j

PijΦ
(h)
jj ri

= x̄′
(h)DVDεr +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk +

∑
i ̸=j

εiVijεjx̄h,jVjjεjri

= x̄′
(h)DVDεr +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk +

∑
i ̸=k

PiiΦ
(h)
ik rk +

∑
i ̸=j

PiiΦ
(h)
ij ri

= x̄′
(h)DVDεr + 2

∑
j ̸=i

Φ
(h)
ji Pjjri +

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk.

Notice that Φ(h)P = Φ(h) and therefore Φ(h)(Ψ(h))′ = Φ(h)Da(h)M . Furthermore,

tr(Ψ(h)) = 0. We conclude that,

√
n
∂Q(β)

∂βh

(d)
= − 1√

n

∑
j ̸=i

Φ
(h)
ji (1− 2Pjj)ri −

1√
n

∑
j ̸=i

Ψ
(h)
ji rjri +

1√
n

∑
i ̸=j ̸=k ̸=i

PijΦ
(h)
jk rirjrk

= w
(h)
1n,S +

n∑
i=3

y
(h)
in,S,

where we defined

w
(h)
1n,S = − 1√

n

∑
j ̸=1

Φ
(h)
j1 (1− 2Pjj)r1 −

1√
n

∑
j ̸=2

Φ
(h)
j2 (1− 2Pjj)r2 −

1√
n
Ψ

(h)
[21]r2r1,

y
(h)
in,S =

[
− 1√

n

∑
j ̸=i

Φ
(h)
ji (1− 2Pjj)−

1√
n

∑
j<i

Ψ
(h)
[ij]rj +

1√
n

∑
l<j<i

A
(h)
[ijl]rjrl

]
· ri,

Ψ
(h)
[ij] = Ψ

(h)
ij +Ψ

(h)
ji ,

A
(h)
[ijk] = A

(h)
ijk + A

(h)
ikj + A

(h)
jik + A

(h)
jki + A

(h)
kij + A

(h)
kji, A

(h)
ijk = PijΦ

(h)
jk
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We have now shown the following distributional equivalence,

Yn =

(
1√
k
(AR(β)− k)
√
n · S

)
(d)
= Ynr =

(
w1n,AR

w1n,S

)
+

n∑
i=3

(
yin,AR

yin,S

)
.

B.2 Conditional distribution of t′Σ
−1/2
n Ynr

To use the Cramér-Wold theorem in Section B.4 we need to show that for any

t ∈ Rp+1 t′Σ
−1/2
n Ynr →d t

′Z. When t = 0 the condition is trivially satisfied.

Therefore, let t ∈ Rp+1 \0 and write t = Cα(α′α)−1/2 for α ∈ Rp+1 \0. Consider
(α′α)−1/2α′Σ

−1/2
n Ynr and define Ξn = var(α′Σ

−1/2
n Ynr|J ). Then,

(α′α)−1/2α′Σ−1/2
n Ynr = w1n +

n∑
i=3

yin,

where we define

w1n = Ξ−1/2
n [c1nw1n,AR + c′2nw1n,S] ,

yin = Ξ−1/2
n

[
− 1√

n

∑
j ̸=i

c′2nϕji(1− 2Pii) −
1√
n

∑
j<i

(c′2nψ[ij] − 2c1nγnPij)rj

+
1√
n

∑
l<j<i

c′2na[ijl]rlrj

]
· ri,

(B.1)

where cn = (c1n, c
′
2n)

′ = Σ
−1/2
n α, 0 < α′α ≤ C, ϕji = (Φ

(1)
ji , . . . ,Φ

(p)
ji )

′, ψ[ji] =

(Ψ
(1)
[ji], . . . ,Ψ

(p)
[ji])

′, a[ijk] = (A
(1)
[ijk], . . . , A

(p)
[ijk]) and γn =

√
n√
k
. Notice that c′ncn ≤ C,

which implies c21n ≤ C and c′2nc2n ≤ C.

For later purposes, it will be useful to write the bracketed term in yin in matrix

notation. Define Si−1 as the n×n matrix with in the left-upper i−1× i−1 block

the identity matrix and zeroes elsewhere. Define

Ψ =MD∑p
h=1 c2n,ha(h)

P , Φ =D∑p
h=1 c2n,hx̄(h)

V Dε

then we can write

yin = Ξ−1/2
n

{
− 1√

n
c′2nX̄

′(In − 2DP )V̇ Dεei

− 1√
n
r′Si−1

[
(Ψ+Ψ′ − 2DΨ)− 2c1nγnṖ

]
ei +

1√
n
r′A−ir

}
· ri,

A−i = Si−1AiSi−1 = Si−1[ṖDΦei +DΦeiṖ + Peie
′
iΦ−DPeiDe′iΦ

]Si−1.

(B.2)
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To see that the last term in (B.2) equals the last term of yin in (B.1) note that

A−i consists of the sum of three matrices with zero diagonal. Furthermore, the

quadratic form with r′Si−1 selects only the upper left block of the matrix. By

splitting the sums into the part stemming from the upper and lower triangular

parts we get for the first term

r′Si−1ṖDΦeiSi−1r =

p∑
h=1

c2n,h[
∑
l<j<i

Pjlx̄(h),lVliεirjrl +
∑
l<j<i

Pljx̄(h),lVjiεirjrl]

=

p∑
h=1

c2n,h[
∑
l<j<i

A
(h)
jli rjrl +

∑
l<j<i

A
(h)
lji rjrl],

the second term

r′Si−1DΦeiṖ Si−1r =

p∑
h=1

c2n,hr
′Si−1Dx̄(h)

DV eiεi(DεV Dε −DεDVDε)Si−1r

=

p∑
h=1

c2n,hr
′Si−1DεDV eiεi(Dx̄(h)

V Dε −Dx̄(h)
DVDε)Si−1r

=

p∑
h=1

c2n,hr
′Si−1(De′iP

Φ(h) −De′iP
DΦ(h))Si−1r

=

p∑
h=1

c2n,h[
∑
l<j<i

Pijx̄(h),jVjlεlrjrl +
∑
l<j<i

Pilx̄(h),lVljεjrjrl]

=

p∑
h=1

c2n,h[
∑
l<j<i

A
(h)
ijl rjrl +

∑
l<j<i

A
(h)
ilj rjrl],

and third term

r′Si−1(Peie
′
iΦ

(h) −DPeiDe′iΦ
(h))Si−1r

=

p∑
h=1

c2n,h[
∑
l<j<i

Pjix̄(h),iVilεlrjrl +
∑
l<j<i

Plix̄(h),iVijεjrjrl]

=

p∑
h=1

c2n,h[
∑
l<j<i

A
(h)
jil rjrl +

∑
l<j<i

A
(h)
lij rjrl].

Furthermore note that A−i is a symmetric matrix.

We will now show that (α′α)−1/2α′Σ−1/2Yn converges to a standard nor-

mally distributed random variable. As in Chao et al. (2012) we first show that

w1n = op(1) such that we can focus on
∑n

i=3 yin. Next, we check conditions of the

martingale difference array CLT.
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B.2.1 w1n = op(1) unconditionally

Consider w1n as defined in (B.1). Following Chao et al. (2012), we show that

w1n = op(1) by showing that E[∥w1n∥4|J ] →a.s. 0. To bound the terms from w1n,S

we need the following three bounds. First, using Assumption A5, we have that

1

n2

n∑
j=1

∥Z̄ ′V ejεj∥4 ≤
1

n2
max

l=1,...,n
∥Z̄ ′V elεl∥2

n∑
j=1

∥Z̄ ′V ejεj∥2

≤ oa.s.(1)

n

p∑
h=1

n∑
j=1

(e′hZ̄
′V ejεj)

2

=
oa.s.(1)

n

p∑
h=1

e′hZ̄
′V Z̄eh

≤ oa.s.(1)

n
λmax(V )

p∑
h=1

e′hZ̄
′Z̄eh →a.s. 0,

(B.3)

by Assumption A5 and where oa.s.(1) is a term converging to zero a.s.

Second, under Assumption A5 and by the finite fourth moment of the elements

of U following from Assumption A1, we have

E

[
1

n2

n∑
i,j=1

∥ϕij∥4
∣∣∣∣J ] = E

[
1

n2

n∑
i,j=1

∥X̄ ′eiVijεj∥4
∣∣∣∣J ]

≤ E

[
1

n2

n∑
i=1

∥X̄ ′ei∥4V 2
ii

∣∣∣∣J ]
≤ E

[
C

n2

n∑
i=1

∥X̄ ′ei∥4
∣∣∣∣J ]

≤ C

n2

n∑
i=1

(
∥Z̄ ′ei∥4 + E[∥U ′ei∥4|J ]

)
→a.s. 0.

(B.4)

Third, as the rows of U are independent and by Theorem 2 in Whittle (1960),

1

n2

n∑
i=1

E[∥U ′V Dεei∥4|J ] ≤ C

n2

p∑
h=1

n∑
i=1

E[(u′
(h)V Dεei)

4|J ]

≤ C

n2

p∑
h=1

E[u4
(h),j|J ]

n∑
i=1

(e′iDεV
2Dεei)

2

≤ C

n2

p∑
h=1

E[u4
(h),j|J ]tr(V 2) →a.s. 0.

(B.5)
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Now we have that, since c′2nc2n ≤ C and using the definition of w1n,S,

E

[
∥c′2nw1n,S∥4

∣∣∣∣J ] ≤ C · E
[
∥w1n,S∥4

∣∣∣∣J ]
= C E

[
∥−1√

n

∑
j ̸=1

ϕj1(1− 2Pjj)r1 −
1√
n

∑
j ̸=2

ϕj2(1− 2Pjj)r2 −
1√
n
ψ[21]r2r1∥4

∣∣∣∣∣J
]

≤ C

n2
E

[
∥
∑
j ̸=1

ϕj1(1− 2Pjj)∥4 + ∥
∑
j ̸=2

ϕj2(1− 2Pjj)∥4 + ∥ψ[21]∥4
∣∣∣∣J
]

≤ C

n2
E

[
∥Z̄ ′V e1ε1∥4 + ∥U ′V e1ε1∥4 + ∥ϕ11(1− 2P11)∥4

+ ∥Z̄ ′V e2ε2∥4 + ∥U ′V e2ε2∥4 + ∥ϕ22(1− 2P22)∥4 + p max
h=1,...,p

(Ψ
(h)
[21])

4

∣∣∣∣J ]
≤ C

n2
E

[
n∑

j=1

∥Z̄ ′V ejεj∥4 + ∥U ′V ejεj∥4 + ∥ϕ11∥4 + ∥ϕ22∥4 + C

∣∣∣∣J
]

→a.s. 0,

where for the final line we use (B.3), (B.4), (B.5), Assumption A5 and that

Ψ
(h)
jk = e′jMDa(h)Pek ≤ ejMeje

′
kPDa2

(h)
Pek ≤ max

i=1,...,n
a2(h),i ≤ C a.s.n. (B.6)

with the second inequality by Pii < 1 a.s.n.

For the part of w1n due to the AR statistic, we have

E[∥c1nw1n,AR∥4|J ] =
16 · c41n

k2
P 4
12 ≤

C

k2
(

n∑
i=1

P 2
1i)

2 ≤ C

k2
P 2
11 →a.s. 0.

As in the proof of Lemma A2 in Chao et al. (2012), the above results imply

that w1n = c1nw1n,AR + c′2nw1n,S →p 0 unconditionally, and hence,

(α′α)−1/2α′Σ−1/2
n Yn =

n∑
i=3

yin + op(1).

B.2.2 Martingale difference sequence

Define the σ-fields Fi,n = σ(r1, . . . , ri) such that Fi−1,n ⊂ Fi,n. It is clear that,

E[yin|J ,Fi−1,n] = 0, due to the ri that multiplies all the terms. Hence, conditional

on J , {yin,Fi,n, 1 ≤ i ≤ n, n ≥ 3} is a martingale difference array.
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B.2.3 Variance bounded away from zero

For our statistic to be well defined we require the existence of Σ−1
n almost surely.

We start by considering a quadratic form of Ω defined in (9) in Theorem 2. Let

v be any p dimensional vector satisfying v′v = 1. Then,

v′Ωv ≥
n∑

j=1

cjv
′ΣU

j v,

where from (9) we have ci = Vjj − 3VjjPjj + 4VjjP
2
jj − 2

∑n
k=1 V

2
jkε

2
kP

2
kj.

Then since ΣU
j is positive definite and using that for k ̸= j, P 2

kj ≤ Pjj(1−Pjj)

cj = Vjj(1− 3Pjj + 4P 2
jj)− 2

(
VjjP

3
jj +

∑
k ̸=j

V 2
jkε

2
kP

2
kj

)

≥ Vjj(1− 3Pjj + 4P 2
jj)− 2

(
VjjP

3
jj + Pjj(1− Pjj)

∑
k ̸=j

V 2
jkε

2
k

)
= Vjj(1− 3Pjj + 4P 2

jj)− 2
(
VjjP

3
jj + Pjj(1− Pjj)(Vjj − VjjPjj)

)
= Vjj(1− 5Pjj + 8P 2

jj − 4P 3
jj)

= Vjj(1− Pjj)(1− 2Pjj)
2.

(B.7)

Consider the case where the inequality holds with equality, such for every k either

P 2
kj = Pjj(1 − Pjj) or V

2
jkε

2
k = 0. The last condition cannot hold for every k ̸= j,

because
∑

k ̸=j V
2
jkε

2
k =

∑n
k=1 V

2
jkε

2
k −VjjPjj = e

′
jV D

2
εV ej −VjjPjj = Vjj(1−Pjj).

Now since Pjj < 1 by Assumption A3 and Vjj > 0 by Assumption A5, we conclude

that there must be at least one k such that V 2
jkε

2
k ̸= 0. For such a k, equality

therefore only obtains if P 2
kj = Pjj(1− Pjj). Assume moreover that Pjj = 1/2, so

that Pkj = ±1
2
. Using that P is a projection matrix, this implies that Pkk = 1/2,

P 2
k′j = 0 for k′ ̸= k and Pj′k = 0 for j′ ̸= j. However, this simply means that two

columns ofDεZ coincide up to their sign. This case is excluded by Assumption A5

that states that λmin(Z
′D2

εZ/n) ≥ C a.s.n. We then have

1

n

n∑
j=1

cjv
′ΣU

j v ≥ λmin(Σ
U
i )

n

n∑
j=1

cj ≥
C

n
tr(V ) ≥ C tr(ZZ ′)

nλmax(Z ′D2
εZ)

≥ Ck λmin(Z
′Z)

nλmax(Z ′D2
εZ)

> 0, a.s.n.

by Assumption A5 and because k/n > 0.

Now let b = [Σ]2:p+1,1 the covariance between the AR statistic and the score.
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Then det(Σn) = det(Ω) det(Ω − bb′σ−2
n ) by Schur complements. The (i, j)th

element in bb′σ−2
n is the covariance of the AR statistic with ith and jth element of

the score divided by the variance of the AR statistic. Hence this is equal to the

correlation of the AR statistic with the ith and jth element of the score statistic

times the standard deviations of the ith and jth element of the score statistic. Let

ρ be the vector of correlations between the AR statistic and the score. That is,

ρi = corr(1/
√
k(AR(β)− k), 1/

√
nS(i)|J ). Then

det(Σn) = det(Ω) det(Ω− bb′σ−2
n )

= det(Ω) det(I +Dρ) det(Ω) det(I −Dρ) > 0,

if ρi ̸= ±1 for all i. We now prove that this is indeed the case. Consider first the

variance of the score. We have with [Dc]ii = ci from (B.7)

Ωii ≥
1

n

[
tr(ΣU

(i,i)Dc) + a
′
(j)(DP − P ⊙ P )(I − 2(DP − (P ⊙ P )))a(j)

]
.

Define ∆ =DP − P ⊙ P . Then, for the squared correlation coefficient, we get

ρ2i = 2
(n−1a′

(i)∆DP ι)
2

n−1tr(∆)[n−1tr(ΣU
(i,i)Dc) + n−1a′

(i)∆(I − 2∆)a(i)]
.

As this is a correlation coefficient, we have |ρ2i | ≤ 1 and this holds even if

tr(ΣU
(i,i)Dc) is arbitrarily small. However, as n−1tr(ΣU

(i,i)Dc) ≥ C > 0 a.s.n.,

we have |ρ2i | ≤ C < 1 a.s.n. We conclude that Σ−1
n exists a.s.n.

B.2.4 Lyapunov condition

In this section we show that the martingale difference array {yin,Fi,n, 1 ≤ i ≤
n, n ≥ 3} satisfies the following Lyapunov condition

n∑
i=3

E[y4in|J ] ≤ CΞ−2
n

n∑
i=3

E

[(
− 1√

n

∑
j ̸=i

c′2nϕji(1− 2Pii)ri

)4∣∣∣∣J ]︸ ︷︷ ︸
linear

+ E

[(
1√
n

∑
j<i

(c′2nψ[ij] − 2c1nγnPij)rjri

)4∣∣∣∣J ]︸ ︷︷ ︸
quadratic

+ E

[(
1√
n

∑
l<j<i

c′2na[ijk]rlrjri

)4∣∣∣∣J ]︸ ︷︷ ︸
cubic

→a.s. 0.

(B.8)
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Since the variance Σn was shown in Section B.2.3 to be bounded away from

zero, Ξ−2
n is finite, as Ξn = var(α′Σ

− 1
2

n Ynr|J ) = (α′α) var(w1n +
∑n

i=3 yin|J ) =

(α′α)(1 + oa.s.(1)) > 0. We now subsequently consider the linear, quadratic and

cubic terms in (B.8).

Linear term For the term linear in r, we have that

E

[
1

n2

n∑
i=3

(∑
j ̸=i

c′2nϕji(1− 2Pii)

)4∣∣∣∣J ]

≤ E

[
C

n2

n∑
i=3

(1− 2Pii)
4∥

n∑
j=1

ϕji − ϕii∥4
∣∣∣∣J ]

≤ E

[
C

n2

n∑
i=3

(
∥Z̄ ′V Dεei∥4 + ∥U ′V Dεei∥4 +∥ϕii∥4

) ∣∣∣∣J ]→a.s. 0,

since (1− 2Pii)
2 < 1 and by Assumption A5, (B.3), (B.4) and (B.5).

Quadratic term For the term quadratic in r in (B.8), we first notice that

1

n2

n∑
i=3

E

[
∥
∑
j<i

γnPijrirj∥4
∣∣∣∣J ] ≤ γ2

n

n2

n∑
i=3

(∑
j<i

P 4
ij + 3

∑
(j,m)<i
j ̸=m

P 2
ijP

2
im

)
≤ C

k

nk
→ 0.

Similarly,

1

n2

n∑
i=3

E

[
∥
∑
k<i

c′2nψ[ik]rirk∥4
∣∣∣∣J ]

≤ C

n2

n∑
i=3

∑
k<i

∑
l<i

∑
m<i

∑
s<i

|c′2nψ[ik]||c′2nψ[il]||c′2nψ[im]||c′2nψ[is]|E[rkrlrmrs|J ]

≤ C

n2

n∑
i=3

(∑
k<i

(
c′2nψ[ik]

)4
+ 3

∑
(k,m)<i
k ̸=m

(
c′2nψ[ik]

)2(
c′2nψ[im]

)2)

≤ C

n2

n∑
i=3

(∑
k<i

p∑
h=1

(
Ψ

(h)
[ik]

)4
+ 3

∑
(k,m)<i
k ̸=m

p∑
h=1

(
Ψ

(h)
[ik]

)2 p∑
h=1

(
Ψ

(h)
[im]

)2)
.

(B.9)

To bound this expression, note that by (B.6) e′iΨ
(h)ei ≤ C a.s.n. Also, for any

vector v, (Ψ(h)v)2 = v′PDa(h)MDa(h)Pv ≤ maxi=1,...,n a
2
(h),i · v′Pv. This implies
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that
∑n

i=1(Ψ
(h)
ij )2 ≤ maxi=1,...,n a

2
(h),i · Pjj ≤ C a.s.n. Then,

1

n2

n∑
i,k=1

(Ψ
(h)
ik )4 ≤ 1

n2

n∑
i,k=1

(
n∑

j=1

(Ψ
(h)
jk )

2

)
(Ψ

(h)
ik )2

≤ 1

n2
max

j=1,...,n
a(h),j

n∑
k=1

Pkk

n∑
i=1

(Ψ
(h)
ik )2

≤ 1

n2
max

j=1,...,n
a2(h),j

n∑
k=1

P 2
kk ≤

Ck

n2
→a.s. 0.

Using this result, we have for the first term on the final line of (B.9)

1

n2

n∑
i=3

∑
k<i

(
Ψ

(h)
[ik]

)4
≤ 1

n2

n∑
k,i=1

(
Ψ

(h)
ik +Ψ

(h)
ki

)4
≤ C

n2

n∑
k,i=1

[
(Ψ

(h)
ik )4 + (Ψ

(h)
ki )

4
]
≤ Ck

n2
→a.s. 0.

For the second term on the final line of (B.9), we have

1

n2

n∑
i=3

∑
(k,m)<i
k ̸=m

(
Ψ

(h)
[ik]

)2 (
Ψ

(h)
[im]

)2
≤ C

n2

n∑
i,k,m=1

(
(Ψ

(h)
ik )2 + (Ψ

(h)
ki )

2
)(

(Ψ
(h)
im )2 + (Ψ

(h)
mi )

2
)

≤ C

n2

n∑
i,k,m=1

[
(Ψ

(h)
ik )2(Ψ

(h)
im )2 + (Ψ

(h)
ik )2(Ψ

(h)
mi )

2

+ (Ψ
(h)
ki )

2(Ψ
(h)
im )2 + (Ψ

(h)
ki )

2(Ψ
(h)
mi )

2

]
.

We now show almost sure convergence to zero of the sums over the four terms

within the brackets. First,

1

n2

n∑
i,k,m=1

(Ψ
(h)
ik )2(Ψ

(h)
im )2 ≤ 1

n2

n∑
i=1

(
n∑

k=1

(Ψ
(h)
ik )2

)2

≤ 1

n2

n∑
i=1

(
e′iΨ

(h)Ψ(h)′ei
)2

≤ 1

n2
tr(MDa(h)PDa(h)MDa(h)PDa(h)M ) ≤ Ck

n2
→a.s. 0.
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For the second, and likewise for the third term,

1

n2

n∑
i,k,m=1

(Ψ
(h)
ik )2(Ψ

(h)
mi )

2 ≤ 1

n2

n∑
i=1

e′iΨ
(h)′Ψ(h)eie

′
iΨ

(h)Ψ(h)′ei

≤ 1

n2

n∑
i=1

|e′iMDa(h)PDa(h)Mei||e′iPDa(h)MDa(h)Pei|

≤ 1

n2

n∑
i=1

| max
j=1,...,n

a2(h),j|2Pii ≤
Ck

n2
→a.s. 0.

For the fourth and final term we have,

1

n2

n∑
i,k,m=1

(Ψ
(h)
ki )

2(Ψ
(h)
mi )

2 ≤ 1

n2

n∑
i,k=1

(Ψ
(h)
ki )

2

n∑
m=1

(Ψ
(h)
mi )

2 ≤ 1

n2

n∑
i=1

max
j=1,...,n

a4(h),jP
2
ii

≤ Ck

n2
→a.s. 0.

Consequently, the quadratic term in (B.8) converges to zero almost surely.

Cubic term From (B.2), the cubic term can be written as,

n∑
i=3

E

[(
1√
n
r′A−irri

)4∣∣∣∣J ] = n∑
i=3

C

n2
E[E[(r′A−ir)

4|J ,U ]|J ].

AsA−i is symmetric with zeroes on its diagonal, we have by Item 4 of Theorem A.1

n∑
i=3

C

n2
E[E[(r′A−ir)

4|J ,U ]|J ]

≤
n∑

i=3

C

n2
E[]12 tr(A2

−i)
2 + 48 tr(A4

−i) + 32ι′(A−i ⊙A−i ⊙A−i ⊙A−i)ι|J ]

≤
n∑

i=3

C

n2
E[92 tr(A2

−i)
2|J ].

(B.10)

The second inequality follows since A2
−i is p.s.d., hence tr(A4

−i) ≤ tr(A2
−i)

2, and

ι′(A−i ⊙A−i ⊙A−i ⊙A−i)ι =
n∑

i=1

n∑
j=1

(e′iA−iej)
4 ≤

n∑
i=1

n∑
j=1

e′iA
2
−iei(e

′
iA−iej)

2

=
n∑

i=1

(e′iA
2
−iei)

2 ≤

(
n∑

i=1

(e′iA
2
−iei)

)2

= tr(A2
−i)

2.
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The final line of (B.10) can be further bounded as

n∑
i=3

C

n2
E[tr(A2

−i)|J ] =
n∑

i=3

C

n2
E[tr(Si−1AiSi−1AiSi−1)|J ]

≤
n∑

i=3

C

n2
E
[
tr([ṖDΦei ]

2 + [DΦeiṖ ]2

+ [Peie
′
iΦ]2 − [DPeiDe′iΦ

]2)
∣∣J ].

(B.11)

To bound these four terms we use the following result

C

n2

n∑
i=1

E[(e′iΦ
′Φei)

2 |J ] ≤ C

n2

n∑
i=1

E[e′iΦ
′ΦΦ′Φei|J ]

=
C

n2

n∑
i=1

E[e′iDεV D
2∑p

h=1 c2n,hx̄(h)
V D2∑p

h=1 c2n,hx̄(h)
V Dεei|J ]

≤ C

n2

p∑
h=1

n∑
i=1

E[x̄4
(h),i|J ]

≤ C

n2

n∑
i=1

∥Z̄ ′ei∥4 + E[∥U ′ei∥4|J ] →a.s. 0,

(B.12)

by Assumption A5 and the finite fourth moment of the elements of U . For the

first and second term of (B.11), we have by (B.12)

1

n2

n∑
i=1

E[tr2(ṖDΦeiṖDΦei)|J ] ≤ C

n2

n∑
i=1

E

[( n∑
j=1

e′jPD
2
Φei
Pej

)2∣∣∣∣J ]

≤ C

n2

n∑
i=1

E

[( n∑
j=1

e′jD
2
Φei
ej

)2∣∣∣∣J ]→a.s. 0.

For the third term of (B.11), also by (B.12),

1

n2

n∑
i=1

E[tr2(Peie
′
iΦPeie

′
iΦ)|J ] =

1

n2

n∑
i=1

E[tr2(Peie
′
iΦΦ′eie

′
iP )|J ]

≤ 1

n2

n∑
i=1

E[(Piie
′
iΦΦ′ei)

2 |J ]

≤ 1

n2

n∑
i=1

E[(e′iΦΦ′ei)
2 |J ] →a.s. 0.
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And finally, for the fourth term of (B.11), (B.12) implies that

1

n2

n∑
i=1

E[tr2(DPeiDe′iΦ
DPeiDe′iΦ

|J ] =
1

n2

n∑
i=1

E[

[
n∑

k=1

P 2
ki(Φki)

2

]2
|J ]

≤ 1

n2

n∑
i=1

E[

[
n∑

k=1

P 2
ii(Φki)

2

]2
|J ]

≤ 1

n2

n∑
i=1

E[[e′iΦ
′Φei]

2 |J ] →a.s. 0.

Hence the cubic term converges to zero almost surely. Therefore, the Lyapunov

condition is satisfied.

B.2.5 Converging conditional variance

This part of the proofs shows the following convergence result: for any ϵ > 0,

P

(∣∣∣∣ n∑
i=3

E[y2in|r−i,J ]− s2n

∣∣∣∣ ≥ ϵ

∣∣∣∣J)→a.s. 0.

We start by noting that,

s2n = E

[( n∑
i=3

yin

)2∣∣∣∣J ] = E[((α′α)−1/2α′Σ−1/2
n Yn + oa.s.(1))

2|J ] = 1 + oa.s.(1),

where the vanishing part is due to w1n. We can conclude that s2n is bounded and

bounded away from zero in probability. Now define r−i = r1, . . . , ri−1 and write

yin in (B.2) as yin = Ξ
−1/2
n (y

(1)
in + y

(2)
in + y

(1)
in ) with

y
(1)
in =

−1√
n
c′2nX̄

′(In − 2DP )V̇ Dεeiri,

y
(2)
in =

−1√
n
r′Si−1

[
(Ψ+Ψ′ − 2DΨ)− 2c1nγnṖ

]
eiri,

y
(3)
in =

1√
n
r′A−irri.
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Using a conditional version of Chebyshev’s inequality, we have

P

(∣∣∣∣ n∑
i=3

E[y2in|r−i,J ]− s2n(J )

∣∣∣∣ ≥ ϵ

∣∣∣∣J)
= P

(∣∣∣∣ n∑
i=3

E[y2in|r−i,J ]−
n∑

i=3

E[y2in|J ]

∣∣∣∣ ≥ ϵ

∣∣∣∣J)
≤ 1

ϵ2
E

[( n∑
i=3

E[y2in|r−i,J ]−
n∑

i=3

E[y2in|J ]

)2∣∣∣∣J ]
≤ C

ϵ2
E

[( n∑
i=3

E[(y
(1)
in + y

(2)
in + y

(3)
in )2|r−i,J ]−

n∑
i=3

E[(y
(1)
in + y

(2)
in + y

(3)
in )2|J ]

)2∣∣∣∣J ]

≤ C

ϵ2

E

( n∑
i=3

E[(y
(1)
in )2|r−i,J ]−

n∑
i=3

E[(y
(1)
in )2|J ]

)2
∣∣∣∣∣∣J


+ E

( n∑
i=3
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+ E
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(B.13)

Each of these terms converges to zero almost surely. For illustration we show

for the cross product between the quadratic and the cubic how this follows below.

For the other terms we do this in a separate document that is available upon

request.

Define Φ̂ =D∑p
h=1 c2n,hZ̄(h)

V Dε and Â−i as A−i but with Φ̂ instead of Φ and

similarly for other variables that contain Φ. The product between the quadratic
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and cubic term in (B.13) then is

E

( n∑
i=3

E[(y
(2)
in )(y

(3)
in )|r−i,J ]−

n∑
i=3

E((y
(2)
in )(y

(3)
in )|J )

)2
∣∣∣∣∣∣J


≤ C

n2
E

( n∑
i=3

r′Si−1

[
(Ψ+Ψ′ − 2DΨ)− 2c1nγnṖ

]
eir

′Si−1 E(Ai|J )Si−1r

)2
∣∣∣∣∣∣J


=
C

n2
E

( n∑
i=3

r′Si−1

[
(Ψ+Ψ′ − 2DΨ)− 2c1nγnṖ

]
eir

′Si−1ÂiSi−1r

)2
∣∣∣∣∣∣J


≤ C

n2

E

( n∑
i=3

r′Si−1 (Ψ+Ψ′ − 2DΨ) eir
′Si−1ÂiSi−1r

)2
∣∣∣∣∣∣J


+E

( n∑
i=3

r′Si−12c1nγnṖ eir
′Si−1ÂiSi−1r

)2
∣∣∣∣∣∣J
 ,

due to the odd number of Rademacher random variables in y
(1)
in y

(2)
in . We only bound

the second term. The first term follows by similar arguments and an eigenvalue

bound on Ψ+Ψ′ − 2DΨ. By completing the square we obtain

C

nk
E[(

n∑
i,j=3

r′Si−1Ṗ eie
′
jṖ Sj−1rr

′Â−irr
′Â−jr|J ]

=
C

nk

n∑
i,j=3

tr(Si−1Ṗ eie
′
jṖ Sj−1[20(Â−i ⊙ Â−j)− 6I ⊙ (Â−iÂ−j + Â−jÂ−i)

+ 4Â−iÂ−j + 4Â−jÂ−i + tr(Â−iÂ−j)I])

=
C

nk

n∑
i,j=3

e′jṖ Sj−1[20(Â−i ⊙ Â−j)− 6I ⊙ (Â−iÂ−j + Â−jÂ−i) + 4Â−iÂ−j

+ 4Â−jÂ−i + tr(Â−iÂ−j)I]Si−1Ṗ ei,

by Item 7 of Theorem A.1. For sake of space, we focus on the first term, which
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can be written as

C

nk

n∑
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e′jṖ Sj−1(Â−i ⊙ Â−j)Si−1Ṗ ei

=
C

nk

n∑
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=
C

nk
[2
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Â
(r)
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4∑
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Â
(s)
i )Si−1Ṗ ei],

where Â
(r)
i for r = 1, . . . , 4 are the four terms between the Si−1 in A−i from (B.2),

but with Φ substituted by Φ̂. Again, only consider the first term, which consist of

16 cross products for the different r and s. Let
∑n

j=i+1 e
′
jej = In −Si−1 − e′iei =

Ĩin. Then for r = 1, s = 1

C

nk

n∑
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1
2

≤ C

nk

n∑
i=3

[e′iP (

p∑
h=1

Dz̄(h))D
2
V̇ ĨinP (

∑p
h=1 Dz̄(h)

)
(

p∑
h=1

Dz̄(h))Peie
′
iṖ

2ei]
1
2 ,

by the Cauchy-Schwarz inequality twice and because λmax((Ṗ ⊙ Ṗ )(Ṗ ⊙ Ṗ )) ≤ C.

Now since for any n × n matrix A we have λmax(D
2
A) = maxj=1,...,n(e

′
jAej)

2 =

maxj=1,...,n e
′
jA

′eje
′
jAej ≤ maxj=1,...,n e

′
jA

′Aej ≤ λmax(A
′A) and λmax(V̇ ) ≤ C
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we have that λmax(D
2
V̇ ĨinP (

∑p
h=1 Dz̄(h)

)
) ≤ C λmax([

∑p
h=1Dz̄(h) ]

2) = Cmaxj=1,...,n ∥z̄i∥2.
Therefore the equation above becomes

C

nk

n∑
i=3

[e′iP (

p∑
h=1

Dz̄(h))D
2
V̇ ĨinP (

∑p
h=1 Dz̄(h)

)
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p∑
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Dz̄(h))Peie
′
iṖ

2ei]
1
2

≤ C

nk
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[( max
j=1,...,n

∥z̄i∥2)2e′iPeie′iṖ 2ei]
1
2 ≤ C

nk

n∑
i=3

max
j=1,...,n

∥z̄i∥2e′iPei →a.s. 0,

by Assumption A5. The other combinations of r and s can be shown to converge

to zero using similar arguments. Continuing like this we can show that (B.13)

converges to zero almost surely.

B.3 Unconditional distribution of t′Σ
−1/2
n Yn by Lebesgue’s

dominated convergence theorem

To obtain the unconditional distribution, note that for some ϵ > 0, say ϵ = 1, we

have

sup
n

E([|P((α′α)−1/2α′Σ−1/2
n Ynr < y|J )|1+ϵ]

= sup
n

E[(P((α′α)−1/2α′Σ−1/2
n Ynr < y|J ))2] ≤ sup

n
E[12] ≤ ∞.

Therefore, P((α′α)−1/2α′Σ
−1/2
n Ynr < y|J ) is uniformly integrable (Billingsley,

1995, p. 338) and we can apply a version of Lebesgue’s dominated convergence

theorem (Billingsley, 1995, Theorem 25.12)

P((α′α)−1/2α′Σ−1/2
n Yn < y) = E[P((α′α)−1/2α′Σ−1/2

n Yn < y|J )]

= E[P((α′α)−1/2α′Σ−1/2
n Ynr < y|J )] →a.s. E[Φ(y)] = Φ(y).

B.4 Distribution of Yn by the Cramér-Wold theorem

We have shown that for any α we have (α′α)−1/2α′Σ
−1/2
n Yn →d (α′α)−1/2α′Z,

with Z ∼ N(0, Ip+1). Then also C(α′α)−1/2α′Σ
−1/2
n Yn →d C(α′α)−1/2α′Z and

by the Cramér-Wold theorem (Billingsley, 1995, T29.4) Σ
−1/2
n Yn →d Z. □
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Figure 10: Power under identification robust inference for ai = |Zi1|.
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Note: power when testing H0 : β = 0 when the true β = β∗ at α = 0.05 based
on the jackknife Anderson-Rubin test without crossfit variance (Crudu et al., 2021;
Mikusheva and Sun, 2022), the jackknife score test without crossfit variance (Mat-
sushita and Otsu, 2022) and the tests developed here. k denotes the number of
instruments, R their strength and the invariance assumption is satisfied. The com-
bined test uses αAR = 0.01. The Monte Carlo is described in Section 6.

Appendix C Additional simulation results

C.1 Power comparison with jackknife tests

Figure 10 shows the power of the jackknife AR by Crudu et al. (2021) and Miku-

sheva and Sun (2022) and the jackknife score by Matsushita and Otsu (2022) both

without crossfit variance for the DGPs described in Section 6. The panels show

that there is no clear ordering in power of the tests. For the AR test we find

that the jackknife approach delivers higher power when β∗ is positive, while the

continuous updating based AR delivers higher power when β∗ is negative. For

the score, we generally find higher power for the continuous updating based score,

although this has a power dip for negative values of β∗.
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Figure 11: Power of the many instrument robust score test and fraction of negative
variance estimates for heteroskedastic data.
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Note: power when testing H0 : β = 0 when the true β = β∗ at α = 0.05 based
on the many instrument robust score test together with the fraction of negative
variance estimates. k denotes the number of instruments, R their strength and the
invariance assumption is satisfied. The Monte Carlo is described in Section 6.

C.2 Power derived from negative variances

In this subsection we show the power that the many instrument robust score test

obtains due to rejecting the null when finding a negative variance. We plot the

rejection rate and the fraction of negative variances in Figure 11 for the het-

eroskedastic case where ai = |Zi1|. We see that we only observe negative variance

estimates under the alternatives, thus increasing the power without affecting the

size. Moreover, the number negative variance estimates increases with the distance

between the true and hypothesized value of β and thus counteracts the decrease

in power against distant alternatives from which score tests generally suffer.

Unreported simulation results show that for the case of a single instrument

and weak or irrelevant instruments negative variances also occur when the null

hypothesis is satisfied. Consequently, the many instrument robust score test be-
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comes oversized in these cases. This is also what we observe in the upper right

panel of Figure 5. There the many instrument robust score test has rejection rates

slightly above the desired five percent line. This is not surprising as we only show

consistency of the variance estimator under many-instrument sequences.

Appendix D Details of the applications

Table 2 shows the exact values of the confidence intervals and the point estimates

for the Card (2009) application that are shown graphically in Figure 1.

Table 2: 95% confidence interval and point estimates for the negative inverse
elasticity of substitution between immigrants and natives.

High school equivalent workers College equivalent workers
Lower Point Upper Lower Point Upper

OLS -0.0406 -0.0297 -0.0188 -0.0728 -0.0576 -0.0424
Bartik -0.0569 -0.0367 -0.0164 -0.0999 -0.0734 -0.0420
2SLS -0.0482 -0.0363 -0.0244 -0.0794 -0.0621 -0.0448
Fixed-k AR -0.1141 0.0072 -0.1593 0.0289
MI AR -0.0899 0.0008 -0.1342 0.0000
Fixed-k score -0.0905 0.0001 -0.1275 -0.0227
MI score -0.0754 -0.0021 -0.1172 -0.0312
MI combined -0.0759 -0.0011 -0.1181 -0.0307

Note: 95% confidence intervals for the negative inverse elasticity of substitution be-
tween natives and immigrants. Confidence intervals and point estimates are con-
structed using (i) OLS (ii) 2SLS with the Bartik instrument (iii) 2SLS (iv) the fixed-k
AR statistic (v) the fixed-k score statistic by (vi-viii) the tests developed here.
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