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Abstract
TheExpectation-Maximization (EM) algorithm is a popular tool for estimatingmodels
with latent variables. In complex models, simulated versions such as stochastic
EM, are often implemented to overcome the difficulties in computing expectations
analytically. A drawback of the EM algorithm and its variants is the slow convergence
in some cases, especially when the models contain relatively large number of latent
variables. Liu et al., 1998 proposed a parameter-expanded algorithm (PX-EM) to
speed up convergence. This paper explores the potential of parameter expansion
ideas for estimating latent-variable panel models using the stochastic EM algorithm.
I develop PX-SEM methods for three types of panel data models: 1) dynamic factor
models, 2) binary choice models with individual effects and persistent shocks, and 3)
persistent-transitory dynamic quantile processes. I find that PX-SEM could greatly
speed up convergence.
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1 Introduction

The Expectation-Maximization (EM) algorithm proposed by Dempster et al., 1977 is a

useful tool for empirical models with latent variables for obtaining maximum-likelihood

estimates. Starting from an initial guess of parameters, the algorithm iterates between an

E-step, which computes the conditionalmean of certain functions of latent variables given

observables, and anM-step, which solves the likelihood-based optimization problem and

updates parameters until the convergence to the maximum of the likelihood. The EM al-

gorithm has also been extended to introduce GMMestimation in theM-step (Arcidiacono

and Jones, 2003). However, in complicated models where computing the E-step analyt-

ically is infeasible, simulated versions of the EM algorithm are often implemented. A

prominent example is the stochastic expectation-maximization (SEM) algorithm (Diebolt

and Celeux, 1993). In this case, the task of the E-step becomes drawing latent variables

from the posterior distribution given observables, whereas the M-step becomes updating

parameters as if the draws were observables.1 Starting from an initial guess, one needs

to iterate between two steps until the convergence of the estimates to the stationary dis-

tribution. The method could greatly simplify the implementation because the M-step

optimization under pseudo-complete data is usually much easier.

A drawback of the EM algorithm and its variants is the slow convergence in some

situations, especially when the models contain multiple latent variables over multiple

periods, as in many panel data models, or when the initial guesses are not good. Indeed,

as it is usually hard to knowwhether the initial guesses are good or not and to prevent the

series converge to some local maximum, one strategy that researchers use is to run from

a large amount of initial guesses and select based on some criteria such as likelihood. As

a consequence, the slow convergence issue becomes even more prominent. Recent work

has looked at alternative samplers for the latent variables when performing the E step. In

contrast, we will focus on M step and try to improve the convergence rate especially for

nonlinear panel data models.

To do so, this paper combines the parameter-expansion technique studied in Liu

et al., 1998 with the SEM algorithm and develops PX-SEM algorithms for three types

of nonlinear panel data models: 1) dynamic factor models, 2) binary choice models

with individual effects, persistent and transitory components, and 3) persistent-transitory

1Arellano and Bonhomme, 2016 extends SEM algorithm by replacing the likelihood-based M-step by
quantile regressions.
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dynamic quantile processes.

Similarly, the PX-SEM algorithm also consists of two steps. The E-step is the same

as in the standard SEM algorithm. In contrast, the M-step estimator is replaced by a

more robust one, taking into account that the E-step draws under parameter values far

from the optimum could violate model assumptions. Specifically, the M step involves:

1) expanding the original model (O model) to a larger one (L model), 2) estimating the

L model, and 3) reducing to O model space, which all together aims to exploit extra

information from the latent-variable model assumptions.

To implement the PX-SEM algorithm, one needs to develop a suitable expanded L

model with auxiliary parameters and a reduction function. L model needs to satisfy two

restrictions. First, there exists somevalueof auxiliaryparameters such thatLmodel equals

O model. Second, there exists the reduction function, which is a mapping from L model

parameter space to O model parameter space, such that the likelihood of observables is

preserved. Everything else the same, a more flexible L model should not increase the

number of iterations needed for convergence, but it might cause extra execution time for

each iteration, and thus leads to longer computing time. Therefore, there is a tradeoff

between the flexibility of the Lmodel and additional complications in Lmodel estimation

and reduction.

Taking the discussion above into account, this paper develops procedures to use PX-

SEM algorithms for three types of panel data models, the dynamic factor models, the

discrete choice models, and persistent-transitory dynamic quantile processes. The focus

on panel data models is expected to make the PX-SEM implementation more challenging

but also more fruitful. On the one hand, panel data models are widely used in applied

work. On the other hand, panel data models allow for more latent variables such as

individual effects, and persistent and transitory components overmultiple periods, which

worsens the convergence issues of the SEM algorithm, but increases considerably the

potential benefits of PX-SEM.

For all applications, we expand the O model linearly by allowing for a non-zero

correlation between variables that are assumed to be non-correlated. Additionally, in

some of the applications, we choose the L model such that the reduction function is

simply identity mapping. Therefore, the only task left in M-step is to estimate the L

model.

Finally, bydoing simulation,wefind that the PX-SEMalgorithms significantly improve
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the algorithmic efficiency compared to the standard SEM algorithm. A general lesson

that we learn is that even without expanding the O model, from the perspective of

reducing convergence time, we should consider estimators that require less latent variable

information other than MLE.

Literature andcontribution. This paperbelongs to expanding literature that considers

the application of the EM algorithm (Dempster et al., 1977) and its variants in estimating

latent variable models (Diebolt and Celeux, 1993; Arcidiacono and Jones, 2003; Arellano

and Bonhomme, 2016; Liu et al., 1998). This paper contributes to this literature in two

ways. First, I combine the parameter expansion idea with the stochastic EM algorithm

and discuss both likelihood-based andmoments-basedM-step estimators.2 Additionally,

we propose ways to implement PX-SEM algorithms for three types of nonlinear panel

data models that are widely used in applied work: 1) dynamic factor models, 2) discrete

choice models, and 3) persistent-transitory quantile models. In simulations, we show

that PX-SEM could significantly reduce the convergence time.

Organization. The paper proceeds as follows. In Section 2, I illustrate the difference

between the standard stochastic EM algorithm and the parameter-expanded stochastic

EM algorithm using a simple toy model. Section 3 defines the PX-SEM algorithm and

discuss its statistical properties. Next, I develop PX-SEM methods for three types of

nonlinear latent-variable panel data models. In Sections 4 to 6, I propose the PX-SEM

algorithms for dynamic factor models, discrete choice models, and persistent-transitory

dynamic quantile processes, respectively. Finally, Section 7 concludes.

2 Toy Model

In this section, we will compare the standard stochastic EM (SEM) algorithm with the

parameter-expanded stochastic EM (PX-SEM) algorithm based on a simple toy model.

In addition to showing the difference between the two methods, we will also explain

intuitively why PX-SEM might speed up the convergence.

Consider the following model that we want to estimate:

OModel:

H8 = H
∗
8 + &8 ,

(
H∗
8
&8

)
∼ #

(
0,

(
�2 0
0 1

) )
2Liu et al., 1998 is based on the standard EM algorithm. Liu and Wu, 1999 applies the parameter

expansion technique to Bayesian inference by combining with the data augmentation algorithm; Lavielle
and Meza, 2007 combines the parameter expansion technique with Monte Carlo EM.
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where H1, ..., H# are observed outcomes and H∗1, ..., H
∗
#
are latent variables whose distri-

bution is of interest. The only unknown parameter is the standard deviation �. In fact,

this model is simple enough for us to write down the closed-form of the log-likelihood

function and the maximum likelihood estimator, such that there is no need to implement

SEMor PX-SEMalgorithms. However, wewill use thismodel to illustrate two algorithms,

respectively.

SEM algorithm. To implement SEM algorithm, we need to start with a guess of

unknown parameter �̂(0), and then iterate the following two steps on B = 0, 1, 2, ..., ( until

the convergence of �̂(B) to the stationary distribution:

1. Stochastic E step: Draw H∗
8
from posterior distribution 5$(H∗8 |H8 ; �̂(B))

2. M step: Update parameters by computing �̂(B+1) = arg max�
∑
8 ;$(�; H∗

8
, H8), that is

�̂(B+1) = ŝtd(H∗
8
)

where 5$(·; �) is the density function of O Model, and ;$(·; H∗, H) is the log-likelihood

function of pseudo-complete data. The final estimator is the average of last (0 iterations

�̂ = 1
(0

∑(
(−(0+1 �̂

(B)

EM algorithm works because it improves the observed-data likelihood in each itera-

tion:

log 5$(H8 ; �̂(B+1)) − log 5$(H8 ; �̂(B)) ≥ &(�̂(B+1) |�̂(B)) −&(�̂(B) |�̂(B)) ≥ 0

where &(�̂(B+1) |�̂(B)) =
∫

log 5$(H8 , H∗8 ; �̂(B+1)) 5$(H∗8 |H8 ; �̂(B))3H∗8
PX-SEM algorithm. Now we introduce the PX-SEM algorithm. Similar to the SEM

algorithm, PX-SEM also consists of an E-step where we draw latent variables and an

M-step where we update parameters. The E-step is the same as in the SEM algorithm,

whereas in the M-step, PX-SEM requires 1) expanding the original model, 2) estimating

the expanded one, and 3) reducing to the original model space to obtain the estimator.

For notation simplicity, we refer to the expanded larger model as the L model relative to

the original model (O model).

For this toy model, we propose the following L model:

L Model:

H8 = H
∗
8 + &8

where
(
H∗
8
&8

)
∼ #

(
0,  

(
�2 0
0 1

)
 ′

)
,  =

(
: 0

1 − : 1

)
In addition to �, the L model also contains an auxiliary parameter :. It is easy to

show that when : = 1, the two models coincide, that is 5$(H∗8 , H8 ; �) = 5!(H∗8 , H8 ; : = 1, �);
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and when : ≠ 1, 0, L model expands the O model by allowing for a non-zero correlation

between H∗
8
and &8 , as cov(H∗

8
, &8) = :(1 − :)�2.

Nowwe implement the PX-SEM algorithm. Starting with a guess of unknown param-

eter �̂(0), we iterate the following two steps on B = 0, 1, 2, ..., ( until the convergence of

�̂(B) to the stationary distribution:

1. Stochastic E step: Draw H∗
8
from posterior distribution 5$(H∗8 |H8 ; �̂(B))

2. PX-M step: Update parameters by

(a) Estimate the L model: computing (�̂(B+1)
!

, :̂!) = arg max�,:
∑
8 ;!(�, :; H∗8 , H8),

that is :̂! =
v̂ar(H∗

8
)

ĉov(H∗
8
,H8) , �̂

(B+1)
!

=
ŝtd(H∗

8
)

| :̂! |

(b) Obtain �̂(B+1) by mapping the L model to the O model space while keeping

5$(H8 ; �̂(B+1)) = 5!(H8 ; :̂! , �̂(B+1)
!
), that is �̂(B+1) = �̂(B+1)

!

The final estimator is the average of last (0 iterations:�̂ = 1
(0

∑(
(−(0+1 �̂

(B).

As described above, the twomethods share the same E step, and the only difference is

in the estimators of the M step: the PX-SEM estimator is adjusted by 1
:̂!
. Figure 1 explains

what the PX-SEM and its auxiliary parameter : do. Specifically, Figure 1a is the scatter

plot of simulations from the O model with a true value of � = 2. The X-axis and Y-axis

display H∗
8
and &8 = H8 − H∗8 , respectively. As expected, we do not observe significant

correlations between the sample H∗
8
and &8 . Remember, we assume that H∗

8
is latent, and

only H8 is observed. Next, given H8 , we conduct E-step and compare the H∗
8
draws under

different guesses of the value of �.

Figure 1b is the scatter plot of (Ĥ∗
8
, H8 − Ĥ∗8 )where Ĥ∗

8
is the E-step draws under the true

value, that is Ĥ∗
8
∼ 5$(H∗8 |H8 ; � = 2), and Figure 1c is the scatter plot of (Ĥ∗

8
, H8 − Ĥ∗8 ) where

Ĥ∗
8
is the E-step draws under a wrong value � = 1, that is Ĥ∗

8
∼ 5$(H∗8 |H8 ; � = 1). Figure 1c

presents a significant positive correlation between Ĥ∗
8
and H8 − Ĥ∗8 , which should be zero

by assumption. We generate this "false" positive correlation because the draws are taken

under the "constraints" that 1) the variance of H∗
8
should not be far away from 1, and 2)

the variance of H8 − H∗8 should not be far away from 1.3

3The "constraints" are from the distribution from which we draw H∗
8
: 5 (H∗

8
|H8 ; � = 1) ∝ )(H∗

8
))(H8 − H∗8 )
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Figure 1: Data and draws of E-step under different guess of �

(a) True (H∗
8
, H8 − H∗8 )

(b) Draws from E-step given
�(B) = �CAD4 , (H∗8 , H8 − H∗8 )

(c) Draws from E-step given
�(B) ≠ �CAD4 , (H∗8 , H8 − H∗8 )

In the case of Figure 1b, both M-step estimators are consistent, and the SEM one is

more efficient due to the correct constraints (: = 1). However, In the case of Figure

1c, the M-step of SEM ignores the violation of the zero-correlation assumption. As a

consequence, the estimator ˆstd(H∗
8
) is no more consistent. In contrast, PX-SEM takes into

account the "false" correlation by adding parameter : and the L model estimator is still

consistent. To put it another way, in this case, the M-step estimator of the SEM algorithm

is the pseudoMLE, whereas the PX-SEM is the MLE, which leads to a larger increment of

likelihood changes (of complete data H8 and H∗8 ). And finally, by reducing to the O model

space keeping the likelihood of observed data H8 unchanged, we preserve the "gains" in

the complete data likelihood.

There are potentially a lot ofways of expanding the originalmodel, and considerations

include how easy to estimate the L model and reduce it to O model. Section 3 has

further discussion, and Appendix B compares different L models as well as M-step

estimators using the toy model example. Yet it is worth noting that if we propose the

following Lmodel: H8 = H∗8 + &8 , where
(
H∗
8
&8

)
∼ #

(
0,  

(
�2 0
0 1

)
 ′

)
,  =

(
:1 :2
0 :3

)
, subject to

� 

(
�2 0
0 1

)
 ′�′ = �

(
�2 0
0 1

)
�′, � =

(
1 1

)
, which jointly with the normality assumption

guarantees that 5$(H8 ; �) = 5!(H8 ; �,  ), then the PX-SEM estimator is the GMM estimator:

�̂ = v̂ar(H8) − 1.

3 Parameter Expansion Stochastic EM Algorithm

In this section, I will first define the PX-SEM algorithm and explain the implementation

steps in a general way. Next, I will discuss the statistical properties and the reason why

it could improve the algorithmic efficiency.
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3.1 Definition of PX-SEM algorithm

Setup. Let {.8 , -8 , .∗8 } for 8 = 1 : # be i.i.d. random variables from the O Model

distribution 5$(.8 |-8 ;�) =
∫
.∗
8

5$(.8 , .∗8 |-8 ;�)3.∗8 , where ,8 ≡ [.8 ;-′8 ]′ is the observable

set, .∗
8
is the latent-variable set, and � is the unknown parameter set to be estimated.The

true value, �, satisfies the equation�(Ψ$(.∗8 ,,8 ;�)) = 0, whereΨ$(·) represents the score
function of the complete O model in the case of likelihood-based PX-SEM algorithm and

moment restrictions in the case of moment-based one. We can easily show that the true

value � also satisfies the equation

�
( ∫

Ψ$(.∗8 ,,8 ;�) 5$(.∗8 |,8 ;�)3.∗8
)
= 0 (1)

Denote the expanded model, L Model, by 5!(.8 |-8 ;�,  ) =
∫
.∗
8

5!(.8 , .∗8 |-8 ;�,  )3.∗8 ,
where  represents for all auxiliary parameters. The expanded L model needs to sat-

isfy two conditions: (1) L model nests O model: ∃  0 such that 5$(.8 , .∗8 |-8 ;�) =
5!(.8 , .∗8 |-8 ;�,  0), ∀�, and (2) There is a mapping, the reduction function, from the

L Model space to O Model space � = '(�! ,  ) such that the observed data likelihood is

preserved 5$(.8 |-8 ;'(�! ,  )) = 5!(.8 |-8 ;�! ,  ), ∀�! ,  .4
Function Ψ�

!
(·) represents the score of the L model with respect to � in the case of

likelihood-basedPX-SEMalgorithmand the samemoment restrictions asΨ$(·) in the case
of moment-based one. Under condition (1), we have Ψ�

!
(.∗
8
,,8 ;�,  0) = Ψ$(.∗8 ,,8 ;�),

and thus �(Ψ�
!
(.∗
8
,,8 ;�,  0)) = 0. Additionally, assume that there exist moment restric-

tionsΨ 
!
(·) such that  is identified when we observe .∗

8
, that is �(Ψ 

!
(.∗
8
,,8 ;�,  0)) = 0,

then we have �(Ψ!(.∗8 ,,8 ;�,  0)) = 0, where Ψ!(·) = [Ψ�
!
(·);Ψ 

!
(·)]. Equivalently, we

have

�
( ∫

Ψ!(.∗8 ,,8 ;�,  0) 5$(.∗8 |,8 ;'(�,  0))3.∗8
)
= 0 (2)

Definition of PX-SEM algorithm. Before we introduce the general steps of the PX-

SEM algorithm, for comparison, let us have a look at the SEM algorithm. SEM is an

iterative algorithm where in the E step we draw latent variables .∗
8
from posterior distri-

bution 5$(.∗8 |,8 ; �̂(B)) under parameter guess �̂(B), and in theM step update parameters to

�̂(B+1), that is
∑
8

(
Ψ$(.∗8 ,,8 ; �̂(B+1))

)
= 0. The stochastic version differs from the original

EM algorithm because we replace the integral by the latent draws in equation (C1).5

4We know reduction function should satisfy '(�,  0) = �.
5The Monte Carlo EM uses many simulations to approximate the conditional expectation whereas the

SEM uses only one or few in each iteration (Wei and Tanner, 1990; Nielsen, 2000).
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In contrast, PX-SEM algorithm proposes the iterations which are better linked to

equation (C2): we still draw latent variables .∗
8
from posterior distribution 5$(.∗8 |,8 ; �̂(B))

under parameter guess �̂(B), but we use the expanded model to update to �̂(B+1).

The general steps are as follows: starting with a guess of unknown parameter �̂(0),

we iterate the following two steps on B = 0, 1, 2, ..., ( until the convergence of �̂(B) to the

stationary distribution:

1. Stochastic E step: Draw .∗
8
from posterior distribution 5$(.∗8 |,8 ; �̂(B))

2. PX-M step: Update parameters by

(a) Estimate L model:
∑
8Ψ!(.∗8 ,,8 ; �̂(B+1)

!
,  ̂(B+1)) = 0

(b) Reduction: �̂(B+1) = '(�̂! ,  ̂) subject to 5$(.8 |-8 ; �̂(B+1)) = 5!(.8 |-8 ; �̂! ,  ̂)

In practice, one of the challenges in choosing appropriate L model is to figure out the

associated reduction function. A strategy that this paper takes in most of the following

applications is to expand the model in a specific way such that the reduction function

is simply � = '(�,  ). In more detail, in the following sections where I develop PX-

SEM algorithms for discrete choice models and quantile models, I choose L models where

auxiliary parameter  does not affect the observed data likelihood:

5$(.8 |-8 ;�!) = 5!(.8 |-8 ;�! ,  ) (3)

The advantage the extra restriction brings to us is that it implies '(�! ,  ) = �!, and

therefore the procedure of PX-SEM algorithm can be simplified as:

1. Stochastic E step: Draw .∗
8
from posterior distribution 5$(.∗8 |-8 , .8 ; �̂(B))

2. PX-M step: Update parameters by estimating the L model:∑
8

Ψ!(.∗8 ,,8 ; �̂(B+1),  ̂) = 0

By comparing the M-steps of SEM algorithm with the PX-SEM algorithm, we can see

that the estimator of the SEM M-step is a restricted version of PX-SEM M-Step estimator

under the restriction of  =  0. When the draws .∗
8
are taken under a guess �̂(B) that is

close enough to the true value, intuitively, we expect the SEMestimator to bemore efficient

given the correct restriction  =  0. In this case, the PX-SEM estimator is still consistent

based on equation (C2) which becomes �
( ∫

Ψ!(.∗8 ,,8 ;�,  0) 5$(.∗8 |-8 , .8 ;�)3.∗8
)
= 0

given the extra restriction (3). However, under the guess �̂(B) which is far enough such

that the draws.∗
8
violate somemodel assumptions, wewould expect the PXSEMestimator
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to be more "robust" given the extra flexibility in  . Correspondingly, as we will show in

the following subsection, the likelihood-based PX-M-step could achieve a higher pseudo

complete data likelihood improvement, which further leads to a higher observed-data

likelihood improvement in each iteration compared to the SEMM-step.

3.2 Statistical properties

In this subsection, we will first show that likelihood-based parameter expanded EM al-

gorithm increases the log-likelihood of the observed-data model at each iteration based

on the work of Liu et al., 1998. Then combining with Nielsen, 2000 and Arellano and

Bonhomme, 2016, we give conditions under which the stochastic version, PX-SEM, on av-

erage dominates the SEM in global rate of convergence. Finally, we discuss the asymptotic

properties of the PX-SEM estimator.

Convergence. When theMstep is likelihood-based, that iswhen theΨ!(.∗8 ,,8 ;�,  ) =
[ %%� ln 5!(.8 , .∗8 |-8 ;�,  );

%
% ln 5!(.8 , .∗8 |-8 ;�,  )], Liu et al., 1998 shows that the parameter

expanded EM algorithm, just like the original EM algorithm, increases the loglikelihood

of the observed-data model at each iteration. Here we discuss this briefly.

It can be easily shown that:

log 5$(.8 |-8 ; �̂(B+1)) − log 5$(.8 |-8 ; �̂(B)) = log 5!(.8 |-8 ; �̂! ,  ̂) − log 5!(.8 |-8 ; �̂(B),  0)

The equation holds because of both condition (1), that is L model nests Omodel and ∃ 0,

5$(.8 |-8 ; �̂(B)) = 5$(.8 |-8 ; �̂(B),  0), and condition (2), that is the reduction function exists

— so by construction 5$(.8 |-8 ; �̂(B+1)) = 5!(.8 |-8 ; �̂! ,  ̂).
Then, given Gibbs’ inequality, we have∑

8

log 5!(.8 |-8 ; �̂! ,  ̂) −
∑
8

log 5!(.8 |-8 ; �̂(B),  0) ≥ &(�̂! ,  ̂ |�̂(B),  0) −&(�̂(B),  0 |�̂(B),  0)

where &(�̂! ,  ̂ |�̂(B),  0) =
∑
8

∫
log 5!(.8 , .∗8 |-8 ; �̂! ,  ̂) 5!(.∗8 |.8 , -8 ; �̂(B),  0)3.∗8 .

Finally, using definition of �̂!, which is �̂! ,  ̂ = arg max�, &(�,  |�̂(B),  0), we can

prove ∑
8

log 5$(.8 |-8 ; �̂(B+1)) −
∑
8

log 5$(.8 |-8 ; �̂(B)) ≥ 0

The inequality above says that the PX-EM improves the observed-data likelihood in

each iteration. Moreover, the L model being more flexible and nesting the O model

implies the following inequality:

&(�̂! ,  ̂ |�̂(B),  0) −&(�̂(B),  0 |�̂(B),  0) ≥ &(�̂(B+1)
(�"

,  0 |�̂(B),  0) −&(�̂(B),  0 |�̂(B),  0)
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where �̂(B)
(�"

= arg max�
∑
8

∫
log 5$(.8 , .∗8 |-8 ;�) 5!(.∗8 |.8 , -8 ; �̂(B),  0)3.∗8 .

Therefore, the parameter expansion technique can be intuitively interpreted as a way

to improve the lower bound of the loglikelihood increment.

Convergence speed. In Appendix C.3, we discuss in detail the conditions under

which parameter expansion technique speeds up the convergence. Importantly, one

implication is that with likelihood-based M step, PX-SEM on average dominates the

SEM in computational efficiency. Specifically, defining �̂ as the MLE, we can write the

dynamics of SEM iterations �̂(B)
(�"

as follows:

(�̂(B+1)
(�"
− �̂) = (� −+(�")(�̂(B)(�" − �̂) + �(�"&(B)� + >?(#

−(1/2))

and the dynamics of PX-SEM iterations �̂(B) as follows:

(�̂(B+1) − �̂) = (� −+%-)(�̂(B) − �̂) + �%-&(B) + >?(#−(1/2))

where the expression of +(�" , +%- , �(�" , and �?G are given in Appendix C.3. We show

in the appendix that the smallest eigenvalue of +%- , which is the global speed, is at least

as large as the smallest eigenvalue of +(�" . Therefore, the PX-SEM on average exhibits a

higher global convergence speed than SEM.

Asymptotic properties. Nielsen, 2000 studies the statistical properties of likelihood-

based SEM algorithm. Specifically, the paper charaterizes the asymptotic distribution of
√
#(�̂(B) − �), when sample size tend to infinity, where � is the true value of �. Arellano

and Bonhomme, 2016 expands the results by discussing the asymptotic properties for

moment-based SEM algorithm. Based on these two papers, in Appendix C.2, we show

that in case of convergence and B corresponds to a draw from the ergodic distribution of

the Markov chain, then
√
#(�̂(B) − �) 3−→ N(0,Σ1 + Σ−1

2 Σ3Σ
−1
2
′)

where the expression of Σ1, Σ2, and Σ3 are given in Appendix C.2.

When the M-step is moment-based, in general, convergence is not garanteed. In case

of convergence, the speed does not necessarily dominate the SEM algorithm. In fact,

in Appendix B, we show an example where the moment-based M step combined with

parameter expansion technique works worse than SEM at least for some initial guesses.

However, in practice, wemight still want to use themoments-based PX-SEM estimator

for at least two reasons. First, in some cases, GMM estimators are much easier to obtain,

such as the quantile example that we will discuss in Section 6. We care about the total
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amount of time to converge which depends not only on the number of iterations but also

on the time spent in each iteration. Secondly, even if it is still feasible to obtainMLE of the

O model, restricting ourselves to tractable ML estimators in the M step might limit the

flexibility in constructing the Lmodel, which has effects on the speed of convergence. For

example, in Appendix B, we show an example when the moment-based PX-SEM with a

more flexible L model outperforms the MLE-based PX-SEM with a less flexible L model

in the toy model case.

It is worth emphasizing again that the contribution of this paper is twofold. First,

we combine the parameter-expansion technique developed in Liu et al., 1998 with the

stochastic EM algorithm. Moving towards the stochastic EM version allows us to deal

with more complicated models, such as nonlinear panel data models, where computing

E-step analytically as required in the original EM algorithm is not feasible, and where the

benefit of PX-SEM is expected to be large due to a higher dimension of latent variables.

Second andmore important, given that the PX-SEM algorithm itself does not speak of

selection of L model nor detailed steps of estimation, the other contribution of this paper

is to propose specific L models and estimation steps to implement PX-SEM for nonlinear

panel data models. In the following three sections, we will discuss three examples: 1)

dynamic factor models, 2) discrete choice models, and 3) quantile models.

4 Dynamic Factor Models

The first example we explain is dynamic factor models (Geweke, 1977). The appeal of this

class of models is that it can explain variation across multiple dimensions using variation

in fewer latent common factors. Applications include topics in macroeconomics and

finance.(Bai et al., 2008; Stock and Watson, 2006, 2011). The specific O model we discuss

is a single factor model, but the same approach to implementing PX-SEM algorithm can

be applied to models with multiple latent factors.

OModel:

H8C = �8�C + &8C

�C = �C−1 + DC

where &8C ∼ #(0, �2
8
), D8C ∼ #(0, 1).

There is a latent common factor �C that follows aGaussian randomwalk. We observe#

different measures, H8 , 8 = 1, ..., # , over in total ) periods, and each of them is associated

11



with a different factor loading �8 . In this model, we also assume &8C is independent across

periods.6 Denote the set of unknown parameters by � ≡ (�1, ...,�# , �1, ..., �# ).
SEM algorithm. For comparison, we first explain the procedure of SEM algorithm.

Starting from a guess �̂(0), we iterate between the E-step and M-step on B = 0, 1, 2, ..., (

until the convergence of �̂(B) to the stationary distribution:

1. Stochastic E step: Draw � from posterior distribution 5$(� |H; �̂(B))
2. M step: �̂(B+1) = (�̂1, ..., �̂# , �̂1, ..., �̂# )

�̂8 , �̂8 = max
�8 ,�8

∑
C

(
ln)(

H8C − �8�C
�8

) − ln �8

)
PX-SEM algorithm. To implement PX-SEM algorithm, we need to build a proper L

model. In this case, we propose a very simple L model.

L model:

H8C = �8�C + &8C

�C = �C−1 + DC

where &8C ∼ #(0, �2
8
) and D8C ∼ #(0, k2)

We expand the O model by adding an auxiliary parameter k such that the variance of

persistent shock DC could be different from 1. It is easy to verify the L model satisfies the

condition (1), since we could always take k = 1 and then the two models coincide.

Related to condition (2), there exists reduction function '(�1, ...,�# , �1, ..., �# , k) =
(�1k, ...,�#k, �1, ..., �# ) such that the likelihood of the observed data is kept the same

5$(H;�1k, ...,�#k, �1, ..., �# ) = 5!(H;�1, ...,�# , �1, ..., �# , k).
With the specified Lmodel, we can implement the PX-SEM algorithmwith the follow-

ing procedures: We start from a guess �̂(0), and iterate between the following E-step and

PX-M step on B = 0, 1, ..., ( until the convergence of �̂(B) to the stationary distribution:

1. Stochastic E step: Draw � from posterior distribution 5$(� |H; �̂(B))
2. PX-M step:

(a) L model estimation: �̂!, �̂! = (�̂!1, ..., �̂!# , �̂!1, ..., �̂!# )

�̂!8 , �̂!8 = max
�8 ,�8

∑
C

(
ln)(

H8C − �8�C
�8

) − ln �8

)
k̂ = max

k

∑
C

(
ln)(�C − �C−1

k
) − ln k

)
6The method can be easily adapted to models with 1) unknown persistence in �C process, 2) multiple

latent factors, 3) &8C following MA process, etc.
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(b) Reduction: �̂(B+1) = (�̂!k̂, �̂!)

As indicated in the PX-M step, due to the separability of the log-likelihood function,

the auxiliary parameter k is very easy to estimate. Compared to the SEM, the PX-SEM

update �̂(B+1) takes into account the potential violation from the assumption k = 1 in the

O model. When the guess �̂(B) is close enough to the true value, then we should expect

k̂ is close to 1, and thus the estimates of SEM and PXSEM steps are similar. When the

guess �̂(B) is far enough from the true value such that the draw � in the E step violates the

assumption k = 1, the PX-SEM algorithm adjusts the estimates accordingly. For example,

when the k̂ is larger than 1, this suggests to scale down the latent draws � by k to have

var(Δ�) = 1, and to scale up �8 by k to have the same loglikelihood of observed data.

Simulation Results. Figure 2 presents the results based on one simulation of # = 3

and ) = 200. The parameter values of the DGP are � = (1.22, 1.07, 1.62), and � =

(0.92, 0.78, 1.33).
In each of the plots of Figure 2, the x-axis represents the number of iterations B =

1, ..., 1000, and y-axis represents the M-step update �̂(B). The blue line depicts the SEM

trajectory whereas the orange line depicts the PX-SEM trajectory. The horizontal green

dash line represents for the true value. Starting from some randomly chosen initial guess

�̂(0), we see both the blue and the orange lines move towards the green dash line and

become stable after some iterations. The average of last 250 iterations is taken as the final

estimate.

Even though in the case of �′B, bothmethods converge almost immediately, we observe

big difference in the case of �′B. Specifically, SEM updates do not seem to converge until

500 iterations, whereas the PX-SEMupdates convergewithin 100 iterations. Nevertheless,

after convergence, we observe larger variations among PX-SEM updates along iterations

than the SEM updates. This is expected given that the SEM M-step is the MLE under

correct restrictions. Our presumption is that in both cases, we average over large enough

number of iterations after convergence. Whether PX-SEM should have more iterations

due to larger variation, which might affect total computing time, is outside the scope of

this paper.7

7We could always switch to SEM after PX-SEM estimators converge. Naturally, to what extent latent
draws from the E-step violate the model assumptions (e.g., by comparing the O model and L model
likelihood of pseudo-complete data) could be criteria for deciding when to switch.
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Figure 2: SEM and PX-SEM iterations of �(B) from random initial guesses

(a) �1 (b) �2 (c) �3

(d) �1 (e) �2 (f) �3

Notes: Complete iterations of SEM (blue solid line), PX-SEM (orange solid line) based on 100 MH draws. True
value are in green dash line. SEM estimates (blue diamond), PX-SEM estimates (orange star) are all based on the

average of last 250 iterations. Random initial guess from lognormal distribution. # = 3, ) = 200

Comment. The following model is equivalent to the proposed L model above, yet has

different interpretation:

L Model

H8C = �8�C + &8C[
�
&8

]
=

[ 1
k × �)×) 0)×)

�8(1 − 1
k) × �)×) �)×)

]
︸                          ︷︷                          ︸

Ai

[
�∗

&∗
8

]

�∗C = �∗C−1 + DC , &∗8C ∼ #(0, �2
8 ), D8C ∼ #(0, 1)

We add �∗C and &∗
8C
which are assumed to have the same distributions as their counter-

parts in the O model. However, the L model extends the O model by allowing the latent

draws from the E-step � and &8 to be results of an affine mapping of �∗ and &∗
8
through

matrix Ai. Related to condition (1), we could always have k = 1, and thus Ai = �, and L

model is equal to O model. Moreover, matrix Ai satisfies the equation �Ai = � where

� = [�)×) �)×)], and thus H8 = �[�′ &′
8
]′ = �[�∗′ &∗

8
′]′. Therefore, relate to condition

(2), auxiliary parameter k does not affect the observed data likelihood, which means the

reduction function is '(�, k) = �.
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This L model is equivalent to the previous one in the sense that they have ex-

actly the same estimators in the PX-M step for �̂(B+1). Indeed, given the same E-

step, the PX-M steps now becomes: �̂!8k, �̂!8 = max�8k,�8
∑
C

(
ln)( H8C−�8k�C�8

) − ln �8

)
,

1
k̂
= maxk

∑
C

(
ln)( �C−�C−1

k ) − ln k
)
, and therefore �̂(B+1) = (�̂!1, ..., �̂!# , �̂!1, ..., �̂!# ), given

'(�, k) = �.

We can see that the currentmatrixA8 allows for contemporaneous correlationsbetween

�C and &8C . This way of expanding can be easily adapted for many different models

at almost no cost. Moreover, if SEM is likelihood based, then MLE of PX-SEM, due

to separability of the log-likelihood, can be easily obtained. As a result, we expect

improvement in terms of overall algorithmic efficiency.

In the other two applications, we follow this logic of building L model through affine

transformation. But we will explore more flexible L model by relaxing constraints in

matrix A, such as allowing for correlations across periods. By expanding to a larger L

model space, we aim to achieve faster convergence.

5 Discrete Choice Models

The second typeofmodelwewill discuss is the randomeffects discrete choicemodelswith

persistent and transitory shocks. The discrete choice models are widely used in empirical

works on different topics such as labor supply (Hyslop, 1999), consumer demand (Keane

et al., 2013), etc. Distinguishing unobserved heterogeneity from the persistent component

is of interest for many reasons, but the nonlinearity and the latent feature complicate the

estimation. However, the simulation involved in the SEM or PX-SEM makes the two

methods suitable for estimating this type of model. Therefore, take a Probit model as an

example, wewill discuss its estimation procedure. Specifically, we allow for rich structure

by including unobserved time-invariant effects, persistent component, and transitory

component. We will later compare the performances of PX-SEM and SEM.

OModel:

H8C = 1(I8C > 0),

I8C = �′G8C + �8 + �8C + &8C ,

�8C = ��8 ,C−1 + D8C
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where �8 |G ∼ #(0, �2
�), D8C ∼ #(0, �2

D), &8C ∼ #(0, 1), �81 ∼ #(0, 1).8
For each individual 8 ∈ 1, ..., # at period C ∈ 1, ..., ), we observe a vector of inde-

pendent variable G8C of dimension � and a 0-1 discrete dependent variable H8C , whereas

I8C , individual effect �8 , persistent component �8C are latent variables. Denote the set of

unknown parameters by � ≡ (�, ��, �, �D).
SEM algorithm. For comparison, we first explain the procedure of SEM algorithm.

Starting from a guess �̂(0), we iterate between the E-step and M-step on B = 0, 1, 2, ..., (

until the convergence of �̂(B) to the stationary distribution:

1. StochasticE step: Draw I8 ,�8 , and �8 fromposteriordistribution 5$(I8 , �8 , �8 |H8 , G8 ; �̂(B))
2. M step:

- �̂(B+1) = (∑ G8CG
′
8C
)−1(∑ G8C(I8C − �8 − �8C))

- �̂(B+1)
� = ŝtd(�8)

- �̂(B+1) = (∑ �8 ,C−1�′8 ,C−1)−1(∑ �8 ,C−1�8C)
- �̂(B+1)

D = ŝtd(�8C − �̂�8 ,C−1)

PX-SEM algorithm. To implement PX-SEM algorithm, we need to build a proper L

model. Defining G8 = [G′81 ... G′8)]′, �8 = [�81 ... �8)]′, &8 = [&81 ... &8)]′, we choose the

following L model:

L Model

H8C = 1(I8C > 0),

I8C = �′CG8 + �8 + �8C + &8C ,
�8
�8
&8

 = pA

�∗
8

�∗
8
&∗
8

 + BG8 ,

�∗8C = ��∗8 ,C−1 + D8C ,

�∗8 |G ∼ #(0, �2
�), D8C ∼ #(0, �2

D), &∗8C ∼ #(0, 1), �∗81 ∼ #(0, 1)

subject to 1
p×(�B+�) = �)×)⊗�′,�AΣA′�′ = �Σ�′, andp > 0, where� = [

⇀
1)×1 �)×) �)×)],

Σ = cov([�∗
8
�∗
8
′ &∗

8
′]′), � ≡ [�1 ... �)]′ and A is a lower triangular matrix with positive di-

agonal entries. In addition to unknown parameter � from the Omodel, L model contains

a vector of auxiliary parameters  ≡ [vech(A)′, vec(B)′, p]′.
Our logic of model expansion is very straightforward. We assume that latent variables

�∗
8
, �∗

8
, and &∗

8
follow the same distributions as their counterparts in theOmodel. However,

8Extensions including 1) Logit, that is &8C ∼ !>68BC82, and 2) Allowing for dependence of �8 and �81 on
G81, that is �8 |G ∼ #(��G81 , �2

�), and �81 |G ∼ #(��G81 , 1) are discussed in Appendix E.
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the E-step draws [�8 �′8 &′8] are possibly the result of an affine map acting on the vector

[�∗
8
�∗
8
′ &∗

8
′]. In this way, we expand the original model by allowing for linear correlations

among �8 , �8 , &8 , and G8 .

Therefore, related to condition (1), it is easy to verify that L model nests the O

model: when B = 0(2)+1)×(�×)), A = �(2)+1)×(2)+1), p = 1, the two models coincide

5$(H8 , I8 , �8 , �8 |G8 ;�) = 5!(H8 , I8 , �8 , �8 |G8 ;�,A = � ,B =
⇀
0 , p = 1).

The L model has two main constraints. On top of identification issue, more impor-

tantly, the constraints let us obtain the reduction function easily. The first constraint
1
p × (�B+ �) = �)×) ⊗ �′ is on the coefficient G8C and makes sure that the conditional mean

of I8 on G8 in the L model is simple p times the conditional mean in the O model. The

second constraint �AΣA′�′ = �Σ�′ guarantees that conditional covariance of I8 on G8 is

the p2 times the conditional covariance in the O model.9

Therefore, related to condition (2), it is easy to verify that there exits the reduction

function, which is '(�,  ) = �, such that 5$(H8 |G8 ;'(�,  )) = 5!(H8 |G8 ;�,  ).
Intuitively, expanding the O model through these auxiliary parameters help "con-

strain" the potential violation of model assumptions by E-step draws under some pa-

rameter guesses. For example, matrix B takes care of the linear correlation between

observables G8 and latent draws which could happen when the guess �̂ in E-step is much

smaller than the true value in absolute level. Similarly, matrix A allows for linear corre-

lation among �8 , �81, D8C and &8 ; Scalar p scales up and down I8C and allows the var(&8C) to
be different from 1.

Finally, we discuss the procedures to implement PX-SEM algorithm. We start from

a guess �̂(0), and iterate between the following E-step and PX-M-step on B = 0, 1, 2, ..., (

until the convergence of �̂(B) to the stationary distribution:

1. StochasticE step: Draw I8 ,�8 , and �8 fromposteriordistribution 5$(I8 , �8 , �8 |H8 , G8 ; �̂(B))
2. PX-M step: Estimate L model

�̂(B+1),  ̂ = arg min
�, 

∑
8

Ψ(�,  ; H8 , I8 , G8 , �8 , �8)

In the following paragraphs, we explain the moments we used to estimate �̂(B+1). The

detailed specifications are presented in Appendix D.

• p�: combining the first constraint, �(G8C(I8C − p�′G8C)) = 0

9We can rewrite the model as I8 = �G8 + �[�8 �′8 &′8]′ = p�′G8C + p�A[�∗
8
�∗
8
′ &∗

8
′]′.
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• B: �(G8([�8 �′8 &′8] − G′8B′)) = 0

• ��, p, Σ, A: �AΣA′�′ = �Σ�′, and moment constraints on Σ

• �, �D : �(�∗8 ,C−1(�∗8C − ��∗8 ,C−1)) = 0, var(�∗
8C
− ��∗

8 ,C−1) = �2
D

Simulation Results. Now we conduct simulations and compare SEM and PX-SEM

algorithms. The true parameters of DGP are: � = [1.0; 0.5], �� = 1.25, � = 0.7, and

�D = 0.9.

First, we compare SEM and PX-SEM iterations from an informed guess. The initial

guess is decided as follows: 1) �̂(0) is the Probit regression coefficients of H8C on G8C , 2)

impose �̂(0)� = 1, 3) �̂(0),�̂(0)D are computed from the residual of linear regress H8C on G8C .10

In both E-step, we use a random-walk Metropolis-Hastings sampler. The acceptance rate

is controlled to be between 20% and 40%.

Figure 3: SEM and PX-SEM iterations of �(B) from informed guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: Complete iterations of SEM (blue solid line), PX-SEM (orange solid line), and PX-SEM + SEM(grey solid
line, 500 iterations each) based on 100 MH draws. True value are in green dash line. SEM estimates (blue diamond),
PX-SEM estimates (orange star), and PX-SEM+SEM (grey circle) are all based on the average of last 250 iterations.

Based on informed initial guess.

Figure 3 presents the estimation results of one simulation with # = 5000 and ) = 8.

Specifically, we plot the M-step updates �̂(B) for 1000 iterations (( = 1000). The blue

line shows each update of the SEM algorithm, whereas the orange one represents the

10Specifically, regress |4AA1 | ∗ B86=(H8C − 0.1) − 4AA2 ∗ �̂(0)� on G8C and keep residual Â 4B 8C , set �̂(0) =
1

#()−1)
∑ Â 4B 8 ,C−1 Â 4B 8C

Â 4B
2
8 ,C−1

, and �̂(0)D = ŝtd(Â 4B 8C − �̂(0) Â 4B 8 ,C−1)
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PX-SEM updates. We also combine PX-SEM for 500 iterations with the SEM algorithm

with another 500 iterations, and use the grey line to represent the result. The green dash

line indicates the true value. We take the average of the last 250 iterations as the final

estimates ((0 = 250), which are represented by the blue diamond and orange star for SEM

andPX-SEMalgorithms, respectively. We can see that starting from the same initial guess,

the PX-SEM algorithm converges almost immediately to the region near the true value,

whereas SEMmoves much slower, especially for �̂(B)� , �̂(B)D , and �̂(B), and does not converge

within 750 iterations.11 In the case of PX-SEM+SEM, it is obvious that the variation along

iterations reduces dramatically once we switch to the SEM algorithm. But since we take

the average of the last 250 updates as estimates, there is no significant difference between

PX-SEM and PX-SEM+SEM in this example.

Next, we compare the iterations based on random initial guesses. This strategy is

common in practice. As it usually is hard to know what are "good" initial guesses and

to avoid the method converging to a local maximum, researchers often implement SEM

algorithms from many different initial guesses and choose one based on certain criteria,

such as likelihood.

In Figure 4, we show that the PX-SEM algorithm still greatly increases the convergence

speed: starting from some random initial guesses, despite some jumps at the beginning,

the PX-SEM algorithm converges to the region near the true value within 100 iterations,

whereas the SEM algorithm, with the same initial guesses, does not seem to converge

within 500 iterations.

To have a better view of the details, we plot the last 900 iterations in Figure 5. As

shown in the figure, SEM seems to converge at the very end of the iterations. As a result,

the point estimates taken as the average of the last 500 iterations are relatively far from

the true values compared to others. As for PX-SEM+SEM, after switching to the SEM

algorithm, the grey line showsmuch fewer variations which is in line with our discussion

on the statistical properties of moments-based PX-SEM.

Considering that this type of exercise will be conducted many times in practice, the

save of time could be enormous. More simulation results are presented in Appendix G.

11In Appendix F, we show that in some other simulations, it could take more than 2000 iterations for
SEM to converge.
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Figure 4: SEM and PX-SEM iterations of �(B) from random initial guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: Complete iterations of SEM (blue solid line), PX-SEM (orange solid line), and PX-SEM + SEM(grey solid
line, 500 iterations each) based on 100 MH draws. True value are in green dash line. SEM estimates (blue diamond),
PX-SEM estimates (orange star), and PX-SEM+SEM (grey circle) are all based on the average of last 500 iterations.

Random initial guess from lognormal distribution.

Figure 5: SEM and PX-SEM iterations of �(B) from random initial guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: Last 900 iterations of SEM (blue solid line), PX-SEM (orange solid line), and PX-SEM + SEM(grey solid
line, 500 iterations each) based on 100 MH draws. True value are in green dash line. SEM estimates (blue diamond),
PX-SEM estimates (orange star), and PX-SEM+SEM (grey circle) are all based on the average of last 500 iterations.

Random initial guess from lognormal distribution. The complete iterations are presented in Figure 4.
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6 Quantile Models

The last example we will discuss is the persistent-transitory dynamic quantile processes

with individual effects based on Arellano et al., 2017.12 The model does not impose

restrictions on the distributions of individual effects and transitory shock. Moreover,

its flexibility in the dynamics of the persistent component allows for features including

nonlinear persistence. The model has been applied to topics including income dynamics,

firm dynamics, health dynamics, etc.

Denote the �th conditional quantile of �8C given �8 ,C−1 as &(�8 ,C−1, �) for each � ∈ (0, 1).
The O model to be estimated is as follows:

OModel:

H8C = �8 + �8C + &8C ,

�8C = &(�8 ,C−1, D8C), (D8C |�8 , D8 ,C−1, D8 ,C−2, ...) ∼ Uniform(0, 1), C = 2, ..., )

where &8C has zero mean, i.i.d. over time, and independent of �8 and �8 . Individual effect

�8 is assumed to be independent from &8 and �8 .

Unlike the canonical permanent-transitory process, thismodel allows for amuchmore

flexible conditional distribution of persistent component �8C such that it could generate

features like nonlinear persistence.

To estimate this model, we follow Arellano et al., 2017 and empirically specify the

components as follows:

&(�8 ,C−1, �) =
 ∑
:=0

�&
:
(�)!:(�8 ,C−1)

&&(�) = �&(�), &�1(�) = ��1(�), &�(�) = ��(�)

where !: is Hermite polynomials up to order  .

In Arellano et al., 2017, the model is estimated using a variation of the SEM algorithm

where the M-step consists of a sequence of quantile regressions rather than likelihood

optimization for computational convenience. For comparison, we first explain their pro-

cedures. Denote � for all unknownparameters including �&
:
(�), �&(�), ��1(�), and ��(�).13

Starting from initial guesses �̂(0), we iterate the E-step and the M-step until convergence

to stationary distribution:

12In this example, we remove age effect, and assume that the unobserved heterogeneity only affects the
level of H8C , but does not interact with �8C .

13Unknown parameters also include tail parameters. Functions �(·) are piecewise-polynomial interpo-
lating splines on a grid [�1 , �2], [�2 , �3],...,[�!−1 , �!]. And the tails on (0, �1] and [�! , 1) are modeled using
parametric model. Check the Appendix B in Arellano et al., 2017 for more details.
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1. Stochastic E step: Draw �8 and �8 from posterior distribution 5$(�8 , �8 |H8 ; �̂(B))
2. M step: Update parameters by computing a series of quantile regressions:

�̂&(�) = arg min
�&0 ,�

&
1 ,...,�

&

 

#∑
8=1

)∑
C=2

��
(
�8C −

 ∑
:=0

�&
:
!:(�8 ,C−1)

)
�̂&(�) = arg min

�&

#∑
8=1

)∑
C=1

��
(
&8C − �&

)
�̂�1(�) = arg min

��1

#∑
8=1

��
(
�81 − ��1

)
�̂�(�) = arg min

��

#∑
8=1

��
(
�8 − ��

)
PX-SEM algorithm. We take the same strategy and expand the O model targeting

linear correlations among �8 , �8 , and &8 . To achieve this, we propose the following L

model:

L Model:

H8C = �8 + �8C + &8C ,
�8
�8
&8

 = A

�∗
8

�∗
8
&∗
8


�∗8C = &(�∗8 ,C−1, D8C), (D8C |�∗8 , D8 ,C−1, D8 ,C−2, ...) ∼ Uniform(0, 1), C = 2, ..., )

subject to �A = �, where � = [
⇀
1)×1 �)×) �)×)]. Similarly, we assume that &∗

8C
has zero

mean, i.i.d. over time, and independent of �∗
8
and �∗

8
, �∗

8
is independent from &∗

8
and �∗

8
. L

model contains a vector of auxiliary parameters  ≡ vec(A).
The logic of model expansion is the same as before: we assume that variables �∗

8
, �∗

8
,

and &∗
8
follow the same distributions as their counterparts in the O model, but the E-step

draws [�8 �′8 &′8]′ are possibility the outcome of an affine transformation of [�8 �∗8 ′ &∗8 ′]′

with coefficient matrix A to generate linear correlations among �8 , �8 , and &8 . Thus, the

condition (1) to implement PX-SEM holds, which is that L model nests Omodel, since we

can always take A = �, and the two models coincide 5$(H8 , �8 , �8 ;�) = 5!(H8 , �8 , �8 ;�,A =

�).
The constraint onmatrix A, �A = �, guarantees that the condition (2) holds: there ex-

ists a reduction function '(�,  ), which is simply � = '(�,  ), such that 5$(H8 ;'(�,  )) =
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5!(H8 ;�,  ).14 This constraint is tighter than the one in the discrete choice case where we

just need to target the first two moments due to normality assumption.

To implement PX-SEM algorithm, we start from initial guesses �̂(0), and iterate the

E-step and the PX-M-step until convergence to stationary distribution:

1. Stochastic E step: Draw �8 and �8 from posterior distribution 5$(�8 , �8 |H8 ; �̂(B))
2. PX-M step: Estimate L model

�̂(B+1),  ̂ = arg min
�, 

∑
8

Ψ(�,  ; H8 , �8 , �8)

In the following paragraphs, we explain the estimation strategy of L model. The

detailed steps are listed in Appendix H.

With the complication of matrix A, we can no longer conduct a series of quantile

regressions directly using E-step draws as in the SEM. Considering the number of un-

known parameters, joint estimation can be very challenging. The strategy we take is

to estimate parameters sequentially: we first obtain estimates of auxiliary parameters Â

using moment restrictions including zero correlations among �∗
8
and &∗

8
, and �∗

8C
following

a time-homogeneous first-order Markov process, and then we estimate Θ by the same

series of quantile regressions using Â−1[�8 �′8 &′8]′.
To estimate matrix A, we add extra restrictions on its form and the specification is as

follows:

A =



a� 0�01 · · · 0�0) 0&01 · · · 0&0)

1 − 0� 1 − 0�01 − 0
�
11 · · · −0�0) − 0

�
1) 1 − 0&01 − a& · · · −0&0) − 0

&
1)

...
...

. . .
...

...
. . .

...

1 − 0� −0�01 − 0
�
)1 · · · 1 − 0�0) − 0

�
))

−0&01 · · · 1 − 0&0) − a&

0 0�11 · · · 0�1) a& · · · 0&1)
...

...
. . .

...
...

. . .
...

0 0�
)1 · · · 0�

))
0 · · · a&



}
A11×(2)+1) A2)×(2)+1)

 A3)×(2)+1)

In addition to satisfy �A = �, we also assume that entries in the first column of A3

are all zero, and the submatrix made of the last ) columns, A3(:,)+1:2)+1), is an upper

triangular matrix with diagonal elements all equal to a&.

These extra restrictions are made mainly to simplify the estimation. It is shown in

the Appendix H that given any value of a� and a&, we have close form solution for

14We can rewrite the model as H8 = �[�8 �′8 &′8]′ = �A[�∗
8
�∗
8
′ &∗

8
′]′ = �[�∗

8
�∗
8
′ &∗

8
′]′.
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A(a�, a&) and [�∗
8
�∗
8
′ &∗

8
′]′ = A−1(a�, a&)[�′

8
�′
8
&′
8
]′ using moment restrictions including

that �8 and &8 are uncorrelated with all the other elements of the model. We use extra

moments including that �8 follows the first-order markov process to obtain â� and â&.

The estimators, which are the GMM estimators weighted by the Lagrangian multiplier,

are not as efficient as the optimal ones, but again we face simpler optimization problem.

Once we have â�, â&, and thus [�̂∗
8
�̂∗
8
′ &̂∗

8
′]′ = Â−1(â�, â&)[�′

8
�′
8
&′
8
]′, we do a list of quantile

regressions to estimate �. The steps are summarized as follows:

1. Obtain �̂

(a) Giveneacha� anda&, obtain Â(a�, a&;�8 , �8 , &8) and
[
�̂∗
8

�̂∗
8
′ &̂∗

8
′] ′ = Â−1 [

�8 �′
8

&′
8

] ′
using moments cov(D∗

8
, �∗

8C
) = 0, cov(D∗

8
, &∗

8C
) = 0, cov(&∗

8:
, &∗

8C
) = 0, ∀C , : ∈

[1, ..., )] and C ≠ :

2. Compute â�, â& = arg min0� ,0&
∑
8 �(�̂∗8 , �̂∗8 , &̂∗8)

3. Compute
[
�̂∗
8

�̂∗
8
′ &̂∗

8
′] ′ = Â(â�, â&;�8 , �8 , &8)−1 [

�8 �′
8

&′
8

] ′, andupdate parameters

by a series of quantile regressions

�̂&
!
(�) = arg min

�&0 ,�
&
1 ,...,�

&

 

#∑
8=1

)∑
C=2

��
(
�̂∗8C −

 ∑
:=0

�&
:
!:(�̂∗8 ,C−1)

)
�̂&!(�) = arg min

�&

#∑
8=1

)∑
C=1

��
(
&̂∗8C − �&

)
�̂�1
!
(�) = arg min

��1

#∑
8=1

��
(
�̂∗81 − ��1

)
�̂
�
!
(�) = arg min

��

#∑
8=1

��
(
�̂∗8 − ��

)
where �(·) is a known function that is informative of the distance between the empirical

distribution of
[
�̂∗
8

�̂∗
8
′ &̂∗

8
′] ′ and assumptions on

[
�∗
8

�∗
8
′ &∗

8
′] ′, including the distance

from �̂∗
8
to time-homogeneous first-order Markov chain. The details in each step are

described in Appendix H. In Appendix I we also discuss an alternative PX-SEM method

for the quantile models.

Simulation Results. Some preliminary simulation results are shown in Appendix

J. The general conclusion is that PX-SEM could accelerate the movement towards the

true value, and the PX-SEM+SEM performs the best in the exercise. There still exist

some problems mainly in step 2 such as the numerical stability associated with nonlinear

optimization.
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7 Conclusion

In this paper, we develop PX-SEM algorithms by combining the parameter-expansion

technique with the stochastic EM algorithm. The method consists of an E-step where we

draw latent variables from posterior distribution given observables, and anM-stepwhere

we expand the original model to a larger model, estimate the larger model, and finally,

reduce to the original model space. The intuition is that the model for the latent variables

contains extra information that can be exploited to correct theM step in progressing from

a coarse parameter guess to a more accurate one. To implement the method, one needs

to build a suitable L model for the original model. This paper focuses on nonlinear panel

data models and develops PX-SEM algorithms for three types of models: 1) dynamic

factor models, 2) discrete choice models with individual effects, persistent and transitory

components, and 3) persistent-transitory dynamic quantile processes. The simulation

results show that PX-SEM significantly improves the convergence speed.

25



References

Arcidiacono, Peter and John Bailey Jones (2003) “Finite mixture distributions, sequential

likelihood and the EM algorithm,” Econometrica, 71 (3), 933–946.

Arellano, Manuel, Richard Blundell, and Stéphane Bonhomme (2017) “Earnings and

consumption dynamics: a nonlinear panel data framework,” Econometrica, 85 (3), 693–

734.

Arellano, Manuel and Stéphane Bonhomme (2016) “Nonlinear panel data estimation via

quantile regressions,” The Econometrics Journal, 19 (3), C61–C94, http://www.jstor.

org/stable/45172103.

Bai, Jushan, Serena Ng et al. (2008) “Large dimensional factor analysis,” Foundations and

Trends® in Econometrics, 3 (2), 89–163.

Dempster, Arthur P,NanMLaird, andDonald BRubin (1977) “Maximum likelihood from

incomplete data via the EM algorithm,” Journal of the Royal Statistical Society: Series B

(Methodological), 39 (1), 1–22.

Diebolt, Jean andGillesCeleux (1993) “Asymptotic properties of a stochastic EMalgorithm

for estimating mixing proportions,” Stochastic Models, 9 (4), 599–613.

Geweke, John (1977) “Thedynamic factor analysis of economic time series,” Latent variables

in socio-economic models.

Hyslop, Dean R (1999) “State dependence, serial correlation and heterogeneity in in-

tertemporal labor force participation of married women,” Econometrica, 67 (6), 1255–

1294.

Keane, Michael P et al. (2013) Panel data discrete choice models of consumer demand: Nuffield

College.

Lavielle, Marc and Cristian Meza (2007) “A parameter expansion version of the SAEM

algorithm,” Statistics and Computing, 17 (2), 121–130.

Liu, Chuanhai, Donald B Rubin, and Ying Nian Wu (1998) “Parameter expansion to

accelerate EM: the PX-EM algorithm,” Biometrika, 85 (4), 755–770.

26

http://www.jstor.org/stable/45172103
http://www.jstor.org/stable/45172103


Liu, Jun S andYingNianWu (1999) “Parameter expansion for data augmentation,” Journal

of the American Statistical Association, 94 (448), 1264–1274.

Nielsen, Søren Feodor (2000) “The stochastic EM algorithm: estimation and asymptotic

results,” Bernoulli, 457–489.

Stock, James H andMarkWWatson (2006) “Forecastingwithmany predictors,”Handbook

of economic forecasting, 1, 515–554.

(2011) “Dynamic factor models.”

Wei, Greg CG and Martin A Tanner (1990) “A Monte Carlo implementation of the EM

algorithm and the poor man’s data augmentation algorithms,” Journal of the American

statistical Association, 85 (411), 699–704.

27



APPENDIX to
“Estimating Latent-Variable Panel Data Models

Using Parameter-Expanded EMMethods”

A Alternative PX-SEM for Discrete Choice Models

Alternative 1. We start from a guess Θ̂(0), and iterate between the following E-step and

PX-M-step on B = 0, 1, 2, ..., ( until the convergence of Θ̂(B) to the stationary distribution:

1. StochasticE step: Draw H∗
8
,�8 , and �8 fromposteriordistribution 5$(H∗8 , �8 , �8 |H8 , G8 ; Θ̂(B))

2. PX-M step:

(a) Estimate L model:

i. p̂� = (∑ G8CG
′
8C
)−1(∑ G8CH

∗
8C
)

ii. B̂: 1̂� = (
∑
G8G
′
8
)−1(∑ G8�8), 1̂′� = (

∑
G8G
′
8
)−1(∑ G8�′8).

Then define �̃8 = �8 − 1̂′�G8 , �̃8 = �8 − 1̂′�G8 , &̃8 = H∗
8
− p̂�

′
G8 − �̃8 − �̃8 , and

H̃8 = �̃8 + �̃8 + &̃8
iii. �̂�, p̂, �̂, �̂D = arg min�� ,?,�,�D

, 1
2
(
vec(�ĉov([�̃8 ; �̃8 ; &̃8])�′)−vec(?2�Σ(��, �, �D)�′)

)
iv. �̂ = p̂�

p̂

v. Θ̂! = (�̂, �̂�, �̂, �̂D)

(b) Reduction: identity mapping due to L model constraints Θ̂(B+1) = Θ̂!

Alternative 2. With a different L model, we can implement PX-SEM as follows:

L Model

H8C = 1(H∗8C > 0),

H∗8C = p�′G8C + �8 + �8C + &8C ,

�8C = ��8 ,C−1 + D8C − aD8 ,C−1

where �8 |G ∼ #(0, p2�2
�), D8C ∼ #(0, p2�2

D), &8C ∼ #(0, p2), �81 ∼ #(0, p2).
There are two auxiliary parameters: scalars a and p. Parameter p works the same

as other L model we have discussed before, that is allowing the variance of &8C to be

1



different from 1. Parameter a allows for correlation across periods between �8C − ��8 ,C−1

and �8C′ − ��8 ,C′−1 for C ≠ C′.

We start from a guess Θ̂(0), and iterate between the following E-step and PX-M-step

on B = 0, 1, 2, ..., ( until the convergence of Θ̂(B) to the stationary distribution:

1. StochasticE step: Draw H∗
8
,�8 , and �8 fromposteriordistribution 5$(H∗8 , �8 , �8 |H8 , G8 ; Θ̂(B))

2. PX-M step:

(a) Estimate L model:

i. p̂� = (∑ G8CG
′
8C
)−1(∑ G8CH

∗
8C
)

ii. p̂�� = ŝtd(�8)
iii. �̂ = (∑ �8 ,C−2�′8 ,C−1)−1(∑ �8 ,C−2�8C)
iv. p̂ =

√
v̂ar(H∗

8C
− p�′G8C − �8 − �8C) + |ĉov(�8C − �̂�8 ,C−1, �8 ,C−1 − �̂�8 ,C−2)/�̂|

v. p̂�D =
√

v̂ar(�8C − �̂�8 ,C−1) − (1 + �̂2)|ĉov(�8C − �̂�8 ,C−1, �8 ,C−1 − �̂�8 ,C−2)/�̂|
vi. �̂ = p̂�/p̂, �̂� = p̂��/p̂, �̂D = p̂�D/p̂
vii. Θ̂! = (�̂, �̂�, �̂, �̂D)

(b) Reduction: identity mapping due to L model constraints Θ̂(B+1) = Θ̂!

B Comparison of PX-SEM Estimators

In this section, we compare different PX-SEM estimators.

OModel:

H8 = H
∗
8 + &8 ,

(
H∗
8
&8

)
∼ #

(
0,

(
�2 0
0 1

) )
SEM

1. E: draw H∗

2. M: �̂ = BC3(H∗)

PXSEM, larger model 1

L1 Model:

H8 = H
∗
8 + &8

where [H∗
8
&8]′ ∼ #(0,

(
: 0

1 − : 1

) (
�2 0
0 1

) (
: 0

1 − : 1

)′
) ⇔ #(0,

(
�2:2 �2:(1 − :)

�2:(1 − :) (1 − :)2�2 + 1

)
)

Note this model is equivalent to H8 = 1
: H
∗
8
+ &8 , where [H∗

8
&8]′ ∼ #(0,

(
�2 0
0 1

)
)

1. PX-SEM-L1

2



(a) E: same as SEM

(b) M: :̂ = v̂ar(H∗)/ĉov(H, H∗), �̂ = ŝtd(H∗)/:̂ (also corresponds to MLE)

PXSEM, larger model 2

L2 Model:

H8 = H
∗
8 + &8

where [H∗
8
&8]′ ∼ #(0,

(
1 1 − :
0 :

) (
�2 0
0 1

) (
1 1 − :
0 :

)
′) ⇔N(0,

(
�2 + (1 − :)2 :(1 − :)
:(1 − :) :2

)
)

Similar to L1 model, only one auxiliary parameter :. We compare the GMM estimator

using variance-covariance matrix with MLE.

1. PX-SEM-L2-1: PX-M step based on GMM estimator

(a) E: same

(b) M: :̂ = v̂ar(H − H∗)/ĉov(H, H − H∗), �̂ =
√

v̂ar(H∗) − (1 − :̂)2⇒ if initial guess of

� is very small, then �̂ < ŝtd(H∗), the SEM update

2. PX-SEM-L2-2: PX-M step based on MLE

(a) E: same

(b) M: MLE

In Figure �1, we show both the specification of Lmodels and the PX-M step estimators

matter for the performance by comparing SEM, PX-SEM-L1, PX-SEM-L2-1, and PX-SEM-

L2-2. The left panel presents the iterations when initial guess of � is smaller than the

true value. First we compare SEM (blue), PX-SEM-L1 (orange), and PX-SEM-L2-2 (green),

because in this case both PX-M steps are based onMLE. As expected, PX-SEM algorithms

converge faster than SEM. However, even though both L1 and L2model contain one extra

auxiliary parameter, PX-SEM-L1 outperforms PX-SEM-L2-2. This is potentially related to

howmuch flexibility the larger model has to account for the features of the E-step draws.
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Figure B1: Comparisons among SEM, PX-SEM-L1, PX-SEM-L2-1, and PX-SEM-L2-2

(a) �̂B iterations (b) Log likelihood

Notes: Initial guess smaller than true value. The right panel, the iteration is based on PX-SEM-L2-1. Orange line is
log 5 (H, H∗; �̂(B+1)

!2−2 ), blue line is log 5 (H, H∗; �̂(B+1)
(�"
), and green is log 5 (H, H∗; �̂(B+1)

!2−1 ), for B = 0, ..., (

Then we compare SEM (blue), PX-SEM-L2-1 (purple), and PX-SEM-L2-2 (green). As

we can see in the figure, PX-SEM-L2-1, with GMMbased PX-M-step, performs evenworse

thanSEM.This is not surprising though. It is easy to seewhy it is happening in this specific

case: when the initial guess is smaller, the PX-SEM-L2-1 estimator �̂ =
√

v̂ar(H∗) − (1 − :̂)2

is smaller than SEMM-step estimator v̂ar(H∗). To put it another way, �̂(B) of PX-SEM-L2-1

converges slower. Remember the proof about PX-SEM convergence is based on MLE PX-

M step. When we use GMM based estimator in PX-M step, it is likely that, to match some

certain moments, the improvement of overall likelihood is worse. This guess is verified

in the right panel of Figure �1. Specifically, we implement PX-SEM-L2-1 algorithm. The

only difference is that in M-step we also document the complete data likelihood given

different estimator:

1. E: draw H∗ given �̂(B)
!2−1

2. M: :̂ = v̂ar(H − H∗)/ĉov(H, H − H∗), �̂(B)
!2−1 =

√
v̂ar(H∗) − (1 − :̂)2

1) Compute log 5 (H, H∗; �̂(B+1)
!2−1 )

2) Compute log 5 (H, H∗; �̂(B+1)
(�"
), where �̂(B+1)

(�"
= ŝtd(H∗)

3) Compute log 5 (H, H∗; �̂(B+1)
!2−2 ), where �̂(B+1)

!2−2 = arg max� log 5 (H, H∗; �)

As we expected PX-SEM-L2-1 estimator performs worse than SEM in terms of likelihood

increment.

Then we do similar exercise but for an initial guess larger than true value. Figure

B2 presents the results. All PX-SEM algorithms perform not worse than SEM algorithm.

Specifically, PX-SEM-L2-1, the GMM based one performs even better than PX-SEM-L2-2.
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Figure B2: Comparisons among SEM, PX-SEM-L1, PX-SEM-L2-1, and PX-SEM-L2-2

(a) �̂B iterations (b) Log likelihood

Notes: Initial guess larger than true value. The right panel, the iteration is based on PX-SEM-L2-1. Orange line is
log 5 (H, H∗; �̂(B+1)

!2−2 ), blue line is log 5 (H, H∗; �̂(B+1)
(�"
), and green is log 5 (H, H∗; �̂(B+1)

!2−1 ), for B = 0, ..., (

PXSEM, larger model 3

L3 Model:

H8 = H
∗
8 + &8

where [H∗
8
&8]′ ∼ #(0,

(
:1 :2

1 − :1 1 − :2

) (
�2 0
0 1

) (
:1 :2

1 − :1 1 − :2

)′
)

This model contains two auxiliary parameters :1 and :2. Instead of estimating all

parameters jointly, we experiment something closer to the strategy used in Section 6

for quantile models: write down :2 as a function of :1 using moment restriction that

2>E(H∗
8
, &8) = 0, and we have &̂ = (H∗ − :1H) ∗ (?8=E(H∗ − :1H) ∗ H), :̂2 = ?8=E(&̂)H∗. Then we

estimate :1 using different criteria described below:

1. PX-SEM-L3-1: Moments based

:̂1 = arg min
:1
(var(&̂) − 1)2

�̂ = ŝtd
(
H − (H∗ − :1H) ∗ (?8=E(H∗ − :̂1H) ∗ H)

)
2. PX-SEM-L3-2: Likelihood based

:̂1 = max
:1

!(H, H∗; :1, :̂2(:1), �̂(:1))

where

�̂(:1) = ŝtd
(
H − (H∗ − :1H) ∗ (?8=E(H∗ − :1H) ∗ H)

)
Finally

�̂ = ŝtd
(
H − (H∗ − :1H) ∗ (?8=E(H∗ − :̂1H) ∗ H)

)
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3. PX-SEM-L3-3: Likelihood based

:̂1, �̂ = max
:1 ,�

!(H, H∗; :1, :̂2(:1), �)

Finally, we also experiment methods used for quantile models. Specifically, we do

not use the information of Normal distribution. The likelihood is quantile based. In

PX-M-step, :̂1 = arg min:1(var(&̂) − 1)2, then we update unknown parameters including

different quantiles simply look at different quantiles of H−(H∗− :1H) ∗ (?8=E(H∗− :̂1H) ∗ H).

Figure B3: Comparisons among SEM, PX-SEM-L1, PX-SEM-L2*, PX-SEM-L3*, and
quantile based one

(a) (b)

Notes: The left panel shows results when the initial guesses are smaller than true values. The right panel shows
results when the initial guesses are larger than true values.

Comparison among all PX-SEM algorithms is shown in Figure B3. We can see that

when the L model is more flexible (L3), at least in this case, even though the M-step

estimates are not MLE, the performance is still good, and better than PX-SEM-L1. So

there might be a trade-off between the flexibility of L model and PX-M step estimator.

C Asymptotic Properties

In this section, we will derive the dynamics of the PX-SEM updates across iterations.

Moreover, we will prove the computational efficiency of the PX-SEM algorithm and show

that it provides a consistent estimator without harming statistical efficiency compared to

the SEM algorithm. Currently, the proof applies only to theMLEM-step. However, we

anticipate including a discussion on moment-based M-step in a future version of this

draft.
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C.1 Dynamics of PX-SEM Updates

Setup. Let {.8 , -8 , .∗8 } for 8 = 1 : # be i.i.d. random variables from the O Model

distribution 5$(.8 |-8 ;�) =
∫
.∗
8

5$(.8 , .∗8 |-8 ;�)3.∗8 , where ,8 ≡ [.8 ;-′8 ]′ is the observable

set, .∗
8
is the latent-variable set, and � is the unknown parameter set to be estimated.The

true value, �, satisfies the equation �(Ψ$(.∗8 ,,8 ;�)) = 0, where Ψ$(·) represents the

score function of the complete O model. We can easily show that the true value � also

satisfies the equation

�
( ∫

Ψ$(.∗8 ,,8 ;�) 5$(.∗8 |,8 ;�)3.∗8
)
= 0 (C1)

Define �̂ as the ML estimator, which is also the solution of the integrated moment restric-

tions:
∑#
8=1

∫
Ψ$(.∗8 ,,8 ; �̂) 5$(.∗8 |,8 ; �̂)3.8 = 0.

Denote the expanded model, L Model, by 5!(.8 |-8 ;�,  ) =
∫
.∗
8

5!(.8 , .∗8 |-8 ;�,  )3.∗8 ,
where  represents for all auxiliary parameters. The expanded L model needs to sat-

isfy two conditions: (1) L model nests O model: ∃  0 such that 5$(.8 , .∗8 |-8 ;�) =
5!(.8 , .∗8 |-8 ;�,  0), ∀�, and (2) There is a mapping, the reduction function, from the

L Model space to O Model space � = '(�! ,  ) such that the observed data likelihood is

preserved 5$(.8 |-8 ;'(�! ,  )) = 5!(.8 |-8 ;�! ,  ), ∀�! ,  .1
FunctionΨ�

!
(·) represents the score of the L model with respect to �. Under condition

(1), we have Ψ�
!
(.∗
8
,,8 ;�,  0) = Ψ$(.∗8 ,,8 ;�), and thus �(Ψ�

!
(.∗
8
,,8 ;�,  0)) = 0. Addi-

tionally, assumes that  is identified using pseudo-complete data and Ψ 
!
(·) is the score

function relative to  , that is �(Ψ 
!
(.∗
8
,,8 ;�,  0)) = 0, thenwe have �(Ψ!(.∗8 ,,8 ;�,  0)) =

0, whereΨ!(·) = [Ψ�
!
(·);Ψ 

!
(·)]. Equivalently, we have

�
( ∫

Ψ!(.∗8 ,,8 ;�,  0) 5$(.∗8 |-8 , .8 ;'(�,  0))3.∗8
)
= 0 (C2)

Since in subsection 3.2 we have proved that the observed data likelihood increases

in each iteration of PX-SEM, we know the ML estimator �̂ will also satisfy the fol-

lowing integrated moment restrictions:
∑#
8=1

∫
Ψ!(.∗8 ,,8 ; �̂,  0) 5$(.∗8 |,8 ;'(�̂,  0))3.8 =∑#

8=1
∫
Ψ!(.∗8 ,,8 ; �̂,  0) 5$(.∗8 |,8 ; �̂)3.8 = 0

The general steps are as follows: starting with a guess of unknown parameter �̂(0),

we iterate the following two steps on B = 0, 1, 2, ..., ( until the convergence of �̂(B) to the

stationary distribution:

1. Stochastic E step: Draw .∗
8
from posterior distribution 5$(.∗8 |,8 ; �̂(B))

1We know reduction function should satisfy '(�,  0) = �.
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2. PX-M step: Update parameters by

(a) Estimate L model:
∑
8Ψ!(.∗8 ,,8 ; �̂(B+1)

!
,  ̂(B+1)) = 0

(b) Reduction: �̂(B+1) = '(�̂(B+1)
!

,  ̂(B+1)) subject to 5$(.8 |-8 ; �̂(B+1)) = 5!(.8 |-8 ; �̂(B+1)
!

,  ̂(B+1))

Following Liu et al., 1998, we use the parameterisation Θ = (�,  ) = ('(�̂! ,  ),  ) so
that � represent the PX-SEM update by the end of each iteration. Define the set of true

value as Θ = ['(�,  0); 0] = [�; 0]. Additionally, we have proved that Θ̂ ≡ [�̂; 0] is a
fixed point of the PX-SEM iterations where �̂ is the MLE.

Next, we reparameterize the score functionΦ!(·) and obtain Φ̃!(.∗8 ,,8 , �̂(B+1),  ̂(B+1)) =
Φ!(.∗8 ,,8 , �̂

(B+1)
!

,  ̂(B+1)) given �̂(B+1) = '(�̂(B+1)
!

,  ̂(B+1)). Then, under the guess Θ̂(B) =

[�̂(B),  0], PX-SEM finds the update following:

1. Stochastic E step: Draw .
∗(B)
8

from posterior distribution 5!(.∗(B)8
|,8 ; Θ̂(B))

2. PX-M step: Update parameters by solving Θ̂(B+1) from
#∑
8=1
Ψ̃!(.∗(B)8

,,8 ; Θ̂(B+1)) = 0

Note Θ̂(B+1) can be seen as MLE of the reparameterized L model 5̃!(.8 , .∗8 |-8 , �,  ) =
5!(.8 , .∗8 |-8 , '−1(�,  ),  )where we assume the inverse of the reduction function given  

exists.2

Following Arellano and Bonhomme, 2016, we rewrite the latent draws using condi-

tional quantile representation, that is

.
∗(B)
8

= &.∗ |, (,8 , D
(B)
8

; �̂(B)) = &!
.∗ |, (,8 , D

(B)
8

; �̂(B),  0)

where D(B)
8

is a vector of standard independent uniform draws of same dimension as.∗(B)
8

,

&.∗ |, (·) is the quantile representation based on O model, and &!
.∗ |, (·) is the quantile

representation based on L model. Then we have the dynamics of PX-SEM updates as:
#∑
8=1
Ψ̃!(&!

.∗ |, (,8 , D
(B)
8

; Θ̂(B)),,8 ; Θ̂(B+1)) = 0

Expand around Θ̂ ≡ [�̂; 0], using the fact that �̂ goes to � as # goes to infinity, we have

�(Θ̂(B+1) − Θ̂) + �(Θ̂(B) − Θ̂) + &(B) = >?(#−(1/2)) (C3)

2Score functions:
∑#
8=1

% ln 5̃!(.8 ,.∗8 |-8 ,Θ̂(B+1))
%� =

∑#
8=1Ψ

�
!
(.∗
8
,,8 ;'−1(�̂(B+1) ,  (B+1)),  (B+1)) %'

−1(Θ̂(B+1))
%� =∑#

8=1 Ψ̃
�
!
(.∗
8
,,8 ; Θ̂(B+1)) %'

−1(Θ̂(B+1))
%� = 0; similarly

∑#
8=1 Ψ̃

�
!
(.∗
8
,,8 ; Θ̂(B+1)) %'

−1(Θ̂(B+1))
% + Ψ̃ 

!
(.∗
8
,,8 ; Θ̂(B+1)) = 0.

As long as that %'−1(·)
%� is not zero, we have

∑#
8=1 Ψ̃

�
!
(.∗
8
,,8 ; Θ̂(B+1)) = 0 and

∑#
8=1 Ψ̃

 
!
(.∗
8
,,8 ; Θ̂(B+1)) = 0.

Finally we have
∑#
8=1 Ψ̃!(.∗8 ,,8 ; Θ̂(B+1)) = 0.
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where

� ≡ %

%Θ′

����
Θ

�(Ψ̃!(&!
.∗ |, (,8 , D8 ;Θ),,8 ;Θ)) =

%

%Θ′

����
Θ

�(Ψ̃!(.∗8 ,,8 ;Θ))

� ≡ %

%Θ′

����
Θ

�(Ψ̃!(&!
.∗ |, (,8 , D8 ;Θ),,8 ;Θ)) =

%

%Θ′

����
Θ

�

( ∫
Ψ̃!(.∗8 ,,8 ;Θ) 5!(.∗8 |,8 ;Θ)3.∗8

)
&(B) ≡ 1

#

#∑
8=1
Ψ̃!(&!

.∗ |, (,8 , D8 ; Θ̂),,8 ; Θ̂)

We also can prove that

� + � = %

%Θ′

����
Θ

�

( ∫
Ψ̃!(.∗8 ,,8 ;Θ) 5!(.∗8 |,8 ;Θ)3.∗8

)
C.2 Consistency and Efficiency

Nowwecan characterize the asymptotic distributionof �̂(B) ofPX-SEMalgorithm. Because

 ̂(B) =  0, we have
√
#(�̂(B) − �̂) =

∞∑
;=0
(−�−1�);[1:� ,1:�](−�

−1)[1:� ,:]
√
#&(B−1−;) + >?(1)

where (−�−1�)[1:� ,1:�] represents the submatrix that consists for the first � rows and first �

columns of matrix (−�−1�), and (−�−1)[1:� ,:] is the submatrix made of the first � rows of

matrix −�−1. Identification requires −(�)−1�[1:� ,1:�] < �, so that the Gaussian AR(1) limit
√
#(Θ̂(B) − Θ̂) conditional on, is stable.

Given that &(B)
3−→ N(

⇀
0 ,Σ&), where

Σ& = �(Ψ̃!(.∗8 ,,8 ;Θ)Ψ̃!(.∗8 ,,8 ;Θ)′)

conditional on,8 , we have
√
#(�̂(B) − �̂) 3−→ N(0,Σ1)

where

Σ1 =

∞∑
;=0
(−�−1�);[1:� ,1:�](−�

−1)[1:� ,:]Σ&((−�−1)[1:� ,:])′((−�−1�);[1:� ,1:�])
′

Unconditionally, we have
√
#(�̂(B) − �) =

√
#(�̂(B) − �̂) +

√
#(�̂ − �) 3−→ N(0,Σ1 + Σ−1

2 Σ3Σ
−1
2
′)

where

Σ2 =
%

%�′

����
�

�

( ∫
Ψ$(.∗8 ,,8 ;�) 5$(.∗8 |,8 ;�)3.∗8

)
Σ3 = �

( ( ∫
Ψ$(.∗8 ,,8 ;�) 5$(.∗8 |,8 ;�)3.∗8

) ( ∫
Ψ$(.∗8 ,,8 ;�) 5$(.∗8 |,8 ;�)3.∗8

)′)
9



C.3 Computational Efficiency

We rewrite the equation (C3) as follows

(Θ̂(B+1) − Θ̂) = −�−1�(Θ̂(B) − Θ̂) − �−1&(B) + >?(#−(1/2)) (C4)

Following Liu et al., 1998 andNielsen, 2000, we discuss the parameter−�−1� and variance

of innovation �−1 var(&(B))�−1′ in further details. First, define + ≡ � + �, then we have

−�−1� = −�−1(� + � − �) = � − �−1+

where −� by definition is the complete-data information matrix, and −+ is the observed-

data information matrix. It is easy to show that

� =

[
��� �� 

� � �  

]
, + =

[
+�� 0

0 0

]
where−��� and−+�� are the complete-data informationmatrix andobserved-information

matrix based on O model, respectively.

��� =
%

%�′

����
�

�

( log 5̃!(.∗8 ,,8 ;�,  0)
%�

)
=

%

%�′

����
�

�(Ψ$(.∗8 ,,8 ;�))

+�� =
%

%�′

����
�

�

( ∫ log 5̃!(.∗8 ,,8 ;�,  0)
%�

5̃!(.∗8 |,8 ;�,  0)3.∗8
)

=
%

%�′

����
�

�

( ∫
Ψ$(.∗8 ,,8 ;�) 5$(.∗8 |,8 ;�)3.∗8

)
As a benchmark, the SEM algorithm based on Omodel generates the following dynamics

(�̂(B+1)
(�"
− �̂) =

(
� − (−�−1

��)(−+��)
)
(�̂(B)
(�"
− �̂) − �−1

��&
(B)
� + >?(#

−(1/2))

where &(B)� = &(B)[1:�].

Define

� =

[
��� �� 

� � �  

]
≡

[
��� �� 

� � �  

]−1

so that ��� = �
−1
�� + �� �

−1
  
� �, then we have

� − �−1+ =

[
� − (−���)(−+��) 0
−(−� �)(−+��) �

]
and

(�̂(B+1) − �̂) =
(
� − (−���)(−+��)

)
(�̂(B) − �̂) − �−1

[1:� ,:]&
(B) + >?(#−(1/2))

Since −��� ≥ −�−1
�� in semipositive definite order, then the smallest eigenvalue of

(−���)(−+��) is at least as large as the smallest eigenvalue of (−�−1
��)(−+��), we expect

that PXSEM on average converge faster than SEM.
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D Discrete Choice Model Estimation

In this section, we present in detail the procedures to estimate the L model of the discrete

choice model in Section 5.

1. p̂� = (∑ G8CG
′
8C
)−1(∑ G8CI8C)

2. B̂: 1̂� = (
∑
G8G
′
8
)−1(∑ G8�8), 1̂′� = (

∑
G8G
′
8
)−1(∑ G8�′8).

Then define �̃8 = �8 − 1̂′�G8 , �̃8 = �8 − 1̂′�G8 , &̃8 = I8 − p̂�
′
G8 − �̃8 − �̃8 , and Ĩ8 = �̃8 + �̃8 + &̃8

3. �̂�, p̂ = arg min�� ,?

, 1
2
(
vec(Σ̂�) − vec(Σ�(�(��, ?), �D(��, ?)))

),
where Σ̂� = v̂ar(Ĩ8) − �2

�?
2
⇀
1)×1

⇀
1 1×) − ?2�)×) ,

�̂∗
8
= chol(Σ̂) chol(ĉov([�̃8 �̃′8 &̃′8]′))−1[�̃8 �̃′8 &̃′8]′,

�(��, ?) = (
∑
�̂∗
8 ,C−1�̂

∗
8 ,C−1

′)−1(∑ �̂∗
8 ,C−1�̂

∗
8 ,C
),

�D(��, ?) = ŝtd(�̂∗
8C
− ��̂∗

8 ,C−1)

4. �̂ = (∑ �̂∗
8 ,C−1�̂

∗
8 ,C−1

′)−1(∑ �̂∗
8 ,C−1�̂

∗
8 ,C
), �̂D = ŝtd(�̂∗

8C
− �̂�̂∗

8 ,C−1), �̂ =
p̂�
p̂ ,

where [�̂∗
8
�̂∗
8
′ &̂∗

8
′]′ = chol(Σ̂(�̂�, p̂)) chol(v̂ar([�̃8 �̃′8 &̃′8]′))−1[�̃8 �̃′8 &̃

′
8
]′

5. �̂(B+1) = (�̂, �̂�, �̂, �̂D)

where Σ is the variance-covariance matrix of [�∗
8
�∗
8
′ &∗

8
′]′, Σ = var([�∗

8
�∗
8
′ &∗

8
′]′), and Σ� is

the variance-covariance matrix of �∗
8
, Σ� = var(�∗

8
)

Specifically, the estimator �̂� and p̂ in step 3 are obtained through comparing the

following two objects:

• From the model, we have

var
(
�

(
[�8 �′8 &′8]′ − BG8

) )
= var

(
�

(
pA[�∗8 �∗8 ′ &∗8 ′]′

) )
which implies

�var([�8 �′8 &′8]′ − BG8)�′ = p2�AΣA′�′

Moreover, with the model constraint �AΣA′�′ = �Σ�′, we have

�var([�8 �′8 &′8]′ − BG8)�′ = p2�Σ�′

We can write down Σ� as a function of p and ��

Σ� = �var([�8 �′8 &′8]′ − BG8)�′ − �2
�p2⇀1)×1

⇀
1 1×) − p2�)×)

Therefore, Σ can be writen as a function of p and ��

Σ =


p2�∗� 0 0

0 Σ� 0
0 0 p2�
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• From the model, we have

var
(
[�8 �′8 &′8]′ − BG8

)
= var

(
pA[�∗8 �∗8 ′ &∗8 ′]′

)
which implies

var
(
[�8 �′8 &′8]′ − BG8

)
= p2AΣA′

With the constraint that matrix A being a lower triangular matrix with positive

diagonal entries, we have

pA = chol(var([�8 �′8 &′8]′ − BG8)) chol(Σ)−1

and (pA)−1
[2:)+1,:]([�8 �

′
8
&′
8
]′ − BG8) follow AR(1) process.

We could write down Σ� as a function of � and �D using AR(1) structure, where

� and �D satisfy the moment restrictions that (pA)−1
[2:)+1,:]([�8 �

′
8
&′
8
]′ − BG8) follow

AR(1) process.

Estimators �̂� and p̂ are chosen to minimize the distance between the two matrix.3 , 4

E Discrete Choice Model Extensions

In this section, we will briefly discuss two extensions of the discrete choice model of the

main text. The first one is the Probit regression allowing for the dependence of individual

effect and initial persistent component to depend on regressors of initial period. The

second case is the Logit regression with the same latent-variable structure.

Probit with dependence. The model to be estimated is as follows:

OModel:

H8C = 1(H∗8C > 0),

H∗8C = �′G8C + �8 + �8C + &8C ,

�8C = ��8 ,C−1 + D8C

where �8 |G ∼ #(��G81, �2
�), D8C ∼ #(0, �2

D), &8C ∼ #(0, 1), �81 |G ∼ #(��G81, 1).

3Different estimators of L model can be exploited as well. For example joint optimization: �̂� , p̂, �̂, �̂D =
arg min�� ,?,�,�D

, 1
2
(
vec(�ĉov([�̃8 ; �̃8 ; &̃8])�′) − vec(?2�Σ(�� , �, �D)�′)

). In Appendix A we discuss alter-
native PX-SEM algorithms for discrete models.

4M-step estimator could affect the convergence performance. In some cases, usually associated with
some certain initial guesses, the PX-SEM with a GMM estimator in M-step could perform worse than SEM
estimator. The reason is that the increment of complete data likelihood based on the GMM estimator might
not outperform the increment of the SEM case. But we would expect with a more flexible L model, this
becomes less likely to happen. In Appendix B, we explain in detail this problem with the toy model.
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For each individual 8 ∈ 1, ..., # at period C ∈ 1, ..., ), we observe a  × 1 dimension

vector G8 and a 0-1 discrete dependent variable H8 , whereas H∗
8
, individual effect �8 ,

persistent component �8 are latent variables. Denote the set of unknown parameters by

Θ = (�, ��, �, �D , ��, ��).
Proposed L model and its estimation will be added in a later draft

We show results:

Figure E1: SEM and PX-SEM iterations of Θ(B) from informed guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) � (f) ��

(g) ��

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

50 iterations. Based on informed initial guess.
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Figure E2: SEM and PX-SEM iterations of Θ(B) from random guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) � (f) ��

(g) ��

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

50 iterations. Based on informed initial guess.

Logit. The model to be estimated is as follows:

OModel:

H8C = 1(H∗8C > 0),

H∗8C = �′G8C + �8 + �8C + &8C ,

�8C = ��8 ,C−1 + D8C

where �8 |G ∼ #(0, �2
�), D8C ∼ #(0, �2

D), &8C ∼ !>68BC82, �81 |G ∼ #(0, 1).
For each individual 8 ∈ 1, ..., # at period C ∈ 1, ..., ), we observe a  × 1 dimension

vector G8 and a 0-1 discrete dependent variable H8 , whereas H∗
8
, individual effect �8 ,

persistent component �8 are latent variables. Denote the set of unknown parameters by

Θ = (�, ��, �, �D).
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Proposed L model and its estimation will be added in a later draft

Figure E3: SEM and PX-SEM iterations of Θ(B) from random guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

250 iterations. Based on informed initial guess.

F Discrete Models with More Iterations

First I show only the 100 iterations. The result is very interesting. If we only conduct

SEM algorithm for 100 iterations, it seems the changes along the iterations are rather

small since 50th iteration such that one might thought it already converges. However, as

we know the true value, we understand it is not the case. The results show that in this

simulation, SEM does not converge within 2000 iterations.

15



Figure F1: SEM and PX-SEM iterations of Θ(B) from informed guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

50 iterations. Based on informed initial guess.

Figure F2: SEM and PX-SEM iterations of Θ(B) from informed guesses, zoom to [0, 500]

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

250 iterations. Based on informed initial guess.
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Figure F3: SEM and PX-SEM iterations of Θ(B) from informed guesses, zoom to [0, 1000]

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

500 iterations. Based on informed initial guess.

Figure F4: SEM and PX-SEM iterations of Θ(B) from informed guesses, zoom to [0, 2000]

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

500 iterations. Based on informed initial guess.
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Figure F5: SEM and PX-SEM iterations of Θ(B) from informed guesses, zoom to [0, 3000]

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

1000 iterations. Based on informed initial guess.

G More Simulations of Discrete Models

Informed Initial Guesses
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Figure G1: SEM and PX-SEM iterations of Θ(B) from informed guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

50 iterations. Based on informed initial guess.

Figure G2: SEM and PX-SEM iterations of Θ(B) from informed guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

50 iterations. Based on informed initial guess.

19



Figure G3: SEM and PX-SEM iterations of Θ(B) from informed guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 300 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

150 iterations. Based on informed initial guess.

Random Initial Guesses

Figure G4: SEM and PX-SEM iterations of Θ(B) from random initial guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

50 iterations. Random initial guess from lognormal distribution
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Figure G5: SEM and PX-SEM iterations of Θ(B) from random initial guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 100 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

50 iterations. Random initial guess from lognormal distribution

Figure G6: SEM and PX-SEM iterations of Θ(B) from random initial guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 300 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

150 iterations. Random initial guess from lognormal distribution
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Figure G7: SEM and PX-SEM iterations of Θ(B) from random initial guesses

(a) �0 (b) �1 (c) ��

(d) �D (e) �

Notes: SEM (blue solid line) and PX-SEM (orange solid line) iterations based on 300 MH draws. True value are in
green dash line. SEM estimates (blue diamond) and PXSEM estimates (orange star) are based on the average of last

150 iterations. Random initial guess from lognormal distribution

H PX-M Step of Quantile Models Estimation

In this section, I will first present the moment conditions used to estimate the matrix A

of L model and then discuss in the detail the M-step procedures.

Themoment conditionswe use can be devided into three categories. The first category

include moments mostly related to matrix A; the second and the third categories include

moments related to dynamics of �∗
8C
.

Matrix A. With the specification that

A =



a� 0�01 · · · 0�0) 0&01 · · · 0&0)

1 − 0� 1 − 0�01 − 0
�
11 · · · −0�0) − 0

�
1) 1 − 0&01 − a& · · · −0&0) − 0

&
1)

...
...

. . .
...

...
. . .

...

1 − 0� −0�01 − 0
�
)1 · · · 1 − 0�0) − 0

�
))

−0&01 · · · 1 − 0&0) − a&

0 0�11 · · · 0�1) a& · · · 0&1)
...

...
. . .

...
...

. . .
...

0 0�
)1 · · · 0�

))
0 · · · a&



}
A11×(2)+1) A2)×(2)+1)

 A3)×(2)+1)
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and define ��
8C
≡ �8 − a�H8C , we can easily solve for [ 1)

∑
C H8C �

�
8
′ &′

8
]′ and have

1
)

∑
C H8C
�
�
8
&8

 = B

�∗
8

�∗
8
&∗
8


where

B =



1 1
) ... 1

)
1
) ... 1

)
0 0�01 − a� · · · 0�0) 0&01 − a� · · · 0&0)
...

...
. . .

...
...

. . .
...

0 0�01 · · · 0�0) − a� 0&01 · · · 0&0) − a�
0 0�11 · · · 0�1) a& · · · 0&1)
...

...
. . .

...
...

. . .
...

0 0�
)1 · · · 0�

))
0 · · · a&


Based on the assumption that the submatrix B[2:end,2:end] is invertible, we have

1
)

∑
C

H8C = [1
1
)
...

1
)
][�∗8 �∗8 ′ &∗8 ′]′ = [

1
)
...

1
)
]B−1
[2:end,2:end][�

�
8
′; &′8]′ + �∗8

Since �([�∗
8
′ &∗

8
′]′�∗

8
) =

⇀
0 , and [��

8
′; &′

8
]′ are linear combination of [�∗

8
′ &∗

8
′]′, we have the

moment conditions that

�([��
8
′ &′8]′�∗8) =

⇀
0 (H1)

from which we could estimate b′ ≡ [ 1) ... 1
) ]B−1

[2:end,2:end] and obtain

�̂∗8 =
1
)

∑
C

H8C − b̂′[��
8
′; &′8]′

Similarly, we obtain moments which allow us to estimate �̂∗
8
and &̂∗

8
. Define �8C ≡ &8C −

a&(H8C − �∗8), then we have 
H8 − �∗8
�8
&8

 = C
[
�∗
8
&∗
8

]
where

C =



1 0 · · · 0 1 0 · · · 0
0 1 · · · 0 0 1 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 1
0�11 − a& 0�12 · · · 0�1) 0 0&12 · · · 0&1)
0�21 0�22 − a& · · · 0�2) 0 0 · · · 0&2)
...

...
. . .

...
...

...
. . .

...

0�
)1 0�

)2 · · · 0�
))
− a& 0 0 · · · 0

0�11 0�12 · · · 0�1) a& 0&12 · · · 0&1)
0�21 0�22 · · · 0�2) 0 a& · · · 0&2)
...

...
. . .

...
...

...
. . .

...

0�
)1 0�

)2 · · · 0�
))

0 0 · · · a&
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Starting from the first period, we have

H81 − �∗8 = �∗81 + &∗81

and it is easy to check that [H82 −�∗8 ... H8) −�∗8 �81 &82 ... &8)]′ is the result of a linear trans-
formation ofmatrix [�∗

81
′ ... �∗

8)
′&∗
82 ... &

∗
8)
]′with the coefficientC1. For simplicity of the no-

tation, we define"[−0,−1], 0 > 0, 1 > 0 as the submatrix of M excluding row 0 and column

1. Then matrix C1 can be expressed as C1 = [C′[2:),−()+1)] C′[)+1,−()+1)] C′[2)+2:end,−()+1)]]
′.

With the assumption that C1 is invertible, we have the moment condition

�([H82 − �∗8 ... H8) − �∗8 �81 &82 ... &8)]′&∗81) =
⇀
0 (H2)

from which we could estimate c1
′ ≡ [1 0 ... 0]C1

−1 and obtain

&̂∗81 = H81 − �̂∗8 − ĉ′1[H82 − �̂∗8 ... H8) − �̂∗8 �81 &82 ... &8)]′

Similarly, for any C ∈ [1, ..., )], under the assumption that Ct is invertible, where

Ct = [C′[1:C−1,−()+C)] C′[C+1:),−()+C)] C′[)+C ,−()+C)] �
′
[1:C−1,−()+C)] C′[2)+C+1:end,−()+C)]]

′

and � ≡ [0)×) �)×)], we have moment condition

�([H81 − �∗8 ... H8 ,C−1 − �∗8 H8 ,C+1 − �∗8 ... H8) − �∗8 �8C &∗81 ...&∗8 ,C−1 &8 ,C+1 ... &8)]′&∗8C) =
⇀
0 (H3)

Therefore, given any value of a� and a&, we could estimate �∗
8
and &∗

8C
through a

sequential of linear regression as described later in this section.

Dynamics of �∗
8C
. The model assumes that �∗

8C
follows a first-order Markov process.

This implies that the conditional distribution of �∗
8C
given all the past information �∗C−1

8

only depends on the state of the previous period �∗
8 ,C−1, that is

5 (�∗8C |�∗C−1
8 ) = 5 (�∗8C |�∗8 ,C−1)

where 5 (·) is the density function. This further implies that the conditional mean of �∗
8C

give all the past only depends on �∗
8 ,C−1:

�(�∗8C |�∗C−1
8 ) = �(�∗8C |�∗8 ,C−1)

Therefore, we have

�∗8C = ℎ(�∗8 ,C−1) + 48C , �(48C |�∗C−1
8 ) = 0
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In fact we have infinite moment restrictions since �(48CA(�C−1
8
)) = 0 for any function A(·).

Specifically, I use two sets of moments:

�(48Cℎ(�∗8 ,C−1)) = 0 (H4)

�(48C48:) = 0,∀C ≠ : (H5)

From (�4) we obtain estimates of ℎ̂(·).
For simplicity, we do not solve the optimization jointly, instead, we solve the following

constrainted optimization problem:

min
a� ,a&

)∑
C=1

)∑
:=C+1

FC:�(48C48:)2

subject to conditions (H1), (H2), (H3), (H4). The optimization is managable since there

are only two unknowns: a� and a&.

In E-step, we obtain �8 and �8C from posterior distribution 5$(�8 , �8 |H8 ; Θ̂(B)) and com-

pute &8C = H8C − �8 − �8C . Now we explain in detail the M-step:

Step1. Giveneach a� anda&, obtain Â(a�, a&;�8 , �8 , &8)and
[
�̂∗
8

�̂∗
8
′ &̂∗

8
′] ′ = Â−1 [

�8 �′
8

&′
8

] ′
usingmoments cov(D∗

8
, �∗

8C
) = 0, cov(D∗

8
, &∗

8C
) = 0, cov(&∗

8:
, &∗

8C
) = 0,∀C , : ∈ [1, ..., )] and C ≠ :

1. We first isolate �̂∗
8
from H8C . Remember from matrix A

�8 = a��∗8 + 0�01�
∗
81 + · · · + 0�0)�

∗
8) + 0

&
01&
∗
81 + · · · + 0&0)&

∗
8)

and

H8C = �∗8 + �∗8C + &∗8C
For each C ∈ [1, ..., )]we define

�
�
8C
≡ �8 − a�H8C

Then �
�
8C
is a linear combination of �∗

81, ..., �
∗
8)
, &∗

81, ..., &
∗
8)

Finally, regress 1
)

∑
C H8C on �

�
81, ..., �

�
8)
, &81, ..., &8) , and take the residual as estimates

for �∗
8
, that is

�̂∗8 =
1
)

∑
C

H8C − -′8
(∑

8

-8-
′
8

)−1 (∑
8

-8
( 1
)

∑
C

H8C
) )

where -8 ≡ [��81, ..., �
�
8)
, &81, ..., &8)]′. By construction ∀C ∈ [1, ..., )], ��

8C
and &8C are

linear combinations of �∗
81, ..., �

∗
8)
, &∗

81, ..., &
∗
8)
. With assumption that �∗

8
is uncor-

related with �∗
8
and &∗

8
, as well as extra assumption that ��

81, ..., �
�
8)
, &81, ..., &8) are

linearly independent, our estimator is able to isolate �∗
8
from H8C .
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2. Next we isolate �̂∗
8C
from H8C − �̂∗8

Complete the following loop:

loop for : = 1 : )

Define

�8: ≡ &8: − a&(H8: − �̂∗8)

Then we can isolate �̂∗
8:
and &̂∗

8:
by

&̂∗8: = H8: − �̂
∗
8 − (′8

(∑
8

(8(
′
8

)−1 (∑
8

(8
(
H8: − �̂∗8

) )
and

�̂∗8: = H8: − �̂
∗
8 − &̂∗8:

where

(8 = [H81−�̂∗8 , ..., H8 ,:−1−�̂∗8 , H8 ,:+1−�̂∗8 , ..., H8)−�̂∗8 , &̂∗81, ..., &̂∗8 ,:−1, &8 ,:+1, ..., &8 ,) , �8:]′

which is a linear transformation of [�∗
81, ..., �

∗
8)
, &∗

81, ..., &
∗
8 ,:−1, &

∗
8 ,:+1, ..., &

∗
8)
]′.

Similar to previous step, ∀: ∈ [1, ..., )], both elements of [H81 − �̂∗
8
, ..., H8 ,:−1 −

�̂∗
8
, H8 ,:+1 − �̂∗

8
, ..., H8) − �̂∗

8
, &̂∗

81, ..., &̂
∗
8 ,:−1, &8 ,:+1, ..., &8 ,) , �8:]′ and �8: are linear com-

binations of �∗
81, ..., �

∗
8)
, &∗

81, ..., &
∗
8 ,:−1, &

∗
8 ,:+1, ..., &

∗
8 ,)
. With assumption that &∗

8 9
is

uncorrelated with &∗
8C
and �∗

8
, for any 9 ≠ C and 9 , C ∈ [1, ..., )], as well as extra

assumption that �̂∗
81, ..., �̂

∗
8 ,:−1, �8 ,:+1, ..., �8 ,) , &̂∗81, ..., &̂

∗
8 ,:−1, &8 ,:+1, ..., &8 ,) and �8: are

linearly independent, we could separate �̂∗
8C
and &̂∗

8C
.

Step 2. Compute â�, â& = arg min0� ,0& �
(
�̂∗
8
(0�, 0&), �̂∗

8
(0�, 0&), &̂∗

8
(0�, 0&)

)
.

Function �(·) describes how well �̂∗
8
(0�, 0&), �̂∗

8
(0�, 0&), &̂∗

8
(0�, 0&) satisfy other moment

conditions. Specifically, we consider the following objects:

1. �∗
8C
|�∗
8 ,C−1, �

∗
8 ,C−2, ... follows first-order markov process⇒ regress �∗

8C
on �∗

8 ,C−2, ..., �
∗
8 ,1

as well as polynomials of �∗
8 ,C−1, we should expect the coefficients on �∗

8 ,C−2, ..., �
∗
81

to be close to zero. Note here we only use the information on conditional mean,

higher-order moments could also be exploited but should not at the expense of

much longer computational time. For C ∈ [3, ..., )],

2>4 5C =

(∑
8

A4BA8 A4B
A
8
′
)−1 (∑

8

A4BA8 A4B
�
8C

)
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where

A4B�8C = �̂∗8C − %(�̂∗8 ,C−1)′
(∑

8

%(�̂∗8 ,C−1)%(�̂∗8 ,C−1)′
)−1 (∑

8

%(�̂∗8 ,C−1)�̂∗8C
)

A4BA8 =

(
[�̂∗8 ,C−2, ..., �̂

∗
81]−%(�̂∗8 ,C−1)′

(∑
8

%(�̂∗8 ,C−1)%(�̂∗8 ,C−1)′
)−1 (∑

8

%(�̂∗8 ,C−1)[�̂∗8 ,C−2, ..., �̂
∗
81]

))′
Function %(G) is the low order Hermite polynomials of 6(G), which is a function of

G 5

Define

>1 91 =
[2>4 5 ′3 , ..., 2>4 5 ′)]′

2. �∗
8C
|�∗
8 ,C−1 follows time-homogeneous markov process⇒ regress �∗

8C
on %(�∗

8 ,C−1) for
any C ∈ [2, ..., )], we should expect the predicted conditional mean for different C

given same � to be very close. For C ∈ [2, ..., )]

�C =

(∑
8

%(�̂∗8 ,C−1)%(�̂∗8 ,C−1)′
)−1 (∑

8

%(�̂∗8 ,C−1)�̂∗8C
)

>1 92 =

, 1
2
∑
9

(
%(vec(�̂∗))�9 −

1
) − 1

∑
:

%(vec(�̂∗))�:
)2

where, represents the histogram of �̂∗.

3. &∗
8C
i.i.d. over time⇒ �8C from uniform distributionwhichwe know all themoments,

where �8C = &̂−1
& (&8C)

>1 93 =

vec
( 1
#
[
⇀
1#×1 � �2]′ × [

⇀
1#×1 � �2]

)
− vec(")


where " is the matrix of corresponding moments of joint uniform distribution.

Finally we solve the optimization

â�, â& = arg min
0� ,0&

:1>1 91 + :2>1 92 + :3>1 93

Comment: future experiment includes replacing current obj functions by a set of tests

that take into account sampling errors

Step 3. Compute �̂∗
8
(â�, â&), �̂∗

8
(â�, â&), and &̂∗

8
(â�, â&), and update parameters by a

series of quantile regressions

�̂&
!
(�) = arg min

�&0 ,�
&
1 ,...,�

&

 

#∑
8=1

)∑
C=2

��
(
�̂∗8C −

 ∑
:=0

�&
:
!:(�̂∗8 ,C−1)

)
5In practice, we transform �8 using hyperbolic tangent function to reduce tails
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�̂&!(�) = arg min
�&

#∑
8=1

)∑
C=1

��
(
&̂∗8C − �&

)
�̂�1
!
(�) = arg min

��1

#∑
8=1

��
(
�̂∗81 − ��1

)
�̂
�
!
(�) = arg min

��

#∑
8=1

��
(
�̂∗8 − ��

)

I Alternative PX-SEM for Quantile Models

We also consider a different way to implement PX-SEM for quantile models. The big

structure is very similar to the previous method: try to recover �̂∗
8
, �̂∗

8
, and &̂∗

8
from the

E-step draws by imposing zero correlation, and then conduct quantile regressions based

on �̂∗
8
, �̂∗

8
, and &̂∗

8
. The difference is that we now target matrix A−1 by writing down

A−1(a�, a&), where a�, a& are new auxiliary parameters. Here we only discuss how A−1

as well as �̂∗
8
, �̂∗

8
, and &̂∗

8
are decided given a� and a&, and the rest of the procedures of

PX-SEM is the same as before.

Given any a�, a&, we get [�̂∗
8
�̂∗
8
&̂∗
8
] = A−1[�8 �8 &8] by imposing orthogonality

1. replace � = � − -(?8=E(G)�), �C = �C + -(?8=E(G)�)where - = [1 �1 ... �) &1 ... &)]

2. gen �̂∗ ≡ a�� + G 1
)

∑
C(HC − �), and replace �C = HC − �̂∗ − &C . Here given a� and

impose the orthogonality between �̂∗ and 1
)

∑
C(HC − �̂∗C), we can solve for G = 0.5 ±√

a�(1 − a�)var(�)/var( 1)
∑
C(HC − �)) + 0.25 when a� ≠ 1, 0. Choose the x that the

correlation between �̂∗ and H − �̂∗ is closest to 0. When a� = 1 or 0 simply reg on

other side

3. get &̂∗C and �̂∗C . Iterate over C:

loop for : = 1 : )

(a) Reg &: on [�̂∗1 ... �̂∗:−1 �̂∗
:+1 ... �̂

∗
)
&̂∗1 ... &̂

∗
:−1 &:+1 ... &)] and take residual

A4B&
:
(&̂: which captures the correlation across periodswill be added later

to � part)

(b) Reg �: on [�̂∗1 ... �̂∗
:−1 �̂∗

:+1 ... �̂∗
)
&̂∗1 ...&̂∗

:−1 A4B&
:
&:+1 ... &)] and take

residual A4B�
:
(�̂: which captures the correlation across periods will be
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added later to � part)

(c) Adjust the direction&length: gen &̂∗
:
= a&A4B&

:
+ GA4B�

:
. Given a& and

orthogonality between A4B&
:
and A4B�

:
, x can be solved (in step 2).

(d) Replace �̂∗
:
= H − �̂∗ − &̂∗

:

The procedure can be explained using the following figures. Assume there are only

two variables. Figure I1a shows the draws from the E-step, where two variables are not

orthogonal. Steps 3a and 3b aim to orthogonalize two variables and achieve the result

as in Figure I1b. Then the auxiliary parameter is the length in current direction, and

the finally vector is decided by imposing orthogonality as indicated in Figure I1c. One

problemwith this method is that wewill have up to two possible vectors for a given value

of the auxiliary parameter. We currently use one out of the two using the restrictions

described above.

Figure I1: Procedures explained in figures

(a) original (b) orthogonalization

(c) scale by : and solve for A(k) (d) scale by :′ and solve for A(k’)
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J Preliminary Results for Quantile Models

Here we present some simulation results of persistent-transitory quantile processes.

Specifically, true �8 and &8 follow flexible non-Gaussian distribution, persistent com-

poenent �8C = &(�8 ,C−1, �2
8 ,C−1, D8C) allows for nonlinear conditional mean and nonlinear

persistence.

From the results shown below, we can see that SEM does not converge within 300

iterations, whereas both PX-SEM moves toward the region near the true value quickly.

Based on the results of first 300 iterations, we plot the estimated distribution of each

component. Not surprisingly, SEM does not capture the features of each component

well. In contrast, both PX-SEM and PX-SEM+SEM, based on the first 300 iterations, could

capture the nonlinear persistence associated with �8C . Moreover, PX-SEM+SEM performs

better in estimating the high kurtosis of &8C , reflected in the iteration figures where the

orange line moves closer to the true value at the second half.
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Figure J1: SEM, PX-SEM, PX-SEM+SEM iterations of distribution parameters of �8

(a) �, �1 (b) �, �2 (c) �, �3 (d) �, �4

(e) �, �5 (f) �, �6 (g) �, �7 (h) �, �8

(i) �, �9 (j) �, �10 (k) �, �11

Notes: SEM—blue solid, PX-SEM— green solid, PX-SEM+SEM—orange solid, true values—pink dash.

Figure J2: SEM, PX-SEM, PX-SEM+SEM iterations of distribution parameters of &8

(a) &, �1 (b) &, �2 (c) &, �3 (d) &, �4

(e) &, �5 (f) &, �6 (g) &, �7 (h) &, �8

(i) &, �9 (j) &, �10 (k) &, �11

Notes: SEM—blue solid, PX-SEM— green solid, PX-SEM+SEM—orange solid, true values—pink dash.
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Figure J3: SEM, PX-SEM, PX-SEM+SEM iterations of distribution parameters of �1

(a) �1 , �1 (b) �1 , �2 (c) �1 , �3 (d) �1 , �4

(e) �1 , �5 (f) �1 , �6 (g) �1 , �7 (h) �1 , �8

(i) �1 , �9 (j) �1 , �10 (k) �1 , �11

Notes: SEM—blue solid, PX-SEM— green solid, PX-SEM+SEM—orange solid, true values—pink dash.

Figure J4: SEM, PX-SEM, PX-SEM+SEM iterations of distribution parameters of �C |�C−1...

(a) �C , �1 (b) �C , �2 (c) �C , �3 (d) �C , �4

(e) �C , �5 (f) �C , �6 (g) �C , �7 (h) �C , �8

(i) �C , �9 (j) �C , �10 (k) �C , �11

Notes: SEM—blue solid, PX-SEM— green solid, PX-SEM+SEM—orange solid, true values—pink dash.
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Figure J5: SEM, PX-SEM, PX-SEM+SEM estimates of persistence of �C

(a) � data (b) � sem (c) � pxsem (d) � pxsem-sem

Figure J6: SEM, PX-SEM, PX-SEM+SEM estimates of conditional distribution of
�C |�C−1, ...

(a) � sem (b) � pxsem (c) � pxsem-sem

Notes: SEM—blue solid, PX-SEM— orange solid, PX-SEM+SEM —orange solid, true values—green dash

Figure J7: SEM, PX-SEM, PX-SEM+SEM estimates of distribution of &8

(a) & sem (b) & pxsem (c) & pxsem-sem

Notes: SEM—blue histogram, PX-SEM— orange histogram, PX-SEM+SEM—orange histogram, true
distribution—green histogram

Figure J8: SEM, PX-SEM, PX-SEM+SEM estimates of distribution of �8

(a) � sem (b) � pxsem (c) � pxsem-sem

Notes: SEM—blue histogram, PX-SEM— orange histogram, PX-SEM+SEM—orange histogram, true
distribution—green histogram
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