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This paper studies how languages are shaped by the cognitive costs that using
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resolution of the tradeoff between the precision of a language and the complexity of
the structures it uses, and its dependence on the information the language is used to
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independent of the distribution of states.
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1 Introduction

Human communication is based on the use of natural, constructed, and formal languages.
The main use of these languages is to transmit and store information, and they evolve (and
are developed) over time, in part to accomplish these tasks more efficiently.1 As a result,
languages are shaped by the type of information they describe and the underlying costs
of using them, which typically derive from the complexity of their substructures and the
cognitive costs that learning and using them involves.

This paper studies optimal languages under the presumption that communication is
costly due to its lack of precision, the complexity and length of its coding, and the costs as-
sociated with the physical or cognitive limitations that communicators face. We use insights
from the economics and information theory literatures to develop a new general framework
to study costly communication, and we uncover several features of optimal languages, and a
number of comparative statics results. We use them to rationalize some empirical features
observed in natural languages.

We model a language as a map from a set of (differently likely) states of the world
to a set of heterogeneous words. The set of words is initially taken as given and later
endogenized using information theory. In our base model, the communication loss that using
a language generates comes from two sources. The first is the imprecision loss, which is due
to the mistakes or misunderstandings that the lack of precision of the language generates.
Lowering the imprecision loss favors increasing the size of the vocabulary (i.e., the set of
used words) to lower the amount of states that each word signifies. The second is the
(word-dependent) speaking loss of using each word, which may derive from its complexity or
length.2 Minimizing the speaking loss favors using a few simple words for communication.
Our goal is to characterize how, depending on the likelihood of states, a(n optimal) language
gives meaning to words to minimize the total loss that communication generates.

We begin our analysis by characterizing the optimal language for a fixed given set of
words. In this setting, increasing the precision of a word lowers the imprecision loss of the

1Initial uses of the cost–benefit analysis in linguistics came from Zipf (1949) and Marschak (1965). See
Rubinstein (2000) for an evolutionary model of optimal languages, and John (2016) for a recent survey on
the theory and evidence of how economic forces influence language dynamics.

2Our concept of “word” corresponds to a “label” that can be assigned to describe some piece of information. In
a common language, for example, it may correspond to one or more words (or sentences) that may be long
and complex, increasing the frictions that communication involves. Section 4 pushes this interpretation
further by assuming, in line with standard information theory, that such labels are constructed using
combinations of the letters of some alphabet. In this case, using more labels makes them more precise, but
implies using longer codes that increase the speaking loss.
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states it describes and, because it lowers the likelihood of it being used, the expected speaking
loss it generates also decreases. Still, making some words more precise implies lowering the
precision and increasing the usage frequency of other words. Conversely, describing some
states more precisely implies that other states are communicated more coarsely. We show
that in an optimal language, similar words (in terms of their complexity) tend to be similarly
precise and also to refer to similarly likely states. Furthermore, simpler words are used more
frequently than complex words and also refer to more likely states of the world. We show
that the precision of a word depends not only on its complexity but also on the degree of
heterogeneity of both states of the world and words. If, for example, all words are similarly
complex, an optimal language focusses on minimizing the imprecision loss, and more likely
states are described precisely as a result. Alternatively, if the states of the world are similarly
likely, more likely states are described less precisely. In this case, an optimal language aims
at minimizing the speaking loss, and therefore complex words are used to precisely describe
unlikely states.

Conditional on being realized, likely states are shown to generate a lower communication
loss than unlikely states, even when they are communicated more coarsely. We use this to
prove that the efficiency of optimal communication decreases when the homogeneity of the
states of the world increases through a garbling of the state space. Indeed, if information is
more concentrated, an optimal language can be focussed on communicating likely states very
precisely. Similarly, the optimal communication loss also increases when the set of words
becomes more homogenous.

In the second part of the paper, we fix an alphabet and endogenize the complexity
structure of the word set using information theory. To do this, we separate the problem
of finding optimal languages into two parts. First, for each fixed distribution of words’
frequencies, we determine the speaking loss that communicating them with an optimal coding
generates. Using the Source Coding Theorem, this loss is shown to be a linear function of
the differential entropy of the distribution of word likelihoods. Next, we characterize the
optimal language for a given distribution of states, that is, the assignation of states to words
that minimizes the sum of the imprecision and the speaking losses. We find that in an
optimal language, all words are equally precise and that their precision is independent of the
distribution of states and increasing with the size of the alphabet. Consequently, their rank
distribution of words coincides with that of the states of the world.

We extend our results to include two additional types of cognitive costs. First, we include
a capacity loss related to the size of the vocabulary; the more words a vocabulary includes,
the higher the cost of learning the language or recalling a word when needed. The second is
a state-dependent importance factor indicating the loss from miscommunicating each given
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state. These additions have little effect on our results for languages with an exogenous word
set. When the word set is endogenous, words referring to likely states are more precise and
shorter in the first case, while words referring to important states are more precise (but not
necessarily shorter) in the second.

Relationship to the Literature. The economics literature on communication has
mostly focussed on the study of (strategic) information transmission between (one or mul-
tiple) senders and receivers with misaligned incentives. Three notable exceptions, and the
papers most similar to ours, are Cŕemer, Garicano and Prat (2007), Jäger, Metzger and
Riedel (2011), and Sobel (2015), henceforth CGP, JMR, and S, respectively. The first paper
studies optimal codes within firms, assuming that there is a finite set of words available for
communication and that the receiver incurs a cost that depends on the number of states
each word signifies. The second paper analyzes a multi-dimensional cheap-talk model and
uses it to characterize the sets of states that words signify and to provide an algorithm to
numerically calculate optimal languages for large numbers of words. The third paper con-
siders a version of the Crawford and Sobel (1982) (henceforth CS) model without conflict of
interest between the sender and the receiver and with a limited number words (or messages)
available for communication. The key contribution of our paper to this literature and its
main focus is the analysis of how cognitive and physical costs shape optimal communica-
tion.3 To this end, we generalize some of the previously obtained results, while providing new
insights on the tradeoffs that designing efficient communication imposes when words differ
in their complexity. Importantly, we illustrate how information theoretical insights can be
used to endogenize the word structure in economics models of communication, obtain new
predictions, and open the door to further research on the intersection of the economics and
information theory literatures, which have been regarded as disconnected from each other in
the past.4

3A common assumption in the cheap-talk literature is that the cost of using each message is the same
(normalized to zero). Exceptions include the papers on costly lies by Kartik et al. (2007) and Austen-Smith
and Banks (2000), which study communication between agents with conflicting interests when there is a
cost of misrepresenting information, and Austen-Smith and Banks (2000), which allows for money burning
in addition to the cheap-talk messages. Another exception is Hertel and Smith (2013), which adds a cost of
sending messages in the CS model and obtains that when the bias is zero, only messages with costs below a
given threshold are used in the equilibrium, thus satisfying the no-incentive-to-separate (NITS) condition.

4Our model abstracts from the optimal “grammar”, “syntax”, or “compositionality” (that is, how the meaning
of a complex expression can be deduced from the meaning of its parts see Rubinstein (1996) and Blume
(2000, 2004)) and from intentional “vagueness” of the language (that is, the fact that the meaning of some
words is not clearly defined see Lipman (2009) and Lim and Wu (2017)). It instead focusses on how to
optimally give meaning to a set of heterogeneous words, which can be understood themselves as structures

4



Since Zipf (1949) first introduced the tradeoff between the preference of the speaker for
a non-complex language and the preference of the hearer for precision, part of the linguistics
literature has focussed on theoretically recovering the so-called Zipf’s law for the rank distri-
bution of words.5 We model the imprecision loss using (limits of) standard economics models
and focus our analysis on the structure of the language. In particular, we characterize how
the properties of the information transmitted and the word complexity shape the language’s
usage and precision. The general setting introduced in the paper (that accommodates both
exogenous and endogenous word complexity), as well as our findings, allows combining pre-
vious insights from both the economics and the linguistics literatures to shed light on the
structure of optimal languages.

Technical Contribution. This paper proposes a continuous model of communication.
In our model, rather unconventionally, a language uses a continuum of words to communicate
a set with a continuum of states of the world. This modeling choice permits using measure-
theoretic analysis to study languages in the presence of both heterogeneous information
and word complexity. In particular, we show how measure-preserving transformations of
the state space and the word space can be used to transform the problem of finding an
optimal language into finding the monotone one-dimensional function that minimizes the
communication loss functional, which can be solved using calculus of variations. The optimal
assignation of heterogeneous states of the world to heterogeneous words is then characterized
by a second-order differential equation that provides us with explicit solutions for some
primitives of the model.

Our continuous approach differs from the previous literature where, in the absence of
strategic considerations, the set of words is typically assumed to be finite. As argued in
Appendix B, our model can be obtained as the limit of some of the previous discrete models
when the number of available words increases (or their usage cost decreases). We show this
explicitly for the S model, and we argue that this is also true for CGP and JMR. This makes
our model suitable for studying natural or constructed languages that use many different
words, and therefore their efficient usage is likely to be affected by the word complexity
or length and other cognitive costs. We show that the assumption that a large number of
words used for communication (infinity in the limit) gives tractability, permits a complete
characterization of optimal languages, and consequently sheds light on how they are shaped

(like sentences) constructed using grammar rules.
5See Ferrer-i-Cancho (2017) for a recent review of the literature. For example, Ferrer-i-Cancho and Solé
(2003) numerically obtains that the Zipf’s law is achieved when the objective function adequately balances
the two preferences, and states are uniformly distributed.
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by their usage and cost structure.6

Structure of the Paper. Section 2 sets the basic model, and Section 3 characterizes
optimal languages for a fixed set of words. In Section 4, we endogenize the set of words (and
its cost structure) using information theory. Section 5 relaxes some simplifying assumptions
used in Section 3. Section 6 concludes. The proofs of the results in the main text are in
Appendix A. In Appendix B, we show that our model is a limit of a standard communication
model without conflict of interest as the cost of the words decreases.

2 A Continuous Model of Languages

In this section we introduce a continuous model of languages. To make the presentation
clear, we present a simplified version of it, and we generalize the setting in Section 5. In
particular, we here assume (and latter relax) that the state space is one-dimensional, and
states are ordered in terms of their likelihood. Appendix B shows that particular versions
of our model can be obtained as the limit of standard communication models with a finite
vocabulary (and with general payoff functions) as the size of the vocabulary increases.

There is a set of states (of the world) T ≡ [0, 1]. The likelihood with which states are
realized is modeled using an absolutely continuous, full-support probability measure F in
T . We use f to denote its density function so, for each state t ∈ T , f(t) is interpreted
as the frequency (or likelihood) with which t occurs. In this section, for convenience and
without loss of optimality (see Remark 3.3), we assume that states are ordered in decreasing
likelihood, that is, f is decreasing, and that f is differentiable. Letting µ be Lebesgue
measure in R, µ(T ′) denotes the amount of states in a set T ′ ⊂ T , and F (T ′) their total
likelihood.

There is a set of words W ≡ R+ to be used for communication. The usage cost of
each word is captured with the function c : W → R, which associates to each word w the
cost of using it (coming from, for example, its complexity or length). We assume that c is
differentiable, increasing and such that limw→∞ c(w) =∞.

A language (or semantics) is a measurable function ` : T → W satisfying that the
pushforward measure of µ, denoted µ`, is absolutely continuous.7 Notice that, the density

6See Dilmé (2018) for an analysis of the CS model with a small bias between the sender and the receiver.
As in our model, a small bias implies that the number of words used (in efficient equilibria) is also large,
adding tractability to the analysis.

7Throughout the paper we use κf to denote the pushforward measure of a measure κ in Rn under a function
h : Rn → R, which satisfies κh(B) = κ(f−1(B)) for all measurable sets B in R. If κ and κh are absolutely
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Figure 1: Two examples of a language. In both cases, simple words refer to likely states. In
(a) simple words are more precise than complex words, and the contrary is true in (b). See the
relative sizes anti-images of the sets W ′ and W ′′, which are of the same size.9 Note that, when ` is
differentiable, the precision with which a state is communicated is 1`(`(t))

−1 = `′(t).

of µ` at a given word w ∈ W , denoted 1`(w), can be interpreted as the local ratio of states
of the world per word signifies at w or, put differently, 1`(w)−1 can be interpreted as the
precision of w (see Figure 1). Therefore, our definition of a language ensures that there is
no word which is infinitely imprecise.8 Intuitively, for a given language ` and a set of words
W ′ ⊂ W , the amount of states communicated using words in W ′, µ(`−1(W ′)), is equal to∫
W ′

1`(w) dw, so no positive mass of states is assigned to a single word.

In this section, the communication loss that a language ` generates is given by

L(`) ≡
∫
T

g(1`(`(t))) f(t) dt︸ ︷︷ ︸
≡Li(`)

+

∫
T

c(`(t)) f(t) dt︸ ︷︷ ︸
≡Ls(`)

, (2.1)

where g : R+ → R is a twice-differentiable, increasing and convex function such that
limx→∞ g(x) =∞. The communication loss is divided between the imprecision loss Li and

continuous, and k denotes the density of κ, we use kh to denote the density of κh. In particular, since the
density function of µ is 1, 1` denotes the density of µ`.

8The assumption that µ` is absolutely continuous is convenient and without loss of optimality given our loss
function (2.1). Indeed, it is easy to see that for any sequence of languages (`i)i such that (µ`i)i converges
(in measure) to some measure which is not absolutely continuous, the limit of the corresponding sequence
of communication losses given by equation (2.1) tends to +∞. Appendix B shows that optimal languages
in discrete models converge, as the communication los shrinks, to languages satisfying our restriction.

9Note that in both subfigures, the words in W ′ are simpler than the words in W ′′. In panel (a), words in
W ′ jointly signify a set of smaller size than the states signified by the words in W ′′, so the words in W ′ are
more precise. The reverse is true in (b).
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the speaking loss Ls. The imprecision loss is owed to the lack of precision of the language. It
is the sum across the state space of the product between the likelihood of each state and loss
derived from the coarseness with which such a state is communicated (which corresponds to
the ratio of states per word, 1`, see Remark 2.1 below), derived from the potential mistakes
that imprecise information generates. The speaking loss averages the usage cost of all used
words (related to their complexity), which is the sum across the state space of product of the
likelihood of each state and the cost of using its associated word. Section 5.2 analyzes the
effect of adding a capacity loss to the right hand side of equation (2.1), that is, a loss term
that depends on the amount of words used for communication, µ(`(T )), arising from the cost
of learning the language. Given that all results in Section 3 apply also in the presence of a
capacity loss, but its inclusion makes some of the arguments and expressions unnecessarily
tedious, we assume in our base model that there is no capacity loss.

The specification of the communication loss in (2.1) captures a fundamental tradeoff that
designing an optimal language involves. On the one hand, lowering the communication’s
inaccuracy (lowering the imprecision loss) favors using many words in order to increase their
precision. On the other hand, making the language simpler (lowering the speaking loss)
favors using only (few) “simple” (and cheap) words.

It is sometimes convenient to write the communication loss in the space of words in the
following way:

L(`) =

∫
W

(
g(1`(w)) + c(w)

)
f`(w) dw (2.2)

where, for each word w ∈ W , the pushforward measure of F under `, f`(w) is the frequency
with which w is used.10 The communication loss associated to a word w ∈ W is given by
the likelihood of it being used (given by f`(w)) multiplied by its cost conditional on being
used, which equals its imprecision loss g(1`(w)) plus its usage cost c(w).

Remark 2.1. Appendix B shows that equation (2.1) is obtained as the limit of standard
communication models with a finite word set and a (possibly infinite) bigger set of states.
To gather some additional intuition, consider a version of the CGP model with a continuum
of states. In this model, the imprecision loss that a word generates when it is used depends
on the amount of states it signifies, which is interpreted as the cost that the receiver incurs to
distinguish the actual realized state. In order to increase the number of words while keeping
their distribution it is convenient to use, for each ∆>0, the set Ŵ∆ ≡

{
[(k−1) ∆, k∆)

∣∣ k∈N}
10It is important to realize that, even if ` is injective, f`(`(t)) is different, in general, from f(t). Indeed, if `
is injective, f`(w) = f(`−1(w)) 1`(w), that is, the frequency with which a (set of) word(s) is used depends
both on the likelihood of the states it refers to and the corresponding ratio of states of the world per word.
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to denote the set of words. A language ` (as defined in our model) is interpreted as assigning
to each word ŵ ∈ Ŵ∆ the set of states of the world `−1(ŵ). For each language `, it is then
the case that

lim
∆↘0

∑
ŵ∈Ŵ∆

g

(
µ(`−1(ŵ))

∆

)
F (`−1(ŵ)) =

∫
T

g(1`(w)) f`(w) dw .

Consequently, even when in our limit specification the language is injective (as it will be the
case for optimal languages), the local density of states per word shall be interpreted as (the
limit of) the “amount of states” a word signifies.

Similarly, in the S model, the receiver takes an action (denoted α(ŵ)) after the sender
communicates word ŵ. Hence, in an optimal language (see the details in Appendix B.1),
each word signifies an interval [inf(`−1(ŵ)), sup(`−1(ŵ))] ⊂ T , and the action α(ŵ) minimizes
the average square-distance of the states in the set. In this case, for a quadratic payoff loss
and a fixed language `, the imprecision loss that the language generates is

lim
∆↘0

∑
ŵ∈Ŵ∆

1

∆2

∫
`−1(ŵ)

(α(ŵ)− t)2 f(t) dt =
1

12

∫ 1

0

1`(`(t))
2 f(t) dt .

An alternative way of interpreting equation (2.1) is considering a multi-dimensional state
space. Indeed, even though in our base model we assume (for simplicity) that the state space
T is one dimensional, Section 5 shows that the same analysis and results also apply when
the state space is multi-dimensional. Hence, if for example T is [0, 1]2, each word w used in
an optimal language can be interpreted as meaning a one-dimensional set (such as a segment
of a curve), so in the normalized (one-dimensional) model 1`(w) can be interpreted as the
length of this segment.

Remark 2.2. Similarly to the CGP model, our specification of the payoff does not use any
structure of the state space other than its likelihood distribution. This contrasts with some
communication models, like JMR and S, where close states are typically signified by the
same word, since closeness of the meaning of a word plays an important role on determining
the imprecision loss it generates. Appendix B argues that, in these models, as the number
of words available for communication increases, the precision with which a state is commu-
nicated in an optimal language does not depend on its “spatial” allocation within the state
space, but only on its local characteristics (such as its likelihood or, in Section 5.3, its relative
importance). As a result, the implied payoff loss approaches the right hand side of equation
(2.1). Intuitively, as words become more precise, their meanings partition the state space in
very small pieces. The possibility of re-assigning words across the state space implies that
the properties of a word in an optimal language (such as its precision, its usage frequency,
etc) depend only on the local properties of the states it describes.
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3 Optimal Languages

This section is devoted to characterizing optimal languages. Their existence and main
characterization is established in Proposition 3.1. In order to save notation, in Lemmas 3.1
and 3.2, we use ` to denote an optimal language, and these lemmas shall be interpreted as
necessary conditions that an optimal language must satisfy.

3.1 Preliminary Results

We say that x : W → W is a state-precision-preserving re-assignation ofW if it preserves
its Lebesgue measure µ.11 The composition of a state-precision-preserving re-assignation x
with a language `, x ◦ `, shall be interpreted as a “re-labeling” of the language `, that is, a
new language obtained by assigning that the meaning of each word to another word. As a
result, composing a(ny) language ` with a state-precision-preserving re-assignation x (which
generates a new language x◦`) preserves the precision with which each state is communicated,
but not the precision of each word. More formally, we have

1x◦`(x(`(t))) = 1`(`(t)) but 1x◦`(w) ≶ 1`(w) ∀t∈T,∀w∈W ,

where the symbol≶means that the inequality (or equality) may hold in any direction. Hence,
after applying a state-precision-preserving re-assignation x to a language `, the expression
for its communication loss (2.2) becomes

L(x ◦ `) =

∫
T

(
g(1`(`(t)))+c(x(`(t)))

)
f(t) dt .

Notice that applying a state-precision-preserving re-assignation to a language leaves its im-
precision loss the same (since the precision with which each state is communicated remains
the same), while potentially changes the speaking loss (since it changes the frequency with
which each word is used).

Our first lemma claims that the frequency with which words are used is decreasing in
their complexity, that is, simpler words are used more frequently.12 The intuition is clear:
if a (set of) word(s) is simpler (and cheaper) than another one (with the same amount of
words) and also used less frequently, one can switch their assigned states while keeping the

11In general, a function φ : R→ R (or any other measurable space) is a measure-preserving transformation
(preserving µ) if µ(φ−1(B)) = µ(B) for any measurable set B.

12Our result is consistent with the assertion in Zipf (1935), empirically verified in posterior studies, that “the
magnitude of words tends, on the whole, to stand in an inverse (not necessarily proportionate) relationship
to the number of occurrences”.
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precision with which each state is communicated the same (so keeping the imprecision loss),
and therefore lowering the implied communication loss. Even though its proof is illustrative
of the use measure-theoretical techniques to analyze languages, we leave it (and the proofs
of the other results) to Appendix A.

Lemma 3.1. c(w) < c(w′) ⇒ f`(w) ≥ f`(w
′) for almost all w,w′ ∈ W .

We can use similar logic to characterize which states are allocated to which words. Now,
for a fixed language `, a word-precision-preserving re-assignation is a function x` : W → W

which preserves µ` (and therefore it preserves the precision of each word):

1x`◦`(x`(`(t))) ≶ 1`(`(t)) but 1x`◦`(w) = 1`(w) ∀t∈T,w∈W. (3.1)

Using the expression of the payoff in terms of the states (2.2), we see that re-allocating
(using a word-precision-preserving re-assignation) highly likely states to words with a low
usage cost (weakly) lowers the communication loss.

Lemma 3.2. c(`(t)) < c(`(t′)) ⇒ f(t) ≥ f(t′) a.e.

The logic behind Lemma 3.2, as the example below shows, comes from the convexity of
our cost function g, and the fact that by Lemma 3.1 simple words are used more frequently.
It relies on the fact that re-assignations of states that keep the frequency of each word the
same but assign likely states to simple words make words more similarly precise, therefore
reducing the imprecision loss without changing the speaking loss.

To gain some intuition on Lemma 3.2, consider a finite version of our model with only 6
states, {ti}6

i=1, with likelihoods f(t1)=f(t2)= 1
4
and f(t3)= ...=f(t6)= 1

8
. Assume also there

are 3 words available, {wi}3
i=1, c(w1) < c(w2) = c(w3). Consider the following two languages.

The language `1 assigns {t1, t2} to w1, {t3, t4} to w2 and {t5, t6} to w3. The language `2,
instead, assigns t1 to w2, t2 to w3 and {ti}6

i=3 to w1. Since the frequency of each word
is the same under both languages, these languages generate the same (discrete-analogous)
speaking loss, but due to the convexity of g, they differ in their imprecision loss. Indeed, we
have that, since g is convex and strictly increasingly,

1
2
g(2) + 1

4
2 g(2)︸ ︷︷ ︸

Li(`1)

= g(2) < g(5
2
) ≤ 1

2
g(4) + 1

4
2 g(1)︸ ︷︷ ︸

Li(`2)

.

Our continuous approach allows us to generalize this intuition to any distribution of states
and structure of costs of the words’ set.

Remark 3.1. Lemmas 3.1 and 3.2 resemble Propositions 1 and 2 in CGP, which state that
in their model “broader words describe less frequent events” and “are used less frequently”,

11



while in ours these properties apply to more complex words. Interestingly, the logic for the
analogous results is switched. For example, the reasoning for their result on the frequency of
usage of broader words is analogous to the logic of our result on the likelihood of states signi-
fied by complex words: keeping the likelihood of words, assigning likely states to likely words
smoothes the distribution of words’ precision. Alternatively, the logic behind their result
about the likelihood of states being described by broader words comes from the possibility
of switching states between words, while we argued that complex words are less frequent by
switching the meaning of words. As we will see (Proposition 3.1 below), their results do not
apply to our model: depending on the distribution of state likelihoods and word complexity,
broader words may be more or less frequent than precise words, and refer to more or less
likely states.

3.2 Characterization of Optimal Languages

Lemma 3.2 ensures that, in an optimal language, ` can be chosen to be continuous and
strictly increasing, and therefore differentiable almost everywhere. Then, a language ` gives
the following communication loss:

L(`) =

∫ 1

0

(
g(`′(t)−1) + c(`(t))

)
f(t) dt . (3.2)

Notice that `′(t) is equal to 1`(`(t))
−1 almost everywhere, since the precision with which

state t is communicated is equal to the inverse of its local ratio of states per word. Hence,
equation (3.2) illustrates of the main tradeoff of our model: increasing the precision of
the language `′ lowers the imprecision loss, but requires using more complex words, as it
increases `(1). The problem of finding an optimal language can then be written as a problem
of calculus of variations: it consists on finding the (increasing) map from the state space into
the word space which minimizes the functional (3.2). This allows us to find the following
characterization of any optimal language:

Proposition 3.1. An optimal language ` exists, is twice-differentiable, and satisfies

h′′(`′(t)) `′′(t) = −f
′(t)h′(`′(t))

f(t)
+ c′(`(t)) for all t ∈ T , (3.3)

where h(x) ≡ g(1/x) for all x ∈ R++, which is decreasing and convex.

Equation (3.3) shows how the characteristics of the state space and the set of words
affect optimal communication. The first term on its right hand side is negative and related
to the imprecision loss. If the states of the world are heterogeneous (i.e., the slope of the
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likelihood function f ′ is large in absolute value), the need for a precise language decreases
fast with the state. If this term dominates the second one, likely states are communicated
precisely, while unlikely states are communicated in a coarse manner. Intuitively, likely
states tend to contribute more to the communication loss, as they are communicated more
frequently. Such contribution is mitigated, in an optimal language, through communicating
them more precisely, which implies `′′(·) < 0. Figure 1(a) depicts a language where this
happens at all states. The second term on the right hand side of equation (3.3), instead, is
positive and related to the speaking loss. If the words’ usage cost c increases fast (so the
second term dominates), an optimal language communicates less likely states more precisely.
Equivalently, as we can see in Example 3.1 below, complex words are optimally made more
precise in order to avoid using them frequently. This is corresponds to Figure 1(b).

Remark 3.2. Recent developments in linguistics have indicated that a word length is not
only negatively related with its frequency (see footnote 12), but also with its “information
content” (see, for example, Piantadosi et al. (2011)). Even though defining and measuring
a word’s information content is not without difficulty (and some degree of ambiguity), its
natural analogous in our model is the “broadness” (i.e. inverse of the precision) of a word,
that is, the amount of states it describes. Thus, such a result seems to indicate that the
second term on the right hand side of equation (3.3) dominates the first, that is, word
heterogeneity plays an important role on determining the structure of a language.

3.3 Comparative Statics: Heterogeneity of States and Words

We devote this section to shedding light on how changes in the heterogeneity of the states
of the world and the complexity structure of the set of words affect the communication loss.
Our first result generalizes the findings in CGP and S that more “complex” environments
(i.e., environments with a less concentrated density function) generate a higher speaking
costs. We generalize their results to allowing for word heterogeneity and endogenizing the
size of the vocabulary. We provide afterwards an additional result claiming that a similar
result applies to words: if they become more homogenous, the communication loss increases.

Before stating our comparative statics results regarding the heterogeneity of the set of
state of the worlds and the set of words, we establish the following corollary of Proposition
3.1:

Corollary 3.1. If f(t) > f(t′) then g(1`(`(t)))+c(`(t)) ≤ g(1`(`(t
′)))+c(`(t′)), for almost

all t, t′ ∈ T .

Corollary 3.1 shows that more likely states generate, conditional on being realized, a lower
communication loss. Thus, an optimal language alleviates the communication loss that likely
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states generate by assigning them to simple words and, sometimes, communicating them
precisely. The intuition is similar to that of Lemma 3.1: if a state of the world is more
likely and generates a higher communication loss than another state, they can be “switched”
(using the appropriate measure-preserving transformation of the state space) so that the
total communication loss decreases.

The next result claims that, for a fixed language, increasing the homogeneity of the state
space increases the communication loss.

Proposition 3.2. Let `(·; f) denote an optimal language for a distribution f , and let
L(`(·; f); f) be the corresponding communication loss. Let x : T → T be a transforma-
tion preserving µ such that fx is decreasing. Then, L(`(·; fx); fx) ≥ L(`(·; f); f), with strict
inequality when f 6= fx.

The interpretation of Proposition 3.2 is the following. A measure-preserving transfor-
mation of the state space can be viewed as garbling states of the world into new “mixed”
states of the world. As a result, after such a transformation, the amount of states of the
world is the same, but they are more homogeneous than the (old) states of the world before
the transformation. Given that, by Corollary 3.1, the payoff loss that a state generates
(conditional on being realized) is increasing and independent on the likelihood of the state,
standard arguments for measure-preserving re-assignations apply, so13

L(`(·; fx); fx) ≥ L(`(·; fx); f) ≥ L(`(·; f); f) .

Hence, Proposition 3.2 establishes that a higher concentration of the states’ likelihood distri-
bution makes the communication loss decrease. This result is intuitive: when the likelihood
of the states of the world becomes more concentrated, an optimal language describes (very)
likely states more precisely (so simple words are precise), while complex words describe less
precisely (very) unlikely states, lowering the total communication loss.

A similar intuition applies to increasing the heterogeneity of the set of words: if words
become more heterogeneous, simple words can be used to efficiently communicate likely
states, while complex words are left to communicate unlikely states.

Proposition 3.3. Let `(·; c) denote an optimal language for a cost function c, and let
L(`(·; c); c) be the corresponding communication loss. Let x : W → W be a transformation
preserving µ such that c ◦ x is finite and increasing. Then, L(`(·; c ◦ x); c ◦ x) ≥ L(`(·; c); c),
with strict inequality when c 6= c ◦ x in `(T ; c).

13As the proof of Lemma 3.1 illustrates, the Hardy-Littlewood inequality for the integral of two monotone
functions ensures any measure-preserving re-assignation of f increases the payoff loss.
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Remark 3.3. The payoff loss that a language ` generates (see equation (2.1)) is well defined
independently on whether f is decreasing or not. Furthermore, by Ryff (1970), we have that
for any fixed (not necessarily decreasing) f , there is some strictly decreasing f ∗ and measure-
preserving x : T → T such that f = f ∗ ◦ x. It is immediate to prove that, if ` is an optimal
language for f ∗, then L(`∗; f ∗) = L(`∗ ◦x; f) ≤ L(`; f) for any language `. Consequently,
the assumption that f is decreasing is, in fact, innocuous. Proposition 3.2 reinforces the
result in Lemma 3.2: in optimal languages, the states that a given word signify have similar
likelihoods. Furthermore, Remark B.2 illustrates why re-arrangements of the state space do
not change the properties of optimal languages with large vocabularies in settings such as
those in JMR and S.

3.4 Examples

Example 3.1 (constant f). As a first illustrative example, consider the case where the states
of the world are homogeneous, so f(t) = 1 for all t ∈ T , and g is the identity. Let `
be an optimal language. In this case, the solution to equation (3.1) can be written as
1/`′(t) = (c(`(1))−c(`(t)))/2 (where we used Proposition 5.2 below to pin down `(1)). Since
the precision of a word is `′(t), we see that, as we argued before, complex words are also
precise. So, the density of states of the world associated with a particular word is linearly
decreasing in its cost. Thus, we can write:∫ `(1)

0

1
2

(
c(`(1))− c(w)

)
dw = 1 .

The corresponding communication loss is L(`) = 1
4

∫ `(1)

0
(c(`(1))2 − c(w)2) dw. Hence, the

communication loss that a word generates is decreasing in its complexity: the imprecision
loss of simple words is high because the amount of states associated to them is large, and
their low cost does not compensate such a large loss. Conversely, the contribution to the
communication loss of a state t is 1

2
(c(`(1)) + c(`(t))), which is increasing, as established in

Corollary 3.1.

Example 3.2 (power costs). Consider now the case where c(w) = κwβ for some κ, β > 0

and all w ∈ W , while now allowing a general form for f , and again assuming that g is the
identity. Assume that ` is an optimal language and consider another language `γ(t) ≡ γ `(t)

for all t ∈ [0, 1], for some γ > 0. Note that, for this language, the mass of used words is
γ `(1). From equation (3.2) it is clear that Li(`γ) = γ−1 Li(`) (since `′γ(t) = γ `′(t)) and
that, given the homogeneity of the cost function, Ls(`γ) = γβ Ls(`). Minimizing L(`) with
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Figure 2: In (a) we depict the contribution of each state of the word t to the imprecision loss
Li(t) ≡ g(`′(t)−1) f(t) and the speaking loss Ls(t) ≡ c(`(t)) f(t) when g(x) = x, c(w) = w and
f ≡ 1. In (b) we depict the contribution of each word w ∈ W to the imprecision loss L̃i(w) ≡
Li(τ(w)) f`(w) and the speaking loss L̃s(w) ≡ Ls(τ(w)) f`(w).

respect to γ we obtain that

dL(`γ)

dγ
= −γ−2 Li(`) + β γβ−1 Ls(`) ⇒ γ−β−1 =

β Ls(`)
Li(`)

.

Since ` is optimal and `γ is feasible, we have that γ = 1 has to minimize L(`γ). This implies
that Li(`) = β Ls(`). As we see, even though a higher value of β makes complex words
comparatively more costly, it also flattens the cost of simple words. Then, in an optimal
language, the imprecision loss is higher than the speaking loss when β > 1. Conversely, if β
is close to 0, the cost of each word w ∈ W converges to κ. In this case, the amount of states
per word is very small, and therefore the imprecision loss becomes very small too, while the
speaking loss converges to κ.

Figure 2(a) depicts the imprecision and speaking losses as a function of the state, for
linear costs (i.e., β = 1). As we just showed, in this case, in an optimal language, the
imprecision loss is equal to the speaking loss, so the area below the curves Li and Ls is
the same. Thus, low states (which are communicated with simple words) do not contribute
much to the speaking loss, but they contribute significantly to the imprecision loss; while
the converse is true for high states. Overall, states associated with complex words have a
higher contribution to the communication loss than the states associated with simple words
(as established in Corollary 3.1). Conversely, Figure 2(b) shows the contribution of each
word to the communication loss, which is obtained dividing the communication loss of the
state(s) it means by its precision. Again, the areas below L̃i and L̃s coincide. Now, the
contribution to the speaking loss is low for complex words: even though their cost is high,
they are very precise, and therefore they are rarely used. As shown in Example 3.1, the total
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Figure 3: In (a) we depict the optimal vocabulary size `(1) as a function of β when c(w) = κwβ ,
g(x) = x and f ≡ 1, for different values of κ; and in (b) we depict the corresponding communication
losses. When κ is small, the cost of using each word is small too, so the size of the vocabulary is
large and the communication loss is low. Similarly, when β → 0, we have that c(w) → κ for all
w ∈ R+, so `(1)→∞ (the precision of communication increases and the imprecision loss vanishes)
and L(`)→ κ. When, instead, β →∞, we have that c(w)→ 0 when w ∈ [0, 1) and c(w)→∞ when
w > 1. As a result, in this case, `(1) → 1 (and all words have the same precision) and L(`) → 1

(the speaking loss vanishes).

contribution of a word to the communication loss is decreasing in its complexity.

Figure 3 depicts the effect that changes in κ have on the size of vocabulary and the
communication loss depending on the value of β. To get some intuition, consider an increase
of κ to κ′ > κ. It is easy to verify, using equation (3.3), that the new optimal language is
(κ′/κ)−1/(β+1) `(·). So, an increase in the cost function in a factor κ′/κ lowers the mass of
words used in a factor (κ′/κ)−1/(β+1) < 1. This multiplies the total communication loss by
a factor (κ′/κ)1/(β+1) < κ′/κ. Hence, when κ increases, the size of the vocabulary decreases,
and therefore the effect of such an increase on the communication loss is reduced.

4 Information Theory

In this section we endogenize the complexity structure of the set of words. To do this,
we interpret W as a set of messages to which a language gives meaning, and we separate
the problem of obtaining an optimal language as follows. In a first step, a language maps
the set of states of the world into W , so as in our model ` : T → W . Now, additionally, for
a fixed alphabet, a language specifies a codification of the set of messages into sequences of
letters (or codes). We use Information Theory to model this second step, as it provides us
with results on how to optimally codify a set of messages to minimize their speaking loss.
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We solve the problem “backwards”, so we begin obtaining the loss derived from the optimal
coding of a set of messages for given distribution of words F`, and we then determine the
optimal choice of F`.

4.1 Optimal Word Coding

Since the seminal paper of Shannon (1948), the Information Theory has been developed,
in part, to study how to optimally encode information in order to efficiently communicate
and store it. In this section we derive the limit cost of an optimal coding of a set of words
with a given likelihood distribution as the number of words increases.

We first analyze the following (standard) coding problem in information theory, for a
fixed increasing language ` such that w̄ ≡ `(1) < +∞. We begin by discretizing the set
of messages to be coded. So, for each ∆, the set Ŵ∆ (similarly to Remark 2.1) denotes
the finite set of messages (some times called “symbols”)

{
[(k−1) ∆, k∆)

∣∣ k=1, ..., bw̄/∆c},
where we interpret that the language ` assigns to the message ŵ ∈ Ŵ∆ the states in `−1(ŵ).
Fix also an alphabet with n letters, A ≡ {1, ..., n}. A coding is a map from Ŵ∆ to the
set of finite sequences of letters, γ̂∆ : Ŵ∆ → ∪∞m=1A

m which is “uniquely decodable” (i.e.,
such that any sequence of letters is obtained by stacking at most one sequence of codes in
γ̂∆(Ŵ∆)). For a fixed coding, let m(ŵ) be the number of letters used to codify message
ŵ. Then, in the standard information theory model, the (speaking) loss of using a coding
is the expected length of the code,

∑
ŵ∈Ŵ∆ f∆

` (ŵ)m(ŵ), where f∆
` (ŵ) ≡ F (`−1(ŵ)) is the

probability with which the message ŵ is communicated.

The Source Coding Theorem establishes that the average number of letters of the mes-
sages used to code finitely-valued random variable is at least its entropy, and there are codes
which/ approximate this limit. Furthermore, in an optimal code, the number of characters
associated to each message is approximately equal to the negative of the logarithm of its
frequency. As the number of messages increases, the entropy of the optimal coding diverges,
but it can be normalized by an additive constant (equal to logn(∆), so it is independent of
the distribution of states) so that the limit of the normalized speaking loss of an optimal
coding can be approximated by its differential entropy:14

Ĥ(f`) ≡ −
∫ w̄

0

logn(f`(w)) f`(w) dw . (4.1)

Thus, the previous formula gives us the speaking loss that an optimal coding that a language
generates in our model with endogenous vocabulary. Using that f`(`(t)) = f(t) 1`(`(t)), it

14The approximation holds up to integer constraints that the finiteness of the alphabet imposes.
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can written as follows

Ĥ(f`) = −
∫
T

(
logn(f(t)) + logn(1`(`(t)))

)
f(t) dt

= Ĥ(f) +

∫
T

− logn(1`(`(t))) f(t) dt . (4.2)

The first equality of the previous indicates that the length with which an optimal code
communicates a state depends, additively, on a term that depends on its likelihood, and
another that depends on how imprecisely it is communicated. Given that its likelihood
is independent of the language, a language changes the length of an optimal coding only
through affecting the precision.

The second equality of equation (4.2) shows that the speaking loss of optimally coding a
language generates can divided in two terms. The first term is the differential entropy of the
distribution of the states of the world. This term implies that complex (or more entropic)
environments are more difficult to communicate. The second term is related to the precision
of the language. This term implies that using a more precise language (that is, decreasing
the value 1`) is costly, as it increases the number of messages and, as a result, the expected
length of their optimal coding.

To gather more intuition from the previous expression consider the case of a binary code,
that is, n = 2, and fix some language ` : T → W and a small ∆ > 0. Now consider doubling
the precision by using language `† ≡ 2 ` instead of `. In this case, notice that each message
ŵ ≡ [w−∆, w) signifies under ` the same states that the messages ŵ†1 ≡ [2w− 2∆, 2w−∆)

and ŵ†2 ≡ [2w − ∆, 2w) together signify under `†. Furthermore, if ∆ is small enough, the
likelihoods of both ŵ†1 and ŵ†2 under `† are very close to the likelihood of ŵ under ` divided
by two. It is then easy to show that a near-optimal coding of `† assigns to the messages ŵ†1
and ŵ†1 the same code that ŵ is assigned in an optimal coding of ` with an additional final
letter to differentiate them. As a result, doubling the precision of the language (notice that
1`†(`

†(·)) = 1`(`(·))/2) requires increasing the length of each of the codings of each message
by one, and this is independent of the underlying state distribution (so the speaking loss in
expression (4.2) increases by − log2(2−1) = 1).

4.2 Optimal Languages

The previous subsection uses information theory to endogenize the speaking loss that a
language generates. The speaking loss in equation (4.1) is such that, for each state t ∈ T , the
speaking loss associated to the word `(t) is − logn(f(`(t))). So, differently from our model
in Section 2, the usage cost of using the word endogenously depends on the frequency with
which it is used.

19



Using the expression (4.1), we can write the problem of finding an optimal language as

min
`

∫
T

(
g(1`(`(t)))− logn(1`(`(t)))

)
f(t) dt+ Ĥ(f) . (4.3)

The following result characterizes optimal languages:

Proposition 4.1. Any optimal language solving (4.3) satisfies 1`(`(t)) = w̄−1 for all t ∈ T ,
where w̄ ≡ `(1) is the total mass of words and satisfies g′(w̄−1) = w̄/ log(n).

A remarkable consequence of endogenizing the complexity structure of the word set is
that, in an optimal language, all words are equally precise. This result, follows from the fact
that, in an optimal coding, the length of the code (or usage cost) associated to a used word
`(t) can be approximated (up to a constant independent of the word) by the logarithm of its
frequency f`(`(t)) (see equation (4.1)). In our setting, the frequency of a word is `′(t)−1 f(t),
so its usage cost can be additively separated into a term that depends on the likelihood of
the state it refers to, log(f(t)), and a term that depends on its (im)precision log(`′(t)−1).
Consequently, the minimization problem (4.3) can be solved by minimizing the interior of
the integral “state-by-state”. For example, if n = 2, doubling the value of `′ in a small set of
states [t, t+ε) (but keeping it in the rest of the states) only changes the communication loss
that these states generate, and the additional communication loss is given by(

g(`′(t)−1/2) + log2(2 `′(t))− g(`′(t)−1)− log2(`′(t))
)
f(t) ε+O(ε2)

=
(
g(`′(t)−1/2)− g(`′(t)−1) + 1

)
f(t) ε+O(ε2) .

The intuition is similar to the one stated above for equation (4.2): the communication of
a small set of states can be made more precise by increasing the amount of messages that
describe them through adding letters to the existing messages. Since, in a prefix coding, one
can expand the set of messages through adding additional characters to some of the existing
codes (if n = 2, one can double the precision by adding one digit), this can be made without
altering the rest of the coding. In our limit coding with an infinite number of messages, we
can do this state by state.

The optimal size of the vocabulary given in Proposition 4.1 (which since g′ is increasing
exists and it is unique) is independent of the distribution of states. This is an immediate
consequence on the fact that not only all words are equally precise, but also their precision
does not depend on the distribution of states. Notice also that the size of the vocabulary is
increasing in the size of the alphabet n. This is intuitive: the more letters are available, the
less costly is to communicate a given distribution of words, so more emphasis can be put on
minimizing the imprecision loss in an optimal language.

20



Remark 4.1. A somehow controversial matter in linguistics is the sometimes called “great
Eskimo vocabulary hoax.” It arose from the assertion in Boas (1911) that Eskimo languages
have an unusually large number of words for snow. This claim was latter disputed by, among
others, Martin (1986), so even though it remains an open topic, the current more spread
view among experts is that the number of words for snow is similar across languages. We
shed light on the debate by establishing a feature of efficient information transmission: in
our model, the precision and/or the number of words of an optimal language are independent
of the distribution of states of the world. Hence, even though snow-related events may be
communicated more frequently in Eskimo societies, the optimal precision or amount of words
used to efficiently communicate them need not to be different from other languages.

Remark 4.2. A visual inspection of equations (2.1) and (4.3) permits assigning the following
usage cost function to the optimal coding of an optimal language:

c(w) = − logn

(
f(w/`(1))

`(1)−1

)
∀w∈ [0, `(1)] .

As it can be expected from the result in Proposition 4.1, this usage cost function exactly
balances the distribution two forces which drive the precision of the words used in the
language, given by the two terms on the right hand side of equation (3.3) (see the discussion
after Proposition 3.1). It is easy to verify that it is also the unique that achieves it (up to
an additive constant).

Zipf’s Law

One of the best established empirical facts in the study of common (and some con-
structed) languages is that, when words are ranked by the frequency of their usage in a
large text, their frequency is approximately proportional to the inverse of their rank, which
is commonly known as the Zipf’s law (Zipf (1935, 1949)). The two main approaches on
understanding this regularity are the following. The first approach is the so-called “least
effort” (see Zipf (1949)) where the language is assumed to minimize a convex combination
of the communication losses incurred by the sender and the receiver. The other approach
relies on the result in Li (1992), who shows that if symbols (including the “blank space”)
are generated independently with equal probabilities (also called “monkey languages”), one
obtains approximations of the Zipf’s law for the frequencies of words in a long text.15

In our model, words are equally precise in an optimal language, so the rank-distribution
of words is the same as the rank distribution of states. Consequently, our model presents

15The fact that, in an optimal coding, all sequences of bits are approximately equally likely, reinforces this
approach.
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another force pushing the distribution of word frequencies towards a Zipf law: using the limit
of standard communication models (in economics) without conflict of interest, the Zipf’s law
for words appears in an optimal language when the rank-frequency of described events follows
a Zipf’s distribution, which is often the case in natural and social environments.16 (Notice
that our distribution is a truncated Zipf’s law since the size of the vocabulary is finite.)

5 Generalization of the Results

In this section we show that some of the simplifying assumptions in the model presented
in Section 2 can be relaxed so the results in Section 3 still hold. To do this, we now consider
a set of states (of the world) T ⊂ Rn for some n ∈ N, assumed to be compact and with
positive (Lebesgue) measure normalized to be 1. The likelihood of the states of the world
is given by an absolutely continuous measure F with continuous density f . For convenience
we keep W = R+ (otherwise it can be normalized similarly to the state space).

Notice that the definition of a language can be immediately generalized to a multi-
dimensional state space, as well as the communication loss function in equation (2.1) (re-
placing “dt” by “µ(dt)”) and the analogous expression (2.2), where with some abuse of no-
tation µ now refers to the Lebesge measure both in R and Rn. Lemmas 3.1 and 3.2 are still
valid (their proofs do not rely on the fact that the state space is finite-dimensional). So,
to prove that rest of the results (including Propositions 3.1-3.3 and Corollary 3.1) we show
that, without loss of generality, we can normalize the state space to T̃ = [0, 1], and we can
then derive the results in the normalized state space.

5.1 State Space Normalization

In this subsection, we show that we can normalize the general setting above by mapping
the state space T into a normalized state space T̃ ≡ [0, 1]. To do this, we first choose some
mapping τ̃ : T → T̃ such that the push-forward measure of the Lebesgue measure in Rn is
the Lebesgue measure in [0, 1], and such that if f(t) > f(t′) then τ̃(t) ≤ τ̃(t′) for almost all

16A large range of phenomena in social and natural sciences which are rank-distributed according to the
Zipf’s law. These phenomena range from demography (Auerbach (1913)), biology (Willis (1922)), physics
(Nicolis and Tsuda (1989)), etc. In economics, some attention have been put on the Zipf’s distribution of
cities’ and firms’ size (Gabaix (1999), Stanley et al. (1995), Axtell (2001)), webpage visits (Cunha et al.
(1995), Huberman et al. (1998)) and academic citations (Silagadze (1997)). See Newman (2005) for a
review.
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t, t′ ∈ T , so more likely states are placed at the lower part of [0, 1].17

We call a function ˜̀ : T̃ → W such that µ˜̀ is absolutely continuous a normalized
language (i.e., a language in the normalized state space T̃ ). Note that, for each normalized
language ˜̀, we can construct a language by composing it with the normalizing function τ̃ ,
that is, L(˜̀) ≡ L(˜̀◦ τ̃). We can then assign to the normalized language ˜̀ following the
communication loss (which is analogous to equation (2.1)):

L(˜̀) =

∫ 1

0

(
g(1˜̀(˜̀(t̃))) + c(˜̀(t̃))

)
f̃(t̃) dt̃ , (5.1)

where f̃ ≡ fτ̃ is the likelihood density of the normalized states of the world, which is
independent of the particular choice of τ̃ (so L(˜̀) is also independent of τ̃). We can then use
the analysis of Section 3 and obtain that a optimal normalized language exists with the same
properties as in our base model. The following result ensures that focussing the attention
on optimal normalized is without loss of generality.

Proposition 5.1. A language is optimal if and only if it is the composition of an optimal
normalized language (characterized in Proposition 3.1) with some function τ̃ with the above
properties.

5.2 Optimal Languages with Capacity Costs

In our previous analysis, increasing the amount of words used in a language is costly
because it involves using more complex words. Still, in practice, when the number of words
used in a language is large, the cognitive/time/monetary cost learning languages or recalling
words when used may be significant. Such a capacity loss is different from our speaking loss
as it depends, in a first approximation, on the number of used words, and not the frequency
with which they are used.

We now examine the effect of a capacity loss in our previous result. To this end, we
consider the same setting as in Section 4.2, now adding a capacity loss term C(µ(`(T ))) to
the objective function of expression (2.1), where C : R+ → R is a differentiable function
increasing towards infinity. It is important to notice that, even though the speaking and
capacity losses typically increase when additional words are included in the vocabulary,
the additional capacity loss is independent of the usage of the extra word, while the extra
speaking cost depends on its assigned precision and likelihood.

17Notice that this implies that fτ̃ is monotone and continuous, so it is differentiable almost everywhere.
Furthermore, since , we have that for almost all t ∈ T , f(t) = fτ̃ (τ̃(t)).
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All results in Section 3 remain the same in the presence of a capacity loss. The reason is
that the arguments used to prove them involve (measure-preserving) reallocations of states
of the world or words, which alter the imprecision and speaking losses without changing the
total vocabulary size. The presence of a capacity loss allows the following characterization
of the optimal vocabulary size:

Proposition 5.2. The following result is true for an optimal language `:

lim
t→1

(
g′(1`(`(t)) 1`(`(t)) f`(`(t)) + C ′(`(t))

)
=0 . (5.2)

To shed light on Proposition 5.2, assume first that the capacity loss is flat at the optimum
(so C ′(`(1)) = 0). In this case, either f`(`(1)) = 0 or limt→1 1`(`(t)) = 0, which also implies
that f`(`(1)) = 0. Hence, extreme words are very rare and, if f(1) > 0, also very precise.
The reason is that, if complex words were not very precise, increasing the precision of the
least likely states by adding words in the vocabulary would not affect much the speaking
loss (since these states are already communicated with similarly complex words), but would
significantly lower their imprecision loss. Consequently, when there is no capacity loss, the
expected speaking cost from using a word tends to be hump-shaped: simple words are not
very costly, while complex words are used less often (see L̃s in Figure 2(b)). When, instead,
C ′(w) > 0 for all w ∈ W and f(1) = 0, we have that complex words are very imprecise,
since necessarily limt→1 1`(`(t)) =∞, but they remain very unlikely. In this case, an optimal
language communicates unlikely states very coarsely because introducing additional words
into the language is costly, while its benefit is small.

A similar exercise can be performed by introducing a capacity loss in the payoff loss func-
tion for an endogenous word set (equation (4.3)), which leads to the following generalization
of Proposition 4.1:

Proposition 5.3. In the presence of a capacity loss, when the speaking loss is endogenized
using information theory, for any optimal language ` there exists a constant K > 0 such
that, for almost all words w ∈ `(T ), we have g′(1`(w)) 1`(w)− 1/ log(n) = K f`(w)−1.

Proposition 5.3 establishes that, in an optimal language with capacity costs, simple
words are more precise than complex words. Indeed, given that g is convex, g′(1`(w)) 1`(w)

is decreasing in the precision of a word, 1`(w)−1. Similarly, K f`(w)−1 is decreasing in the
word likelihood, so increasing in the word complexity. To see why notice that, from equation
(4.3), we have that the effect on the total communication loss of changing the imprecision of
a given (used) word `(t) is proportional to f(t). Thus, merging the meaning of two similar
words (and therefore “saving” one word), and therefore duplicating the imprecision of the
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resulting word, is proportional to f(t).18 Since by Lemma 3.2 complex words refer to less
likely states than simple words, it is optimal to decrease their precision more than for the
simple words.

5.3 State-Dependent Imprecision Loss

The specification of the communication loss in our base model (equation (2.1)) assumes
that the communication loss of each state (conditional on being realized) depends only on the
precision and complexity of the word used to communicate it. This is a common assumption
in the literature on non-strategic communication, such as Zipf (1949) and Mandelbrot (1953),
the Information Theory literature. It is also assumed or the CGP model (who consider a
finite state space) and the JMR model.

Still, it is plausible that the importance of communicating some information precisely de-
pends on the state of the world it communicates. Indeed, misunderstandings on information
on health or safety information may generate higher payoff losses than misunderstandings
on, for example, communication about entertainment-related issues. This is incorporated
in the S model by specifying a payoff function analogous to the one used in the CS model
(without bias between the sender and the receiver), that is, allowing the payoff loss that the
imprecision of the language generates to be state dependent.

Adding to our model an extra layer of heterogeneity of the states of the world is straight-
forward. Appendix B shows that the limit of the S model (with a general loss function)
as the number of words increases corresponds to our specification with an additional term
multiplying the imprecision loss that each state generates. So, the communication loss (2.1)
becomes

L(`) ≡
∫
T

(
g
(
ν(t) 1`(`(t))

)
+ c(`(t))

)
f(t) dt , (5.3)

where the importance factor ν(t) is strictly positive for all t ∈ T , and corresponds to the
curvature of the payoff function at t in the CS model (see Appendix B). Intuitively, if the
curvature of the payoff function is high in a given region of the state space, it is relatively
“important” that they it is communicated precisely (compared with other regions), because
when the states in this region are communicated coarsely the implied mistakes owed to the
imprecision generate a higher communication loss.

18Given that, in an optimal language without a capacity loss, the precision of all words is the same (w̄
in Proposition 4.1), the payoff loss of merging the meaning of two words f(t1) and f(t2) increases from
(g(w̄−1) + logn(w̄)) (f(t1) + f(t2)) to (g(2 w̄−1) + logn(w̄/2)) (f(t1) + f(t2)). Hence, reducing the number
of used words is done more efficiently by merging the meanings of words referring to unlikely states.
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Proposition 5.4. Define the following renormalization r : T → T of the state space:

r(t) =

∫
T

ν(t′)−1 dt′
/∫

T

ν(t′)−1 dt′ .

Then, for each language `, defining ˜̀≡ ` ◦ r−1 and f̃(t) ≡ f(t)/ν(t), we have that equation
(5.3) can be rewritten as follows

L(`) = L(˜̀◦ r) =

∫
T

(
g
(
1˜̀(˜̀(t))

)
+ c(˜̀(t))

)
f̃(t) dt .

Proposition 5.4 establishes that the results in Section 3 hold in the presence of a state-
dependent importance factor when the state space is conveniently normalized. Heuristically,
in a discrete setting, if a word w describes n states with likelihood f and importance factor
ν, this word generates the same communication loss when, instead, it describes n ν states
with a importance factor 1 and with likelihood f/ν.

The heterogeneity on the importance of the states of the world can also be incorporated
our model with an endogenous word set in Section 4. In this case, as the following result
establishes, Proposition 4.1 is generalizes to state that words are used to describe more
important states of the world are more precise.

Proposition 5.5. In the presence of a state-dependent imprecision loss, when the speaking
loss is endogenized using information theory, an optimal language ` satisfies, for almost all
t ∈ T , ν(t) 1`(`(t)) g

′(ν(t) 1`(`(t))
)

= 1/ log(n).

6 Conclusions

This paper develops a new framework to study how efficient information transmission
resolves the tradeoff between the precision of the language and the costs related to its usage
and size. We characterize the relationship between the precision of a word, its usage cost, and
the kind of information it refers to, shedding light on how optimal languages are shaped by
the cognitive costs and the characteristics of the information they are used to communicate
or store. The framework introduced in this paper and its results can be used to study
the optimality of spoken or artificial (computer/music/formal) languages and to determine
their underlying (usage/cognitive) cost structure. In particular, it may help to analyze
changes in languages due to the frequency of communication, changes in the information
they communicate, or the need for precise information transmission.
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A Proofs of the results

A.1 Proofs of the results in Section 3

Proof of Lemma 3.1

Proof. Fix a language ` and define a decreasing rearrangement f ∗` of f` as

f ∗` (w) =

∫ ∞
0

I[0,|{w′:f`(w′)>y}|](w) dy for all w ∈ W .

Then, by Ryff (1970), there is a measure preserving map x : W → W such that f` = f ∗` ◦ x,
or equivalently, fx◦` = f ∗` .19 The function x can be interpreted as redefining (or switching)
the meaning of words: it keeps the precision with which each state is communicated, but it
changes the states that each word signifies and, as a result, the likelihood of it being used.
Furthermore, given that f ∗` is decreasing, x redefines words in such a way that it increases
the frequency with which simpler words are used. As a result, using the Hardy-Littlewood
inequality for the integral of two monotone functions, we obtain that∫

W

c(w) fx◦`(w) dw =

∫
W

c(w) f ∗` (w) dw ≤
∫
W

c(w) f`(w) dw .

So, a rearrangement of the word space which makes the frequency with which words are
used decreasing, weakly lowers the communication loss, while keeping the imprecision loss
the same. When f ∗` and f` do not coincide almost everywhere it is easy to prove, using the
rearrangement inequality, that the inequality is strict.

Proof of Lemma 3.2

Proof. Consider the following change of variables. Let h : T → T be such that h(t̂) ≡∫ t̂
0
f(t) dt. Given that h is bijective, ` can be decomposed as ` = ˆ̀◦ h, for some ˆ̀ : T → W .

We can then write the imprecision loss as∫ 1

0

(
g
(
f(h−1(t̂)) 1ˆ̀(ˆ̀(t̂))

)
+ c(ˆ̀(t̂))

)
dt̂ .

Now, notice that we can generate additional languages using rearrangement x of 1ˆ̀(ˆ̀(·)).
Such a rearrangement, does not change the speaking loss, preserving 1ˆ̀ (as integrals of
function do not change after rearrangements) but, by a similar argument as in the proof of
Lemma 3.1, it decreases the imprecision loss.20

19Indeed, for each T ′ ⊂ T , we have
∫
x◦`(T ′) fx◦` dt =

∫
T ′
f dt =

∫
`(T ′)

f` dw =
∫
`(T ′)

f∗` ◦x dw =
∫
x◦`(T ′) f

∗
` dw.

20Now we have a convex function of the product of two functions (instead of a linear function). It is easy to
see that the Hardy-Littlewood inequality (see, for example, Hardy et al. (1952) (Theorem 378)) extends to
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Proof of Proposition 3.1

Proof. Fix ` with a finite mass of used words w̄ ∈ R++ (so we require `(1) = w̄). It is useful
to rewrite the equation (3.2) in terms of the inverse of `, denoted τ̂ : [0, w̄] → [0, 1] (which
is continuous, increasing and concave). This gives us the following expression:

L(τ̂) =

∫ w̄

0

(
g(τ̂ ′(w)) + c(w)

)
τ̂ ′(w) f(τ̂(w))︸ ︷︷ ︸

≡L(t,τ̂(w),τ̂ ′(w))

dw . (A.1)

The function L in (A.1) is often called the Lagrangian of the problem. Notice that it is
convex with respect to the third component, since ∂2

∂v2L(w, t, v) = 2 g′(v) + v g′′(v) > 0.

The problem of maximizing L(τ̂) imposing τ̂(0) = 0 and τ(w̄) = 1 is a version of the
standard “fundamental problem” in the calculus of variations. The corresponding Euler-
Lagrange condition for optimality is

τ ′′(w) = −
c′(w) + f ′(τ(w))

f(τ(w))
g′(τ ′(w))

2 g′(τ ′(w)) + τ ′(w) g′′(τ ′(w))
.

Given that the previous equation is well behaved, Theorem 3 in Rockafellar (2001) estab-
lishes that an optimal solution of the optimization exists and satisfies the equation almost
everywhere. Equation (3.3) is obtained by rewriting the previous equation in terms of h and
`. Finally, using the fact that the payoff loss of an optimal language depends continuously
on w̄, there exists some w̄∗ ∈ R++ which maximizes it.

Proof of Corollary 3.1

Proof. Fix an optimal language `. Let τ̃ : T → T be a mapping which preserves the measure
µ and which makes g(1`(`(τ̃(t)))) + c(`(τ̃(t))) an increasing function of t. Since τ̃ preserves
µ, we have that 1` = 1`◦τ̃ , and therefore we can use the same argument as in Lemma 3.1 to
prove the result.

this case. Indeed, notice that if 0 < a < a′, 0 < b < b′ and g is convex, then g(a b) < min{g(a b′), g(a′ b)} ≤
max{g(a b′), g(a′ b)} < g(a′ b′), then, since both g(a b′) and g(a′ b) are convex combinations of g(a b) and
g(a′ b′), we have that the convexity ofg implies g(a b) + g(a′ b′) < g(a b′) + g(a′ b).
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Proof of Proposition 3.2

Proof. We define L`(t) ≡ g(1`(`(t))) + c(`(t)). Then, we have that

L(`(·; fx); fx) =

∫ 1

0

L`(·;fx)(t) fx(t) dt =

∫ 1

0

L`(·;fx)(x(t)) f(t) dt

≥
∫ 1

0

L`(·;fx)(t) f(t) dt ≥
∫ 1

0

L`(·;f)(t) f(t) dt = L(`(·; f); f) ,

where the second equality holds since x is a measure-preserving transformation, the first
inequality (in the second line) is the Hardy-Littlewood inequality once one realizes that, by
Corollary 3.1, L`(·;fx) is a decreasing rearrangement of L`(·;fx) ◦ x; and the second inequality
holds by the optimality of `(·; f). The second inequality is strict when fx 6= f since, in this
case, the languages `(·; f) and `(·; f) satisfy different optimality conditions (3.3).

Proof of Proposition 3.3

Proof. The proof is analogous to the proof of Proposition 3.2, now using that measure-
preserving transformation of the word space leaves the imprecision loss unchanged (recall
equation (3.1)). In this proof, the measure-preserving transformation x : W → W has to be
chosen such that c ◦ x is increasing.

A.2 Proofs of the results in Sections 4 and 5

Proof of Proposition 4.1

Proof. Proposition 4.1 is derived using standard calculus of variations.

Proof of Proposition 5.1

Proof. We first prove the “only if” direction. Assume that ` : T → W is an optimal language.
We make the proof for the case where c is strictly increasing and f̃ is strictly decreasing (the
other cases are analogous).21 This guarantees that, by Lemmas 3.1 and 3.2, we have that if
f̃(t̃) > f̃(t̃′) then `(t̃) ≤ `(t̃′) for almost all t̃, t̃′ ∈ T̃ . In this case, we can define τ̃ = h ◦ `,
where h(w) ≡

∫ w
0

1`(w
′) dw′ for all w ∈ [0, `(1)]. Notice that τ̃ satisfies the equations in the

main text: µτ̃ (τ̃(T ′)) = µ(T ′) for all T ′ ⊂ T , and if f(t) > f(t′) then τ̃(t) ≤ τ̃(t′) for almost

21Relaxing such assumptions implies that there are sets of states with the same likelihood with positive
measure, and/or positive-measure sets of words with the same complexity. This makes the proof more
tedious, but the steps are in it the same.

29



all t, t′ ∈ T . Let us define the normalized language ˜̀(t̃) = h−1(t̃) for all t̃ ∈ [0, 1]. Clearly,
˜̀◦ τ̃ = `, and therefore we have that L(˜̀) = L(`), so ˜̀ is an optimal language. (Notice that,
trivially, L(˜̀) ≤ L(`) (for any normalized language ˜̀) since from any normalized language
we can generate a language on the original state space using the function τ̃ described above.)

To prove the “if” part, assume now that ˜̀ is an optimal normalized language. Assume
that there is some choice of τ̃ with the properties in the main text such that ˜̀◦ τ̃ is not
optimal, that is, there is some language ` such that L(˜̀) < L(`). In this case, we can use
the arguments in the proofs of Lemmas 3.1 and 3.2 to construct a language `∗ such that
L(`∗) ≥ L(`) and such that satisfies both lemmas (note that the proofs are constructive).
Then, we can use the first part of the proof to show that L(`∗) = L(˜̀∗) for some normalized
language `∗. Finally, we have

L(˜̀) < L(`) ≤ L(`∗) = L(˜̀∗) ≤ L(˜̀) ,

which is a contradiction. Then, ˜̀◦ τ̃ is an optimal language.

Proof of Proposition 5.2

Proof. Fix an optimal language `. Given that C increases towards infinity, it is clear that
`(1) < ∞ in an optimal language. Let K ∈ R+ ∪ {+∞} be defined as limt↗1 `

′(t) = K.
Assume K < +∞ (the case K = +∞ is analogous). Fix ε ∈ (0, 1) and δ > −1. Define the
language ˜̀ such that

˜̀(t) =

`(t) if t ≤ 1− ε and

`(1− ε) + (1 + δ) (`(t)− `(1− ε)) if t > 1− ε.

Notice that ˜̀ is continuous at 1− ε, strictly increasing and coincides with ` whenever δ = 0.
Since ˜̀ is a feasible language, the optimality of ` implies that

0 ≤
∫ 1

1−ε

(
h(`′(t))+c(`(t))− h(˜̀′(t))−c(˜̀(t))

)
f(t) dt+ C(`(1))− C(˜̀(1)) ,

where h is defined in the statement of Proposition 3.1. As δ → 0, the previous inequality
can be written as follows:

0 ≤ δ

∫ 1

1−ε

(
(`(t)− `(1−ε)) c′(`(t)) + h′(`′(t)) `′(t)

)
f(t) dt+ C ′(`(1)) δ ε+O(δ2) .

Given that the previous inequality holds for small δ (both positive and negative) and small
ε > 0 then the equation (5.2) holds.
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Proof of Propositions 5.3-5.5

Propositions 5.3 and 5.5 are derived using standard calculus of variations. Proposition
5.4 follows from standard change-of-variables arguments.

B Limits of Discrete Languages

In this section we show that our model (Section 2) can be obtained as the limit of some
communication models in the economics literature. We will focus our proofs on showing
the convergence of a version of the S model (Sobel, 2015) where we allow words to be
heterogeneously complex, and we will provide some intuitions on how our model also can be
obtained as the limit of the CGP model (see Remark B.1 below).

Consider a set of states of the world T ≡ [0, 1]. We define a set of words W ≡ [0, w̄) for
some w̄ > 0. Using a notation similar to the one used in Remark 2.1, for a fixed ∆ > 0 and
k ∈ {0, ..., bw̄/∆c− 1}, the interval w ≡ [k∆, (k+ 1) ∆) is interpreted as a single word, also
denoted (with an obvious abuse of notation) w ≡ k∆. Note that for each value ∆ > 0 there
are dw̄/∆e available words. The set of available words is denoted W∆ ≡ {0,∆, ..., bw̄/∆c}.

The usage cost that using a word w ∈ W∆ involves is c(w), where c : W → R+ is
an increasing function. As in our base model, the states are distributed according to an
absolutely-continuous full-support F , which density f , but now we do not require it to be
decreasing. Note that decreasing the value of ∆ implies increasing the number of available
words (equal to bw̄/∆c) but approximately keeping their complexity distribution. Note that
the results can be generalized to the case where there is an infinite number of words (and
limw→∞ c(w) = +∞, by taking the limit w̄ →∞.

As our model in Section 2, a language is a function ` : T → W . Additionally, now
without loss of generality, we again require that the corresponding pushforward measure of
µ, denoted µ`, is absolutely continuous.22 We use the following form of the loss function for
the CS model with complexity costs

LCS
∆ (`) ≡

∑
w∈W∆

∫
`−1(w)

(
∆−2 L(t, α(`−1(w))) + c(w)

)
f(t) dt (B.1)

where, with some abuse of notation, `−1(w) ≡ `−1([w,w + ∆)), and where α(`−1(w)) is an

22It is convenient to define a language as a map from T toW instead of toW∆, so the definition is independent
of ∆. Furthermore, notice that for a given ∆, the requirement that “the corresponding pushforward measure
of µ, denoted µ`, is absolutely continuous” is innocuous in terms of the payoff in (B.1) and the observation
below that an optimal language must be an interval language.
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“optimal” action taken by the receiver in the set of states `−1(w), that is,

α(`−1(w)) ∈ arg min
a∈R

∫
`−1(w)

L(t, a) f(t) dt ,

and where L is a function from T ×R to R. Sometimes, with some abuse of notation, when
the language used is clear, we will use L(t, w) to denote L(t, α(`−1(w))). The term ∆−2

in the loss function (B.1) is irrelevant for a fixed ∆ > 0, but it will be useful to keep the
imprecision and speaking costs balanced in optimal languages when ∆→ 0.

As it is usual in the cheap talk literature, L is assumed to be twice differentiable almost
everywhere and −L(t, ·) to be single peaked around t, and we normalize L(t, ·) = 0. .
Furthermore, we define

L2(t) ≡ 1

2

∂2L(t, a)

∂a2

∣∣∣∣
a=t

,

and we assume that L2(t) > 0 for all t ∈ T . We finally assume that ∂2L(t,a)
∂a∂t

> 0. Using these
assumptions and an argument similar to the one in Crawford and Sobel (1982), it is easy to
show that if a language ` is optimal then it is essentially equivalent (i.e., generates the same
joint distribution of states and actions) to a language where states are pooled in intervals,
that is, for all w ∈ W∆ satisfies

F
(
`−1([w,w + ∆))

)
> 0 ⇒ supp(F |`−1([w,w+∆))) is an interval.

It is important to notice that, for a fixed t ∈ T and ∆ > 0, we have that, as ε → 0, the
following holds:∫ t+ε

t

∆−2 L(t′, α(t, t+ε)) f(t′) dt′ = ε2 ∆−2

∫ t+ε

t

t′2

4
L2(t′) f(t′) dt′

=
ε2∆−2

12

(
L2(t) f(t) ε+O(ε2)

)
. (B.2)

This is true because when ε > 0 is small, L(t′, α(t, t+ε)) approximates a quadratic function
L2(t) (t′−α(t, t+ε))2 for t′ ∈ [t, t+ε], because α(t, t+ε) is close to t+ ε

2
. and the distribution

of states in [t, t+ ε] approximates a locally-uniform distribution with density f(t).

Remark B.1. In the CGP model, the imprecision loss that a word w generates (conditional
on being used) depends mass of states it means, that is, it is a function g of µ(`−1(w))/∆

(see Remark 2.1). In the S model, this loss in an optimal language is approximated by
∆−2

12
L2(t)µ(`−1(w))3 (see equation (B.2)), where t is any state in `−1(w). Then, the length

of equilibrium intervals is small (which we will see corresponds to ∆ small) the CGP model
allows for a more general function of the precision of the words (in the S model it is locally
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quadratic), but the S model allows for an imprecision loss that depends on the state through a
state-dependent factor L2(t). Our model in Section 5.3 can then be obtained as a generalized
model combining the features of both models.

Remark B.2. The JMR model considers a multidimensional state space, and assumes (like
the CGP and S models) that there is a finite number of words to be used in communication.
To make the comparison to our model easier, assume that the state space is [0, 1]2. In their
model, the (imprecision) payoff loss that a word generates (conditional on being used) is
equal to a function of the average distance between the states signified by the word. They
show that, for each fixed number n of available words, an optimal language partitions the
state space into “ceils” (instead of the one-dimensional intervals), which form a “Voronoi
tessellation” of the state space. Their construction suggests that, as the number of words n
increases, a close-to-optimal language can be (heuristically) obtained as follows:

Divide the state space in b
√
nc identical squares. Consider the most efficient language

with n words restricted so that each ceil is fully contained in one of the b
√
nc squares. This

language is, in general, not optimal: an optimal language is likely to have some ceils which
are not fully included in one of the squares. Nevertheless, it is not difficult to see that, as n
increases, the payoff loss of the constrained-optimal language is going to become increasingly
similar (in relative terms) to the unconstrained-optimal language. The reason is that the
fraction of ceils in the optimal language that intersect more than one square decreases as
(
√
n)−1. It is also not difficult to see that, given that the states in each of the b

√
nc squares

are going to be increasingly similarly likely as n grows (by the continuity of f), a constrained-
optimal language is going to assign a similar number of words to squares containing states
with a similar likelihood. Therefore, as n grows, the precision of the word describing a
given state (compared to the precision of the word describing other states) is going to be
determined by the likelihood of such a state. One can finally show that the structure of the
language as n grows (i.e., the relationship between complexity of a word and its precision
or states it describes) will only depend on the level sets of f , that is, rearrangements of
the state space or mappings into lower-dimensional state spaces which preserve the quantile
function associated to f do not change the structure of optimal languages.

B.1 Convergence of Sobel (2015)

The main result of this section, Proposition B.1, states that there is a language ` such
that, for any (∆n)n converging to 0, the payoff losses that the corresponding optimal lan-
guages generate converge to the payoff loss generated by the language `. It further establishes
that ` minimizes a payoff loss function which can be expressed similarly at in the general-
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ized version of our model in Section 5.3 (equation (5.3)), with an additional state-dependent
factor multiplying the imprecision loss that each state generates.

Proposition B.1. Fix a sequence (∆n)n decreasing towards 0 and a sequence (`n)n of cor-
responding optimal languages. Then, there exists language ` such that

lim
n→∞

LCS
∆n

(`n) = LCS(`) ≡
∫
T

(
L2(t) 1`(`(t))

2

12
+ c(`(t))

)
f(t) dt .

Furthermore, ` minimizes LCS(˜̀) among all languages ˜̀.

Proof. We prove our result for the case that the payoff loss function, the usage cost function,
and distribution function are step functions. The result for general functions can be obtained
taking limits of step functions to approximate them. Hence, we assume that there is an
interval partition of [0, 1] with Nf intervals, referred to as f -intervals, where both f and L2

are constant; and that there is an interval partition of [0, w̄] with Nc intervals, referred to as
c-intervals, where the function c is constant. There exists then a set of thresholds {ti}

Nf+1
i=1

such that both f and L2 are constant in [ti, ti+1) for all i = 1, ..., Nf . Analogously, there
exists a set of thresholds {wj}Nc

j=0 such that c is constant in [wj, wj+1) for all j = 1, ..., Nc.

We fix, for the rest of the proof, some sequence (∆n)n strictly decreasing towards 0, and
a corresponding sequence of languages (`n)n where, for each n, `n is an optimal language
when the value of ∆ is ∆n. The first lemma establishes that, as n increases, the mass of
states signified by a word in an optimal language asymptotically decreases as ∆n or faster:

Lemma B.1. The following inequality holds:

lim sup
n→∞

max
w∈W∆n

µ(`−1
n (w))

∆n

<∞ .

Proof. Assume, for the sake of contradiction, that limn→∞maxw∈W∆n

µ(`−1
n (w))
∆n

= ∞.23 Let
(wn)n be a sequence of words such that wn ∈ W∆n for all n and such that, defining
εn ≡ µ(`−1

n (wn)) for all n, we have limn→∞ εn/∆n = ∞. Note that the contribution of
the complexity cost of wn is of order µ(`−1

n (wn)) = εn. Then, using equation (B.2), the
payoff loss that the interval `−1

n (wn) generates is, as n→∞,

∆−2
n

12
L2(tn) f(tn) ε3

n +O(εn+ε4
n ∆−2

n ) , (B.3)

where tn is the state in `−1
n (wn) with highest value for L2(tn) f(tn). Given that, for each n ∈ N

there are bw̄/∆nc available words, there is an f -interval and two words w1
n and w2

n such that

23If limn→∞maxw∈W∆n

µ(`−1
n (w))
∆n

does not exist, but limn→∞maxw∈W∆n

µ(`−1
n (w))
∆n

= ∞, then use the same

argument using a sub sequence of ∆n such that limn→∞maxw∈W∆n

µ(`−1
n (w))
∆n

=∞.
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µ(`−1(w1
n)) ∪ µ(`−1

n (w2
n)) is an interval and such that maxi∈{1,2} µ(`−1

n (win)) ≤ 2/bw̄/∆nc.24

We can then define a new language where all words have the same meaning as in `n except
for wn, w1

n and w1
n, which are now assigned as follows. In the new language, w1

n refers to
the interval `−1

n (w1
n) ∪ `−1

n (w2
n). Now, the meaning of wn is “split” in two parts of the same

length, the first now meant by w2
n and the second by wn. In this case, the payoff loss that

the resulting intervals generate is given by25

2
∆−2
n

12
L2(tn) f(tn)

ε3
n

8
+O(εn+ε4

n ∆−2
n ) (B.4)

which, if n is large, it is roughly 4 times smaller than its original payoff loss, contradicting
the optimality of the original language.

We proceed in the proof of Proposition B.1 by introducing the concept of a step language.
A language ` is said to be a step language if:

1. `−1([wj, wj+1)) ∩ [ti, ti+1) is either empty or an interval for all i and j, and

2. ` linear and strictly increasing in `−1([wj, wj+1)) ∩ [ti, ti+1) (whenever is not empty),
for all i and j, and we use `′i,j to denote the derivative.

Step languages are natural candidates of optimal languages in the limit n → ∞, given the
step structure of the payoff, likelihood and word-cost functions. While the first condition
is technical and for convenience, the second condition requires that if two words w,w′ are
equally costly (that is, belong to [wj, wj+1) for some j) and refer to the same type of states
(that is, `−1(w), `−1(w′) ⊂ [ti, ti+1) for some i) then they are equally precise. Notice that a
step language is differentiable almost everywhere.

Lemma B.2. Let ` be a step language. Then,

lim
n→∞

LCS
∆n

(`) = LCS(`) .

Proof. To prove the result, define first, for each n,

W i,j
`,∆n
≡
{
w∈W∆n

∣∣w∈ [w′, w′+∆n)⊂ [wj, wj+1)∩`([ti, ti+1)) for some w′∈W∆n

}
.

The set W i,j
`,∆n

contains the words w such that are fully included in the interval [wj, wj+1),
and their meaning is fully included in the interval [ti, ti+1). We define W`,∆n ≡ ∪i,jW

i,j
`,∆n

.

24If two words or more are not used the result is trivial, since these can be taken as w1
n and w2

n. If, instead,
all words except maybe one are used, then given that there are bw̄/∆nc words, at least half of the words
satisfy that the mass of states they mean is no higher than 1/(bw̄/∆nc − 1) < 2/bw̄/∆nc, so there is at
least one pair of consecutive words with the required conditions.

25Note that the additional speaking cost remains O(εn ∆2
n), which converges to 0 faster than the terms (B.3)

and (B.4), since limn→∞ εn/∆n →∞.
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Note then, that for each w ∈ W`,∆n there are two unique indexes i`,∆n(w) and j`,∆n(w) such
that [w,w + ∆n) ⊂ [wj`,∆n (w), wj`,∆n (w)+1) and `−1(w) ⊂ [ti`,∆n (w), ti`,∆n (w)+1).

Note that, since there are at most N cN f words which do not belong to some W i,j
`,∆n

,
Lemma B.1 implies that the contribution of these words to the payoff loss vanishes as ∆n

gets small. Also, if w,w′ ∈ W i,j
`,∆n

for some i, j, then µ(`−1(w)) = µ(`−1(w′)) = ∆n`
′
i,j.

Using equations (B.1) and (B.2), we have that, since ` is piecewise linear, as n→∞,

LCS
∆n

(`) =
∑

w∈W`,∆n

(
L
i(w)
2

12 `′2i`,∆n (w),j`,∆n (w)

+ cj(w)

)
µ(`−1(w)) f i(t) + o(∆0

n)

=
∑
i,j

(
Li2

12 `′2i,j
+ cj

)
µ(`−1(W i,j

`,∆n
)) f i + o(∆0

n)

=

∫
T

(
L
i(t)
2

12 `′(t)2
+ c(`(t))

)
f(t) dt+ o(∆0

n)

as n → ∞, where we used again Lemma B.1. Since 1`(`(t)) is equal to `′(t) almost every-
where, the last expression of the previous equation is equal to LCS(`) + o(∆0

n) as n→∞, so
it is clear that our result holds.

We now establish the existence of a step language which is asymptotically optimal, that
is, such that, as n → ∞, generates a payoff loss which is close to the one generated by an
optimal language.

Lemma B.3. There exists a step language ` such that

lim
n→∞

LCS
∆n

(`n) = LCS(`) .

Proof. Define, for each n, the double-matrix Mn ≡
(
µ(W i,j

`n,∆n
), µ(`−1

n (W i,j
`n,∆n

))
)
i,j
, where

W i,j
`n,∆n

is defined in the proof of Lemma B.2. Since (Mn)n is a bounded finite-dimensional
sequence, by the Bolzano-Weierstrass Theorem it has a subsequence (Mkn)n converging to
some (µi,j1 , µ

i,j
2 )i,j. Also, given the convexity of the loss function, if w, and w′ belong to

W i,j
`n,∆n

for some i, j, then the intervals `−1
n (w) and `−1

n (w′) have the same length. Then,
using a similar approximation as in the proof of Lemma B.2, we have that

L∆n(`n) =
∑
i,j

(
µ
(
`−1
n (W i,j

`n,∆n
)
)2

12µ(W i,j
`n

)2
Li + cj

)
µ
(
`−1
n (W i,j

`n,∆n
)
)
fi +O(∆n)

→
∑
i,j

(
(µi,j2 )2

12 (µi,j1 )2
Li + cj

)
µi,j2 fi︸ ︷︷ ︸

(∗)

,
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with the convention that 0
0

= 0.

Note that, necessarily,
∑

i µ
i,j
1 ≤ wj+1 − wj, and

∑
j µ

i,j
2 = ti+1 − ti. Then, there exists

some step language ` satisfying µi,j1 = µ([wj, wj+1)∩`([ti, ti+1)) and µi,j2 = µ(`−1([wj, wj+1))∩
[ti, ti+1)). Furthermore, (∗) coincides with the payoff loss of µ. Thus, limit of the optimal
payoff losses (L∆n(`n))n, which corresponds to (∗), is equal to LCS(`).

Finally note that, necessarily, the limit of the payoffs of any subsequence of (`k′n)n of
(`n)n is LCS(`). Otherwise, there would be a subsequence of optimal languages with payoffs
converging to either y < LCS(`) or y > LCS(`). The first case can be easily ruled out since,
for n large enough, we would have LCS

∆n
(`) > LCS

∆n
(`k′n), contradicting the optimality of `k′n .

In the second case the argument can be inverted, using the fact that there would a step
language ˆ̀with LCS(ˆ̀) = y.

It is only left to prove that the language ` obtained in Lemma B.3 minimizes LCS(˜̀)

among all languages ˜̀. The reasoning to complete the proof standard: Assume, for the
sake of contradiction, there is a language ˆ̀ such that LCS(ˆ̀) < LCS(`). In this case, since
limn→∞ LCS

∆n
(ˆ̀) = LCS(ˆ̀), we have that LCS

∆n
(ˆ̀) < LCS

∆n
(`n) for n large enough, contradicting

the optimality of `n.

References

Auerbach, Felix (1913) “Das Gesetz der Bevölkerungskonzentration,” Petermanns Ge-
ographische Mitteilungen, Vol. 59, pp. 74–76.

Austen-Smith, David and Jeffrey S Banks (2000) “Cheap talk and burned money,” Journal
of Economic Theory, Vol. 91, pp. 1–16.

Axtell, Robert L (2001) “Zipf distribution of US firm sizes,” Science, Vol. 293, pp. 1818–1820.

Blume, Andreas (2000) “Coordination and learning with a partial language,” Journal of
Economic Theory, Vol. 95, pp. 1–36.

(2004) “A learning-efficiency explanation of structure in language,” Theory and de-
cision, Vol. 57, pp. 265–285.

Boas, Franz (1911) “Introduction to the handbook of North American Indians,” Smithsonian
Institution Bulletin, Vol. 40.

Crawford, Vincent P and Joel Sobel (1982) “Strategic information transmission,” Economet-
rica: Journal of the Econometric Society, pp. 1431–1451.

37



Cŕemer, Jacques, Luis Garicano, and Andrea Prat (2007) “Language and the Theory of the
Firm,” The Quarterly Journal of Economics, pp. 373–407.

Cunha, Carlos, Azer Bestavros, and Mark Crovella (1995) “Characteristics of WWW client-
based traces,”Technical report, BU-CS-95-010, Computer Science Department, Boston
University.

Dilmé, Francesc (2018) “Strategic Communication with a Small Conflict of Interest.”

Ferrer-i-Cancho, Ramon (2017) “Optimization models of natural communication,” Journal
of Quantitative Linguistics, pp. 1–31.

Ferrer-i-Cancho, Ramon and Ricard V Solé (2003) “Least effort and the origins of scaling in
human language,” Proceedings of the National Academy of Sciences, Vol. 100, pp. 788–791.

Gabaix, Xavier (1999) “Zipf’s law for cities: an explanation,” Quarterly journal of Economics,
pp. 739–767.

Hardy, Godfrey Harold, John Edensor Littlewood, and George Pólya (1952) Inequalities:
Cambridge university press.

Hertel, Johanna and John Smith (2013) “Not so cheap talk: Costly and discrete communi-
cation,” Theory and decision, Vol. 75, pp. 267–291.

Huberman, Bernardo A, Peter LT Pirolli, James E Pitkow, and Rajan M Lukose (1998)
“Strong regularities in world wide web surfing,” Science, Vol. 280, pp. 95–97.

Jäger, Gerhard, Lars P Metzger, and Frank Riedel (2011) “Voronoi languages: Equilibria
in cheap-talk games with high-dimensional types and few signals,” Games and economic
behavior, Vol. 73, pp. 517–537.

John, Andrew (2016) “Dynamic Models of Language Evolution: The Economic Perspective,”
in The Palgrave Handbook of Economics and Language: Springer, pp. 101–120.

Kartik, Navin (2009) “Strategic communication with lying costs,” The Review of Economic
Studies, Vol. 76, pp. 1359–1395.

Kartik, Navin, Marco Ottaviani, and Francesco Squintani (2007) “Credulity, lies, and costly
talk,” Journal of Economic theory, Vol. 134, pp. 93–116.

Li, Wentian (1992) “Random texts exhibit Zipf’s-law-like word frequency distribution,” In-
formation Theory, IEEE Transactions on, Vol. 38, pp. 1842–1845.

38



Lim, Wooyoung and Qinggong Wu (2017) “Vague Language and Context Dependence.”

Lipman, Barton L. (2009) “Why is language vague?”.

Mandelbrot, Benoit (1953) “An informational theory of the statistical structure of language,”
Communication theory, Vol. 84, pp. 486–502.

Marschak, Jacob (1965) “Economics of language,” Systems Research and Behavioral Science,
Vol. 10, pp. 135–140.

Martin, Laura (1986) “ “Eskimo words for snow”: A case study in the genesis and decay of
an anthropological example,” American anthropologist, Vol. 88, pp. 418–423.

Newman, Mark EJ (2005) “Power laws, Pareto distributions and Zipf’s law,” Contemporary
physics, Vol. 46, pp. 323–351.

Nicolis, John S and Ichiro Tsuda (1989) “On the parallel between Zipf’s law and 1/f processes
in chaotic systems possessing coexisting attractors a possible mechanism for language
formation in the cerebral cortex,” Progress of Theoretical Physics, Vol. 82, pp. 254–274.

Piantadosi, Steven T, Harry Tily, and Edward Gibson (2011) “Word lengths are optimized
for efficient communication,” Proceedings of the National Academy of Sciences, Vol. 108,
pp. 3526–3529.

Rockafellar, RT (2001) “Convex analysis in the calculus of variations,” in Advances in Convex
Analysis and Global Optimization: Springer, pp. 135–151.

Rubinstein, Ariel (1996) “Why are certain properties of binary relations relatively more
common in natural language?” Econometrica: Journal of the Econometric Society, pp.
343–355.

(2000) Economics and Language: Five Essays. The Churchill Lectures in Economic
Theory: Cambridge, Cambridge University Press.

Ryff, John V (1970) “Measure preserving transformations and rearrangements,” Journal of
Mathematical Analysis and Applications, Vol. 31, pp. 449–458.

Shannon, Claude E (1948) “A mathematical theory of communication,” Bell System Tech-
nical Journal, Vol. 27, pp. 379–423.

Silagadze, Z K (1997) “Citations and the Zipf–Mandelbrot Law,” Complex Systems, Vol. 11,
pp. 487–499.

39



Sobel, Joel (2015) “Broad Terms and Organizational Codes,” working paper.

Stanley, Michael HR, Sergey V Buldyrev, Shlomo Havlin, Rosario N Mantegna, Michael A
Salinger, and H Eugene Stanley (1995) “Zipf plots and the size distribution of firms,”
Economics letters, Vol. 49, pp. 453–457.

Willis, John Christopher (1922) Age and area: a study of geographical distribution and origin
of species: Cambridge University Press Cambridge.

Zipf, George Kingsley (1935) The psycho-biology of language: an introduction to dynamic
philology, The MIT paperback series: Houghton Mifflin.

(1949) Human Behavior and the Principle of Least Effort: An Introduction to Hu-
man Ecology: Addison-Wesley.

40


	Introduction
	A Continuous Model of Languages
	Optimal Languages
	Preliminary Results
	Characterization of Optimal Languages
	Comparative Statics: Heterogeneity of States and Words
	Examples

	Information Theory
	Optimal Word Coding
	Optimal Languages

	Generalization of the Results
	State Space Normalization
	Optimal Languages with Capacity Costs
	State-Dependent Imprecision Loss

	Conclusions
	Proofs of the results
	Proofs of the results in Section 3
	Proofs of the results in Sections 4 and 5

	Limits of Discrete Languages
	Convergence of Sobel2015


