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Abstract

This paper develops a general framework for estimation of high-dimensional
conditional factor models via nuclear norm regularization. We establish large sample
properties of the estimators, and provide an efficient computing algorithm for finding
the estimators as well as a cross validation procedure for choosing the regularization
parameter. The general framework allows us to estimate a variety of conditional
factor models in a unified way and quickly deliver new asymptotic results. We apply
the method to analyze the cross section of individual US stock returns, and find that
imposing homogeneity may improve the model’s out-of-sample predictability.
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1 Introduction

A central question in empirical asset pricing is why different assets earn different average
returns. Conditional factor models provide a general framework of utilizing conditional
information in tackling the question (Gagliardini, Ossola, and Scaillet, 2020). This paper
studies the following high-dimensional conditional factor model

yit = αit + β′
itft + εit with αit = a′

ixit and βit = B′
ixit, i = 1, . . . , N, t = 1, . . . , T, (1)

where yit is the excess return of asset i in time period t, ft is a K ×1 vector of unobserved
latent factors, αit is a pricing error, βit a K × 1 vector of risk exposures, εit is an error
term, xit is a p × 1 vector of pre-specified explanatory variables known at the beginning
of time period t (for example, constant, sieve transformations of asset’s characteristics,
sieve transformations of macro state variables, and their interactions), and ai and Bi are
unknown p×1 vector and p×K matrix of coefficients. The model captures time-variation
in the risk exposures and the pricing error through their association with xit. Meanwhile,
it allows for distinguishing between risk and mispricing explanations of the role of xit in
predicting asset returns. In addition, since K can be much smaller than p, the model
enables us to summarize the information in a large dimension of xit into a small number
of factors, that is, tame the “factor zoo” (Cochrane, 2011). However, estimating the
model has at least two challenges: (i) the factors ft are unknown/unobservable; (ii) the
dimension of the unknown parameters {ai, Bi, ft}i≤N,t≤T is high.

The model nests many factor models in the literature. In contrast to homogeneous
versions of conditional factor models (Kelly, Pruitt, and Su, 2017, 2019; Chen, Rous-
sanov, and Wang, 2021), our model allows ai and Bi to be heterogenous across i. This
in turn enables our model to nest classical factor models (Ross, 1976; Chamberlain
and Rothschild, 1982) where xit = 1 and ai = 0; semiparametric factor models (Connor,
Hagmann, and Linton, 2012; Fan, Liao, and Wang, 2016; Kim, Korajczyk, and Neuhierl,
2020) where xit consists of constant and sieve transformations of asset’s time-invariant
characteristics, and the rows of ai and Bi corresponding to nonconstant explanatory
variables are homogenous across i; and state-varying factor models (Pelger and Xiong,
2021) where xit consists of constant and sieve transformations of macro state variables,
and ai = 0. In contrast to Gagliardini, Ossola, and Scaillet (2016), our model does not
require observable ft and allows for the presence of arbitrage and large p.

We provide a general framework for estimation of high-dimensional conditional factor
models. Specifically, we develop a nuclear norm regularized estimation of the model in
(1) with constraints on {ai, Bi}i≤N . The estimation procedure consists of two steps: first
estimating an Np×T reduced rank matrix composed of block matrices {ai+Bift}i≤N,t≤T

using the nuclear norm regularization under the constraints; then extracting estimators
of K, {ai}i≤N , {Bi}i≤N and {ft}t≤T from the estimated matrix using eigenvalue decom-
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position. We establish asymptotic properties of the estimators under a restricted strong
convexity condition. Specifically, we establish a rate of convergence of the estimators of
the reduced rank matrix, {ai}i≤N , {Bi}i≤N and {ft}t≤T , and consistency of the estima-
tor of K. Our framework allows both p → ∞ and K → ∞, and may accommodate the
presence of missing values, which are prevalent in stock return data sets.

The general framework allows us to estimate the aforementioned nested models in a
unified way, while existing methods are model-specific or restrictive.1 We specialize the
general theory for each model by providing simple primitive conditions. Our contribu-
tions are four-fold. First, we provide a novel estimation of the homogenous conditional
factor model, which allows p to grow as fast as N . Second, we provide an estimation of
the semiparametric factor model, which allows for time-varying characteristics, nonzero
pricing errors, and non-noisy intercepts in pricing errors and risk exposures. Third, we
provide an estimator that can consistently estimate the factor space in the state-varying
factor model. Fourth, to the best of our knowledge, our paper is the first one that
provides an estimation of the unconstrained conditional factor model.

To facilitate the use of our estimation procedure in practice, we make two contri-
butions. First, we provide an efficient computing algorithm for finding the constrained
nuclear norm regularized estimator of the reduced rank matrix in each of the nested
models. This is practically important since the constrained nuclear norm regularized
estimation involves a high-dimensional constrained nonsmooth convex minimization.
Second, we propose a cross validation (CV) procedure to choose the regularization pa-
rameter, and demonstrate its validity through a set of Monte Carlo simulations. This is
useful since the estimates are usually sensitive to the choice of the regularization param-
eter. Our simulation studies show that the finite sample performance of our estimators
by using the CV chosen regularization parameter is satisfactory and encouraging. We
apply the unified framework to analyze the cross section of individual stock returns in
the US market, and find that imposing homogeneity of ai and Bi across i may improve
the model’s out-of-sample predictability.

Nuclear norm regularization has been widely used for reduced rank matrix estimation
in the statistical literature. The parameter of interest there is usually the reduced rank
matrix per se. For example, Negahban and Wainwright (2011) study an unconstrained
nuclear norm regularized estimation of trace linear regression models under a restricted
strong convexity condition; Rohde and Tsybakov (2011) consider the same problem

1For example, Connor and Korajczyk (1986), Stock and Watson (2002), Bai and Ng (2002) and Bai
(2003) estimate the classical factor model by principal component analysis (PCA), while Fan, Liao,
and Mincheva (2013) use a principal orthogonal complement thresholding method. Fan et al. (2016)
propose a projected-PCA for the semiparametric factor model. Pelger and Xiong (2021) estimate the
state-varying factor by a local version of PCA based on kernel smoothing. Chen et al. (2021) develop a
regressed-PCA for the homogenous conditional factor model, while Gu, Kelly, and Xiu (2021) propose
an autoencoder method. Gagliardini et al. (2016) require observable factors for estimating a conditional
factor model with no arbitrage.
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under a restricted isometry condition. Our work differs from these studies in at least
two aspects. First, our work requires a constrained nuclear norm regularization, thus
we need to extend the results to allow for enforcing constraints. Second, our parameters
of interest are K, {ai}i≤N , {Bi}i≤N and {ft}t≤T , rather than the reduced rank matrix.

There are several recent studies of unconstrained nuclear norm regularization in the
econometric literature. For example, Bai and Ng (2019) use it to improve estimation of
the classical factor model; Moon and Weidner (2018) leverage it to improve estimation
of panel data models with interactive fixed effects; Athey, Bayati, Doudchenko, Imbens,
and Khosravi (2021) adopt it in treatment effect estimation; Chernozhukov, Hansen,
Liao, and Zhu (2018) employ it to estimate panel data models with heterogenous coeffi-
cients. To the best of our knowledge, the use of constrained nuclear norm regularization
in estimating conditional factor models is not studied previously.

The literature on the cross section of asset returns is vast; here we focus on con-
ditional factor models. While the focus of our paper is on models with latent factors
(see previous paragraphs for a literature review), a large number of works in empirical
asset pricing vastly relies on pre-specified observable factors (e.g, constructed via (Fama
and French, 1993)’s portfolio-sorting approach utilizing asset’s characteristics). These
include Shanken (1990), Ferson and Harvey (1991, 1999), Lettau and Ludvigson (2001),
Nagel and Singleton (2011) and Gagliardini et al. (2016), to name a few; see Gagliar-
dini et al. (2020) for a comprehensive review. This line of works may suffer from the
“characteristics versus covariances” debate (Daniel and Titman, 1997), and the “factor
zoo” problem. We complement the literature by providing a unified method for esti-
mating conditional factor models without the need to pre-specify the factors, which are
well-suited for resolving both the debate and the problem (Chen et al., 2021).

The remainder of the paper is organized as follows. Section 2 presents several nested
models. Section 3 develops the general estimation framework. Section 4 establishes the
asymptotic properties of the estimators. Section 5 specializes the general theory for each
of the nested models. Section 6 contains some simulation studies. Section 7 analyzes
the cross section of individual US stock returns. Section 8 briefly concludes. Proofs of
the main results are collected in Appendix A. The computing algorithms are presented
in Appendix B, while useful lemmas are collected in Appendix C.

For convenience of the reader, we collect standard pieces of notation here, which will
be used throughout the paper. We use Ik to denote a k × k identity matrix. We use
∥x∥ to denote the Euclidian norm of a column vector x. For a symmetric matrix A, we
denote its trace by tr(A), its smallest and largest eigenvalues by λmin(A) and λmax(A).
For a matrix A, we denote its operator norm by ∥A∥2, its Frobenius norm by ∥A∥F , and
its vectorization by vec(A). We use C ⊗ D to denote the Kronecker product of matrices
C and D. Unless specified, asymptotic statements in the paper shall be understood to
hold as N → ∞ with fixed T or as (N, T ) → ∞, whenever appropriate.
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2 Related Examples

Our model in (1) nests many factor models in the literature.

Example 2.1 (Classical Factor Models). The arbitrage pricing theory by Ross (1976)
and Chamberlain and Rothschild (1982) leads to the following model

yit = λ′
ift + eit, (2)

where λi is an unknown vector of risk exposures and eit is the idiosyncratic component.
Our model nests (2) where xit = 1, ai = 0, Bi = λ′

i, and εit = eit.

Example 2.2 (Semiparametric Factor Models). Connor et al. (2012), Fan et al. (2016)
and Kim et al. (2020) consider the following model2

yit = ϕ(zi) + µi + (Φ(zi) + λi)′ft + eit, (3)

where zi is a vector of asset’s time-invariant characteristics, ϕ(·) and Φ(·) are unknown
functions, µi and λi are unknown scalar and vector (intercepts in pricing errors and risk
exposures), and eit is the idiosyncratic component. Following sieve methods, ϕ(zi) =
ϕ′h(zi) + δ(zi) and Φ(zi) = Φ′h(zi) + ∆(zi), where h(zi) is a vector of basis functions
of zi (which does not consist of constant), ϕ and Φ are unknown vector and matrix of
coefficients, and δ(zi) and ∆(zi) are negligible sieve approximation errors. Our model
nests (3) where xit = (1, h(zi)′)′, ai = (µi, ϕ′)′, Bi = (λi, Φ′)′, and εit = eit + δ(zi) +
∆(zi)′ft. Thus, the rows of ai and Bi corresponding to h(zi) are homogenous across i.

Example 2.3 (State-varying Factor Models). Pelger and Xiong (2021) study the fol-
lowing model

yit = Φi(zt)′ft + eit, (4)

where zt is a vector of constant and macro state variables known at the beginning of time
period t, Φi(·) is a vector of unknown functions, and eit is the idiosyncratic component.
Following sieve methods, Φi(zt) = Φ′

ih(zt) + ∆i(zt), where h(zt) is a vector of basis
functions of zt (which may consist of constant), Φi is an unknown matrix of coefficients,
and ∆i(zt) is a vector of negligible sieve approximation errors. Our model nests (4)
where xit = h(zt), ai = 0, Bi = Φi, and εit = eit + ∆i(zt)′ft.

Example 2.4 (Homogeneous Conditional Factor Models). Kelly et al. (2017, 2019) and
Chen et al. (2021) develop the following model3

yit = ϕ(zit) + Φ(zit)′ft + eit, (5)
2Fan et al. (2016) assume that ϕ(·) = 0 and µi = 0, Connor et al. (2012) additionally assume that Φ(·)
are univariate functions and λi = 0, and Kim et al. (2020) assume that µi = 0 and λi = 0.

3Kelly et al. (2017, 2019) assume that ϕ(·) and Φ(·) are linear functions.
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where zit is a vector of constant and asset’s characteristics known at the beginning of time
period t, ϕ(·) and Φ(·) are unknown functions, and eit is the idiosyncratic component.
Following sieve methods, ϕ(zit) = ϕ′h(zit) + δ(zit) and Φ(zit) = Φ′h(zit) + ∆(zit), where
h(zit) is a vector of basis functions of zit (which may consist of constant), ϕ and Φ are
unknown vector and matrix of coefficients, and δ(zit) and ∆(zit) are negligible sieve
approximation errors. Our model nests (5) where xit = h(zit), ai = ϕ, Bi = Φ, and
εit = eit + δ(zit) + ∆(zit)′ft. Thus, ai and Bi are homogenous across i.

Example 2.5 (Unconstrained Conditional Factor Models). In the absence of arbitrage
opportunities, Gagliardini et al. (2016) propose the following model

yit = z′
tΦizt + z′

itΨizt + z′
tΥift + z′

itΛift + eit, (6)

where zt is a vector of constant and macro state variables known at the beginning of time
period t, zit is a vector of asset’s characteristics known at the beginning of time period
t, Φi, Ψi, Υi and Λi are unknown matrices of coefficients satisfying certain no arbitrage
constraints, and eit is the idiosyncratic component. Our model nests (6) without no
arbitrage constraints where xit consists of quadratic transformations of zt and zit, ai

and Bi are transformations of Φi, Ψi, Υi and Λi, and εit = eit. In contrast to their
estimation method which relies on observable ft, our estimation procedure treats ft as
latent factors, and allows for the presence of arbitrage and large p.

3 Estimation Strategy

We begin by rewriting the model in (1) using vectors/matrices. Let Π be an Np × T

unknown parameter matrix that collects the product of (ai, Bi) and (1, f ′
t)′, that is,

Π ≡


(a1, B1)
(a2, B2)

...
(aN , BN )


( (

1
f1

)
,

(
1
f2

)
, · · · ,

(
1

fT

) )
≡ a1′

T + BF ′, (7)

where 1T denotes a T × 1 vector of ones, a ≡ (a′
1, a′

2, . . . , a′
N )′, B ≡ (B′

1, B′
2, . . . , B′

N )′,
and F ≡ (f1, f2, . . . , fT )′. Let Xit ≡ (eN,i ⊗ xit)e′

T,t be an Np × T observed data matrix
of xit, where eN,i is the ith column of IN and eT,t is the tth column of IT . Then
x′

itai + x′
itBift = tr(X ′

itΠ), so (1) can be compactly written as

yit = tr(X ′
itΠ) + εit. (8)

Since Π has at most rank K + 1, (8) can be viewed as a trace linear regression model
with reduced rank coefficient matrix Π (Negahban and Wainwright, 2011; Rohde and
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Tsybakov, 2011). Thus, we first estimate Π by using the nuclear norm regularization
(Fazel, 2002), which uses the nuclear norm penalty as a surrogate function to enforce
the reduced rank constraint. Our estimator of Π is given by

Π̂ = arg min
Γ∈S⊂RNp×T

1
2

N∑
i=1

T∑
t=1

(yit − tr(X ′
itΓ))2 + λNT ∥Γ∥∗, (9)

where S ⊂ RNp×T is convex, ∥Γ∥∗ is the nuclear norm of Γ, and λNT > 0 is a regulariza-
tion parameter.4 In particular, introducing S allows us to enforce the constraints of Π
induced by those of a and B, which has not been studied in the literature. We may set
S = RNp×T in Examples 2.1, 2.3 and 2.5, S = DM for 0 < M < ∞ (DM is given in (15))
in Example 2.2, and S = {1N ⊗ Γ : Γ ∈ Rp×T } in Example 2.4; see Section 5 for details.
Since (9) involves a constrained nonsmooth convex minimization, Π̂ does not have an
analytical closed form in general. There are several algorithms for solving convex mini-
mization problems with nuclear norm in the literature (Vandenberghe and Boyd, 1996;
Bertsekas, 1999; Liu and Vandenberghe, 2010; Ma, Goldfarb, and Chen, 2011); however
they may not be favored for high-dimensional settings with constraints. In Appendix
B, we provide an efficient computing algorithm for each of Examples 2.1-2.5.

We next proceed to extract estimators for K, a, B and F from the nuclear norm
regularized estimator Π̂. Denote the estimators by K̂, â, B̂ and F̂ . Let MT ≡ IT −
1T 1′

T /T . Since ΠMT = BF ′MT , we may obtain K̂ and B̂ from the eigenvalues and
eigenvectors of Π̂MT Π̂′. Specifically, K̂ is given by

K̂ =
Np∑
j=1

1{λj(Π̂MT Π̂′) ≥ δNT }, (10)

where λj(A) denotes the jth largest eigenvalue of A and δNT > 0 is a threshold value.
If K̂ = 0, â = Π̂1T /T , B̂ = 0 and F̂ = 0; otherwise we proceed as follows. To estimate
B, we use the following normalization: B′B/N = IK and F ′MT F/T being diagonal
with diagonal entries in descending order. Then the columns of B̂/

√
N are given by the

eigenvectors of Π̂MT Π̂′ corresponding to its largest K̂ eigenvalues. To estimate a and
F , we impose the following condition: a′B = 0. Since a = (INp − B(B′B)−1B′)Π1T /T

and F = Π′B(B′B)−1, we thus obtain

â =
(

INp − B̂B̂′

N

)
Π̂1T

T
and F̂ = Π̂′B̂

N
. (11)

Remark 3.1. In the presence of a = 0, we may enforce the information to extract

4The nuclear norm of Γ is given by ∥Γ∥∗ =
∑min{Np,T }

j=1 σj(Γ), corresponding to the sum of its singular
values, where σj(Γ)’s are the singular values of Γ. The nuclear norm of Γ is the convex envelope of
the rank of Γ over the set of matrices with spectral norm no greater than one; see, for example, Recht,
Fazel, and Parrilo (2010).
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estimators for K, B and F from Π̂ in a similar manner. Denote the estimators by K̃, B̃

and F̃ . Since Π = BF ′, we may obtain K̃ and B̃ from the eigenvalues and eigenvectors
of Π̂Π̂′. Specifically, K̃ is given by

K̃ =
Np∑
j=1

1{λj(Π̂Π̂′) ≥ δNT }.

If K̃ = 0, B̃ = 0 and F̃ = 0; otherwise we proceed as follows. To estimate B, we use the
following normalization: B′B/N = IK and F ′F/T being diagonal with diagonal entries
in descending order. Then the columns of B̃/

√
N are given by the eigenvectors of Π̂Π̂′

corresponding to its largest K̃ eigenvalues. Since F = Π′B(B′B)−1, we thus obtain

F̃ = Π̂′B̃

N
.

Perhaps the most natural approach to incorporate the reduced rank structure is to
enforce the rank constraint directly. This leads to the following minimization problem

min
ci∈Rp,Di∈Rp×K ,gt∈RK

1
2

N∑
i=1

T∑
t=1

(yit − x′
itci − x′

itDigt)2. (12)

However, solving (12) has at least two challenges.5 First, it requires the knowledge of
K, which has to be estimated prior to solving the problem. Second, (12) is nonconvex,
and the solutions do not have an analytical closed form. These make it difficult not
only to design a computing algorithm to find the solutions, but also to derive their
asymptotic properties. One potential fix to the second challenge is alternating least
squares, however it may suffer from non-convergence issues since the problem in (12) is
nonconvex (Golub and Van Loan, 2013). In addition to the asymptotic properties that
we derive in Sections 4 and 5, our estimators can be numerically solved for in an efficient
way without the knowledge of K.

Remark 3.2. Our estimation procedure may accommodate the presence of missing
values. In such cases, the double summations in (9) need to be replaced with summations
over non-missing data. This amounts to redefining the observations as yitmit and xitmit

and the error term as εitmit, where mit = 0 when yit or xit are missing and 1 otherwise.

4 Asymptotic Analysis

In this section, we conduct asymptotic analysis for our estimators in a general setup.
Specifically, we establish consistency of K̂ and a rate of convergence of Π̂, â, B̂ and F̂ .

5Enforcing the constraints of a and B in Examples 2.2 and 2.4 does not resolve the challenges.
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We begin by introducing the so-called restricted strong convexity condition (Ne-
gahban, Ravikumar, Wainwright, and Yu, 2012). It guarantees that the quadratic loss
function in (9) is strictly convex over a restricted set of “low-rank” matrices. To describe
the set, we define some notation. Let Π = UΣV ′ be a singular value decomposition of
Π, where U and V are Np × Np and T × T orthonormal matrices and Σ is a diagonal
matrix with singular values of Π in the diagonal in descending order. Write U = (U1, U2)
and V = (V1, V2), where the columns of U2 and V2 are singular vectors corresponding to
the zero singular values of Π. For any Np × T matrix ∆, let P(∆) ≡ U2U ′

2∆V2V ′
2 and

M(∆) ≡ ∆ − P(∆). Heuristically, M(∆) can be thought of as the projection of ∆ onto
the “low-rank” space of Π, and P(∆) is the projection of ∆ onto its orthogonal space.
The restricted set of “low-rank” matrices is given by

C ≡ {∆ ∈ S ⊖ S : ∥P(∆)∥∗ ≤ 3∥M(∆)∥∗}, (13)

where S ⊖ S is the Minkowski difference between S and S, that is, S ⊖ S = {Γ1 − Γ2 :
Γ1, Γ2 ∈ S}. We impose the restricted strong convexity condition as follows.

Assumption 4.1. (i) Assume that Π ∈ S ⊂ RNp×T . For any ∆ ∈ S ⊖ S, the following
decomposition holds:

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 = QNT (∆) + LNT (∆)

such that for some constant 0 < κ < ∞,

QNT (∆) ≥ κ∥∆∥2
F for all ∆ ∈ C,

and for some rNT > 0,

|LNT (∆)| ≤ rNT ∥∆∥∗ for all ∆ ∈ S ⊖ S.

(ii) The following condition holds:∣∣∣∣∣
N∑

i=1

T∑
t=1

tr(εitX
′
it∆)

∣∣∣∣∣ ≤ 1
2rNT ∥∆∥∗ for all ∆ ∈ S ⊖ S.

Assumption 4.1 is weaker than the conditions of Corollary 1 in Negahban and Wain-
wright (2011), which require S = RNp×T and LNT (·) = 0, and are too restrictive in
Examples 2.2 and 2.4. We refer to the condition: “QNT (∆) ≥ κ∥∆∥2

F for all ∆ ∈ C”
as the restricted strong convexity condition. Allowing LNT (·) ̸= 0 facilitates providing
easy-to-verify primitive conditions for the restricted strong convexity condition. The
rate rNT plays an important role in determining the convergence rate of Π̂, and thus
determines how fast p and K can grow.
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Assumption 4.2. There exist some constants 0 < dmin ≤ dmax < ∞ such that: (i)
dmin < λmin(B′B/N) ≤ λmax(B′B/N) < dmax for large N ; (ii) maxt≤T ∥ft∥ < dmax;
(iii) λmin(F ′MT F/T ) > dmin; (iv) a′a/N < dmax; (v) a′B = 0.

For simplicity of presentation, we assume that {ai, Bi}i≤N and {ft}t≤T are nonran-
dom. That is, all stochastic statements are implicitly conditional on their realization.
Assumption 4.2(i) is similar to the pervasive condition in Stock and Watson (2002) and
Bai and Ng (2002), which requires that ft are strong factors. Assumptions 4.2(iv) and
(v) are standard in the literature; see, for example, Chen et al. (2021). Assumptions
4.1 and 4.2 consist of high-level conditions; in Section 5, we provide simple primitive
conditions for each of Examples 2.1-2.5.

Theorem 4.1. Suppose Assumption 4.1 holds. Let Π̂, K̂, â, B̂ and F̂ be given in (9)-
(11). Assume that 0 < K < min{Np, T} − 1 and λNT ≥ 2rNT . (i) Then

∥Π̂ − Π∥F ≤ 3
√

2(K + 1)λNT

κ
.

(ii) Suppose Assumption 4.2 additionally holds. Assume that δNT /(NT ) → 0 and
δNT /(Kλ2

NT ) → ∞. Let H ≡ (F ′MT F̂ )(F̂ ′MT F̂ )−1. Then

P (K̂ = K) → 1,

∥â − a∥ = Op

(√
KλNT√

T

)
,

∥B̂ − BH∥F = Op

(√
KλNT√

T

)
,

∥F̂ − F (H ′)−1∥F = Op

(√
KλNT√

N

)
.

Theorem 4.1(i) is a deterministic statement on the estimation error of Π̂; it extends
Corollary 1 of Negahban and Wainwright (2011) by allowing for enforcing constraints
of Π (i.e., S ≠ RNp×T ) in addition to the reduced rank constraint and LNT (·) ̸= 0.
In some scenarios, Assumption 4.1(i) only holds with probability approaching one. In
such cases, the result of Theorem 4.1(i) holds with probability approaching one, and
the results of Theorem 4.1(ii) continues to hold. Due to the lack of identification, B

and F can only be consistently estimated up to a rotational transformation, as usually
occurred in high-dimensional factor analyses. The asymptotic results hold as N → ∞
with fixed T or as (N, T ) → ∞, whenever appropriate. The rate rNT determines the
fastest convergence rate of the estimators. In Section 5, we specialize Theorem 4.1 for
each of Examples 2.1-2.5. In all cases, p and K are allowed to grow with N or (N, T )
for the consistency of the estimators, and the presence of missing values is allowed.

Remark 4.1. When a = 0, we can establish the same convergence rate for the restricted
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estimators K̃, B̃ and F̃ in Remark 3.1 as in Theorem 4.1(ii). Let G ≡ (F ′F̃ )(F̃ ′F̃ )−1.
If a = 0, under the same conditions of Theorem 4.1(ii), following the arguments in the
proof of Theorem 4.1(ii), we can establish the following:

P (K̃ = K) → 1,

∥B̃ − BG∥F = Op

(√
KλNT√

T

)
,

∥F̃ − F (G′)−1∥F = Op

(√
KλNT√

N

)
.

Remark 4.2. Since Π̂ allows for missing values, we may use a CV approach to choose the
regularization parameter λNT . Specifically, we may randomly divide the observations
into L folds with observations indexed by {Iℓ}ℓ≤L, where Iℓ consists of observation
indices in the ℓth fold, {Iℓ}ℓ≤L are mutually exclusive, and ∪ℓ≤LIℓ = I ≡ {1, 2, · · · , N}×
{1, 2, · · · , T}. Rolling ℓ from 1 to L, we may leave observations {(yit, xit) : (i, t) ∈ Iℓ}
out, use observations {(yit, xit) : (i, t) ∈ I/Iℓ} for training, and calculate the out-of-
sample mean square error MSEℓ for observations {(yit, xit) : (i, t) ∈ Iℓ}. We may choose
λNT by minimizing ∑L

ℓ=1 MSEℓ/L.

5 Revisiting Examples

In this section, we specialize Theorem 4.1 for each of Examples 2.1-2.5.

5.1 Examples 2.1, 2.3 and 2.5

In these examples, our goal is to estimate K, a, B and F . There is no restriction on a

or B for us to impose. Thus, we may set S = RNp×T in (9). Hence, S ⊖ S = RNp×T .
By the fact that |tr(C ′D)| ≤ ∥C∥2∥D∥∗

6, for any ∆ ∈ S ⊖ S,∣∣∣∣∣
N∑

i=1

T∑
t=1

tr(εitX
′
it∆)

∣∣∣∣∣ ≤
∥∥∥∥∥

N∑
i=1

T∑
t=1

Xitεit

∥∥∥∥∥
2

∥∆∥∗. (14)

Thus, Assumption 4.1(ii) is satisfied with rNT = Op(max{
√

Np,
√

T}) as (N, T ) → ∞, if
{(x′

1tε1t, x′
2tε2t, . . . , x′

NtεNt)′}t≤T is a sequence of independent sub-Gaussian vectors; see
Lemma C.1(i). When xit = 1, Assumption 4.1(i) is trivially satisfied with LNT (·) = 0
and κ = 1, and Assumption 4.2(i) reduces to the pervasive condition in Stock and
Watson (2002). When a = 0, Assumptions 4.2(iv) and (v) are trivially satisfied.

We summarize the conditions in the following assumptions.

6See, for example, Fact 11.14.1 in Bernstein (2018).
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Assumption 5.1. (i) There exists some constant 0 < κ < ∞ such that

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 ≥ κ∥∆∥2

F for all ∆ ∈ D,

where D ≡ {∆ ∈ RNp×T : ∥P(∆)∥∗ ≤ 3∥M(∆)∥∗}. (ii) {(x′
1tε1t, x′

2tε2t, . . . , x′
NtεNt)′}t≤T

is a sequence of independent sub-Gaussian vectors.7

In the case when xit = 1, we may have a simple analytical closed form for Π̂. Let
Y be an N × T matrix with the itth entry yit. Let Y = UΣV ′ be a singular value
decomposition of Y , where U and V are N × N and T × T orthonormal matrices and Σ
is an N × T diagonal matrix with singular values σj(Y )’s in the diagonal in descending
order. For x > 0, let Σx be an N × T diagonal matrix with max{0, σj(Y ) − x} in
descending order. Then Π̂ = UΣλNT /2V ′; see, for example, Cai, Candés, and Shen
(2010) and Ma et al. (2011). In general cases, an analytical closed form is not available;
in Appendix B, we provide an efficient algorithm for finding Π̂.

We may apply Theorem 4.1 to conclude the following corollary.

Corollary 5.1. Suppose Assumption 5.1(ii) holds. Let Π̂, K̂, â, B̂ and F̂ be given
in (9)-(11) with S = RNp×T and λNT =

√
(Np + T ) log N . Assume that 0 < K <

min{Np, T} − 1. (i) If xit = 1 or Assumption 5.1(i) holds, then as (N, T ) → ∞,

1√
NT

∥Π̂ − Π∥F = Op

√K(Np + T ) log N

NT

 .

(ii) Suppose Assumptions 4.2(i)-(iii) additionally hold. Assume that as (N, T ) → ∞,
δNT /(NT ) → 0 and δNT /[K(Np + T ) log N ] → ∞. Let H ≡ (F ′MT F̂ )(F̂ ′MT F̂ )−1. If
a = 0 or Assumptions 4.2(iv)-(v) hold, then as (N, T ) → ∞,

P (K̂ = K) → 1,

1√
N

∥â − a∥ = Op

√K(Np + T ) log N

NT

 ,

1√
N

∥B̂ − BH∥F = Op

√K(Np + T ) log N

NT

 ,

1√
T

∥F̂ − F (H ′)−1∥F = Op

√K(Np + T ) log N

NT

 .

Corollary 5.1 requires large N and large T . In particular, K(Np+T ) log N = o(NT )
is required for the consistency of the estimators. This implies that p is allowed to grow
7Independence is not necessary here and also in Assumptions 5.2(iv), (v) and 5.4(iii). We may allow for
weak dependence over t; see Lemma C.1.
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as (N, T ) → ∞. In the presence of a = 0, we can establish the same convergence rate for
the restricted estimators K̃, B̃ and F̃ in Remark 3.1; see Remark 4.1. While the result
for Example 2.1 is known in the literature, the results for Examples 2.3 and 2.5 are new.
Distinct from Pelger and Xiong (2021), we provide an estimator that can consistently
estimate F up to a common rotational transformation, which is not state-specific. That
is, we are able to consistently estimate the factor space. Moreover, large p is allowed.
In contrast to Gagliardini et al. (2016), we provide an estimation method that does not
require observable ft, and allows for the presence of arbitrage and large p. No estimation
method for the unconstrained conditional factor model is available in the literature.

Remark 5.1. In the presence of missing values, when xit = 1 and mit’s are i.i.d. ran-
dom variables across both i and t (i.e., missing at random), Assumption 5.1(i) requires
P (mit = 1) > 0 by the law of large numbers. Thus, the proportion of missing values
cannot be too large. This is analogous to the requirement in the matrix completion lit-
erature (Candés and Recht, 2009; Recht et al., 2010; Candés and Plan, 2010; Negahban
and Wainwright, 2012) that the missing pattern is not too systematic and the proportion
of missing values is not too large.

5.2 Example 2.2

Our goal is to estimate K, µ ≡ (µ1, µ2, . . . , µN )′, Λ ≡ (λ1, λ2, . . . , λN )′, ϕ, Φ and F . To
apply the general framework, we fist observe that ai = (µi, ϕ′)′ and Bi = (λi, Φ′)′ for
all i, that is, the rows of ai and Bi corresponding to the nonconstant part of xit are
homogenous across i. Let πi ≡ µi1T + Fλi and Π∗ ≡ ϕ1′

T + ΦF ′, which are T × 1 vector
and (p − 1) × T matrix, then Π = ((π1, Π∗′), (π2, Π∗′), . . . , (πN , Π∗′))′. Thus, we may set

S = DM ≡





γ′
1

Γ∗

γ′
2

Γ∗

...
γ′

N

Γ∗


:


γ′

1
γ′

2
...

γ′
N

 ∈ RN×T , Γ∗ ∈ R(p−1)×T and ∥Γ∗∥max ≤ M



(15)

for 0 < M < ∞ in (9), where ∥Γ∗∥max denotes the largest absolute value of the entries
of Γ∗.8 Clearly, DM is convex in RNp×T , and S ⊖ S = D2M .

Next, we verify Assumptions 4.1 and 4.2. Write xit = (1, x∗′
it)′. By Lemma C.4, for

8Imposing ∥Γ∗∥∞ ≤ M facilitates providing easy-to-verify primitive conditions for Assumption 4.1(i).
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any ∆ ∈ S ⊖ S, there exists RNT (·) such that

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 ≥ min

{
1, min

t≤T
λmin

(∑N
i=1 x∗

itx
∗′
it

N

)}
∥∆∥2

F + 2RNT (∆), (16)

|RNT (∆)| ≤ 2M
√

p − 1

∥∥∥∥∥∥∥∥∥∥∥


x∗

11 x∗
12 · · · x∗

1T

x∗
21 x∗

22 · · · x∗
2T

...
...

...
...

x∗
N1 x∗

N2 · · · x∗
NT



∥∥∥∥∥∥∥∥∥∥∥
2

∥∆∥∗, (17)

and

∣∣∣∣∣
N∑

i=1

T∑
t=1

tr(εitX
′
it∆)

∣∣∣∣∣ ≤


∥∥∥( 1√

N

∑N
i=1 x∗

i1εi1, 1√
N

∑N
i=1 x∗

i2εi2, . . . , 1√
N

∑N
i=1 x∗

iT εiT

)∥∥∥
2

+

∥∥∥∥∥∥∥∥∥∥∥


ε11 ε12 · · · ε1T

ε21 ε22 · · · ε2T

...
...

...
...

εN1 εN2 · · · εNT



∥∥∥∥∥∥∥∥∥∥∥
2

 ∥∆∥∗. (18)

In view of (16), (17) and Lemma C.1(ii), if mint≤T λmin(∑N
i=1 x∗

itx
∗′
it/N) ≥ cmin for

some constant 0 < cmin < ∞ and {(x∗′
1t, x∗′

2t, . . . , x∗′
Nt)′}t≤T is a sequence of indepen-

dent sub-Gaussian vectors, then Assumption 4.1(i) is satisfied with LNT (·) = 2RNT (·),
κ = min{1, cmin}, and rNT = Op(M√

p max{
√

Np,
√

T}) as (N, T ) → ∞. The first con-
dition, which can be verified using the law of large numbers, often holds with probability
approaching one as N → ∞. As discussed below Theorem 4.1, this is sufficient for us to
establish a rate of convergence of Π̂. In view of (18) and Lemmas C.1(i), Assumption
4.1(ii) is satisfied if {(ε1t, ε2t, . . . , εNt)′}t≤T is a sequence of independent sub-Gaussian
vectors and ∥

∑N
i=1 x∗

itεit/
√

Np∥ has bounded second moment. In addition, it is easy
to see that Assumptions 4.2(i), (iv) and (v) hold, if λmin(Φ′Φ) + λmin(Λ′Λ/N) > dmin,
λmax(Φ′Φ) < dmax/2, λmax(Λ′Λ/N) < dmax/2, ∥ϕ∥2 < dmax/2 and ∥µ∥2/N < dmax/2 for
some constants 0 < dmin ≤ dmax < ∞, ϕ′Φ = 0, and µ′Λ = 0.

We summarize the conditions in the following assumptions.

Assumption 5.2. (i) There is a constant 0 < cmin < ∞ such that: with probability
approaching one as (N, T ) → ∞,

min
t≤T

λmin

(
1
N

N∑
i=1

x∗
itx

∗′
it

)
≥ cmin.
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(ii) Assume that maxt≤T ∥ϕ + Φft∥∞ is bounded. (iii) maxt≤T E[∥∑N
i=1 x∗

itεit/
√

Np∥2]
is bounded. (iv) {(x∗′

1t, x∗′
2t, . . . , x∗′

Nt)′}t≤T is a sequence of independent sub-Gaussian
vectors. (v) {(ε1t, ε2t, . . . , εNt)′}t≤T is a sequence of independent sub-Gaussian vectors.

Assumption 5.3. There are constants 0 < dmin ≤ dmax < ∞ such that: (i) λmin(Φ′Φ+
Λ′Λ/N) > dmin; (ii) λmax(Φ′Φ) < dmax/2; (iii) λmax(Λ′Λ/N) < dmax/2; (iv) maxt≤T ∥ft∥
< dmax; (v) λmin(F ′MT F/T ) > dmin; (vi) ∥ϕ∥2 < dmax/2; (vii) ∥µ∥2/N < dmax/2; (viii)
ϕ′Φ = 0; (ix) µ′Λ = 0.

Since Π̂ ∈ S, we may write Π̂ = ((π̂1, Π̂∗′), (π̂2, Π̂∗′), . . . , (π̂N , Π̂∗′))′, where π̂i is a
T × 1 vector and Π̂∗ is a (p − 1) × T matrix. By Lemma C.7 (iv), we may write B̂ =
((λ̂1, Φ̂′), (λ̂2, Φ̂′), . . . , (λ̂N , Φ̂′))′, where λ̂ is a K̂ ×1 vector and Φ̂ is a (p−1)×K̂ matrix.
Given these, by simple algebra we may also write â = ((µ̂1, ϕ̂′), (µ̂2, ϕ̂′), . . . , (µ̂N , ϕ̂′))′,
where µ̂i is a scalar and ϕ̂ is a (p − 1) × 1 vector. Thus, we may define the esti-
mators of Π⋄ ≡ (π1, π2, . . . , πN )′, Π∗, µ, Λ, ϕ and Φ as Π̂⋄ ≡ (π̂1, π̂2, . . . , π̂N )′, Π̂∗,
µ̂ ≡ (µ̂1, µ̂2, . . . , µ̂N )′, Λ̂ ≡ (λ̂1, λ̂2, . . . , λ̂N )′, ϕ̂ and Φ̂. This implies that there is no
need to enforce the homogeneity restriction of a and B in extracting â and B̂ from Π̂ to
ensure the same homogeneity structure of â and B̂.

We may simplify the computation of the estimators by plugging in the homogeneity
restriction. By Lemma C.5, Π̂⋄ and Π̂∗ can be equivalently obtained as follows

{Π̂⋄, Π̂∗} = arg min
Γ⋄=(γit)i≤N,t≤T ∈RN×T

Γ∗=(γ∗
1 ,...,γ∗

T )∈R(p−1)×T

∥Γ∗∥max≤M

1
2

N∑
i=1

T∑
t=1

(yit − γit − x∗′
itγ

∗
t )2 + λNT

∥∥∥∥∥
(

Γ⋄
√

NΓ∗

)∥∥∥∥∥
∗

. (19)

This equivalence has greatly simplified the computation of Π̂, since (9) involves an Np×T

unknown matrix while (19) involves two unknown matrices with relatively smaller sizes.
In Appendix B, we provide an efficient algorithm for finding Π̂⋄ and Π̂∗. By Lemma
C.7(ii) and (iv), K̂ can be equivalently obtained as follows

K̂ =
T∑

j=1
1{λj(MT (Π̂⋄′Π̂⋄ + NΠ̂∗′Π̂∗)MT ) ≥ δNT }, (20)

and (Λ̂′/
√

N, Φ̂′)′ as the left singular vector of (Π̂⋄′,
√

NΠ̂∗′)′MT corresponding to its
largest K̂ singular values. Moreover, it is straightforward to show that

µ̂ =
(

IN − Λ̂Λ̂′

N

)
Π̂⋄′1T

T
− Λ̂Φ̂′ Π̂∗′1T

T
,

ϕ̂ = (Ip−1 − Φ̂Φ̂′)Π̂∗′1T

T
− Φ̂Λ̂′

N

Π̂⋄1T

T
, (21)

F̂ = Π̂⋄′Λ̂
N

+ Π̂∗′Φ̂.
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Finally, we apply Theorem 4.1 to obtain the consistency of K̂ and a rate of conver-
gence of Π̂⋄, Π̂∗,µ̂, Λ̂, ϕ̂, Φ̂ and F̂ , as summarized in the following corollary.

Corollary 5.2. Suppose Assumption 5.2 holds. Let Π̂⋄, Π̂∗, K̂, µ̂, Λ̂, ϕ̂, Φ̂ and F̂

be given in (19)-(21) with λNT = M [
√

(Np2 + Tp) log N ]. Assume that 0 < K <

min{N + p − 1, T} − 1. (i) Then as (N, T ) → ∞,

1√
NT

∥Π̂⋄ − Π⋄∥F = Op

M

√
K(Np2 + Tp) log N

NT

 ,

1√
T

∥Π̂∗ − Π∗∥F = Op

M

√
K(Np2 + Tp) log N

NT

 .

(ii) Suppose Assumption 5.3 additionally holds. Assume that as (N, T ) → ∞, δNT /(NT )
→ 0 and δNT /[M2K(Np2 + Tp) log N ] → ∞. Let H ≡ (F ′MT F̂ )(F̂ ′MT F̂ )−1. Then as
(N, T ) → ∞,

P (K̂ = K) → 1,

1√
N

∥µ̂ − µ∥ = Op

M

√
K(Np2 + Tp) log N

NT

 ,

1√
N

∥Λ̂ − ΛH∥F = Op

M

√
K(Np2 + Tp) log N

NT

 ,

∥ϕ̂ − ϕ∥ = Op

M

√
K(Np2 + Tp) log N

NT

 ,

∥Φ̂ − ΦH∥F = Op

M

√
K(Np2 + Tp) log N

NT

 ,

1√
T

∥F̂ − F (H ′)−1∥F = Op

M

√
K(Np2 + Tp) log N

NT

 .

The rate in Corollary 5.2 is slower than that in Corollary 5.1. This is because the
former relies on a set of easy-to-verify conditions—Assumption 5.2—rather than a ver-
sion of Assumption 5.1. The rate can be improved to Op(

√
K(N + p + T ) log N/(NT ))

under Assumption 5.1. Our result is distinct from Fan et al. (2016) in several aspects.
First, we allow for µi ̸= 0 and ϕ ̸= 0. This appears important in asset pricing, as they
allow us to learn pricing errors. Second, we allow xit to vary over t. This appears crucial
in asset pricing, since many stock characteristics (e.g., book to market ratio and momen-
tum) change from month to month. Third, we do not require that λi has zero mean and
weak cross-sectional dependence (so λi can be interpreted as a vector of noises), which
is barely justified in practice. We allow for non-noisy intercepts µi and λi in pricing
errors and risk exposures. Fourth, we allow K → ∞. In addition, our result extends
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Chen et al. (2021) by allowing for the heterogeneity of µi and λi across i.

Remark 5.2. In addition, we may extract additional estimators for K, µ, Λ, ϕ, Φ and
F from Π̂⋄ and Π̂∗ separately. First, since Π⋄MT = ΛF ′MT , we may extract estimators
for K, µ, Λ and F from Π̂⋄ in a similar way to (10) and (11). Second, similarly, since
Π∗MT = ΦF ′MT , we may extract estimators for K, ϕ, Φ and F from Π̂∗. These
estimators are different from K̂, µ̂, Λ̂, ϕ̂, Φ̂ and F̂ in Corollary 5.2. However, following
the arguments in the proof of Theorem 4.1(ii), we can establish the consistency and the
same convergence rate for the estimators; the details are omitted.

Remark 5.3. In the presence of missing values, we need to modify Assumption 5.2. In
particular, (16) is not true, but may hold with probability approaching one by replacing
min{1, mint≤T λmin(∑N

i=1 x∗
itx

∗′
it/N)} with min{q, mint≤T λmin(∑N

i=1 mitx
∗
itx

∗′
it/N)} un-

der a missing-at-random mechanism where q is the probability of nonmissing (i.e., mit’s
are i.i.d random variables across both i and t with P (mit = 1) = q, independent of
{x∗

it, εit}i≤N,t≤T ). Thus, the proportion of missing values cannot be too large.

5.3 Example 2.4

Our goal is to estimate K, ϕ, Φ and F . To apply the general framework, we first
observe that ai = ϕ and Bi = Φ for all i, that is, ai and Bi are homogenous across i.
Let Π0 ≡ ϕ1′

T + ΦF ′, which is a p × T matrix, then Π = 1N ⊗ Π0. Thus, we may set
S = {1N ⊗ Γ : Γ ∈ Rp×T } in (9). Clearly, S is convex in RNp×T , and S ⊖ S = S.

Next, we verify Assumptions 4.1 and 4.2. By Lemma C.2, for any ∆ ∈ S ⊖ S,

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 ≤ min

t≤T
λmin

(∑N
i=1 xitx

′
it

N

)
∥∆∥2

F (22)

and∣∣∣∣∣
N∑

i=1

T∑
t=1

tr(εitX
′
it∆)

∣∣∣∣∣≤
∥∥∥∥∥
(

1√
N

N∑
i=1

xi1εi1,
1√
N

N∑
i=1

xi2εi2, . . . ,
1√
N

N∑
i=1

xiT εiT

)∥∥∥∥∥
2
∥∆∥∗. (23)

In view of (22), if mint≤T λmin(∑N
i=1 xitx

′
it/N) ≥ cmin for some constant 0 < cmin <

∞, then Assumption 4.1(i) is satisfied with LNT (·) = 0 and κ = cmin. As men-
tioned in Section 5.2, the condition usually holds with probability approaching one
as N → ∞, and this is sufficient for us to establish a rate of convergence of Π̂. In
view of (23), Assumption 4.1(ii) is trivially satisfied with rNT = Op(√p) as N → ∞
with fixed T , if ∥

∑N
i=1 xitεit/

√
Np∥ has bounded second moment. Alternatively, if

{
∑N

i=1 xitεit/
√

N}t≤T is a sequence of independent sub-Gaussian vectors, then Assump-
tion 4.1(ii) is satisfied with rNT = Op(max{√

p,
√

T}) as (N, T ) → ∞; see Lemma
C.1(iii). In addition, Assumptions 4.2(i), (iv) and (v) reduce to dmin < λmin(Φ′Φ) ≤
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λmax(Φ′Φ) < dmax, ∥ϕ∥2 < dmax for some constants 0 < dmin ≤ dmax < ∞, and ϕ′Φ = 0.
The same assumptions have been imposed in Chen et al. (2021).

We summarize the conditions in the following assumptions.

Assumption 5.4. (i) There is a constant 0 < cmin < ∞ such that: with probability
approaching one as N → ∞ with fixed T or as (N, T ) → ∞,

min
t≤T

λmin

(
1
N

N∑
i=1

xitx
′
it

)
≥ cmin.

(ii) E[∥∑N
i=1 xitεit/

√
Np∥2] is bounded for each t ≤ T . (iii) {

∑N
i=1 xitεit/

√
N}t≤T is a

sequence of independent sub-Gaussian vectors.

Assumption 5.5. There are constants 0 < dmin ≤ dmax < ∞ such that: (i) dmin <

λmin(Φ′Φ) ≤ λmax(Φ′Φ) < dmax; (ii) maxt≤T ∥ft∥ < dmax; (iii) λmin(F ′MT F/T ) > dmin;
(iv) ∥ϕ∥2 < dmax; (v) ϕ′Φ = 0.

In fact, the model in (8) with Π = 1N ⊗ Π0 can be alternatively viewed as a mul-
tivariate linear regression model with reduced rank coefficient matrix Π0, which has at
most rank K + 1. Following Example 1 of Negahban and Wainwright (2011),9 we may
come up with the following nuclear norm regularized estimator

Π̂0 = arg min
Γ=(γ1,...,γT )∈Rp×T

1
2

N∑
i=1

T∑
t=1

(yit − x′
itγt)2 + λ0,NT ∥Γ∥∗, (24)

where λ0,NT > 0 is a regularization parameter. It turns out that Π̂ = 1N ⊗ Π̂0 when
λ0,NT =

√
NλNT . This is because the objective function in (9) under S = {1N ⊗ Γ :

Γ ∈ Rp×T } reduces to the one in (24) when λ0,NT =
√

NλNT ; see Lemma C.3. Thus,
Π̂0 does not yield a different estimator. The equivalence between Π̂ and Π̂0 has greatly
simplified the computation of Π̂, given that (9) involves an Np×T unknown matrix with
constraints while (24) is an unconstrained problem with an unknown matrix of smaller
size. In Appendix B, we provide an efficient computing algorithm for finding Π̂0.

Given Π̂0, we may alternatively estimate K, ϕ, Φ and F as follows. Denote the
estimators by K̂0, ϕ̂0, Φ̂0 and F̂0. Since Π0MT = ΦF ′MT , we may obtain K̂0 and Φ̂0

from the eigenvalues and eigenvectors of Π̂0MT Π̂′
0. Specifically, K̂0 is given by

K̂0 =
p∑

j=1
1{λj(Π̂0MT Π̂′

0) ≥ δ0,NT }, (25)

where δ0,NT > 0 is a threshold value. If K̂0 = 0, ϕ̂0 = Π̂01T /T , Φ̂0 = 0 and F̂0 = 0;
otherwise we proceed as follows. To estimate Φ, we use the following normalization:
9In fact, the model is different from their model since xit is changing over t. We find that the nuclear
norm regularization method continues to work.
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Φ′Φ = IK and F ′MT F/T being diagonal with diagonal entries in descending order.
Then the columns of Φ̂0 are given by the eigenvectors of Π̂0MT Π̂′

0 corresponding to its
largest K̂0 eigenvalues. Since ϕ = (Ip − Φ(Φ′Φ)−1Φ′)Π01T /T and F = Π′

0Φ(Φ′Φ)−1, we
thus obtain

ϕ̂0 = (Ip − Φ̂0Φ̂′
0)Π̂01T

T
and F̂0 = Π̂′

0Φ̂0. (26)

It turns out that K̂ = K̂0, B̂ = 1N ⊗Φ̂0, â = 1N ⊗ϕ̂0, and F̂ = F̂0 when λ0,NT =
√

NλNT

and δ0,NT = δNT /N . The first result follows by Lemma C.6(ii), since K̂ is equal to the
number of “large” singular values of 1N ⊗ Π̂0MT while K̂0 is equal to the number of
“large” singular values of Π̂0MT . The second result follows by Lemma C.6(iv), since
B̂/

√
N is the left singular vector matrix of 1N ⊗ Π̂0MT corresponding to its largest K̂

singular values while Φ̂0 is the left singular vector matrix of Π̂0MT corresponding to its
largest K̂0 singular values. The remaining two follow trivially by simple algebras. Thus,
K̂0, ϕ̂0, Φ̂0 and F̂0 do not yield a different estimator either. This implies that there is
no need to enforce the homogeneity restriction of a and B in extracting â and B̂ from
Π̂ to ensure the same homogeneity structure of â and B̂.

Finally, we may immediately obtain the consistency of K̂0 and a rate of convergence
of Π̂0, ϕ̂0, Φ̂0 and F̂0 from Theorem 4.1, as summarized in the following corollary.

Corollary 5.3. Suppose Assumptions 5.4(i) and (ii) hold. Let Π̂0, K̂0, ϕ̂0, Φ̂0 and F̂0

be given in (24)-(26) with λ0,NT =
√

N(p + T ) log N . Assume 0 < K < min{p, T} − 1.
(i) Then as N → ∞ with fixed T ,

1√
T

∥Π̂0 − Π0∥F = Op

√K(p + T ) log N

NT

 .

(ii) Suppose Assumption 5.5 additionally holds. Assume that as N → ∞ with fixed T ,
δ0,NT /T → 0 and Nδ0,NT /[K(p + T ) log N ] → ∞. Let H ≡ (F ′MT F̂0)(F̂ ′

0MT F̂0)−1.
Then as N → ∞ with fixed T ,

P (K̂0 = K) → 1,

∥ϕ̂0 − ϕ∥ = Op

√K(p + T ) log N

NT

 ,

∥Φ̂0 − ΦH∥F = Op

√K(p + T ) log N

NT

 ,

1√
T

∥F̂0 − F (H ′)−1∥F = Op

√K(p + T ) log N

NT

 .

(iii) If Assumption 5.4(ii) is replaced with Assumption 5.4(iii), then (i) and (ii) continue
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to hold by replacing “as N → ∞ with fixed T” with “as (N, T ) → ∞” in all places.

Corollary 5.3 shows that Π̂0, K̂0, ϕ̂0, Φ̂0 and F̂0 are consistent either under large N

with fixed T or large N and large T . In particular, K(p + T ) log N = o(NT ) is required
for the consistency. This implies that p can be as large as N . This is a significant
improvement from the similar results in Theorems 4.2 and 6.1 of Chen et al. (2021),
which require that p grows at a rate slower than N1/3. In addition, we allow for K → ∞
and weak cross-sectional dependence of xit.

Remark 5.4. Corollary 5.3 allows for arbitrage exogenous missing pattern in the pres-
ence of missing values (i.e., {mit}i≤N,t≤T , independent of {xit, εit}i≤N,t≤T , follow an
arbitrary distribution). Let Nt be the number of available observations for each t ≤ T .
Assumption 5.4 reduces to the one by replacing summation/average over all i with sum-
mation/average over i with observations, which may hold as mint≤T Nt → ∞ with fixed
T or as (mint≤T Nt, T ) → ∞ under arbitrage exogenous missing pattern.

6 Simulation Studies

In this section, we conduct Monte Carlo simulations to investigate the finite sample
performance of our estimators in Section 5.

We consider three different data generating processes (DGPs), which correspond to
the settings in Examples 2.2, 2.4 and 2.5. In all three DGPs, we let

xit,1 = σtuit,1, xit,2 = 0.3xi(t−1),2 + uit,2, xit,3 = uit,3 and xit,4 = 1, (27)

where uit = (uit,1, uit,2, uit,3)′ are i.i.d. N(0, I3) across both i and t, σt’s are i.i.d. U(1, 2)
over t, and xi0,2’s are i.i.d. N(0, 1) across i. Let xit = (xit,1, xit,2, xit,3, xit,4)′, so p = 4.
Let ft = 0.3ft−1 + ηt, where ηt’s are i.i.d. N(12, I2) over t and f0 ∼ N(12/0.7, I2/0.91),
so K = 2. Let εit’s be i.i.d. N(0, 4) across both i and t. In the first DGP (denoted
DGP1), we assume

ai =


1
θi

0
0

 and Bi =


0 0
0 0
2 0
0 δi

 , (28)

where θi’s are i.i.d. N(0, 1) across i and δi’s are i.i.d. U(1, 3) across i. In this DGP, ai

and Bi are heterogenous across i, which is the setting in Example 2.5. In the second
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DGP (denoted DGP2), we assume

ai =


1
1
0
0

 and Bi =


0 0
0 0
2 0
0 δi

 , (29)

where δi’s are i.i.d. U(1, 3) across i. In this DGP, the rows of ai and Bi corresponding
to the nonconstant part of xit are homogenous across i, which is the setting in Example
2.2. In particular, µ = (0, 0, . . . , 0)′, ϕ = (1, 1, 0)′,

Λ =


0 δ1

0 δ2
...

...
0 δN

 and Φ =


0 0
0 0
2 0

 . (30)

In the third DGP (denoted DGP3), we assume

ai =


1
1
0
0

 and Bi =


0 0
0 0
2 0
0 2

 . (31)

In this DGP, ai and Bi are homogenous across i, which is the setting in Example 2.4.
In particular, ϕ = a1 and Φ = B1. Here, uit’s, σt’s, xi0,2’s, θi’s, δi’s, ηt’s, f0 and εit’s are
mutually independent. We generate yit according to the model in (1).

For DGP1, we implement the estimators in (9)-(11) with S = RNp×T . We evaluate
the performance of Π̂, K̂, â, B̂ and F̂ . By Corollary 5.1, we let λNT = c

√
(Np + T ) log N

and δNT = 2(Np + T ) log N for some c > 0. For DGP2, we implement the estimators in
(19)-(21). We evaluate the performance of Π̂⋄, Π̂∗, K̂, µ̂, Λ̂, ϕ̂, Φ̂ and F̂ . By Corollary
5.2, we let λNT = c

√
(Np + T ) log N and δNT = 2(Np + T ) log N for some c > 0.

For DGP3, implement the estimators in (24)-(26). We evaluate the performance of Π̂0,
K̂0, ϕ̂0, Φ̂0 and F̂0. By Corollary 5.3, we let λ0,NT = c

√
N(p + T ) log N and δ0,NT =

2(p + T ) log(N)/
√

N for some c > 0.

In order to choose the value of c, we first evaluate the performance of the 5-fold
CV approach as described in Remark 4.2 (that is, L = 5). Figures 1-3 report the
mean square errors of the regularized estimators (Π̂, (Π̂⋄′,

√
NΠ̂∗′), and Π̂0) by using

fixed values of c and the CV method, where c is confined to [0, 2].10 All simulation
results of this section are based on 200 simulation replications. The main findings are
summarized as follows. First, the nuclear norm regularization can significantly improve

10Specifically, we consider the grid set {0, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.5, 2}.
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the performance of the estimators. As shown in Figures 1 and 2, the mean square error
of the unregularized estimator (i.e., c = 0) does not decrease as both N and T increase
(the value stays constantly around 20 in DGP1 and 10 in DGP2). In other words, the
unregularized estimators may not be consistent. Using the nuclear norm regularization
with a proper value of c (e.g., c = 1) not only reduces the mean square error for each
combination of (N, T ), but also shrinks the value towards zero as both N and T increase
(e.g., the value for c = 1 is getting closer to zero as N and T increase). This suggests that
the regularized estimators with a properly chosen value of c are consistent, which is in
accordance with Corollaries 5.1 and 5.2. As shown in Figure 3, although the mean square
error of the unregularized estimator is shrinking toward zero as N increases (note that
the scale of the vertical axis changes across rows of graphs), the regularized estimator
with a proper value of c (e.g., c = 0.3 or 0.4) enjoys a smaller mean square error. In
sum, our simulations have demonstrated the important role played by the nuclear norm
regularization. Second, in all three DGPs, the regularized estimators are very sensitive
to the value of c. For example, as shown in Figure 3, choosing c = 2 can lead to a
larger mean square error than that of the unregularized estimator in all combinations
of (N, T ). Therefore, it is important to choose the value of c in practice. Third, the
CV approach works well in choosing the value of c toward minimizing the mean square
error. In all three DGPs, the mean square error of the regularized estimator by using
the CV chosen value of c is close to the smallest mean square error when using fixed
values of c (the blue line almost hit the lowest point of the dash-dotted line in all graphs
of Figures 1-3), regardless of the combination of (N, T ).

We then investigate the performance of the estimators other than Π̂, Π̂⋄, Π̂∗ and
Π̂0 by using the CV chosen value of c. Tables I-III report their mean square errors or
correct rates. The main findings are summarized as follows. First, the number factor
estimators (K̂ in DGP1 and DGP2 and K̂0 in DGP3) perform well in all cases (only
two correct rates are below 100%). Second, all mean square errors in DGP1 and DGP2
decrease as both N and T increase, and all mean square errors in DGP3 decrease as
N increases. This suggests that the estimators in DGP1 and DGP2 are consistent as
(N, T ) → ∞, which is in accordance with Corollaries 5.1 and 5.2; the estimators in
DGP3 are consistent as N → ∞, which is in accordance with Corollary 5.3. Third,
increasing N reduces the mean square errors of the factor estimators (F̂ in DGP1 and
DGP2 and F̂0 in DGP3) in all cases, while increasing T may not. In addition, increasing
either N or T can reduce the mean square errors of Π̂∗, ϕ̂, Φ̂, ϕ̂0 and Φ̂0. This is beyond
what Corollaries 5.2 and 5.3 can explain, but may be due to the fact that the estimands
(i.e., Π∗, ϕ, Φ, ϕ0 and Φ0) are homogenous parameters. In sum, our estimators have
encouraging finite sample performance.
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Figure 1. Mean square errors of Π̂ when using fixed c and CV: DGP1
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Figure 2. Mean square errors of (Π̂⋄′,
√

NΠ̂∗′) when using fixed c and CV: DGP2
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Figure 3. Mean square errors of Π̂0 when using fixed c and CV: DGP3
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Table I. Mean square errors of Π̂, â, B̂ and F̂ , and correct rates of K̂: DGP1†

(N,T) Π̂ â B̂ F̂ K̂

(50, 50) 2.607 1.127 0.820 0.217 0.955
(50, 100) 1.610 0.962 0.355 0.203 1.000
(50, 200) 1.176 0.720 0.157 0.201 1.000
(100, 50) 2.323 1.187 0.667 0.133 0.990
(100, 100) 1.332 1.051 0.306 0.171 1.000
(100, 200) 0.877 0.577 0.124 0.132 1.000
(200, 50) 2.111 1.240 0.570 0.095 1.000
(200, 100) 1.155 0.849 0.254 0.114 1.000
(200, 200) 0.707 0.506 0.103 0.091 1.000

† The mean square errors of Π̂, â , B̂ and F̂ are given by
∑200

ℓ=1 ∥Π̂(ℓ)−Π∥2
F /200NT ,

∑200
ℓ=1 ∥â(ℓ)−a∥2/200N ,

∑200
ℓ=1 ∥B̂(ℓ)−

BH(ℓ)∥2
F /200N and

∑200
ℓ=1 ∥F̂ (ℓ)−F (H(ℓ)′)−1∥2

F /200T , where Π̂(ℓ), â(ℓ), B̂(ℓ) and F̂ (ℓ) are estimates in the ℓth simulation
replication, and H(ℓ) ≡ (F ′MT F̂ (ℓ))(F̂ (ℓ)′MT F̂ (ℓ))−1 is a rotational transformation matrix. The value of c is chosen
from {0, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.5, 2} by using the 5-fold CV method as described in Remark 4.2.
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Table II. Mean square errors of Π̂⋄, Π̂∗, µ̂, Λ̂, ϕ̂, Φ̂ and F̂ , and correct rates of K̂: DGP2†

(N,T) Π̂⋄ Π̂∗ µ̂ Λ̂ ϕ̂ Φ̂ F̂ K̂

(50, 50) 0.575 0.357 0.216 0.072 0.421 0.078 0.176 1.000
(50, 100) 0.418 0.298 0.108 0.037 0.373 0.045 0.172 1.000
(50, 200) 0.322 0.274 0.053 0.019 0.287 0.030 0.170 1.000
(100, 50) 0.450 0.253 0.206 0.070 0.399 0.065 0.111 1.000
(100, 100) 0.328 0.186 0.119 0.034 0.268 0.031 0.105 1.000
(100, 200) 0.241 0.154 0.059 0.015 0.173 0.019 0.096 1.000
(200, 50) 0.407 0.190 0.225 0.066 0.339 0.051 0.077 1.000
(200, 100) 0.219 0.136 0.119 0.033 0.222 0.026 0.073 1.000
(200, 200) 0.197 0.096 0.064 0.014 0.114 0.013 0.057 1.000

† The mean square errors of Π̂⋄, Π̂∗, µ̂, Λ̂, ϕ̂, Φ̂ and F̂ are given by
∑200

ℓ=1 ∥Π̂⋄(ℓ) − Π⋄∥2
F /200NT ,

∑200
ℓ=1 ∥Π̂∗(ℓ) −

Π∗∥2
F /200T ,

∑200
ℓ=1 ∥µ̂(ℓ) − µ∥2/200N ,

∑200
ℓ=1 ∥Λ̂(ℓ) − ΛH(ℓ)∥2

F /200N ,
∑200

ℓ=1 ∥ϕ̂(ℓ) − ϕ∥2/200,
∑200

ℓ=1 ∥Φ̂(ℓ) − ΦH(ℓ)∥2/200 and∑200
ℓ=1 ∥F̂ (ℓ) − F (H(ℓ)′)−1∥2

F /200T , where Π̂⋄(ℓ), Π̂∗(ℓ), µ̂(ℓ), Λ̂(ℓ), ϕ̂(ℓ), Φ̂(ℓ) and F̂ (ℓ) are estimates in the ℓth simulation
replication, and H(ℓ) ≡ (F ′MT F̂ (ℓ))(F̂ (ℓ)′MT F̂ (ℓ))−1 is a rotational transformation matrix. The value of c is chosen from
{0, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.5, 2} by using the 5-fold CV method as described in Remark 4.2.
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Table III. Mean square errors of Π̂0, ϕ̂0, Φ̂0 and F̂0 (×10−1), and correct rates of K̂0: DGP3†

(N,T) Π̂0 ϕ̂0 Φ̂0 F̂0 K̂0

(50, 50) 2.583 0.615 0.081 1.731 1.000
(50, 100) 2.600 0.486 0.050 1.697 1.000
(50, 200) 2.601 0.328 0.030 1.643 1.000
(100, 50) 1.276 0.248 0.036 0.862 1.000
(100, 100) 1.283 0.196 0.022 0.832 1.000
(100, 200) 1.285 0.127 0.014 0.804 1.000
(200, 50) 0.652 0.131 0.019 0.447 1.000
(200, 100) 0.645 0.083 0.011 0.415 1.000
(200, 200) 0.648 0.056 0.007 0.408 1.000

† The mean square errors of Π̂0, ϕ̂0 , Φ̂0 and F̂0 are given by
∑200

ℓ=1 ∥Π̂(ℓ)
0 −Π0∥2

F /200T ,
∑200

ℓ=1 ∥ϕ̂
(ℓ)
0 −ϕ∥2/200,

∑200
ℓ=1 ∥Φ̂(ℓ)

0 −
ΦH(ℓ)∥2

F /200 and
∑200

ℓ=1 ∥F̂
(ℓ)
0 −F (H(ℓ)′)−1∥2

F /200T , where Π̂(ℓ)
0 , ϕ̂

(ℓ)
0 , Φ̂(ℓ)

0 and F̂
(ℓ)
0 are estimates in the ℓth simulation

replication, and H(ℓ) ≡ (F ′MT F̂
(ℓ)
0 )(F̂ (ℓ)′

0 MT F̂
(ℓ)
0 )−1 is a rotational transformation matrix. The value of c is chosen

from {0, 0.05, 0.1, 0.2, . . . , 0.9, 1, 1.5, 2} by using the 5-fold CV method as described in Remark 4.2.
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7 Empirical Analysis

In this section, we analyze the cross section of individual stock returns in the US mar-
ket. We use the same data set as used in Chen et al. (2021), which is originally from
Freyberger, Neuhierl, and Weber (2020). The data set contains monthly returns and
36 characteristics of 12,813 individual US stocks from September, 1968 to May, 2014.
There are many stocks which have a large proportion of missing values. To satisfy the
requirement that the proportion of missing values cannot be too large, we choose to
discard stocks with sample length less than 200. This yields an unbalanced panel with
N = 2, 121 and T = 549, where each time period consists of at least 580 stocks that
have observations on both returns and the 36 characteristics, and each stock has obser-
vations in at least 200 time periods. We also transform the values of each characteristic
to relative ranking values with range [−0.5, 0.5] in each time period.

We consider six different model specifications. In the first three specifications (de-
noted S1, S2 and S3), xit consists of constant and the 36 characteristics. In the other
three specifications (denoted S4, S5 and S6), xit consists of constant and linear B-splines
of 18 characteristics with one internal knot as studied in Chen et al. (2021).11 In S1
and S4, we consider an unconstrained conditional factor model (as in Example 2.5),
where ai and Bi are allowed to be heterogeneous across i. In S2 and S5, we consider
a semiparametric conditional factor model (as in Example 2.2), where the rows of ai

and Bi corresponding to the nonconstant explanatory variables in xit are restricted to
be homogenous. In S3 and S6, we consider a homogenous conditional factor model (as
in Example 2.4), where ai and Bi are restricted to be homogenous. We estimate the
models for K = 1, 2, . . . , 10, and choose the regularization parameter by the 5-fold CV
approach as described in Remark 4.2. Specifically, we let λNT = c

√
(Np + T ) log N in

S1 and S4, λNT = c
√

(Np + T ) log N in S2 and S5, λ0,NT = c
√

N(p + T ) log N , and
choose c from {0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5}/100.

Let us write â ≡ (â′
1, â′

2, . . . , â′
N )′, B̂ ≡ (B̂′

1, B̂′
2, . . . , B̂′

N )′, and F̂ ≡ (f̂1, f̂2, . . . , f̂T )′.
To evaluate the performance of the models, we follow Chen et al. (2021) to consider
various goodness-of-fit measures. First, we consider the following types of in-sample R2:

R2 = 1 −
∑

i,t(yit − x′
itâi − x′

itB̂if̂t)2∑
i,t y2

it

, (32)

R2
T,N = 1 − 1

N

∑
i

∑
t(yit − x′

itâi − x′
itB̂if̂t)2∑

t y2
it

, (33)

R2
N,T = 1 − 1

T

∑
t

∑
i(yit − x′

itâi − x′
itB̂if̂t)2∑

i y2
it

. (34)

The first one is total R2. The second one measures the cross-sectional average of time
11See their paper for the list of the 18 characteristics and how they are selected.
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series R2 across all stocks, which reflects the ability of the extracted factors to capture
common variation in asset returns. The third one measures the time series average of
cross-sectional R2, which is the one of interest for evaluating models’ ability to explain
the cross-section of average returns. Second, we assess the out-of-sample prediction. For
t ≥ 300, we use the data through t−1 to implement our estimation procedure and obtain
estimators, say âit, B̂it, F̂t ≡ (f̂ (t)

1 , f̂
(t)
2 , . . . , f̂

(t)
t−1)′; and then compute the out-of-sample

prediction of yit as x′
itâit − x′

itB̂itλ̂t, where λ̂t = ∑
s≤t−1 f̂

(t)
s /(t − 1). We can define

analogously three types of out-of-sample predictive R2’s by replacing âi, B̂i and f̂t with
âit, B̂it and λ̂t:

R2
O = 1 −

∑
i,t≥300(yit − x′

itâit − x′
itB̂itλ̂t)2∑

i,t≥300 y2
it

, (35)

R2
T,N,O = 1 − 1

N

∑
i

∑
t≥300(yit − x′

itâit − x′
itB̂itλ̂t)2∑

t≥300 y2
it

, (36)

R2
N,T,O = 1 − 1

T − 299
∑

t≥300

∑
i(yit − x′

itâit − x′
itB̂itλ̂t)2∑

i y2
it

. (37)

The results are reported in Figure 4. The main findings are summarized as follows.
First, the in-sample R2’s increase as K increases, while the out-of-sample R2’s are
invariant to the change of K. The invariance property follows because λ̂ = ∑

t≤T f̂t/T =
F̂ ′1T /T = B̂′Π̂1T /(NT ), â + B̂λ̂ = Π̂1T /T , and the out-of-sample prediction of yit does
not depend on K. Second, among the linear models (i.e., S1,S2 and S3), S1 has the
best in-sample performance in all three in-sample R2’s regardless of the value of K,
while S3 has the best out-of-sample performance in all three out-of-sample R2’s. This
suggests that imposing homogeneity of ai and Bi across i may improve the model’s out-
of-sample predictability, though the in-sample fit is worsened. Similarly, for the spline
models (i.e., S4,S5 and S6), imposing homgogeneity of ai and Bi across i may improve
the model’s out-of-sample predictability. Third, S5 and S6 have better out-of-sample
performance than S2 and S3, respectively. This implies that using spline transformation
of characteristics may improve the model’s out-of-sample predictability, suggesting the
importance of nonlinearity. Overall, S1 has the best in-sample performance, while S6
has the best out-of-sample performance.
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Figure 4. In-sample and out-of-sample R2’s
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8 Conclusion

This paper developed a nuclear norm regularized estimation of high-dimensional con-
ditional factor models, and established large sample properties of the estimators. The
method allows us to estimate a variety of conditional factor models in a unified frame-
work and quickly deliver new asymptotic results. We applied the method to study the
cross section of individual US stock returns, and found that imposing homogeneity of ai

and Bi across i might improve the model’s out-of-sample performance. In asset pricing,
several inference problems, including testing whether pricing errors are zero and specifi-
cation test of risk exposure functions, are important for evaluating and comparing factor
models. Chernozhukov et al. (2018) provide an asymptotically valid inferential proce-
dure for a special case when ai = 0, p = 1 and xit exhibits a factor structure, which
nevertheless is not suited for asset pricing. Developing a general inferential method
within our framework is an interesting future research question.

Appendix A Proofs of Main Results

Proof of Theorem 4.1: (i) The result in fact follows as a modification of the proof
of Corollary 1 in Negahban and Wainwright (2011). By the definition of Π̂,

1
2

N∑
i=1

T∑
t=1

(yit − tr(X ′
itΠ̂))2 + λNT ∥Π̂∥∗ ≤ 1

2

N∑
i=1

T∑
t=1

(yit − tr(X ′
itΠ))2 + λNT ∥Π∥∗. (A.1)

Let ∆ ≡ Π̂ − Π ∈ S ⊖ S. Noting that ∑N
i=1

∑T
t=1 |tr(X ′

it∆)|2 = QNT (∆) + LNT (∆), we
may rearrange (A.1) to obtain

1
2QNT (∆) ≤ −1

2LNT (∆) +
N∑

i=1

T∑
t=1

tr(εitX
′
it∆) + λNT ∥Π∥∗ − λNT ∥Π + ∆∥∗

≤ rNT ∥∆∥∗ + λNT ∥Π∥∗ − λNT ∥Π + ∆∥∗

≤ λNT

(1
2∥∆∥∗ + ∥Π∥∗ − ∥Π + ∆∥∗

)
, (A.2)

where the first inequality follows by Assumption 4.1 and the second inequality follows
since λNT ≥ 2rNT . Since ∆ = P(∆) + M(∆), it follows that

∥Π∥∗ − ∥Π + ∆∥∗ = ∥Π∥∗ − ∥Π + P(∆) + M(∆)∥∗

≤ ∥Π∥∗ − ∥Π + P(∆)∥∗ + ∥M(∆)∥∗

= ∥M(∆)∥∗ − ∥P(∆)∥∗ (A.3)
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where the inequality follows by the triangle inequality and the second equality follows
by Lemma A.1(i). Since ∥∆∥∗ ≤ ∥P(∆)∥∗ + ∥M(∆)∥∗, combining (A.2) and (A.3) gives

0 ≤ 1
2QNT (∆) ≤ λNT

(3
2∥M(∆)∥∗ − 1

2∥P(∆)∥∗

)
. (A.4)

Therefore, ∥P(∆)∥∗ ≤ 3∥M(∆)∥∗ and ∆ ∈ C. This in turn together with (A.4) and
Assumption 4.1(i) implies that

1
2κ∥∆∥2

F ≤ λNT

(3
2∥M(∆)∥∗ − 1

2∥P(∆)∥∗

)
≤ 3

2λNT ∥M(∆)∥∗

≤ 3
2λNT

√
2(K + 1)∥M(∆)∥F ≤ 3

2λNT

√
2(K + 1)∥∆∥F , (A.5)

where the second inequality follows since ∥P(∆)∥∗ ≥ 0, the third inequality follows by
the Cauchy-Schwartz inequality (i.e., ∥A∥∗ ≤

√
rank(A)∥A∥F ) and Lemma A.1(ii), and

the last inequality follows by Lemma A.1(iii). Thus, the result follows by (A.5).

(ii) Let σj(A) denote the jth largest singular value of A, so λj(Π̂MT Π̂′) = σ2
j (Π̂MT ).

If K̂ ̸= K, then λK(Π̂MT Π̂′) < δNT or λK+1(Π̂MT Π̂′) ≥ δNT , equivalently, σK(Π̂MT ) <
√

δNT or σK+1(Π̂MT ) ≥
√

δNT . Thus, we obtain

P (K̂ ̸= K) ≤ P (σK(Π̂MT ) <
√

δNT ) + P (σK+1(Π̂MT ) ≥
√

δNT ). (A.6)

By the Weyl’s inequality, we have

sup
j≤min{Np,T }

|σj(Π̂MT ) − σj(ΠMT )| ≤ ∥Π̂MT − ΠMT ∥F ≤ ∥Π̂ − Π∥F , (A.7)

where the second inequality follows since ∥CD∥F ≤ ∥C∥F ∥D∥2 and ∥MT ∥2 = 1. It then
follows from (A.7) and Theorem 4.1(i) that with probability approaching one,

σK(Π̂MT ) ≥ σK(ΠMT ) − Op(
√

KλNT ) ≥
√

δNT (A.8)

and

σK+1(Π̂MT ) ≤ σK+1(ΠMT ) + Op(
√

KλNT ) <
√

δNT , (A.9)

where the second equality in (A.8) follows since δNT /(Kλ2
NT ) → ∞, δNT /(NT ) → 0

and σ2
K(ΠMT /

√
NT ) = λmin((B′B/N)(F ′MT F/T )) > d2

min, and the second equality
in (A.9) follows since σK+1(ΠMT ) = 0 and δNT /(Kλ2

NT ) → ∞. Thus, the first result
follows from (A.6), (A.8) and (A.9).

It is without loss of generality to assume that K̂ = K. Let V be a K × K diagonal
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matrix of the first K largest eigenvalues of Π̂MT Π̂′/(NT ). By the definitions of B̂,

B̂ = 1
NT

Π̂MT Π̂′B̂V −1 = BH + 1
NT

(Π̂ − Π)MT Π̂′B̂V −1, (A.10)

where the second equality follows since F̂ ′MT F̂ /T = V , ΠMT = BF ′MT and F̂ = Π̂′B̂.
By Assumptions 4.2(i), (ii) and (iv), ∥Π/

√
NT∥F is bounded. Since

√
KλNT /

√
NT =

o(1), ∥Π̂/
√

NT∥F = Op(1) by Theorem 4.1(i). Thus, the thid result follows from (A.10),
Lemma A.1(i) and Theorem 4.1(i). By the definition of â,

â = a − 1
N

B̂(B̂ − BH)′a −
(

INp − B̂B̂′

N

)
(B̂ − BH)H−1 1

T
F ′1T

+
(

INp − B̂B̂′

N

)
1
T

(Π̂ − Π)1T , (A.11)

where we have used a′B = 0 and Π = a1′
T + BF ′. By Assumptions 4.2(ii) and (iv),

∥F ′1T /T∥ and ∥a/
√

N∥ are bounded. Thus, the second result follows from (A.11), the
second result, Lemma A.1(ii) and Theorem 4.1(i). By the definition of F̂ ,

F̂ = F (H ′)−1 − F (H ′)−1 1
N

(B̂ − BH)′B̂ + 1
N

1T a′(B̂ − BH) + 1
N

(Π̂ − Π)′B̂, (A.12)

where we have used a′B = 0 and Π = a1′
T + BF ′. Thus, the last result follows from

(A.12), the second result, Lemma A.1(ii) and Theorem 4.1(i). ■

Appendix A.1 Technical Lemmas

Lemma A.1. For any Np × T matrix ∆, let P(∆) and M(∆) be given in Section 4.
Assume 0 < K < min{Np, T} − 1. For any Np × T matrix ∆, the followings are true.
(i) ∥Π + P(∆)∥∗ = ∥Π∥∗ + ∥P(∆)∥∗.
(ii) The rank of M(∆) is no greater than 2(K + 1).
(iii) ∥∆∥2

F = ∥P(∆)∥2
F + ∥M(∆)∥2

F .

Proof: (i) Since P(∆) = U2U ′
2∆V2V ′

2 and Π = U1Σ11V ′
1 where Σ11 is square diagonal

matrix with nonzero singular values of Π in the diagonal in descending order, the result
follows by Lemma 2.3 of Recht et al. (2010).

(ii) We have the following decomposition:

∆ = U(U1, U2)′∆(V1, V2)V ′

= U

(
U ′

1∆V1 U ′
1∆V2

U ′
2∆V1 U ′

2∆V2

)
V ′

= U

(
0 0
0 U ′

2∆V2

)
V ′ + U

(
U ′

1∆V1 U ′
1∆V2

U ′
2∆V1 0

)
V ′
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= P(∆) + U

(
U ′

1∆V1 U ′
1∆V2

U ′
2∆V1 0

)
V ′. (A.13)

Therefore, by (A.13) we obtain

M(∆) = U

(
U ′

1∆V1 U ′
1∆V2

U ′
2∆V1 0

)
V ′. (A.14)

Thus, by (A.14) it follows that

rank(M(∆)) = rank
((

U ′
1∆V1 U ′

1∆V2

U ′
2∆V1 0

))

≤ rank
((

U ′
1∆V1 U ′

1∆V2

0 0

))
+ rank

((
0 0

U ′
2∆V1 0

))
≤ 2(K + 1), (A.15)

where the first inequality follows by the fact that rank(C + D) ≤ rank(C) + rank(D)
(see, for example, Fact 2.10.17 in Bernstein (2018)) and the second inequality follows
since Π has at most rank K + 1.

(iii) By (A.13) and (A.14), we obtain

∥P(∆)∥2
F + ∥M(∆)∥2

F =
∥∥∥∥∥
(

0 0
0 U ′

2∆V2

)∥∥∥∥∥
2

F

+
∥∥∥∥∥
(

U ′
1∆V1 U ′

1∆V2

U ′
2∆V1 0

)∥∥∥∥∥
2

F

= ∥∆∥2
F , (A.16)

where the second equality follows by the first two equalities in (A.13). ■

Lemma A.2. Suppose Assumption 4.2 holds. Let V be a K × K diagonal matrix of the
first K largest eigenvalues of Π̂MT Π̂′/(NT ). Assume that ∥Π̂ − Π∥F = op(

√
NT ) and

P (K̂ = K) → 1. Then (i) ∥V ∥2 = Op(1), ∥V −1∥2 = Op(1), and ∥H∥2 = Op(1); (ii)
∥H−1∥2 = Op(1), if ∥B̂ − BH∥F = op(

√
N).

Proof: (i) Let σj(A) denote the jth largest singular value of A, so λj(Π̂MT Π̂′/(NT )) =
σ2

j (Π̂MT /
√

NT ) and λj(ΠMT Π′/(NT )) = σ2
j (ΠMT /

√
NT ). By the triangle inequality,

it follows from (A.7) that√
∥V ∥2 = σ1(Π̂MT /

√
NT ) ≤ σ1(ΠMT /

√
NT ) + ∥Π̂ − Π∥F /

√
NT = Op(1). (A.17)

where the last equality follows since σ1(ΠMT /
√

NT ) is bounded. Similarly,√
∥V −1∥2 = σ−1

K (Π̂MT /
√

NT ) ≤ σ−1
K (ΠMT /

√
NT ) + op(1) = Op(1), (A.18)

where the last equality follows since σ2
K(ΠMT /

√
NT ) = λmin((B′B/N)(F ′MT F/T )) >
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d2
min. Let H⋄ ≡ (F ′MT F/T )(B′B̂/N)V −1. Recall that H = (F ′MT Π̂′B̂/T )V −1. Then,

∥H − H⋄∥2 ≤ 1
NT

∥F∥2∥Π̂ − Π∥F ∥B̂∥2∥V −1∥2 = op(1), (A.19)

where the equality follows by Assumption 4.2(ii). Since ∥H⋄∥2 = Op(1), it follows from
(A.19) that ∥H∥2 = Op(1).

(ii) Since ∥B̂ − BH∥F = op(
√

N), we have ∥B̂′B̂/(N) − H ′(B′B/N)H∥F = op(1) by
the triangle inequality. This implies that IK −λmax(B′B/N)H ′H is negative semidefinite
with probability approaching one. Therefore, the eigenvalues of H ′H are no smaller than
λ−1

max(B′B/N) with probability approaching one. Thus, the result of the lemma follows
from Assumption 4.2(i). ■

Appendix B Computing Algorithms

In this appendix, we present computing algorithms for finding the nuclear norm reg-
ularized estimators in Examples 2.1-2.5. Specifically, we use the accelerated proximal
gradient algorithm by Ji and Ye (2009) and Toh and Yun (2010). The algorithm solves
the following general nonsmooth convex minimization problem:

min
Γ∈Rm×T

F (Γ) ≡ f(Γ) + φNT ∥Γ∥∗, (B.1)

where Γ ∈ Rm×T is the decision matrix, f : Rm×T 7→ [0, ∞) is a smooth loss func-
tion with the gradient ∇f(Γ) being Lipschitz continuous with constant Lf (namely,
∥∇f(Γ(1)) − ∇f(Γ(2))∥F ≤ Lf ∥Γ(1) − Γ(2)∥F for any Γ(1), Γ(2) ∈ Rm×T ), ∥Γ∥∗ is the
nuclear norm of Γ, φNT > 0 is a regularization parameter. The algorithm consists of
recursively solving a sequence of minimizations of linear approximations of f(Γ) regu-
larized by a quadratic proximal term and the nuclear norm, which is given by

min
Γ∈Rm×T

Qτk
(Γ, Γk) ≡ f(Γk) + tr((Γ − Γk)′∇f(Γk)) + τk

2 ∥Γ − Γk∥2
F + φNT ∥Γ∥∗,

:= min
Γ∈Rm×T

τk

2

∥∥∥∥Γ −
(

Γk − 1
τk

∇f(Γk)
)∥∥∥∥2

F
+ φNT ∥Γ∥∗ + f(Γk) − 1

2τk
∥∇f(Γk)∥2

F (B.2)

for k ∈ Z+, where τk > 0 and Γk are recursively updated. The algorithm is attractive
in two aspects. First, the problem in (B.2) can be explicitly solved via the singular
value decomposition of Γk − 1

τk
∇f(Γk) and then applying some soft-thresholding on

the singular values. This is because f(Γk) − 1
2τk

∥∇f(Γk)∥2
F does not depend on Γ

and minΓ∈Rm×T
τk
2 ∥Γ − [Γk − 1

τk
∇f(Γk)]∥2

F + φNT ∥Γ∥∗ can be explicitly solved by the
technique; see, for example, Cai et al. (2010) and Ma et al. (2011). For A ∈ Rm×T , let
A = UΣV ′ be a singular value decomposition of A, where U ∈ Rm×m with U ′U = Im,
V ∈ RT ×T with V ′V = IT , and Σ ∈ Rm×T is a diagonal matrix with singular values
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in the diagonal in descending order. For x > 0, define Sx(A) ≡ UΣxV ′, where Σx is
diagonal with the jjth entry equal to max{0, Σjj − x} for all j and Σjj denotes the jjth
entry of Σ. The solution to (B.2) is given by

Sτ−1
k

φNT

(
Γk − 1

τk
∇f(Γk)

)
. (B.3)

Second, Ji and Ye (2009) and Toh and Yun (2010) show that if τk > 0 and Γk are
updated properly, the algorithm can achieve the optimal convergence rate of O(1/k2).

Let η ∈ (0, 1) be a given constant. Choose Γ∗
0 = Γ∗

1 ∈ Rm×T . Set w0 = w1 = 1 and
τ0 = Lf . Set k = 1. The algorithm is given as follows.

Step 1. Set Γk = Γ∗
k + wk−1−1

wk
(Γ∗

k − Γ∗
k−1).

Step 2. Set τ̂0 = ητk−1. Set j = 0 and execute the following step:

• Compute Aj = Sτ̂−1
j φNT

(Γk − τ̂−1
j ∇f(Γk)). If F (Aj) ≤ Qτ̂j (Aj , Γk), set

τk = τ̂j and proceed to Step 3; Otherwise, set τ̂j+1 = min{η−1τ̂j , τ0} and
j = j + 1, and return to the beginning of this step.

Step 3. Set Γ∗
k+1 = Sτ−1

k
φNT

(Γk − τ−1
k ∇f(Γk)).

Step 4. Set wk+1 = (1 +
√

1 + 4w2
k)/2.

Step 5. Compute Dk+1 = τk(Γk − Γ∗
k+1) + ∇f(Γ∗

k+1) − ∇f(Γk). If ∥Dk+1∥F /

[τk max{1, ∥Γ∗
k+1∥F }] ≤ ϵ where ϵ is a pre-specified tolerance level, set the output

Π̂ = Γ∗
k+1. Otherwise, set k = k + 1 and return to Step 1.

Step 2 is to ensure that the objective value generated at the kth iteration is bounded by
the minimum of the approximating function, that is, F (Γ∗

k+1) ≤ Qτk
(Γ∗

k+1, Γk), which is
crucial to the algorithm. Alternatively, we may fix τk = Lf to meet the requirement; see,
for example, Lemma 1.2.3 of Nesterov (2003). By shrinking τk, the resulting solution
tends to have lower rank than the one generated by setting τk = Lf , since smaller value
of τk may lead to fewer nonzero singular values in Sτ−1

k
φNT

(Γk − τ−1
k ∇f(Γk)). Steps

1 and 4 are key steps for the convergence rate of O(1/k2). Rather than fixing the
search point (i.e.,Γk) at the solution from the previous iteration (i.e., Γ∗

k), the algorithm
constructs the search point as a linear combination of the solutions from the latest two
iterations. This may accelerate the convergence rate from O(1/k) to O(1/k2) (Nesterov,
1983, 2003); see Ji and Ye (2009) and Toh and Yun (2010) for the proofs. The sequence
wk is generated in the manner in Step 4 to satisfy the constraint w2

k+1 − wk+1 ≤ w2
k.

In Step 5, Dk+1 is a subgradient of F (Γ) at Γ = Γ∗
k+1, see Toh and Yun (2010). In

simulations and real data applications, we set η = 0.8, Γ∗
0 = Γ∗

1 = 0 and ϵ = 10−5.

We next show how the problems in (9) with S = RNp×T , (19) and (24), which re-
spectively define our estimators in Examples 2.1, 2.3 and 2.5, Example 2.2, and Example
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2.4, can fit into the general framework in (B.1). In all cases, the algorithms can be easily
adapted to allow for the presence of missing values. In both Examples 2.1, 2.3 and 2.5
and Example 2.4, we can simply replace the observations with yitmit and xitmit, where
mit is a dummy variable of missing status defined in Remark 3.2. It is straightforward
to modify the algorithm to accommodate the presence of missing values in Example 2.2.
Below we focus on the case without missing values.

Appendix B.1 Examples 2.1, 2.3 and 2.5

For (9) with S = RNp×T , we may set m = Np, φNT = λNT and

f(Γ) = 1
2

N∑
i=1

T∑
t=1

(yit − x′
itγit)2 for Γ ≡


γ11 γ12 · · · γ1T

γ21 γ22 · · · γ2T

...
...

...
...

γN1 γN2 · · · γNT

 ∈ RNp×T . (B.4)

We need to show that the gradient ∇f(Γ) is Lipschitz continuous. It follows that

∇f(Γ) =


x11(x′

11γ11 − y11) x12(x′
12γ11 − y12) · · · x1T (x′

1T γ1T − y1T )
x21(x′

21γ21 − y21) x22(x′
22γ22 − y22) · · · x2T (x′

2T γ2T − y2T )
...

...
...

...
xN1(x′

N1γN1 − yN1) xN2(x′
N2γN2 − yN2) · · · xNT (x′

NT γNT − yNT )

 .

(B.5)

Indeed,∇f(Γ) is Lipschitz continuous with constant Lf = maxi≤N,t≤T ∥xit∥2, because
for Γ(1) ≡ (γ(1)

it ) ∈ RNp×T and Γ(2) ≡ (γ(2)
it ) ∈ RNp×T ,

∥∇f(Γ(1)) − ∇f(Γ(2))∥2
F

=

∥∥∥∥∥∥∥∥∥∥∥


x11x′

11(γ(1)
11 − γ

(2)
11 ) x12x′

12(γ(1)
12 − γ

(2)
12 ) · · · x1T x′

1T (γ(1)
1T − γ

(2)
1T )

x21x′
21(γ(1)

21 − γ
(2)
21 ) x22x′

22(γ(1)
22 − γ

(2)
22 ) · · · x2T x′

2T (γ(1)
2T − γ

(2)
2T )

...
...

...
...

xN1x′
N1(γ(1)

N1 − γ
(2)
N1) xN2x′

N2(γ(1)
N2 − γ

(2)
N2) · · · xNT x′

NT (γ(1)
NT − γ

(2)
NT )



∥∥∥∥∥∥∥∥∥∥∥

2

F

=
N∑

i=1

T∑
t=1

∥xitx
′
it(γ

(1)
it − γ

(2)
it )∥2

≤ max
i≤N,t≤T

∥xit∥4∥Γ(1) − Γ(2)∥2
F . (B.6)
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Appendix B.2 Example 2.2

By changing values, we may equivalently rewrite (19) as
(

Π̂⋄
√

NΠ̂∗

)
= arg min

Γ⋄=(γit)i≤N,t≤T ∈RN×T

Γ∗=(γ∗
1 ,...,γ∗

T )∈R(p−1)×T

∥Γ∗∥max≤
√

NM

1
2

N∑
i=1

T∑
t=1

(yit − γit − w∗′
it γ∗

t )2 + λNT

∥∥∥∥∥
(

Γ⋄

Γ∗

)∥∥∥∥∥
∗

,

(B.7)

where w∗
it = x∗

it/
√

N . Here, we consider the problem by dropping the constraint that
∥Γ∗∥ ≤

√
NM . First, as noted in Footnote 8, the constraint is only a technical condition

that simplifies the proof, so may not be necessary. Second, in practice, the constraint is
not binding for a sufficiently large value of M , thus can be dropped. Thus, we may set
m = N + p − 1, φNT = λNT and

f(Γ) = 1
2

N∑
i=1

T∑
t=1

(
yit − γit − w∗′

it γ∗
t

)2 for Γ ≡



γ11 γ12 · · · γ1T

γ21 γ22 · · · γ2T

...
...

...
...

γN1 γN2 · · · γNT

γ∗
1 γ∗

2 · · · γ∗
T


∈ R(N+p−1)×T .

(B.8)

We need to show that the gradient ∇f(Γ) is Lipschitz continuous. It follows that

∇f(Γ) =



γ11 + w∗′
11γ∗

1 − y11 γ12 + w∗′
12γ∗

2 − y12

γ21 + w∗′
21γ∗

1 − y21 γ22 + w∗′
22γ∗

2 − y22
...

...
γN1 + w∗′

N1γ∗
1 − yN1 γN2 + w∗′

N2γ∗
2 − yN2∑N

i=1 w∗
i1(γi1 + w∗′

i1γ∗
1 − yi1) ∑N

i=1 w∗
i2(γi2 + w∗′

i2γ∗
2 − yi2)

· · · (γ1T + w∗′
1T γ∗

T − y1T )
· · · (γ2T + w∗′

2T γ∗
T − y2T )

...
...

· · · (γNT + w∗′
NT γ∗

T − yNT )
· · ·

∑N
i=1 w∗

iT (γiT + w∗′
iT γ∗

T − yiT )


, (B.9)

and for Γ(1) ≡ (γ(1)
it , γ

∗(1)
t ) ∈ R(N+p−1)×T and Γ(2) ≡ (γ(2)

it , γ
∗(2)
t ) ∈ R(N+p−1)×T ,

∥∇f(Γ(1)) − ∇f(Γ(2))∥2
F
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥



γ
(1)
11 − γ

(2)
11 + w∗′

11(γ∗(1)
1 − γ

∗(2)
1 )

γ
(1)
21 − γ

(2)
21 + w∗′

21(γ∗(1)
1 − γ

∗(2)
1 )

...
γ

(1)
N1 − γ

(2)
N1 + w∗′

N1(γ∗(1)
1 − γ

∗(2)
1 )∑N

i=1 w∗
i1(γ(1)

i1 − γ
(2)
i1 ) +∑N

i=1 w∗
i1w∗′

i1(γ∗(1)
1 − γ

∗(2)
1 )

γ
(1)
12 − γ

(2)
12 + w∗′

12(γ∗(1)
2 − γ

∗(2)
2 )

γ
(1)
22 − γ

(2)
22 + w∗′

22(γ∗(1)
2 − γ

∗(2)
2 )

...
γ

(1)
N2 − γ

(2)
N2 + w∗′

N2(γ∗(1)
2 − γ

∗(2)
2 )∑N

i=1 w∗
i2(γ(1)

i2 − γ
(2)
i2 ) +∑N

i=1 w∗
i2w∗′

i2(γ∗(1)
2 − γ

∗(2)
2 )

· · · γ
(1)
1T − γ

(2)
1T + w∗′

1T (γ∗(1)
T − γ

∗(2)
T )

· · · γ
(1)
2T − γ

(2)
2T + w∗′

2T (γ∗(1)
T − γ

∗(2)
T )

...
...

· · · γ
(1)
NT − γ

(2)
NT + w∗′

NT (γ∗(1)
T − γ

∗(2)
T )

· · ·
∑N

i=1 w∗
iT (γ(1)

iT − γ
(2)
iT ) +∑N

i=1 w∗
iT w∗′

iT (γ∗(1)
T − γ

∗(2)
T )



∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

=
N∑

i=1

T∑
t=1

[
γ

(1)
it − γ

(2)
it + w∗′

it (γ∗(1)
t − γ

∗(2)
t )

]2

+
T∑

t=1

∥∥∥∥∥
N∑

i=1
w∗

it(γ
(1)
it − γ

(2)
it ) +

N∑
i=1

w∗
iT w∗′

it (γ∗(1)
t − γ

∗(2)
t )

∥∥∥∥∥
2

≤ 2
N∑

i=1

T∑
t=1

(γ(1)
it − γ

(2)
it )2 + 2 max

t≤T
λmax

(
N∑

i=1
w∗

itw
∗′
it

)
T∑

t=1
∥γ

∗(1)
t − γ

∗(2)
t ∥2

+ 2N max
i≤N,t≤N

∥w∗
it∥2

N∑
i=1

T∑
t=1

(γ(1)
it − γ

(2)
it )2 + 2 max

t≤T
λ2

max

(
N∑

i=1
w∗

itw
∗′
it

)
T∑

t=1
∥γ

∗(1)
t − γ

∗(2)
t ∥2

≤ 2 max
{

1 + N max
i≤N,t≤N

∥w∗
it∥2, max

t≤T
λmax

(
N∑

i=1
w∗

itw
∗′
it

)
+ max

t≤T
λ2

max

(
N∑

i=1
w∗

itw
∗′
it

)}
× ∥Γ(1) − Γ(2)∥2

F

= 2 max
{

1 + max
i≤N,t≤N

∥x∗
it∥2, max

t≤T
λmax

(
1
N

N∑
i=1

x∗
itx

∗′
it

)
+ max

t≤T
λ2

max

(
1
N

N∑
i=1

x∗
itx

∗′
it

)}
× ∥Γ(1) − Γ(2)∥2

F , (B.10)

where the first inequality follows by the Cauchy Schwartz inequality and the trian-
gle inequality. Thus, ∇f(Γ) is Lipschitz continuous with constant Lf =

√
2[max{1 +

maxi≤N,t≤N ∥x∗
it∥2, maxt≤T λmax(∑N

i=1 x∗
itx

∗′
it/N) + maxt≤T λ2

max(∑N
i=1 x∗

itx
∗′
it/N)}]1/2.
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Appendix B.3 Example 2.4

For (24), we may set m = p, φNT = λ0,NT and

f(Γ) = 1
2

N∑
i=1

T∑
t=1

(yit − x′
itγt)2 for Γ ≡ (γ1, γ2, . . . , γT ) ∈ Rp×T . (B.11)

We need to show that the gradient ∇f(Γ) is Lipschitz continuous. It follows that

∇f(Γ) =
(

N∑
i=1

xi1(x′
i1γ1 − yi1),

N∑
i=1

xi2(x′
i2γ2 − yi2), . . . ,

N∑
i=1

xiT (x′
iT γT − yiT )

)
. (B.12)

Indeed, ∇f(Γ) is Lipschitz continuous with constant Lf = maxt≤T λmax(∑N
i=1 xitx

′
it),

because for Γ(1) ≡ (γ(1)
1 , γ

(1)
2 , . . . , γ

(1)
T ) ∈ Rp×T and Γ(2) ≡ (γ(2)

1 , γ
(2)
2 , . . . , γ

(2)
T ) ∈ Rp×T ,

∥∇f(Γ(1)) − ∇f(Γ(2))∥2
F

=
∥∥∥∥∥

N∑
i=1

xi1x′
i1(γ(1)

1 − γ
(2)
1 ),

N∑
i=1

xi2x′
i2(γ(1)

2 − γ
(2)
2 ) . . . ,

N∑
i=1

xiT x′
iT (γ(1)

T − γ
(2)
T )

∥∥∥∥∥
2

F

=
T∑

t=1

∥∥∥∥∥
N∑

i=1
xitx

′
it(γ

(1)
t − γ

(2)
t )

∥∥∥∥∥
2

≤ max
t≤T

λ2
max

(
N∑

i=1
xitx

′
it

)
∥Γ(1) − Γ(2)∥2

F . (B.13)

Appendix C Useful Lemmas

Lemma C.1. (i) Let {ξNt}t≤T be a sequence of independent Np × 1 sub-Gaussian vec-
tors with λmax(E[ξNtξ

′
Nt]) bounded. Assume that (x′

1tε1t, x′
2tε2t, . . . , x′

NtεNt)′ is the tth
column of ΞNT ΩNT , where ΞNT = (ξN1, ξN2, . . . , ξNT ) and ΩNT is a T ×T deterministic
(possibly non-diagonal) matrix with ∥ΩNT ∥2 bounded. Then as (N, T ) → ∞,∥∥∥∥∥

N∑
i=1

T∑
t=1

Xitεit

∥∥∥∥∥
2

= Op(max{
√

Np,
√

T}).

(ii) Let {νNt}t≤T be a sequence of independent Np×1 sub-Gaussian vectors with bounded
λmax(E[νNtν

′
Nt]). Assume that (x′

1t, x′
2t, . . . , x′

Nt)′ is the tth column of VNT ΩNT , where
VNT = (νN1, νN2, . . . , νNT ) and ΩNT is a T × T deterministic (possibly non-diagonal)
matrix with ∥ΩNT ∥2 bounded. Then as (N, T ) → ∞,∥∥∥∥∥

N∑
i=1

T∑
t=1

Xit

∥∥∥∥∥
2

= Op(max{
√

Np,
√

T}).
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(iii) Let {ηNt}t≤T be a sequence of independent p×1 sub-Gaussian vectors with bounded
λmax(E[ηNtη

′
Nt]). Assume that

∑N
i=1 xitεit/

√
N is the tth column of ΥNT ΩNT , where

ΥNT ≡ (ηN1, ηN2, . . . , ηNT ) and ΩNT is a T × T deterministic (possibly non-diagonal)
matrix with ∥ΩNT ∥2 bounded. Then as (N, T ) → ∞,∥∥∥∥∥

(
1√
N

N∑
i=1

xi1εi1,
1√
N

N∑
i=1

xi2εi2, . . . ,
1√
N

N∑
i=1

xiT εiT

)∥∥∥∥∥
2

= Op(max{√
p,

√
T}).

Proof: (i) Since (x′
1tε1t, x′

2tε2t, . . . , x′
NtεNt)′ is the tth column of ∑N

i=1
∑T

t=1 Xitεit,

N∑
i=1

T∑
t=1

Xitεit = ΞNT ΩNT . (C.1)

Applying Theorem 5.39 and Remark 5.40 in Vershynin (2010) on Ξ′
NT , we obtain

∥ΞNT ∥2 = Op(max{
√

Np,
√

T}) as (N, T ) → ∞. Thus, the result follows by (C.1)
since ∥ΩNT ∥2 is bounded and ∥CD∥2 ≤ ∥C∥2∥D∥2.

(ii) and (iii) The proof is similar to the proof of (i), thus omitted. ■

Lemma C.2. Let F ≡ (∑N
i=1 xi1εi1/

√
N,
∑N

i=1 xi2εi2/
√

N, . . . ,
∑N

i=1 xiT εiT /
√

N). For
any ∆ ∈ {1N ⊗ Γ : Γ ∈ Rp×T }, we have

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 ≥ min

t≤T
λmin

(∑N
i=1 xitx

′
it

N

)
∥∆∥2

F

and ∣∣∣∣∣
N∑

i=1

T∑
t=1

tr(εitX
′
it∆)

∣∣∣∣∣ ≤ ∥F∥2∥∆∥∗.

Proof: Fix ∆ = 1N ⊗ Γ for some Γ ∈ Rp×T . Write Γ = (γ1, γ2, . . . , γT ), where γt is a
p × 1 vector. Since tr(X ′

it∆) = x′
itγt, it follows that

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 =

N∑
i=1

T∑
t=1

|x′
itγt|2

= N
T∑

t=1
γ′

t

(∑N
i=1 xitx

′
it

N

)
γt

≥ min
t≤T

λmin

(∑N
i=1 xitx

′
it

N

)
N∥Γ∥2

F

= min
t≤T

λmin

(∑N
i=1 xitx

′
it

N

)
∥∆∥2

F , (C.2)
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where the last equality holds since ∥∆∥2
F = N∥Γ∥2

F . For the same reason, we have

N∑
i=1

T∑
t=1

tr(εitX
′
it∆) =

N∑
i=1

T∑
t=1

εitx
′
itγt

= tr(F ′√NΓ)

≤ ∥F∥2
√

N∥Γ∥∗

= ∥F∥2∥∆∥∗, (C.3)

where the inequality holds by the fact that |tr(C ′D)| ≤ ∥C∥2∥D∥∗, and the last equality
follows by Lemma C.6(iii). This completes the proof of the lemma. ■

Lemma C.3. For any Γ = (γ1, γ2, . . . , γT ) ∈ Rp×T , we have

1
2

N∑
i=1

T∑
t=1

(yit −tr(X ′
it(1N ⊗Γ)))2 +λNT ∥1N ⊗Γ∥∗ = 1

2

N∑
i=1

T∑
t=1

(yit −x′
itγt)2 +

√
NλNT ∥Γ∥∗.

Proof: Fix Γ = (γ1, γ2, . . . , γT ) ∈ Rp×T . It is easy to see that tr(X ′
it(1N ⊗ Γ)) = x′

itγt.
By Lemma C.6(iii), ∥1N ⊗ Γ∥∗ =

√
N∥Γ∥∗. Thus, the result follows. ■

Lemma C.4. Recall xit = (1, x∗′
it)′. Let X ∗ be an N × T block matrix with the itth

block x∗
it, E be an N × T matrix with the itth entry εit, and F∗ ≡ (∑N

i=1 x∗
i1εi1/

√
N,∑N

i=1 x∗
i2εi2/

√
N, . . . ,

∑N
i=1 x∗

iT εiT /
√

N). For any ∆ ∈ DM given in (15), we have

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 ≥ min

{
1, min

t≤T
λmin

(∑N
i=1 x∗

itx
∗′
it

N

)}
∥∆∥2

F + 2RNT (∆)

for some RNT (∆) such that |RNT (∆)| ≤ M
√

p − 1∥X ∗∥2∥∆∥∗, and∣∣∣∣∣
N∑

i=1

T∑
t=1

tr(εitX
′
it∆)

∣∣∣∣∣ ≤ (∥E∥2 + ∥F∗∥2)∥∆∥∗.

Proof: Fix ∆ = ((γ1, Γ∗′), (γ2, Γ∗′), (γN , Γ∗′))′ ∈ DM for some (γ1, γ2, . . . , γN )′ ∈ RN×T

and Γ∗ ∈ R(p−1)×T . Write γi = (γi1, γi2, . . . , γiT )′ and Γ∗ = (γ∗
1 , γ∗

2 , . . . , γ∗
T ), where

γit is a scalar and γ∗
t is a (p − 1) × 1 vector. Since xit = (1, x∗

it)′, it follows that
tr(X ′

it∆) = γit + x∗′
itγ

∗
t and then

N∑
i=1

T∑
t=1

|tr(X ′
it∆)|2 =

N∑
i=1

T∑
t=1

(γit + x∗′
itγ

∗
t )2

=
N∑

i=1

T∑
t=1

γ2
it + N

T∑
t=1

γ∗′
t

(∑N
i=1 x∗

itx
∗′
it

N

)
γ∗

t + 2
N∑

i=1

T∑
t=1

γitx
∗′
itγ

∗
t

≥ min
{

1, min
t≤T

λmin

(∑N
i=1 x∗

itx
∗′
it

N

)}(
N∑

i=1

T∑
t=1

γ2
it + N∥Γ∗∥2

F

)
+ 2

N∑
i=1

T∑
t=1

γitx
∗′
itγ

∗
t
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= min
{

1, min
t≤T

λmin

(∑N
i=1 x∗

itx
∗′
it

N

)}
∥∆∥2

F + 2
N∑

i=1

T∑
t=1

γitx
∗′
itγ

∗
t , (C.4)

where the last equality holds since ∥∆∥2
F = ∑N

i=1
∑T

t=1 γ2
it + N∥Γ∗∥2

F . Write x∗
it =

(x∗
it,1, x∗

it,2, . . . , x∗
it,p−1)′ and γ∗

t = (γ∗
1t, γ∗

2t, . . . , γ∗
(p−1)t). Let Γ⋄ ≡ (γ1, γ2, . . . , γN )′, Γ†

j ≡
Γ⋄diag(γ∗

j1, γ∗
j2, . . . , γ∗

jT ), and X∗
j be an N × T matrix with the itth entry x∗

it,j . Write
Γ⋄ = (ζ1, ζ2, . . . , ζT ). It follows that

N∑
i=1

T∑
t=1

γitx
∗′
itγ

∗
t =

p−1∑
j=1

N∑
i=1

T∑
t=1

γitx
∗
it,jγ∗

jt

=
p−1∑
j=1

tr(X∗′
j Γ†

j)

= tr




X∗

1
X∗

2
...

X∗
p−1



′
Γ†

1
Γ†

2
...

Γ†
p−1





≤

∥∥∥∥∥∥∥∥∥∥∥


X∗

1
X∗

2
...

X∗
p−1



∥∥∥∥∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥∥∥∥


Γ†

1
Γ†

2
...

Γ†
p−1



∥∥∥∥∥∥∥∥∥∥∥
∗

= ∥X ∗∥2

∥∥∥∥∥∥∥∥∥∥∥


Γ†

1
Γ†

2
...

Γ†
p−1



∥∥∥∥∥∥∥∥∥∥∥
∗

≤ max
j≤p−1,t≤T

|γ∗
jt|

p−1∑
j=1

√
p − 1∥X ∗∥2∥Γ†

j∥∗, (C.5)

where the first inequality holds by the fact that |tr(C ′D)| ≤ ∥C∥2∥D∥∗, the fourth
equality holds since X ∗ and (X∗′

1 , X∗′
2 , . . . , X∗′

p−1)′ share a common set of nonzero singular
values, the last inequality follows since the nonzero singular values of (Γ†′

1 , Γ†′
2 , . . . , Γ†′

p−1)′

are given by the square root of the nonzero eigenvalues of

(Γ†′
1 , Γ†′

2 , . . . , Γ†′
p−1)


Γ†

1
Γ†

2
...

Γ†
p−1

 =
p−1∑
j=1

Γ†′
j Γ†

j
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=
p−1∑
j=1


γ∗

j1 0 · · · 0
0 γ∗

j2 · · · 0
...

...
...

...
0 0 · · · γ∗

jT

Γ⋄′Γ⋄


γ∗

j1 0 · · · 0
0 γ∗

j2 · · · 0
...

...
...

...
0 0 · · · γ∗

jT


=

p−1∑
j=1

T∑
t=1

γ∗2
jt ζtζ

′
t ⪯ max

j≤p−1,t≤T
|γ∗

jt|2
p−1∑
j=1

T∑
t=1

ζtζ
′
t = (p − 1) max

j≤p−1,t≤T
|γ∗

jt|2Γ⋄′Γ⋄, (C.6)

and “C ⪯ D” means that D − C is positive semi-definite. Thus, the first result of the
lemma follows from (C.4) and (C.5) by letting RNT (∆) = ∑N

i=1
∑T

t=1 γitx
∗′
itγ

∗
t . Since

tr(X ′
it∆) = γit + x∗′

itγ
∗
t ,

N∑
i=1

T∑
t=1

tr(εitX
′
it∆) =

N∑
i=1

T∑
t=1

εitγit +
N∑

i=1

T∑
t=1

εitx
∗′
itγ

∗
t

= tr(E ′Γ) + tr
(
F∗′√NΓ∗

)
≤ ∥E∥2∥Γ∥∗ + ∥F∗∥2

√
N∥Γ∗∥∗

≤ (∥E∥2 + ∥F∗∥2)
∥∥∥∥∥
(

Γ√
NΓ∗

)∥∥∥∥∥
= (∥E∥2 + ∥F∗∥2)∥∆∥∗, (C.7)

where the first inequality holds by the fact that |tr(C ′D)| ≤ ∥C∥2∥D∥∗, the second
inequality follows since ∥Γ∥∗ ≤ ∥(Γ′,

√
NΓ∗′)′∥∗ and

√
N∥Γ∗∥∗ ≤ ∥(Γ′,

√
NΓ∗′)′∥∗, and

the last equality follows by Lemma C.7(iii). This completes the proof of the lemma. ■

Lemma C.5. Recall xit = (1, x∗′
it)′. For any Γ⋄ = (γ1, γ2, . . . , γN )′ ∈ RN×T and Γ∗ =

(γ∗
1 , γ∗

2 , . . . , γ∗
T )′ ∈ R(p−1)×T , we have

1
2

N∑
i=1

T∑
t=1


yit − tr


X ′

it



γ′
1

Γ∗

γ′
2

Γ∗

...
γ′

N

Γ∗







2

+ λNT

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



γ′
1

Γ∗

γ′
2

Γ∗

...
γ′

N

Γ∗



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∗

= 1
2

N∑
i=1

T∑
t=1

(yit − γit − x∗′
itγ

∗
t )2 + λNT

∥∥∥∥∥
(

Γ⋄
√

NΓ∗

)∥∥∥∥∥
∗

,

where γi = (γi1, γi2, . . . , γiT )′.

Proof: Fix Γ⋄ = (γ1, γ2, . . . , γN )′ ∈ RN×T and Γ∗ = (γ∗
1 , γ∗

2 , . . . , γ∗
T )′ ∈ R(p−1)×T . It is

easy to see that tr(X ′
it((γ1, Γ∗′), (γ2, Γ∗′), (γN , Γ∗′))′) = γit + x∗′

itγ
∗
t . By Lemma C.7(iii),
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∥((γ1, Γ∗′), (γ2, Γ∗′), (γN , Γ∗′))′∥∗ = ∥(Γ⋄′,
√

NΓ∗)′∥∗. Thus, the result follows. ■

Appendix C.1 Technical Lemmas

Lemma C.6. For any matrix A, (i) the rank of 1k ⊗A is equal to the rank of A; (ii) the
nonzero singular values of 1k ⊗A are equal to the nonzero singular values of A multiplied
by

√
k; (iii) ∥1k ⊗ A∥∗ =

√
k∥A∥∗; (iv) the left singular vector matrix of nonzero matrix

1k ⊗ A corresponding to its nonzero singular values are given by 1k ⊗ U/
√

k, where U is
the left singular vector matrix of A corresponding to its nonzero singular values.

Proof: It is without loss of generality to assume that A is nonzero. Let d > 0 be the
rank of A and σ1 ≥ σ2 ≥ . . . ≥ σd > 0 be nonzero singular values of A. Let A = UΣV ′

be a singular value decomposition of A, where Σ is a d × d diagonal matrix with σj ’s in
the diagonal in descending order. It follows that

1k ⊗ A = 1√
k

(1k ⊗ U)
√

kΣV ′, (C.8)

which gives a singular value decomposition of 1k ⊗ A. Thus, the rank of 1k ⊗ A is equal
to d, the nonzero singular values of 1k ⊗ A given by

√
kσ1 ≥

√
kσ2 ≥ . . . ≥

√
kσd > 0,

and the left singular vector matrix of 1k ⊗A corresponding to its nonzero singular values
is 1k ⊗ U/

√
k. This completes the proof of the lemma. ■

Lemma C.7. For any matrices C = (c1, c2, . . . , ck)′ and D with the same number
of columns where cj’s are column vectors, (i) the rank of (c1, D′, c2, D′, . . . , ck, D′)
is equal to the rank of (C ′,

√
kD′); (ii) the nonzero singular values of (c1, D′, c2, D′,

. . . , ck, D′) are equal to the nonzero singular values of (C ′,
√

kD′); (iii) ∥(c1, D′, c2, D′,

. . . , ck, D′)∥∗ = ∥(C ′,
√

kD′)∥∗; (iv) the left singular vector matrix of nonzero matrix
(c1, D′, c2, D′, . . . , ck, D′)′ corresponding to its nonzero singular values have the form of
(u1, V ′, u2, V ′, . . . , uk, V ′)′, where U = (u1, u2, . . . , uk)′ and V have the same number of
rows with C and D, respectively. Moreover, (U ′,

√
kV ′)′ is the left singular vector matrix

of (C ′,
√

kD′)′ corresponding to its nonzero singular values.

Proof: It is without loss of generality to assume that C or D is nonzero. Let d > 0
be the rank of (c1, D′, c2, D′, . . . , ck, D′) and σ1 ≥ σ2 ≥ . . . ≥ σd > 0 be the nonzero
singular values of (c1, D′, c2, D′, . . . , ck, D′). It follows that σ2

1 ≥ σ2
2 ≥ . . . ≥ σ2

d > 0 are
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the nonzero eigenvalues of

(c1, D′, c2, D′, . . . , ck, D′)



c′
1

D

c′
2

D
...

c′
k

D


= C ′C + kD′D = (C ′,

√
kD′)

(
C√
kD

)
. (C.9)

Thus, the nonzero singular values of (C ′,
√

kD′) are σ1 ≥ σ2 ≥ . . . ≥ σd > 0 and the
rank of (C ′,

√
kD′) is equal to d. Let (c1, D′, c2, D′, . . . , ck, D′)′ = U∗ΣV ∗′ be a singular

value decomposition of (c1, D′, c2, D′, . . . , ck, D′)′, where Σ is a d × d diagonal matrix
with σj ’s in the diagonal in descending order. It follows that

U∗ =



c′
1

D

c′
2

D
...

c′
k

D


V ∗Σ−1 =



c′
1V ∗Σ−1

DV ∗Σ−1

c′
2V ∗Σ−1

DV ∗Σ−1

...
c′

kV ∗Σ−1

DV ∗Σ−1


=



u′
1

V

u′
2

V
...

u′
k

V


, (C.10)

where uj = Σ−1V ∗′cj and V = DV ∗Σ−1. In view of (C.9), V ∗ is also the right singu-
lar vector matrix of (C ′,

√
kD′)′. Thus, the left singular vector matrix of (C ′,

√
kD′)′

corresponding to its nonzero singular values is given by(
C√
kD

)
V ∗Σ−1 =

(
CV ∗Σ−1

√
kDV ∗Σ−1

)
=
(

U√
kV

)
. (C.11)

This completes the proof of the lemma. ■
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