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Abstract

For the classical linear model with an endogenous variable estimated by the method

of instrumental variables (IVs) with multiple instruments, Masten and Poirier (2021)

introduced the falsification adaptive set (FAS ). When a model is falsified, the FAS

reflects the model uncertainty that arises from falsification of the baseline model.

It is the set of just-identified IV estimands, where each relevant instrument is con-

sidered as the just-identifying instrument in turn, whilst all other instruments are

included as controls. It therefore applies to the case where the exogeneity assump-

tion holds and invalid instruments violate the exclusion assumption only. We pro-

pose a generalized FAS that reflects the model uncertainty when some instruments

violate the exogeneity assumption and/or some instruments violate the exclusion

assumption. This FAS is the set of all possible just-identified IV estimands where

the just-identifying instrument is relevant. There are a maximum of kz2
kz−1 such

estimands, where kz is the number of instruments. If there is at least one relevant

instrument that is valid in the sense that it satisfies the exogeneity and exclusion

assumptions, then this generalized FAS is guaranteed to contain β and therefore to

be the identified set for β.
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1 Introduction

Masten and Poirier (2021) (henceforth MP) introduced the falsification adaptive set (FAS )

for the classical linear model with an endogenous variable estimated by the method of

instrumental variables with multiple instruments. For the model specification Y = Xβ +

ZTγ+U , where Z is a kz-vector of putative instruments, the exclusion assumption implies

that γ = 0, and the exogeneity assumption that cov (Z, U) = 0. The FAS as proposed by

MP applies to the case where the baseline model is falsified due to instruments violating

the exclusion assumption whilst maintaining the exogeneity assumption. We therefore

denote this the FAS excl. It is the set of just-identified, and hence non-falsifiable, IV

estimands, where each relevant instrument is considered as the just-identifying instrument

in turn, whilst all other instruments are included as controls. The FASexcl is thus an

expanded set compared to the baseline point estimand to account for the uncertainty

due to a violation of the exclusion assumption. MP specify the falsification frontier as

the set of smallest relaxations of the exclusion restriction that are not falsified. They

recommend to report estimates of FASexcl under the assumption that the true model lies

on this frontier, as then the FASexcl contains β and is therefore the identified set for β.

An instrument is valid if it satisfies both the exogeneity and exclusion assumption. As

we show in Section 3, the FASexcl is guaranteed to contain β if there is at least one valid and

relevant instrument if the exogeneity assumption holds and invalid instruments violate the

exclusion assumption only. MP argue that, mathematically, the same technical analysis

can be used to relax both the exclusion assumption and exogeneity assumption. However,

we show in Section 4 that the FASexcl is no longer guaranteed to contain β if there is

at least one valid and relevant instrument when instead the exclusion assumption holds

and invalid instruments violate the exogeneity assumption only. We propose a different

FAS, termed FAS exo, for this setting. FAS exo is the set of just-identified IV estimands

where each relevant instrument is considered as the just-identifying instrument in turn,

with all other instruments removed from the instrument set. We show that FAS exo is

guaranteed to contain β when at least one of the instruments is relevant and valid and

invalid instruments can violate the exogeneity assumption only.

From these results, and as the main contribution of this paper, we argue in Section

5 that a FAS that properly takes into account possible violations of both the exogeneity

and exclusion assumptions when the baseline model is falsified is the set of all possible

just-identified IV estimands where the just-identifying instrument is relevant. This is
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due to the fact that when an instrument violates the exogeneity assumption it should

be removed from the instrument set, and when an instrument violates the exclusion

assumption it should be included as a control. Whereas FAS excl and FAS exo consider a

maximum of kz just-identified estimands, our generalized FAS considers a maximum of

kz2
kz−1 just-identified estimands. Under the assumption that an invalid instrument can

either violate the exogeneity assumption or the exclusion assumption, this generalized

FAS is guaranteed to contain β when there is at least one valid and relevant instrument.

In Section 5.1 we first introduce the generalized FAS for the case where there are

two instruments available, as for this case it is simply the union of the FASexcl and

FASexo. Section 5.2 provides the details for the generalized FAS for a general number

of instruments. In Section 6.1 we compare estimates of the three falsification adaptive

sets for an empirical example with two instruments on the origin of gender roles taken

from Alesina et al. (2013), as considered in Masten and Poirier (2020) (henceforth MP20).

Section 6.2 presents estimation results for an empirical analysis of roads and trade with

three instruments taken from Duranton et al. (2014), which was the main application in

MP.

2 Model and Assumptions

MP consider the classical linear model. In the main text they derive the falsification

adaptive set for a model with one endogenous explanatory variable and we focus on that

model here. Y (x, z) denotes the potential outcomes defined for values (x, z) ∈ Rkz+1. It

is assumed that

Y (x, z) = xβ + zTγ + U, (1)

where β is an unknown constant, γ is an unknown kz-vector and U is an unobserved

random variable. Let X be an observed endogenous variable and let Z be an observed

kz-vector of potentially invalid instruments. Individual elements of Z are denoted Zℓ,

ℓ = 1, . . . , kz. The observed outcome is Y = Y (X,Z),

Y = Xβ +ZTγ + U, (2)

and the joint distribution of (Y,X,Z) is assumed known.

The exclusion assumption as detailed below is an assumption on the values of γℓ. In

2



order to state the exogeneity assumption in a similar way, we specify

cov (Z, U) = α, (3)

where α is an unknown kz-vector.

The following relevance and sufficient variation assumptions are maintained:

Assumption 1. Relevance: The kz-vector cov (Z, X) ̸= 0.

Assumption 2. Sufficient variation: The kz × kz matrix Σz := var (Z) is invertible.

For all instruments to be valid, the exogeneity and exclusion assumptions need to be

satisfied:

Assumption 3. Exogeneity: αℓ = 0 for all ℓ ∈{1, . . . , kz} .

Assumption 4. Exclusion: γℓ = 0 for all ℓ ∈{1, . . . , kz} .

Under model (1) and Assumptions 1-4 it follows that cov (Z, Y ) = cov (Z, X) β and

(cov (Z, X))T Σ−1
z (cov (Z, X))−1 (cov (Z, X))T Σ−1

z (cov (Z, Y )) = β,

and so the two-stage least squares (2sls) estimand is equal to β. For each individual

instrument, we have that cov (Zℓ, Y ) = cov (Zℓ, X) β. Maintaining Assumptions 1 and 2,

Proposition 1 in MP states that model (2) with Assumptions 3 and 4 is not falsified if

and only if

cov (Zm, Y ) cov (Zℓ, X) ̸= cov (Zℓ, Y ) cov (Zm, X)

for all m and ℓ in {1, . . . , kz}.
As discussed in MP, if the distribution of (Y,X,Z) is such that the model is falsified

then this could be due to misspecification of model (2), which assumes homogeneous linear

treatment effects, and/or instrument invalidity. As in MP, we maintain here model (2)

and Assumptions 1 and 2 and focus on failure of instrument exogeneity or instrument

exclusion as reasons for falsifying the baseline model.

We define an instrument to be valid as follows.

Definition 1. Valid instrument: An instrument Zℓ is a valid instrument if both the

exogeneity and exclusion assumptions hold, αℓ = γℓ = 0.

We further make the assumption that an invalid instrument can either violate the

exclusion assumption or the exogeneity assumption, but not both:

3



Assumption 5. Invalid instrument: An invalid instrument violates either the exogeneity

assumption, αℓ ̸= 0, or the exclusion assumption, γℓ ̸= 0, but not both, γℓαℓ = 0.

Assumption 5 rules out that a variable considered to be an instrument for the endoge-

nous variable X is itself an endogenous variable.

Note that a valid instrument by itself may not identify β if there are invalid instruments

present and when instruments are correlated. A valid instrument then identifies β if the

invalid instruments that violate the exclusion restriction are added as controls as specified

in model (2) and instruments that violate the exogeneity assumption are removed from

the instrument set.

In the next section, we will present the identified set for β, the falsification frontier and

the falsification adaptive set as developed by MP for the case where invalid instruments

can violate the exclusion assumption only.

The FAS is the identified set for β if it contains β. We specify here the condition that

the FAS is the identified set for β if there is at least one relevant valid instrument.

Condition 1. Sufficient Condition: For the model specification given in (2) and (3),

suppose Assumptions 1, 2 and 5 hold and the joint distribution of (Y,X,Z) is known.

Then a sufficient condition for the FAS to contain β and thus be the identified set for β

is that there is at least one instrument that is relevant and valid.

Relevance of an instrument will be further clarified below. We consider Condition 1 to

be an essential requirement for the FAS. We show in Section 3 that this sufficient condition

for the FASexcl as proposed by MP requires the validity of the exogeneity Assumption 3

instead of the weaker Assumption 5. In other words, if invalid instruments violate the

exogeneity assumption, FASexcl is not guaranteed to contain β. We show this in Section

4, where we develop the FASexo for the case where instruments may violate the exogeneity

Assumption 3 only. The sufficient condition for the FAS exo requires the validity of the

exclusion Assumption 4 instead of the weaker Assumption 5. Section 5 then combines

these results and proposes the FAS for the case that covers the possibility that there

are invalid instruments that violate the exclusion restriction and invalid instruments that

violate the exogeneity assumption and we show that this FAS satisfies Condition 1.
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3 Failure of the Exclusion Assumption Only

MP derive the falsification adaptive set for the case of a failure of the exclusion Assumption

4, whilst maintaining the exogeneity Assumption 3. They argue that the same technical

analysis can be used to relax both assumptions, something we will discuss in greater detail

below.

Let

π := Σ−1
z cov (Z, X) ; ψ := Σ−1

z cov (Z, Y ) . (4)

As it is maintained that cov (Z, U) = α = 0, it follows from model (2) that ψ = πβ + γ.

MP make the following partial exclusion assumption.

Assumption 6. Partial exclusion: There are known constants δℓ ≥ 0 such that |γl| ≤ δℓ

for ℓ = 1, . . . , kz.

Under Assumptions 1-3 and 6, the identified set for β is then given in MP, Theorem

1, by

B (δ) = {b ∈ R : −δ ≤ (ψ − πb) ≤ δ} , (5)

where the inequalities are componentwise. This follows straightforwardly as ψ−πβ = γ

and −δ ≤ γ ≤ δ. The model is falsified if and only if B (δ) is empty. If B (0) is empty

then the baseline IV model, assuming γ = 0, is falsified.

For the individual components of the identified set we have −δℓ ≤ (ψℓ − πℓb) ≤ δℓ. As

stated in Corollary 1 in MP, it follows that

B (δ) = ∩kzℓ=1Bℓ (δℓ) ,

where

Bℓ (δℓ) =


[
ψℓ

πℓ
− δℓ

|πℓ|
, ψℓ

πℓ
+ δℓ

|πℓ|

]
if πℓ ̸= 0,

R if πℓ = 0 and 0 ∈ [ψℓ − δℓ, ψℓ + δℓ] ,

∅ if πℓ = 0 and 0 /∈ [ψℓ − δℓ, ψℓ + δℓ] .

The falsification frontier, denoted FF, is the minimal set of δs which lead to a nonempty

identified set. For a δ ∈ FF this means that for any other δ′ < δ, B (δ′) is empty and

thus falsifies the model, where δ′ < δ means that δ′ℓ ≤ δℓ for all ℓ ∈ {1, . . . , kz} and

δ′m < δm for some m ∈ {1, . . . , kz}, see Definition 1 in MP. As in MP, let Lrel denote the
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set of relevant instruments,

Lrel = {ℓ ∈ {1, . . . , kz} : πℓ ̸= 0} . (6)

For model (2), under Assumptions 1-3 and and 6, Proposition 2 in MP specifies the

falsification frontier as the set

FFexcl =

{
δ (b) ∈ Rkz

≥0 : δℓ (b) = |ψℓ − bπℓ| , ℓ = 1, . . . , kz, b ∈
[
min
ℓ∈Lrel

ψℓ
πℓ
, max
ℓ∈Lrel

ψℓ
πℓ

]}
,

where we have added the subscript “excl” to denote a relaxation of the exclusion assump-

tion only, for reasons that will become clear below, and also defined δ as a function of

b.

It is instructive at this point to consider a small numerical example.

Example 1. Let β = 1, kz = 3, π = (1, 1, 1)T and γ = (−1, 0, 2)T , resulting in

ψ = (0, 1, 3)T . The values of δ (b) for values of b = {0, 0.5, 1, 3}, where {0, 3} ={
minℓ

ψℓ

πℓ
,maxℓ

ψℓ

πℓ

}
are given by

δ (0) =

 0

1

3

 ; δ (0.5) =

 0.5

0.5

2.5

 ; δ (1) =

 1

0

2

 ; δ (3) =

 3

2

0


and for each value of b ∈ [0, 3], it follows that B (δ (b)) = b. For example, for δ(0.5), −0.5

−0.5

−2.5

 ≤


 0

1

3

−

 1

1

1

 b

 ≤

 0.5

0.5

2.5


for b = 0.5 only. For any δ′ < δ (0.5) it follows that B (δ′) is empty. It is clear that for

all values of b ∈ [0, 3] it holds that B (δ′) is empty for any δ′ < δ(b). For any b∗ /∈ [0, 3]

there is a δ′ < δ (b∗) for which B (δ′) is not empty, and hence δ (b∗) /∈ FF . For example,

for η > 0, δ (3 + η) = (3 + η, 2 + η, η)T > δ (3).

The falsification adaptive set, denoted here FASexcl, is then given in Theorem 2 of MP

as

FASexcl = ∪δ∈FFB (δ) =

[
min
ℓ∈Lrel

ψℓ
πℓ
, max
ℓ∈Lrel

ψℓ
πℓ

]
. (7)

As MP point out in their Lemma 1, for ℓ ∈ Lrel, ψℓ

πℓ

(
= β + γℓ

πℓ

)
is the IV/2sls estimand
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in the just identified model specification

Y = Xβℓ +Z
T
{−ℓ}γ{−ℓ} + Uℓ (8)

where Z{−ℓ} = Z \ {Zℓ}, and using Zℓ as the excluded just-identifying instrument. This

follows directly from the model specification (2) and the linear projection specification

X = ZTπ+V . Hence, Zℓπℓ = X −ZT
{−ℓ}π{−ℓ}−V , or Zℓγℓ =

(
X −ZT

{−ℓ}π{−ℓ} − V
)
γℓ
πℓ
.

It therefore follows that

βℓ = β +
γℓ
πℓ

=
ψℓ
πℓ

; γ{−ℓ},j = γj − πj
γℓ
πℓ
; Uℓ = U − V

γℓ
πℓ

and cov (Zℓ, Uℓ) = 0. This is for ℓ ∈ Lrel, j = 1, . . . , kz, j ̸= ℓ, so a slightly unusual

notation for γ{−ℓ}. For example, for kz = 3 and ℓ = 2, we have here that γ{−2} =(
γ{−2},1, γ{−2},3

)T
, see also Windmeijer et al. (2021, Appendix A.5).

As just-identified models are not falsifiable, it follows that for ℓ ∈ Lrel, δℓ
(
ψℓ

πℓ

)
= 0,

as highlighted in Example 1. From this, the results of the falsification frontier follow

straightforwardly, as when moving b from minj∈Lrel

ψj

πj
to maxj∈Lrel

ψj

πj
there is at least one

element in δ (b) that decreases in value and at least one that increases in value.

We can write the FASexcl alternatively as

FASexcl =

[
β + min

ℓ∈Lrel

γℓ
πℓ
, β + max

ℓ∈Lrel

γℓ
πℓ

]
.

It follows that the FASexcl contains β if 0 ∈
[
minℓ∈Lrel

γℓ
πℓ
,maxℓ∈Lrel

γℓ
πℓ

]
and hence it is

then the identified set for β. This is the case in Example 1 where β = 1 and FASexcl is

given by [0, 3]. MP, p 1456, state that the FASexcl “...is the identified set for β under the

assumption that one of the points on the falsification frontier is true.” Maintaining the

exogeneity Assumption 3 that αℓ = 0 for all ℓ ∈ {1, . . . , kz}, if there is at least one relevant
valid instrument, then β ∈ FASexcl, as γℓ = 0 for a valid instrument Zℓ. If none of the

instruments are valid, the FAS excl contains β if minℓ∈Lrel

γℓ
πℓ
< 0 and maxℓ∈Lrel

γℓ
πℓ
> 0.

Therefore, under the exogeneity assumption, a sufficient, but not necessary condition for

FAS excl to be the identified set for β is that at least one of the instruments is valid and

relevant. We state this in the following condition.

Condition 2. Exclusion Sufficient Condition: If the instruments satisfy the exogeneity

Assumption 3 that αℓ = 0 for all ℓ ∈ {1, . . . , kz}, then a sufficient condition for the FASexcl

to be the identified set for β is that there is at least one instrument that is relevant and
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valid.

As specified for Lrel in (6), an instrument is relevant in this setting if πℓ ̸= 0. Condition

2 requires the exogeneity Assumption 3 which is a stronger assumption than Assumption

5 that an invalid instrument can violate the exogeneity or exclusion assumption for the

general sufficient Condition 1.

3.1 Related Instrument Selection Methods

Kang et al. (2016), Guo et al. (2018), Windmeijer et al. (2019) and Windmeijer et al.

(2021) considered the same setting where invalid instruments can only violate the exclu-

sion assumption. These papers then salvage falsified models by selecting the set of valid

instruments under either a majority rule or plurality rule. The majority rule states that

more than 50% of the relevant instruments are valid, whilst the plurality rule states that

within Lrel the valid instruments form the largest group, where a group of instruments is

defined by having the same value ψℓ

πℓ
.

The latter can be seen in relation to the falsification frontier, by finding, within Lrel,
the value of b = ψℓ

πℓ
for which δ (b) has the largest number of zeros. To illustrate, if we add

a fourth instrument to our numerical Example 1 above, with π4 = 1 and γ4 = 0, then we

have both Z2 and Z4 as valid instruments and they form the largest group, as the values

of ψℓ

πℓ
are given by {0, 1, 3, 1}. For b = β = 1 we then clearly have that δ (1) = (1, 0, 2, 0)T

and the selection methods of Guo et al. (2018) and Windmeijer et al. (2021) consistently

select Z2 and Z4 as the valid instruments. These two selection methods use dimension

reduction techniques to deal with situations of a large number of instruments. For a small

number of instruments, as in this example, the selection procedures of Andrews (1999),

adjusted to deal with the violation of the exclusion assumption only, can be used to select

the set of valid instruments.

3.2 Estimation of FAS excl and First-Stage Hard Thresholding

We have an i.i.d. sample of size n,
{
Yi, Xi,Z

T
i

}n
i=1

. The n-vectors (Yi) and (Xi) are

denoted y and x respectively, and here Z denotes the kz × n matrix of observations on

the instruments. MP suggest to estimate the set of relevant instruments by

L̂rel = {ℓ ∈ {1, . . . , kz} : Fℓ ≥ Cn} ,
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where Fℓ is the first-stage F -statistic for model (8), where Zℓ is considered as an instrument

and Z{−ℓ} as controls. For all values of ℓ, the first-stage model is therefore given by

x = Zπ + v and so Fℓ is the same as the Wald statistic for testing H0 : πℓ = 0 based on

the OLS estimator of π, denoted π̂. The same first-stage hard thresholding was proposed

in Guo et al. (2018). Although Cn → ∞ as n→ ∞ and Cn = o (n) for consistent selection,

MP choose Cn = 10 as their default cutoff, or for the t-ratio,
∣∣∣ π̂ℓ
se(π̂ℓ)

∣∣∣ ≥ √
10 = 3.16, where

π̂ℓ is the OLS estimator of πℓ in the first-stage model.

Let β̂ℓ be the IV estimator of βℓ in just-identified model specification (8). Then FASexcl

is estimated by

F̂ASexcl =

[
min
ℓ∈L̂rel

β̂ℓ, max
ℓ∈L̂rel

β̂ℓ

]
and MP show that F̂ASexcl is a consistent estimator of the FASexcl under the conditions

of their Proposition 3.

Note that instead of having to calculate kz,rel =
∣∣∣L̂rel∣∣∣ IV estimates, the same estimates

are obtained from two OLS regressions. Let ψ̂ denote the OLS estimator of ψ in the

reduced form model y = Zψ+vy. Let zℓ denote the n-vector of observations on the ℓ-th

instrument (Zi,ℓ), the ℓ-th column of Z, and

zℓ|{−ℓ} :=MZ{−ℓ}zℓ,

the residual vector after regressing zℓ on Z{−ℓ}, where Z{−ℓ} is the n × (kz − 1) matrix

Z \ zℓ, and where for a general full column rank matrix A, MA = In − P A, with

P A = A
(
ATA

)−1
AT and In is the n-dimensional identity matrix. Then it follows that

β̂ℓ =
zTℓ|{−ℓ}y

zTℓ|{−ℓ}x
=

(
zTℓ|{−ℓ}zℓ|{−ℓ}

)−1

zTℓ|{−ℓ}y(
zTℓ|{−ℓ}zℓ|{−ℓ}

)−1

zTℓ|{−ℓ}x
=
ψ̂ℓ
π̂ℓ
, (9)

see also Windmeijer et al. (2021, Appendix A.5). Note further that irrelevant instruments

zj for j /∈ L̂rel are included as control variables in this setting, as it is in Guo et al. (2018)

and Windmeijer et al. (2021).

3.3 2sls

For the model specification

y = xβ + u,
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and the n× kz instrument matrix Z, the 2sls estimator is given by

β̂2sls =
(
xTP Zx

)−1
xTP Zy

=
(
xTP Zx

)−1
xTZψ̂

=
(
xTP Zx

)−1
xTZDπ̂β̂

where β̂ is the kz-vector
(
β̂ℓ

)
, and Dπ̂ is a kz × kz diagonal matrix with ℓ-th diagonal

element equal to π̂ℓ. Therefore β̂2sls is a linear combination of the just-identified IV

estimators,

β̂2sls =
kz∑
ℓ=1

wℓβ̂ℓ, (10)

with wℓ = π̂ℓz
T
ℓ x
(
xTP Zx

)−1
. Let ιkzbe a kz-vector of ones. As xTZDπ̂ιkz = xTZπ̂ =

xTP Zx it follows that
∑kz

ℓ=1wℓ = 1, but β̂2sls is not necessarily a weighted average of

the β̂ℓ as wℓ can be negative. This is the case when π̂ℓ and z
T
ℓ x have opposite signs, or

equivalently if π̂ℓ and π̂∗
ℓ have opposite signs, where π̂∗

ℓ is the OLS estimator of π∗
ℓ , the

coefficient in the linear specification x = zℓπ
∗
ℓ + vℓ.

4 Failure of the Exogeneity Assumption Only

We now maintain the exclusion Assumption 4, so γ = 0, but consider violations of the

exogeneity Assumption 3. The observed outcome model is therefore given by

Y = Xβ + U, (11)

with the possible exogeneity violation specified as in (3),

cov (Z, U) = α.

MP, page 1453, argue that, mathematically, the same technical analysis can be used

to relax the exogeneity assumption as is used above for the relaxation of the exclusion

assumption. In MP20, Appendix G, it is argued that a linear projection of U on Z results

in

U = ZTη + U̇ , (12)
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with cov
(
Z, U̇

)
= 0 by construction. Then

Y = Xβ + U

= Xβ +ZTη + U̇ ,

which is the same type of specification as that of model (2) and MP20 argue that the

results above for the relaxation of the exclusion assumption apply here as well. MP20

stress that the key difference is the interpretation of the coefficients on Z. We argue here

that it actually has an implication for the FAS.

For the linear projection specification (12), we have that

η = Σ−1
z cov (Z, U) = Σ−1

z α. (13)

If the instruments are orthogonal or independent and Σz is a diagonal matrix, then the

distinction between a relaxation of the exclusion or exogeneity assumption is immaterial.

However, for a general Σz, the two different relaxations need different treatment. With

correlated instruments, instruments that violate the exclusion restriction will need to be

included as controls in the model for a valid instrument to identify β. Instruments that

violate the exogeneity assumption need to be excluded from the instrument set for a valid

instrument to identify β.

As stated in Condition 2, when considering a relaxation of the exclusion assumption

only, a sufficient condition for the FASexcl as defined in (7) to contain β and hence to be

the identified set for β is that at least one instrument is relevant and valid, satisfying the

exclusion assumption γℓ = 0. For a relaxation of the exogeneity assumption only, there

could be a relevant and valid instrument with αℓ = 0, but from (13) it follows that it could

be the case that ηℓ ̸= 0 for ℓ = 1, . . . , kz, due to the correlation of the instruments. So

although there is a valid instrument, the FASexcl of (7) is then not guaranteed to contain

β. A FAS that does is easily obtained.

Like the partial exclusion Assumption 6 as made in MP, we make the following partial

exogeneity assumption.

Assumption 7. Partial exogeneity: There are known constants δ∗ℓ ≥ 0 such that |α∗
ℓ | ≤ δ∗ℓ

for ℓ = 1, . . . , kz, where α
∗
ℓ =(var (Zℓ))

−1 αℓ.
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Then define the kz-vectors π
∗ and ψ∗ with ℓ-th elements given by

π∗
ℓ := (var (Zℓ))

−1 cov (Zℓ, X) ; ψ∗
ℓ := (var (Zℓ))

−1 cov (Zℓ, Y ) , (14)

for ℓ = 1, . . . , kz.

Under Assumptions 1, 2, 4 and 7, the identified set for β is given by

B (δ∗) = {b ∈ R : −δ∗ ≤ (ψ∗ − π∗b) ≤ δ∗} ,

which follows straightforwardly as ψ∗ − π∗β = α∗ and −δ∗ ≤ α∗ ≤ δ∗. The model is

falsified if and only if B (δ∗) is empty. If B (0) is empty then the baseline IV model (11),

assuming α = 0, is falsified.

Let L∗
rel denote the set of relevant instruments

L∗
rel = {ℓ ∈ {1, . . . , kz} : π∗

ℓ ̸= 0} . (15)

For the IV model (11), under Assumptions 1, 2 and 4, known joint distribution of (Y,X,Z)

and following the same arguments as above for the derivation of the falsification frontier

for the relaxation of exclusion restrictions, the falsification frontier here is given as the set

FFexo =

{
δ∗ (b) ∈ Rkz

≥0 : δ
∗
ℓ (b) = |ψ∗

ℓ − bπ∗
ℓ | , ℓ = 1, . . . , kz, b ∈

[
min
ℓ∈L∗

rel

ψ∗
ℓ

π∗
ℓ

, max
ℓ∈L∗

rel

ψ∗
ℓ

π∗
ℓ

]}
.

The falsification adaptive set is therefore given

FASexo =

[
min
ℓ∈L∗

rel

ψ∗
ℓ

π∗
ℓ

, max
ℓ∈L∗

rel

ψ∗
ℓ

π∗
ℓ

]
(16)

=

[
β + min

ℓ∈L∗
rel

α∗
ℓ

π∗
ℓ

, β + max
ℓ∈L∗

rel

α∗
ℓ

π∗
ℓ

]
.

For ℓ ∈ L∗
rel, the ratio

β∗
ℓ :=

ψ∗
ℓ

π∗
ℓ

=
cov (Zℓ, Y )

cov (Zℓ, X)

is the IV estimand for the specification Y = Xβ + U , using Zℓ as the just-identifying

instrument for X, and treating the instruments Z{−ℓ} as invalid and excluding them from

the analysis.

Under the exclusion assumption, a sufficient condition for FAS exo to contain β is that

there is at least one relevant and valid instrument as we state in the following condition.

Condition 3. Exogeneity Sufficient Condition: If the instruments satisfy the exclusion

12



Assumption 4 that γℓ = 0 for all ℓ ∈ {1, . . . , kz}, then a sufficient condition for the FASexo

to be the identified set for β is that at least one instrument is relevant and valid.

As specified for L∗
rel in (15), an instrument Zℓ is relevant in this setting if π∗

ℓ ̸= 0.

Relative to Assumption 5 for the general Condition 1, Condition 3 requires the stronger

exclusion assumption.

To contrast the condition for FAS exo with the finding for FAS excl, consider the follow-

ing simple example where there is one valid instrument and one invalid instrument that

violates the exogeneity assumption. As Condition 2 is not satisfied, the FAS excl is in this

case not guaranteed to be the identified set for β, even though one of the instruments is

valid and relevant.

Example 2. Let kz = 2, π = (π1, π2)
T , πℓ ̸= 0 for ℓ = 1, 2, γ = 0, α = (0, α2)

T , α2 ̸= 0,

and

Σz =

[
1 ρ12

ρ12 1

]
,

with |ρ12| < 1. Then π∗ = (π1 + ρ12π2, π2 + ρ12π1)
T , α∗ = α, and so, provided π∗

ℓ ̸= 0 for

ℓ = 1, 2,

FASexo = β +

[
min

{
0,

α2

π2 + ρ12π1

}
,max

{
0,

α2

π2 + ρ12π1

}]
and β ∈ FASexo.

For FASexcl, we have that η = Σ−1
z α = α2

1−ρ212
(−ρ12, 1)T , and so

FASexcl = β +

[
min

{
−ρ12α2

π1 (1− ρ212)
,

α2

π2 (1− ρ212)

}
,max

{
−ρ12α2

π1 (1− ρ212)
,

α2

π2 (1− ρ212)

}]
,

therefore, if −ρ12α2

π1
and α2

π2
have the same sign, β /∈ FASexcl.

We can of course adapt Example 2 to the case where the invalid instrument violates

the exclusion assumption instead, in which case the FASexo is not guaranteed to be the

identified set for β.

The selection methods of Guo et al. (2018) and Windmeijer et al. (2021) can be

adjusted to select the valid instruments consistently in the case of a violation of the

exogeneity assumption only if the plurality rule applies that the valid instruments form

the largest group within the set of relevant variables. The Andrews (1999) selection

method was originally designed for this case.

13



4.1 Estimation

The set of relevant instruments can here be estimated by

L̂∗
rel = {ℓ ∈ {1, . . . , kz} : F ∗

ℓ ≥ Cn} ,

where F ∗
ℓ is the F-statistic for testing H0 : π

∗
ℓ = 0 in the first-stage linear specification

x = zℓπ
∗
ℓ + vℓ.

Let β̂∗
ℓ be the IV estimators

β̂∗
ℓ =

zTℓ y

zTℓ x
=
ψ̂∗
ℓ

π̂∗
ℓ

,

where ψ̂∗
ℓ is the OLS estimator of ψ∗

ℓ in the reduced-form specification y = zTℓ ψ
∗
ℓ + εℓ,

and π̂∗
ℓ the OLS estimator of π∗

ℓ . Then the consistent estimator of FASexo is given by

F̂ASexo =

[
min
ℓ∈L̂∗

rel

β̂∗
ℓ , max
ℓ∈L̂∗

rel

β̂∗
ℓ

]
.

4.2 2sls

The 2sls estimator for β for the specification y = xβ + u using the n × kz instrument

matrix Z is again a linear combination of the individual estimators β̂∗
ℓ ,

β̂2sls =
(
xTP Zx

)−1
xTP Zy

=
(
xTP Zx

)−1
π̂TDZT xβ̂

∗

=
kz∑
ℓ=1

w∗
ℓ β̂

∗
ℓ . (17)

where β̂
∗
is the kz-vector

(
β̂∗
ℓ

)
andDZT x is the kz×kz diagonal matrix with ℓ-th diagonal

element equal to zTℓ x. It follows that
(
xTP Zx

)−1
π̂TDZT xιkz = 1 and so

∑kz
ℓ=1w

∗
ℓ = 1.

Comparing the weights with those in (10), where we had that β̂2sls =
∑kz

ℓ=1wℓβ̂ℓ, with∑kz
ℓ=1wℓ = 1, we find that the weights are identical, as

w∗
ℓ = π̂ℓz

T
ℓ x
(
xTP Zx

)−1
= wℓ,

for ℓ = 1, . . . , kz, i.e. the 2sls weights for the just-identified estimators β̂ℓ, where Z{−ℓ}

are included as controls, are the same as those for the just-identified estimators β̂∗
ℓ , where

14



Z{−ℓ} are excluded from the instrument set.

5 Failure of the Exogeneity or Exclusion Assumption

If a model is falsified, a researcher is unlikely to know whether this is due to a violation of

the exogeneity or the exclusion assumption and the falsification adaptive set should reflect

this. In this section we generalize the FAS, such that it reflects the fact that instruments

can violate the exogeneity or exclusion restriction. We therefore consider here the general

model specifications as in (2) and (3),

Y = Xβ +ZTγ + U

cov (Z, U) = α.

We obtain the falsification frontier and associated FAS that satisfies Condition 1

by simply considering all possible just-identified model specifications, as detailed below.

We first show this for the kz = 2 case, where the results are a simple combination of the

results for the violation of the exclusion restriction only and the violation of the exogeneity

assumption only.

5.1 kz = 2

When there are two instruments available, we can generalize the FAS by simply combining

the results for FASexcl and FASexo as presented in Sections 3 and 4. There are in this

case four just-identified model specifications, one with Z1 as control and Z2 as excluded

instrument for X, one with Z2 as control and Z1 as excluded instrument for X, and the

model without controls and Z1 or Z2 as instrument for X. As above, let π and ψ be as

defined in (4) for the model with instruments included as controls, and π∗ and ψ∗ for the

model without instruments included as controls, as defined in (14).

From the combination of the results in Sections 3 and 4, it follows that we get here

ψ − πβ = γ + η,
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with, as in (13), η = Σ−1
z α. Further

ψ∗ − π∗β = α∗ + ξ∗,

with ξ∗ = diag
(
(var (Zℓ))

−1)Σzγ, where for general dℓ, diag (dℓ) is a diagonal matrix

with ℓ-th diagonal element dℓ, and, as before, α
∗
ℓ = (var (Zℓ))

−1 αℓ. We can now make the

partial exogeneity and exclusion assumption.

Assumption 8. Partial exogeneity and exclusion: There are known constants δℓ ≥ 0 and

δ∗ℓ ≥ 0 such that |γℓ + ηℓ| ≤ δℓ and |α∗
ℓ + ξ∗ℓ | ≤ δ∗ℓ for all ℓ ∈ {1, . . . , kz}.

Then define

π̃ :=

(
π

π∗

)
; ψ̃ :=

(
ψ

ψ∗

)
; δ̃ :=

(
δ

δ∗

)
.

Extending the results as outlined in Sections 3 and 4, under Assumptions 1, 2, 5 and

8, the identified set for β is given by

B
(
δ̃
)
=
{
b ∈ R : −δ̃ ≤

(
ψ̃ − π̃b

)
≤ δ̃

}
.

Let L̃rel denote the set of relevant instruments in this setting, specified as

L̃rel = {j ∈ {1, . . . , 4} : π̃j ̸= 0} . (18)

Then we get for the falsification frontier,

FF =

{
δ̃ (b) ∈ R4

≥0 : δ̃j (b) =
∣∣∣ψ̃j − bπ̃j

∣∣∣ , j = 1, . . . , 4, b ∈

[
min
j∈L̃rel

ψ̃j
π̃j
, max
j∈L̃rel

ψ̃j
π̃j

]}
.

As discussed in Section 3, this follows as, for j ∈ L̃rel, δ̃j
(
ψ̃j

π̃j

)
= 0 and so when

moving b from minj∈L̃rel

ψ̃j

π̃j
to maxj∈L̃rel

ψ̃j

π̃j
there is at least one element in δ̃ (b) that

decreases in value and at least one that increases in value. For any δ̃
′
< δ̃ (b), b ∈[

minj∈L̃rel

ψ̃j

π̃j
,maxj∈L̃rel

ψ̃j

π̃j

]
, B
(
δ̃
′)

is empty.

We then get our main result that the falsification frontier is given by

FAS =

[
min
j∈L̃rel

ψ̃j
π̃j
, max
j∈L̃rel

ψ̃j
π̃j

]
. (19)

These results are clear. In order to consider possible violations of the exogeneity or

exclusion assumptions, we need to consider all just-identified model specifications.
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When there are two instruments available, the model is falsified and one instrument

is valid, then from Assumption 5 it follows that the invalid instrument does either violate

the exogeneity or the exclusion restriction. If it violates the exogeneity assumption, as

in Example 2, with α = (0, α2)
T , α2 ̸= 0, then Z1 identifies β provided Z2 is omitted

from the instrument set as ψ̃3

π̃3
=

ψ∗
1

π∗
1
= β, provided Z1 is a relevant instrument when Z2

is omitted, or π̃3 = π∗
1 ̸= 0. If alternatively the invalid instrument violates the exclusion

assumption, with γ = (0, γ2)
T , γ2 ̸= 0, then Z1 identifies β when Z2 is included as a

control variable as ψ̃1

π̃1
= ψ1

π1
= β, provided Z1 is a relevant instrument when Z2 is included

as a control and hence in the instrument set, or π̃1 = π1 ̸= 0. In the words of MP, p 1452,

when the baseline model is falsified, the falsification adaptive set expands to account for

the uncertainty about which assumption along the frontier is true. The FAS as defined in

(19) does this for violations of the exogeneity and exclusion assumptions. As it contains

β if there is a valid relevant instrument, it satisfies Condition 1.

5.1.1 Alternative Representation

Instead of specifying different just identified models as in the previous sections, we can

simply focus on the transformed just-identifying instruments, which will enable us to

easily generalize the approach to the setup for a general number of instruments. Define

the population linear projection errors Z1|2 and Z2|1 as

Z1|2 := Z1 − Z2ϕ21; Z2|1 := Z2 − Z1ϕ12, (20)

where ϕ21 = (var (Z2))
−1 cov (Z2, Z1) and ϕ12 = (var (Z1))

−1 cov (Z1, Z2). It follows

straightforwardly that for the elements of ψ = Σ−1
z cov (Z, Y ), we have that

ψ1 =
(
var
(
Z1|2

))−1
cov
(
Z1|2, Y

)
ψ2 =

(
var
(
Z2|1

))−1
cov
(
Z2|1, Y

)
,

and equivalently for the elements of π. These are the population equivalents of the sample

estimation results in (9).

We can therefore get the vector of just-identifying transformed instruments as

Z̃ =
(
Z1|2, Z2|1, Z1, Z2

)T
. (21)
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Then the vectors π̃ and ψ̃ have the elements

π̃j =
(
var
(
Z̃j

))−1

cov
(
Z̃j, X

)
; ψ̃j =

(
var
(
Z̃j

))−1

cov
(
Z̃j, Y

)
, (22)

for j = 1, . . . , 4.

For j ∈ L̃rel, the IV estimands are then

β̃j =
ψ̃j
π̃j

=
cov
(
Z̃j, Y

)
cov
(
Z̃j, X

) = β +
cov
(
Z̃j, Ũ

)
cov
(
Z̃j, X

) ,
where Ũ = Y −Xβ = ZTγ + U . The FAS is given by

FAS =

[
min
j∈L̃rel

β̃j, max
j∈L̃rel

β̃j

]
.

This representation makes the definition of a relevant instrument generic, with an instru-

ment Z̃j here relevant if π̃j ̸= 0, confirming the definition as in (18).

5.1.2 Estimation

For estimation of the FAS as defined in (19) the set of relevant instruments is estimated

by ̂̃Lrel = {j ∈ {1, . . . , 4} : F̃j ≥ Cn

}
,

where F̃j is the F-statistic for testing H0 : π̃j = 0 in the first-stage linear specification

x = z̃jπ̃j + vj, where z̃j is the j-th column of the n × 4 matrix of just-identifying

transformed instruments

Z̃ = [M z2z1 M z1z2 z1 z2] .

Let ̂̃βj be the IV estimators

̂̃βj = z̃Tj y

z̃Tj x
=

̂̃ψĵ̃πj ,
where ̂̃ψj is the OLS estimator of ψ̃j in the reduced-form specification y = z̃Tj ψj+εj, and̂̃πj the OLS estimator of π̃j. Then a consistent estimator of FAS is given by

F̂AS =

[
min
j∈̂̃Lrel

̂̃βj, max
j∈̂̃Lrel

̂̃βj
]
.
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5.2 General kz

The extension to the definition of the FAS for a general number of instruments that

can violate the exogeneity or exclusion assumption is obtained by considering all possible

just-identified model specifications. There are skz = kz2
kz−1 such specifications, resulting

in e.g. s2 = 4, s3 = 12 and s4 = 32. This is established as follows. For an instrument Zℓ,

ℓ ∈ {1, . . . , kz}, let the set A−ℓ = {r : r ∈ {1, . . . , kz} , r ̸= ℓ} and let C−ℓ = {C−ℓ,m}Mm=1

denote the collection of all subsets of A−ℓ. The number of elements in C−ℓ,m range from

0, 1, . . . , kz − 1, so C−ℓ includes ∅ and A−ℓ. There are M = 2kz−1 such subsets. Define as

in (20) the linear projection error

Zℓ|C−ℓ,m
:= Zℓ −ZT

C−ℓ,m
ϕC−ℓ,mℓ

,

then Zℓ|C−ℓ,m
is the transformed just-identifying instrument in the model specification

where the instruments ZC−ℓ,m
are included as controls and the instruments ZA−ℓ\C−ℓ,m

are omitted from the instrument set. For each ℓ ∈ {1, . . . , kz} there are M = 2kz−1

such transformed just-identifying instruments and so the total number of just-identifying

specifications is given by skz = kz2
kz−1.

As an example, for kz = 3, ℓ = 1 and C−1,m = {3}, Z1|3 is the just-identifying

instrument Z1 for the model with Z3 included as control and Z2 excluded from the in-

strument set. The full sequence for Z1 is given by the 22 = 4 just identifying instruments{
Z1, Z1|2, Z1|3, Z1|2,3

}
. This applies to all 3 instruments, so there are a total of 12 just-

identifying model specifications. For model specification (2) and (3), let γ = (0, 0, γ3)
T

and α = (0, α2, 0)
T with γ3 ̸= 0 and α2 ̸= 0. Here Z1 is a valid instrument, but with

correlated instruments, Z3 needs to be included as a control for it to identify β. Therefore

Z1|3 is here the valid instrument that identifies β if it is relevant. If the latter is the case,

then the FAS as constructed below will contain β.

Let Z̃ be the skz -vector of transformed just-identifying instruments

Z̃ =
(
Zℓ|C−ℓ,m

)
ℓ=1,...,,kz ;m=1,...,2kz−1 (23)

=
(
Z̃j

)
j=1,...,skz

.

Then define as in (22) the skz -vectors π̃ and ψ̃ with elements

π̃j =
(
var
(
Z̃j

))−1

cov
(
Z̃j, X

)
; ψ̃j =

(
var
(
Z̃j

))−1

cov
(
Z̃j, Y

)
, (24)
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for j = 1, . . . , skz .

It follows from model specification (2) and (3) that

ψ̃j − π̃jβ =
(
var
(
Z̃j

))−1

cov
(
Z̃j, Ũ

)
,

where Ũ = Y − Xβ = ZTγ + U . We can now make the general partial exogeneity and

exclusion assumption,

Assumption 9. General partial exogeneity and exclusion: There are known constants

δ̃j ≥ 0 such that

∣∣∣∣(var(Z̃j))−1

cov
(
Z̃j, Ũ

)∣∣∣∣ ≤ δ̃j for all j ∈ {1, . . . , skz}.

It then follows from the arguments given in Sections 3, 4 and 5.1 that under Assump-

tions 1, 2, 5 and 9, the identified set for β is given by

B
(
δ̃
)
=
{
b ∈ R : −δ̃ ≤

(
ψ̃ − π̃b

)
≤ δ̃

}
.

The set of relevant instruments is specified as

L̃rel = {j ∈ {1, . . . , skz} : π̃j ̸= 0} , (25)

and the falsification frontier is given by

FF =

{
δ̃ (b) ∈ Rskz

≥0 : δ̃j (b) =
∣∣∣ψ̃j − bπ̃j

∣∣∣ , j = 1, . . . , skz , b ∈

[
min
j∈L̃rel

ψ̃j
π̃j
, max
j∈L̃rel

ψ̃j
π̃j

]}
.

Then the generalized falsification adaptive set is

FAS =

[
min
j∈L̃rel

ψ̃j
π̃j
, max
j∈L̃rel

ψ̃j
π̃j

]

=

[
min
j∈L̃rel

β̃j, max
j∈L̃rel

β̃j

]
,

where, for j ∈ L̃rel, the IV estimands are given by

β̃j =
ψ̃j
π̃j

=
cov
(
Z̃j, Y

)
cov
(
Z̃j, X

) = β +
cov
(
Z̃j, Ũ

)
cov
(
Z̃j, X

) .
We summarize our main result, the generalization of the falsification adaptive set, in

the following proposition. This generalizes Theorem 2 in MP, with the further result that
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this FAS satisfies Condition 1. This latter follows straightforwardly, as for each instru-

ment all possible permutations of invalidity of the other instruments under Assumption

5 are considered. Hence, if there is at least one valid instrument, then at least one of

these permutations will identify β, as long as the associated transformed just-identifying

instrument is relevant.

Proposition 1. For the linear model specification (2) and (3), suppose Assumptions 1,

2, 5 and 9 hold and the distribution of (Y,X,Z) is known. i) The falsification adaptive

set is given by

FAS =

[
min
j∈L̃rel

ψ̃j
π̃j
, max
j∈L̃rel

ψ̃j
π̃j

]
, (26)

where ψ̃j and π̃j are defined in (24) for j = 1, . . . , skz , with skz = kz2
kz−1 the number of all

possible just-identified IV model specifications. The Z̃j in (24) are the skz just-identifying

transformed instruments as defined in (23). An instrument Z̃j is relevant if π̃j ̸= 0, and

L̃rel is the set of relevant instruments as defined in (25). ii) A sufficient condition for

the FAS to contain β and thus be the identified set for β is that there is at least one

instrument that is relevant and valid.

For estimation, the same procedure is followed as in Section 5.1.2. The set of relevant

instruments is estimated by

̂̃Lrel = {j ∈ {1, . . . , skz} : F̃j ≥ Cn

}
,

where F̃j is the F-statistic for testing H0 : π̃j = 0 in the first-stage linear specification

x = z̃jπ̃j + vj, where z̃j is the j-th column of the n × skz matrix of just-identifying

transformed instruments

Z̃ =
[
MZC−ℓ,m

zℓ

]
ℓ=1,...,kz ,m=1,...,2kz−1

= [z̃j] .

Let ̂̃βj be the IV estimators

̂̃βj = z̃Tj y

z̃Tj x
=

̂̃ψĵ̃πj ,
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then the consistent estimator of FAS is given by

F̂AS =

[
min
j∈̂̃Lrel

̂̃βj, max
j∈̂̃Lrel

̂̃βj
]
.

6 Some Empirical Examples

6.1 An Empirical Example with Two Instruments

MP20, Section 4.2, calculate F̂ASexcl for the cross-country study by Alesina et al. (2013)

on the origin of gender roles. We will focus here on the results for the model with the

outcome variable “Female labor force participation in 2000”. Their endogenous treat-

ment variable is the “estimated proportion of citizens with ancestors that traditionally

used the plough in pre-industrial agriculture” and they use geo-climatic area conditions

for suitability for growing “plough-positive” crops and “plough-negative” crops as two

instruments. The full estimation results are given in Table VIII in Alesina et al. (2013),

which also gives details of other control variables that have been included in the model.

In MP20, these results and the F̂ASexcl are reported in their Table 4.

Table 1 reports the results for the model specification without continent fixed effects.

The 2sls estimation results using both instruments show a significant negative effect of

traditional plough use on female labor force participation, but this model is falsified

with the p-value of the Hansen (1982) J-test being equal to 0.0009. With Z1 being the

“plough-positive environment” instrument, and Z2 the “plough-negative environment”

one, it is found that the F-statistic for H0 : π2 = 0 is equal to 0.95 and hence Z2|1 is

not in the relevant set. As reported in MP20, the F-statistic for H0 : π1 = 0 is equal

to 78.20 and so it follows that the F̂ASexcl = −14.31, which is the IV estimate using

Z1|2 as the just-identifying and relevant instrument. So, although the two instruments

produce significantly different results, falsifying the model, the F̂ASexcl is a single point.

As mentioned before, the falsification adaptive set should expand to account for the

uncertainty about which assumption along the frontier is true, which is not the case here.

For the FASexo, we get F̂ASexo = [−46.98,−22.65], which is further expanded to the

estimate of FAS, F̂AS = [−46.98,−14.31], which is the range of IV estimates of the three

just-identifying relevant instruments, Z1|2, Z1 and Z2. F̂AS fully shows the uncertainty

of the results due to the falsification of the model.

Table 1 also provides the estimates of ψ̃j and π̃j, for j = 1, . . . , 4. It shows that
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Table 1: Country level IV estimation results, Alesina et al. (2013, Table VIII, column 1)
Instruments

Z1, Z2 Z1|2 Z2|1 Z1 Z2

Traditional plough use
−21.63
(5.25)

−14.31
(5.15)

159.6
(176.9)

−22.65
(5.32)

−46.98
(10.77)

F 40.21 78.20 0.95 74.01 19.00
J-test p-value 0.0009

F̂ASexcl −14.31

F̂ASexo [−46.98,−22.65]

F̂AS [−46.98,−14.31]

ψ̃
−10.64
(3.82)

18.93
(6.51)

−16.08
(3.50)

29.66
(6.28)

π̃
0.744
(0.084)

0.119
(0.122)

0.710
(0.083)

−0.631
(0.144)

Notes: Outcome variable “Female labor force participation rate in 2000”, n = 160, 2sls estima-
tion results for model without continent fixed effects. Heteroskedasticity robust test statistics
and (standard errors). Z1 is instrument “Plough-pos. environment”, Z2 is “Plough-neg. envi-
ronment”, Zs|r is just identifying instrument Zs when Zr is added as a control.

̂̃π2 (= π̂2) and ̂̃π4 (= π̂∗
2) have opposite signs. Therefore, with β̂2sls =

∑2
ℓ=1wℓβ̂ℓ =∑2

ℓ=1wℓβ̂
∗
ℓ , as shown in Sections 3.3 and 4.2, it follows that the weight w2 is negative.

The weights are here given by w1 = 1.042 and w2 = 1 − w1 = −0.042. Note that using

any pair of the four just-identifying instruments results in the same 2sls estimator, which

is then of course also a linear combination of the associated pair of the just-identified

estimators, with the weights adding up to 1. For example, when using Z1|2 and Z1 as the

instruments, we have here that β̂2sls = 0.12β̂1+0.88β̂∗
1 . For all the six pairs, we find that1

β̂2sls = 1.042β̂1 − 0.042β̂2 = 1.042β̂∗
1 − 0.042β̂∗

2

= 0.12β̂1 + 0.88β̂∗
1 = 0.12β̂2 + 0.88β̂∗

2

= 0.78β̂1 + 0.22β̂∗
2

= 0.006β̂2 + 0.994β̂∗
1 .

Use of any of any of these pairs of instruments also results in the same value for the

J-statistic, which is equivalent to a minimum-distance criterion, see Windmeijer (2019).

The small p-value therefore indicates that the estimands, for example β∗
1 and β∗

2 , are

different from each other.

Although Z2|1 is found to be an irrelevant instrument, this is not the case for Z2

1A proof for the equivalence of the weights for β̂1, β̂
∗
1 and β̂2, β̂

∗
2 is provided in the Appendix.
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when used as the just-identifying instrument by itself. This is due to the strong negative

correlation between the two instruments, with the (partial) sample correlation between

them given by ρ̂12 = −0.54. Therefore if Z2 is a valid instrument, with γ2 = α2 = 0, it can

identify β if Z1 is invalid due to a violation of the exogeneity assumption, γ1 = 0, α1 ̸= 0,

even when π2 = 0, as long as ρ12 ̸= 0. But clearly, when π2 = 0, Z2 cannot identify β if

Z1 instead violates the exclusion assumption.

6.2 An Empirical Example with Three Instruments

One of the main examples in MP is the empirical analysis of roads and trade by Duranton

et al. (2014). The outcome variable is a measure of how much a city exports. The one

considered in MP is called the “propensity to export weight”. The treatment variable is

the log number of kilometers of interstate highway within a city in 2007. Duranton et al.

(2014) estimate the causal effect of within city highways on the propensity to export

weight using instrumental variables. There are three potential instruments: Z1 = Plan

is the log number of kilometers of highway in the city according to a planned highway

construction map, approved by the federal government in 1947; Z2 = Railroads is the log

number of kilometers of railroads in the city in 1898; and Z3 = Exploration is a measure

of the quantity of historical exploration routes that passed through the city. For a fuller

description see Duranton et al. (2014) and MP.

We will focus here on the model specification and estimation results as displayed

in column 2 of Table 5 in Duranton et al. (2014) and in column 2 of Table I in MP.

This model specification includes the additional control variables “log employment” and

“Market access (export)”. Estimation results for the two additional control variables have

been omitted and notation-wise these variables have been partialled out. The first column

in Table 2 replicates the 2sls estimation results using all 3 instruments. This specification

is falsified by the J-statistic, which has a p-value of 0.043. The next columns give the

estimation results for all twelve just-identified model specifications. The instruments

Z2|1,3 and Z2|1 are found to be not relevant, and the resulting estimates of the falsification

adaptive sets are given by F̂ASexcl = [−0.32, 0.28] as in MP, F̂ASexo = [0.13, 1.09] and

F̂AS = [−0.61, 1.18].

The F̂AS has quite a wide range of values here, as it correctly takes into account

possible violations of exogeneity and exclusion restrictions. If for example γ = (0, 0, γ3)
T

and α = (α1, 0, 0)
T with γ3 ̸= 0 and α1 ̸= 0, then Z2|3 is a valid instrument. It is found
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to be a relevant instrument, and the associated IV estimate is given by 1.18, which is the

largest coefficient estimate of all just-identified specifications. Z2|1,3 and Z2|1 are found

to be not relevant, with their F-statistics less than 10. In contrast, Z2 as well as Z2|3 are

found to be relevant. As in the empirical example of Section 6.1, this can be explained

by the strong correlation of the instruments. The sample partial correlation coefficients

are here given by ρ̂12 = 0.57, ρ̂13 = 0.34 and ρ̂23 = 0.11.

The 2sls estimator is again the same when using any combination of three instru-

ments from the twelve transformed just-identifying ones, as long as all indices {1, 2, 3}
are involved, as in for example

{
Z1, Z1|2, Z1|3

}
. The 2sls weights for {Z1, Z2, Z3} and{

Z1|2,3, Z2|1,3, Z3|1,2
}
are here given by w = {0.757, 0.126, 0.117}.

Table 2: IV estimation results, Duranton et al. (2014, Table 5, column 2)
Instruments

Z1, Z2, Z3 Z1|2,3 Z2|1,3 Z3|1,2 Z1 Z2 Z3

log highway km
0.57
(0.16)

0.28
(0.25)

3.16
(1.39)

−0.32
(0.86)

0.55
(0.17)

1.09
(0.26)

0.13
(0.38)

F 90.30 58.13 6.97 20.00 154.5 35.84 15.97
J-test p-value 0.043

Z1|2 Z1|3 Z2|1 Z2|3 Z3|1 Z3|2

log highway km
0.22
(0.21)

0.40
(0.16)

3.74
(1.90)

1.18
(0.26)

−0.61
(1.11)

−0.02
(0.38)

F 81.14 122.45 5.29 34.31 14.27 31.07

F̂ASexcl [−0.32, 0.28]

F̂ASexo [0.13, 1.09]

F̂AS [−0.61, 1.18]
Notes: Outcome variable “propensity to export weight”, n = 66. Additional controls “log em-
ployment” and “Market access (export)”. Heteroskedasticity robust test statistics and (standard
errors). Z1 is instrument “Plan”, Z2 is “Railroads”, Z3 is “Exploration”.

6.2.1 Instrument Selection

When a model is falsified, the F̂AS gives the range of estimates of all just-identified

model specifications where the just-identifying instruments are found to be relevant. If

a relevant instrument is valid, then the population FAS will contain β under our stated

assumptions. As such, estimation of the FAS is not a selection tool. In the exclusion

assumption violation only setting, as Z2|1,3 is found to be an irrelevant instrument, MP

however argued to automatically include Z2 = Railroads, as a control. If Z1 and Z3

are valid instruments and Z2 violates the exclusion assumption, then the resulting 2sls
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estimator would of course be a consistent estimator of β, and the null hypothesis for the

J-test would be true. If Z2 violates the exogeneity assumption instead, it should clearly

be omitted from the instrument set. However, instrument selection like that requires the

assumption in this case that two instruments are valid. Then the valid instruments can be

found by selecting the specification for which the J-test does not reject. The MP approach

for hard thresholding with exclusion violation only is then the same as the approach of

Guo et al. (2018) and Windmeijer et al. (2021).

Table 3: Results for Estimation with Two Instruments
Instruments

Z1, Z2 Z1|3, Z2|3 Z1, Z3 Z1|2, Z3|2 Z2, Z3 Z2|1, Z3|1

log highway km
0.61
(0.17)

0.73
(0.20)

0.51
(0.16)

0.17
(0.19)

0.74
(0.19)

0.84
(0.64)

F 91.64 81.13 102.27 65.34 38.14 11.87
J-test p-value 0.014 0.020 0.25 0.51 0.039 0.019
Notes: See notes to Table 2.

When considering the model specifications with two instruments only it seems nat-

ural to consider all possible combinations allowing for the violation of the exclusion or

exogeneity assumption. The estimation results are presented in Table 3. Although Z2|1,3

and Z2|1 are not relevant instruments, we include them here as part of the pairs {Z1, Z2},{
Z1|3, Z2|3

}
and

{
Z2|1, Z3|1

}
as there is enough information in the data to reject these

specifications. We find here that the J-statistics for the pairs {Z1, Z3} and
{
Z1|2, Z3|2

}
do

not falsify the model specifications, with the p-values respectively given by 0.25 and 0.51.

Hence there is no evidence against including Railroads as a control or dropping it from

the instrument set. The estimation results are quite different in the two specifications,

with an estimate of 0.51 (se 0.16) and F = 102.3 when Z2 is dropped, and 0.17 (se 0.19)

and F = 65.34 when Z2 is included as a control. Selecting the model with the larger

value of the F -statistic would then favor the model with Z2 excluded. When adopting

the selection strategy of choosing the model with the smallest value of the J-statistic,

as in Andrews (1999), then the model with Z2 included as a control would be selected,

but there is no reason to specify this model as the automatic default for a falsified model

with irrelevant instruments. And note that it could still be the case that Z2 or Z2|3 is the

only valid and relevant instrument, as the assumption that in this case the majority of

instruments is valid is not verifiable and a non-rejection of the J-test does not imply that

instruments are valid.
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To illustrate this further, Tables 4 and 5 present the same estimation results for the

specification in Duranton et al. (2014) as presented in their Table 5, column 4, and in

MP Table I, column 4 and Table II. Although this specification is not falsified by the

J-test, MP do provide the estimate of FAS excl. The results for the different falsification

adaptive sets are here given by F̂ASexcl = [0.18, 0.42], F̂ASexo = [0.34, 0.64] and F̂AS =

[0.18, 0.67]. Railroads is again found to be an irrelevant instrument in the sense that the

F-statistic for Z2|1,3 is given by 1.27 and for Z2|1 is given by 0.16. But Z2 by itself and

Z2|3 are found to be relevant instruments due to the correlation structure. The sample

partial correlation coefficients are given by ρ̂12 = 0.63, ρ̂13 = 0.38 and ρ̂23 = 0.12.

Table 4: IV estimation results, Duranton et al. (2014, Table 5, column 4)
Instruments

Z1, Z2, Z3 Z1|2,3 Z2|1,3 Z3|1,2 Z1 Z2 Z3

log highway km
0.39
(0.12)

0.18
(0.21)

3.66
(4.16)

0.42
(0.52)

0.38
(0.13)

0.64
(0.22)

0.34
(0.19)

F 84.71 54.75 1.27 26.95 129.7 40.75 23.79
J-test p-value 0.30

Z1|2 Z1|3 Z2|1 Z2|3 Z3|1 Z3|2

log highway km
0.21
(0.15)

0.40
(0.16)

8.78
(22.3)

0.67
(0.24)

0.26
(0.54)

0.34
(0.19)

F 81.92 98.57 0.16 44.07 24.66 39.41

F̂ASexcl [0.18, 0.42]

F̂ASexo [0.34, 0.64]

F̂AS [0.18, 0.67]
Notes: Outcome variable “propensity to export weight”, n = 66. Additional controls “log
employment”, “Market access (export)”, “log 1920 population”, “log 1950 pop.”, “log 2000
pop.” and “log % manuf. emp.”. Heteroskedasticity robust test statistics and (standard errors).
Z1 is instrument “Plan”, Z2 is “Railroads”, Z3 is “Exploration”.

MP then again include Railroads by default as a control variable and presents the

2sls estimation results for that particular specification. In Table 5 we compare model

specifications with 2 instruments, but ignore here any combination which would have

an irrelevant instrument and therefore consider only the pairs {Z1, Z3},
{
Z1|2, Z3|2

}
and

{Z2, Z3}. As the original specification was not falsified we don’t expect these specifications

to be falsified, as confirmed by the p-values of the J-statistics, which are respectively

0.83, 0.72 and 0.25. The model with largest value of the F -statistic and smallest value

of the J-statistic in this case is the model with Z2 excluded from the instrument set.

The resulting 2sls estimate of 0.38 (se 0.12) is very close to the one based on all three

instruments, 0.39 (se 0.12). The 2sls weights for the three instruments {Z1, Z2, Z3} are

27



given by w = {0.81, 0.05, 0.14}, those for the two instruments {Z1, Z3} are given by

w = {0.98, 0.02}.

Table 5: Results for Estimation with Two Instruments
Instruments

Z1, Z3 Z1|2, Z3|2 Z2, Z3

log highway km
0.38
(0.12)

0.23
(0.14)

0.51
(0.16)

F 112.28 82.15 46.65
J-test p-value 0.83 0.72 0.25
Notes: See notes to Table 4.

7 Conclusions

We have generalized the falsification adaptive set of Masten and Poirier (2021) for the

classical linear model with an endogenous variable, estimated by the method of instru-

mental variables with multiple instruments. It is the set of all just-identifying estimands

where the just-identifying instrument is relevant. It reflects the model uncertainty when

the baseline model is falsified, taking into account possible violations of both the exo-

geneity and exclusion assumptions and where an invalid instrument can violate either

the exclusion or exogeneity assumption. It contains β if there is at least one valid and

relevant instrument, and we recommend researchers to report estimates of this set when

their baseline model is falsified.

Appendix

We show here that for the kz = 2 case we have that β̂2sls = w̃
T
(
β̂1, β̂

∗
1

)T
= w̃T

(
β̂2, β̂

∗
2

)T
,

as observed in Section 6.1.

For general instruments Z = [z1 z2] the 2sls weights on the instrument specific esti-

mators β̂∗
1 and β̂∗

2 was found in Section 4.2 to be given by

wℓ = π̂ℓz
T
ℓ x
(
xTP Zx

)−1
,

for ℓ = 1, 2, with w1 + w2 = 1, and where π̂ℓ is the ℓ-th element of π̂ =
(
ZTZ

)−1
ZTx,

π̂ =

(
π̂1

π̂2

)
=

 (
zT1|2z1|2

)−1

zT1|2x(
zT2|1z2|1

)−1

zT2|1x

 ,
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where

z1|2 =M z2z1 = z1 − z2
(
zT2 z2

)−1
zT2 z1 = z1 − z2ϕ̂21

z2|1 =M z1z2 = z2 − z1
(
zT1 z1

)−1
zT1 z2 = z2 − z1ϕ̂12,

with ϕ̂21 =
(
zT2 z2

)−1
zT2 z1 and ϕ̂12 =

(
zT1 z1

)−1
zT1 z2.

Consider the instruments Z̃1 =
[
z1|2 z1

]
, with instruments specific estimators respec-

tively β̂1 and β̂∗
1 . Denote the associated 2sls weights w̃1, with first element given by

w̃1,1 = π̃1,1z
T
1|2x

(
xTP Z̃1

x
)−1

= π̃1,1z
T
1|2x

(
xTP Zx

)−1

with the second equality following from the fact that z1|2 is a linear combination of z1

and z2. π̃1,1 is the first element of π̃1 =
(
Z̃
T

1 Z̃1

)−1

Z̃
T

1 x.

We have that

z̃1|2 =M z1M z2z1 = −z2|1ϕ̂21

and so

π̃1,1 = −
zT2|1x

zT2|1z2|1ϕ̂21

= −
zT2|1x

zT1 z2

(
1− ϕ̂12ϕ̂21

) ,
as

zT2|1z2|1ϕ̂21 =
(
zT2 z2 − zT2 z1ϕ̂12

)
ϕ̂21 = z

T
1 z2

(
1− ϕ̂12ϕ̂21

)
,

and so

π̃1,1z
T
1|2x = −

xTz2|1z
T
1|2x

zT1 z2

(
1− ϕ̂12ϕ̂21

) .
Next consider the instruments Z̃2 =

[
z2|1 z2

]
, with instruments specific estimators

respectively β̂2 and β̂∗
2 . Denote the associated 2sls weights w̃2, with first element given

by

w̃2,1 = π̃2,1z
T
2|1x

(
xTP Z̃2

x
)−1

= π̃2,1z
T
2|1x

(
xTP Zx

)−1
,

with π̃2,1 the first element of π̃2 =
(
Z̃
T

2 Z̃2

)−1

Z̃
T

2 x. By the derivations as above we get,

π̃2,1z
T
2|1x = −

xTz1|2z
T
2|1x

zT1 z2

(
1− ϕ̂12ϕ̂21

) ,
and so w̃1,1 = w̃2,1. As w̃1,2 = 1− w̃1,1 and w̃2,2 = 1− w̃2,1, it follows that w̃1 = w̃2 = w̃.

29



References

Alesina, A., P. Giuliano, and N. Nunn (2013): “On the Origins of Gender Roles:

Women and the Plough,” The Quarterly Journal of Economics, 128, 469–530.

Andrews, D. W. K. (1999): “Consistent Moment Selection Procedures for Generalized

Method of Moments Estimation,” Econometrica, 67, 543–563.

Duranton, G., P. M. Morrow, and M. A. Turner (2014): “Roads and Trade:

Evidence from the US,” The Review of Economic Studies, 81, 681–724.

Guo, Z., H. Kang, T. T. Cai, and D. S. Small (2018): “Confidence Intervals for

Causal Effects with Invalid Instruments by Using Two-Stage Hard Thresholding with

Voting,” Journal of the Royal Statistical Society: Series B (Statistical Methodology),

80, 793–815.

Hansen, L. P. (1982): “Large Sample Properties of Generalized Method of Moments

Estimators,” Econometrica, 50, 1029.

Kang, H., A. Zhang, T. T. Cai, and D. S. Small (2016): “Instrumental Variables

Estimation With Some Invalid Instruments and its Application to Mendelian Random-

ization,” Journal of the American Statistical Association, 111, 132–144.

Masten, M. A. and A. Poirier (2020): “Salvaging Falsified Instrumental Variable

Models,” arXiv, 1812.11598.

——— (2021): “Salvaging Falsified Instrumental Variable Models,” Econometrica, 89,

1449–1469.

Windmeijer, F. (2019): “Two-Stage Least Squares as Minimum Distance,” The Econo-

metrics Journal, 22, 1–9.

Windmeijer, F., H. Farbmacher, N. Davies, and G. Davey Smith (2019): “On

the Use of the Lasso for Instrumental Variables Estimation with Some Invalid Instru-

ments,” Journal of the American Statistical Association, 114, 1339–1350.

Windmeijer, F., X. Liang, F. P. Hartwig, and J. Bowden (2021): “The Confi-

dence Interval Method for Selecting Valid Instrumental Variables,” Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 83, 752–776.

30


